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Study of optimal design of 3D mechanical metamaterials

Abstract

This thesis aims to develop and extend numerical methods for solving the elastic problem in 2D to a 3D solution. The

primary objective is to investigate and identify the modifications and extensions necessary to adapt existing techniques

used in 2D to a 3D framework. The focus is on developing a robust and efficient numerical method that accurately

models the behavior of elastic materials in three dimensions.

The study encompasses several objectives to achieve a comprehensive understanding of 3D material design and topology

optimization in the context of mechanical metamaterials. Firstly, an introduction to topology optimization is provided,

including the formulation and regularization of the problem, and an explanation of density-based and the Level Set

method. The thesis further investigates the SWAN repository’s code, an object-oriented Matlab software, assessing its

applicability for conducting simulations.

The thesis explores the optimization of both normal materials and metamaterials microstructures. For normal materials,

a comparison is made between different optimization approaches, specifically the MMA optimizer utilizing a density-

based method and the Null Space optimizer employing a level set-based method. Additionally, the impact of varying

final volume fractions on the optimization outcomes is studied. This investigation provides valuable insights into the

influence of different parameter variations on the resulting microstructures and optimization performance.

Furthermore, the study focuses on metamaterials microstructures and explores their optimization using the Null Space

optimizer, and different α and β values are employed to examine their effects on the final design. The optimization

process is also conducted for different final volume fractions to evaluate the influence of volume fraction on metamaterial

performance.

This study on material design and topology optimization has yielded several important conclusions: the simulations

showcased the relationship between dimensionality and convergence speed, with 2D simulations demonstrating faster

convergence compared to 3D simulations; analysis of parameters such as the cost function and the number of iterations

has been conducted comparing different optimizers, it has been highlighted the challenges and unique considerations

involved in optimizing metamaterials; and, overall, the research has contributed to the understanding of optimization

processes and the generation of innovative material configurations.
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Resumen

El objetivo de esta tesis es desarrollar y ampliar métodos numéricos para resolver el problema elástico en 2D y adaptarlos

a una solución en 3D. Se busca investigar e identificar las modificaciones y extensiones necesarias para adaptar las

técnicas existentes utilizadas en 2D a un marco en 3D. El enfoque principal se centra en desarrollar un método numérico

robusto y eficiente que modele con precisión el comportamiento de los materiales elásticos en tres dimensiones.

El estudio abarca varios objetivos para lograr una comprensión integral del diseño de materiales y la optimización de la

topología en 3D, especialmente en el contexto de los metamateriales mecánicos. En primer lugar, se proporciona una

introducción a la optimización de topología, incluyendo la formulación y regularización del problema, así como una

explicación del método basado en densidad y el método de Level Set. Además, se realiza un análisis del código del

repositorio SWAN, un software orientado a objetos en Matlab, evaluando su aplicabilidad para realizar simulaciones.

La tesis explora la optimización tanto de materiales normales como de microestructuras de metamateriales. Para los

materiales normales, se realiza una comparación entre diferentes enfoques de optimización, en particular el optimizador

MMA que utiliza un método basado en densidad y el optimizador Null Space que emplea un método basado en la

función level set. Asimismo, se estudia el impacto de variar las fracciones de volumen final en los resultados de la

optimización. Esta investigación proporciona valiosos conocimientos sobre la influencia de las variaciones de distintos

parámetros en las microestructuras resultantes y el rendimiento de la optimización.

Además, el estudio se enfoca en las microestructuras de metamateriales y explora su optimización utilizando el

optimizador Null Space, empleando diferentes valores de α y β para examinar sus efectos en el diseño final. También se

lleva a cabo el proceso de optimización para diferentes fracciones de volumen final con el fin de evaluar la influencia de

la fracción de volumen en el rendimiento de los metamateriales.

Este estudio sobre diseño de materiales y optimización de topología ha generado varias conclusiones importantes:

las simulaciones han demostrado la relación entre la dimensionalidad y la velocidad de convergencia, siendo las

simulaciones en 2D más rápidas en converger en comparación con las simulaciones en 3D; se ha llevado a cabo un

análisis de parámetros como la función de costo y el número de iteraciones, comparando diferentes optimizadores; se

han destacado los desafíos y consideraciones únicas involucrados en la optimización de metamateriales; y, en general,

la investigación ha contribuido a la comprensión de los procesos de optimización y a la generación de configuraciones

de materiales innovadoras.
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Chapter 1

Introduction

1.1 Objective

The main objective of this final thesis is to develop and extend the current numerical methods for solving the elastic

problem in 2D to a 3D solution. This will be achieved by investigating and identifying modifications and extensions

required to adapt the existing techniques used in 2D to a 3D framework. The focus will be on developing a robust and

efficient numerical method that accurately models the behavior of elastic materials in three dimensions.

In addition to developing the 3D elastic numerical method, this final thesis aims to apply topology optimization

techniques to design 3D metamaterials. An introduction to topology optimization will be provided, including the

formulation and regularization of the problem, density-based methods, level set method, and a comparison between

different optimizers. Also, a study of the TO code on the Swan repository will be conducted and an analysis and UML

of the code will be performed.

The final objective of this thesis is to investigate the elastic inverse homogenization problem and study it by applying

density-based and level set methods. To better comprehend the topic, simulations of the J1, J2 and J3 cases will be

computed. Additionally, 3D material design will be studied considering density-based and level set methods.

Overall, this final thesis aims to extend the current numerical methods for solving the elastic problem in 2D to a

3D solution, apply topology optimization techniques to design 3D metamaterials and investigate the elastic inverse

homogenization problem. By accomplishing these objectives, this thesis will contribute to a better understanding of

the behavior of elastic materials in three dimensions and may have implications for the design of novel materials with

unique properties.

1.2 Scope
Throughout this investigation, the tasks that will be addressed are:

• Introduction to Swan. In order to be able to work in the Swan software, first it will be necessary to learn to

program following an object-oriented approach (classes, types of data access, inheritance...) and applying clean

code practices. To do it, a previous FEM code from the Aerospace Structures subject will be refactored.
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• Finite Element Method. To understand the FEM code on the Swan repository, an analyisis and UML of it will

be done studying it at macro and micro levels. Additionally, the expected results will be visualized with GID and

compared to the expected ones.

• Topology Optimization. An introduction to Topology Optimization will be done to comprehend the TO code on

the Swan repository; that includes: formulation and regularization of the problem, density-based methods, level

set method... Also, an analysis and UML of the code will be done studying it at macro and micro levels. Lastly, a

comparison between different optimizers will be realized.

• Material Design. Simulations of the J1, J2 and J3 cases will be computed for a better comprehension of the

topic. In addition, the 3D material design will be studied considering density-based and level set methods.

• Inverse Homogenization. An investigation of the elastic inverse homogenization problem will be realized, and a

study of it will be done applying density-based and level set methods.

1.3 Requirements

In order to successfully complete this study, the following conditions must be met:

• The programming language used for the solution must be Matlab

• To ensure readability and ease of interpretation by outside parties, the implemented code must adhere to clean

code practices.

• The underlying object-oriented approach of the architecture must be respected in the implementation.

• The previous architecture must remain fully functional during the development of the new architecture

• The accuracy of the solution should be validated using analytical or experimental data, if available.

• All code modifications should be documented thoroughly, including any changes to the underlying data structures,

algorithms, or numerical methods used in the implementation.

• The code should be version-controlled using Git to track changes and enable collaboration among team members.

The list of the tasks and its necessary calendarization (presented in a Gantt diagram) is provided in the Appendix A.

1.4 Justification

Topology Optimization is an emerging area of study whose purpose is to automatize the designing processes of any

structural field. It investigates the process of defining the form, connectivity and position of voids in the interior of

a given design domain. This enables a higher design liberty other than shape and dimension optimization, as it also

considers thickness and cross-sectional regions of structural members (dimension) and geometrical characteristics

(shape), having established in advance which configurational specifications are going to be optamized.
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Still, new advances on this field allow the implementation of it in late developed design stages, enveloping all the design

phases from conditions delineation to the fabricating point. The latest extensive studies and investigation concerting

this topic include works from Bendsøe and Sigmund [1], Rozvany [2] and Liu and Ma [3].

Moreover, this area has experienced a period of fast expansion, specially in the investigation field and the manufacturing

application (it has been the most active investigation field in the interdisciplinary optimization for the last 20 years).

This expansion is the result of the development of the traditional topology optimization methods and the persisting

evolution of innovative new ones.

On the other hand, "metamaterial" is the designation that any material receives when it has been engineered to possess a

property which isn’t encountered in naturally happening materials. Examples of them can be materials that present a

negative Poisson coefficient, negative effective mass density or negative volume contractibility.

These last two decades, metamaterials have received a lot of support through different types of research: from the

acoustic ones [4] to the elastic ones [5], going through other investigation fields such as metaoptics [6].

Metamaterials have been such a scientific discovery that even the distinguished journal Nature published a revolutionary

work exhibiting a new mechanical metamaterial (negative Poisson coefficient). It stated that it was one of the strongest,

lightest and hardest existing material. [7]

Figure 1.1: New mechanical metamaterials presented in Nature. Extracted from [7].

Those properties of metamaterials also make them of great interest for the aerospacial and aeronautical sector. For

example, mechanical metamaterials have ideal characteristics for spacial actuators, and their ability to form lightweight

structures while maintaining strength makes them a desirable material.

Due to the potential metamaterials offer in various applications, there is an increasing interest in creating efficient

methods for their design. Topology Optimization is a promising tool for achieving this goal by optimizing the

distribution of materials and voids to create metamaterials with tailored properties and improved performance.
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However, the application of Topology Optimization is still a relatively new and unexplored area of research. Although

some studies have investigated the use of Topology Optimization for 2D metamaterial design [8], there is still much

to be done to extend these methods to 3D metamaterials. This represents a significant opportunity for research and

innovation.

Combining topology optimization with metamaterials can lead to the creation of materials with unprecedented properties

that traditional design methods cannot achieve, which could offer new possibilities in diverse applications ranging from

aerospace to biomedical engineering.

Overall, the application of Topology Optimization to 3D metamaterial design is a promising area of research that can

lead to the creation of novel materials with tailored properties and improved performance. By exploring this area, this

study can contribute to the advancement of both the fields of Topology Optimization and metamaterials, as well as their

applications in various domains.
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Chapter 2

State of the Art

Topology optimization and material design have been actively researched areas in recent years, with a focus on

developing new and innovative 3D mechanical metamaterials. In this chapter, the state of the art techniques and

approaches in these fields will be reviewed, discussing their strengths and limitations.

2.1 Topology Optimization

Topology optimization is a computational design technique that seeks to optimize the layout and connectivity of a

material within a design domain, subject to specified boundary conditions and loading scenarios, in order to achieve

desired performance objectives (such as minimizing weight or maximizing stiffness) [9]. This method has been applied

to different engineering fields, including structural mechanics, fluid dynamics and heat transfer.

This technique emerged from the field of structural optimization in the late 1980s. One of the pioneering works in this

field was the seminal paper by Bendsøe and Kikuchi [10], who proposed a material distribution approach to optimal

shape design. In their work, they introduced the concept of a density field to represent the material distribution within a

design domain and formulated the optimization problem as a continuous problem involving the density variables. This

laid the foundation for the development of various topology optimization methods in the following years.

Figure 2.1: Topology Optimization process. Extracted from [11].

One of the most popular material interpolation method used in topology optimization is the Solid Isotropic Material with

Penalization (SIMP) method. In the SIMP approach, the material properties within the design domain are interpolated

between the properties of the base material and those of a void (or a very weak material) using a density variable.

The interpolation is accompanied by a penalization factor that discourages intermediate density values, leading to a
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more distinct material distribution. The optimization problem is typically solved using gradient-based optimization

algorithms, such as the Method of Moving Asymptotes (MMA) or Sequential Linear Programming (SLP).

Level set methods, initially introduced in the context of computational fluid dynamics, have been adapted for topology

optimization as well [12]. In level set-based topology optimization, the material boundary is implicitly represented

using a scalar level set function. The optimization is performed by updating the level set function to iteratively evolve

the material boundary, ultimately achieving an optimal material layout. Level set methods offer several advantages

over density-based approaches, such as the ability to handle topological changes naturally and the potential for more

accurate representation of boundaries. However, they often require more complex numerical implementations and can

be computationally expensive.

While topology optimization has been successfully applied to the design of mechanical metamaterials, there are still

several challenges and open questions in this field. One of the main challenges is the handling of large-scale and

high-resolution design problems, which often require significant computational resources and advanced optimization

algorithms. Additionally, the integration of manufacturing constraints, such as those arising from additive manufacturing

have to be taken into account.

2.2 Mechanical Metamaterials

Mechanical metamaterials are artificial materials with unique mechanical properties, often derived from their underlying

structure rather than their constituent materials. These properties include negative Poisson’s ratio, negative thermal

expansion and programmable mechanical responses. Several approaches have been proposed to optimize the topology

of lattice structures, truss networks and continuum materials to achieve desired performance characteristics [13].

Additionally, topology optimization has been combined with other design paradigms, such as origami and kirigami, to

create mechanical metamaterials with programmable deformation and shape-memory behavior.

Figure 2.2: Graphic example of non-auxetic Mechanical Metamaterials. Extracted from [14].
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One of the most common approaches to designing mechanical metamaterials is the use of lattice structures or truss

networks, which consist of periodic arrangements of interconnected beams or struts [15]. By tuning the geometry and

connectivity of these elements, it is possible to control the material’s effective mechanical properties, such as stiffness,

strength and Poisson’s ratio. For example, hierarchical lattice structures inspired by natural materials, such as trabecular

bone or plant tissue, have been shown to exhibit exceptional combinations of stiffness and strength with low material

density [16].

On the other hand, origami and kirigami are the arts of paper folding and cutting, respectively, which have inspired the

design of mechanical metamaterials with unique deformation and shape-memory behavior [17, 18]. Origami-based

metamaterials often utilize fold patterns to create structures with programmable bending and twisting motions, while

kirigami-based metamaterials leverage cut patterns to achieve tunable stretching and shearing behavior. These materials

have found applications in soft robotics, deployable structures and impact absorption systems.

Although mechanical metamaterials offer a wide range of unique mechanical properties and applications, there are

several challenges and open questions in this field. The manufacturing of these materials on a large scale, especially for

microscale and nanoscale structures, is one of the key problems. Additive manufacturing and microfabrication techniques

have been employed to fabricate mechanical metamaterials with complex geometries, but further advancements are

needed to improve the resolution and material compatibility of these methods. Additionally, the development of efficient

computational design tools, such as topology optimization methods, is critical for the optimal design of mechanical

metamaterials with tailored properties and performance.

2.3 Advanced Manufacturing Techniques

The fabrication of mechanical metamaterials with complex geometries and fine-scale features relies on advanced

manufacturing techniques, such as additive manufacturing (AM) and microfabrication.

Additive manufacturing, commonly known as 3D printing, is a family of manufacturing processes that build objects

layer-by-layer from digital models [19]. Various AM techniques, such as stereolithography (SLA), selective laser

sintering (SLS) and fused deposition modeling (FDM), have been used to fabricate mechanical metamaterials with

complex geometries and tailored mechanical properties. The use of AM enables the rapid prototyping and testing of

new metamaterial designs, as well as the fabrication of customized materials for specific applications.

Microfabrication techniques, such as photolithography and electron-beam lithography, are used to create structures with

features on the micrometer scale [20]. These techniques have been employed to fabricate mechanical metamaterials

with fine-scale features, enabling the investigation of size effects and the realization of unique mechanical properties at

small length scales.
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Figure 2.3: Additive Manufacturing. Extracted from [21].

2.4 Emerging Applications

Mechanical metamaterials have potential applications across various fields, from aerospace and automotive industries

to biomedical and wearable devices.

• Impact Absorption and Energy Dissipation. Mechanical metamaterials with negative Poisson’s ratios or

auxetic behavior have been shown to exhibit excellent impact absorption and energy dissipation properties

[16]. These materials can be used in the design of protective gear, such as helmets and armor, as well as in the

development of energy-absorbing components for vehicles and infrastructure.

• Soft Robotics. Mechanical metamaterials with programmable mechanical responses have been used in the

development of soft robotic systems [22]. These materials enable the design of actuators, sensors and grippers that

can adapt to various shapes and environments. Origami and kirigami-based metamaterials have been particularly

useful in this context, providing lightweight and flexible structures with tunable stiffness and shape memory

properties.

• Biomedical Devices. Mechanical metamaterials have also found applications in the design of biomedical devices,

such as prosthetics, orthotics and implants [23]. The ability to tailor the mechanical properties of these materials

allows for the development of devices that closely mimic the performance of natural tissues and structures,

improving patient outcomes and comfort. Additionally, the use of additive manufacturing techniques enables the

fabrication of patient-specific devices that conform to individual anatomies.

• Acoustic and Vibration Control. Acoustic metamaterials are a class of mechanical metamaterials that exhibit

unique wave propagation properties, such as negative effective mass or stiffness [24]. These materials have been

used in the design of noise barriers, acoustic cloaks and vibration dampers, providing effective control of sound

and vibration in various applications. Lattice structures and resonant elements, such as Helmholtz resonators,

have been employed in the design of acoustic metamaterials to achieve desired performance characteristics.
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Chapter 3

Elasticity Theory

Topology optimization is a powerful design technique that involves the use of algorithmic models to optimize the

layout of materials within a defined space, with the aim of achieving the best possible shape. This process takes into

consideration specific loads, conditions and constraints that are pre-defined by the user. Its implementation process

relies on the fundamental theory behind the linear elasticity problem, which operates under the assumptions of small

deformations, linear materials and the disregard of any possible dynamic effects.

Elasticity theory is a branch of continuum mechanics that deals with the deformation and stresses in solid materials

subjected to external forces or changes in temperature. It is based on the fundamental principles of equilibrium,

compatibility and constitutive relationships, which describe the balance of forces, the kinematics of deformation and

the material’s mechanical response, respectively. By applying elasticity theory, engineers and designers can predict how

a structure will deform and distribute stresses under various loading conditions.

In this chapter, the key components of elasticity theory will be explored. These components include equilibrium

equations (which govern the balance of forces), constitutive equations (which describe the relationship between stress

and strain) and strain-displacement relations (which link the displacements of material points to the strain tensor

components). Additionally, the boundary conditions will be stated and different practical examples will be discussed

to illustrate the application of elasticity theory in the context of structural design and analysis. Understanding these

concepts will provide a strong foundation for the subsequent sections on topology optimization and its applications.

3.1 Equilibrium Equations

Equilibrium equations describe the balance of forces and moments in a continuous medium. In elasticity theory,

these equations are derived from Newton’s second law of motion and the principles of linear and angular momentum

conservation. For a deformable solid body, the equilibrium equations are given by:

∂σi j

∂x j
+ fi = 0 (3.1)

where σi j represents the stress tensor components, x j the spatial coordinates and fi the body force vector per unit

volume acting on the material.
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3.2 Constitutive Equations

Constitutive equations describe the relationship between the stress and strain in a material, capturing its mechanical

behavior under deformation. These equations provide a means to determine the internal stresses in a solid body as a

function of the strains it experiences, thereby characterizing the material properties.

In linear elasticity, the constitutive relationship is given by Hooke’s Law, which states that the stress tensor σ is linearly

related to the strain tensor ε:

σi j = Ci jkl · εkl (3.2)

where Ci jkl are the components of the fourth-order elastic stiffness tensor, which depends on the material’s properties,

such as its elastic modulus (E) and Poisson’s ratio (ν). For a 2D homogeneous linear elastic material, the elastic

constants matrix C can be expressed as:

C =
E

1 − ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 (3.3)

3.3 Strain-Displacement Relations

Strain-displacement relations establish a connection between the displacement field and the strain experienced by a

deformable body. These relations are essential for solving elasticity problems, as they enable the calculation of strains

from known displacement fields or the determination of displacements from known strains.

In the context of linear elasticity, the strain tensor ε is related to the displacement field u through the symmetric gradient.

The strain-displacement relations can be expressed as:

εi j =
1
2
·

(
∂ui

∂x j
+
∂u j

∂xi

)
(3.4)

where εi j are the components of the strain tensor, ui the components of the displacement field and x j the spatial

coordinates.

The strain-displacement relations, together with the constitutive equations and equilibrium equations, form a complete

system of equations that describe the mechanical behavior of elastic materials. By solving this system of equations with

appropriate boundary conditions; the stress, strain and displacement fields of a deformable body subjected to external

loads can be determined. These relations are fundamental to the analysis of elastic materials and are widely used in

various engineering applications, including finite element analysis and topology optimization, to predict the behavior of

structures under mechanical loads.
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3.4 Boundary Conditions

In order to solve any problem related to the elasticity theory, it is essential to clearly define the boundary conditions that

govern the behavior of the structure. These apply to the entire structure or to a specific part of it, and they describe

the interaction between a structure and its environment, which can result from the application of external forces or

restraints imposing displacements.

On a domain Ω, the boundary Γ can have two different types of constraints: displacement (Γu) or force (Γt).

• Dirichlet boundary conditions, which prescribe the values on the boundary Γu of the displacement field such

that u = û. This means that the displacement is fixed at specific points on the boundary, and can be used to model

scenarios such as clamping or fixed supports.

• Neumann boundary conditions, which prescribe the values on the boundary Γt of the force field such that

σn = t̂. This means that the forces acting on the boundary are known, and can be used to model scenarios such as

applied loads or pressure.

It is important to note that there are numerous other macroscopic boundary conditions that are not discussed, as this

section specifically addresses the ones that have been applied to the studied case.

3.4.1 2D case

The macroscopic boundary conditions considered in the 2D cases of this type of problem are the Dirichlet ones.

These conditions require specifying the nodes to be constrained, their degrees of freedom and its prescribed value. For

example, on the case of a squared mesh, the 4 corner nodes are the ones constrained and their displacements in both

directions are set to 0 (a visual representation of this restrain is shown in Figure 3.1). This process is done by the GID

software during the mesh generation process.

Figure 3.1: 2D square mesh with Dirichlet conditions (prescribed displacement = 0) imposed on the corner nodes.
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3.4.2 3D case

Similar to the 2D case, the 3D analysis considers Dirichlet conditions.

They follow the same structure as in 2D: a matrix containing the nodes that are being constrained, their degrees of

freedom and its prescribed value. Concretely, this study focuses on a cubic mesh with the corner nodes being fixed and

their displacement set to 0 (see Figure 3.2).

In this case, for convenience, a custom Matlab code has been developed to compute it based on the cube’s geometry

(see Section 7.3.2).

Figure 3.2: 3D cubic mesh with Dirichlet conditions (prescribed displacement = 0) imposed on the corner nodes.

3.5 Examples

In order to demonstrate the application of elasticity theory in practical scenarios, the typical cantilever problem will be

analyzed. This problem involves a cantilever beam subjected to fixed displacements on the left end and a vertical load

applied to the right extreme. This example will serve as a representative case to showcase the utilization of elasticity

theory in analyzing the mechanical behavior of structures.

F

Figure 3.3: Cantilever problem diagram
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Figure 3.4 displays the resulting displacements, strain and stress obtained upon solving the elastic problem.

(a) Displacement Distribution in the x and y directions, respectively.

(b) Strain Distribution in the x, y and xy directions, respectively. (c) Stress Distribution in the x, y and xy directions, respectively.

Figure 3.4: Elastic Problem solution of the cantilever problem.

The observed results align with the anticipated outcome for the analyzed elastic problem.

First, the displacements along the x-direction are significantly smaller compared to those along the y-direction, which

is consistent with the fixed displacement boundary condition on the left end of the cantilever and the vertical load.

Moreover, stress peaks occur precisely where expected, considering the specific problem configuration involving a

vertical load applied to the right end.

These findings confirm the validity and accuracy of the analysis, providing valuable insights into the deformation

and stress distribution within the cantilever system. Further comparison with theoretical results has been discussed in

previous thesis [25].
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Chapter 4

Material Characterization

4.1 Introduction

In topology optimization, the material distribution within a given design space is optimized to achieve the desired

performance, so accurately modeling the behavior of the material is crucial to the success of the task. This is especially

important when dealing with composite materials, which are composed of multiple phases or constituents, like fibers

and matrices, arranged in specific patterns that can significantly impact overall mechanical properties.

Composite materials are gaining increasing popularity in the field of structural design, thanks to advancements in

material technology that have expanded their application possibilities. This broader range of options has led to an

increased interest in creating optimized composite structures. The advent of 3D printing technologies, such as fused-

deposition modeling, has further facilitated the manufacturing of high-quality fiber-reinforced composites. Taking

advantage of this technological progress, a topology optimization scheme can be employed to optimize the design of

composite materials, offering solutions that are demanding in terms of implementation but can now be realized.

However, analyzing and designing structures composed of nanomaterials can be computationally intensive. To address

this challenge, multi-scale analysis offers an attractive approach by breaking down the complex structural model into

simpler layers. Multi-scale optimization naturally follows, utilizing the insights gained from multi-scale analysis to

facilitate the computationally intensive task of optimization. This approach allows for efficient and effective exploration

of optimal solutions in the design of structures made from nanomaterials.

Figure 4.1: Representation illustrating the process of multi-scale topology optimization. Extracted from [26].
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In formulating the optimal material design problem, two distinct scales are employed throughout the optimization

process. The first scale pertains to the macro level, where the structural domain is defined and subjected to applied

loads. The second scale focuses on the micro level, where the design domain, known as the unit cell, is formulated. To

apply the topology optimization approach for achieving optimal material design, a key modification is made to the

design variables, specifically the material densities: instead of assigning unknown material densities ρ to every finite

element within the discretized macro domain, the unknowns ρ are assigned to each finite element within the micro

design domain. This modification allows for a bridging between the two scales, which is accomplished through the

utilization of homogenization theory. By employing this approach, the optimization process can effectively integrate

and optimize materials at both the macro and micro scales. [27]

This chapter begins by presenting the concept of multi-scale analysis as a solution to the computational complexities

associated with microstructural design. It then formulates the microscopic problem of material characterization in

topology optimization and it states the equations that describe it. Also, the boundary conditions that must be considered

for the 2D and 3D cases are defined. Finally, this chapter will showcase practical examples that demonstrate the values

of the resulting matrix C, the rendering of the 3D mesh after applying the boundary conditions and the solution to a

specific micro problem.

4.2 Multi-scale Framework

For elastic materials, the interaction between the macro and micro scales is governed by two essential components: [28]

• From the macro to the micro scale: the localized macroscopic strain field ε(x)

• From the micro to the macro scale: the homogenized elasticity tensor C

The core concept behind the multi-scale modeling approach lies in the assumption that each point x within the domain

corresponds to a localized Representative Volume Element (RVE) consisting of a microscopic domain Ωµ which

captures the variations in material properties that are representative at a local scale. [29]

This enables the association of the macroscopic variable x with the coordinates of the macroscopic domain Ω, while the

microscopic variable y corresponds to the coordinates of the microscopic domain Ωµ.

In terms of kinematics, the microscopic strain εµ(x, y) can be decomposed into two components: the macroscopic strain

ε(x) and the fluctuation strain ε̃µ(x, y), as expressed in Equation (4.1).

εµ(x, y) = ε(x) + ε̃µ(x, y) (4.1)
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It is important to note that the fluctuation strain ε̃µ(x, y) is dependent on both the coordinates x and y and must satisfy

the constraint of having a zero mean value over the microscopic domain Ωµ due to its periodicity:

∫
Ωµ

ε̃µ(x, y) = 0 (4.2)

By combining both equations, it can be ensured that the average value of the microscopic strain corresponds to the

macroscopic strain:

ε(x) =
1
Ωµ

∫
Ωµ

εµ(x, y) (4.3)

Furthermore, considering the Hill-Mandel Principle of Macro-Homogeneity, it is postulated that all permissible

macroscopic deformations δε, when multiplied by the stress, would be equivalent to a potential combination of the

macro deformation and its microscopic fluctuations.

σ : δε =
a∣∣∣Ωµ∣∣∣

∫
Ωµ

σµ : δεµ (4.4)

So, the presence of micro fluctuations does not affect the total energy of the system, but it does contribute to the

associated deformation. This gives rise to the mechanical equilibrium problem of the RVE, which involves determining

an admissible microscopic displacement fluctuation field ũµ for a given macroscopic strain ε.

4.3 Problem Formulation

The topology optimization (TO) micro problem for designing materials involves optimizing the distribution of material

volume fraction in the unit cell design domain to optimize the structural response. This differs from the original TO

problem where the design variables were density values X of the finite elements used to discretize the macro design

domain, now they are densities x of the finite elements used to discretize the micro-unit cell design domain. The

optimization procedure, therefore, involves two different scales - the macro scale and the micro scale (as shown in 4.2).

The design variables and volume constraint are defined at the micro scale, while the objective function is set on the

macro scale, but still expressed as a function of x, and the homogenization method is used to transition between the two

scales through the elasticity tensor. [30]

Figure 4.2: Diagram illustrating the micro-scale periodic unit cell (right) contained within the macro-scale structure
(left). Extracted from [30].
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Therefore, the mathematical expression for the conventional topology optimization problem is modified as shown in

Equation (4.5); where C(x) represents the compliance, F denotes the load vector, U(x) the displacements derived from

the structural analysis, F = K ·U(x) the linear system of equations obtained from the FEM, V(x) the volume of material

obtained as a result of the densities x, V0 denotes the material volume of the entire domain and f is the constraint

applied in the form of volume fraction.



min C(x) = FT · U(x)

s.t. F = K · U(x)

V(x)/V0 = f

0 ≤ xe ≤ 1

(4.5)

The adjoint method is used to obtain the derivative of the objective function in order to minimize the compliance, which

can be expressed as follows in Equation (4.6),

∂C
∂xe
= −UT ·

∂K
∂xe
· U (4.6)

where the derivative ∂K/∂xe is computed as shown in Equation (4.7):

∂K
∂xe
=
∂C

∂xe
· K0 (4.7)

On the other hand, when considering the microscopic scale, the problem can be formulated by assuming a linear

relationship between the stress and strain tensors, as mentioned earlier. This implies that the micro problem involves

providing a specific strain value and determining the corresponding stress value by applying the homogenized elasticity

tensor C.

Subsequently, by recognizing that the micro problem involves utilizing the homogenization theory, which involves the

application of unit strains on both the unit cell domain and the finite elements used for discretization of the unit cell

domain, and solving the Lagrangian function defined in Equation (4.8),

L(ωi j, λ) =
1
2

1
|Ω|

∫
Ω

[ε(ωi j) + εi j] C [ε(ωi j) + εi j] + λ
1
|Ω|

∫
Ω

ε(ωi j) (4.8)

it is determined that the Lagrange multiplier that satisfies this equation, and which plays a crucial role in solving the

microscopic topology optimization problem, can be identified as:

λ = −
1
|Ω|

∫
Ω

σµ(εi j) = −σh(εi j) (4.9)
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For a more comprehensive understanding of the mathematical foundations of the homogenization theory, including the

derivation of these equations, please refer to Appendix B.

Also, Equation (4.10) yields the expression for the resulting homogenized elasticity tensor.

Ci, j =
1
V

N∑
e=1

∫
xe

(
u0(i)

e − u(i)
e

)
· C0
µ ·

(
u0( j)

e − u( j)
e

)
dVe (4.10)

Note that u are the displacements fields that result from the unit strains applied locally and the superscript 0 indicates

the globally applied strains, so u0 are the displacement fields that arise from the unit strains applied globally.

Hence, the resulting matrix form of the homogenized elasticity tensor C in a two-dimension system can be expressed as:

C =


(C)1111 (C)1122 (C)1112

(C)1122 (C)2222 (C)2212

(C)1112 (C)2212 (C)1212

 (4.11)

4.4 Boundary Conditions

The boundary conditions discussed in Section 3.4 (the Dirichlet and Neumann conditions) pertain to the macroscopic

scale of analysis of the studied problem. However, when solving micro topology optimization problems, it becomes

essential to establish boundary conditions on a microscopic scale as well.

These microscopic boundary conditions are designed to maintain the periodicity of the material. This way, by

implementing periodic boundary conditions, the analysis can be confined to a single representative unit cell, ensuring

the consistent behavior of the material throughout the analysis process. [31]

4.4.1 2D case

The periodic boundary conditions considered in the 2D cases of this type of problem are enforced through a Master-Slave

matrix that relates nodes on opposite sides of the domain to ensure consistent topology during optimization (refer to

Figure 4.3 for a clearer illustration). So, its main objective is to guarantee that the behavior and characteristics observed

on the left side of the unit cell are replicated on the right side, as well as between the lower and upper edges.

On Appendix C.1.1, the Matlab class responsible of the generation of the MS matrix can be found.
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Master Slave

Master

Slave

Figure 4.3: 2D square mesh cell with Master-Slave relations represented.

4.4.2 3D case

As for the periodic constraints in the 3D case, these are written in a Master-Slave matrix following the same methodology

as in the 2D case. This matrix relates the nodes on opposite faces of the domain to ensure a consistent topology during

optimization (see Figure 4.4 for a visual explanation). To compute it, the 2D code has been extended to three dimensions

to generate the Master-Slave matrix (see Appendix C.1.2 for more details).

Master Slave

Master

Master Slave

Slave

Figure 4.4: 3D cubic mesh cell with Master-Slave relations represented.

4.5 Examples

In this subsection, the material characterization parameters for the studied case and the micro problem solution will be

presented as examples.

The mesh under study is a 3D cubic mesh with a width of 1 which includes a spherical hole at its center with a radius of

0.3 (see Appendix C.2). This example serves as a representative case to showcase the utilization of elasticity theory in

analyzing the mechanical behavior of micro structures. The boundary conditions applied in this example are Dirichlet,

which impose a displacement of 0 on the vertex nodes in all three dimensions, and the periodic conditions.
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A visualization of the Master-Slave matrix in Paraview can be seen in Figure 4.5. Note that the Master nodes are

highlighted in red and have associated a value of ’1’, while the Slave nodes are shown in blue and are labeled as ’-1’.

(a) View 1. (b) View 2.

Figure 4.5: Paraview visualization of the Master-Slave matrix in a 3D cubic mesh cell.

Regarding the obtained homogenized elasticity tensor C, it exhibits the following values:

C =



1.0168 0.4549 0.4549 2.4249 · 10−4 −3.3605 · 10−4 1.0312 · 10−4

0.4549 1.0169 0.4549 3.9157 · 10−4 −1.0664 · 10−4 3.1842 · 10−4

0.4549 0.4549 1.0169 7.9842 · 10−5 −3.2961 · 10−4 3.2165 · 10−4

2.4249 · 10−4 3.9157 · 10−4 7.9842 · 10−5 0.2718 −1.2982 · 10−4 1.3310 · 10−4

−3.3605 · 10−4 −1.0664 · 10−4 −3.2961 · 10−4 −1.2982 · 10−4 0.2718 −1.3130 · 10−4

1.0312 · 10−4 3.1842 · 10−4 3.2165 · 10−4 1.3310 · 10−4 −1.3130 · 10−4 0.2718


As observed, the matrix exhibits the expected values: non-zero values along the principal and orthogonal directions,

while the remaining numbers possess such negligible magnitudes that they can be considered as approximately zero. It

is worth noting that the obtained matrix exhibits symmetry, which aligns with the expected behavior given the specific

case being studied.

Lastly, using the established strain-displacement relations, equilibrium equations and constitutive equations, the micro

elastic problem of the 3D cubic mesh was solved. The code successfully computed the displacement, strain and stress

values throughout the structure. Results of the stress and displacement values in the x, y and z directions can be seen in

Figures 4.6 and 4.7.

(a) Stress Distribution in the x-direction (whole cube). (b) Stress Distribution in the x-direction (half cube).
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(c) Stress Distribution in the y-direction (whole cube). (d) Stress Distribution in the y-direction (half cube).

(e) Stress Distribution in the z-direction (whole cube). (f) Stress Distribution in the z-direction (half cube).

Figure 4.6: Stress Analysis of 3D Cubic Mesh with Hole.

(a) Displacement Field in the x-direction (whole
cube).

(b) Displacement Field in the x-direction (half de-
formed cube).

(c) Displacement Field in the y-direction (whole
cube).

(d) Displacement Field in the y-direction (half de-
formed cube).

(e) Displacement Field in the z-direction (whole
cube).

(f) Displacement Field in the z-direction (half de-
formed cube).

Figure 4.7: Displacement Analysis of 3D Cubic Mesh with Hole.
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Chapter 5

Topology Optimization

As it has been mentioned on previous chapters, the goal of topology optimization is to find the optimal distribution of

material within a given design space that maximizes or minimizes a certain performance criterion. This criterion can

vary depending on the specific design problem, but it is typically related to the structural or mechanical behavior of the

system under consideration. Some common performance criteria include maximizing stiffness, minimizing weight or

optimizing heat transfer.

To begin the topology optimization process, the design space is usually defined as a geometric region with prescribed

boundary conditions. These boundary conditions can include fixed displacements or forces, temperature gradients, or

other relevant parameters that affect the behavior of the system. Once the design space is defined, the next step is to

discretize it into a finite number of elements or cells, which form the basis for the optimization process. The boundary

conditions for the problem under investigation have been specified in Section 3.4 and 4.4. In terms of the geometry, the

study centers around a 3D cubic mesh composed of hexahedral elements with the addition of a spherical hole at its

center.

The optimization process itself involves iteratively changing the distribution of material within the design space to

achieve the desired performance criterion. This is typically done using mathematical algorithms that seek to optimize

the topology of the structure by adding or removing material from certain regions of the design space.

One common approach in TO is to use the Finite Element Method (FEM) to model the behavior of the system. FEM

involves dividing the design space into small elements, where the material and geometric properties of each element are

specified. This allows to model the behavior of the system in a computationally efficient manner and to carry out the

optimization process efficiently. See Appendix D for a more detailed explanation of the FEM method.

This chapter will present the topology optimization (TO) problem and the equations that describe it. It will also explain

the shape functionals that describe the material properties and introduce two different approaches to solving the problem:

density-based and level set-based methods. Finally, a set of examples will be presented to illustrate the application of

these methods and algorithms in practical problems.
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5.1 General Problem Formulation

From a mathematical perspective, topology optimization aims to find the material distribution that minimizes a specified

objective function J, while adhering to various constraints Ck. These constraints can include a volume constraint

(C0 ≤ 0) and additional design variable constraints (Ck ≤ 0, where k : 1...N). Also, the optimization process is governed

by a state equation that can be either linear or non-linear in nature. [32]

In order to maintain the generality of the TO problem definition, the variable χ(x) will be introduced, which represents

the design variable at a given point x. Depending on the specific method employed, χ(x) will be denoted as ρ(x) or

ϕ(x) for density-based and level set-based approaches, respectively. Further details regarding these methods will be

elaborated in the subsequent sections.

Building upon this concept, the traditional mathematical formulation of the general topology optimization problem is

expressed as follows in Equation (5.1).



min J (u (χ) , χ) ≡
∫
Ω

j (u (χ) , χ, x) dΩ

s.t. C0(χ) ≡
∫
Ω

c0 (χ, x) dΩ ≤ 0

Ck(χ) ≤ 0; k : 1, ...,N

state equation

(5.1)

In this formulation, the objective function J is defined as the integration of a local function j(u(χ), χ, x) across the

entire domain, while the constraint functional C0 represents the volume constraint in relation to the design variable

χ. Moreover, specific constraint equations Ck(χ) can be included to incorporate additional constraints on the design

variables, which may vary depending on the chosen approach.

Additionally, the state equation provides the solution in the form of an unknown field u(χ) for a given optimal design χ.

In this thesis, the state equation considered corresponds to the discretization of the domain into finite elements, and the

formulation of the TO problem is expressed as follows:



min J (u (χ) , χ) ≡
∫
Ω

j (u (χ) , χ, x) dΩ

s.t. C0(χ) ≡
∫
Ω

c0 (χ, x) dΩ ≤ 0

Ck(χ) ≤ 0; k : 1, ...,N

K (χ) U (χ) = F (χ)

(5.2)

where the stiffness matrix is represented by K (χ), while the external force vector is denoted as F (χ).

As an illustrative instance, the widely known compliance problem can be formulated by seeking to minimize the

objective function of structural compliance, given by J = UT KU, while imposing a constraint on the material usage

expressed as C0 = V/V0 − V∗ ≤ 0. [33]
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5.2 Shape Functionals

As it has been stated, in topology optimization shape functionals serve as objective or constraint functions that quantify

the performance of a given design. The performance can be defined in various ways, such as maximizing stiffness or

minimizing stress concentrations, and the shape functionals reflect these objectives.

The volume shape functional, in particular, is a type of objective function used to optimize the size of a design domain.

Volume is a crucial parameter in topology optimization, playing a significant role in achieving structurally efficient

designs with minimized cost and weight. Typically, compliance is minimized while the volume is commonly utilized as

a constraint in this process, as it is a more tractable problem for optimization solvers. [34]

The computation of the volume can be seen in Equation (5.3), where ρ corresponds to the nodal design variable, V∗

denotes the target volume fraction and V0 represents the total geometric volum of the design domain.

V =

∫
Ω
ρdΩ

V∗V0
− 1 (5.3)

Regarding its gradient, it can be determined through the following computation:

∂V
∂ρ
=

∫
Ω

dΩ

V∗V0
− 1 (5.4)

5.3 Density-Based Methods

Topology optimization is a form of structural optimization that offers significant design flexibility by optimizing the

arrangement of a limited quantity of material within a specified design domain denoted as D [35]. Typically, the

material distribution within D is represented by an indicator function ρ(x) defined over the domain D, such that:

ρ(x) =


1 ∀x ∈ Ω (material)

0 ∀x ∈ D \Ω (void)
(5.5)

where the open set Ω corresponds to the region occupied by the material. An example depicting the continuous design

representation of a generic domain, with black representing the void region and white representing the material region,

can be seen in Figure 5.1.
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Figure 5.1: Example of a 2D density-based domain. Extracted from [36].

When considering the binary-valued variable ρ as the independent optimization variable, the problem transforms into a

combinatorial optimization problem which can pose significant challenges in terms of computational complexity. Even

for relatively moderate problem sizes, solving such problems can become highly difficult. Addressing this concern is

frequently regarded as the primary obstacle in topology optimization, and numerous strategies have been studied in

order to solve it.

In density-based approaches, the binary constraint (5.5) is relaxed and the design variables ρ are treated as continuous

volume densities, allowing them to assume values within the range of [0,1]. This transformation results in a continuous

nonlinear optimization problem.

Density-based methods offer several advantages in the field of topology optimization [37]. Firstly, they exhibit

computational efficiency by effectively utilizing storage capacity and reducing CPU time. This is achieved by employing

only one free variable per element or node, depending on the implementation.

Secondly, they demonstrate robustness as they can be applied to various combinations of design constraints. Unlike

other methods that are limited to compliance or equivalent designs, density-based methods can handle more complex

design conditions. This flexibility arises from the fact that the optimal microstructure is not predetermined and can be

determined based on the specific design requirements.

Additionally, they allow for the adjustment of penalization, providing the opportunity to optimize computational

efficiency by selecting the most suitable penalization value.

However, it is important to note that these methods are not without limitations. The solutions obtained from them are

influenced by the degree of penalization or interpolation, such as the p-value in the case of SIMP. As a result, there is a

possibility that the solutions may not converge to the optimal solution. Nonetheless, it is worth mentioning that other

methods face a similar limitation to a similar extent. [38]
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5.3.1 SIMP Method

The widely used Solid Isotropic Material with Penalization (SIMP) technique is employed to achieve optimized designs

that predominantly consist of material (ρ = 1) or void (ρ = 0) [39]. In the SIMP approach, intermediate densities are

penalized by adjusting the density/stiffness interpolation as illustrated below:

C = ρpC0 (5.6)

where C stands for the constitutive tensor and C0 for the elasticity tensor of the material. Note that, to discourage

intermediate densities, a penalization parameter p > 1 is introduced, which reduces their efficiency. Usually, the value

of p is set to 3 to facilitate algorithm convergence.

Moreover, the penalization factor can be determined based on the Poisson’s ratio, as the SIMP model assumes it to be

density-independent [10]. To ensure compliance with the Hashin-Shtrikman (HS) bounds for two-phase materials, the

SIMP interpolation must satisfy the condition stated in Equation (5.7), which inherently implies a value greater than 3.

Note that the first inequality stems from the bulk modulus bound, while the second is a result of the shear modulus

bound.

p ≥ p∗
(
ν0

)
= max

{
2

1 − ν0
,

4
1 + ν0

}
(5.7)

Numerous modifications of the SIMP method have been suggested, such as the SIMP-ALL technique [40]. This

approach incorporates the concept of topological derivative to improve the interpolation process, resulting in more rigid

structures at a lower computational expense. Additionally, it establishes a more distinct correlation with microstructures.

5.3.2 RAMP Method

The Rational Approximation of Material Properties (RAMP) is another interpolation method that addresses certain

limitations of the SIMP approach, particularly for low density values when loads depend on the design variable. One

key advantage of the RAMP model is its ability to maintain nonzero sensitivity even at zero density, a feature lacking

in SIMP. This characteristic enables the RAMP method to overcome certain numerical challenges associated with

structures containing regions of extremely low density. [41]

The RAMP method offers a solution by theoretically guaranteeing a concave design space, in contrast to the SIMP

method when the penalty factor exceeds a specific threshold. This improvement in the RAMP method enhances its

performance and reliability for optimizing structures with varying density distributions, thereby providing more accurate

results.
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The mathematical formulation of the RAMP method is expressed as follows:

C =
ρ

1 + p (1 − ρ)
C0 (5.8)

In the RAMP interpolation scheme, the value of the penalization parameter p should be chosen to be greater than 0.

Based on numerical experiments, it has been found that a value of p = 4 yields good results.

5.3.3 Comparative Analysis: SIMP vs RAMP

Figure 5.2 illustrates the interpolation of the Young’s modulus for the SIMP and RAMP material schemes for different

p values in function of the relative density.

Figure 5.2: Diagram illustrating the SIMP and RAMP methods for different p values in function of the relative density.
Extracted from [42].

In the case of SIMP with p = 1 and RAMP with p = 0, the material interpolation corresponds to the thickness

optimization problem, resulting in many elements with intermediate densities. Increasing the penalization factor p leads

to higher computational costs for elements with intermediate densities, as they require a higher density to achieve the

same stiffness as in the thickness optimization problem. Consequently, a larger penalty factor reduces the number of

elements with intermediate densities. However, it is important not to choose an excessively large penalty factor, as it

significantly increases the likelihood of converging to a local minimum during the optimization process.

Therefore, a suitable compromise for the penalty factor lies within the range of 2 to 4, taking into account the results of

numerical experiments.
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5.3.4 Problem Formulation

Finally, rewritting Equation (5.2), the mathematical formulation of the optimization problem employing density-based

methods can be expressed as:



min

ρ
J (u (ρ) , ρ) ≡

∫
Ω

j (u (ρ) , ρ, x) dΩ

s.t. 0 ≤ ρ ≤ 1

Ck(ρ) ≤ 0; k : 1, ...,N

K (ρ) U (ρ) = F (ρ)

(5.9)

In this formulation, the design variable is represented by the density ρ, which is constrained to the interval between

0 and 1. This range ensures that the density values reflect the amount of material present in the design, where ρ = 0

corresponds to void or empty regions, and ρ = 1 represents fully dense or solid regions. By defining the design variable

as a density value within this range, it enables the representation of varying material distributions throughout all the

design domain.

5.4 Level Set-Based Methods

Level set-based methods are another widely used approach in the field of topology optimization. Unlike the density-

based ones, they rely on flexible implicit functions to define structural boundaries instead of explicitly parameterizing

the design domain. [43]

In them, the level set function is utilized to describe the structural domain, where the zero-level contour defines the

boundary of the structure. Throughout the optimization process, the zero-level contour of the level set function is

displaced in a favorable direction using shape sensitivity analysis. The implicit nature of the interface allows for

topological modifications of the zero-level contour, enabling crisp boundary designs, where the intermediate densities

are constrained to a narrow band around the structure’s boundary.

From a mathematical perspective, the configuration of the material domain Ω, delimited by the boundary Γ, can be

expressed in relation to the level set function Φ(x) as follows:


Φ(x) < 0 ∀x ∈ Ω (material)

Φ(x) = 0 ∀x ∈ Γ (interface)

Φ(x) > 0 ∀x ∈ D \ Ω̄ (void)

(5.10)
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Figure 5.3 presents an illustration of a level set function along with the corresponding material domain.

Figure 5.3: Example of a 2D level set function and its corresponding zero-level contours representing the material
domain. Extracted from [44].

5.4.1 Level Set Function Characterization

The advancement of conventional level set methods originated from the work of Wang et al. [45], who recognized

the importance of linking point velocity, design sensitivity and the level set method for defining structural boundaries

in the optimization process. By representing the structural boundary as an implicit level set iso-surface defined by a

scalar function in 3D, where k is an arbitrary iso-value and x is a point on the surface S , the critical relationship was

established as:

S = {x : Φ(x) = k} (5.11)

In the course of the structural optimization process, multiple iterations are performed to modify the surface. Conse-

quently, the level set function can be formulated to incorporate the temporal dimension:

S = {x(t) : Φ(x(t), t) = k} (5.12)

By taking the derivative with respect to time and applying the chain rule, the following Hamilton-Jacobi-type equation

can be obtained [46], which establishes an initial value problem for the time-dependent function (Φ(x, 0) = Φ0(x)):

∂Φ(x, t)
∂t

+ ∇Φ(x, t)
dx
dt
= 0 (5.13)

29



Study of optimal design of 3D mechanical metamaterials
Chapter 5. Topology Optimization

During the solution process, the movement of a point (dx/dt) is determined based on the optimization objective, taking

into account the position of x and the surface geometry at that point. So, the optimal structural boundary is obtained as

the solution to a partial differential equation defined by Equation (5.14), where Γ(x,Φ) represents the speed vector of

the level set, which is influenced by the optimization objective.

∂Φ(x, t)
∂t

= −∇Φ(x, t)
dx
dt
≡ −∇Φ(x, t)Γ(x,Φ) (5.14)

5.4.2 Problem Formulation

Finally, by reexpressing Equation (5.2), the mathematical representation of the optimization problem utilizing level

set-based methods can be stated as follows:



min

Φ
J (u,Φ) ≡

∫
Ω

j (u,Φ, x) dΩ

s.t. Ck(ρ) ≤ 0; k : 1, ...,N

K (H (Φ)) U (Φ) = F (Φ)∫
Ω

H(Φ)dΩ
V0
≤ V∗

(5.15)

where H(Φ) represents a Heaviside function that takes the value of 1 for positive Φ values and 0 otherwise. [47]

However, the level set function in the employed SWAN repository’s code is updated using a SLERP algorithm [48],

leading to the following outcome:

ϕn+1 =
1

sinθn

[
sin ((1 − κn) θn) ϕn + sin (κnθn)

gn

∥g∥

]
(5.16)

where θ represents the angle that quantifies the similarity between the level set function and the gradient defined in

Equation (5.17), κ denotes the line search and can range from 0 to 1, and gn/ |g| corresponds to the normalized gradient.

θ = arccos
[

(ϕn, gn)
∥ϕn∥ ∥gn∥

]
(5.17)

5.5 Examples

In this section, a comparison between density-based and level set-based methods will be conducted by visualizing the

optimization process of the same case. The case involves a 3D cubic mesh with a width of 1, featuring a hole inclusion

of 0.2. The mesh is subject to Dirichlet conditions, which prescribe a zero displacement at its vertex nodes, and periodic

constraints, implemented using the master-slave matrix discussed in the previous chapter.
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Table 5.1 summarizes the shared conditions of the simulations. Mention that the cost, the α and β parameters will be

defined on Chapter 6.

SIMULATION CONDITIONS

Initial case ’sphereInclusion’

Cost ’chomog_alphabeta’ (J1)

Constraint ’volumeConstraint’

Final volume fraction 0.7

Alpha [1 1 0 1 0 0]’

Beta [1 1 0 1 0 0]’

Table 5.1: Common conditions in Density-based vs Level Set-based method simulations

Next, the results obtained from both methods are presented. It is important to note that, for improved visualization of

the optimization process within the mesh, the cubic mesh has been cropped in half to expose its interior.

Density-Based Methods

(a) Step 1. (b) Step 25.

(c) Step 40. (d) Step 150

Figure 5.4: Density results from the MMA - Density-based optimizer.
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Level Set Methods

(a) Step 1. (b) Step 4.

(c) Step 33. (d) Step 150

Figure 5.5: Density results from the Null Space (SLERP) - Level set-based optimizer.

As can be seen, Figure 5.4 displays the characteristic grayscale values associated with density-based methods. As

previously explained, these methods relax the density and allow the domain to assume values between 0 and 1, as

indicated by the range bar.

On the other hand, it is important to mention that in order to enhance the visualization of the level set results, the

Paraview tool IsoVolume was utilized. This tool facilitated the elimination of all values greater than 0, considering the

range of values that can be assumed by the level set function defined in Equation (5.10), as it is shown in Figure 5.5.

Both methods, both methods led to the same resulting mesh, which aligns with the expected outcome, as the directions

to optimize defined by the α and β vectors were the x, y and xy directions. However, the speed and manner in which

material was removed varied due to the distinct mathematical approaches employed by each method.
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Chapter 6

Material Design

Achieving desired material design requires the utilization of objective functions in the optimization process. These

objective functions, denoted as J, play a crucial role in shaping the optimization problem and enabling the attainment of

optimal solutions. By carefully defining these objective functions, it can be specified the desired material properties,

performance criteria and constraints, effectively guiding the optimization process towards finding the most suitable

material designs.

This chapter delves into the topic of material design, focusing on the challenges and techniques involved in designing

structures at the micro scale. It introduces three important matrix functions: the weighted inverse homogenized elasticity

matrix function, the rational weighted inverse homogenized elasticity matrix function and the inverse problem matrix

function. These functions provide mathematical expressions for evaluating the gradient in optimization processes,

offering insights into optimizing the effective properties of microstructures. Finally, the chapter concludes with practical

examples of material design in both 2D and 3D settings, showcasing the application and effectiveness of the discussed

techniques.

6.1 Weighted Inverse Homogenized Elasticity Matrix Function

As previously mentioned, the homogenized two-dimensional elasticity tensor C for microstructural design is represented

by Equation (6.1).

C =


(C)1111 (C)1122 (C)1112

(C)1122 (C)2222 (C)2212

(C)1112 (C)2212 (C)1212

 (6.1)

In the case of orthotropic symmetry, the effective material properties, including the Young’s modulus, bulk modulus,

shear modulus and Poisson ratios, can be explicitly determined from the components of the compliance tensor C−1.

The matrix representation of the compliance tensor is given by Equation (6.2), where E1 and E2 represent the effective

Young’s moduli along the orthotropy directions e1 and e2, respectively, G corresponds to the effective in-plane shear

modulus, and ν12 and ν21 represent the effective Poisson ratios. [49]
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C−1 =


(C−1)1111 (C−1)1122 0

(C−1)1122 (C−1)2222 0

0 0 (C−1)1212

 =


1
E1

−ν12
E1

0
−ν21
E2

1
E2

0

0 0 1
G

 (6.2)

Note that the effective Poisson ratios and Young’s moduli are subject to the following condition:

ν21

E2
=
ν12

E1
(6.3)

In this particular problem, the objective function to be minimized is represented by Equation (6.4), where the vectors α

and β are user-defined. This construction allows the user to optimize specific components of the homogenized elasticity

tensor through the use of α and β vectors.

min J1 (C(χ)) = αTC−1β (6.4)

Furthermore, it is worth noting that the derivative of the function J1 can be expressed as:

∂J1 (C)
∂χ

= −αT ·

(
C−1 ·

dC
dχ
· C−1

)
· β (6.5)

where d/dχ represents the topological derivative, which can alternatively be denoted as DT .

For a more detailed mathematical demonstration, please refer to Appendix E.2.

6.2 Rational Weighted Inverse Homogenized Elasticity Matrix Function

This specific function is a modified version of the preceding one sated on Equation (6.4), also employed for generating

microstructures with optimized effective properties. It is referred to as the fraction-weighted inverse elasticity matrix,

and it can be seen in Equation (6.6).

min J2 (C(χ)) =
αTC−1β

αTC−1α
+
βTC−1α

βTC−1β
(6.6)
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To calculate the gradient of J2, the derivative of the function can be determined as follows:

∂J2 (C)
∂χ

=
g1(

αTC−1α
)2 +

g2(
βTC−1β

)2 (6.7)


g1 = α

T ·
(
C−1 · dC

dχ · C
−1

)
·
[
α ·

(
αTC−1β

)
− β ·

(
αTC−1α

)]
g2 = β

T ·
(
C−1 · dC

dχ · C
−1

)
·
[
β ·

(
βTC−1α

)
− α ·

(
βTC−1β

)] (6.8)

For a more comprehensive mathematical proof, please consult Appendix E.3.

6.3 Inverse Homogenization Matrix Function

This matrix formulation follows a distinct approach known as the Inverse Homogenization Problem, which sets it

apart from the previously discussed methods. This problem represents a paradigm shift in material design, offering a

complementary approach to the traditional homogenization methods.

6.3.1 Inverse Homogenization Problem

Material design through inverse homogenization involves determining the optimal micro-architecture configuration of a

composite material, characterized by the presence or absence of material, to achieve an effective elasticity tensor C that

matches a desired target tensor C∗. [50]

This process considers two characteristic scale lengths: the macro-scale length (denoted as l) which corresponds to

the overall structural size and the micro-scale length (denoted as lµ) which pertains to the characteristic length of the

material’s micro-architecture. Mention that the effective elasticity tensor is defined and analyzed at the macro-scale, as

illustrated in Figure 6.1, while the actual material design is carried out at the micro-scale.

Figure 6.1: Inverse homogenization problem for the determination of the characteristic function χ in a periodic
composite material. Extracted from [51].
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So, the essence of inverse homogenization lies in starting from desired macroscopic properties and tailoring the

microscale to match these features, thereby interchanging the roles of known and unknown scales compared to direct

homogenization approaches.

6.3.2 Problem Formulation

Consider a periodic composite structure consisting of two isotropic elastic phases, M1 and M2. Within a basic micro-cell

denoted as Ωµ, the domains occupied by M1 and M2 are depicted as Ω1 and Ω2, respectively (refer to Figure 6.1). [52]

The function χ(x) within the micro-cell Ωµ indicates the positions occupied by phase M1, as defined by Equation (6.9).

It is important to note that χ(x) is a binary function acting as a design variable that determines the distribution of the

two materials on the domain.

χ(x) =


1 ∀x ∈ Ω1

µ (material 1)

0 ∀x ∈ Ω2
µ (material 2)

(6.9)

The homogenized elasticity tensor of the composite, denoted as C, is clearly influenced by the geometrical arrangement

of the phases M1 and M2 within the micro-cell domain. To make this dependency explicit, it is introduced the

notation C(χ). Mention that the evaluation of this tensor within Ωµ involves enforcing periodic boundary conditions on

displacement fluctuations too.

So, the inverse design problem is then formulated as a topology optimization problem, which can be stated as follows:

given the design domain Ωµ and the desired effective elasticity tensor C∗, determine the characteristic function χ that

satisfies the following conditions: 
min

χ
J(χ) ≡ 1

|Ωµ|

∫
Ωµ
χdΩ

s.t. ∥C(χ) − C∗∥ = 0

(6.10)

Note that when the M2 phase is assumed to be void, the problem can be characterized as a minimum weight problem.

6.3.3 Matrix Function

The objective function that characterizes the inverse homogenization problem, aiming to minimize the discrepancy with

a desired homogenized elasticity matrix, can be expressed as follows:

min J3 (C(χ)) =
[
C − C∗

]2
=



C11 C12 C13

C21 C22 C23

C31 C32 C33

 −

C∗11 C∗12 C∗13

C∗21 C∗22 C∗23

C∗31 C∗32 C∗33




2

(6.11)

where C is the homogenized elasticity tensor and C∗ the desired effective elasticity tensor.
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However, mention that this set of 9 equations can be simplified to 6 through the utilization of symmetry considerations

[53]. Additionally, these equations have to be appropriately rescaled to prevent the occurrence of small values (except

for C13 and C23, which are set to 0 in the target elasticity matrix for the studied case). The resulting set of equations is

provided below.



C11 − C
∗
11

C∗11
= 0

C22 − C
∗
22

C∗22
= 0

C33 − C
∗
33

C∗33
= 0



√
2
(
C13 − C

∗
13

)
= 0

√
2
(
C23 − C

∗
23

)
= 0

√
2
(
C12 − C

∗
12

C∗12

)
= 0

(6.12)

Regarding its gradient, the derivative of the objective function can be defined as:

∂J3 (C)
∂χ

= 2 (C − C∗)
∂C

∂χ
(6.13)

For a more comprehensive mathematical proof, please consult Appendix E.4.

6.4 Examples

Next, to provide a visual explanation, 2D and 3D simulations using the cost functions J1, J2 and J3 will be presented.

These simulations serve as concrete examples to illustrate the effectiveness and versatility of the different proposed

approaches in material design.

6.4.1 2D case

For the 2D problem, the same test will be conducted using both cost functions to enable an efficient comparison. The

studied case consist of a squared mesh with a circle inclusion on its center, and the parameters used in the optimization

process are as follows:
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SIMULATION CONDITIONS

Initial case ’circleInclusion’

Constraint ’volumeConstraint’

Constraint case ’INEQUALITY’

Optimizer ’MMA’

Design variable ’Density’

Final volume fraction 0.35

Alpha [1 0 0]’

Beta [0 -1 0]’

Table 6.1: Common conditions in 2D J1, J2 and J3 simulations

The results obtained from optimizing the square mesh for both cost functions are presented below:

J1 - cost = ’chomog_alphabeta’

(a) Step 1. (b) Step 15. (c) Step 30.

Figure 6.2: Density results from the 2D J1 cost function.

J2 - cost = ’chomog_fraction’

(a) Step 1. (b) Step 30. (c) Step 60.

Figure 6.3: Density results from the 2D J2 cost function.
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J3 - cost = ’enforceCh_CCstar_L2’

(a) Step 1. (b) Step 15. (c) Step 60.

Figure 6.4: Density results from the 2D J3 cost function.

Mention that, on the J3 simulation, instead of using the alpha and beta variables, a new variable called selectiveC_Cstar

is introduced. This variable represents the desired C∗ and takes the value ’IsotropyHexagon’.

As anticipated, the three simulations resulted in significantly different material distributions, as each case optimizes a

different cost function. Moreover, it is apparent that the convergence rate of the density distributions varies between the

cases, despite utilizing the same optimizer.

6.4.2 3D case

In the case of the 3D problem, both cost functions will be applied too to the same test in order to facilitate a meaningful

comparison. The test case involves a cubic mesh with a spherical inclusion at its center, and the optimization process

will utilize the following parameters:

SIMULATION CONDITIONS

Initial case ’sphereInclusion’

Constraint ’volumeConstraint’

Optimizer ’NullSpace’

Optimizer unconstrained ’SLERP’

Design variable ’LevelSet’

Final volume fraction 0.7

Alpha [1 0 0 0 0 0]’

Beta [1 0 0 0 0 0]’

Table 6.2: Common conditions in 3D J1 and J2 simulations
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The optimization results for both cost functions applied to the cubic mesh are displayed below.

J1 - cost = ’chomog_alphabeta’

(a) Step 1. (b) Step 5.

(c) Step 15. (d) Step 50

Figure 6.5: Density results from the 3D J1 cost function.

J2 - cost = ’chomog_fraction’

(a) Step 1. (b) Step 3.

(c) Step 8. (d) Step 40

Figure 6.6: Density results from the 3D J2 cost function.
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As observed, the results of both 3D simulations differ due to the utilization of distinct cost functions, similar to the 2D

case. When setting α = β = [1 0 0 0 0 0], it becomes apparent that the configuration minimizing J1 corresponds to a

centrally located cylinder aligned along the x-axis, whereas the configuration minimizing J2 corresponds to a centered

sphere.

It is important to note that for the J3 cost function, only 2D simulations have been conducted due to the code’s

incompatibility for optimizing the J3 function on 3D meshes. Nevertheless, the implementation of 3D optimization will

be considered as a future development of the topic, aiming to address optimization in three dimensions (see Section

9.2).
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Chapter 7

Methodology

This chapter provides an overview of the approach and techniques used in the research project. It encompasses three

main sections: the clean code introduction, which took place during the initial months of the thesis; the SWAN software

familiarization, which followed the clean code phase; and the subsequent 3D optimization simulations. These sections

represent significant milestones in the project, highlighting the emphasis on improving code quality, mastering the

SWAN software and conducting advanced simulations to optimize the system. Together, they contribute to the overall

progression and outcomes of the study.

7.1 Clean Code Introduction

The initial step undertaken in this final thesis involved acquiring knowledge about clean code programming. This was

essential since the project involved collaborative software development, necessitating the utilization of appropriate

techniques to ensure the production of high-quality code for Swan.

7.1.1 GitHub

The development of the Topology Optimization code for this project involved a team of students, each working on their

independent final thesis related to Topology Optimization or FEM. To facilitate collaborative software development, the

team utilized GitHub, a web-based platform designed for version control and collaboration among software developers.

Version control plays a crucial role in helping developers manage and track changes to a software project’s code. It

enables them to work safely through branching and merging. Branching allows developers to create separate copies of

the source code, allowing them to make changes without affecting the main project. Once the changes are tested and

deemed successful, they can be merged back into the main source code, ensuring the integrity of the project. This entire

process is carefully tracked, enabling developers to revert changes if necessary.

So, GitHub played a crucial role in promoting collaboration among developers, providing distributed version control

that allows teams to seamlessly work together in a centralized Git repository. This enabled efficient tracking of changes

and ensured organizational coherence throughout the development process. Also, GitHub extends beyond version

control, offering a comprehensive hosting service, web interface for Git code repositories and management tools that

facilitate seamless collaboration among developers. [54]
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7.1.2 Object-Oriented Programming

When developing a new code, it is essential to adhere to established guidelines to maintain coherence with previous

developers’ work. In the case of Swan, object-oriented programming (OOP) is utilized, making it imperative to

understand its principles and application.

OOP is a programming paradigm centered around "objects" that encompass both data and code. Data is represented

through fields (referred to as attributes or properties), while code is expressed through procedures (known as methods).

See Figure 7.1 for a visual example.

Figure 7.1: Diagram illustrating a class (car) with two object instances, depicting its attributes and methods.

OOP proves particularly advantageous for large, intricate and actively maintained programs such as the SWAN code.

It simplifies the development and maintenance processes by incorporating fundamental concepts like abstraction,

inheritance, polymorphism and encapsulation. These four pillars serve as guiding principles that contribute to efficient

and effective software development: [55]

• Abstraction: it enables the hiding of implementation details from users while providing them with only essential

information. By employing it, developers gain the flexibility to make modifications and additions to the codebase

with ease and over time.

• Inheritance: it allows the acquisition of properties from a pre-existing class (parent class) into a newly created

class (child class), promoting the reuse of code.

• Polymorphism: it enables the creation of methods with identical names but varying method signatures, facilitating

the development of code that is clean, sensible, readable and resilient.
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• Encapsulation: it serves as a mechanism for binding data and functions within an entity, safeguarding against

external interference and misuse. Consequently, it contributes to enhanced security by protecting both data and

functions.

Additionally, it is worth noting that properties and methods can possess access modifiers that dictate their accessibility.

Three common access modifiers are:

• Public: it allows the property or method to be accessed from any location. It is the default modifier if none is

specified.

• Protected: it restricts access to the property or method within the class and by classes derived from it.

• Private: it strictly limits access to the property or method exclusively within the class itself.

7.1.3 Clean Coding Practices

When coding, it is important to write code with the intention of being read by others in the future, rather than solely for

personal use. Even when working on individual projects, ensuring that code is easily understandable to other developers

is very is crucial.

Therefore, regardless of the programming language utilized, adopting certain practices can assist in producing clean

and improved code:

• Naming convention: adhering to a proper naming convention is crucial for facilitating future edits and updates.

For example, in the SWAN code, functions are written in lowercase and words are separated by capitalizing the

first letter of each word (e.g., computeValue).

• Avoid poor naming: it is advisable to use meaningful variable names that strike a balance between being too

short or excessively long.

• Code indention: proper indentation enhances code readability, making it easier to locate specific sections within

the code.

• Concise methods: lengthy functions tend to be harder to comprehend, modify and reuse. It is recommended to

aim for shorter methods, focusing on performing a single task or serving a specific purpose.

• Reduce nested conditions: excessive nesting of conditions can make code difficult to read. Simplifying nested

conditions and utilizing ternary operators are recommended practices.

• Avoid code duplication: instead of copying and pasting the same code with minor modifications, strive to create

reusable functions that can be called from multiple locations.

By incorporating these practices, code can become more readable, maintainable and conducive to collaboration.
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7.1.4 UML Diagrams

To facilitate the analysis of code sequences using Matlab and visually depict the logical relationships, the adoption of

UML diagrams have been introduced.

Unified Modeling Language (UML) serves as a visual representation method for illustrating the architecture, design

and implementation of intricate software systems. When working with extensive codebases, consisting of thousands

of lines, it becomes challenging to track the intricate relationships and hierarchies within the software system. UML

diagrams help in compartmentalizing the software system into components and subcomponents. [56]

In practice, UML standards define 13 different types of diagrams. However, considering the utilization of object-oriented

programming on the SWAN code, the employed UML diagram type is the class diagram.

Class diagrams specifically portray the static structure of a system, encompassing classes, their attributes, behaviors and

the relationships among classes. Represented by a rectangular shape, a class diagram consists of three vertically stacked

compartments. The top compartment is mandatory and displays the class name, while the bottom two compartments

provide details regarding the class attributes and methods.

Figure 7.2 depicts the main relationships in an UML, while Figure 7.3 provides an accompanying example that

corresponds to these relationships.

Figure 7.2: UML main relationships.

Figure 7.3: UML main relationships examples.
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7.2 SWAN Software Familiarization

Once familiar with the fundamentals of Object-Oriented Programming and the functioning of an OOP code, the focus

shifts towards exploring the codebase of the SWAN repository.

Swan represents a Matlab-based Topology Optimization software with a comprehensive range of capabilities. Presently,

it enables the resolution of 2D and 3D topology optimization challenges utilizing density or level-set as design variables.

Swan’s core objective is to provide a versatile framework, characterized by a modular design, facilitating the swift

implementation of new optimization techniques or functionalities. [57]

Within Swan’s existing functionality, it offers support for macro and micro scale problems, employing design variables

that include Density and Level Set. In terms of optimization techniques, the software incorporates several implemented

optimizers for density-based problems (such as Projected Gradient, MMA and IPOPT) and for level set-based problems

(like SLERP, Projected SLERP and Hamilton-Jacobi).

To comprehend the sequence of the Finite Element Method (FEM) code within the Swan repository, rigorous debugging

and analysis were performed using Matlab. Furthermore, to enhance understanding regarding the interaction between

classes and the properties and methods each class encompasses, a graphical representation in the form of a Unified

Modeling Language (UML) diagram was created (as demonstrated in Appendix F.2).

In addition, specific methods were subjected to in-depth study, such as the un f ittedMesh method responsible for

classifying mesh parts and their respective boundaries. For better comprehension, a visual example illustrating the

method and an accompanying UML diagram were generated (refer to Appendix F.3).

7.3 3D Optimization

After gaining familiarity with the code in the SWAN repository and comprehending the principles of object-oriented

programming and its associated clean code techniques, the next step is to initiate the adaptation of the existing micro

2D code to facilitate its compatibility with 3D functionality.

7.3.1 3D Mesh Creation - GID Software

First, the creation of the mesh was undertaken utilizing the GID software.

GID serves as an interactive graphical user interface specifically designed for defining, preparing and visualizing all

the pertinent data associated with numerical simulations, combining preprocessing and postprocessing functionalities.

This encompasses data pertaining to geometry, materials, conditions, solution information and various parameters.

Additionally, the software possesses the capability to generate finite element analysis meshes and appropriately format

the information for numerical simulation programs.
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Consequently, the 3D mesh employed for the simulations exhibits the following characteristics:

• Vertices coordinates: (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0) and (1, 1, 1)

• Element type: hexahedra

• Size of the elements: 0.0866025

• Mesh: structured

• Number of division per line: 20

• Problem type data: Swan

Also, to ensure proper data interpretation by Matlab, it was necessary to incorporate the following conditions as part of

the Problem Data:

PROBLEM DATA

Unit System SI

Dimensions 3D

Type of Problem Plane Stress

Physical Type Elastic

Macro /Micro Micro

Table 7.1: 3D Mesh problem data

Figure 7.4 illustrates the 3D mesh generated using GID Simulation.

Figure 7.4: Generated 3D mesh.
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7.3.2 Boundary Conditions

After the completion and calculation of the mesh, a Matlab file containing the coordinates of all nodes and the

connectivities of each element is generated. The subsequent step involves imposing the desired boundary conditions on

the mesh.

In the specific case under study, the first objective is to restrict the movement of the vertex nodes (Dirichlet condition).

To accomplish this, the identification of node vertices is necessary, as depicted in Code 7.1. As can be seen, the

verticesObtention function extracts the coordinates of specific vertices from a given mesh by comparing the node

coordinates with predefined vertex coordinates, and the resulting vertex coordinates are returned as an output.

1 function vertices = verticesObtention(gidcoord)

2 vertexCoords = [

3 0 0 0;

4 0 0 1;

5 0 1 0;

6 1 0 0;

7 0 1 1;

8 1 0 1;

9 1 1 0;

10 1 1 1

11 ];

12 vertices = gidcoord(ismember(gidcoord(:,2:4), vertexCoords, 'rows'), :);

13 end

Code 7.1: Mesh node vertices determination.

Once the vertices have been identified, to ensure that they remain stationary, a prescribed displacement of 0 in all three

directions have to be implemented. The developed code is presented in Code 7.2.

1 vertices = verticesObtention(gidcoord);

2

3 dirichlet_data = [ ];

4 for i = 1:length(vertices)

5 verticeNumber = vertices(i,1);

6 for j = 1:3

7 dirichlet_data = [dirichlet_data;[verticeNumber j 0]];

8 end

9 end

Code 7.2: Dirichlet boundary condition for the nodes establishment.
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Also, the establishment of Master-Slave conditions is crucial for enforcing periodic boundary conditions and ensuring

consistent topology during optimization. These conditions relate nodes on opposite sides of the domain and play a

significant role in the analysis. So, the task is to generate a matrix that distinguishes between master and slave nodes.

This will be achieved by assigning a value of 0 to indicate a master node and a value of 1 to indicate a slave node.

The specific function developed is shown in Code 7.3, which takes as input the gidcoord which represents the

coordinates of nodes in the mesh and vertices which contains the vertex nodes. It iterates through each row of gidcoord

and checks if the node coordinates match any of the vertices. If a node is not a vertex, it determines whether any of its

coordinates are equal to 0 or 1. For each node that meets these conditions, it adds a row to the MS matrix with the

node number and a corresponding value of 0 or 1. Finally, the function removes any duplicate rows from MS to ensure

uniqueness.

1 function MS = get_MasterSlave(gidcoord, vertices)

2 MS = [];

3 for i = 1:length(gidcoord)

4 nodeCoords = gidcoord(i, 2:4);

5 if ismember(gidcoord(i,:), vertices, 'rows')

6 continue; % Skip if node is a vertex

7 end

8 if any(nodeCoords == 0)

9 MS = [MS; [gidcoord(i, 1), 0]];

10 end

11 if any(nodeCoords == 1)

12 MS = [MS; [gidcoord(i, 1), 1]];

13 end

14 end

15 MS = unique(MS, 'rows'); % Remove repeated rows

16 end

Code 7.3: Generation of the master-slave matrix.

7.3.3 Master-Slave Adaptation

To ensure the tessellation property of the generated cubic mesh, the Topology Optimization code utilizes a matrix of

master-slave nodes. Each row in the matrix represents a pair of nodes, where the first column denotes the master node

and the second column represents its corresponding slave node. In order to support 3D cases, it is essential to make

appropriate modifications to the existing MasterS laveRelator class. This adaptation enables the code to effectively

handle 3D scenarios and generate the required master-slave node information.

The class first initializes itself with the coordinates of the mesh nodes, storing these coordinates internally for further

computation.
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Next, it computes the nodes present in different faces of the mesh. It identifies the nodes located on the minimum and

maximum boundaries of each face, excluding the corner nodes, and it stores them separately for each face.

The class then proceeds to compute the master-slave relations for each face of the mesh by comparing the nodes present

on the minimum and maximum boundaries of a given face. Based on specific criteria, such as proximity, it determines

the appropriate master and slave nodes for each face. The resulting master-slave pairs are stored in a matrix, where the

first column represents the master nodes and the second column represents their corresponding slave nodes.

To ensure the integrity of the master-slave relationships and avoid redundancy, the class includes a method to eliminate

repeated edges in the master-slave matrix. It identifies common nodes between the master and slave columns and

removes the corresponding rows from the matrix, resulting in a clean and non-redundant list of master-slave pairs.

The 2D version of the class can be found in Code C.1.1, while Code C.1.2 showcases the adapted version specifically

designed for 3D scenarios. Despite being part of the same class, they have been separated to facilitate the comprehension

of their distinct functionalities in their corresponding scenarios.

7.3.4 Hexahedral Mesh Adjustment

Another issue that had to be adressed was the incompatibility of using tetrahedral elements for mesh generation, as

originally intended, due to their inherent asymmetry (as will be detailed in Section 8.4). Consequently, the decision was

made to utilize hexahedral elements as an alternative.

The challenge arose from the disparity in the number of Gaussian points between tetrahedral elements (1) and hexahedral

elements (4), which the existing code was not equipped to handle. Consequently, certain functions within the LHS and

RHS integrators required adaptation.

For instance, consider the assembleVector function within the RHS. This function’s purpose is to construct a global

vector by aggregating contributions from element vectors computed at each degree of freedom and integration point.

To address the inclusion of hexahedral elements, adjustments were made to the code, as demonstrated in Code 7.4. It

can be seen that the method takes an object ob j and a matrix F as inputs and then it computes the vector V by iterating

over degrees of freedom (do f s) and integration points (Gaussian points), adding the computed vector Fadd to V at

each iteration.
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1 function V = assembleVector(obj, F)

2 dofsInElem = obj.computeDofConnectivity();

3 ndofPerElem = obj.dim.ndofsElem;

4 ndof = obj.dim.ndofs;

5 ngaus = size(F,2);

6 V = zeros(ndof,1);

7 for iDof = 1:ndofPerElem

8 for igaus = 1:ngaus

9 dofs = dofsInElem(iDof,:);

10 c = squeeze(F(iDof,igaus,:));

11 Fadd = obj.computeAddVectorBySparse(dofs, c, ndof);

12 % Fadd = obj.computeAddVectorByAccumarray(dofs, c, ndof);

13 V = V + Fadd;

14 end

15 end

16 end

Code 7.4: Vector assembly from element contributions at dofs and gauss points.

7.3.5 Simulations

In this study, a comprehensive analysis was conducted using multiple levels of comparison. The investigation began with

2D and 3D simulations, allowing for a comparison between the two-dimensional and three-dimensional optimization

processes.

Table 7.2 presents the studied cases for the 2D scenarios.

Case 1 α = β = [1 0 0]

Case 2 α = [1 0 0] and β = [0 1 0]

Case 3 α = [1 0 0] and β = [0 0 1]

Case 4 α = [1 1 0] and β = [1 0 0]

Case 5 α = β = [1 1 0]

2D Simulations

Case 6 α = [1 1 1] and β = [1 1 0]

Table 7.2: Different 2D cases simulated

In the context of 3D simulations, the study focused on two distinct categories: normal materials and metamaterials

microstructures. A key aspect of the investigation involved comparing the performance and effectiveness of two

optimization approaches: the MMA optimizer, which employs the density-based method, and the Null Space optimizer,

which utilizes a level set-based method. This comparative analysis aimed to assess the capabilities and outcomes of

each optimization approach within the context of optimizing normal materials.
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Furthermore, within the context of normal materials, an additional comparison was performed by varying the final

volume fractions. Specifically, the optimization process was executed for two different volume fractions: 0.7 and

0.85. The objective of this analysis was to explore the impact of altering the final volume fraction on the resulting

microstructures and optimization outcomes.

Table 7.3 provides an overview of the varied parameters used to simulate each case, facilitating their visualization and

comparison.

MMA (Density-based method)
Optimizer

Null Space (Level Set method)

Cilinder α = β = [1 0 0 0 0 0]

Vertical plate α = β = [1 1 0 0 0 0]

Sphere α = β = [1 1 1 0 0 0]

Diagonal α = β = [1 1 0 1 0 0]

Cases

Shear α = β = [0 0 0 1 0 0]

V f inal = 0.7

3D SIMULATIONS

(NORMAL

MICROSTRUCTURES)

Final volume fraction
V f inal = 0.85

Table 7.3: Different 3D cases simulated for normal microstructures

Finally, the 3D simulations for metamaterials microstructures were conducted employing the Null Space optimizer with

different values of α and β, as well as varying the final volume fraction. This allowed for a comprehensive comparison

of the results obtained for each case.

Table 7.4 displays the specific values that each parameter took during the simulations.

Case 1 α = [1 0 0 0 0 0] and β = [0 − 1 0 0 0 0]

Case 2 α = [1 1 0 0 0 0] and β = [0 0 − 1 0 0 0]Cases

Case 3 α = [1 0 0 0 0 0] and β = [−1 0 0 0 0 0]

V f inal = 0.7

3D SIMULATIONS

(METAMATERIALS

MICROSTRUCTURES)
Final volume fraction

V f inal = 0.85

Table 7.4: Different 3D cases simulated for metamaterials microstructures

Additionally, to ensure a fair comparison across all 3D cases, the simulations were conducted with the same tolerance

in the volume constraint. The tolerance was set to 10−3, ensuring consistency in evaluating the fulfillment of the volume

constraint for each optimization.
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7.3.6 Parameters Adequation

One issue that required attention was the parameter adjustments for each optimizer in different types of simulations.

Depending on the optimizer and the test conditions (such as the desired final volume, various α and β values, etc.),

certain parameters needed to be manually adjusted.

For instance, in the case of the Null Space optimizer, the following parameters had to be modified depending on the

specific case:

• aJmax. This parameter determined the initial strength of the optimizer and its ability to remove material. Larger

values could result in reduced efficiency and longer computation times, while lower values could cause the

optimizer to add material instead of removing it, leading to a volume fraction of 1 (representing a fully filled

cube). The value of aJmax depended on each individual case, particularly the desired final volume, and typically

ranged between 2 and 10.

• aGmax. This parameter influenced the optimizer’s ability to handle constraints and adhere to them. For example,

the value of λ present on the monitorings should be within the range of 100 to 101, and it was determined that a

constant value of aGmax = 0.05 yielded efficient results across all tested cases.

• eta. This parameter determined the fraction of volume that could be removed between iterations. Considering the

specific case (initially a cube with a spherical inclusion), optimal values of eta for obtaining smooth solutions can

be found in Code 7.5.

1 ...

2

3 if obj.nIter==0

4 obj.eta = 0.025;

5 else

6 if obj.aG ≤ 0.5*obj.aGmax

7 obj.eta = 0.025;

8 else

9 obj.eta = 0.001;

10 end

11 end

12

13 ...

Code 7.5: Definition of eta value extracted from lines 152-160 of the OptimizerNullSpace.m code.
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In the case of the MMA optimizer, the variable that required attention was c, which determines the optimizer’s strength.

Through experimentation, it was determined that the optimal power of 10 order for the given mesh and optimization

process was:

1 ...

2

3 obj.c = 10*ones(obj.m,1);

4

5 ...

Code 7.6: Definition of c value extracted from line 169 of the Optimizer_MMA.m code.
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Chapter 8

Results

In this chapter, the simulation results of the optimization processes will be presented. Firstly, the 2D simulations will be

showcased, considering various values of α and β. Subsequently, the 3D simulations will be divided into three sections:

the simulations conducted with the MMA and Null Space optimizers for normal materials, and the optimization of

metamaterials using the Null Space optimizer. While this paper presents a selection of simulation results, additional

results and animations for each simulation can be found in the associated Drive folder. [58]

8.1 2D Simulations

In this section, the 2D simulations conducted with the MMA optimizer will be presented. The parameters utilized for

these simulations are displayed in the Appendix G.1.

Case 1: α = β = [1 0 0]

(a) Step 1. (b) Step 10. (c) Step 50.

(d) Monitoring.

Figure 8.1: Density results from the 2D J1 cost function for α = β = [1 0 0].
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Case 2: α = [1 0 0] and β = [0 1 0]

(a) Step 1. (b) Step 15. (c) Step 45.

(d) Monitoring.

Figure 8.2: Density results from the 2D J1 cost function for α = [1 0 0] and β = [0 1 0].

Case 3: α = [1 0 0] and β = [0 0 1]

(a) Step 1. (b) Step 20. (c) Step 85.

(d) Monitoring.

Figure 8.3: Density results from the 2D J1 cost function for α = [1 0 0] and β = [0 0 1].
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Case 4: α = [1 1 0] and β = [1 0 0]

(a) Step 1. (b) Step 10. (c) Step 45.

(d) Monitoring.

Figure 8.4: Density results from the 2D J1 cost function for α = [1 1 0] and β = [1 0 0].

Case 5: α = β = [1 1 0]

(a) Step 1. (b) Step 5. (c) Step 30.

(d) Monitoring.

Figure 8.5: Density results from the 2D J1 cost function for α = β = [1 1 0].

57



Study of optimal design of 3D mechanical metamaterials
Chapter 8. Results

Case 6: α = [1 1 1] and β = [1 1 0]

(a) Step 1. (b) Step 10. (c) Step 50.

(d) Monitoring.

Figure 8.6: Density results from the 2D J1 cost function for α = [1 1 1] and β = [1 1 0].

Case 7: α = β = [1 1 1]

(a) Step 1. (b) Step 5. (c) Step 30.

(d) Monitoring.

Figure 8.7: Density results from the 2D J1 cost function for α = β = [1 1 1].
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8.2 3D Simulations

This section focuses on the 3D simulations conducted for different types of microstructures, and the parameters

employed can be found in Appendix G.2.

Firstly, simulations of normal microstructures will be presented, utilizing both the MMA and Null Space optimizers

with varying values of α and β to optimize the J1 cost function, what allows for a comparison between the two types of

optimizers. To provide an exhaustive analysis, the simulations will be performed with final volume fractions of 0.7

and 0.85. However, the results corresponding to V f inal = 0.85 will be included in Appendix G.3.1 and Appendix

G.3.2 (for the MMA and Null Space optimizers, respectively), while this section will focus on presenting the results for

V f inal = 0.7.

Following that, the simulations of metamaterial microstructures will be presented. These simulations were conducted

using the Null Space optimizer, optimizing the J1 function with different α and β values. To ensure a comprehensive

analysis, the simulations were performed for different final volume fractions, specifically 0.7 and 0.85 too. However,

adhering to the same structure as for the regular cases, this section will focus on the simulations with V f inal = 0.7,

while the simulations with V f inal = 0.85 can be found in Appendix G.3.3.

8.2.1 Density-Based Method: MMA

Cilinder: α = β = [1 0 0 0 0 0]

(a) Step 1. (b) Step 25. (c) Step 40. (d) Step 65.

(e) Grid visualization. (f) Monitoring.

Figure 8.8: Density results from the 3D J1 cost function for α = β = [1 0 0 0 0 0] (MMA - V f inal = 0.7).
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Vertical plate: α = β = [1 1 0 0 0 0]

(a) Step 1. (b) Step 15. (c) Step 60. (d) Step 47.

(e) Grid visualization. (f) Monitoring.

Figure 8.9: Density results from the 3D J1 cost function for α = β = [1 1 0 0 0 0] (MMA - V f inal = 0.7).

Sphere: α = β = [1 1 1 0 0 0]

(a) Step 1. (b) Step 20. (c) Step 30. (d) Step 44.

(e) Grid visualization. (f) Monitoring.

Figure 8.10: Density results from the 3D J1 cost function for α = β = [1 1 1 0 0 0] (MMA - V f inal = 0.7).
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Diagonal: α = β = [1 1 0 1 0 0]

(a) Step 1. (b) Step 15. (c) Step 60. (d) Step 47.

(e) Grid visualization. (f) Monitoring.

Figure 8.11: Density results from the 3D J1 cost function for α = β = [1 1 0 1 0 0] (MMA - V f inal = 0.7).

Shear: α = β = [0 0 0 1 0 0]

(a) Step 1. (b) Step 30. (c) Step 40. (d) Step 53.

(e) Grid visualization. (f) Monitoring.

Figure 8.12: Density results from the 3D J1 cost function for α = β = [0 0 0 1 0 0] (MMA - V f inal = 0.7).
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8.2.2 Level Set Method: Null Space

Cilinder: α = β = [1 0 0 0 0 0]

(a) Step 1. (b) Step 5. (c) Step 25. (d) Step 70.

(e) Grid visualization. (f) Monitoring.

Figure 8.13: Density results from the 3D J1 cost function for α = β = [1 0 0 0 0 0] (Null Space - V f inal = 0.7).

Vertical plate: α = β = [1 1 0 0 0 0]

(a) Step 1. (b) Step 10. (c) Step 50. (d) Step 70.

(e) Grid visualization. (f) Monitoring.

Figure 8.14: Density results from the 3D J1 cost function for α = β = [1 1 0 0 0 0] (Null Space - V f inal = 0.7).
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Sphere: α = β = [1 1 1 0 0 0]

(a) Step 1. (b) Step 5. (c) Step 25. (d) Step 70.

(e) Grid visualization. (f) Monitoring.

Figure 8.15: Density results from the 3D J1 cost function for α = β = [1 1 1 0 0 0] (Null Space - V f inal = 0.7).

Diagonal: α = β = [1 1 0 1 0 0]

(a) Step 1. (b) Step 10. (c) Step 25. (d) Step 100.

(e) Grid visualization. (f) Monitoring.

Figure 8.16: Density results from the 3D J1 cost function for α = β = [1 1 0 1 0 0] (Null Space - V f inal = 0.7).
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Shear: α = β = [0 0 0 1 0 0]

(a) Step 1. (b) Step 3. (c) Step 10. (d) Step 50.

(e) Grid visualization. (f) Monitoring.

Figure 8.17: Density results from the 3D J1 cost function for α = β = [0 0 0 1 0 0] (Null Space - V f inal = 0.7).

8.2.3 Metamaterials

Case 1: α = [1 0 0 0 0 0] and β = [0 − 1 0 0 0 0]

(a) Step 1. (b) Step 75. (c) Step 170. (d) Step 240.

(e) Grid visualization. (f) Monitoring.

Figure 8.18: Density results from the 3D J1 cost function for case 1 metamaterial simulation (V f inal = 0.7).
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Case 2: α = [1 1 0 0 0 0] and β = [0 0 − 1 0 0 0]

(a) Step 1. (b) Step 50. (c) Step 100. (d) Step 167.

(e) Grid visualization. (f) Monitoring.

Figure 8.19: Density results from the 3D J1 cost function for case 2 metamaterial simulation (V f inal = 0.7).

Case 3: α = [1 0 0 0 0 0] and β = [−1 0 0 0 0 0]

(a) Step 1. (b) Step 20. (c) Step 40. (d) Step 90.

(e) Grid visualization. (f) Monitoring.

Figure 8.20: Density results from the 3D J1 cost function for case 3 metamaterial simulation (V f inal = 0.7).
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8.3 Results Analysis

General Observations

Firstly, the focus will be on the 2D simulations, which exhibited expected behavior. For example, Figure 8.1 illustrates

a scenario where the software was instructed to optimize the C11 component by setting α = β =[1 0 0]. In this case, the

physical objective was to optimize the material’s horizontal elasticity properties, specifically for handling horizontal

loads and, as anticipated, the simulations successfully achieved this objective by forming two horizontal stripes.

Similar observations can be made regarding the 3D simulations. In Figure 8.8 and 8.13, the software was instructed to

handle α = β =[1 0 0 0 0 0] for the MMA and Null Space optimizer, respectively, That physically signifies an axial

force along the x-axis while maintaining symmetry in the y and z directions. As anticipated, this simulation yielded a

cylindrical void within the mesh cubic structure.

In another scenario, illustrated in Figure 8.10 and 8.15, it was aimed to optimize α = β =[1 1 1 0 0 0] for both

optimizers again. This directive aimed to enhance material behavior along the x, y, and z directions while disregarding

the orthogonal directions. Consequently, the resulting simulation showcased a centralized sphere, aligning with the

expected outcome.

Also, in general (although exceptions exist for complex final geometries), the 2D simulations demonstrated a faster

convergence compared to their 3D counterparts. This outcome can be attributed to the fact that the 2D simulations

involve a smaller number of optimization problems being solved, while the 3D simulations entail a larger set of

optimization challenges, leading to a relatively longer convergence time. This manifests a logical relationship between

the dimensionality of the simulation and the convergence speed.

Connection between 2D and 3D

Another noteworthy aspect to discuss is the relationship between the 2D and 3D simulations. As previously mentioned,

the 2D simulation with α = β =[1 0 0] yielded two horizontal stripes, and transforming this simulation into a

three-dimensional representation can be achieved through various approaches. One method involves continuing the

optimization solely along the x-direction, replicating the 2D scenario as the 3D case with α = β =[1 0 0 0 0 0].

Consequently, the resulting 3D simulation would feature the rotated 2D plane, resembling a cylinder formed around its

central axis (see Figure 8.8 and 8.13).

Alternatively, another approach involves optimizing a different principal direction while leaving the orthogonal directions

unchanged. For instance, considering the case of α = β =[1 1 0 0 0 0], the y-direction would also be prioritized while

disregarding the other orthogonal directions. In this scenario, the 2D result would be maintained across all values of y,

leading to the transformation of the two 2D stripes into two distinct 3D plates (see Figure 8.9 and 8.14).
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Cost Parameter

An essential factor to consider is the cost parameter present on the optimization process monitoring, which exhibits a

consistent trend across various scenarios, including the 2D cases, 3D normal materials and 3D metamaterials.

In the simulations under study, the cost function was defined as the compliance of the structure, which is inversely

proportional to its stiffness. In other words, the software’s objective is to minimize the compliance to maximize the

stiffness of the structure.

Typically, the cost initially increases as the software eliminates material from the cube, aiming to achieve the desired

final volume fraction. Subsequently, the cost begins to decrease as the software optimizes the physical properties of the

material. This observation carries significant importance, indicating that the solution is converging effectively. The

diminishing cost between iterations indicates a reduction in the effort required to transition from one iteration to the

next, reinforcing the progress made in reaching an optimal solution.

MMA vs. Null Space

It is interesting to conduct a comparison between the 3D simulations conducted using the MMA and Null Space

optimizers. One noticeable observation is that the Null Space optimizer requires a significantly higher number of

iterations, often double or more than those needed by the MMA, as illustrated in Table 8.1.

OPTIMIZERS

MMA (Density) Null Space (Level Set)

Cilinder 65 151

Vertical Plate 49 106

Sphere 44 152

Diagonal 63 137

C

A

S

E

S Shear 53 148

Table 8.1: Number of iterations for the 3D MMA and Null Space simulations

However, it is important to emphasize that the increased number of iterations does not necessarily translate into a longer

compilation time. This distinction arises due to the unique functioning of the Null Space optimizer. While it initially

requires a substantial amount of time to yield acceptable results, once it obtains them, the simulation’s performance

rapidly accelerates.

Moreover, despite the distinct mathematical approaches employed by each optimizer, it is crucial to note that both

methods ultimately yield identical simulation results. This outcome stems from the fact that, despite the different

algorithms employed, both optimizers tackle the same underlying optimization problem.
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Metamaterials

In the context of metamaterial simulations, it is crucial to highlight a few notorious aspects. Firstly, despite the relatively

similar number of iterations compared to other 3D simulations, they require more than double the time to complete.

This time discrepancy is attributed to the optimization process of the material, which operates in a manner that is not

inherently intuitive, particularly due to the incorporation of negative Poisson values.

Secondly, it is intriguing to note the challenges encountered when calibrating the aJmax and aGmax parameters for

the metamaterial simulations. The solver employed in the optimization process has a tendency to minimize the cost

parameter. However, the presence of negative Poisson values can lead to a negative cost, resulting in the optimizer

continuously attempting to further minimize it until reaching a final volume fraction of 0. To prevent this undesired

outcome, the aGmax must be meticulously calibrated. By carefully adjusting this parameter, the solution to the problem

adheres to the imposed volume constraint, ensuring a more suitable optimization result.

Lastly, it is worth mentioning the significant impact of the final volume fraction on the results of metamaterial

simulations. As evidenced by Figure 8.18 and Figure G.11, this parameter has a significant impact on the resulting mesh

geometry. Such dependency establishes a notable distinction compared to simulations involving 3D normal materials,

where it didn’t affect the simulation outcome in terms of its shape.

Analogy with Composite Materials’ Structure

Lastly, it is worth noting another significant outcome that establishes a meaningful connection between the achieved

results and the actual configuration of composite materials. Composite materials encompass a range of structural

forms, with laminated and fiber-reinforced composites being the most prevalent. Laminated composites are specifically

engineered to exhibit superior resistance to tensile stresses within the plane of the laminate, while fiber-reinforced

composites optimize tensile strength along the axial direction of the fibers.

Remarkably, the 3D simulations conducted in the cases of the vertical plate and cylindrical configurations precisely

manifested these expected characteristics, as the software was specifically instructed to prioritize the optimization of

the xy plane and the x direction, respectively. This correspondence between the simulation results and the structural

design of composite materials not only validates the accuracy of the code but also provides valuable insights into the

rationale behind the specific arrangement of composite materials.

8.4 Challenges and Alternative Solutions

During the course of this project, several challenges were encountered that required attention. To overcome these

challenges, various alternatives were proposed and carefully evaluated to find the optimal solutions for each problem.

In this section, the key difficulties encountered will be highlighted and the alternatives that were pursued to address

them effectively will be explained.
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8.4.1 Mesh Refinement

One of the main challenges encountered was related to mesh refinement. The need for highly accurate results required a

mesh composed of a large number of elements, which, in turn, gave rise to several issues:

• GID. First, due to limitations imposed by the employed license on the GID software, the creation of meshes

was restricted to a maximum of 10,000 nodes. To address this issue, a study was conducted to determine the

maximum number of divisions per line and the minimum size of the elements that could be created.

• Matlab Java heap memory. Subsequently, after successfully creating the mesh, another issue arose during the

simulation with the Null Space optimizer in Matlab. An error message indicated that Java objects had exceeded

the available memory, resulting in an out-of-memory error. To resolve this, the heap size allocated for Java

objects had to be increased to its maximum capacity (1.958 MB). However, even with this adjustment, the issue

persisted. As a result, the mesh had to be recreated with a reduced number of elements to alleviate the memory

demands and ensure smooth execution of the simulation.

• Matlab array size. Finally, after successfully managing the Java objects, another error occurred in Matlab

indicating that the arrays being processed exceeded the maximum array size limit (which was 7.7 GB). As a

result, the program might become unresponsive. To address this issue, the mesh had to be reconstructed once

again to ensure it could be properly handled within the limitations of Matlab.

After careful analysis, it was determined that the optimal values were 20 divisions per line and an element size of

0.0866025. These findings are detailed in Section 7.3.1 of the document.

8.4.2 Mesh Element Type

Another issue that needed to be addressed was the choice of element type in the mesh. Initially, the mesh consisted of

tetrahedral elements, which were the default element type. However, these elements resulted in a slightly asymmetric

mesh, leading to non-symmetric simulation results. This was problematic as the simulation aimed to eliminate material

in a preferred direction. To resolve this issue, the mesh had to be redesigned using hexahedral elements, which ensured

full symmetry and eliminated the asymmetry-related problems in the results.

However, changing the element type required code adaptation. The micro problem was originally programmed to handle

only one Gaussian point (as required by tetrahedral elements), but with hexahedral elements, it needed to accommodate

four Gaussian points. As a result, certain functions had to be modified to support the new element type. An example of

this adaptation can be found in Section 7.3.4.
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8.4.3 Simulation Performance

The simulation performance posed another challenge, as certain issues were observed during the monitoring process.

The most common problems encountered were:

• The optimizer erroneously added material instead of removing it, resulting in the formation of a completely filled

cube.

• The final volume did not meet the specified requirements.

• The volume constraint was not being satisfied.

• The obtained lambda value deviated from the expected order.

To address these challenges, the parameters of each optimizer had to be carefully adjusted based on the specific case.

Further details regarding the modified variables and their respective solutions can be found in the preceding Section

7.3.6.
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Chapter 9

Conclusions

9.1 Discussion

In this study, a comprehensive analysis of the simulation results was conducted, leading to several notable conclusions.

Through an examination of the obtained data and observations made during the simulations, the following key findings

were identified:

• The simulations in the 2D domain exhibited expected behavior and demonstrated a faster convergence compared

to their 3D counterparts, proving a relationship between the dimensionality of the simulations and its convergence

speed.

• The cost parameter consistently exhibited a specific trend across different scenarios, indicating effective conver-

gence and progress towards achieving an optimal solution. The diminishing cost between iterations suggests a

reduction in the effort required to transition from one iteration to the next.

• A comparison between the MMA and Null Space optimizers revealed that the latter required a significantly higher

number of iterations, although it did not necessarily translate into longer compilation times. Both optimizers

ultimately yielded identical simulation results, despite utilizing different mathematical approaches.

• Simulations involving metamaterials presented unique challenges, including longer simulation times and the need

for meticulous calibration of parameters to avoid undesired outcomes. The final volume fraction significantly

influenced the resulting mesh geometry, distinguishing it from simulations involving 3D normal materials.

• The observed outcomes in the simulations established a meaningful connection between the achieved results and

the structural design of composite materials. The correspondence between the simulation results and the specific

arrangements of composite materials validated the accuracy of the employed code and provided insights into

their underlying rationale.

In summary, this research not only validated standard solutions but also introduced new geometries. The simulations

performed, along with the accompanying analysis, have significantly contributed to the understanding of the optimization
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process and the generation of innovative configurations. These findings have broad implications for various fields,

including materials science and engineering, where the development of advanced and tailored structures holds significant

importance.

9.2 Future Development

Several potential areas for further investigation and improvements arise from this study:

• Exploration of 3D Meshes. Creating 3D meshes with different element types would be valuable to assess the

adaptability of the code to diverse mesh structures. This investigation would provide insights into the code’s

versatility and its ability to handle varying mesh configurations effectively.

• Mesh-Independence Study. Conducting a thorough mesh-independence study is crucial to assess the influ-

ence of mesh resolution on simulation results. By systematically varying the mesh density and analyzing

the corresponding outputs, the level of mesh refinement required for accurate and reliable simulations can be

determined.

• Comparative Analysis of Additional Optimizers. Simulating the optimization process using various sup-

plementary optimization algorithms would allow for a comprehensive comparison of their performance. By

analyzing the results obtained from different optimizers, it can be procured the insights into the strengths and

weaknesses of each approach and the most suitable optimizer for specific scenarios can be specified.

• Development of J3 Function for 3D Cases. Extending the existing optimization framework to incorporate the

J3 function specifically designed for 3D cases would enable a broader range of cost functions to be utilized. This

expansion would provide additional tools to tailor the optimization process to specific requirements.

• Simulation of metamaterial cases for smaller final volume fractions. Expanding the analysis to include lower

final volume fractions (such as 0.5 or 0.3) can provide insights into the behavior and optimization outcomes of

metamaterial microstructures at reduced densities. This investigation would explore the impact of decreasing the

volume fraction on the resulting microstructures and their performance, which would be very useful taking into

account the applications of these materials.

• Iterative Solver. The development and implementation of a new iterative solver aims to reduce the computing

time of the topology optimization problem, which is a crucial concern due to the complexity and scale of the

simulations involved.
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Appendix A

Tasks Calendar

Task code Name Description Preceding Tasks

A Clean Code Introduction

A1
Object-oriented

programming

Research about object-oriented programming in

MATLAB (classes, composition, inheritance,

types of data access...)

-

A2 Clean coding practices Learn about the clean code practices in MATLAB -

A3 Refactor FEM code
Modify an existing FEM code implementing OOP

(solver class) and clean code practices
A1, A2

A4
Test-driven

development

Internet research about unit testing, creation of

different tests for the FEM code and run a code

coverage analysis

-

A5
Final FEM code

refactoring

Refactor the whole FEM code and the tests so they

follow an OOP approach while applying clean code

practices

A3, A4

A6 UML diagram

Acquire knowledge on how to represent graphically

any code, get introduced to UML modeling and

illustrate the OOP code with an UML diagram

A5

B Finite Element Method Code in Swan Repository

B1 FEM Macro - Analysis
Understanding of the FEM Macro code and how

it works
A6

B2 FEM Macro - UML
Illustration of the relation between FEM Macro

classes using an UML diagram
B1

B3 FEM Micro - Analysis
Understanding of the FEM Micro code and how

it works
B1

B4 FEM Micro - UML
Illustration of the relation between FEM Micro

classes using an UML diagram
B3

B5 GID Visualization of the results using GID Postprocess B2, B4

B6 Results comparison
Comparation of the obtained results with the

expected ones
B5
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Task code Name Description Preceding Tasks

C Topology Optimization Code in Swan Repository

C1 Introduction to TO

Visualization of explanatory videos on topological

optimization and creation of a report summarizing

their content

B6

C2
Density-based

methods

Comprehension of how density-based methods

work: SIMP, RAMP, SINH...
C1

C3 Level set method
Comprehension of how boundary-based methods

work, specially the level set method
C1

C4 Theorical aspects

Deepening of theoretical aspects of TO: formulation

of the problem, regularization of the problem,

filters, shape functionals...

C1, C2, C3

C5 TO Macro - Analysis

Familiarization with the TO Macro code and

comprehension of how the sequence of code is

analysed with MATLAB

C4

C6 TO Macro - UML
Graphical representation of the relation between

TO Macro classes using an UML diagram
C5

C7 TO Micro - Analysis

Familiarization with the TO Micro code and

comprehension of how the sequence of code is

analysed with MATLAB

C5

C8 TO Micro - UML
Graphical representation of the relation between

TO Micro classes using an UML diagram
C7

C9 Micro-2D examples
Representation and comparison of plots for

different α and β for MMA optimizer
C8

C10 Optimizers comparison

Comparison of different optimizers: Augmented

Lagrangian, Null-Space, Bisection, Projected

Gradient, SLERP, Hamilton-Jacobi...

C8

80



Study of optimal design of 3D mechanical metamaterials
Appendix A. Tasks Calendar

Task code Name Description Preceding Tasks

D Material Design

D1 Shape functionals Analysis of different existing shape functionals C10

D2 Theoretical background Introduction to the h1, h2 and h3 cases C10

D3 Case h1
Simulations of the case h1 to understand it

(varying the parameters)
D2

D4 Case h2
Simulations of the case h2 to understand it

(varying the parameters)
D3

D5 Case h3
Simulations of the case h3 to understand it

(varying the parameters)
D4

D6
3D design -

density method
3D material design applying density-based methods D5

D7
3D design -

level set method
3D material design applying level set method D5

E Inverse Homogenization

E1
Inverse homog.

problem

Research about the elastic inverse homogenization

problem
D6, D7

E2
Inverse homog. -

density method

Study of the inverse homogenization applying

density-based methods
E1

E3
Inverse homog. -

level set method

Study of the inverse homogenization applying

level set method
E1

F Project Planning

F1 Progress reports
Report writing in Overleaf of the progress made

(including diagrams, summary of topics...)
-

F2 Project Charter
Preparation of the Project Charter (justification,

requirements, tasks calendar, ...)
-

F3 Final Thesis report
Development of the Final Thesis documents:

memory, budget, self-assessment, annex...
-

F4 Final Thesis defense Planning and carry out the Final Thesis defense -

F5 Weekly meetings
Periodic weekly meetings with the Final Thesis

director to monitor the progress done
-

Table A.1: Calendar of the Final Thesis tasks.
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Appendix B

Micro TO Problem Formulation

This section presents the equations that constitute the microscopic optimization problem, along with the derivation of

the corresponding Lagrangian function and the expression for the Lagrange multiplier that solves it. To enhance the

understanding of the role of each variable, important parameters have been assigned different colors for clarity and ease

of comprehension.

B.1 Homogenization Theory

Defining: 
σµ (εi j) = C[εi j + ε(ω(εi j))]

σh(εi j) =
1
|Ω|

∫
Ω

σµ (εi j) =
1
|Ω|

∫
Ω

C[εi j + ε(ωi j(εi j))]

with:

ωi j(εi j) = arg min

ωi j

1
|Ω|

∫
Ω

1
2

[ε(ωi j) + εi j] C [ε(ωi j) + εi j]

s.t.
1
|Ω|

∫
Ω

ε(ωi j) = 0 (λ)

~wwwww�


min

ωi j

1
|Ω|

∫
Ω

1
2
σ(εi j, ωi j) [ε(ωi j) + εi j]

s.t.
1
|Ω|

∫
Ω

ε(ωi j) = 0 (λ)



83



Study of optimal design of 3D mechanical metamaterials
Appendix B. Micro TO Problem Formulation

L(ωi j, λ) =
1
2

1
|Ω|

∫
Ω

[ε(ωi j) + εi j] C [ε(ωi j) + εi j] + λ
1
|Ω|

∫
Ω

ε(ωi j)


(1) ∇ω L(ωi j, λ)v =

1
|Ω|

∫
Ω

[ε(ωi j) + εi j] C ε(v) + λ
1
|Ω|

∫
Ω

ε(v) = 0

(2) ∇λ L(ωi j, λ)µ = µ
1
|Ω|

∫
Ω

ε(ωi j) = 0

~wwwww�
 K ϕ

ϕT 0


ωi j

λ

 =
−D C εi j

0



In ∇ω L(ωi j, λ)v = 0; take v, ε(v) = εi j + ε(ωi j(εi j)) with ωi j(εi j) = ωi j solution of (1) and (2).

1
|Ω|

∫
Ω

[ε(ωi j) + εi j] C [εi j + ε(ωi j)] + λ
1
|Ω|

∫
Ω

[εi j + ε(ωi j)] = 0

1
|Ω|

∫
Ω

[ε(ωi j) + εi j] C [εi j] +
1
|Ω|

∫
Ω

[ε(ωi j) + εi j] C [ε(ωi j)] + λ
1
|Ω|

∫
Ω

ε(ωi j)︸                                                          ︷︷                                                          ︸
=0 (take v=ωi j in (1))

+λ
1
|Ω|

∫
Ω

εi j = 0

Since εi j is constant:

 1
|Ω|

∫
Ω

[ε(ωi j) + εi j] C︸             ︷︷             ︸
σµ(εi j)

 [εi j] + λ εi j
1
|Ω|

∫
Ω

1 = 0

~wwwww�

λ = −
1
|Ω|

∫
Ω

σµ(εi j) = −σh(εi j)
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B.2 Change of Variable

ε(u) = ε(ωi j) + εi j εi j =


1 0 0

0 1 0

0 0 1


Defining : 

σµ (εi j) = C ε(u(εi j))

σh(εi j) =
1
|Ω|

∫
Ω

σµ (εi j) =
1
|Ω|

∫
Ω

C ε(u(εi j)) = Ch : εi j

with:

u(εi j) = arg min

u

1
|Ω|

∫
Ω

1
2
ε(u) C ε(u)

s.t.
1
|Ω|

∫
Ω

ε(u) = εi j (λ)

~wwwww�


min

u

1
|Ω|

∫
Ω

1
2
σ(u) ε(u)

s.t.
1
|Ω|

∫
Ω

ε(u) = εi j (λ)



L(u, λ) =
1
|Ω|

∫
Ω

1
2
ε(u) C ε(u) + λ

(
1
|Ω|

∫
Ω

ε(u) − εi j

)


(1) ∇u L(u, λ)v =

1
|Ω|

∫
Ω

ε(u) C ε(v) + λ
1
|Ω|

∫
Ω

ε(v) = 0

(2) ∇λ L(u, λ)µ = µ

[
1
|Ω|

∫
Ω

ε(u) − εi j

]
= 0

~wwwww�Take v = Ni

 K ϕ

ϕT 0


uλ

 =
 0

εi j


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In ∇u L(u, λ)v = 0; take v, ε(v) = 1 and u(εi j) solution of (1) and (2).

1
|Ω|

∫
Ω

[ε(u(εi j)) C + λ]ε(v) = 0

~wwwww�
λ = −

1
|Ω|

∫
Ω

C ε(u(εi j)) = −σh(εi j)
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Appendix C

Code

C.1 Master-Slave Computation

This section presents the code implementation used to establish the relationship between master and slave nodes, which

is necessary for both 2D and 3D cases in order to apply the topology optimization code. Although they are part of the

same class, they have been separated to facilitate the understanding of their individual roles in their respective cases.

C.1.1 2D case

1 classdef MasterSlaveRelator < handle

2

3 properties (Access = private)

4 x

5 y

6 z

7 nodesInXmin

8 nodesInXmax

9 nodesInYmin

10 nodesInYmax

11 nodesInZmin

12 nodesInZmax

13 cellDescriptor

14 msRelation

15 allNodes

16 cornerNodes

17 end

18

19 methods (Access = public)

20

21 function obj = MasterSlaveRelator(coord)

22 switch size(coord,2)

87



Study of optimal design of 3D mechanical metamaterials
Appendix C. Code

23 case 2

24 obj.init2(coord);

25 obj.computeNodesInFaces(coord);

26 obj.computeMasterSlaveRelation();

27 case 3

28 obj.init3(coord);

29 obj.computeNodesInFaces3D(coord);

30 obj.computeMasterSlaveRelation3D();

31 end

32 end

33

34 function r = getRelation(obj)

35 r = obj.msRelation;

36 end

37

38 end

39

40 methods (Access = private)

41

42 function init2(obj,coord)

43 obj.x = coord(:,1);

44 obj.y = coord(:,2);

45 obj.allNodes(:,1) = 1:size(obj.x,1);

46 end

47

48 function computeNodesInFaces(obj,coord)

49 cD = CellNodesDescriptor(coord);

50 corners = cD.cornerNodes;

51 obj.nodesInXmin = setdiff(cD.nodesInXmin,corners);

52 obj.nodesInXmax = setdiff(cD.nodesInXmax,corners);

53 obj.nodesInYmin = setdiff(cD.nodesInYmin,corners);

54 obj.nodesInYmax = setdiff(cD.nodesInYmax,corners);

55 end

56

57 function computeMasterSlaveRelation(obj)

58 [masterFaceX,slaveFaceX] = obj.computeMasterSlaveNodesInFaceX();

59 [masterFaceY,slaveFaceY] = obj.computeMasterSlaveNodesInFaceY();

60 obj.msRelation = [masterFaceX slaveFaceX;

61 masterFaceY slaveFaceY];

62 end

63

64 function [master,slave] = computeMasterSlaveNodesInFaceX(obj)

65 [master,slave] = ...

obj.computeMasterSlaveNode(obj.nodesInXmin,obj.nodesInXmax,obj.y);
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66 end

67

68 function [master,slave] = computeMasterSlaveNodesInFaceY(obj)

69 [master,slave] = ...

obj.computeMasterSlaveNode(obj.nodesInYmin,obj.nodesInYmax,obj.x);

70 end

71

72 function [master,slave] = ...

computeMasterSlaveNode(obj,isLowerFace,isUpperFace,dir2compare)

73 nLF = obj.allNodes(isLowerFace,1);

74 nUF = obj.allNodes(isUpperFace,1);

75 master = nLF;

76 slave = obj.obtainClosestNodeInOppositeFace(nLF,nUF,dir2compare);

77 end

78

79 function closestNodesUF = obtainClosestNodeInOppositeFace(obj,nodesLF,nodesUF,pos)

80 nNodes = length(nodesLF);

81 closestNodesUF = zeros(nNodes,1);

82 for inode = 1:nNodes

83 nodeLF = nodesLF(inode);

84 closestNodesUF(inode) = obj.obtainClosestNode(nodeLF,nodesUF,pos);

85 end

86 end

87 end

88

89 methods (Access = private, Static)

90

91 function closestNodeB = obtainClosestNode(nodeA,nodeB,pos)

92 xA = pos(nodeA,1);

93 xB = pos(nodeB,1);

94 distAB = abs(xA − xB);

95 [distMin,isClosest] = min(distAB);

96 if distMin > 1e−10

97 error('non slave node')

98 end

99 closestNodeB = nodeB(isClosest);

100 end

Code C.1: 2D case Master-Slave matrix computation. Extracted from [57]
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C.1.2 3D case

1 ...

2

3 methods (Access = private)

4

5 function init3(obj,coord)

6 obj.x = coord(:,1);

7 obj.y = coord(:,2);

8 obj.z = coord(:,3);

9 obj.allNodes(:,1) = 1:size(obj.x,1);

10 end

11

12 function computeNodesInFaces3D(obj,coord)

13 cD = CellNodesDescriptor(coord);

14 corners = cD.cornerNodes;

15 obj.nodesInXmin = setdiff(cD.nodesInXmin,corners);

16 obj.nodesInXmax = setdiff(cD.nodesInXmax,corners);

17 obj.nodesInYmin = setdiff(cD.nodesInYmin,corners);

18 obj.nodesInYmax = setdiff(cD.nodesInYmax,corners);

19 obj.nodesInZmin = setdiff(cD.nodesInZmin,corners);

20 obj.nodesInZmax = setdiff(cD.nodesInZmax,corners);

21 end

22

23 function computeMasterSlaveRelation3D(obj)

24 [masterFaceX,slaveFaceX] = obj.computeMasterSlaveNodesInFaceX3D();

25 [masterFaceY,slaveFaceY] = obj.computeMasterSlaveNodesInFaceY3D();

26 [masterFaceZ,slaveFaceZ] = obj.computeMasterSlaveNodesInFaceZ3D();

27 obj.msRelation = [masterFaceX slaveFaceX;

28 masterFaceY slaveFaceY;

29 masterFaceZ slaveFaceZ];

30 end

31

32 function [master,slave] = computeMasterSlaveNodesInFaceX3D(obj)

33 [master,slave] = ...

obj.computeMasterSlaveNode3D(obj.nodesInXmin,obj.nodesInXmax,obj.y,obj.z);

34 end

35

36 function [master,slave] = computeMasterSlaveNodesInFaceY3D(obj)

37 [master,slave] = ...

obj.computeMasterSlaveNode3D(obj.nodesInYmin,obj.nodesInYmax,obj.x,obj.z);

38 end

39
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40 function [master,slave] = computeMasterSlaveNodesInFaceZ3D(obj)

41 [master,slave] = ...

obj.computeMasterSlaveNode3D(obj.nodesInZmin,obj.nodesInZmax,obj.x,obj.y);

42 end

43

44 function [master,slave] = ...

computeMasterSlaveNode3D(obj,isLowerFace,isUpperFace,dir2compare1,dir2compare2)

45 nLF = obj.allNodes(isLowerFace,1);

46 nUF = obj.allNodes(isUpperFace,1);

47 master = nLF;

48 slave = obj.obtainClosestNodeInOppositeFace3D(nLF,nUF,dir2compare1,dir2compare2);

49 end

50

51 function closestNodesUF = ...

obtainClosestNodeInOppositeFace3D(obj,nodesLF,nodesUF,pos1,pos2)

52 nNodes = length(nodesLF);

53 closestNodesUF = zeros(nNodes,1);

54 for inode = 1:nNodes

55 nodeLF = nodesLF(inode);

56 closestNodesUF(inode) = obj.obtainClosestNode3D(nodeLF,nodesUF,pos1,pos2);

57 end

58 end

59

60 function avoidRepeatedEdges(obj)

61 MS = obj.msRelation;

62 uniqueCol1 = unique(MS(:,1));

63 uniqueCol2 = unique(MS(:,2));

64 commonNodes = intersect(uniqueCol1, uniqueCol2);

65 rowsRemoved = ismember(MS(:,1), commonNodes) | ismember(MS(:,2), commonNodes);

66 MS(rowsRemoved, :) = [];

67 obj.msRelation = MS;

68 end

69 end

70

71 methods (Access = private, Static)

72

73 function closestNodeB = obtainClosestNode3D(nodeA, nodeB, pos1,pos2)

74 xA = pos1(nodeA);

75 yA = pos2(nodeA);

76

77 xB = pos1(nodeB);

78 yB = pos2(nodeB);

79

80 distAB = sqrt((xA − xB).^2 + (yA − yB).^2);
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81 [distMin, isClosest] = min(distAB);

82

83 if distMin > 1e−10

84 error('non slave node')

85 end

86 closestNodeB = nodeB(isClosest);

87 end

88

89 end

Code C.2: 3D case Master-Slave matrix computation

C.2 Micro Elastic Problem

This section presents the code implementation used to generate a 3D cubic mesh with a hole inclusion and solve the

micro elastic problem. Then, it calculates and outputs the strain, stress and displacement values throughout the structure.

1 clc; clear; close all

2

3 % Create the data container for the FEM problem

4 a.fileName = 'test3d_micro_cube';

5 m = FemDataContainer(a);

6

7 % Create the characteristic function (1 inside circle, 0 outside)

8 s.mesh = m.mesh;

9 s.fxy = @(x,y,z) (x−0.5).^2+(y−0.5).^2+(z−0.5).^2 −0.3.^2;

10 circleFun = CharacteristicFunction(s);

11

12 % Project the function to P0. Useful later on

13 x.mesh = m.mesh;

14 x.connec = m.mesh.connec;

15 projP0 = Projector_toP0(x);

16 p0c = projP0.project(circleFun);

17

18 % Generate the hole in the material using the values we just found

19 fV = squeeze(p0c.fValues);

20 holeNodes = find(fV==1);

21 m.material.C(:,:,holeNodes) = m.material.C(:,:, holeNodes)*1e−3;

22

23 % Solve the elastic problem

24 fem = ElasticProblemMicro(m);

25 fem.computeChomog();
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26 sss.filename = 'fluctHoleMaterial';

27 fem.uFun{1}.print(sss);

Code C.3: FEM computation of a 3D cubic mesh with a hole inclusion.

C.3 Paraview Transform Operation

To achieve a more efficient generation of the 3x3 grid mesh, the Python Shell tool in Paraview has been employed to

create a code that translates the cube and visualizes the output.

1 from paraview.simple import *

2 import glob

3

4 # Set the file path

5 file_path = 'C:/Users/Usuari/Documents/...'

6 file_name = glob.glob(file_path)[0]

7

8 # Load the file and display the density values

9 reader = XMLUnstructuredGridReader(FileName=file_name)

10 display = Show(reader)

11 ColorBy(display, ('POINTS', 'Density'))

12

13 # Perform the Translate operation

14 translate_filter1 = Transform(Input=reader)

15 translate_filter1.Transform.Translate = [1, 0, 0]

16 Show(translate_filter1)

17

18 translate_filter2 = Transform(Input=reader)

19 translate_filter2.Transform.Translate = [−1, 0, 0]

20 Show(translate_filter2)

21

22 translate_filter3 = Transform(Input=reader)

23 translate_filter3.Transform.Translate = [1, 1, 0]

24 Show(translate_filter3)

25

26 translate_filter4 = Transform(Input=reader)

27 translate_filter4.Transform.Translate = [0, 1, 0]

28 Show(translate_filter4)

29

30 translate_filter5 = Transform(Input=reader)

31 translate_filter5.Transform.Translate = [−1, 1, 0]

32 Show(translate_filter5)
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33

34 translate_filter6 = Transform(Input=reader)

35 translate_filter6.Transform.Translate = [1, −1, 0]

36 Show(translate_filter6)

37

38 translate_filter7 = Transform(Input=reader)

39 translate_filter7.Transform.Translate = [0, −1, 0]

40 Show(translate_filter7)

41

42 translate_filter8 = Transform(Input=reader)

43 translate_filter8.Transform.Translate = [−1, −1, 0]

44 Show(translate_filter8)

Code C.4: Paraview mesh grid obtention
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Appendix D

Finite Element Method

D.1 Introduction

The Finite Element Method (FEM) is a numerical approximation technique that partitions a complex domain into a

finite number of smaller elements, enabling the behavior of each element to be described by simplified equations. [59]

Derived from fundamental principles such as Newton’s laws of motion, conservation of mass and energy, and ther-

modynamic laws, FEM enables the determination of structural mechanics, heat flow and electromagnetic radiation

distribution in various scenarios. For instance, it can be employed to analyze the structural integrity of different car

components under diverse loads, investigate heat transfer in engine parts, or study the propagation of electromagnetic

waves from an antenna.

The process of dividing a comprehensive domain into simpler parts offers several benefits: a precise representation of

intricate geometries, the incorporation of varying material properties, an efficient representation of the overall solution

and the inclusion of localized effects.

For a better comprehension of the method, a 1D bar element case will be studied. This scenario will serve as a clear

illustration of the equation derivation process.

D.2 Problem Formulation (Strong form)

Consider a bar with a length L and a constant cross-sectional area A, characterized by Young’s Modulus E. The bar is

subjected to prescribed displacement u(0) = −g at the left end (x = 0) and an axial force F at the right end (x = L).

Additionally, a distributed axial force per unit area q(x) = E(ρu(x) − sx2) acts on the bar. Here, u = u(x) represents the

displacement field, g is a constant and further details are provided below. [60]

ρ =
π2

L2 s = gρ2 F
AE
=

gπ2

L
(D.1)
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L

x = 0 x = L

q (x)

F

g

Figure D.1: FEM 1D bar element diagram

The strong form of the problem corresponds to the standard differential equation that defines it, which establishes

certain conditions of continuity and differentiability for the potential solutions of the equation. [61]

In the studied case, the strong form of the problem is obtained by applying the axial equilibrium equation for 1D

problems, given as:
dσ
dx
+ q(x) = 0 (D.2)

where σ : Ω→ R.

By applying Hooke’s law (σ = E du
dx ), the equation becomes:

d2u
dx2 +

q(x)
E
= 0 (D.3)

Substituting this into Equation (D.2) and expanding the expression:

u′′ +
E(ρu − sx2)

E
= 0 (D.4)

u′′ + ρu − sx2 = 0 (D.5)

u′′ +
π2

L2 u − g
(
π2

L2

)2

x2 = 0 (D.6)

Regarding the boundary conditions, it is mentioned in the statement that the initial displacement of the bar is given by

u(0) = −g (D.7)
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Additionally, to determine the slope of the bar at its end, Hooke’s law can be multiplied by the cross-sectional area:

Aσ = AEu′ =⇒ u′(L) =
F

AE
Eq. B.1
−−−−−−−−−−→ u′(L) =

gπ2

L
(D.8)

Hence, the strong form of the problem is expressed as follows:

u′′ +
π2

L2 u − g
(
π2

L2

)2

x2 = 0 with


u(0) = −g

u′(L) =
gπ2

L

(D.9)

D.3 Problem Formulation (Weak form)

The weak form of the problem is an alternative formulation of the differential equation, expressed as an integral equation

that implicitly encompasses the underlying differential equation. [61]

To simplify the Boundary Value Problem and derive its weak form, the constants from Equation (D.9) have been

rearranged.

u′′ +
π2

L2 u − g
(
π2

L2

)2

x2 = 0


a = π

2

L2

f (x) = −g
(
π2

L2

)2
x2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ u′′ + au + f (x) = 0 (D.10)

Then, an arbitrary sufficiently smooth function v(x) is introduced, satisfying the condition v(0) = 0.

By relocating the terms independent of u(x) to the right-hand side, multiplying both sides of the equation by v(x), and

integrating over the interval [0, L], the following expression is obtained:

u′′ + au = − f (x) (D.11)

∫ L

0

(
u′′ + au

)
vdx = −

∫ L

0
f (x)vdx (D.12)

∫ L

0
u′′vdx +

∫ L

0
au′v′dx = −

∫ L

0
f (x)vdx (D.13)

Applying the chain rule to the derivative of uv: (vu′)′ = v′u′ + vu′′ → vu′′ = (vu′)′ − v′u′

[
vu′

]L
0 −

∫ L

0
v′u′dx +

∫ L

0
auvdx = −

∫ L

0
f vdx (D.14)

v(L) u′(L)︸︷︷︸
=

gπ2
L

− v(0)︸︷︷︸
=0

u′(0) −
∫ L

0
v′u′dx +

∫ L

0
auvdx = −

∫ L

0
f vdx (D.15)
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Substituting the expressions of a and f (x) presented above, the Variational form of the Boundary Value Problem is

obtained:

v(L)
gπ2

L
−

∫ L

0
v′u′dx +

π2

L2

∫ L

0
uvdx = g

(
π2

L2

)2 ∫ L

0
x2vdx (D.16)

D.4 Generic Matrix Equation

By considering Equation (D.16) and applying the renaming of constant terms as a, b and f (x), as previously done, the

resulting equation is expressed as follows:

bv(L) −
∫ L

0
u′v′dx + a

∫ L

0
uvdx = −

∫ L

0
f vdx (D.17)



a =
π2

L2

b =
gπ2

L

f (x) = −g
(
π2

L2

)2

x2

(D.18)

By assuming that both u and v can be represented as linear combinations of functions, specifically as u(x) = N(x) · d

and v(x) = N(x) · c, the resulting expression is obtained as follows:



b · v(L) = b · N(L) · c

u′ · v′ =
du
dx
·

dv
dx
=

dN
dx
· d ·

dN
dx
· c = B · d · B · c

u · v = N · d · N · c

f · v = f · N · c

(D.19)

b · N(L) · c −
∫ L

0
B · d · B · c dx + a

∫ L

0
N · d · N · c dx = −

∫ L

0
f · N · c dx (D.20)

cT · NT (L) · b −
∫ L

0
cT · BT · B dx · d + a

∫ L

0
cT · NT · N dx · d = −

∫ L

0
cT · NT · f dx (D.21)

By rearranging the terms, the equation can be expressed in the following form, with all the terms combined on one side:

cT
[
−NT (L) · b +

∫ L

0
BT · B dx · d − a

∫ L

0
NT · N dx · d −

∫ L

0
NT · f dx

]
= 0 (D.22)
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By reorganizing the equation presented in Equation (D.22), the generic matrix equation that represents the Boundary

Value Problem can be derived.

cT (Kd − F) = 0 (D.23)

With the F and K matrices obtained below:


K =

∫ L

0
BT · B dx − a

∫ L

0
NT · N dx

F = NT (L) · b +
∫ L

0
NT · f dx

(D.24)

D.5 Assembly of the Global Stiffness Matrix

By recalling the general form of the matrix K, as indicated in Equation (D.24), and applying it to each element

constituting the domain, the local expression of the matrix K results:

Ke =

∫
Ωe

(Be)T · Be dx − a
∫
Ωe

(Ne)T
· Ne dx (D.25)

In order to derive the left term of the expression, it is necessary to consider the definition of matrix B as B = 1
h [−1, 1].

Applying this definition, the resulting expression is obtained as follows:

∫
Ωe

(Be)T · Be dx =
∫
Ωe

(
1
he [−1 1]

)T

·

(
1
he [−1 1]

)
dx =

1
(he)2

−1

1

 [−1 1]
∫
Ωe

dx =
1
he

 1 −1

−1 1

 (D.26)

Regarding the right term of the expression, it can be redefined by applying the conversion from the physical domain to

the reference domain. This transformation allows for the rewriting of the term as follows:



N =
1
2

[
1 − ξ , 1 + ξ

]
dx =

dx
dξ

dξ

xe (ξ) = Ne (ξ) · xe

dξ
dx
=

2
he →

dx
dξ
=

he

2

(D.27)
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Subsequently, by manually integrating the expression, it can be derived the following result:∫
Ωe

(Ne)T
· Ne dx =

∫
Ωe

(
(Ne)T

· Ne dξ
) he

2
=

(∫ +1

−1

1
2

[
(1 − ξ) , (1 + ξ)

]T
·

1
2

[
(1 − ξ) , (1 + ξ)

]
dξ

)
he

2
=

=
he

8

∫ +1

−1

1 − 2ξ + ξ2 1 − ξ2

1 − ξ2 1 + 2ξ + ξ2

 = he

8

8/3 4/3

4/3 8/3

 = he

8
4
3

2 1

1 2

 = he

6

2 1

1 2

 (D.28)

Hence, the matrix denoted as K for each element can be computed as follows:

Ke =

∫
Ωe

(Be)T · Be dx − a
∫
Ωe

(Ne)T
· Ne dx =

1
he

 1 −1

−1 1

 − a ·
he

6

2 1

1 2

 (D.29)

D.6 Assembly of the Global Forces Matrix

In the process of assembling the right-hand side vector (F), the following statement is considered:

F =



0

0
.
.
.

b


+ F (D.30)

To compute the vector F, the element force vectors need to be obtained individually in order to combine them during

the assembly process.

The definition of the element vector (Fe) is as follows:

F
e
=

∫
Ωe

(Ne)T f dx (D.31)

Which the assembly process can be written as:

F
e
=

nel∑
e=1

LeT · F
e

(D.32)
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To transition from the physical domain to the reference domain, the quantity q is introduced, which is defined as the

product of the transpose of the shape function matrix Ne and the distributed load vector f (so q = NeT f ). This allows

for the rewriting of the element vector by utilizing Equation (D.31).

F
e
=

∫ 1

−1
q(ξ)ξ (D.33)

To compute the integral, the 1D Gauss Quadrature Method is employed. Consequently, the given equation can be

expressed as follows:

F
e
=

he

2

g=1∑
m

ωgξg (D.34)

Since f is a quadratic polynomial, the value of m is 2. Referring to Table D.1, the corresponding Gauss points yield the

positions ξg and weights ωg.

ξg ωg

−1/
√

3 1

1/
√

3 1

Table D.1: Gaussian quadrature location and weight for m = 2

As it has been defined before,

Ne(ξg) =
1
2

[
(1 − ξg) , (1 + ξg)

]
(D.35)

The values provided in Table D.1 are utilized to compute Equation (D.35).

Subsequently, the values from Table D.1 are also employed to evaluate the expression involving the transformation of

the domain in the element coordinates:

xe(ξ) = Ne(ξ) · xe (D.36)

With the obtained values, they can be substituted into the expression for f (ξg).

f (ξg) = f (xe(ξg)) (D.37)

So, the force contribution of each element is:

F
e
=

he

2

[
(Ne)T

(
−1/
√

3
)
· f

(
−1/
√

3
)
+ (Ne)T

(
1/
√

3
)
· f

(
1/
√

3
)]

(D.38)
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Appendix E

Material Design Functions Analysis

This section provides a detailed explanation of the calculation process for the derivative of the J1, J2 and J3 functions,

along with their corresponding code implementation.

To enhance the comprehension of the equations, it has been chosen that the characteristic function χ is represented by

the density function ρ. This selection aims to facilitate the understanding of the equations and their interpretation.

E.1 Mathematical Background

This subsection provides a background on an important property of the derivative of an inverse matrix, which is relevant

to the calculation discussed in the chapter.

As it is known, the identity matrix can be stated as:

A(x) · A−1(x) = I (E.1)

Differenciating both sides of the equation, and applying the product rule, it results:

dA(x)
dx

· A−1 + A ·
d(A−1)

dx
= 0 −→ A−1 ·

dA(x)
dx

· A−1 +
d(A−1)

dx
= 0 (E.2)

By rearranging the terms, the derivative of the inverse of matrix A can be obtained:

d(A−1)
dx

= −A−1 ·
dA(x)

dx
· A−1 (E.3)

Therefore, in the particular case at hand, matrix A will be replaced with matrix C (the homogenized two-dimensional

elasticity tensor), leading to the following:

d
dρ

(
W · C−1(ρ)

)
= W · C−1 ·

dC
dρ
· C−1 (E.4)
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E.2 Weighted Inverse Homogenized Elasticity Matrix Function

E.2.1 Mathematical Demonstration

As it has been mentioned in Equation (6.4), this function can be expressed as:

J1(C) = αTC−1β (E.5)

Taking the derivative of both sides of the equation with respect to the density and developing the terms (taking into

account the property stated in Equation (E.4)):

∂h1 (C)
∂ρ

= αT ·
d(C−1)

dρ
· β (E.6)

∂h1 (C)
∂ρ

= −αT ·

(
C−1 ·

dC
dρ
· C−1

)
· β (E.7)

E.2.2 Code Implementation

The code implementation for J1 is showcased below:

1 classdef ShFunc_Chomog_alphabeta < ShFunc_Chomog

2 ...

3 methods (Access = public)

4 ...

5 function computeGradientValue(obj)

6 obj.computeChDerivative();

7 dinvChAB = obj.computedChInv(obj.Chomog,obj.alpha,obj.beta);

8 obj.gradient = dinvChAB;

9 end

10 end

11 end

Code E.1: Gradient computation of J1. Extracted from [57]
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1 classdef ShFunc_Chomog < ShapeFunctional

2 ...

3 methods (Access = protected)

4 ...

5 function computeChDerivative(obj)

6 dC = obj.homogenizedVariablesComputer.dC;

7 p = obj.physicalProblem;

8 tstr = p.variables.tstrain;

9 nStre = size(tstr,1);

10 nelem = size(tstr,4);

11 ngaus = size(tstr,2);

12 dChV = zeros(nStre,nStre,nelem,ngaus);

13 for iStre = 1:nStre

14 for jStre = 1:nStre

15 for igaus=1:ngaus

16 for kStre =1:nStre

17 for lStre = 1:nStre

18 dChVij = squeeze(dChV(iStre,jStre,:,igaus));

19 eik = squeeze(obj.tstrain(iStre,igaus,kStre,:));

20 dCkl = squeeze(dC(kStre,lStre,:,:,igaus));

21 ejl = squeeze(obj.tstrain(jStre,igaus,lStre,:));

22 dChV(iStre,jStre,:,igaus) = dChVij + eik.*dCkl.*ejl;%Original

23 end

24 end

25 end

26 end

27 end

28 obj.dCh = dChV;

29 end

30 end

31 end

Code E.2: C derivative computation. Extracted from [57]
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E.3 Rational Weighted Inverse Homogenized Elasticity Matrix Function

E.3.1 Mathematical Demonstration

As previously stated on Equation (6.6), this function can be formulated as follows:

J2 (C) =
αTC−1β

αTC−1α
+
βTC−1α

βTC−1β
(E.8)

By following a procedure analogous to that of function J1 (specifically, by differentiating both sides of the equation and

applying the matrix property from Equation (E.4)), the derivative of J2 can be expressed as:

∂J2 (C)
∂ρ

=

(
αTC−1β

)′
· αTC−1α − αTC−1β

(
αTC−1α

)′(
αTC−1α

)2 +

+

(
βTC−1α

)′
· βTC−1β − βTC−1α

(
βTC−1β

)′(
βTC−1β

)2 (E.9)

∂J2 (C)
∂ρ

=

(
−αT ·

(
C−1 · dC

dρ · C
−1

)
· β

)
· αTC−1α − αTC−1β

(
−αT ·

(
C−1 · dC

dρ · C
−1

)
· α

)
(
αTC−1α

)2 +

+

(
−βT ·

(
C−1 · dC

dρ · C
−1

)
· α

)
· βTC−1β − βTC−1α

(
−βT ·

(
C−1 · dC

dρ · C
−1

)
· β

)
(
βTC−1β

)2 (E.10)

∂J2 (C)
∂ρ

=
αT ·

(
C−1 · dC

dρ · C
−1

)
·
[
α ·

(
αTC−1β

)
− β ·

(
αTC−1α

)]
(
αTC−1α

)2 +

+
βT ·

(
C−1 · dC

dρ · C
−1

)
·
[
β ·

(
βTC−1α

)
− α ·

(
βTC−1β

)]
(
βTC−1β

)2 (E.11)

Where, rearranging the terms:

∂J2 (C)
∂ρ

=
g1(

αTC−1α
)2 +

g2(
βTC−1β

)2 (E.12)


g1 = α

T ·
(
C−1 · dC

dρ · C
−1

)
·
[
α ·

(
αTC−1β

)
− β ·

(
αTC−1α

)]
g2 = β

T ·
(
C−1 · dC

dρ · C
−1

)
·
[
β ·

(
βTC−1α

)
− α ·

(
βTC−1β

)] (E.13)
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E.3.2 Code Implementation

The code implementation for J2 is provided below:

1 classdef ShFunc_Chomog_fraction < ShFunc_Chomog

2 ...

3 methods (Access = public)

4 ...

5 function computeGradientValue(obj)

6 obj.computeChDerivative();

7 a = obj.alpha;

8 b = obj.beta;

9 beta1 = obj.invChAA*b − obj.invChAB*a;

10 beta2 = obj.invChBB*a − obj.invChBA*b;

11 g1 = obj.computedChInv(obj.Chomog,a,beta1);

12 g2 = obj.computedChInv(obj.Chomog,b,beta2);

13 grad = g1/(obj.invChAA)^2 + g2/(obj.invChBB)^2;

14 obj.gradient = grad;

15 end

16 ...

17 function computeInvChProyections(obj)

18 invCh = inv(obj.Chomog);

19 a = obj.alpha;

20 b = obj.beta;

21 obj.invChAB = obj.projectTensor(invCh,a,b);

22 obj.invChBA = obj.projectTensor(invCh,b,a);

23 obj.invChAA = obj.projectTensor(invCh,a,a);

24 obj.invChBB = obj.projectTensor(invCh,b,b);

25 end

26 end

27 end

Code E.3: Gradient computation of J2 (part 1). Extracted from [57]
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1 classdef ShFunc_Chomog < ShapeFunctional

2 ...

3 methods (Access = protected)

4 function dChInv = computedChInv(obj,Ch,alpha,beta)

5 invCh = inv(Ch);

6 nStres = obj.getnStre();

7 weights = alpha*beta';

8 weightsInv = invCh*weights*invCh;

9 dChInv = zeros(size(obj.dCh,[3 4]));

10 for iStre = 1:nStres

11 for jStre = 1:nStres

12 DtCij = squeezeParticular(obj.dCh(iStre,jStre,:,:),[1 2]);

13 wij = weightsInv(iStre,jStre);

14 dChInv = dChInv − wij*DtCij;

15 end

16 end

17 end

18 ...

19 function aCb = projectTensor(C,a,b)

20 ab = a*b';

21 aCb = ab.*C;

22 aCb = sum(aCb(:));

23 end

24 end

25 end

Code E.4: Gradient computation of J2 (part 2). Extracted from [57]
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E.4 Inverse Problem Matrix Function

E.4.1 Mathematical Demonstration

Keeping in mind that this function can be written as expressed in Equation (6.11):

J3 (C) =
[
C − C∗

]2 (E.14)

it is trivial to demonstrate that its gradient can be expressed as seen in Equation (6.13):

∂J3 (C)
∂ρ

= 2 (C − C∗)
∂C

∂ρ
(E.15)

E.4.2 Code Implementation

1 classdef ShFunc_Chomog_CC < ShFunc_Chomog

2 properties (Access = private)

3 selectiveC_Cstar = [1, 1,1

4 1, 1,1

5 1,1,1];

6 end

7

8 methods

9 ...

10 function computeCostAndGradient(obj,x)

11 obj.computePhysicalData(x);

12

13 %Cost

14 costfunc = obj.Chomog − obj.Ch_star;

15 costfunc = obj.selectiveC_Cstar.*costfunc;

16

17 %Gradient

18 nstre = size(obj.tstrain,1);

19 ngaus = size(obj.tstrain,2);

20 nelem = size(obj.tstrain,4);

21

22 obj.compute_Chomog_Derivatives(x);

23 DtC1 = zeros(ngaus,nelem);

24 gradient = zeros(ngaus,nelem);

25 for igaus=1:ngaus

26 for a=1:nstre
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27 for b=1:nstre

28 DtC1(igaus,:) = squeeze(obj.Chomog_Derivatives(a,b,igaus,:));

29 gradient(igaus,:) = gradient(igaus,:) + 2*costfunc(a,b)*DtC1(igaus,:);

30 end

31 end

32 end

33

34 %Cost

35 costfunc = sum(bsxfun(@times,costfunc(:),costfunc(:)));

36

37 mass=obj.Msmooth;

38 gradient=obj.filter.getP1fromP0(gradient(:));

39 gradient = mass*gradient;

40 if isempty(obj.h_C_0)

41 obj.h_C_0 = costfunc;

42 end

43 costfunc = costfunc/abs(obj.h_C_0);

44 gradient=gradient/abs(obj.h_C_0);

45

46 obj.value = costfunc;

47 obj.gradient = gradient;

48 end

49 end

50 end

Code E.5: Gradient computation of J3. Extracted from [57]

109



Study of optimal design of 3D mechanical metamaterials
Appendix F. Previous Work

Appendix F

Previous Work

F.1 Optimizers Comparison


min
x

f (x)

s.t. (λ) g(x) = 0

Optimizer
General

(Density + Level Set)

Density


Augmented Lagrangian
Null - Space
Bisection


IPOPT
MMA
fmincon

 min
x

f (x)

Density

Level Set

{
Projected Gradient

Hamilton - Jacobi
SLERP

Optimizer
Unconstrained

Primal Updater

Dual Updater

ρ

Φ

Figure F.1: Optimizers diagram

F.2 FEM UML Diagram
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F.3 unfittedMesh

F.3.1 Graphic Representation

Figure F.2: unfittedMesh method example


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)
Cut Mesh(

aaaa + aaaa
)
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)
Exterior Mesh(
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)

Boundary Mesh(
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+
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a + a
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F.3.2 UML Diagram
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Appendix G

Simulations

This chapter is dedicated to the conducted simulations. It focuses on presenting the parameters used in both the 2D and

3D simulations, as well as showcasing the results that were not included in Chapter 8, which pertain to the simulations

performed with a final volume fraction of 0.85.

G.1 2D Simulations Parameters

The parameters utilized for the 2D simulations are provided below. It is important to note that the table does not specify

the α and β values since they were employed but varied for each simulation, so their specific values were indicated for

each case.

2D SIMULATION CONDITIONS

Initial case ’circleInclusion’

Constraint ’volumeConstraint’

Problem type ’MICRO’

Material type ’ISOTROPIC’

Filter type ’P1’

Method ’SIMP_P3’

Diameter fraction 0.5

Cost ’chomog_alphabeta’

Final volume fraction 0.3

Table G.1: Common conditions in 2D J1 simulations
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G.2 3D Simulations Parameters

Regarding the common parameters utilized in the 3D simulations, excluding the alpha and beta values (as they were

also specified in each presented case), the following parameters were employed:

3D SIMULATION CONDITIONS

Initial case ’sphereInclusion’

Constraint ’volumeConstraint’

Problem type ’MICRO’

Material type ’ISOTROPIC’

Filter type ’P1’

Method ’SIMPALL’

Diameter fraction 0.4

Cost ’chomog_alphabeta’

Table G.2: Common conditions in 3D J1 simulations
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G.3 3D Simulations Results

In this section, the results that were not included in Chapter 8 will be presented. Specifically, these results pertain

to the optimization of normal materials using the MMA and Null Space optimizers, as well as the optimization of

metamaterials using the Null Space optimizer. In both cases, a final volume fraction of 0.85 was employed.

G.3.1 Density-Based Method: MMA

Cilinder: α = β = [1 0 0 0 0 0]

(a) Step 1. (b) Step 25. (c) Step 40. (d) Step 65.

(e) Grid visualization. (f) Monitoring.

Figure G.1: Density results from the 3D J1 cost function for α = β = [1 0 0 0 0 0] (MMA - V f inal = 0.85).
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Vertical plate: α = β = [1 1 0 0 0 0]

(a) Step 1. (b) Step 35. (c) Step 45. (d) Step 51.

(e) Grid visualization. (f) Monitoring.

Figure G.2: Density results from the 3D J1 cost function for α = β = [1 1 0 0 0 0] (MMA - V f inal = 0.85).

Sphere: α = β = [1 1 1 0 0 0]

(a) Step 1. (b) Step 25. (c) Step 40. (d) Step 59.

(e) Grid visualization. (f) Monitoring.

Figure G.3: Density results from the 3D J1 cost function for α = β = [1 1 1 0 0 0] (MMA - V f inal = 0.85).
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Diagonal: α = β = [1 1 0 1 0 0]

(a) Step 1. (b) Step 30. (c) Step 40. (d) Step 50.

(e) Grid visualization. (f) Monitoring.

Figure G.4: Density results from the 3D J1 cost function for α = β = [1 1 0 1 0 0] (MMA - V f inal = 0.85).

Shear: α = β = [0 0 0 1 0 0]

(a) Step 1. (b) Step 40. (c) Step 50. (d) Step 62.

(e) Grid visualization. (f) Monitoring.

Figure G.5: Density results from the 3D J1 cost function for α = β = [0 0 0 1 0 0] (MMA - V f inal = 0.85).
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G.3.2 Level Set Method: Null Space

Cilinder: α = β = [1 0 0 0 0 0]

(a) Step 1. (b) Step 3. (c) Step 6. (d) Step 10.

(e) Grid visualization. (f) Monitoring.

Figure G.6: Density results from the 3D J1 cost function for α = β = [1 0 0 0 0 0] (Null Space - V f inal = 0.85).

Vertical plate: α = β = [1 1 0 0 0 0]

(a) Step 1. (b) Step 5. (c) Step 30. (d) Step 80.

(e) Grid visualization. (f) Monitoring.

Figure G.7: Density results from the 3D J1 cost function for α = β = [1 1 0 0 0 0] (Null Space - V f inal = 0.85).
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Sphere: α = β = [1 1 1 0 0 0]

(a) Step 1. (b) Step 5. (c) Step 10. (d) Step 40.

(e) Grid visualization. (f) Monitoring.

Figure G.8: Density results from the 3D J1 cost function for α = β = [1 1 1 0 0 0] (Null Space - V f inal = 0.85).

Diagonal: α = β = [1 1 0 1 0 0]

(a) Step 1. (b) Step 3. (c) Step 5. (d) Step 30.

(e) Grid visualization. (f) Monitoring.

Figure G.9: Density results from the 3D J1 cost function for α = β = [1 1 0 1 0 0] (Null Space - V f inal = 0.85).
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Shear: α = β = [0 0 0 1 0 0]

(a) Step 1. (b) Step 4. (c) Step 40. (d) Step 70.

(e) Grid visualization. (f) Monitoring.

Figure G.10: Density results from the 3D J1 cost function for α = β = [0 0 0 1 0 0] (Null Space - V f inal = 0.85).

G.3.3 Metamaterials

Case 1: α = [1 0 0 0 0 0] and β = [0 − 1 0 0 0 0]

(a) Step 1. (b) Step 50. (c) Step 95. (d) Step 166.

(e) Grid visualization. (f) Monitoring.

Figure G.11: Density results from the 3D J1 cost function for case 1 metamaterial simulation (V f inal = 0.85).

121



Study of optimal design of 3D mechanical metamaterials
Appendix G. Simulations

Case 2: α = [1 1 0 0 0 0] and β = [0 0 − 1 0 0 0]

(a) Step 1. (b) Step 10. (c) Step 25. (d) Step 65.

(e) Grid visualization. (f) Monitoring.

Figure G.12: Density results from the 3D J1 cost function for case 2 metamaterial simulation (V f inal = 0.85).

Case 3: α = [1 0 0 0 0 0] and β = [−1 0 0 0 0 0]

(a) Step 1. (b) Step 70. (c) Step 110. (d) Step 220.

(e) Grid visualization. (f) Monitoring.

Figure G.13: Density results from the 3D J1 cost function for case 3 metamaterial simulation (V f inal = 0.85).
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