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ABSTRACT

The transport and fate o f cohesive sediments are responsible for many engineering, 

environmental, economic and policy issues that relate to, for example, siltation and dredging 

in navigation channels, water quality, water turbidity, pollutant transports, and biological 

ecosystem responses. Our current understanding, however, is insufficient to conduct accurate 

quantitative predictions o f  these processes. This is because the cohesive particles in natural 
waters will flocculate, which determines the settling, and thus the deposition behaviors. The 

simulation o f flocculation processes is a primary challenge since the time variation o f  Floe 

Size Distribution (FSD) is controlled by a partial differential equation that also contains the 

integration o f FSD itself. Previous models either address less characteristic sizes, which 

produce biased FSDs, or are incapable of modeling a relative large study domain in order to 

better express the FSDs with more size groups. In this study, a cohesive sediment flocculation 

model developed based on the framework o f Population Balance Model (PBM) is solved by 

the Quadrature Method O f Moments (QMOM). This PBM-QMOM flocculation model has 

reasonably compromised by both the model robustness and model efficiency. The former lies 
in the capability o f describing the time evolution o f  the FSDs with a maximum o f eight size 
classes, and the latter is reflected in its efficiency to solve PBM with transport terms and the 
potential to be coupled in a flow-mud estuary model. The model predictions are compared to 

both the analytical (or trusted class method) results for general PBMs (i.e., beyond the scope 
o f specific research field), and the published experimental results o f kaolinite suspension and 

colloidal montmorillonite. After that, an experimental activity has been carried out to develop 
a Sony NEX-5R camera system (with extension tubes and close-up) to automatically acquire 

floe images under various controlled environments, and to use MATLAB software to process 
the FSDs. This process is validated by the results o f  two set o f sample particles. The validated 

camera system is first applied in a five liter mixing chamber to investigate the effects o f 

salinity and selected organic matters on kaolinite flocculation. Then, the camera system is 
improved and assembled in a waterproof house for underwater use to provide data for a 
conceptual one-dimensional application in a relatively large turbulence tank. The flow field 

o f the tank is measured by an acoustic Doppler velocimetry. The flocculation processes in the 
mixing chamber or cylindrical tank are modeled by PBM-QMOM and validated by camera 
statistical FSDs. While chemical and biological effects are not explicitly included in 

PBM-QMOM (implicitly included in fitting parameters) at this time to address the basic 

mechanisms o f flocculation, these effects can be further extended when the process itself is 
better understood through other laboratory experiments or field measurements.

Key Words: cohesive sediments; floe size distribution; population balance; quadrature method 
o f moments; image acquisition and processing system.



MODELING FLOCCULATION AND DEFLOCCULATION 

PROCESSES OF COHESIVE SEDIMENTS



CHAPTER I 

GENERAL INTRODUCTION



1. Problem statement

Natural open water systems (oceans, estuaries, lagoons, rivers, lakes, reservoirs, etc.) are 

inseparable from the sediments suspended in the water column or deposited in the water bed. 

Although people since ancient times have known that flows transport sediment influencing 

river diversion, food production, and channel navigation, the scientific treatment o f cohesive 

sediment transport is only o f recent origin. In the United States, much o f the early work o f 

cohesive sediments was based on studies o f Ray Krone (1922 -  2000) and Emmanuel 

Partheniades (1926 -  ) at University o f California, Berkeley in 1960s, working with 

sediment pioneer Hans Albert Einstein (1904 -  1973), the son o f Albert Einstein. Later, 

Ashish J. Mehta, himself a student o f  Emmanuel Partheniades, “has given the necessary boost 

to this complex research area to make the science mature and independent” (Toorman, 2013). 

They are the founders o f cohesive sediment science.

Only recently, the fragmentation o f findings o f cohesive sediments across many different 

journals and proceeding volumes were summarized systematically in the following books:

• Introduction to the Physics o f  Cohesive Sediment Dynamics in the Marine 

Environment by J. C. Winterwerp and W. G  M. van Kesteren in 2004 (Book review 

see North et al., 2005);

• Cohesive Sediments in Open Channels: Properties, Transport, and Applications by 

Emmanuel Partheniades in 2009 (Book review see Shi, 2010);

• An Introduction to Hydraulics o f  Fine Sediment Transport by Ashish J. Mehta in 2013 

(Book review see Toorman, 2013 and Friedrichs, 2014).

Although one might not expect to find everything related to cohesive sediments in the above



three books (such as structural kinetics models for thixotropy and population balance models 

for flocculation), they provide a comprehensive introduction on latest hot topics o f cohesive 

sediments from theoretical fundaments to field and laboratory experiments. The bi- or 

triennial conference series INTERCOH (International Conference on Cohesive Sediment 

Transport Processes, http://www.intercoh.org/) initiated by Reg Parker and Ashish J. Mehta in 

1981, is an international platform for scientists and engineers all around the world to meet 

and discuss the latest progress on cohesive sediments in natural environments, with the most 

recent 13th INTERCOH held in September 2015, in Katholieke Universiteit Leuven, 

Belgium. The active universities and institutes working on cohesive sediment properties 

include, but are not limited to the affiliations such as Massachusetts Institute o f Technology, 

United States Army Corps o f Engineers, Woods Hole Oceanographic Institution, Virginia 

Institute o f Marine Science, University o f California - Berkeley, Stanford University, 

University o f Florida, University o f Maryland, Texas A&M University, University of 

Delaware, Delft University o f Technology (Netherlands), Katholieke Universiteit Leuven 

(Belgium), Institut franfais de recherche pour l'exploitation de la mer (IFREMER, France, 

English: French Research Institute for Exploitation o f the Sea), Hydraulics Research 

Wallingford (UK), and East China Normal University (China).

Cohesive sediments, generally referred to as mud (Winterwerp and van Kesteren, 2004), 

are discrete particles which consist mostly o f clay ( < 4 pm) and silt ( < 62.5 pm) particles 

with water, but often contain varying amounts of sand and/or organic materials (Tver, 1979). 

Particles smaller than 0.1 pm do not settle and are considered to be “dissolved”, while larger 

particles ( > 62.5 pm) are considered “coarse”. Thus, mud defined as discrete particles
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predominately in the 0.1 -  62.5 Jim size range is, to a fair degree, a convenient definition 

unrelated to particle dynamics in water (Mehta, 2013), although the coarse/fine and 

particulate/dissolved boundaries are also impacted by types o f particle minerals and organic 

matter. Cohesive sediments are a valuable resource in building materials (e.g., Winterwerp 

and van Kesteren, 2004) and can offset marsh and wetland losses (e.g., McAnally, 2000). 

Nevertheless, contaminated and/or excess fine sediments may cause various environmental 

and engineering, and thus, economical and policy issues. For example, organic (such as 

PolyChlorinated Biphenyl, or PCBs) and inorganic (such as heavy metals) pollutants attached 

to fine cohesive sediment particles might move into the food chain and threat the entire 

eco-system. Besides, fine sediments hinder navigation facilities. In reality, the cost o f 

maintaining these fairways and harbor basins through dredging can be very high, particularly 

when the sediments to be removed are contaminated. Such dredging operations have various 

ecological impacts such as light attenuation, nutrient loading, physiological impairment, and 

changes o f habitat quality (Smith, 2010).

To study sediment transport, it is important to understand the relationship between two 

representative characteristics, the hydrodynamics o f the carrier flow and the dynamics o f 

sediments (Son, 2009). Sediment particles, either individual grain or aggregates, may 

originate from the water column or in the bed. As shown in Fig. 1.1, once in suspension, 

turbulent mixing may lead the suspended aggregates to collide, attach, and further aggregate 

to form large floes. Meanwhile, when the large floes cannot withstand the shear stress, they 

may break up into small particles. This process o f simultaneous aggregation and breakage is 

called flocculation. Currents and waves cause shear and normal stresses on the bed. If the
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shear stress is strong enough, light floes might erode and re-suspend from the water/bed 

interface, and may take part in the flocculation processes again. Biology plays an important 

role in cohesive sediment behavior. For example, bioturbation (such as burrowing) o f benthic 

organisms causes the sediment to be mixed. Also, flocculation can be modified by the 

presence o f sticky organic matter (e.g., extracellular polymeric substances, or EPS, excreted 

by bacterial or algae). Particles provide a food source for marine species. These species may 

excrete fecal pellets, which are referred to as “bio-aggregates” .

Among various processes o f cohesive sediments, flocculation is the most important 

feature that distinguishes cohesive sediments from non-cohesive sediments. The flocculation 

alters the pattern o f sediment settling and transport, and subsequently complicates the 

dispersal o f the suspended sediments. Therefore, the inclusion o f flocculation in sediment 

transport models is a primary requirement to quantitatively predict the behaviors o f cohesive 

sediments (Xu, 2009). However, our current understanding o f sediment transport is 

insufficient to conduct quantitative simulations o f cohesive sediment behaviors. The research 

carried out in this dissertation investigates the flocculation and deflocculation processes o f 

cohesive sediments through numerical simulations and laboratory experiments. While this 

study is motivated to better understand the flow-mud systems in natural waters, it also serves 

as relevant research for general flocculation processes in the water treatment industry 

(Ducoste, 2002) and bioreactor industry (Han et al., 2003), as well as relevant research for 

general quadrature method o f moments (McGraw, 1997) which is modified as the solution 

method o f the flocculation model in this study.
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2. Scope and objectives

The work in this study mainly focuses on solving the governing equations that describe 

the flocculation and deflocculation processes o f cohesive sediments in typical estuaries. 

Biological flocculation o f cohesive sediments is acknowledged, but is only considered in the 

fitting parameters o f the model at this time. Short period wind waves are neglected in this 

study to simplify the basic mechanisms o f aggregation and breakup processes, although these 

effects usually play an essential role on sediment transport in natural estuaries, lagoons, rivers, 

and lakes.

The ultimate objective o f this work is to develop a reliable population balance based 

cohesive sediment flocculation model to simulate the evolution o f FSDs. To accomplish this, 

specific objectives are to:

(1) Enhance previous numerical methods to efficiently extract the FSDs during the 

process o f solving the population balance model;

(2) Select appropriate floe aggregation and breakage structures to represent the kinetics 

o f  cohesive sediment flocculation;

(3) Validate the simplified cohesive sediment flocculation box model using analytical or 

published experimental data, by neglecting the advection, diffusion, and settling terms at 

first;

(4) Make the model practical for one-dimensional (1-D) applications by designing a 

laboratory experiment to validate it;

(5) Create a non-intrusive camera system, providing automatic camera and light source 

triggering, to acquire floe images;
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(6) Develop an image processing software to find the FSDs from particle images;

(7) Assess future research needs in studying flocculation processes o f  cohesive 

sediments.

3. Outline

This dissertation is organized with six chapters and several appendices.

CHAPTER I: Introduction. This chapter describes the general background,

significance, scope, objectives, and the outline o f this dissertation.

CHAPTER II: Population balance box model for FSDs o f kaolinite suspension and

colloidal montmorillonite. Kernel structures (i.e., collision frequency, collision efficiency, 

breakup frequency, and fragmentation distribution function) specifically for flocculation 

kinetics o f  cohesive sediment are discussed. The model is solved using the Quadrature 

Method O f Moments (QMOM), based on the compromise between code robustness and 

efficiency. Model results are validated by using available published data.

CHAPTER III: Population balance box model for FSDs in well-studied systems for 

general particles and in a mixing chamber experiment for kaolinite suspensions. In this 

chapter the effectiveness o f  the QMOM approach (CHAPTER II) is further validated to 

demonstrate the broader applicability of this approach with a wider variety o f coagulation and 

breakup processes. In the first part model results are compared with analytical solutions or 

trusted class method results for typical flocculation events, beyond the scope o f specific 

research area. In the second part, model predictions are validated with measured FSDs o f 

kaolinite suspension in a mixing chamber system, with sensitivity tests o f model parameter 

selections.
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CHAPTER IV: Development o f the camera system and the image processing software. 

The reliability o f this floe image acquiring and processing system is validated by using two 

available sample seeding particles in a mixing chamber experiment. Thus, the effects o f 

salinity and selected organic matter (guar gum) on flocculation o f kaolinite are explored, 

combined with the simulation using the flocculation model described in CHAPTER I and 

CHAPTER II.

CHAPTER V: Extensions o f the flocculation box model for 1-D application. Another

laboratory experiment in an advection-dominated cylindrical tank is designed to validate the 

flocculation model with advection and diffusion terms. The camera system developed in 

CHAPTER IV is assembled in a waterproof house for underwater use to acquire images and 

process the FSDs to compare with model results. The flow condition in the tank is measured 

by a 5MHz ADV (Acoustic Doppler Velocimetry) as model input.

CHAPTER VI: Conclusion. General conclusions are addressed and future research 

demands are exhibited.

APPENDICES: Examples o f the FORTRAN code and the input file o f the flocculation 

model, the assembler code in the micro-controller Teensy 2.0, and the MATLAB code for 

image processing and turbulence properties calculating, are represented.
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CHAPTER II

MODELING FLOC SIZE DISTRIBUTION OF 
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Shen, X., Maa, J.P.Y., 2015. Modeling floe size distribution o f suspended cohesive sediments

using quadrature method o f moments. Marine Geology 359,106-119.
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Abstract

An enhanced Quadrature Method O f Moments (QMOM) is employed to solve the 

Population Balance Model (PBM) with a maximum o f eight size classes for the purpose o f 

describing the evolution o f Floe Size Distribution (FSD) o f kaolinite suspension and colloidal 

montmorillonite. This approach can be used to estimate many representative sizes, e.g., d n  

(Sauter mean size), (De Broukere mean size), cfeo (hydrodynamic mean size), and Dso 

(median size). The following three considerations are adopted to enhance the QMOM 

approach: (1) An adjustable factor, which is selected based on its ability to track up to eight 

size classes, is implemented; (2) Moments higher than the third order are not necessarily 

simulated directly; (3) A restriction on the ratio between the minimum and maximum weights 

is used to exclude unreliable nodes. The above enhancements have been proposed by others, 

but are integrated for the first time in this study. Model results are verified by comparison 

with available experimental data. The results o f this study suggest that the quadrature nodes 

and weights in the QMOM are the characteristic sizes and corresponding characteristic 

number densities to effectively predict the FSD of cohesive sediments. This study also 

demonstrates that the possible range o f  the correction factor (also sometimes referred to as 

“collision efficiency”) for the Euclidean collision frequency could be larger than one because 

o f both the difference in floe structure represented by fractal dimension as well as the impacts 

o f organic matter.

Keywords: flocculation; cohesive sediments; population balance model; quadrature method o f 

moments; floe size distribution.
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1. Introduction

The prediction o f transport and fate o f  fine-grained suspended cohesive sediments in 

estuaries and adjacent coastal waters is important for many scientific and engineering 

applications, e.g., siltation in navigation channels and harbors, water quality, and pollutant 

transport. An essential process o f cohesive sediment dynamics is the flocculation that 

determines floe size, and thus, settling velocity. Flocculation is the result o f simultaneous 

processes o f aggregation and breakage. The challenge in modeling flocculation is that many 

factors can influence this process, e.g., the ambient turbulence intensity, local suspended 

sediment concentration, static electrical forces (i.e., due to salinity and other ions), and 

bio-activities such as the production o f Extracellular Polymeric Substance (EPS), and thus, no 

accurate modeling experiment has been conducted yet.

Besides the chemical and biological factors, the most relevant mechanisms responsible 

for flocculation are Brownian motion (e.g., Eisma, 1986), differential settling (e.g., Lick et al., 

1993; Zhang and Zhang, 2011), and fluid shear (e.g., Winterwerp, 1998; Mietta et al., 2008). 

It is well accepted that Brownian motion (also known as “perikinetic flocculation”), the 

random thermal moving o f particles suspended in a fluid, only affects suspended particles 

less than 1 - 2  pm, so that it is negligible in natural estuarial waters where suspended sediment 

size is large and ambient turbulence is strong (Van Leussen, 1994; Thomas et al., 1999; 

Winterwerp, 1998; McAnally, 2000). Differential settling is a process that describes 

faster-falling particles overtaking slower ones. Fluid shear allows one particle to capture 

others more efficiently because o f strong, random motions among particles. The relative 

importance o f  differential settling and fluid shear, however, depends on the applications. For
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example, Winterwerp (1998) and Maggi et al. (2007) showed fluid shear to be the dominant 

effect as the likelihood o f a large (i.e., rapidly settling) particle colliding with a small (i.e., 

slowly falling) particle is small. This is because the trajectory o f  the small particle is 

deflected by strong hydrodynamic interactions with the larger particle. Here the 

hydrodynamic interaction describes the momentum transfer from a suspended particle to fluid 

molecules, and then from the fluid molecules to another particle (Ladd and Verberg, 2001). 

On the other hand, Lick et al. (1993) stated that differential settling may become the primary 

factor in open waters away from shore where turbulence is low. Zhang and Zhang (2011) also 

emphasized the effect o f differential settling in their work.

In general, there are three kinds o f flocculation models. The first kind o f model is the 

simplified Lagrangian flocculation model (e.g., Winterwerp, 1998, 1999, 2002; Winterwerp 

and van Kesteren, 2004; Maggi, 2008, 2009; Son, 2009; Son and Hsu, 2008; 2011a; 2011b). 

Winterwerp (1998) first developed this kind o f model for a constant fractal dimension to 

describe the floe shape. Later, Son and Hsu (2008) extended this model for a variable fractal 

dimension. An advantage o f this kind o f model is that it can track the evolution o f a 

characteristic size (usually the median size) with reasonable computing efficiency, and it is 

easy to couple with hydrodynamic models, turbulence models, and sediment transport models 

(Winterwerp, 2002). A weakness is that only one characteristic size (i.e., the median floe size) 

is addressed. Other properties, notably the floe size distribution (FSD) and detailed evolution 

processes o f particle number and volume, cannot be resolved by this kind o f model.

The second kind o f model is the extended Lattice Boltzmann Model (LBM) (e.g., Zhang 

and Zhang, 2011; Zhang et al., 2013). The traditional LBM is a mesoscopic hydrodynamic
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model (not a flocculation model) that is mapped onto the incompressible Navier-Stokes 

equations (Ladd and Verberg, 2001). Ladd (1994a, 1994b) extended the LBM by adding the 

motion o f solid particles in suspension. They treated the solid particles as imposing moving 

boundary conditions on the fluid. This method was further extended to explore the 

flocculation o f cohesive sediments due to deferential settling (Zhang and Zhang, 2011) and 

turbulent shear (Zhang et al., 2013). This latest approach provides more information, 

including FSD and floe settling velocities, than the first kind o f model, and allows collision 

behaviors to be studied directly through statistical analyses o f model results. However, 

prohibitive computational costs and memory requirements for simulating a larger study 

domain limit the use o f this approach to only studying the process itself, e.g., determining the 

collision efficiency (also called correction factor in this study).

The third kind o f model is the Population Balance Model (PBM) (e.g., Maggi, 2005; Prat 

and Docuste 2006, 2007; Maggi et al., 2007; Xu et al., 2008; Mietta et al., 2008, 2011; Lee et 

al., 2011; Vemey et al., 2011; Furukawa and Watkins, 2012), which is the model type used in 

this study. PBM is essentially a transport equation that tracks number density o f floes o f 

certain size at any location and at any time in a system. A thorough review o f the origins and 

derivation o f PBM can be found in Sporleder et al. (2012), and a summary o f various 

methods for solving a PBM is presented in Su et al. (2009).

Among all the available methods for solving PBM, the Quadrature Method O f Moments 

(QMOM) is the most efficient one (Marchisio et al., 2003c; Prat and Duscoste, 2006; 2007). 

QMOM transfers PBM to a set o f moment transport equations (McGraw, 1997), so that the 

lower-order moments o f FSD are tracked with high accuracy with a low computational cost
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(see “Section 4” for more details). In addition, their mean sizes (e.g., arithmetic mean size, 

Sauter mean diameter, and De Broukere mean diameter) are recorded with high accuracy. 

However, conventional QMOM usually fails when tracking more than four size classes, and 

thus, it is difficult to construct the FSD from the conventional QMOM. Su et al. (2007) 

employed adjustable factors assigned to different processes to track the moments o f FSD with 

lower computational demands than that from the standard QMOM. Since the purpose o f their 

work did not entail tracking additional size classes to find the FSD, they only used three size 

classes and did not report any FSD in their results.

The objective o f this study is to investigate the temporal evolution o f FSD, including the 

aggregation and breakage behaviors o f cohesive sediments. To achieve this goal, the 

adjustable QMOM approach that solves the PBM is modified to track changes o f particle 

density for a maximum o f eight size classes. Data from two available laboratory experiments 

(one with suspended kaolinite and the other with colloidal montmorillonite) are simulated. 

Detailed information, such as the FSD itself, its mode, mean, and median size, and the 

processes o f birth and death o f floe number and floe volume are monitored.

This paper is organized as follows. Methods are described in Section 2. Section 2.1 

reviews the PBM model and standard QMOM approach. Section 2.2 presents QMOM with 

an adjustable factor and illustrates how to apply this approach. Section 2.3 explains the 

selection o f appropriate aggregation and breakage functions, i.e., the collision frequency, the 

correction factor, the breakup frequency, and the fragmentation distribution function. Section 

3 describes the setup o f this flocculation model. The model is calibrated and verified by 

comparison with available data reported by Mietta et al. (2008) and Furukawa and Watkins
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(2012) for kaolinite suspension and colloidal montmorillonite, respectively. Results and 

discussions are included in Section 4, and concluding remarks are delivered in Section 5.

2. Model description and numerical methods

2.1 Population balance modeling and quadrature method o f moments

The length-based PBM describes the change o f number density for floes with size L. A 

PBM box model, which is simplified by eliminating the advection, diffusion, and settling 

terms (see Eq. 2.1 in Marchisio et al., 2003b), is selected as the first effort in this study. This 

simplification is also convenient for calibration and verification using published data from 

Mietta et al. (2008) and Furukawa and Watkins (2012). Inclusion o f these omitted terms will 

be restored in a future study. The simplified PBM model can be represented as

( I 3 -  A3)
dX

dn(L;t) _ L2 (•£ 
dt

P(L,X)a(L,X)n(X;t)dX  + a(X)-b(L\ X)-n{X\t)dX-a{L)-n{L\t)  (2.1)

where X is the integral variable with the same dimension o f floe size L, n(L; t) is the number

density function defined by floe size L at time /, fi(L,X) is the Euclidean collision frequency

function that describes the frequency o f two spheres with size L and X colliding to form a

particle with size (Z3+ /3)1/3, a(LJ) is the correction factor (also called collision efficiency)

that includes effects o f particle geometry, contact efficiency, and sticking probability, a(L) is a

breakup frequency function that denotes the frequency o f disruption for particles with size L,

and b(L\X) is a fragmentation distribution function that represents particles with size L

produced by the breakup o f a particle with size X. The first term on the right hand side o f Eq.
19



2.1 is the birth o f floes with size L due to aggregation o f smaller particles with size (Z,3-2 3) 1/3 

and X. The second term on the right hand side is the death o f floes with size L due to 

aggregation with other particles. The third term is the birth o f floes with size L due to 

fragmentation o f bigger particles X, and the last term is the death o f floes with size L due to 

breakup into smaller particles.

The moment transfer (Hulburt and Katz, 1964; McGraw and Saunders, 1984) is applied 

to Eq. 2.1 using the following definition:

mk = f  Lkn{L\t)dL (2.2)

in which m* is the Ath order moment. Notice that the size class L varies from zero to infinity 

in the transformation.

After applying the transformation to Eq.l with k = 0, 1,..., K, the PBM becomes a set o f 

moment equations (Eq. 2.3) that are essentially a system o f nonlinear integro-differential 

equations (Kariwala et al., 2012)

= "(*;O f  P f a *)■ « (A X) (l3 + X3)in ■ n{L;t)dUX

- f  Lkn(L ; t)£  (5(LX)a(L,X)n{X\t)dXdL

+ f  Lkf  a(X) ■ b{L I A) • n(X,t)dML -  f  Lka(L) ■ n(L;t)dL (2.3)

Eq. 2.3, however, cannot be solved, either numerically or analytically, because the 

integrations terms have not been expressed in term o f the moments yet. Fan et al. (2004) 

described this as the typical ‘‘closure problem” first identified by Hulburt and Katz (1964). 

To address this issue, McGraw (1997) proposed using Gaussian quadrature approximation to 

replace the integration terms
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where T = [L\, L2, ..., LN] is a vector with each component representing a node in the Gaussian 

quadrature approximation (Press et al., 1992), O = [oj, 0 )2 , ..., <%] is also a vector in which 

each component is the weight (also the characteristic number density) corresponding to L„ 

the superscript T stands for the transpose o f a vector, N  is the number o f  size classes, and k  = 

0, 1,2,  ..., K  is the order o f moment selected. The physical meanings o f the few low order 

moments are as follows: mo is the total number o f floes, and m \,m 2, and m3 are proportional 

to the total length, total area, and total volume o f floes, respectively. Although Eq. 2.4 is a 

definition equation to estimate initial m*, it also serves as an Eigen-equation to find the 

Gaussian quadrature nodes T and the corresponding Q, after the update o f  m*.

Note that mathematically, if K  < 2AM, the “approximately equal” sign in Eq. 2.4 

becomes exactly equal when L, are selected as the Gaussian quadrature points (John and 

Thein, 2012). This makes it possible to use the QMOM approach to track evolution o f 

moments with high accuracy. Using Eq. 2.4 to replace the integral by summation and 

choosing the nodes as Gaussian points, Marchisio et al. (2003a, 2003b, and 2003c) showed 

that Eq. 2.3 can be rewritten as

is the integral o f the fragmentation distribution function b(L\X). In addition, the number

(2.5)

where ) = Lk b(L \ X)dL (2.6)



density function, which is actually the number-based FSD, can be estimated by using the 

following relationship (McGraw, 1997)

« ( Z ; 0 * f > , ( / > 5 [ l - L , ( / ) ]  (2.7)
/= !

where <5 is the Dirac delta function which means at any time t, <5 is zero except at L = !,(/).

With this approximation, all the right hand terms in Eq. 2.5 can be calculated if a  (L,, LJ), 

/? (Lh Lj), a„ bj, Lj, and co, are specified. Thus, the new moments after each time step can be 

estimated from Eq. 2.5.

With the new moments found after each time step, it is time to update L, and <y, according 

to Eq. 2.4 using Wheeler’s algorithm (Wheeler, 1974). Some variants o f this algorithm are 

also called “long quotient-modified difference algorithm” (Sack and Donovan, 1972) or 

“Chebyshev algorithm” (Upadhyay, 2012). These variants introduced different intermediate 

quantities to slightly modify the original algorithm (John and Thein, 2012). Eq. 2.4 

mathematically illustrates the problem of finding the Gaussian quadrature points (i.e., T) 

when the moments of the unknown FSD function are known. This problem can be transferred 

to finding the roots o f an orthogonal polynomial given by “three recurrence relation”, and 

further transferred to finding the eigenvalues o f the Jacobi matrix (Press et al., 1992). Notice 

that the components in the Jacobi matrix are only related to the given moments. After T is 

solved, Eq. 2.4 becomes a linear system that can be solved for Q. This solution method is also 

suggested by Prat and Ducoste (2006, 2007). More details o f Wheeler’s algorithm are given 

in Appendix 2-A. After T and Q are updated, Eq. 2.5 will be used to find moments for the 

next time step. This process will then be repeated to proceed forward in time.

For an A-node (i.e., N  class sizes) QMOM approach, there are 2N  unknowns (N  nodes
22



and N  weights) and thus, Eq. 2.5 is a set of 2N  equations. In the Gaussian quadrature method,

o f the nodes at which the FSD curve is to be evaluated are not equally spaced, i.e., the 

distance between any two consecutive nodes are not fixed. This implies that the weight, Q, 

actually includes bin size information.

2.2 Improved adjustable QMOM

Although three or four size classes in the QMOM approach have been shown sufficient 

to track the lower order moments o f  FSD (Marchisio et al., 2003c; Prat and Ducoste, 2006), 

the FSD curve cannot be reasonably presented using only three or four size classes. 

Limitations o f previous studies resulted from numerical problems associated with tracking a 

larger number o f size groups (Upadhyay, 2012) due to the ill-condition o f Eq. 2.4. This 

ill-conditioned behavior was inherited as a consequence o f  using moments with large K  and a 

large difference between L\ and Ln, i.e., (Zi) 1 «  (Z^)K (Gautshi, 1968), and it may lead to 

negative weights and/or size that do not have physical meaning. Before this study the 

maximum number o f size classes was limited to four, which made it difficult to reconstruct 

the FSD accurately using conventional QMOM.

Reducing the difference between (Zi) 1 and (Z.v)*' is the key to relaxing the severity o f  the 

ill-condition. With this understanding, Su et al. (2007) added an adjustable factor, p, in 

QMOM and re-defined the adjustable moments as

in which p  is the adjustable factor, and p  -  1 denotes the standard QMOM. With floe size in

2 3

only a selected set o f nodes and weights are needed to find the integration, and the locations
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units o f pm, kip = 3 (for monitoring volume conservation directly) and p  > 1 (to reduce the 

magnitude o f moments) are required to model flocculation processes o f cohesive sediments. 

Applying Gaussian quadrature approximation,

mklp= [ L l,pn(L-,t)dL = f dCOlLiklp (k = 0 ,\ ,. . . ,2N -\)  (2.9)
;=1

Eq. 2.5 can be modified as

• (* /+ * /VI I  ,=| j=\

-  V ’l j )• p (l >’l j )■ mj + Y . a^ kp)(t)i -  Y . L- IPa‘a < (2 -10)
/= ! j= \  /=1 i= l

in which the integrated fragmentation distribution function should be rewritten as

bi(k'P) = ^ L k,pb(L\Z)dL  (2.11)

By defining U = L,Vp (Su et al., 2007) as the “virtual size” in Eqs. 2.9-2.11, this 

adjustable QMOM governing equation is transferred back to the standard QMOM governing 

equation (Eq. 2.5) but with a less ill-conditioned Eq. 2.4 when compared with the original 

QMOM. This makes the numerical algorithm more stable when solving for T  and Q.

The essence o f this improvement is to track fraction moments instead o f  integer moments. 

The advantage o f this approach is that it lowers the order o f moments while solving the same 

number o f equations. Using a three-node QMOM as an example, the standard QMOM 

approach tracks mo, m\, m2 , m3 , m4, and nis, with p  = 4/3, for instance, the adjusted QMOM 

approach tracks mo, W3/4 , W3/2, mm, m3 , and m 15/4 . For an eight-node QMOM with adjustable 

factor p  = 5, the moments mo, mus, /W2/5, ..., m3 are tracked. The severity o f the ill-condition is 

partially relaxed because (LN)K/p < (LN)K, and thus, the stability o f solving Eq. 2.4 is 

improved.
2 4
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To apply this method to finding FSD o f cohesive sediments, the determination o f the 

adjustable factor in Eqs. 2.9-2.11 is based on the ability to track seven or eight size classes. 

This is different from the method given by Su et al. (2007), which focuses on improving the 

accuracy and efficiency o f the tracked moments. Other important issues are as follows:

(1) The third order moment is necessarily tracked directly to check volume conservation. 

For example, for N =  8 , the maximum adjustable factor p max = 5 is suggested so that mo, m\, 

m2 , and m3 can be tracked and checked directly. Similarly, for N  = 7, the suggested maximum 

adjustable factor p  will be four so that mo, my, m2 and m3 can still be tracked and checked 

directly.

(2) It is necessary to check the ratio between the minimum and maximum weights (Yuan 

and Fox, 2011). The selection o f this ratio depends on specific applications. In this study, if 

min(fii/)/max(ft)i) < 1 0 ~16, the minimum of (o, will be changed to zero and the corresponding 

node will be excluded from the model, i.e., the number o f nodes will be decreased by one. 

The selection o f  this minimum ratio is based on the requirements o f maximum number of 

nodes N mSLX = 7 or 8 , but maintains a reasonable stability.

The adjusted QMOM can be solved successfully by following the above-mentioned rules. 

The selection o f initial number o f  nodes, however, depends only on the requirement to fit the 

initial FSD. Even if the initial number of nodes selected is less than NmiX, in the process o f 

solving for £2 and T the computation will still always start with jVmax nodes. If the resulting 

ratio, i.e., min(<w,)/max(&Q for / = 1 to Nmm, is less than 10-16, the corresponding node will be 

eliminated. But in the next time step, the computation again starts with Nmax nodes. With time, 

the number o f nodes will increase and reach Nmax.
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The main limitation for finding the solution is controlled by the precision o f computation, 

rather than the computing power o f CPUs. As such, at least double precision is needed, which 

is the level o f precision supported by the PGI Fortran Complier. With a quad-precision 

complier, more nodes (i.e., size classes) would be possible. However, with the current code 

that supports double precision, eight nodes are possible.

2.3 Flocculation dynamics

Before a quantitative modeling o f Eq. 2.10 is feasible, four parameters (i.e., Euclidean 

collision frequency function /?, correction factor a, breakup frequency function a, and 

fragmentation distribution function b) should be determined. In order to provide a complete 

description, the following paragraphs present a summary o f these parameters from previous 

studies.

Euclidean collision frequency B

The Euclidean formulation o f collision frequency for Brownian motion, differential 

settling and fluid shear for two-body collision can be written as (Smoluchowski, 1917; Camp 

and Stein, 1943; Han and Lawler, 1992; Thomas et al., 1999; Winterwerp, 1998; Maggi, 2005; 

etc.):

Brownian motion p BM(L„L,) (2.12)
3 p  L,Lj

Differential settling f3DS(Li, L j) = — (Li + L j) 2 \ws l - w s ,1 (2.13)
J  ^  J  J  » ’ 7 1
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Fluid shear 0™ (Li,L J) = - ( L i + I ; ) 3 (2.14)

where KB is the Boltzmann constant, T  is the absolute temperature, p  is the dynamic viscosity 

o f the fluid, ws is the settling velocity, and G is the shear rate. Although Brownian motion is 

generally accepted as not important for simulating flocculation in estuarine flows, it is 

included because o f the need to simulate a case study for model verification. Notice that the 

particle collision due to differential settling is sensitive to different formulations o f settling 

velocity, up to two orders o f magnitudes. Since differential settling is not dominant in either 

test case in this study, this effect is excluded in the model. The formulation o f this effect can 

be further improved if better information regarding settling velocity becomes available.

Correction factor a for Euclidean collision frequency

Particle aggregation is a process involving approach, contact and sticking. Failure in any 

part o f this process will lead to failure in aggregation. The Euclidean collision frequency, /?, 

(i.e., Eqs. 2.12-2.14) only represents part o f this process. For example, the shear-induced 

Euclidean collision frequency (Eq. 2.14) o f two spherical particles L, and Lj is defined as the 

possibility that the center o f one particle (either Z,, or Lj) will go through a control volume 

(with diameter L, + Lj) due to the effect o f ambient shear, when no other force is acting on 

these two particles to change their trajectory. The correction factor a specified in this study 

includes all o f the remaining processes: geometry correction o f collision frequency /?o, 

contact efficiency Eq and sticking probability ao, i.e.,

a  = p 0 -E0 -a 0 (2.15)

In this study, /?o accounts for geometry corrections for the spherical particle assumption
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specified for Euclidean collision frequency function /? (i.e., Eqs. 2.12-2.14). The term 

"geometry correction” refers here to shape or fractal corrections that account for the 

non-spherical aspect o f natural floes. Non-spherical properties such as surface asperities 

affect particle aggregation, as pointed out by Tang et al. (2014), who modeled particles as 

spheropolygons. From a pure geometric point o f view, even particle trajectories that are 

predicted to cause collisions may be changed due to deviations from pure straight-line motion. 

Even for a perfect spherical particle, the Karman vortex in the wake is not symmetric, and 

this causes an oscillatory lift force that leads to oscillatory lateral motion o f a falling particle, 

although this lateral motion is small and usually neglected for spherical particles. For 

irregular-shape floes, however, this lateral motion can be severe and lead to trajectories that 

deviate much more from a straight line than the trajectories o f a spherical particle. Since an 

originally thin trajectory will become a much thicker trajectory because o f this oscillatory 

motion, the chance o f collision might increase. This process should be included in the 

parameter fio that accounts for the change o f trajectory o f approaching particles and lead to 

the change o f collision frequency. The parameter Eo accounts for unsuccessful contact 

because o f short-range forces (i.e., Van der Waals force and electrostatic repulsion force) and 

the lubrication force. Note that the “lubrication force”, which is a name given by Kim and 

Karrila (1991), is a drag force caused by the squeezing-out o f fluid when two particles are 

close. This name, however, might be misleading because it is caused by the displacement o f 

fluid from a fast approaching solid particle. For this reason, we would like to replace this 

name with “displacement force”. The parameter ao is a coefficient to account for the 

probability o f  successful sticking (after successful contact) including complex bio-adhesion 

such as caused by EPS.
2 8



Previous studies (e.g., Mietta et a!., 2008,2011; Vemey et al., 2011) often referred to a as 

a “collision efficiency” that includes part o f the effects o f  /? o , Eq ,  and/or a o , and claimed other 

effects in a constant. Due to a lack o f consistency in the definition o f this factor, biased 

results may occur when comparing different a values. To check this PBM model without 

scrutinizing the exact values o f /?0, Eq,  and a 0 at this time, a  (L„ Lj) is treated as a fitting 

constant, i.e., a{Li,Lj)= Cj.

Note that from their physical meaning, a should be a number limited to a maximum o f 

one if the fio term is excluded (i.e., o q < \ , E q < \ ,  and oq-E q  < 1). /?o  could be larger than one 

because o f different fractal properties o f floes (Lee et al., 2000), since collision frequency can 

be severely underestimated when using spheres to represent fractal floes. Considering two 

pairs o f floe with different fractal dimensions under the same fluid shear, /?0 in one pair could 

be much larger than that o f  the other pair. For example, the collision frequency for two floes 

with fractal dimension 1.5 could be 774 times higher than that for two Euclidean floes (with 

fractal dimension = 3.0) (Jiang and Logan, 1991). It is understood that ao and E q  should also 

be influenced by the fractal structure o f floes. Nevertheless, the relationships between ao and 

E q  and fractal dimension are not clear at this time. Thus, even assuming ao and E q  are reduced 

because o f the fractal structure o f floes, a might not be necessarily smaller than one because 

the term /?o  is included.

Breakup frequency

The breakup frequency (also known as “breakup/disaggregation kernel”) accounts for the 

effect o f eddies present in the system with sufficient kinetic energy to break floes (Marchisio
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et al., 2003c). Fluid shear and collision between particles are the two primary reasons for floe 

breakage. The relative importance o f  these two causes is debatable. Since a floe is free to 

rotate according to surface forces, shear breakup has been suggested to be a minor process 

compared to inter-particle collision (Lick and Lick, 1988). Others (e.g., Winterwerp, 1998; 

Winterwerp and van Kesteren, 2004; Son, 2009), however, have argued that the effect o f 

turbulent shear is more important for breaking floes, since the effect o f inter-particle collision 

would be small for floes with a small excess density. McAnally (2000) pointed out that 

breakup due to flow shear may be small at a location far from the bottom boundary for open 

channel flows, while in the near-bed zone shear breaking may be the dominant process 

because o f significantly greater velocity gradients.

Winterwerp's breakup frequency function (Eq. 2.16) is employed in this study 

(Winterwerp, 1998, 1999, 2002; Mietta et al., 2008, 2011; Maggi, 2007; Maggi et al., 2007; 

Xu et al., 2008; Son and Hsu, 2008,201 la, 201 lb; Son, 2009; Lee et al., 2011)

a(L,) = C 2

(  \ 1/2

GV 2 -Lr { ^ ~  l)3-n/ (2.16)
h

Where Ci is a breakup fitting parameter, lp is the size o f primary particle, n f  is the fractal 

dimension o f the floes, // is the dynamic viscosity o f fluid, and Fy is the yield strength o f 

aggregates as determined empirically. A constant Fy = 1.0 x 10~ 10 N was used by Winterwerp 

(2002), Maggi et al. (2007), and Verney et al. (2011). Nevertheless, Fy may not be a constant, 

e.g., a range from 1.1 x 1 0 - 9  N to 4.4 * 10- 8  N is possible (Kranenburg, 1999). Son (2009) 

derived a conceptual expression o f variable floe yield strength that depends on floe size and 

fractal dimension. However, undetermined constants are still included in his formulation. In

this study, F v~ 1 0 x 10 10 N is employed for simplification.
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Fragmentation distribution function

The fragment distribution function (also known as “breakage/daughter distribution 

function”) describes the size distribution o f daughter floes after breakup. Knowledge o f this 

function is incomplete and mainly based on conceptual assumptions (Maggi, 2005). The most 

commonly used functional forms are either discrete format (e.g., binary breakup with mass 

ratio 1:1 or 1:4, or ternary breakup with mass ratio 1:1:2) or continuous format (e.g., binomial 

distribution, Gaussian distribution, or log-normal distribution) (e.g., Marchisio et al., 2003b; 

Maggi, 2005; Prat and Ducoste, 2006; Mietta et al., 2008). In this study, the simplest 

assumption, i.e., binary breakup with mass ratio 1 :1 , is adopted.

and the integrated adjustable daughter distribution function can be written as (Su et al., 2007)

3. Case studies

The FSD can be presented based on number, volume, or mass. The number-based FSD 

shows a high peak towards the smaller floes while mass- and volume-based FSDs show peaks 

towards the larger floes (Mietta, 2010). This is because many particles are needed to 

represent even a small mass for the small floes, while a few large floes may hold most o f the 

mass. The accuracy o f transferring a number-based FSD to a mass or volume-based FSD is 

based on the accuracy o f floe density, which is a function o f solid and fluid density, floe size, 

primary particle size, and fractal dimension. Although the fractal dimension can be treated

0 otherwise
(2.17)

£ {k'p) _ 2 L klp (2.18)
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either as a constant using an average value (e.g., Winterwerp, 1998; Mietta et al., 2011) or 

estimated as a function o f floe size (e.g., Khelifa and Hill, 2006; Maggi, 2005, 2007, 2008), it 

is sensitive to the transferring between number-based FSDs and volume-based FSDs.

In this study, the FSD mentioned is the number-based FSD, which is estimated from T 

and Q. Since at least seven or eight size classes are tracked (i.e., Nmax -  7 or 8 ), their median 

size D 50  (defined as the size where half o f the population resides above this value) can be 

reasonably estimated, as well as many other representative sizes defined as follows:

in which i and j  are positive integers. Mugele and Evans (1951) and Sowa (1992) provided a 

thorough explanation o f these mean diameters. Here, only a few commonly used sizes (i.e., 

diameters) are explained:

d\o\ arithmetic or number mean diameter, which is most important where the number of 

particles is o f interest, e.g., in particle counting applications.

<732: Sauter mean diameter (i.e., area-weighted diameter), which is critical for applications 

that focus on surface area, e.g., pollutant transport and fuel combustion. The LISST-25 (Laser 

In-Situ Scattering and Transmissometry) instrument developed by Sequoia Scientific Inc., 

measures this diameter (Agrawal and Mikkelsen, 2009; Filippa et al., 2011,2012).

z/43: De Broukere mean diameter (i.e., volume-weighted diameter), which is the primary 

value calculated by laser diffraction (Rawle, 2003). Another optical instrument from Sequoia 

Scientific Inc., LISST-100X, provides this diameter (Y.C. Agrawal, personal communication, 

May 23, 2014).

^ L Jn(L;t)dL
(2.19)
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d(,0: hydrodynamic mean diameter, defined as “the size o f a hypothetical hard sphere that 

diffuses in the same fashion as that o f the particle being measured.” This definition is given 

by the manufacturer o f the “Dynamic Light Scattering Spectroscopy (DLS)” instrument used 

in the study reported by Furukawa and Watkins (2012). In short, it is the diameter o f a sphere 

that has the same translational diffusion coefficient as the measured floes.

The model results are compared with two published data sets in the following case 

studies. One study provides steady state FSD and D 50, and the other provides dm.

3.1. Case 1: Mietta et al. (2008) carried out a numerical study to simulate the flocculation

due to turbulence shear in a laboratory settling column with suspended kaolinite. Details o f

the laboratory experiment can be found in Maggi et al. (2002). Mietta et al. (2008) focused on

the sensitivity o f using different fragmentation distribution functions in their model study.

The settling column in the experiment was about 5 m high with inside diameter o f 0.28 m.

Kaolinite with density ps ~ 2650 kg/m3 and primary particle median size lp ~  6  pm was the

selected sediment. Floes were allowed to settle down the column with a sufficiently long

residence time. Four homogeneous turbulence fields were generated in the entire column to

examine the effect o f shear rate by using an oscillating grid system that operated at four

different frequencies. The suspended sediment concentration was maintained constant in the

buffer tank mounted on top o f  the settling column. Sediments (floes) were released into the

column that connected to the buffer tank on top. Floe size was observed by a camera system

with laser light source, image resolution was 6.42 pm/pixel, and the observation window was

6  mm x 6  mm. The floe size was computed based on 2D projection. Since the falling
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sediment experienced a constant shear rate for a sufficiently long time during the falling 

course (4 m), it was assumed that steady state flocculation was reached when the sediment 

reached the observation location (about 0.5 m above the bottom of the column). Assuming 

equilibrium state (i.e., the downward flux o f sediment above and below the observation 

section are the same), the observed floe size information may be simulated by using the 

developed box model that has no net flux o f  sediment in any direction.

To set up the flocculation model, shear-induced collision frequency (Eq. 2.14), constant 

correction factor, Winterwerp's breakup frequency formulation (Eq. 2.16), and binary 

fragmentation with mass ratio 1:1 (Eq. 2.17) are adopted. The fractal dimension is assumed to 

follow the power law o f floe size as:

= P-20)
1P

where nfp is the fractal dimension o f the primary particles, and di  represents the distance from 

monofractal growth dynamics (Mietta et al., 2008). Here = 3.0 and di = -  0.1 are used as 

suggested by Maggi (2005, 2007, 2008). The experiment is carried out with one suspended 

sediment concentration, c = 0.5 g/L and four shear rates, G = 5, 10, 20, 40 s-1. It is assumed 

that all particles initially have the same size equal to the median primary particle size, lp. The 

initial particle number No can be estimated as

N 0 * — C— r  (2.21)
p  -I nfpr  s p

The two-dimensional Downhill Simplex Method (Press et al., 1992; Maggi, 2005; Maggi et 

al., 2007) is used to minimize the difference between model predicted and experimental FSDs
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for G = 10 and 40 s-1 with the objective to find the best fitted C\ and C2 as a calibration 

process. The time step At is taken as MG. Calibration results are C, = 0.906 and C2= 1.479 x 

10~4, which are comparable with those used by Mietta et al. (2008): C\ = 0.85 and C2= 2.4 x 

10-4. The other two shear rates, G = 5 and 20 sH, were used to verify the model results.

3.2. Case 2: Furukawa and Watkins (2012) carried out a laboratory experiment to explore the 

effects o f organic matter (OM) on the flocculation o f colloidal montmorillonite. Test cases 

included using pure montmorillonite and montmorillonite with three types o f OM, i.e., humic 

acid, chitin, and xanthan gum, for different salinities s = 1.8,3.6, 7.2 ppt, respectively. Humic 

acid is abundant in many rivers, coastal, and estuary waters. Chitin is a type o f  EPS that can 

be found in Crustacean shells, and xanthan gum is an anionic polysaccharide used as a proxy 

for microbial EPS. The montmorillonite was soaked in distilled water, stirred and settled for 

7.5 h in a typical 1000 mL cylinder. Mixtures from the top 2.5 cm were collected repeatedly 

as pure montmorillonite. These selected OMs were dissolved in pure water separately to yield 

a stock suspension and stored cold. The test suspensions were obtained by combining the 

pure montmorillonite mixture, an OM suspension, and artificial seawater to yield typical 

values that represent selected natural environments. Floe size in a small container (20 mL) 

agitated by a magnetic stirrer was analyzed by using a DLS that measured the hydrodynamic 

mean diameter d̂ o- Furukawa and Watkins (2012) reported that G = 40 s_l was the typical 

shear rate produced by small magnetic stir bars in the container. The flocculation mechanisms 

included a linear superposition o f Brownian motion and fluid shear (i.e., Eq. 2.12 + Eq. 2.14) 

for Euclidean collision frequency, constant correction factor, Winterwerp's breakup frequency
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formulation (Eq. 2.16), and binary fragmentation distribution function (Eq. 2.17). Furukawa 

and Watkins (2012) assumed an empirically constant fractal dimension n f=  2.05, a primary 

particle size o f 0.2 pm, and an equivalent particle number o f 9 x 1014 (/m3) as the initial 

conditions. These values are also used in this simulation.

4. Results and discussions

4.1. Case 1: Comparison with Mietta et al. (2008)'s simulation results

Using eight-node QMOM with adjustable factor p  = 5 for G = 5 s_1, and seven-node

QMOM with p  = 4 for G = 10, 20, 40 s_I, the predictions o f FSDs match quite well with

experimental results o f G = 5 and 20 s-1  at steady states (Fig.2.1). Note that the cases o f the

other two shear rates G = 10,40 s-1 are used for calibration purposes, and their FSDs are also

given in Fig. 2.1 to demonstrate the level o f detail this study can provide. Since the predicted

FSD represents solutions o f T and Q, the values for each size class (i.e., L ,) are not

necessarily the same as those given in Mietta et al. (2008). The model results are linearly

interpolated according to the experimental size groups and normalized to satisfy the

requirement that summation o f the number frequency at experimental size groups equal unity.

The predicted FSDs appear to slightly underestimate the fraction o f large particles (Fig.

2.1). A possible reason is that the number o f large floes is dramatically low and appeared only

occasionally compared to the number o f small floes or primary particles, so that a slight bias

away from large particles is present in the number-based distribution. Another possible reason

is that the constant correction factor a assumption and/or Winterwerp's breakup frequency

and/or binary breakup assumption are not sufficient to present the essential properties o f
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kaolinite flocculation. Improvements might be made by changing these parameters in the 

model and tracking more characteristic size groups to find a better fitting curve. Nevertheless, 

it is not recommended to do so at this time until a clearer understanding o f  these processes is 

achieved.

The predicted median size (D50) is slightly larger than that from the published data for 

small shear rates, but the predicted D 5 0  is smaller than the experimental results for G = 40 s-1 

(Fig. 2.2). This trend may be a result o f using calibration constants obtained from G =10 s_1 

and 40 s~’. Also, this trend might suggest that the modeled aggregation process is stronger 

than it should be at small shear rate. Note that the experimental median size is calculated 

using the experimental FSD because Mietta et al. (2008) did not include this parameter.

In contrast to other PBM-QMOM models, the time variation o f FSDs can be given in 

this simulation (Fig.2.3) for various shear rates. Note that the FSDs are normalized to ensure 

that the summation o f the number frequency (i.e., the normalized number density) for all the 

tracking nodes is unity. Although all particles are initially assumed as primary particle with a 

median size lp, size groups smaller than lp can be expected during flocculation. Physically this 

is possible because there can be a few particles smaller than the median primary particle size. 

Mathematically, the integral domain is from 0 to infinity, so that any positive value is 

possible. In other words, unless the integral domain is specified between lp and infinity rather 

than between 0  and infinity, the inclusion o f floe with size smaller than lp cannot be excluded. 

The alteration o f  integral domain will change the standard Gaussian quadrature 

approximation to “Gauss-Radau quadrature approximation” (Press et al., 1992). This change, 

however, may lead to a worse ill-conditioned Eq. 2.4, and thus, is not used in this study. The
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duration to approach steady state flocculation decreases as shear rate increases (Fig. 2.3). A 

bimodal FSD may appear during the process before reaching steady state. For example, these 

can be seen at t = 6  h for G = 5 s~', t = 3 h for G = 10 s_1, / = 80 min for G = 20 s_1, and t = 30 

min for G = 40 sH. Further verification o f this phenomenon, however, is pending on 

additional experiments.

Several features produced from this study, with suspended sediment kaolinite 

concentration o f 0.5 g/L and shear rate G = 10 s_1 are presented as examples. Moments o f 

FSD are key parameters tracked in this study, as well as other standard QMOM approaches. 

Since the number o f nodes is seven (N=  7) with an adjustable factor p  = 4, only m0, m\, m2, 

and m3 (among the 14 moments) are used directly (see solid lines in Fig. 2.4), while moments 

higher than the third order are evaluated using Eq. 2.4 (see dashed lines in Fig. 2.4). The total 

sediment mass should be conserved so that the third moment m3 is always the same. On the 

other hand, the number o f particles (i.e., m0), the length o f all floes (i.e., m{), and the area of 

all floes (i.e., m2) are all decreasing with time because o f flocculation. They reach 

equilibrium (i.e., when aggregation and breakage intensity are the same) after a few hours. 

In contrast, the higher order moments (e.g., m4 to md) are all increasing with time, though 

these too reach steady state after a few hours.

The model simulated time variation o f the characteristic size (Fig. 2.5) shows that all o f 

the mean sizes increase dramatically in the first 2-3 hr during which the aggregation process 

is dominant. With floe size increasing, breakage becomes gradually more competitive and 

finally reaches steady state after 5-6  hr. The volume-weighted characteristic mean size d43 

shows a larger value than the area-weighted characteristic mean size di2- This study also
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predicts the median size D 50, which shows a much slower rate o f increase over the first two 

hours because most o f the particles are still primary particles with size lp or small floes. 

After there are a sufficient number o f large floes, the pace starts to increase quickly and 

finally reaches steady state. Because the peak o f the FSD changes somewhat frequently (not 

shown) for this case, the calculated D 50 shows small ripples near the end. Further study is 

necessary to find the reason for the frequent change o f the peak node.

Both the number o f death particles (the first and the third term on the right hand side of 

Eq. 2.5) and birth particles (the second and last term on the right hand side o f Eq. 2.5) 

diminish over time with a decreasing rate, and finally reach an equilibrium status (Fig. 2.6a). 

At the beginning, the death particle number is twice that o f the birth particle number, but 

these numbers gradually converge. The higher amount o f death particles during the first few 

hours may be due to more small particles aggregating into large particles (because there are 

more small particles during that period o f time). Nevertheless, the volume o f death particles 

should equal the volume o f birth particles at any time to maintain the same total sediment 

volume (Fig. 2.6b). It is interesting to notice that the peak response rate occurs around 1.2 hr, 

which is the most dramatic time for particle volume exchange.

With a decreasing rate, the aggregation effect (the first two terms on the right hand side 

o f Eq. 2.5) shows that the process to form large floes is dominant but the net rate decreases 

with time and approaches a steady state after about 5 hr. The breakage effect (the last two 

terms on the right hand side o f Eq. 2.5) shows that within a short period o f time ( ~ 0.2 hr) the 

birth o f  floes caused by breakage is significant. Mathematically this is possible because there 

is no restriction to prevent the given primary particles to further break into small particles,
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and there are plenty o f primary particles during that period. After 0.2 hr, however, the number 

o f primary particles is reduced and the breakage o f large floes (produced by the aggregation 

process) may produce floes that are not necessarily small. Thus, the change o f floe numbers 

decreases again, and also finally reaches a steady state (Fig. 2.7). This demonstrates that the 

aggregation effect is dominant at the beginning because o f  a shortage o f large floes, and over 

time breakage becomes competitive when a sufficient number o f large and fragile floes exist 

in the system.

A time step of A/ =\/G  and 288,000 time steps were used along with G = 5, 10, 20, and 

40 s_1 and process times o f 16, 8 , 4, and 2 hr, respectively, to let the modeled FSD reach 

steady state. The computing CPU times were around 31 s, 27 s, 27 s, and 27 s, respectively, 

based on a Lenovo T530 laptop with Intel i7 CPU, 2.90GHz, and 4GB memory. The 

computation time was mainly dependent on the number o f total time steps, and only changed 

slightly when the maximum number o f quadrature nodes was different. Notice that although 

the selection o f At followed the suggestion o f Mietta et al. (2008), the steady state FSD 

solution in this study was not sensitive to the time step At. This is in contrast to the results o f 

Mietta et al. (2008). For example, when At = 0.1 s, 0.2s, 1 s, and 10 s were used for G = 10 s_I 

in this study, the FSD results were practically the same. Steady state median sizes were 19.50 

pm, 19.52 pm, 19.44 pm, and 19.46 pm, respectively, compared to the experimental result o f 

18.20 pm.

4.2 Comparison with Furukawa and Watkins (2012)'s experiments for colloidal 

montmorillonite
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In this study, the evolutions o f the hydrodynamic mean size, d&a, for pure 

montmorillonite mixture, and montmorillonite with humic acid, chitin, and xanthan gum, for 

salinities 7.2, 3.6, and 1.8 ppt, are simulated with an average shear rate G = 40 sH. 

Aggregation and breakage fitting parameters C\ and C2 are given in Table 2.1. Other 

constants are specified as described in Sec. 3.2. The simulated results are obtained with 

eight-node QMOM and adjustable factor p  -  1. This case is unique because the primary 

particle size is less than 1 pm, so that the difference between ( I 1 )1 and (Ln)k  is not very large. 

For this reason, the standard QMOM (i.e., p  = 1) is applicable to this case. C\ and C2  for 

different conditions are given by minimizing the difference between modeled d60 and 

measured d60. Experimental results o f Furukawa and Watkins (2012) show that the effect o f 

OM on flocculation o f  montmorillonite varies with different types o f OM. For instance, 

xanthan gum prompts aggregation while humic acid and chitin reduce flocculation o f  

colloidal montmorillonite (Fig. 2.8c). In addition, for the same suspension, higher salinity 

yields stronger aggregation and larger mean size (Fig. 2.8a and Fig. 2.8b).

In the breakup frequency function used by Furukawa and Watkins (2012), the term 

(p!Fy)m  (see Eq. 2.16) was merged in C2 . In this study, however, yield strength Fy = 1.0 * 

10~10 N and dynamic viscosity p -  1.0 x 10-3 kg/(m-s) are assumed to be constants, and 

therefore (p/Fy) U 2 term was excluded in the breakage coefficient C2. By using this approach, 

the breakage coefficients C2 in this study and C2/(iu/F>,)1/2 in Furukawa and Watkin's study are 

on the same order o f magnitude. The range o f C 1 used in this study (0.92 to 13.5) is very 

different than that employed by Furukawa and Watkins (0.306 to 1). The primary reason for 

this discrepancy is that there is no restriction of a in this study, but Furukawa and Watkins
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(2012) limited a  to a maximum of one. It is understood that the correction factor a can be 

larger than one depending on fractal dimension, since a not only reflects unsuccessful contact 

and unsuccessful sticking, but also accounts for a correction o f floe geometry for the 

Euclidean collision frequency as well as impacts o f organic matters. Following this argument, 

the selected C\ and C2 values with this model show a better agreement than the modeling 

results o f Furukawa and Watkins (2012), especially for the case o f montmorillonite with 

xanthan gum.

Since this modeling effort predicts the time evolution o f FSDs, the time required to 

approach an equilibrium state can be identified by the change o f <76o (Fig. 2.8) as well as from 

the change o f FSDs (Fig. 2.9). It appears that pure montmorillonite with salinity 1.8 ppt 

approaches equilibrium in 2 hr, but this is not the case for pure montmorillonite with salinity

7.2 ppt. In addition, for this case study the evolution o f the median size as well as the peak 

size show a smooth curve without any ripples, unlike the results for kaolinite (Fig. 2.5).

With time step A/ = 1 s and simulating 2 hr in real process time (i.e., a total o f 7,200 time 

steps) for all conditions, the computing CPU time was around 3 s based on the same Lenovo 

T530 laptop. This was expected since the only difference among cases was the selection of 

different constants C\ and C2.

The C2 value is usually on the order o f 10-4 (e.g., Maggi et al., 2007; Lee et al., 2011) if 

Eq. 2.16 is selected as the breakup frequency function, while C\ can vary in a wide range 

according to different environmental conditions such as salinity, ^-potential, organic matters, 

and sediment compositions. An increase o f C\ and C2 will result in an increase and decrease 

o f floe size, respectively. Generally, the ratio o f C1/C2 is positively correlated with salinity
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and negatively correlated with the absolute values o f ^-potential (Mietta et al., 2011). 

However, these effects might not be pronounced for different sediment compositions and with 

different organic matters (Furukawa and Watkin, 2012).

S. Conclusions

This study presents a numerical model that effectively simulates the time variation o f 

Floe Size Distribution (FSD) o f cohesive sediments using the box formulation o f the 

Population Balance Equation (PBE). A modified Quadrature Method O f Moment (QMOM) is 

employed to track the FSD using seven or eight floe sizes and their number density. The 

following are the specific conclusions:

1. This is the first time the flocculation processes o f  cohesive sediments were simulated 

using QMOM to solve the PBE and to find the FSDs directly instead o f only monitoring 

their moments.

2. Benefits o f this modified method include low computational demands, similar to 

standard QMOM, and alleviation o f the ill-condition, which allows this approach to use 

up to eight quadrature nodes for finding the FSD directly.

3. While using this model to mimic the experimental results carried out by Maggi et al. 

(2002) for kaolinite suspension, the selected constants (Ci = 0.906 and Ci = 1.479 * 

lO^4) in aggregation and breakage processes were similar to those given by Mietta et al. 

(2008). This ability o f the model to reproduce the results o f Mietta et al. (2008) 

increases our confidence in the accuracy o f the model.
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4. While simulating the experimental results given by Furukawa and Watkins (2012) for 

colloidal montmorillonite, the first constant, C\, required a relative large range (from 

0.92 to 9.0) in order to match the observations well. The possibility o f a large C\ 

indicates that effects o f organic matter and floe geometry on aggregation may be 

important.

5. A selection o f NmiX = 7 or 8 for Gaussian Quadrature nodes is possibly the maximum, 

and this coincides with the following conditions to select the adjustable factorp:k/p  = 3 

for checking volume conservation directly and p  > 1 to relax the ill-condition caused by 

( I 0 1 «  (Lh)K in Eq. 2.4.

6. The computation efficiency is excellent for this kind o f model. For example, only 

approximately 30 s is required to simulate a process that occurred over 16 hr, with time 

step At = 0.2 s, total time steps = 288,000, eight quadrature nodes, and adjustable factor 

p  = 5. The computing cost is mainly dependent on the total number o f time steps.

7. Further extension o f  this model into one-, two-, and three dimensions and linking this 

with a hydrodynamic model are follow-up research objectives. Meanwhile, more 

studies on the determination o f flocculation parameters, especially the corrector factor a, 

the breakup frequency function a, and the fragmentation distribution function b, are 

required to include various other chemical and biological effects.
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Appendix 2-A: Wheeler's Algorithm

This algorithm is for solving the quadrature nodes T, i.e., I ,  (/ = 1, 2, ..., N) and their 

weights Q, i.e., cu, (/ = 1, 2, ..., N) from the 2 N moments mt (k = 0, 1, ..., 2jV—1) using Eq. 

2.4.

The essence o f this algorithm is to find the unknown Gaussian quadrature nodes and the 

corresponding unknown weights. Press et al. (1992) showed that there exists a set o f unique 

orthogonal polynomials Pj (L) that satisfy the recurrence relation

where the roots o f the polynomial P n (L)  are equivalent to the nodes o f the JV-node Gaussian 

quadrature (Gautschi, 2004; Thein, 2011). Here, the symbol < > denotes the scalar inner 

product o f two functions^!) and g(L) over an unknown weight function n(L):

In this application, the unknown weight function, n(L), will be the FSD (Thein, 2011). 

Re-organize Eq. A2.1 as that shown in Press et al. (1992)

P , ( I )  = 0 , P0 (L) = \ ,

PJ(L) = ( L - A J)PJ_i( L ) - B JPJ_2 (L) 0  = 1,2, . ..,N ) (A2.1)

with coefficients

(A2.2)

(A2.3)

(A2.4)

and rewrite it in a matrix form, Eq. A2.5 becomes
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'  W )  ‘

W )

p2 (L)
—

Pn-2 (L)

Pn-AL).

A  i
B2 A2

b 3 a 3

b n - i Av-i
B n  A n

'  P0 (L) ' ‘o’

m 0

•
P2 (L)

+ Pn (L)
0

Pn^ L ) 0

Pn-AL). _1

(A2.6)

Let

T  =

A  i 
b 2 a 2

B2 A2

B n -  i A n - \  ' 
B n  A n

P(.L) = [PjL) P,(L) P2(L) ••• Pv_,(I)]r 

e n -\ =  [0 0 0 -  0 if  

then Eq. A2.6 can be rewritten as

L ■ P(L) = T -P (L ) + PN{L)-eN_x (A2.7)

When Lj (with j  = 1 to N) are the roots o f P n(L), it leads to P n(Lj) = 0, and thus, Eq. A2.7 

becomes an Eigen-equation, i.e.,

( L , I - T ) - P ( L I) = 0 (A2.8)

where I  is a unit (or identity) matrix, (L j l - T )  must be a singular matrix to have non-trivial 

solutions, and Lj is the eigenvalue o f matrix T. For greater efficiency in finding Lp it is better 

to apply a diagonal similarity transformation to matrix T  and change it to a symmetrical 

matrix /  that has the same eigenvalues o f matrix T, as suggested by Press et al. (1992) and 

John and Thein (2012).

Left multiplied by matrix D, Eq. A2.8 becomes LjDP = D TP = (DTD'])(DP). By further
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writing J  = DTD ' and Q = DP, Eq. A2.8 is transferred to Eq. A2.9 which shows Lj are the 

eigenvalues o f  both matrices T  and J :

(Lf I - J ) Q  = 0 (A2.9)

where

Z>
i / V ^

i/ a/ b T7^

l /  a/B j ■ B, • • ■ Bv

and the real, symmetric, tri-diagonal Jacobi matrix J  o f order N  is represented as 

A,

4̂ 3 A3 -Jb̂
(A2.10)

Bn

■JBn a n

The elements in this Jacobi matrix are given by Eqs. A2 and A3. Therefore, finding the 

Gaussian quadrature nodes is transferred to solving an eigenvalue problem of Eq. A2.9 in 

which all the coefficients Aj (j = 1 ,2 , ..., N) and Bj(j = 2, 3, ..., N) are only related to the 

various moments o f FSD (McGraw, 1997) and can be estimated sequentially. In this study, all 

the eigenvalues o f matrix J  were solved using the implicit QL method, a subroutine available 

in EISPACK (http://www.netlib.org/eispack/).

However, using Eqs. A2.2 and A2.3 directly to find Aj and B} is tedious and impractical 

for high orders (i.e., large N). For this reason, a much simpler and straight-forward approach, 

Wheeler’s algorithm, is recommended by John and Thein (2012) for using the computed 

moments to construct the Jacobi matrix. A detailed proof o f Wheeler’s algorithm can be
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found in Thein (2011). Here, only the procedures that are used to build the Jacobi matrix are 

summarized (John and Thein, 2012):

First the intermediate quantities Su  are initialized by

S_hj = 0, S0j = ntj / m0 where j  = 0 , 1 , . . 2AT-1 (A2.11)

Then the following relationships

^ = s , „ - s , _ u (A2.12)

Pi = _cri ’ Sl l+[ + Sl l+2 — S ,_j ,+1 (A2.13)

SMJ = p - ' i - a A j + S u *  (A2.14)

are used recursively to find a; (with / = 0 to N - 1), p, (with i = 0 to N -2) and Si+\j (with i = 0 

to N -2  and j  = i+2 to 2N -2-i). Finally, these intermediate terms are used to construct the 

Jacobi matrix.

4 +l= a, (/ = 0, 1 ,..., N ~l) (A2.15)

( /=  1 ,..., N - l)  (A2.16)

For example, i fN = 2 ,  following Eqs. A l 1-A16, the elements in the Jacobi matrix can be

written as

Ax = m J  m0 (A2.17)

(A21g)

B = m2 n, o m, (A2 19)

Once the Jacobi matrix is obtained, the determination o f  T and Q is accomplished by 

finding its eigenvalues and eigenvectors: T are the eigenvalues o f J, and O. can be found as 

(Press et al., 1992; McGraw, 1997; Marchisio et al., 2003a, 2003b, 2003c)
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a),=m 0 -vn1 ( i= l ,2 , . . . ,N )  (A2.20)

where v,t is the first component o f the z'th normalized eigenvector o f J  Note that v, = (v,i, 

va, • ■ ■, vin) is the eigenvector corresponding to the eigenvalue Lj and normalized to v • v = 1.
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Notation

a breakup frequency function 

b fragmentation distribution function

b Mi moment o f fragmentation distribution function

c sediment mass concentration

Ci aggregation fitting parameter

Ci breakage fitting parameter

d\o arithmetic mean size

dyi Sauter mean size

dv, De Broukere mean size

<&() hydrodynamic mean size

Dso median size

Eo contacting efficiency

Fy yield strength

G shear rate

J  Jacobi matrix

Kb Boltzmann constant

lp median size o f primary particle

L particle size

L, characteristic size class; Gaussian quadrature points 

mi Ath order moment o f the FSD 

n number density function

si



« / fractal dimension o f floes

nfp fractal dimension o f primary particle

N number o f  characteristic size groups

No initial particle number

jVmax maximum number o f nodes

P adjustable factor

s salinity

t time

T absolute temperature

ws settling velocity

Greek letters

a correction factor for Euclidean collision frequency function, a =fiQ a0  E0

a0 sticking probability

P Euclidean collision frequency function

Po shape or porosity corrections for Euclidean collision frequency

T nodes o f Gaussian quadrature approximation, T = [Zi, Z2, ..., Ln]

8 Dirac delta function

P dynamic viscosity o f the fluid

Ps bulk density o f clay mineral

(O i characteristic number density; weights corresponding to Z,

Q. weights o f Gaussian quadrature approximation, G = [coi, a>2, ..., o.v]
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Table 2.1 The flocculation parameter C 1 and C2 derived through QMOM-PBM optimization 

by comparison with the experimental results of Furukawa and Watkins (2012) for colloidal 

montmorillonite.

Cases c, c2

This Study Furukawa This Study Furukawa

Montmorillonite only, s = 7.2 ppt 4.0 1.0 2.346 E-4 3.668 E-4

Montmorillonite only, s = 3.6 ppt 3.5 1.0 2.682 E -4 4.238 E -4

Montmorillonite only, s = 1.8 ppt 1.5 0.484 9.050 E-4 8.190 E-4

With Humic Acid, s = 7.2 ppt 0.92 0.306 1.341 E-4 2.672 E-4

With Chitin, s = 7.2 ppt 0.95 0.401 3.352 E -4 8.949 E -4

With Xanthan gum, s = l..2 ppt 13.5 1.0 2.514 E -4 1.099 E -4

With Xanthan gum, s = 3.,6 ppt 9.0 1.0 3.352 E -4 2.182 E -4

With Xanthan gum, s = 1.,8 ppt 2.5 0.856 6.704 E-4 6.593 E-4
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PARTICLE SIZE DISTRIBUTIONS: 

COMPARISON WITH ANALYTICAL SOLUTIONS

AND KAOLINITE 
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Abstract

The population balance equation has been used for several decades to describe the 

evolution o f particle populations caused by aggregation and breakup processes. Only recently 

has it been used to efficiently and directly predict the temporal variation o f Particle Size 

Distribution (PSD) for cohesive sediments by using the Quadrature Method O f Moments 

(QMOM). In this study, an extension o f that effort carries out additional validations that 

compare with analytical solutions for pure coagulation systems, pure breakup systems, and 

combined coagulation and breakup systems. Besides, a laboratory experiment is conducted in 

a five liter mixing chamber to provide steady state PSD o f suspended kaolinite with a 

chamber-averaged kaolinite concentration 0.52 g/L and shear rate 45 s '. The model results 

match reasonably well with both those from analytical solutions and kaolinite flocculation 

experiment results. Sensitivities regarding the selecting o f different model input parameters 

(such as fractal dimensions, primary particle sizes, aggregation and breakage fitting 

parameters, and fragmentation distribution functions) are also checked. The results further 

confirm the capability o f QMOM to predict PSD using its quadrature nodes and the 

corresponding weights.

Keywords: kaolinite; population balance; quadrature method o f  moments; particle size 

distribution; mixing chamber experiments; sensitivity tests
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1. Introduction

The time evolution o f  Particle Size Distribution (PSD) has been a concern in estuarine 

particulate dynamics for many decades. Simplified floe growth models only track “averaged” 

particle size, assuming that all particles are uniformly distributed (with their median size) and 

self-similar (same size with same structure and same number o f primary particles) (e.g., 

Winterwerp, 1998). Although one o f the major assumptions o f using a constant fractal 

dimension in such floe growth models has been later improved by others (Khelifa and Hill, 

2006; Maggi et al., 2007; Son and Hsu, 2008) for variable fractal dimensions, the entire PSD 

is still either neglected or has to be re-constructed based on other assumptions (e.g., assuming 

log-normal distribution with a single peak, see Shin et al., 2015). In natural environments, 

however, it is not uncommon to observe bimodal or multi-modal distributions (e.g., Yuan et 

al., 2009) especially when organic matters are abundant, thus median size only is not 

sufficient and may deviate significantly sometimes. For these reasons, the Population Balance 

Equation (PBE) that can describe the PSD is more desirable for simulating the complicated 

phenomena in cohesive sediment transport.

PBE is a nonlinear integro-partial differential equation with source and sink terms to 

account for the gains and losses o f particles with any particular size per unit volume. The 

history o f applying PBE in mud flocculation is much shorter than the applications in other 

fields, such as granulation, precipitation, milling, spraying, droplet, bubble, crystallization, 

emulsion polymerization, leaching, and aerosol. In fact, only recently has PBE been applied 

to simulate time evolution o f PSD for suspended sediment flocculation (e.g., Maggi et al., 

2007; Mietta et al., 2008; Lee et al., 2011; Shen and Maa, 2015). A review o f the origins,
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frameworks, current applications, and future prospects o f  the PBE can be found in Sporleder 

et al. (2012) and Ramkrishna and Singh (2014).

In a general population balance framework, different external and internal properties 

might be included. Here external properties refer to the location o f particles in physical space 

and time, and internal properties may include one or several distinguishable traits of particles 

such as density, size, volume, shape, and contents (e.g., concentration o f different 

components). These properties are represented in a particle state space (£, x, t) where £ is the 

internal space, x  is the external space, and t is time. In population balance, one assumes that a 

particle number density function n(£, x, t) can describe the distribution o f particles at every 

point in the particle state space (£  x,  /), and the total number o f particles in any region in the 

state space can be described by integrating the number density over the desired internal and 

external region (Ramkrishna, 2000).

In estuaries and coastal regions, the reliability o f a sediment transport model depends 

significantly on the estimation o f settling velocity, which is a function o f particle size and 

particle density. By selecting fractal dimension (nj) as a fitting parameter, particle density is 

described as a function o f particle size rather than an additional internal property. Therefore, 

at current stage, particle size L might be the only internal property, i.e., £ = L, so that the 

number density function n (L , x, t) becomes the number-based PSD.

Recently, Shen and Maa (2015) adopted an enhanced QMOM to simulate the PSD o f 

cohesive sediments during coagulation and breakup processes. In their work, the time 

evolution o f PSDs are reasonably simulated using at least seven (in some cases eight) 

quadrature points. Nevertheless, the effectiveness o f the QMOM approach should be further
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validated with data from well-studied systems to demonstrate the broader applicability o f  this 

approach with a wider variety o f coagulation and breakup processes. To accomplish this 

objective, two approaches are selected: (1) Selected validation cases that include pure 

coagulation systems, pure breakup systems, and combined coagulation and breakup systems 

for which either analytical solutions or trusted simulation results are available for validations.

(2) A laboratory experiment is conducted with suspended kaolinite to check the effectiveness 

o f the model. Furthermore, the sensitivities on selected input parameters are studied in order 

to observe the model behavior. The details o f each approach are presented after a brief 

description o f the solution technique.

2. Review of quadrature method of moments

In this study, only the box PBE formulation (i.e., neglecting the diffusion, advection 

and/or settling terms) is considered to focus on the coagulation and breakup processes rather 

than the transport processes, and thus, the external symbol x  is omitted in the number density 

function. Note that aggregation is a process where two or more particles collide and stick 

together to form a larger particle and breakup is a process that particles break into two or 

more fragments (Kumar, 2006). In a closed system, the number of particles may change due 

to coagulation and breakup, but the total volume o f particles will not be affected.

Although many internal properties can be involved, only the particle size, L, is used in 

this study, and with the above simplifications, the particle state vector (£  x, t) is simplified to 

(L , t). Thus, the size-based dynamic PBE in continuous form in a closed homogeneous 

system for coagulation and breakup events can be written as (Marchisio et al., 2003b;
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Gimbun et al., 2009; Kariwala et al., 2012; Shen and Maa, 2015):

+ £  a(X) • b(L | X) ■ n(X, t)dX -  a{L) ■ n(L, t) (3.1)

where n(L, t) is the number density function for a particular particle size L at time t, with 

units o f i r f 'i r f 3 where i r f 1 represents a range o f particle size which coincides with the term 

“density,” and m-3  represents “per unit volume” which is sometimes omitted in the term 

“number density.” P(L, X) is the coagulation kernel, in units o f m3/s, representing particles 

with size L and size X colliding to form a particle o f size (Z3+23)1/3, a(L) is the breakup 

frequency function (also known as “breakup kernel”), in units o f s-1, that describes the 

frequency o f disruption o f particles with size L, b(L\X) is the fragmentation distribution 

function, in units o f m-1, and symbol “ | ” describes the breakup o f a particle with size X 

(which is larger than size L) into daughter fragments and one or some o f these daughter 

fragments have size L. The coagulation and breakup source and sink terms include: (1) gain 

o f particles with size L due to coagulation o f smaller particles (first term in the right hand 

side o f Eq. 3.1), (2) loss o f particles with size L due to their coagulation with other particles 

(second term in the right hand side o f Eq. 3.1), (3) gain o f particles with size L due to 

fragmentation o f bigger particles (third term in the right hand side o f Eq. 3.1), and (4) loss of 

particles with size L due to their own fragmentation into smaller particles (fourth term in the 

right hand side o f  Eq. 3.1).

Using method o f moments, the moments o f PSD, rather than the PSD itself are tracked 

directly. The kth moment o f PSD is given by (Hulburt and Katz, 1964)
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where k  is an integer, and the lower order moments are related to the physical meanings o f 

PSD. For example, m0 is the total number o f particles per unit volume; m u m2, m2 are 

proportional to the total length, total surface area, and total volume o f the particles per unit 

volume, respectively. In addition, when settling properties o f particles are addressed, m4  is 

proportional to the total surface area o f sphere particle settling per unit time, and m$ is 

proportional to the settling flux o f the suspended spheres (Mehta, 2013). One advantage o f 

moment-based method is that various moment-defined diameters can be easily calculated as 

(Mugele and Evans, 1951; Sowa, 1992)

where i and j  are integers. For example, d\o is referred to as arithmetic mean size (mean o f 

number-based PSD), d32 is Sauter mean size (i.e., mean o f surface area-based PSD), d4i is De 

Broukere mean size (i.e., mean o f volume-based PSD), and d2o is the surface-area ‘number’ 

mean diameter o f spheres in a system, and for most o f the time, the word ‘number’ is omitted.

the total number o f spheres in the system, one will get the total area o f particles. Various 

characteristic size dy also determine the variance, skewness, and kurtosis o f the PSDs (Sowa, 

1992).

The QMOM employs the Gaussian approximation for the integrals in Eq. 3.2 (McGraw,

(3.3)

d2o2 denotes the second origin moment o f  number-based PSD. When multiplying nd2Q2/4 by



in which X/ are the Gaussian abscissas (also known as “nodes”, “pivots”, “mesh points”, or 

“quadrature points”), oi, are the corresponding weights (i.e., the characteristic number density 

for size class L,) that include information o f bin size, and N  is the number o f quadrature nodes. 

Note that for k  less than or equal to ( IN  -  1), the “approximately equal” sign in Eq. 3.4 

becomes exactly equal since L, are auto-selected as Gaussian quadrature points (Thein, 2011; 

John and Thein, 2012).

For the purpose o f saving computing cost and improving accuracy o f  moments 

predictions, Su et al. (2007) suggest an adjustable factor, q, to track the fractional moments 

(i.e., m0 ,m u q,m 2/q, ... mUq)

mklq = [ L kl‘}n ( L , t ) d L ^ a > iL kl<l (3.5)
/ —I

This adjustable factor can also be used to reduce the severity o f the ill-condition, making it 

possible to have more nodes (i.e., 7 or 8  nodes and weights) in order to directly construct 

PSDs (Shen and Maa, 2015).

After using the moment transformation, Gaussian approximation for the first 2N  

moments, and an adjustable factor q, Eq. 3.1 can be written as follows:

+ Y ,a ,b t-klq)G>, (X = 0, 1 ,..., 2 N -  1) (3.6)
<=i <=i

in which the fragmentation distribution function b (L \ X) in Eq. 3.1 should be rewritten as (Su 

et al., 2007)

P l 'q) = ^ L klqb(L\X)dL  (3.7)

Detailed processes o f using A/-node QMOM to solve PBE can be found elsewhere (e.g.,
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Shen and Maa, 2015), and the computer codes in FORTRAN are also available in Shen

(2016).

3. Validations with analytical solutions

Six cases are selected: (1) three cases for pure coagulation, (2) one for pure breakup, and

(3) two for combined coagulation and breakup. All simulations were carried out on a Lenovo 

T530 laptop with Intel i7 CPU, 2.90GHz, and 4GB memory.

3.1 Pure coagulation process

Three types o f coagulation kernels with either analytical solutions or asymptotic 

solutions for the PSDs and/or the moments are available for validation.

Case I: Constant coagulation kernel

For instances in which the physical process is unknown, Kapur and Fuerstenau (1969) 

introduce the constant kernel (also known as “size-independent kernel”) in granulation 

research. This is usually the first choice based on an assumption that it describes particles 

colliding completely at random and coalescing independent o f  their size (Marshall, 2012). 

With this simple kernel, Scott (1968) contributed to the analytical solutions o f the moments 

and the PSD. The initial particle distribution was selected as

(3.8)

(3.9)

where No = mo (t -  0 ) is the total number o f particles per unit volume at the beginning (in

units o f m 3), vo is the initial mean volume o f the particles (in units o f m3). Eq. 3.9 satisfies
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the following

Jjan (L )d L /N 0 =1 .

Since this is a general, analytical formulation, the units o f X, No, and «o are not important 

and simply require consistency. The proper units o f X, No, and «o need to be specified only 

when using this equation to check if an experiment has a constant coagulation or not. 

Because o f this reason, the units o f the above parameters as well as the units o f /?o  are omitted 

in the modeling and only follow the discussion for cases that have an analytical solution for 

comparison. In order to compare the model results with those given in earlier studies, all o f 

the constants are selected to match those o f the comparison studies. For example, Marchisio 

et al. (2003a) used No = 1, «o= l> and /?0= 1, and thus, the same values are also selected in this 

study. Although No = 1 (i.e., total number o f particles per unit volume equal to 1) is not 

typical, it is fine to use this condition if n(L) is not limited to be an integer number.

Scott (1968) gave the analytical solution for the moments as

™t(t) = mk( t = 0 )-
r 2 V~*/3

and the analytical solution o f  PSD for this pure coagulation process as

/ r  , 12N 0 L2 (  - 2 X3 ^
n(L,t) =   ° .  i-expu0lTa+l)

(3.10)

(3.11)
U o t f ,  + 2),

where Ta=NoPot is dimensionless time.

Using the current model with adjustable factor q = 4, the PSD is simulated using seven 

quadrature points (N = 7). The initial moments are estimated by integrating the initial PSD 

(i.e., Eq. 3.9) using the MATLAB “integral” function.

The predicted and analytical PSDs compare well at t -  0, 10, 50, 100, 200 s (Fig. 3.1).
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The Y-axis is the normalized PSD so that the summation o f weights (number frequency) for 

the seven automatically tracked quadrature points is one.

The simulated moments also match well with those given by Eq. 3.10; both are 

normalized by the initial moments (Fig. 3.2). It should be noted that since seven nodes with 

adjustable factor q = 4 are selected in this case, the moments up to aw 13/4 are tracked directly. 

In other words, aaj0, awi, m2 , and m3 are given directly from the model, while the order of 

moments higher than 13/4 (e.g., AW4, ms, and m^) are estimated using the output abscissas and 

the corresponding weights with Eq. 3.5. The third moment m3 remains constant during the 

entire computation duration which indicates that the total particle volume is conserved. This 

is the first step to confirm that the model is performed correctly. For a coagulation dominant 

process, the moments o f order lower than three (e.g., mo, awj, and m2) should decrease with 

time. The decreasing rate is highest at the beginning because o f the high number o f  particles. 

With time, the number o f  particles decreases, and so does the rate o f decreasing for lower 

moments. Eq. 3.10 indicates that mo(t) will linearly decrease with time when NoPot»  2 and 

that is shown in Fig. 3.2 when t > 150s. The moments higher than third order (e.g., aai4, aw5, 

and me) increase with time for the opposite reason.

In order to evaluate the progress o f aggregation and identify the percentage o f 

completed aggregations, Marchisio et al. (2003a) suggested using the intensity o f coagulation, 

given as

A . - ' - 5 #  (3.12)
AW0 ( O )

as an index, instead o f time. This selection will clearly show how much o f the aggregation

has been completed. Here /agg = 0 denotes no aggregation, and /agg ~ 1 represents total
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aggregation into one particle. The errors for the simulated moments relative to the analytical 

result at any stage o f 7agg (Fig. 3.3) are less than 10”4, even for the moments that are indirectly 

predicted, i.e., ms, and m6.

The time variation o f the mean sizes (e.g., arithmetic mean size d\o, Sauter mean size d ^ ,  

and De Broukere mean size ^43) all show excellent agreement between the predicted and 

analytical results due to the high accuracy o f  moments tracking (Fig. 3.4). In the previous 

study (i.e., Marchisio et al., 2003a; 2003b; 2003c) that uses QMOM methods with three or 

four abscissas, it is difficult to reasonably find the peak and median size o f PSD even though 

these two parameters are the focuses for many engineering and scientific applications. In this 

study, the median size is simulated with seven-nodes, and the peak can also be reasonably 

predicted (Fig. 3.4). The small disturbances o f the peak size are due to occasional fluctuations 

in the location o f  the maximum abscissas.

Case II: Sum coagulation kernel

Gelbard and Seinfeld (1978) used the following kernel to describe coagulation processes 

proportional to the volumes o f interacting particles.

/? (! ,,^ )  = /?0(L,3+ l / )  (3.13)

where fio is a constant, and L, and Lj are two nodes. This size dependent sum kernel is related 

to branched polymerization processes and aerosol coagulation in all flow conditions (Vigil 

and Ziff, 1989). For an exponential initial distribution (Eq. 3.9) with constant Vo and Scott 

(1968) gave the analytical PSD as follows.
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(3.14)

where Ta= 1 -  exp ( -  /?o/Vo»oO and I\(x) is the modified Bessel function o f the first kind of 

order one. Note that the limit o f function 7i(x) / x  is 1/2 when x —► 0, thus, Eq. 3.14 becomes 

Eq. 3.9 when / = 0. Scott (1968) gave the analytical solution for the zero-ith order moment as

Using an adjustable factor q -  4 and following those constants used by Su et al. (2008) 

(i.e., fto = 0 .0 1 , No = 1, and v0= 1), the model simulated m0 has a maximum error lower than 

10"6, when compared with Eq. 3.15 during the entire simulating time domain (i.e., 50 s, the 

same as in Su et al., 2008). The PSD results compare well with the analytical solution 

(Fig.3.5) at four selected times. Although the weights for larger particles, e.g., L = 2 in this 

case (dashed line in Fig. 3.5), apparently increase with time, the number fractions are still 

small compared to small particles. The mean o f  the PSD (i.e., <7io) also increases slowly 

through the simulating time period, while d n  and d\ 3 increase much faster with time. This 

confirms that the sum kernel favors the coagulation o f larger particles (Tobin et al., 1990; 

Marshall, 2012). The difference between the analytical solution and the results o f this 

simulation may be due to a lack of sufficient Gaussian nodes to precisely represent the weight 

o f large particles. Improvement is possible with more nodes, but that has not been verified yet 

because it would require using high precision (i.e., quad precision or more) for real numbers 

in a FORTRAN compiler to solve the ill-condition matrix described in the QMOM. 

Unfortunately, that precision is not available in the currently used PGI FORTRAN compiler. 

Nevertheless, reasonable agreements are still found between the predicted and analytical 

PSDs for all times.

m0 (t) = mQ(t = 0)cxp(-P 0 N ovot) (3.15)
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Case IE: Brownian coagulation kernels for two different regimes.

Depending on the size o f  particles and the mean free path length o f the ambient gas, two 

different kernels can be assigned for each regime. In the first, the free-molecule regime, (i.e., 

particles are smaller than the mean free path length o f the gas), particles behave like 

molecules. Based on the kinetic theory of gases, Friedlander (2000) showed the Brownian 

kernel in this first regime to be

£(!„£,) = /?,(£, + £,)2(V3 + V 3)W2 <3-16>

In the second, the continuum regime, particles are larger than the mean free path length 

o f the gas. Smoluchowski (1917) used the continuum diffusion theory and derived the 

Brownian kernel as

P(L„LJ) = p 2 (L,~' + Lj-'XL, + Lj)  (3.17)

where fi\ and pi  are constants.

A complete analytical solution for the moments and PSDs are not available. However, 

Xie and Wang (2013) reported the following asymptotic solutions (i.e., t »  1) o f mo and m6 

for these two Brownian kernels, regardless o f the initial PSD. In the free-molecule regime:

mQ (0  ->0.313309932 • f l " 6' 5 ■ m f us - t ^ ls (3.18a)

m6 (t) -> 7.022205880- /3,6/5 • m " >s ■t 6/5 (3.18b)

and in the continuum regime:

mo (0  —>■ (81/169) • /?2-1 -1_1 (3.19a)

m6(/)-> (338/81)-j32 -m32 t (3.19b)

Since m3 is the total volume o f all particles, it is invariant at all times, and thus, if the initial 

condition is given, then Eqs. 3.18 and 3.19 can be used to find the asymptotic value.
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Besides, Xie and He (2013) indicated that the exact moment solution for the two Brownian 

kernels should satisfy the following two equations, respectively

f  (mc) - C x+C2-t (in the free-molecule regime, mc = m0 ■ m6 / m 2) (3.20a)

134 B
f i  (mo) = ^ 4  2 t + Q  (in the continuum regime) (3.20b)

where

3 C3

(3.2Ia)
1 c 2 —57/3 /6  I - 5 / / 3 /6  - 5 7 / 3 / 6

a2 -(mc0 - k , ) 2- ^ 16 | t a0 -(mc0 - k i T ^ 16

1 2 - 57/ 3 / 6  I - 57/ 3 /6  - 57/3 /6

r  = ____________ 65y[2-0r m3m -moom ____________
2 5184-(/wc0 -& ,)5/6Wl -(m^ - k 2)5/6Hl -(rot0 - £ 3)5/6W’

169 5, 2 21 701 4 u 4C3m0 -5|
~ 51nm0 + ^  ^  ^ ln l6 9 + 5 C 3m0 2C3 m0 | arctanh-

(3.22a)

Q  =m 6 0 - 2 m 3 2 /m m (3.22b)

169 5

^3W00 ^
C4 = 5 In m00 + —̂ — —In 1 6 9 + -  2 C 2m0Q2

701 . . |4C3» to - a^arctanh1
9Vl7 9Vl7

(3.22c)

and moo = «o (/ = 0), W6o - m f , ( t  = 0), mc0 = mc (/ = 0) = moo ■ m^o / W32 . Other constants in 

Eq. 3.21 and Eq. 3.22 are /?, = 1, #> = 1, a0  = -  0.00100408812658764, a, = 

9.71923307384476 x io -5, a 2 = -  1.97514697514215 ><10~5, *1 = 40.3611441357169, k2=- 

2.37665559790164, h  = 2.20012684680016, 77, = 0.45115172265601, H 2 = -  

0.47035122605002, and 7/ 3 = 1.01919950339400.

8 5



For a standard log-normal initial PSD (Eq. 3.23),

3Nn (  (in(I3 /u 0) P
» W =  p r -  exp

y jln  • w.L 2 wg2
(3.23)

Barrett and Webb (1998) reported the variation o f moments at selected times using 70-point 

finite element method with No = 1, u0 = V 3 /2 , and = y]ln (4 /3) . Their results are 

assumed as an accurate solution and are used to validate the results o f this study. In order to 

maintain accurate prediction o f me for comparison, the adjustable factor is selected as q = 2  to 

directly track m6.

The excellent agreement between predicted time evolution o f m0  and m6  (grey solid line) 

and the asymptotic solutions (dark dashed line) o f two Brownian kernels is evident (Figs. 

3.6a and 3.6b). These also match very well with the 70-point finite element method results o f 

Barrett and Webb (1998; solid dots in Figs 3.6a) at / = 1, 5, 10 s. In addition, the relative 

difference in /i(m c) and / 2(wo) between this study and Eqs. 3.21 and 3.22 for the two 

Brownian kernels, respectively, are reported in Fig. 3.6c, with a maximum difference around 

3%. Since the “exact” solution o f Xie and He (2013) is derived using Taylor series expansion 

truncated after the third terms, their solution may also have some error included, and thus, the 

maximum 3% difference may be considered as an “excellent” match. These comparisons 

highlight the credibility o f the model-predicted PSDs (Fig. 3.7). Notice that the continuous 

region o f the Brownian coagulation kernel shows a slower coagulation rate when compared 

with that for the free-molecule regime (Fig. 3.7b versus Fig. 3.7a).
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3.2 Pure breakup process

There are two parameters that affect the particle breakup process: the breakup kernel a(L) 

and the fragmentation distribution function b(L\k). There is one analytical solution available 

with a specifically defined a(L) and b(L\X). Details o f this solution are given next.

Case IV: Peng and Williams (1994) presented a widely applicable breakup kernel as a (I)  = 

ao ■ Ly where ao and y  are empirically determined constants, and usually y  -  3 is adopted to 

indicate that the breakage o f particles is proportional to the particle volume (Kumar, 2006; Su 

et al., 2008). Thus, this breakup kernel is

however, the units o f a0  can be any that are consistent with respect to those o f L. In this case, 

the selection o f ao =1 follows Su et al. (2007, 2008).

There are several choices o f the fragmentation distribution function (more will be 

discussed later). The uniform distribution function given by Marchisio et al. (2003b) is used 

in this case:

b{L\ A) = 6 Z2 /A3 (0 < Z < A ) (3.25)

Applying adjustable moment transformation (Eq. 3.5), Eq. 3.25 becomes (Su et al., 2007)

With the exponential initial distribution (Eq. 3.9), Ziff and McGrady (1985) gave the 

analytical solution o f  PSD for this pure breakup process as follows

a(L) = a0L3 (3.24)

where ao is a constant in units o f m 3s 1 in order to satisfy the units o f a (i.e., s '). In general,

(3.26)
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(3.27)

Using an adjustable factor q = 4, with N o= \,  and u0 = 1, the time variation o f PSD can be 

simulated. The modeled and analytical PSD show excellent agreement for all selected times 

(Fig. 3.8). The peak size o f the PSD reduces quickly in the first ten seconds, but the rate o f 

decrease diminishes with time. The simulated moments (computed by using the MATLAB 

“int” function to integrate Eq. 3.27) also match the theoretical moments (not shown).

3.3 Combined coagulation and breakup processes

There are two cases simulated within this category, and the differences between these 

cases are in the selection o f coagulation kernel, breakup kernel, fragmentation distribution 

function, and the initial PSD.

Case V: McCoy and Madras (2003) studied a process that combined a constant kernel for 

coagulation (Eq. 3.8 with a constant /?0), a power kernel for breakup (Eq. 3.24 with a constant 

ao), a uniform fragmentation distribution function (Eq. 3.26), and an exponential initial 

distribution (Eq. 3.9). They worked out the analytical solution for PSD as follows:

In Eq. 3.28, the dimensionless time Ta = /30 N 0t , and the total number fraction at 

dimensionless time Ta follows

(3.28)

A{T j -  ^ ' I1 + ' fc11*1̂ 00) ' T° 72)1
^(co) + tanh(^(°o) -Ta 12)

where ^(oo) = (2a0u0 N 0 / p 0 ) ,/2  / N 0.
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By selecting those constants as/?o = 100 in Eq. 3.8, a 0 = 1 xlO-6  in Eq. 3.24, and N q= \ , vo 

= 100 in Eq. 3.9, the processes could approach a steady state around 50 s. The adjustable 

factor q = 4 is used. The initial moments are obtained using the MATLAB integral function 

“integral.” The results shows excellent agreement with the analytical PSD at all times (Fig. 

3.9). The time evolution o f all the characteristic sizes shows that the coagulation and breakup 

processes reach equilibrium in approximately 50 s (Fig. 3.10). For the first 20 s, the 

coagulation process is dominant, and thus, all o f these characteristic sizes are quickly 

increasing. With time, the effect o f breakup becomes competitive with coagulation, and thus, 

reduces the growing rate o f these characteristic sizes, and finally reaches the steady state 

around t = 50 s.

Case VI: Vanni (2000) used a class method with 2,000 size classes to study a case that 

includes a sum coagulation kernel, power breakup kernel, binary fragmentation distribution 

function, and initial distribution with a single particle size. Detailed kernel functions Vanni 

used are expressed as follows:

When applying adjustable moment transformation (Eq. 3.5), Eq. 3.29c becomes (Su et al., 

2007)

P ( l i, l j ) = l , 3 + l ; (3.29a)

(3.29b)

The fragmentation distribution function is

0  otherwise
(3.29c)
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bi{k/p)(L) = 2(3~klq),:>Lklq (3.29d)

The initial moments are given as

ml/q(t = 0) = L k,q for k=  0, 1 , 2 AH (3.30)

where L\ is the initial particle size, and Vanni (2000) selected L\ = 1. Because initially it is a 

uniform size, only one class size (Ii)  is used. To simulate this case using the QMOM 

approach, adjustable factor q -  3 is selected to track the PSD until the process reaches the 

steady state. The steady state wo and z/43 predicted by this study very closely match those 

reported in Vanni (2000), Marchisio et al. (2003b), and Su et al. (2007). The steady state PSD 

given by Vanni (2000) is treated as an “exact” solution for comparison. Reasonable 

agreement between the “exact” solution and this study can be concluded (Fig. 3.11), despite a 

slight overestimation o f larger particles. All o f the above comparisons indicate that these 

modeling results are reasonable and credible. Therefore, the model-predicted PSDs at t -  0, 

0.5, 2, and 5 s are also reported in Fig. 3.11. Note that it is possible that the simulated PSD 

includes sizes smaller than the initial particle size ( I i)  (i.e., a narrow initial distribution with

3 3median size L\). For example, the breakage o f a particle with size Li (Li > L\ but Li < 2 ■ L\ ) 

may result in daughter fragments with sizes smaller than L\.

4. Experimental validations for kaolinite suspensions

The mixing chamber is one o f the three laboratory devices (the other two are oscillating 

grid and Couette flow device, see Serra et al., 2008) to investigate PSD responding to 

aggregation and breakage o f cohesive soils. In this study, a five liter cubic mixing chamber is 

used to measure the steady state PSD of kaolinite with suspended sediment concentration
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0.52 g/L. A LIGHTNIN A310 impeller with 132 mm diameter is rotating at 4 cm above the 

bottom to generate turbulence. Kaolinite suspensions are first stirred with the impeller’s 

maximum speed (i.e., chamber-averaged shear rate about 217 s-1, see Shen and Maa, 

Submitted) for half an hour to break the floes, and then set to an average shear rate o f 45 s_1 

to allow floes to aggregate. This shear rate is neither too high to break all floes, nor too low to 

allow significant settling, and thus is appropriate for use in this study. After mixing for one 

day, the floe images are acquired by using a camera system developed by Shen and Maa 

(Submitted) that can identify floes with a minimum size o f 5 pm. Images are obtained through 

the transparent wall o f the mixing chamber. PSDs are processed using the MATLAB Image 

Toolbox, and the average PSDs at elapsed time = 23,23.5, and 24 hrs (50 images at each time) 

are used to represent steady state PSD.

To mimic the mixing chamber results, the aggregation kernel given by Smoluchowski 

(1917) is used

fi(Ll,LJ) = Cl - j ( L l + LJ ) 3 (3.31)

in which G  is the chamber averaged shear rate (45 s~'), and C\ is the aggregation parameter; 

this is also referred to as the “collision efficiency”, which describes successful attachments o f 

approaching particles after a successful collision. The breakup kernel given by Winterwerp 

(1998) is used

a(L )  = C
2

f  V /2 L
F  .G V2 - L - ^ ~  I)3-"' (3.32)

v y )  p

in which Ci is the breakup fitting parameter, lp is the size o f primary particles, «/ is the fractal 

dimension o f  the floes, fi is the dynamic viscosity o f the fluid, and Fy is the yield strength o f
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floes. The fragmentation distribution function is assumed as binary breakup (Eq. 3.29d). The

g *7
selection o f C\ = 0.85, C2 = 3.2 x 10 , as well as other parameters, // = 10 Pa-s, lp = 5 jxm, 

and Fy = 10-10 N follows those given by Shen and Maa {Submitted) from the calibration 

results for sediment mass concentration 0.28 g/L and average shear rate 45 s_1 in the same 

system. Maximum number o f nodes N  = 8 and adjustable factor q = 5 are selected following 

Shen and Maa (2015). Fractal dimension «/ is following that given by Khelifa and Hill (2006) 

and Maggi et al. (2007):

” /  = 3
'  l ' * l_l_

Iv pj

(3.33)

in which dL = -  0.1 for kaolinite suspensions (Maggi et al., 2007). It is assumed that all 

particles are spherical primary particles initially.

It is understood that fluid viscosity is a function o f  temperature, floe strength depends on 

floe size and fractal dimension (Son, 2009), primary particles should not be limited to one 

representative size, and fractal dimension is difficult to precisely assign. However, these 

parameters are used for simplifying the simulation, thus providing items for improvments in 

the future.

At steady state, the predicted mean and median sizes match excellently and the predicted 

PSD match reasonably well with experimental results (Fig. 3.12). Model prediction shows it 

takes around two hours to arrive at steady state. However, this duration required for 

flocculation process to reach steady state may be biased. This is because the mixing chamber 

does not have a constant shear rate for the entire chamber. A floe is traveling periodically 

through different shear zones instead o f a constant shear zone (Prat and Ducoste, 2006). This
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may cost more time to reach steady state. For example, Keyvani and Strom (2014) reported 

steady state was reached after about 34 hrs in their tank, which is bigger than the chamber 

used in this study, and thus, a longer duration. In fact, all the calculated moments after 2 hrs 

(Fig. 3.12a) can be used to predict the steady state PSD, and they do show similar predictions 

(Fig. 3.12b). It is also important to notice that in a Couette flow device, floes aggregating are 

driven by a constant laminar shear, and it may only require 5-10 minutes to reach a steady 

state (Frappier et al., 2010).

Although the model performance appears excellent with these selected input parameters 

in both o f  the early studies (Shen and Maa, 2015; Submitted) and this study, the effect o f 

changing to different input values has not been checked. For this reason, a sensitivity analysis 

o f fractal dimension, primary particle size, C\ & C2, number o f nodes, and the fragmentation 

distribution function was carried out. For comparing the effect o f  these input parameters, a 

ground truth that can be described perfectly by the governing equation has to be available, but 

this may not exist yet, and thus, the experimental results presented in Fig. 3.12b are selected 

as the reference.

Fractal dimension (»/): It has been used to estimate the shape o f a particle/floc. A good 

understanding o f «/ and floe size, can determine floe density, floe strength, floe settling 

velocity, etc. However, it is difficult to observe « /directly and usually an indirect approach is 

selected. By carrying out an experiment (e.g., in a small settling column) to measure the size 

L and the settling velocity o f a floe, its «/ can be estimated from a modified Stokes

equation, e.g., = —  — — ——  I 3~W/Lnf~l (where ps is the density o f clay mineral, p w is
18 /i

93



the density o f fluid, g  is gravitational acceleration, and /i is dynamic viscosity o f  the fluid, see 

Winterwerp, 1998). However, it is worth to mention that even for floes with the same size, 

the reversely estimated «/ may be different because o f different settling velocities, since floes 

might not be self-similar at all. This means the modeling o f rif  itself is a difficulty. Most 

recent studies usually assume n/as a constant based on empirical understanding (Winterwerp, 

1998), or modeled as exponential functions (Maggi et al., 2007) based on the knowledge that 

larger floes are more fragile than small floes, and thus, large floes have a low «/. Steady state 

PSD predictions for different «/ (does not matter it is a constant or varies with size) did not 

show significant differences (Fig. 3.13b). For modeling mean size o f PSD, however, different 

produce different mean sizes (Fig. 3.13a), regardless o f whether it is a different constant «/ 

or a different dl- If a floe does have the property o f self-similarity, this result implies that the 

aggregation parameter C\, as well as the breaking fitting parameter C2, is also a function o f nf, 

which is understandable since they are affected by particle structures.

Primary particle size (lp): It is usually assumed lp is a small constant, but how small it should 

be has not been checked yet. lp itself may have a different size and has a distribution itself. 

Results show different primary particle sizes will lead to significantly different predictions o f 

both PSDs and their mean sizes (Fig. 3.14). This is not surprising since particles with larger 

sizes but with the same aggregation kernel (i.e., collision frequency and collision efficiency) 

will result in larger mean sizes o f PSD. It also implies that even in the same system, the 

calibration results o f C i based on significantly different lp assumptions cannot be compared 

directly.
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One advantage for this PBE-QMOM approach is that a primary particle distribution, if 

available, can be easily included in the model. As shown in Fig. 3.14, a normal distribution o f 

primary particles with a mean size o f 5 pm (median and mode sizes are also 5 pm, and the 

size range is 0.1-10 pm) will lead to a larger mean size at steady state when compared with a 

single primary particle with a size o f 5 pm. It is also shown that different variances, e.g., ( ? -  

0.25,1, and 4, will yield close predictions on both the mean sizes and the PSDs at steady state, 

with a larger variance corresponding to a slightly slower convergence speed. In the current 

model setting, particles with sizes larger than either a single lp or the mean size o f  the primary 

particle distribution, are allowed to break up.

Absolute values o f  Ci & C->\ If a different C\ and C2 are selected, but keeping the same ratio 

o f C\/C2, the pace that it converges to steady state will be different. Results (Fig. 3.15) show 

that a large C\ will reach steady state faster than if a small Ct is used. This result is similar to 

that given by Keyvani and Strom (2014). They used almost identical primary particle sizes, 

and a similar C\IC2  ratio, but different Ci and C2, to simulate mud flocculation with different 

histories (e.g., in their study, cycles “p s l” and “ps6”). This is probably one o f the reasons 

why a large C\ (close to 1) is selected in some literature when only the measured steady state 

PSD is available for comparison (Maggi et al., 2007; Mietta et al., 2008; Shen and Maa, 

2015). For instances when calibrations are based on minimizing the differences o f simulated 

and experimental steady state PSDs using a two-parameter (i.e., C\ & C2) fitting, the 

converged absolute values o f C\ and C2 might not be the true values because the rate o f 

convergence is excluded. Without knowing the convergence rate, only a correct Ct/C2 can be
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found. This is not to say, however, that a large C\ is not possible. For a rapid aggregation, a 

large C\, sometimes, larger than one is possible from a physical point o f view (Furukawa and 

Watkins, 2012; Shen and Maa, 2015).

Fragmentation distribution functions: It is difficult to observe the daughter size distribution 

after a parent floe breaks up. Therefore, the simplest assumption, binary breakup (1:1 breakup, 

Eq. 3.29c), is adopted in the simulation o f PBE o f cohesive sediment flocculation (Shen and 

Maa, 2015). Other possible breakup mechanisms such as uniform breakup (Eq. 3.25) and 

ternary breakup (Eq. 3.34, which describes a larger particle with volume 23 breaking up into 

three particles: two particles with volume 23/4, one particle with volume a3/2, and zero for 

others)

1 Z = A -(l/2)1/3

b(L\ A) = i.2 L = A -(l/4),/3 (3.34)

0 otherwise

are available and tested. After substituting those distributions into Eq. 3.5, the integrated 

daughter fragmentation distribution functions for binary breakup, uniform breakup, and 

ternary breakup are expressed in Eq. 3.29d, Eq. 3.26, and Eq. 3.35, respectively.

bl(k,q)(L) = Lk,q
(  - i  ] 2k \  

2 iq + 2 3? (3.35)

Results show that model predictions are sensitive to the selection o f b^k,q) (Fig. 3.16).

Using binary breakup, the model results show the largest prediction o f mean size and high

peak o f  PSD. Using the ternary breakup, the model result shows the smallest predicted mean

size and a smaller peak o f PSD. Results from using the uniform breakup show that the mean

size and peak o f PSD are between those given by using binary and ternary assumptions, and a
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wider distribution span than the other two functions.

To match the referenced mean size (36.7 pm) for a different^/*91, the ratio o f C 1/C2 has 

to be changed. If fixing Cj =0 .85 and decreasing the breakup parameter C2, the simulated 

mean size can be increased. The best fitting result is C2 = 2.2 x 10_5for uniform breakup, C2  

= 1.3 x 10-5 for ternary breakup (Fig. 3.16). It seems that using the uniform breakup gives a 

much better match o f  a PSD (Fig. 3.16b). Even using the ternary breakup shows a better 

agreement on the PSD prediction than the one that uses the binary breakup (Fig. 3.16a and 

Fig. 3.13b). This is different from that presented in Mietta et al. (2008)’s result that shows 

ternary breakup gives the worst prediction o f the PSD.

The simulated steady state median sizes, however, show a different story: the median size 

predicted by binary breakup (26.7 pm) is closest to the experimental result (27.2 pm), 

compared with that given by ternary breakup assumption (24.5 pm) and uniform breakup 

assumption (22.5 pm). It is critical to notice that bi(kl<,) may vary for different hydrodynamic 

environments and floe structures. For this reason, determining a better selection o f  the 

fragmentation distribution function has to wait until a better understanding o f floe structures 

under the associated hydrodynamic environments is available.

Number o f nodes: PSDs are predicted using 2, 3, 4, 5, and 7 nodes respectively. Results show 

that two or three nodes are not sufficient to find a reasonable PSD directly, despite that their 

representative mean diameters are still tracked excellently. Although four nodes appear to be 

the minimum for this case, only when using seven nodes can the PSD provide clear evidence 

on the existence o f large floes (Fig. 3.18). For a complicated PSD with multi-peaks, however,
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seven nodes are insufficient and using more nodes or more novel moments' inversion 

technology is necessary. It also confirms that these automatic selected nodes in QMOM will 

span wider by tracking more size classes.

5. Discussion

The original objective o f  solving PBE using QMOM is not for tracking the PSD directly 

because the PSD information (represented as its number density, volume fraction, and various 

characteristic mean sizes) is stored in its moments. It is important, however, to explore 

whether QMOM can be used to interpret changes o f the PSD itself. This is because for most 

applications with unimodal or even multimodal distributions, a directly and uniquely 

constructed PSD could give more information when compared with those relying on their 

integral moments.

At this stage, using QMOM to study cohesive sediment dynamics should be a good 

choice because o f the fast computing pace and reasonable accuracy to represent the simple 

PSD in natural environments. Connecting with any currently available hydrodynamic and 

sediment transport models is feasible because o f the low computing power requirement. 

This will provide a solid base to calculate the settling velocity o f floes, and improve the 

reliability o f simulating cohesive sediment transport.

Current understanding o f the aggregation and breakage kernels for cohesive sediments is 

limited. The poor understanding o f the use o f the fractal dimension is another limitation. 

Measurements o f the primary particle size distributions, fractal dimensions, and floe size 

distributions in natural environments are also rare. All these limitations make the
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improvement o f the accuracy o f QMOM unwarranted. Only after a better understanding o f 

these processes and a better measurement technique have been developed will it be time to 

consider improvements for high accuracy. A few recent studies carried out by chemical 

scientists on improving model accuracy are good examples, such as spline-based methods 

(resolving PSDs based on linear, quadratic, or cubic splines, see John et al., 2007, de Souza et 

al., 2010, and Mortier et al., 2014), the weighted-residual method (resolving PSDs based on 

the generalized moments, see Lage, 2011), the extended QMOM (resolving PSDs by a sum o f 

non-negative weight functions, see Yuan et al., 2012), and the differential maximum entropy 

method (resolving PSDs based on maximizing the Shannon’s entropy to recover the most 

possible PSD, see Attarakih and Bart, 2014). At the time when the flocculation mechanisms 

are clear, however, the computational ability and variable precision might be sufficient to 

handle the high requirement on small round off errors when using QMOM, so that more size 

classes might be tracked even using the classical QMOM.

6. Conclusions

The following are conclusions for this study:

(1) The Quadrature Method O f Moments (QMOM) is applied to solve the size-based 

population balance equation for a few well studied systems. The simulated PSD results match 

well with the analytical (or trusted class method) solutions. In these cases, the maximum 

relative error for the directly tracked moments is typically smaller than KT4.

(2) The results for simulated PSD and its mean and median size for suspended kaolinite 

with a concentration o f  0.52 g/L and a shear rate o f  45 s-1 in a five liter mixing chamber also 

show a reasonable agreement.
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(3) Assumptions o f  fractal dimensions « /(either constant or variable «/), primary practice 

sizes lp (either a single representative size Ip, or a size distribution with its mean/median value 

lp), and fragmentation distribution functions will significantly influence the model 

predictions, and should be clearly specified in every model.

(4) It is difficult to make a perfect choice for the breakup distribution function. Binary 

breakup, ternary breakup, or uniform breakup are all possible and each may perform better in 

different areas. At the current stage, the binary breakup distribution is suggested because o f 

its simplicity; nevertheless, the selection o f this parameter should be checked carefully for 

different applications.

(5) The prediction o f the steady state PSD as well as its representative size is only 

determined by the ratio o f aggregation and breakup parameter CyC2. A better understanding 

o f the flocculation rate is necessary to find the absolute value o f Ci and C2.

(6) Four nodes in QMOM appears the minimum to represent a single peak PSD, with a 

limitation on a small span o f floe size distribution. With seven or eight nodes, the range o f the 

floe size distribution can be extended. To simulate PSD with bi-modal or tri-modal 

distribution, more nodes are necessary and that will be a target for future research.
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List o f global symbols

a breakup kernel (aka “breakup frequency function”)

b fragmentation distribution function (aka “daughter distribution function”)

bik) &th moment o f  fragmentation distribution function

c, aggregation fitting parameter

c2 breakage fitting parameter

d\o arithmetic mean size

di2 Sauter mean size

d\i De Broukere mean size

L>so number-based median size

Fy floe yield strength

G tank averaged shear rate

Ip primary particle size

L particle size

Li nodes in the Gaussian approximation; characteristic sizes in PSD

mk £th order moment o f the PSD

n number density function

n f fractal dimension o f floes

N number o f nodes in the Gaussian quadrature approximation

No initial number density, i.e., mo (/ = 0)

q adjustable factor

t time

X location in physical space (external coordinate in the particle state vector)
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Greek letters

P aggregation kernel including collision frequency and collision efficiency 

pi dynamic viscosity o f fluid

£ properties o f particle (internal coordinate in the particle state vector 

eOj weights in the Gaussian approximation; characteristic number densities in PSD
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CHAPTER IV

A CAMERA AND IMAGE PROCESSING SYSTEM 

FOR FLOC SIZE DISTRIBUTIONS OF 

SUSPENDED PARTICLES
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Abstract

The observation o f  Floe Size Distribution (FSD) for quantitative description o f  its 

properties over a sufficient size range, from a few microns to a few millimeters, is still a 

challenge in most marine environments. In this study, an inexpensive image acquisition and 

processing system is developed for achieving this objective. Images are acquired by using a 

Sony Alpha NEX-5R camera body, a Sony E-mount to Nikon F-mount adaptor, extension 

tubes, a Nikon macro lens, and a close-up lens that can identify floes with a minimum size o f 

5 pm. The light source and camera trigger are controlled by a micro-controller that was 

assembled for this project. These images are analyzed by using MATLAB Image Processing 

Toolbox. The processed floe size and their statistical distributions are confirmed with two 

available sample sets. The validated process is then applied to measure the steady state FSDs 

of kaolinite suspensions for different shear rates, suspended sediment concentrations, 

salinities, and a selected organic matter, guar gum. Although the presence o f salt promotes 

flocculation o f suspended kaolinite, only a small amount o f salt, around 0.5 ppt, is needed to 

reach the saturation status. Thus for the test salinities (0.5, 1, 2, 3, 5, and 9 ppt), the measured 

FSDs show little difference among each other. On the other hand, guar gum affects kaolinite 

flocculation significantly and the maximum effect happens at a guar gum concentration 

around 15 mg/L when the kaolinite concentration is around 0.52 g/L. At this dosage the 

characteristic floe size is the largest.

Key words: nonintrusive camera system, image processing, floe size distribution, kaolinite, 

mixing jar experiments.

1 2 9



1. Introduction

In both freshwater (e.g., rivers, freshwater lakes, and reservoirs) and saltwater (e.g., 

estuaries, lagoons, and coastal waters) regions, abundant cohesive sediments are found in the 

forms o f  floes. Floes are highly porous and irregularly shaped three-dimensional aggregates 

that composed o f  smaller organic or inorganic primary particles or aggregates (Jarvis et al., 

2005). Their size distribution in natural waters is a critical factor for determining the settling 

velocity and deposition rate o f  cohesive sediments, which will significantly affect various 

economic and ecological issues in the watershed. For example, billions o f dollars are spent 

each year on dredging shipping channels, maintaining harbors, and managing locks along the 

channels. High turbidity caused by the abundance o f floes limits the penetration o f sunlight 

into the water, which hinders the growth o f water plants by inhibiting photosynthesis and 

affects the sight o f foraging aquatic animals. Contaminants attached to these fine cohesive 

aggregates might move into food chains through organismal feeding activities and thereby 

threaten the entire ecosystem.

Floes usually have a wide range o f sizes (i.e., from a few microns to a few millimeters, 

and marine snow may be much larger than normal floes) in the water column due to 

aggregation and breakage. Accurately determining the Floe Size Distribution (FSD) is the key 

to address the flocculation processes. Many techniques have been developed to find the FSDs 

o f cohesive aggregates either in laboratories or in the field. Some instruments can only 

provide an averaged characteristic particle size rather than the entire FSD, such as 

photometric dispersion analyzer (Hopkins and Ducoste, 2003) and acoustic backscatter 

system (Smerdon et al., 1998). Although earlier instruments such as the Coulter Counter can
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provide a full spectrum of FSD, these instruments will lead to biased FSD results. This is 

because floes are disrupted under the created high shear when particles enter the orifice so 

that it can only be used to identify size distributions o f  non-breakable material, e.g., granular 

sediments (Gibbs, 1982; Eisma et al., 1991).

Advanced in-situ methods to measure the FSDs include laser-based approaches and 

image-based approaches. Two different series o f laser instruments based on beam reflection 

and beam diffraction have been developed. Laser reflection based instruments include the 

Par-Tec laser backscatter instrument that is capable o f detecting particles with size o f 1 -  

1000 pm (Phillips and Walling, 1995). The emitted laser beam is focused on a point close to 

the probe, and reflected by the particle surface when the beam encounters the particle. The 

beam spot is rotated by a rotating focusing lens, and the rotation speed o f the lens, as well as 

the duration o f the reflected laser pulse, determines the size o f particle. This instrument has 

the merits o f working at high Suspended Sediment Concentration (SSC) when compared with 

the instruments that rely on light transmission (Liss et al., 2005). However, basic criteria for 

correct measurement with a reflection laser counter, such as good homogeneity in the 

suspension and the uncertainty in hydrodynamic conditions, solvent, temperature, and focal 

point position (Monnier et al., 1996), make such instruments more suitable for process 

control than for studying flocculation processes in natural systems (Liss et al., 2005).

Laser diffraction instruments are now widely used to determine the FSDs. When a laser 

beam passes through a particulate, large particles scatter light at small angles and vice versa 

for small particles. The angular scattering intensity data are recorded and transferred to FSDs 

using Mie theory (e.g., Eshel et al., 2004), assuming a volume-equivalent sphere diameter.
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One such instrument is the Malvern particle size analyzer that can identify particles with sizes 

o f 0.01 -  3500 pm (for Mastersizer 3000, or 0.1 -  1000 pm for Mastersizer 3000E, or 0.02 -  

2000 pm for Mastersizer 2000). Although this instrument can provide a large range o f particle 

sizes and modified by Bale and Morris (1987) for field use, operational problems and a high 

cost o f the apparatus limit the in situ measurement using this instrument (Phillips and Walling, 

1995). Besides, if the FSDs are determined based on the samples from collection bottles, the 

sample procedure (e.g., collection, transport, and storage) itself will more or less disturb the 

floes even when analyzing the sample immediately after a cruise. Nowadays, the 

commercially available LISST (Laser In-Situ Scattering and Transmissometery, Sequoia 

Scientific Inc., WA, United States) is one o f the most popular instruments that is used for 

in-situ measurement o f volume-based FSDs with 32 size classes (Agrawal and Pottsmith, 

2000). Physical disturbances that might break up aggregates or floes are minimized since the 

LISST does not pump samples. Thus, this instrument has the advantage o f in situ use, and can 

estimate the settling velocity as well when combined with the OBS (Optical Backscatter 

Sensor) instrument (Mikkelsen and Pejurp, 2001; Fettweis, 2008; Shao et al., 2011). 

Nevertheless, the LISST results will usually miss either large floes (e.g., LISST Type-C with 

size range 2.5 -  500 pm) or clay-sized primary particles around 2 -  4 pm (e.g., LISST 

Type-D with size range 7.5 -  1500 pm). Uncertainties o f LISST may arise in stratified and 

high SSC environments. For example, Styles (2006) pointed out that salinity fluctuation leads 

to scattering at narrow forward angles indistinguishable from particle scattering, and Agrawal 

and Pottsmith (2000) indicated that multiple-scattering effects may occur Mien the total 

transmission is lower than 30% for a high SSC. Besides, LISST is usually difficult to find
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FSDs in small physical environments (e.g., a relatively small tank) without sampling because 

o f its large size (i.e., 81 cm height, 13.3 cm diameter).

Image-based approaches are another widely used method to directly observe the floes 

and find the FSDs. Among these available approaches, images can be acquired either using 

microscopes or cameras. The microscope has the advantage o f allowing individual particles 

to be viewed at high magnification, and give a good description on floe shape and even their 

internal structures. To use this approach, a small sample o f suspended particles should be 

settled on a microscope slide for acquiring floe images (de Boer and Stone, 1999). The use o f  

wide-mounted pipettes is a common method for floe extraction. Such extraction, however, 

may break up the floes, even use large enough tube, such that the results cannot represent a 

true FSD. Thus, this method may only be ideal to identify the size distribution of primary 

particles or strong floes.

Digital or video cameras that take images through a transparent wall, either in 

laboratories or at fields, can also be used to find FSD. Although they are limited by the 

concentration o f particles in suspension and floes are only observed as two-dimensional 

projections, the ability to measure FSDs with low disturbance and the wide size range (a few 

microns to a few millimeters) make it preferable for both field and laboratory use. Lower 

limit o f resolution depends on the camera setup, which has been designed to detect particles 

down to 4 pm (Eisma et al., 1990). Examples o f recent camera-based systems includes 

INSSEV system (IN Situ SEttling Velocity) developed by Fennessy et al. (1994), later 

improved by Manning and Dyer (2002), PICS system (Particle Imaging Camera System) 

designed by Smith and Friedrichs (2011), and RiPSCam system (Remote In situ Particle
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Settling Camera) by Cartwright et al. (2011). The INSSEV system used a two-chamber 

device with an underwater video camera observing the floes when they settle within a lower 

settling chamber. The PICS system combines the techniques o f PIV (Particle Image 

Velocimetry) and PTV (Particle Tracking Velocimetry), using the former tracking small 

particle velocities (also as proxy for fluid velocities) and the latter tracking large particles 

velocities. The RIPSCam system used an electro-optical underwater Ethernet cable to connect 

the camera with a surface buoy that provided solar power to the batteries o f the camera and 

transmitted data via a cell modem. Nevertheless, these instruments are either preferable for 

individual floe size monitoring only and sensitive to physical vibration (e.g., INSSEV), or 

have to combine with LISST instrument results to represent a wide range FSD due to the 

limitation o f  minimum floe size (e.g., 30 pm for PICS, and 20 pm for RIPSCam) that can be 

detected. In this study, the design o f an automatic image acquisition camera system with a 

better image resolution for estimating FSD is presented. This is the first objective o f this 

study.

Many image analysis methods, especially the use o f MATLAB Image Processing 

Toolbox and ImageJ, are described in various literatures. ImageJ (Rasband, 1997) is an open 

source, freely available, Java-based program developed at U.S. National Institutes o f Health 

that applicable to display, edit, analyze, save, and print images (e.g., Mazzoli and Moriconi, 

2014; Tajima and Kato, 2011; Collins, 2007). Although ImageJ performs as well as MATLAB 

Image Processing Toolbox and runs much faster, it does not provide routines to distinguish 

out-of-focus and in-focus objects (Keyvani and Strom, 2013). For this reason, as well as to 

more precisely handle the processing procedure, the MATLAB functions are used in this
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study to read, enhance, and analyze the acquired images. The processed results are compared 

with two commercially available artificial particle sets, with their images also acquired by 

using a microscope. This validation o f the image processing is the second objective o f this 

study.

Since kaolinite is commonly used as representative cohesive sediment in laboratories, 

and is one o f  the four abundant clay minerals (the other three are illite, montmorillonite, and 

chlorite) in the natural environment, this newly developed camera system and image process 

software is also used for pure kaolinite with different shear rates and SSCs. Additional 

experiments were used to check the effect o f salinity and a selected organic matter on 

flocculation o f  kaolinite suspensions. That is the third objective o f this study.

2. Experiment setup

2.1 Camera body and lens assembly

Floe images were collected using a Sony Alpha NEX-5R camera body and other lens. 

This camera body is selected because o f two reasons: (1) its small size so that it can fit into a 

6" pipe for field application, and (2) its large image sensor size, 23.5 x 15.6 mm with 4912 * 

3264 pixels. This translates to 4.8 pm per pixel. In order to let anticipated small floe images 

down to 5 pm but still has a large enough number o f particles within the viewing window to 

have meaningful statistics on FSD, there are some lens modifications necessary to have a 

Subject-to-Image Ratio (SIR) around 2.2 and a view window around 10.7 mm * 7.1 mm. 

These modifications include (1) using a Nikon Macro Nikor 55 mm lens, set at SIR = 2 : 1 ,  

with a NEX E mount to Nikon F mount adaptor, (2) adding three Kenko extension tubes (36
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+ 20 + 12 mm) before the Macro lens, and (3) adding a +10 close-up lens on the macro lens. 

This lens combination was checked by taking a ruler image, i.e., the ruler subject around 10.7 

mm long has an image o f 23.5 mm. This means the image resolution increases to 2.2 pm per 

pixel. The depth o f focus is around 2 mm, which was estimated by taking an image o f a ruler 

that is attached to the hypotenuse o f a triangle stand. Working distance between the subject 

and the lens is around 23 mm, which allow this camera system to acquire images through a 

transparent wall or cover with a maximum thickness around 21 mm. The aperture is set with 

its maximum value f/2.8 to allow more light passing through and blur the out-of-focus 

background, the shutter speed is set at least 1/1000 s to freeze the moving particles, and the 

ISO is set 100 to minimize image noise.

Three common issues must be addressed in a camera system: (1) the minimum number 

o f pixels to define a floe; (2) types o f light source; and (3) types o f background. The first 

issue usually depends on the noise o f the camera system and varies for different applications. 

For example, Maggi et al. (2007) represented FSDs with minimum size class 6.42 pm and 

their camera has resolution o f 6.42 pm per pixel, which indicates they use as low as one pixel 

to represent a floe. Lintem and Sills (2006) define a floe as at least two interconnected pixels. 

It seems that using at least 3 x 3 pixels to identify a floe is the most common selection 

(Mikkelsen et al., 2004; Kumar et al., 2010; Smith, 2010; Smith and Friedrichs, 2011, 2015; 

Keyvani and Storm, 2013). In this study, the sample spherical seeding particle with size 2 -  

20 pm (80A7001, Dantec Dynamics) is used to determine the minimum floe this system can 

identify. Details o f that will be presented in section 3.7.

For the second issue, since a quick shutter speed (e.g., 1/1000 s) is required to freeze the
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moving particles, extra light sources are required to illuminate particles. Light Emitting 

Diode (LED) illumination (e.g., Manning and Dyer, 2002; Smith and Friedrichs, 2011, 2015; 

Keyvani and Strom, 2014) or laser sheets (e.g., Lintern and Sills, 2006; Maggi et al., 2006) 

are the two most popular light sources. Laser sheets are considered to be stronger and more 

capable o f penetrating water columns with more suspended particles when compared to LED 

light sources (Lintem and Sills, 2006). However, human eyes might have a chance to be 

injured by the strong laser beams when looking at the lens (which is assembled with laser 

light source) incautiously without appropriate protection. On the other hand, LED has the 

advantage o f inexpensive, small, safe, and easy to handle. In this study, twelve LEDs are 

selected and mounted around the camera lens to provide light.

For the third question, both front-illumination (e.g., Van Leussen and Comelisse, 1993; 

Maggi et al., 2006; Lintem and Sills, 2006) and back-illumination (e.g., Fennessy et al., 1994; 

Manning and Dyer, 2002; Kumar et al., 2009, 2010; Keyvani and Strom, 2013; 2014) have 

been used in different applications. Back-illumination displays particles as dark objects on a 

light background. Such a setup can reduce image smearing and make the floes more clearly 

visible due to high contrast (Fennessy et al., 1994; Manning and Dyer, 2002). However, it is 

difficult to install a strobe light behind the subjects (i.e., make the subject between the camera 

and the light source) for field extensions. Front-illumination displays particles as bright on a 

dark background. Although such setup may cause “smearing” (because the camera gain have 

to work at maximum, which results in slowly decaying bright tail behind fast moving 

particles, as indicated by Fennessy et al., 1994) and make the image generally be represented 

as dark without image contrast, the light source is easy to assemble with the camera at the
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same side. Besides, the error caused by “smearing” can be reduced by further judging the 

gradient o f  the light intensity between several consecutive pixels (see more in Section 3.5). 

For these reasons, front-illumination is applied in this study.

2.2 Camera Control

To continuously take hundreds o f photo images every 2 s, releasing the shutter button 

and turning the LEDs on and off manually is not a practical method. For this reason, an 

electric control system was assembled to trigger the camera for acquiring images and control 

LED light source automatically (Fig. 4.1). The key electronic components in this circuit are 

the electronic switches, i.e., the relay TQ2SA-5V (marked as Q l) and the Field Effect 

Transistor (FET, marked as Q2), and the microcontroller (Teensy 2.0) which is used to 

control the above switches. The relay Ql connects its Pin 3 and Pin 4 when an input 5V is 

applied in Pin 6, while disconnects the two pins when the voltage input is low (less than 1 V). 

The FET Q2 has three pins: Drain (D), Gate (G), and Source (S). The function o f a FET is to 

open the connection between the drain and the source by applying a logical low voltage 

signal at the gate pin. I f  a logical level high voltage (i.e., more than 4 V) is applied between 

gate and source, the drain and source will be connected.

A DC power supply (either an adaptor that transfers 100V -  240 VAC to 15V DC, 2A, or 

a set o f four 18650 lithium rechargeable battery that provides 15V, 2.3 AH) is needed to 

power Unit 1 through Pin 2 of J l. The microcontroller controls the LED flush light and the 

operation o f photo taking. J2 connects to the camera remote control, and J3 connects to the 

LED module. A positive 5 V voltage regulator (V2) changes the supplied 15V to 5V to
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provide power for the Teensy 2.0, and another voltage regulator VI changes 15 V to 3 V to 

power the camera remote control.

The microcontroller is programmed to launch two 5 V pulses to control the two switches 

Q l and Q2 through Port B1 and B2, respectively. If Port B1 (connected to Pin 6 o f Q l) is 

high (5 V), Q l will close its Pin 3 and Pin 4 to trigger the NEX 5’s remote control for 

picture-taking. After about 0.1 s, the Port B1 becomes low (0 V) and Ql will disconnect its 

Pin 3 and Pin 4 and wait for the next high to trigger the camera. Similarly, if Port B2 

(connected to gate o f Q2) is low, Q l will be an open switch and the LEDs are turned off. 

When Port B2 is high, Q2 is a closed switch and the LEDs are turned on.

It is noted that the LED light is spreading up to ± 60 degrees. The strongest luminance is 

at 0 degree and decreasing with the angle. Since the image window is only 23.5 * 15.6 mm 

(much smaller than the cross-section o f the lens), the LEDs are mounted in such a manner 

that they are tilted at 45 degrees from the printed circuit board, such that emitted light is 

projected toward the subject area in order to have a much stronger light intensity for 

acquiring better images. In the LED unit, D1 -  D12 are divided into three pairs and each pair 

is connected in parallel through J3. Pin 1 o f J3 is connected to Pin 2 o f J1 which is 

maintained at 15 VDC. The reason for using this higher-than-acceptable voltage to power 

LEDs is to provide high intensive light as a flushing light. Since the duration o f  powering the 

LED is limited, i.e., 0.3 s for every two seconds, these LEDs will not be burned. Note that 

changing 15 V to 24 V is possible, but that will not significantly increase the light intensity.

The microcontroller Teensy 2.0 is programmed by using assembler language (see 

appendix o f Shen, 2016) to use Port B1 and Port B2 to control Pin 6 o f Q l and the gate o f Q2
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respectively, and thus provides pulse to control the camera and the LEDs. The 

human-readable programmed code (with filename extension .asm) is compiled to become a 

machine-readable code (with filename extension .hex) by using a compiler avrasm2.exe, and 

import to the microcontroller by using a Teensy software. Pictures are taken around every 2 s 

and LEDs are flashed 0.3 s for each snapshot. Since the time to take a shot after the camera is 

trigged is not precisely operated (between 0.2 -  0.3 s), the camera is triggered 0.2 s before the 

LED is turned on. If necessary, the duration for powering the LED can be extended to 0.4 s.

2.3 Mixing chamber

Flocculation experiments were performed in a five liter cubic mixing chamber (Fig. 4.2). 

The top and bottom plates o f the chamber are made o f 1/2 inch PVC sheet, while the walls 

are made o f plexiglass with nominal thickness 3/8 inch (actual thickness = 0.354 inch or 9.0 

mm) to allow taking snapshots from the side. The mixing chamber is equipped with a 

commercial available impeller, LIGHTNIN A310 with diameter 5.2 inch (132.08 mm), to 

provide average shear rates that are reasonable uniform in the chamber. The impeller is 

assembled with a stainless steel shaft and driven by a DC gear motor. The difference o f  this 

chamber from that used by Prat and Ducoste (2006) is that the impeller is located close to the 

bottom to generate a more homogeneous flow field in the chamber. The gear motor (30VDC,

0.8A, 94 RPM) drives a 30 teeth pulley (TP20A5W6-30) and connected to a 16 teeth pulley 

(TP20A5W6-16) via a 3/8"-wide timing belt. Ideally, this setting will provide a 1.875 times 

speed increase for the A310 impeller when compared with the original motor speed. Because 

o f the loading difference, the actual maximum rotational speed o f the impeller is 162 RPM,

1.e., 1.723 times speed up. The FSD measuring section is fixed at a location that is 11.5 cm
140



above the bottom, 8.5 cm from the side wall, and within 1 mm from the plexiglass wall.

Ducoste and Clark (1998) gave the average shear rate Gm (in unit o f s_1) in this mixing 

tank as

G =
m

p N 3D sN
 (4-1)

MV

where p is the water density (1000 kg/m3), N  is the rotational speed (in unit o f  Revolution Per 

Second, RPS), D  = 0.132 m, is the diameter o f the impeller, Np = 0.3, is an impeller-specific 

constant (Nagata, 1975; Spicer et al., 1996), V is the volume o f  the fluid in the tank (0.005 

m3), and p  is the dynamic viscosity o f water, 1.0 * 10~3 kg/(nvs).

The rotational speed o f the impeller is controlled by the input voltage of the motor. Their 

relationship represents an excellent linear relationship with R2 = 0.9997 and can be 

represented as

N  = (5.786 V o lt-10.370)/60 (4.2)

where Volt is the voltage applied to the motor in unit o f V. This system can operate between 3 

V and 30 V, which is corresponding to a rotating speed between 7 and 162 RPM o f the 

impeller. Note that Eq. 4.1 indicates that one can control the average shear rate Gm in the 

chamber by controlling the rotational speed N  o f the impeller. This means Gm has a range 

from 2 to 217 s-1. For example, shear rates 35, 45, and 55 s-1 correspond to a motor input 

voltage o f 10.1, 11.6 and 13.0 V respectively. In this study, only the spatially averaged floe 

characterizations are interested, details on the hydrodynamics characteristics within the 

mixing chamber are not studied. Nevertheless, the mean velocity flow patterns and the local 

shear rate distributions are similar to those given by Ducoste et al. (1997), and Ducoste and 

Clark (1998,1999).
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3. Image analysis procedure

The images acquired from the camera system were analyzed by using MATLAB image 

processing toolbox. Several processes were applied to the raw images prior to statistical 

analysis, and these processes include color image to grayscale conversion, background light 

removing, contrast stretching, grayscale to binary conversion, small object (noise) removing, 

dilation and erosion, on-broader particle removing, hole-filling, and pixel gradient checking. 

Although the source codes for image process are listed in the appendix o f Shen (2016) for 

further reference, the selections o f number o f cell for determining background light, 

thresholds to covert to binary image, and critical gradient to remove out-of-focus particles 

and noise after thresholding in the following discussions are highly empirical and should be 

checked for different applications.

3.1 Change color images to gray scale

Each image taken from using this system, although appearing dark in general, is a RGB 

image that stored in a 3D matrix with dimension 3264 x 4912 * 3 in which “3264 x 4912” 

denotes the total pixel number o f the image and “3” denotes the three color intensities o f each 

pixel in red, green, and blue. This RGB image is first converted to a greyscale image by 

eliminating the hue and saturation information while maintaining the luminance. Here after 

we call this greyscale image the “original image”. The original image is stored as a 3264 x 

4912 matrix with each component displayed as an 8-bit unsigned integer to present the 

intensity o f a pixel ranging from 0 (black) to 255 (white). Take the coated hollow glass 

particles (See Section 3.7) as an example, the complement (i.e., black and white are reversed,
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which means each pixel value is subtracted from the maximum value 255 and the difference 

is used as the pixel value in the output image) o f a greyscale sample image is displayed (Fig. 

4.3a). Note that since abundant small particles around 10 pm are obtained in one image in 

this example, only the central 1/27 * 1/27 region o f the image are represented in Fig. 4.3a. 

The image histogram (the distribution o f  image light intensities) shows the intensity o f this 

original image concentrated in the range o f 50 to 100. For a well-exposed image, the 

brightness values (from 0 -  255) in the image histogram should ideally cover the entire range 

without clipping black or white. However, images acquired in this study usually are presented 

as low contrast. The narrow band histogram (50 -  100) with empty regions at the dark side 

( < 50) and bright side ( > 100) o f the histogram shows that many o f the possible brightness 

levels are not used. Visibility o f the original image can be improved by reassigning the usable 

limit o f  histogram by stretching the narrow band (50 to 100) histogram into a full band (0 to 

255). This means changing the darkest pixels (with light intensity o f 50) to black (light 

intensity to 0) and the lightest (light intensity o f 100) to white (255), and in between linearly 

interpolated. With this stretch out, the visual contrast improves significantly (Fig. 4.3a). 

Notice that although a stretched image now displays the full range between black and white, 

it also causes a problem by filling up the gaps in the histogram with interpolated light 

intensity. Therefore, non-uniform illuminated background noise should be removed first.

3.2 Uneven background subtracting

Background light may be strong in some places but weaker in others. Actually, such 

perfect background illumination does not exist at all, since lenses or cameras may cause
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vignetting in which the comers o f the image are darker than the center (the light is partially 

absorbed by greater path length in the optics and reduced by the change in the effective 

aperture o f the lens, as shown by Russ, 2011). A contrast or thresholding for the original 

image will lose the particles in bright background without removing the background in prior.

The background might not always be apparent from looking at the image with naked 

eyes. It can be detected by dividing the original image into small areas such that the 

minimum value o f each area is considered as background. The selection o f these small areas, 

however, depends on different applications. For example, Keyvani and Strom (2013) 

indicated that a circle subdomain with diameter 50 pixels gave the optimum result. Generally, 

this element structure cannot be either too small (probably larger than the estimated largest 

floes), or too large (cannot detect high resolution background). By trial and error, a square 

with 300 pixels on each side was selected as the “block” in this study for all images.

The background o f the original image (Fig. 4.3a) is calculated and displayed in Fig. 4.4. 

Since there are 4912 x 3264 pixels in the original image, 16 x 10 square blocks are used to 

show the minimum in each block. It clearly shows that the light is weak in the top left and top 

right corners while strong in the south center o f the image. Thus, the background light 

intensity for each pixel can be re-interpreted as a continuous form by linear interpolation o f 

the estimated background. The background is then subtracted from the original image before 

contrast adjustment. After background removal, the complement image (Fig. 4.3b, after 

contrast stretch to better examine the image in printed form) shows these particles more 

clearly.



3.3 Contrasting and thresholding

Now the image is a bit too dark with most o f its histogram concentrated on a narrow 

range. An enhanced contrast is necessary before converting this greyscale image into a binary 

image. Contrasting rescales the image intensity by redistributing the pixel intensity values 

between the minimum and the maximum intensity values. However, a simple default 

adjustment that rescales intensity from 0 to 255 usually cannot successfully “enhance” the 

image because it generates noise after subtracting the background. This noise may magnify 

after the thresholding. Here, the image contrast (using MATLAB function “imadjust”) is 

applied with a non-linear intensity rescale using a parameter y. If y < 1, the mapping will be 

brighter; if y > 1, the mapping will be darker; and y = 1 denotes linearly rescaling. In order to 

make the darker noise (since particles should be bright) closer to the background, a nonlinear 

mapping is selected with y = 2 for coated hollow glass particles and kaolinite (or y = 4.2 for 

polystyrene latex) by using the trial-and-error approach. Also, input intensity value for the 

contrast should be clipped since most o f the intensity is close to black side. Again by 

trial-and-error, this value is selected as 0.2 for the coated hollow glass particles, while 0.1 is 

used for polystyrene suspensions and kaolinite suspensions.

Then it is the time to select a threshold algorithm to convert a greyscale image into a 

binary image. Thresholding is a process that defines a threshold and sets all pixels with 

intensity higher than this threshold changing to white pixels (symbol 1), whereas the 

remaining are set to black (symbol 0). It is not uncommon to specify a threshold value 

manually (Curran et al., 2003). For an experiment with a large set o f images, it is impossible 

to choose a single threshold for all images (Lintem and Sills, 2006) without post-processing
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such as pixel gradient checking. Various automatic threshold methods are also suggested in 

the literature. For example, Otsu’s method (Otsu, 1979) is selected as the built-in threshold 

function in MATLAB’s tool box. This method provides a relatively low threshold such that it 

may include more noise in the resulting binary figure (Lintem and Sills, 2006). Maggi et al. 

(2006) suggest a threshold method that is based on rescaling the bi-modal histogram 

distribution into two Gaussian distributions to represent the background and foreground 

respectively, and select the intersection point o f the two distributions as the threshold. 

However, when a clearly bi-modal histogram is unobvious, this method is hard to apply. 

Keyvani and Storm (2013) empirically found the “Yen method” (Yen et al., 1995; Sezgin and 

Sankur, 2004) works best for their applications. However, this method probably will mistake 

a larger out-of-focus particle for a small in-focus particle. For this reason, it is excluded in 

this study. The iterative method developed by Lintem and Sills (2006), and later 

recommended by Smith (2010), cannot display satisfied segmentation in this application. 

Since none o f  the threshold methods are generally robust, by trial-and-error, a single 

threshold (for kaolinite suspensions) or Otsu’s method (for sample particles) is selected in 

this study. For example, Fig. 4.3c shows 11 particles (No. 1 -  N o .ll)  remaining after 

thresholding for the polystyrene particles. Notice that the noise after thresholding can be 

further removed by checking the gradient (Section 3.5).

3.4 Binary image processing

Before a pixel-defined floe can be clarified after comparing the results with the sample 

particle, it is safe to assume the minimum floe cannot be smaller than 2 x 2  pixels for a
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front-illumination setting. Thus, small objects with area smaller than 4 pixels or minor axis 

length smaller than 2 pixels are firstly removed as noise. In Fig. 4.3c, particle No.9 is first 

removed as such noise. Secondly, dilation and erosion are applied as basic morphological 

correction procedures (e.g., Lintem and Sills, 2006; Shih, 2009; Smith and Friedrichs, 2011). 

These two processes denote adding and removing a “structure” from the outside edge o f each 

floe and do not have an effect on solid floes to avoid mistaking a faint floe for neighborhood 

small floes. The selection o f this “structure”, however, is user defined for different 

applications. Here, a 2 x 2 pixel square is selected since in our application the minimum 

particle size is generally small such that a larger “structure” might cause a biased population 

for small sized particles. After that, holes within a closed object are filled by assuming these 

holes are caused by thresholding a misty floe. Besides, incomplete particles on the border are 

removed. Note that in Fig. 4.3c, particle No.l 1 is not on the border, since only the center 1/27 

x 1/27 o f the entire image is displayed. Finally, the first step is applied again to remove small 

objects before doing pixel gradient checking.

3.5 Pixel gradient checking (i.e., in focus checking and threshold noise checking)

Floes are considered in focus if there is a steeper gradient o f light intensity near the floe 

edges because o f sudden changes in light intensity. This sudden change o f light intensity will 

not occur on out-of-focus floes. Thus, estimating the gradient o f the image intensity and 

generating a gradient matrix lg that has the same size o f the original figure /  are critical to 

identify these in-focus particles. Such gradients can be determined by performing derivative 

operations using kernels as a template matching for convolution processes (Russ, 2011). As
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an example o f the first-order derivative, the gradient (Ig) for the horizontal change (7^) and 

vertical change (l&) are determined by a convolution operation (typically using the symbol 

defined as the integral o f the product o f two functions after one is shifted, i.e., 

( /  *&)(*) = | f ( x - t ) g ( t ) d t )  between a derivative kernel (K = [Kx, Ky\) and the original
J —oo

image (7), following (Gonzalez et al., 2009)

/ „  = £ , ♦ /  (4.3)

(4.4)

Kx and Ky are a p  x p  matrix with p  usually no more than five to reduce the computation time 

(which is on order of p 2p). This selection indicates that only a limited area is considered to 

determine if a pixel is on the edge or not (Setayesh et al., 2013). The final gradient is 

estimated by using the absolute value (sometimes use square-root value) o f the two 

components (Gonzalez et al., 2009)

7H 7J + W  <4-5)

Although the Sobel kernel, which selects Kx and Ky as two 3 x 3  matrixes, is one o f the most 

widely used derivative kennels, no single edge operator kernel can guarantee its capability for 

different applications (Zhu, 1996). Thus to process sample images, different operators are 

desirable to select the best operator. The Sobel kernel, as well as other MATLAB capable 

default kernels in the “edge” function, however, merely introduce more noise and are 

impractical for this study. Thus, a two-dimensional, first-derivative Gaussian kernel was 

applied following that was given by Keyvani and Strom (2013):

K x(x ,y ) = ---------- = ----------- (4.6a)

K y = K xJ (4.6b)
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where Kx and Ky arc p  x p  matrixes w ithp  = 2m + 1, symbol “T” denotes transpose, symbol 

“prime” denotes first derivative, and g(x) is the one-dimensional Gaussian function with a  as 

the standard deviation o f the distribution.

in which m is rounded up to the nearest integer, and a  and e are user defined parameters. 

Followed those used by Keyvani and Strom (2013), a = 2 and e = 0.01 (which implies p  = 5) 

were selected for this study.

The minimum rectangle that can cover a floe is defined as the Region O f Interest (ROI) 

o f this floe. Thus, the maximum component o f Ig in the ROI region is defined as the clarity 

value dh o f a detected floe i (Keyvani and Strom, 2013):

A critical clarity value dlcr is specified throughout, above which a floe is identified as 

in-focus while below which a floe is identified as out-of-focus or thresholding noise. A value 

o f dlcr = 1 -2 was used in Keyvani and Storm (2013)’s study. However, this value relies on the 

light source intensity and background type. For this reason, it may vary significantly and is 

highly empirical for different applications. Even for the same light source, this value also 

depends on the reflection index o f the material. Using the kaolinite image as an example (Fig. 

4.5), Igi smaller than 15 indicates the pixel i is in the background or interior o f floes, Ig, 

between 16 and 21 identifies weak edges o f  out-of-focus particles, and Ig, larger than 22

(4.7)

Also

(4.8)

(4.9)

dl, =max[7g(ROI))] (4.10)
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shows strong edges are in-focus particles. Thus, dlcr = 22 is selected for finding the kaolinite 

floes in this study. The process o f removing out-of-focus particles are important, and no more 

than half identified floes are remaining after this processes, compared with around 5% given 

by Keyvani and Strom (2014). A binary figure that shows the processed particle image for Fig. 

4.3c is presented in Fig. 4.3d.

For coated hollow glass particle and polystyrene latex particles, dlcr are selected as 57 

and 32 respectively.

3.6 Floe characterization

Floe size is the most important floe property to describe a floe, and various representative 

sizes have been used to describe floes. Among the representative sizes available, the 

Equivalent Circular Diameter (ECD) L is widely used (Keyvani and Strom, 2013, 2014; 

Smith, 2010; Lintem and Sills, 2006; Flory et al., 2004; Mikes et al., 2004). ECD can be 

defined as the diameter o f  a sphere which contains the same projection area as the floe:

in which A is the two-dimensional projected floe area.

The selection o f ECD as the representative size is based on the assumption that floe size

same volume as the true floe. Although it may over-estimate the floe size since the dimension 

perpendicular to the viewing plane is generally the smallest (Jarvis et al., 2005; Allen, 1997),

(4.11)

can be represented as a volume-equivalent diameter that a sphere with this diameter has the

this estimation is still useful when sufficient number o f particles are detected. Vemey et al.

(2009) also indicated that ECD provides the closet approximation of the floe mass.
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It is important to notice that floe size alone is sometimes insufficient for distinguishing a 

floe, since it is apparent that particle with same ECD may have different shape. Circularity 

(the ratio o f the perimeter o f a sphere that has the same area o f the floe divided by the actual 

floe perimeter), convexity (the ratio o f convex full perimeter, by imaging an elastic band 

placed around the particle, divided by the actual floe perimeter), and aspect ratio (the ratio of 

the length o f the major and minor axis o f an ellipse that can be used to best evaluate the 

region o f the particle) are the most commonly used shape factors. However, no matter which 

shape factor one chooses, it is possible that floes with different shapes will have the same 

shape factor. For example, circularity might have the same value for a long ellipse shape 

aggregate and a compact, spiky shape aggregate. Moreover, although adding or removing one 

or two pixels (which can easily happen) has minimal influence on the shape evaluation o f 

large floes, it does change the shape parameter value significantly for small particles 

consisting o f  only a few pixels.

In cohesive sediment dynamics, fractal dimension is a preferable shape factor to identify 

floe shape, since this value and the floe size directly determine the settling velocity 

(Winterwerp, 1998). However, no accurate method is completely reliable to extract fractal 

dimension from 2D images (Keyvani and Strom, 2014). In reality, one usually measures the 

floe size and floe settling velocity to deduce the fractal dimension, or calculates settling 

velocity based on measured floe size and empirically determined constant fractal dimension. 

Since particle shapes are not the target o f this study, only the floe size is addressed.



3.7 Validations

Two sample particle sets with reported particle size distributions are used to validate the 

presented image analyzing procedures. The first set is Silver Coated Hollow Glass Spheres 

(S-HGS-10, Dantec Dynamics) with nominal size o f 10 pm and size range 2 - 2 0  pm. 

Using an Olympus BX51 microscope and Nikon DXM1200 digital camera system, coated 

hollow glass particles suspended in tap water (Fig. 4.6, with 400 times magnification) show 

most o f the sample particles are spherical, despite the existence o f  minor debris. These 

spherical particle images can be used to judge the image quality, thus determine the minimum 

number o f pixels needed to determine a floe. In general particles are well dispersed except for 

a few clusters. For checking the accuracy o f the presented algorithms for image process, a 

randomly selected microscope image (with 100 times magnification to allow more particles 

in one image; 1280 x 1024 pixels with resolution 0.67 pm per pixel with 673 particles) was 

processed with thresholding using Otsu’s method, grayscale to binary converting, small 

object removing (smaller than 2 x 2  pixels), dilation and erosion, and on-border objects 

removal for getting the FSD (dashed line in Fig. 4.7). Pixel gradient checking is not necessary 

since the image was taken with particles sitting on a glass plate with an excellent on-focus. 

Thus, the contrast o f particles and background under the microscope used in this study are 

excellent. This image follows the British Standard (BS3406 1963) that a minimum of 625 

particles should be included for a meaningful FSD in a microscope image (Jarvis et al., 2005). 

The resulting mean and median size o f the FSD are 10.1 pm and 8.5 pm, respectively, and

91.2 % o f the particles are smaller than 20 pm.

To acquire images o f the same set o f glass spheres using the presented camera system, a
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small amount (1 g) o f these spheres are mixed in the five-liter mixing chamber with shear rate 

o f 10 s '1. Images are taken and processed. Because o f the small magnification and the 

selected particle concentration, sufficient particles (much more than 625) in each image are 

observed. FSD from the average o f  twenty randomly selected images (Fig. 4.7, marked as 

bars) indicates a slight different distribution, i.e., more 10 pm particles are found in the 

images in the presented camera system. This result is more close to the nominal size, 10 pm, 

probably because a much larger number o f particles is used for FSD analysis. The standard 

deviation o f the twenty images (the line segments on top o f each bar) shows limited 

difference among each other suggests that 625 particles required by the British Standard 

should be sufficient. The average mean and median size o f  the FSD analyzed by the camera 

system is 9.9 pm and 8.8 pm respectively, with 96.6 % particles smaller than 20 pm. 

Although the FSD from the microscope and that from the camera show slight difference, their 

mean and median size are consist with the size range provided by the manufacturer. It also 

confirms the selection o f minimum floe size for this camera system can be as low as 5 pm 

(i.e., using 2 x 2  pixels, with equivalent diameter 2.26 pixel).

Another sample particle set is non-spherical polystyrene particles with nominal size o f 20 

microns (Made by Hebei University o f Technology, China). These particles are dispersed in 

diluted ethanol since it is difficult to disperse in tap water. Using the same microscope but 

with a 100 times magnification, the image (Fig. 4.8) shows a wide particle range and particle 

clusters because o f charges on the surface o f polystyrene particles. The FSD based on 

randomly selected two images with a total o f 837 particles show particle size varies from 4.6 

-  94.5 pm, with a mean size o f  22.7 pm and median size o f 19.4 pm (Fig. 4.9, dashed line).

1 5 3



Similar to the experiment prepared for the glass spheres, a larger amount o f polystyrene 

particles (1.5 g) are mixed in the chamber with diluted ethanol. The FSD is obtained by using 

the camera system with an average o f 50 images (Fig. 4.9 marked as bars) showing a 

reasonably matched result. Because o f large particle size, more clusters, and the different 

parameters selected in the image process, only around 50 floes have been identified in each 

image. With this limitation, the FSD have to be determined by using a number o f images. The 

exact number, however, should be selected based on the convergence o f measured FSD (i.e., 

when increasing the number o f images does not change the FSD indicates a converged FSD). 

Therefore, FSDs based on a sequential of 1, 2, ..., 50 images are evaluated (Fig. 4.10). This 

evaluation is based on the assumption that when using a total o f 50 images, with the number 

o f floe more than 2500, for analysis, the obtained FSD would be close to the true value. A 

relative difference in FSD (represented by the summation o f all the absolute differences for 

all bins in the particle number frequency distribution), as well as the difference in mean size, 

can be estimated (Fig. 4.10). It indicates that the mean size will not significantly change when 

using more than 10 images, with a difference around 10%. The difference in FSD will 

decrease continuously as the number o f images increases. FSD based on 50 images taken by 

this camera system (Fig. 4.9, marked as bar) results in a mean size o f 20.0 pm and a median 

size o f 15.7 pm for a total o f 2675 particles. When showing the difference in each bin o f each 

FSD (Fig. 4.11), the difference after 30 images is close to the converged FSD.

In the following application to analyze images for kaolinite suspension, FSDs based on a 

continuous 100 images (i.e., resulting in around 4 min for photo taking) are selected to 

include sufficient number o f particles.
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4. Application for kaolinite suspensions

4.1 Flocculation model

The flocculation box model based on population balance that includes the kinetics o f 

aggregation and breakage o f floes with size L is given next (Shen and Maa, 2015).

dX
dn(L,t) 

dt 2

-« (Z ,/)£ °  f)(L,X)a(L,X)n(X,t)dX +£° a(X)-b(L\ X) ■ n(X,t)dX -  a(L) ■ n(L,t)

(4.12)

where n(L, t) is the number density function defined by floe size L at time t, X is the integrand 

that has the same dimension as L, /? is the collision frequency function, a is collision 

efficiency function, a is breakup frequency function, and b is fragmentation distribution 

function. The first term on the right hand side o f Eq. 4.12 is the birth o f floes with size L due 

to aggregation o f smaller particles with size ( I 3 -  23)1/3 and X. The second term on the right 

hand side is the death o f floes with size L due to aggregation with other particles. The third 

term is the birth o f floes with size L  due to fragmentation o f bigger particles X, and the last 

term is the death o f floes with size L due to breakup into smaller particles.

For the aggregation processes, Smoluchowski (1917) suggested the shear-induced 

collision frequency /? for two particles with size I ,  and X7 under a given shear rate Gm is

P(L„Lj ) = Q l ( L ,  + L j ) 3 (4.13)
6

while the collision efficiency a is treated as an aggregation fitting coefficient, i.e., a (Li, Lj) = 

Cu which includes various bio-physical influences such as salinity and organic matters. For 

the breakage processes, the breakup frequency function a for floes with size L„ suggested by 

Winterwerp (1998), is used in this study:
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where C2 is the breakup fitting parameter, lp is the size o f primary particles, n f  is the fractal 

dimension o f  the floes, fi is the dynamic viscosity o f  the fluid, and Fy is the yield strength o f  

aggregates as determined empirically. The fragmentation distribution function describes the 

size distribution o f daughter floes after breakup, and assumes a binary breakup with mass 

ratio 1:1 in this study (Maggi et al., 2007; Mietta et al., 2008; Furukawa and Watkins, 2012; 

Shen and Maa, 2015).

Eqs. 4.12-4.14 suggest that the controlling parameters for the evolution o f  FSDs are 

explicitly limited to SSCs (indicated by the number concentration o f floes) and shear rates, 

while other effects are simply considered in the aggregation and breakage fitting coefficients 

Ci and C2. For this reason, finding a reasonable and logical range o f Ci and C2 becomes 

important because that will prevent any unreasonable modeling.

Among all the available methods for solving Eq. 4.12, a modified QMOM approach 

(Shen and Maa, 2015) has been used to simulate the FSDs with a maximum o f eight size 

classes. Using this approach, the number density term n(L, t) is converted into moment terms 

by applying moment transformation and Gaussian quadrature approximation (McGraw, 1997) 

with an adjustable factor (Su et al., 2007):

where m* is the £th order moment o f FSD, L, and a>, are the characteristic size classes and 

corresponding number densities o f FSD, N  is the total number o f size groups, and p  (can be 

selected between 1, 2, 3, or 4, depending on applications) is the adjustable factor.

(4.15)



Using Eq. 4.15, QMOM transfers the PBE (i.e., Eq. 4.12) to a set o f moment transport 

equations which is given next:

Based on this QMOM method, the lower-order moments o f FSD are tracked with high 

accuracy with a low computational cost. The results given by Shen and Maa (2015) have 

shown that the FSDs can be efficiently and reasonably displayed by the quadrature nodes (i.e., 

the characteristic sizes) and corresponding weights (i.e., the characteristic number densities). 

In this project, this approach will be applied in the mixing chamber experiment.

4.2 Model calibration and validation

To find the two coefficients, Cj and C2, pure kaolinite suspension with a SSC o f 0.28 g/L 

was prepared in the mixing chamber. It was mixed using the highest shear rate (217 s_1) for 

about 0.5 hr with the purposes to break it into primary particles in order to have the same 

initial FSD conditions, and then set to the pre-determined shear rate (45 sH) to allow the 

growth o f floes for two days. FSDs at time 47.0, 47.5, and 48.0 hr are collected and the 

average is used to represent equilibrium FSD. These three selected durations are all longer 

than 33.3 hrs reported by Keyvani and Strom (2014) for achieving the equilibrium state in 

their 13 liter mixing chamber. By selecting C\ -  0.85 and C2 = 3.2 x l O - 5 ,  the flocculation 

model can produce a FSD that is close to the measured FSD (Fig. 4.12a). The differences on 

mean and median size are only 0.3 pm and 3.7 pm, respectively (Table 4.1). Then the model
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was using the same C, and C2 for the same concentration 0.28 g/L but a higher shear rate, 55 

s-1. Good comparison can be concluded (Fig. 4.12b), with the differences in mean and 

median sizes only 0.8 |xm and 2.4 pm, respectively (Table 4.1).

The SSC is then changed to 0.52 g/L for two shear rates, 35 and 55 s~\ respectively. 

Mietta et al. (2009) pointed out that 35 s-1 is probably the minimum average shear rate that 

can be used in this kind o f mixing chamber experiment. This is because a smaller Gm will 

affect the prediction o f FSD by reducing SSC as a result o f particle deposition on the bottom 

of the chamber. Keynavi and Storm (2014) also selected this minimum shear rate 35 s-1 in 

their experiment. Therefore, no study for shear rate smaller than 35 sH was tested. The 

measured mean size for SSC = 0.52 g/L and G = 35 s_I is 38.4 pm, which is close to the 

reported mean size which is around 37 pm from a settling column experiment for pure 

kaolinite o f  SSC 0.5 g/L for the same shear rate (Maggi et al., 2007; Mietta et al., 2008). 

Results have shown reasonable modeled FSDs when comparing with experimental results 

(Fig. 4.12 c, 4.12d). The relative errors o f mean and median sizes for the two cases in this 

study are no more than 5 % (Table 4.1).

The above experiment shows that for the same SSC, higher mean and median sizes result 

from a lower shear rate. For the same shear rate, higher mean and median sizes result from a 

higher SSC. The modeling results also match the conclusion.

4.3 Effect o f salinity

In fresh waters, positive charges on the edge o f a clay particle and negative charges on 

the face lead to a face-edge attachment that constitutes a floe card-house structure (Lintem,
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2003). In saline water, the double layer is depressed and the attractive van der Waals force 

dominates so that the floes are more likely to come into close contact. It is generally accepted 

that there is a critical salinity and above which no further flocculation is promoted (e.g., see 

Krone, 1962, using settling velocity as an indicator o f flocculation). This threshold, however, 

depends on different clay mineral and sediment compositions.

In this study, the effect o f salinity on pure kaolinite was explored for kaolinite SSC = 

0.28 g/L and shear rate G = 55 s_1. Six experiments in total were conducted continuously with 

each one lasting for 24 hrs. Rock salt was mixed with tap water in the chamber to make an 

initial salinity o f  0.5 ppt. The highest shear rate was first applied for 0.5 hr to break all floes. 

Then the shear rate was dropped to 55 s_1 and run for another 23.5 hrs. FSDs were measured 

at 23.0, 23.5, and 24.0 hrs using the camera system. The average o f these three FSDs was 

selected as the equilibrium FSD. After the third measurement at 24 hrs, a proper amount o f 

rock salt was add to increase the salinity to 1 ppt, and the same procedures on applying the 

two shear rates and measurements of FSDs were repeated. With this, the effect o f  the six 

salinities (0.5, 1, 2, 3, 5, and 9 ppt) on FSD for kaolinite was measured. Results (Fig. 4.13) 

show that all the six FSDs are close, except at floe size equal to 38.4 pm, where more 

particles are available for salinity 0.5 and 1 ppt. The similar results demonstrate that the 

critical salinity for affecting the flocculation process o f pure kaolinite might be as low as 0.5 

ppt. This is consistent with the results (0.6 ppt for kaolinite mineral) reported by Ariathurai et 

al. (1977), and referred to and revised by Mehta (2013). Applying C\ = 0.95 and Ci = 1.7E-5 

(Table 4.1), all experimental FSDs with salt were simulated with one curve, and matched well. 

Compared with pure kaolinite for the same SSC and shear rate (Fig. 4.12b), the mean, median,

and peak are shifted from 24.7, 20.9, and 27.6 pm to 37.9, 30.0, and 38.4 pm respectively.
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4.4 Effect o f organic matter

Suspended particle coated with organic matters are always presented in estuaries. 

Organic material bounded on the particles might either reinforce the flocculation (e.g., 

organic matter consisting fibers and mucal films secreted by bacterial activity, see Dyer, 

1985), or reduce the flocculation (e.g. decomposed organic matter as a result o f higher water 

content, see Mitchell and Soga, 2005). Organic matter content affects the inter-particle 

attraction or adhesion and negatively correlates with the bulk density o f a cohesive soil 

(Avnimelech et al., 2001). In this study, guar gum (G4129 SIGMA, CAS 9000-30-0) was 

selected as a representative Extracellular Polymeric Substances (EPS) (Tan et al., 2012) 

which is the analog representative o f neutral microbial exopolymers. Guar gum is a neutral 

(i.e., nonionic) plant polysaccharide found in the seed o f Cyamopsis tetragonoloba (Kumar, 

2000). Once dissolved, it results in a viscous and pseudoplastic aqueous solution if the 

concentration is high enough. The existence o f hydroxyl groups and lack o f carboxylic acid 

groups renders guar gum a neutral polarity in water.

The differences between the procedures carried out for checking salinity effect on 

flocculation are as follows: the effect o f guar gum concentration on kaolinite flocculation was 

prepared independently, i.e., each kaolinite and guar gum mixture was prepared separately 

and discarded after the experiment. For each experiment, weighted guar gum powder was 

added to the kaolinite suspension and mixed for 0.5 hour with the maximum shear rate. Then 

the shear rate was dropped to 55 sH and run for another 23.5 hrs. Three FSDs were collected 

at 23.0, 23.5, and 24.0 hrs, respectively, and their average was assumed as the FSDs at the 

equilibrium status. The other difference is that an OBS was mounted at the comer o f the
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chamber, with the sensing elevation at the same level as the image window when measuring 

FSD, pointing toward the center o f the chamber to measure the change o f  kaolinite SSC. It is 

well-known that to convert OBS readings to SSCs, in-situ calibration is required because 

OBS response is affected by floe size as well as by SSC. Unfortunately, the calibrated 

relationship, ‘ssc = 0.000443 x (obs -  1740) with R2 = 0.9857’ where obs is the digitized 

OBS reading in units o f counts and ssc is the suspended kaolinite concentration in g/L, is 

only conducted during the time when the maximum shear rate is applied. For this reason, it is 

impossible to separate the two contributions (i.e., by the decrease o f kaolinite SSC or by the 

increase o f floe size) that cause the decrease o f OBS readings (Fig. 4.14). The small decrease 

o f suspended kaolinite concentration with time is possible because there are always small 

areas near the bottom edges o f  the chamber where the bed shear stress is small and favorable 

for deposition. The change o f floe size is also confirmed by the measurements (Figs. 4.15 and 

4.16). The initial suspended kaolinite concentration is 0.54 g/L with possible variation 0.01 

g/L and the final (after 24 hrs) concentration is 0.52 g/L with the same possible variation. 

These two concentrations are estimated using the calibration equation and ignore the 

contribution o f the change in floe size and the possible small amount o f deposition. Although 

the change o f OBS reading is small, less than 5 %, it is marked for future study.

As the guar gum concentration increases, a secondary peak in FSD emerged around 144 

jim (Fig. 4.15, see the FSD with guar gum dosage at 15 mg/L). At a higher dosage, the 

secondary peak diminishes while the span o f size range becomes larger than that for low 

dosages. The change o f  mean and median size with guar gum concentration also shows that 

there is an optimal dosage to form the largest mean and median floe sizes (Fig. 4.16). This
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finding consists with Furukawa et al. (2014)’s observation, although they are studying a 

different clay mineral (i.e., montmorillonite) so the optimal dosages are different. Different 

from that given by Tan et al. (2012, 2014) and Zhang et al. (2013) for guar gum and 

kaolinite mixture, this study does not show comparable bi-mode or tri-mode on FSD. This 

may be because they circulated water between their mixing jar and a small tube for 

measurement. In addition, the shear rate in their measuring section is very different from that 

in their mixing jar where floes are developed.

Since a relatively high number o f larger floes exist because o f the guar gum effect, it is 

generally difficult to give satisfying modeling results for both FSD and representative size at 

this time. This is probably a limitation o f this current model because only a maximum o f 

eight size classes is allowed. Despite this weakness, an example of FSD for guar gum 

concentration 5 mg/L (Fig. 4.17) matches reasonably with the difference in predicted and 

experimental mean and median size o f 4.9 pm and 3.1 pm, respectively. There are two 

possible ways to improve the model: (1) relax the assumption o f constant Cj and C2, and (2) 

increase the number o f nodes from 8 to 16. However, these are left for future studies.

5. Conclusions

An image acquisition and analyzing system has been developed for measuring floe size 

distribution (FSD) with a minimum floe size o f around 5 pm, represented by 2 x 2 pixels. 

This system has been validated with sample particle sets that have given particle sizes and 

size ranges. Afterwards, it was applied to explore the effects o f SSC, shear rate, salinity, and 

an organic matter (guar gum) on kaolinite flocculation. The flocculation model developed
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previously for simulating FSD (Shen and Maa, 2015) was also applied to mimic the 

measurements with reasonable agreement. Specific conclusions include:

(1) This study shows the development o f an inexpensive camera system that uses a Sony 

Alpha NEX-5 camera body, a Nikon micro lens, three extension tubes and a close-up lens to 

achieve a subject to image ratio o f 1: 2.2, which translates to a resolution o f 2.2 pm per pixel.

(2) Multiple LEDs were powered with over-voltage to provide the minimum light source 

required for synchronizing the operation o f the camera system with a shutter speed o f  1/1000 

s in order to freeze fast moving objects.

(3) Floe size distributions have been processed using MATLAB Image Processing 

Toolbox, through the process o f background removal, thresholding, small object (noise) 

removal, dilation and erosion, on-broader particle removal, hole-filling, and pixel gradient 

checking. The selection o f  the threshold value and critical gradient depends on particle 

properties and ambient environments. Thus, the use o f these values for other applications 

should be checked.

(4) Although the existence o f salt promotes kaolinite flocculation, the effect will be 

saturated when the salinity is as low as 0.5 ppt.

(5) The effect o f guar gum on kaolinite flocculation is highly dependent on its dosage. 

For kaolinite concentration c = 0.52 g/L, the maximum equilibrium mean (56.6 pm) and 

median size (35.2 pm) appears when guar concentration cg,ar = 15 mg/L.

(6) The current flocculation model, which uses a constant aggregation and breakage 

fitting parameter Ci and C2 with 7 size classes, can reasonably simulate the floe size 

distribution as well as its representative size for pure kaolinite with or without salt. For
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kaolinite with a high content o f organic matters, however, it is sometimes difficult to match 

both the FSD and the mean size. This could be improved further by using more nodes when a 

high accurate compiler is available or when a better understanding o f the aggregation and 

breakage processes is available.
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Table 4.1 Summary o f experimental conditions, camera measurement results and model 

simulation results.

Case c (g/L)
G

(s_1)
Salt Cguar

(mg/L)
T f

(hr)
d \ m

(pm)
<^10E

(pm)
^5 0 M

(pm)
T>50E

(pm)
c , c 2

1 0.28 55 No 0 48 25.5 24.7 18.5 20.9 0.85 3.2E-5

2 0.28 45 No 0 48 26.9 27.2 19.9 23.6 0.85 3.2E-5

3 0.52 55 No 0 48 34.7 32.9 25.8 25.8 0.85 3.2E-5

4 0.52 35 No 0 48 38.8 38.4 28.9 30.2 0.85 3.2E-5

5 0.28 55 Yes 0 24 37.1 37.9 27.9 30.0 0.95 1.7E-5

6 0.52 55 No 5 24 32.2 37.1 24.2 27.3 1.0 4.4E-5

7 0.52 55 No 10 24 - 45.4 - 28.8 - -

8 0.52 55 No 15 24 - 56.6 - 35.2 - -

9 0.52 55 No 20 24 - 47.7 - 29.9 - -

10 0.52 55 No 30 24 - 40.0 - 22.3 - -

Note: c -  kaolinite weight concentration; G -  shear rate; c-guar -  guar gum concentration; 7/ 

-  measuring time which is representing equilibrium state; Jiom -  model predicted mean size; 

i/ioE -  experimental measured mean size; D 50M -  model predicted median size; £>soe -  

experimental measured median size.
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Fig. 4.1 Electric circuit for controlling camera for picture taking and LED light. D1 to 

D12 are the same surface mounted 1 watt white LED OVSPW1BCR4. C l to C4 are 

capacitors with the number marked in unit o f  pF. Other electronic components are marked 

in the figure.

1 7 5



(4) Pulley (§) Belt ( | )  Pulley 
TP20A5W6-30 TB20EF6-85 TP20A6W6-16

17.1 cm

Top
bearing

(1)PVC 
top plate

36VDC 
Brevel _  
gear motor

shaft

(§) Plexiglas: 
wall

A310 
Impellei

(2) PVC bottom plateBottom bearing,
Teflon

(a) Side View (b) Top View

Fig. 4.2 The mixing chamber. The impeller is installed 4 cm above the bottom. The 

maximum chamber-averaged shear rate is 217 s-1.
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Fig. 4.3 Example o f  image analyzing procedure for silver coated hollow glass spheres 

with nominal size 10 pm. (a) Original greyscale figure, (b) after background removing, 

(c) after thresholding, and (d) after removing out-of-focus particles. Note that (a) and (b) 

are displayed as its negative with contrast adjustment. Since abundant particles are 

obtained in one image in this case, only the central 1/27 x 1/27 are represented in this 

diagram, so that the particle No. 11 in (c) is not on the border o f the image.
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Fig. 4.4 Example to show the different background intensity in an image 

for polystyrene particles. 1 6 x 1 0  subareas are selected to cover the entire 

4912 x 3264 pixels.

1 7 8



G
ra

di
en

t 
/.

Critical gradient for remove 
out-of-focus particle.

i n  ' 7

12 14

Pixels

16 18
x 1 0 6

Fig. 4.5 Example o f  gradients for each pixel and the selection o f the critical gradient 

for kaolinite suspensions.
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Fig. 4.6 Example o f  microscope image (magnified 400 times) o f  the silver 

coated hollow glass spheres. Even w ith 100 times magnification, the image is 

sharp enough to be used as a  ground truth for validation purposes.

iso
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Fig. 4.7 Comparison o f FSDs from images taken by using the microscope and 

the camera for the silver coated hollow glass spheres. Vertical line segments in 

the bar plot show the standard deviation o f  ten randomly selected images.
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Fig. 4.8 Example o f  a microscope image (magnified 100 times) o f  the 

polystyrene particles.
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Fig. 4.9 Comparison o f  FSDs from images taken by using the microscope 

and the cam era for the polystyrene particles.

1 8 3



D
if

fe
re

nc
e

10°

FSD (sum o f all bins)

British
Standard M ean size

5000 1000 1500 2000 2500
Number o f  Particles

Fig. 4.10 The difference in calculated FSD and mean size w ith respect to the 

number o f  total polystyrene particles included in images used for processing FSD. 

Each symbol denotes one image, and the right most symbols represent using 49 

images with a number o f  more than 2,500 particles. The dashed line represents that 

required by the British Standard, i.e., 625 particles, or 11 images.

1 8 4



Pa
rti

cl
e 

nu
m

be
r 

fr
eq

ue
nc

y

0.3
1 image

* •

10 images

30 images
0.2

40 images

0.1

50 images

0
10 100

Particle Size (gm)

1000

Fig. 4.11 The difference in each bin o f  the measured FSDs to show the 

convergence. The result o f  using 50 images is assumed as the ground truth.

1 8 5



N
um

be
r 

Fr
eq

ue
nc

y

0.4

0.3 

0.2 

0.1 

0

0.4 

0.3 

0.2 

0.1 

0

Fig. 4.12 Model calibration and simulation for pure kaolinite flocculation results 

for various shear rates and suspended sediment concentrations.
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Fig. 4.13 Effects o f  salinity on equilibrium FSDs o f  suspended kaolinite with shear 

rate = 55 s"1 and suspended sediment concentration = 0.28 g/L.
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Fig. 4.14 Time evolution o f  OBS counts during flocculation tests for 
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kaolinite concentration c = 0.52 g/L.
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initial suspended sediment concentration c = 0.52 g/L.
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Abstract

In estuaries and coastal waters, floe size and its statistical distributions o f cohesive sediments 

are primarily important, due to their effects on the settling velocity and thus deposition rates 

o f cohesive aggregates. The development o f  a robust flocculation model that includes the 

predictions o f Floe Size Distributions (FSDs), however, is still in its infant stage. In this study, 

a one-dimensional (1-D) flocculation model along a conceptual streamtube is developed. This 

model is based on solving the population balance equation to find the FSDs by using the 

quadrature method o f moments. To validate this model, a laboratory experiment is carried out 

to produce an advection transport dominant environment in a cylindrical tank. The flow field 

is generated by a marine pump mounted at the central bottom, with its outlet facing upward. 

This setup generates an axially symmetric flow which is measured by an acoustic Doppler 

velocimetry (ADV). The measurement results provide the input hydrodynamic data required 

for this 1-D model. The other measurement results, the FSDs, are acquired by using an 

automatic underwater camera system and the resulting images are analyzed to validate the 

predicted FSDs. This study shows that the FSDs as well as their representative sizes can be 

efficiently and reasonably simulated by this conceptual 1-D model.

Key words: kaolinite; flocculation; floe size distributions; streamtube model; laboratory 

experiment.
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1. Introduction

Estuarine morphology is mainly influenced by mud deposition. Among all sedimentation 

processes, the settling o f  suspended particles is the most important process to determine mud 

deposition behaviors (e.g., Chisholm, 1999; McAnally, 2000; Mietta, 2010). Individual clay 

minerals have little chance to settle on the bed because o f their small sizes, and thus, low 

settling velocities to resist upward transport. Clay sediments, however, are mostly presented 

as floes or aggregates, which have higher settling velocities as the result o f flocculation that 

significantly alters their structures (i.e., size, density, and population). In natural 

environments, floes are formed after collision and attachment (because o f cohesion) mainly 

due to the effect o f turbulence shear, which practically limits the maximum floe size around 

the size o f the Kolmogorov micro-scale if biological effects are excluded. Because o f the 

effect o f  bio-factors such as extracellular polymeric substances, it is not uncommon to find 

that the sizes o f bio-aggregates are much larger than the Kolmogorov micro-scale. These 

bio-flocs on one hand can provide food sources to promote the growth o f aquatic animals, but 

on the other hand may also inhibit the growth o f aquatic plants by light limitation, thereby 

preventing photosynthesis. These environmental issues are largely related to the flocculation 

processes o f  suspended particles, and their Floe Size Distributions (FSDs) are the most 

important indicator to quantitively evaluate flocculation.

Flocculation is not a well-studied process because it can be affected by many factors 

such as sediment concentration, clay minerals, local shear rate, floe strength, ions in the water, 

and organic matter contents. Therefore, experiments that can isolate various affecting factors 

in order to understand the significance o f each o f the affected parameters in flocculation are
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important. These experiments also provide valuable data to validate any numerical model.

Three types o f devices, Couette reactors, oscillating grids, and chamber/tank mixers 

(either using a paddle/propeller/impeller or a pump), have been commonly used to examine 

the FSDs o f  suspended particles (Serra et al., 2008). In Couette flow experiments (e.g., Zhu et 

al., 2015; Vlieghe et al., 2014; Wyatt et al., 2013; Bubakova et al., 2013; Yuan and Famood, 

2010; Barbot et al., 2010; Frappier et al., 2010), the inner and outer cylinders can either both 

rotate (in the same or different directions), or only one rotates. The shear rate in this device is 

a constant and can be determined by the diameters and angular velocities o f the cylinders. 

Serra et al. (2008) indicated that a Couette device produces larger floes, compared with other 

flocculation devices that have the same average shear rate. This is because floes in a Couette 

flow device are under a constant shear rate everywhere so that floes have time to develop.

Oscillating grids are also widely used for studying flocculation processes and normally 

| applied in settling columns/boxes (e.g., Pujol et al., 2010; Maggi et al., 2007). For small

settling boxes, a micro-ADV (Acoustic Doppler Velocimetry) with a long “neck” can be 

inserted in the water column to measure turbulence directly (Pujol et al., 2010). Long settling 

columns can either provide zero-dimensional (0-D) conditions by only studying the floe 

conditions (e.g., size and density) at a selected location (Maggi et al., 2007) or provide 

one-dimensional (1-D) conditions by studying the floe conditions along the settling column 

(Van Leussen, 1994). In the above two cases, a homogenous turbulence field is generated in 

the entire column by using oscillating grids. Rectangular grids are often used for a best 

turbulent shear production, and the shear rates are controlled by the oscillation speed o f the 

grids. For 0-D applications, equilibrium FSDs are measured at the lower part o f  the column
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not far from the end o f the grid to allow enough time to flocculate, while little change in 

turbulence along the falling trajectory. The existence o f a homogenous shear rate in the entire 

vibration column, however, has not been verified yet. One can understand that turbulence at 

the vibration center o f the grid should be larger than that at the edge o f the grid.

Mixing chamber experiments are the other types o f  setups used to study flocculation (e.g., 

Mietta et al., 2009; Kumar et al., 2010). These experiments are primarily distinguished by the 

tank size, and thus, tank shape and turbulence generator. For small tanks, turbulence is 

usually generated by a rotating impeller. Tank averaged shear rate is determined by the 

impeller type (impeller diameter and power number), rotational speed, fluid volume, and 

fluid viscosity (Shen and Maa, Submitted a). By using the tank averaged shear rate and 

assuming a homogenous flow field, it provides a 0-D case for studying flocculation. The 

FSDs at the measuring location are assumed to represent the tank-averaged FSDs because o f 

short trajectories for floes to travel within the tank. For this reason, the tank cannot be big in 

order to limit the length o f trajectoiy. Those using cubic tanks usually obtain floe images 

through the transparent wall (Keyvani and Strom, 2013; 2014; Shen and Maa, Submitted a), 

while those using cylindrical tanks (Mietta et al., 2009) often find FSDs through a laser 

diffraction device (e.g., Malvern Mastersizer) by assuming floes are not broken during 

sampling, since taking images from a curvature wall to find floe size may produce bias on 

FSDs.

Note that even in these small mixing chambers, the flow field is not truly homogeneous. 

It is a complicated three-dimensional (3-D) flow that can be measured by using LDV (Laser 

Doppler Velocimeter, e.g., see Ducoste et al., 1997) or PIV (Particle Image Velocimetry
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technology, e.g., see Ge et al., 2014). The spatial variability o f FSDs within a small mixing 

chamber is limited because the time for a floe to travel among different shear zones is too 

short to reflect any significant change. Nevertheless, given enough time, the equilibrium FSD, 

which represents the balance o f aggregation and breakup, can be used to display the results o f 

the chamber-averaged shear rate (Ducoste et al., 1997).

In a relatively large tank as that used in this study with a volume about 0.5 m , however, 

spatial variability o f FSDs is measurable, although the differences are still limited. The shape 

o f the tank is not important since the local FSDs are usually obtained by using an underwater 

camera system that takes pictures through a transparent cover o f its waterproof house. The 

flow field can also be measured, e.g., by using an ADV device. The use o f a LISST (Laser 

In-Situ Scattering and Transmissometer) instrument, however, is still difficult, if not 

impossible, because o f the large size o f the instrument itself.

Besides laboratory experiments, numerical modeling is another tool to study flocculation 

processes. A flocculation model usually simulates the change o f  number density n for 

particles with size L at any location x  and at any time t. In this study, a Population Balance 

Model (PBM) (e.g., Shen and Maa, 2015) was used to simulate the FSDs by solving N  

differential equations for d«, (L„ x, t) / dt (i = 1,2,  ..., N) in which N  is the number o f  size 

classes used to represent the FSD. PBMs have the advantage o f considering various 

flocculation mechanisms (not limited to the effect o f shear rate), and have the potential for 

further extension in order to include more floe properties (e.g., floe density) or include the 

biological and chemical effects (Shen, 2016). Previous PBMs for cohesive sediment 

flocculation are either based on discrete size classes that are only applicable for box (i.e., 0-D)
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models (e.g., Maggi et al., 2007; Mietta et al., 2008, 2011), or use two-class PBMs (i.e., only 

two size classes) in order to be included in 1-D flow-mud applications (Lee et al., 2011; 

2014). Therefore, none o f those flocculation models can reasonably and efficiently simulate 

the FSDs o f cohesive sediments without assuming a FSD shape a priori.

In this study, the FSDs o f suspended kaolinite in an advection transport dominated tank 

are studied. This tank is large enough with a volume around 0.5 m , so that it provides 

measurable changes o f  FSDs in the tank. It also provides the chance to check the 

development o f a 1-D numerical model that simulates the FSDs along an idealized 

streamtube. The above are two objectives o f this study. To achieve these two objectives, 

measurements o f the flow field (e.g., mean velocity, turbulence kinetic energy, and energy 

dissipation rate) using an ADVOcean are carried out first. The measured flow field results are 

used as inputs for the 1-D model, which is an extension o f a previously presented flocculation 

model for solving the FSDs (Shen and Maa, 2015). Through an updated camera system, the 

measurements o f  FSDs are gathered to validate the modeling results.

2. Experimental Setup

2.1 Flow field measurements

Tap water in a cylindrical tank (diameter = 0.75 m; water depth = 1.1 m) was agitated by 

using a RULE 3700 GPH (Gallon Per Hour) 12 Volt marine pump, mounted at the bottom of 

the tank (Fig. 5.1a). The pump outlet was modified by adding an adaptor, a 90 degree 1.5 inch 

PVC (polyvinyl chloride) elbow, an 8 cm long 1.5 inch PVC pipe, and a 1.5 inch PVC 

diffuser cap with hand drilled holes. The outlet was located at the center o f the tank and 25
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cm above the bottom of the tank. This setup generated an axially symmetric flow. The pump 

was powered with a fixed 12VDC power supply for at least half an hour until the flow field 

reached a steady condition. Velocity and turbulence were measured by using a 5MHz SonTek 

ADVOcean at selected points, and the measured values were used as inputs for the 

flocculation model.

ADV has been widely used as an excellent instrument for measuring 3-D fluid velocities 

based on the Doppler Effect (SonTek, 2001). A 5MHz SonTeck ADVOcean, the ADV used in 

this study, measures the three velocity components o f a sampling water parcel o f about 2 cm3 

(a cylinder that has a 12 mm diameter and 18 mm height) which is located at 18 cm from the 

transmitter. The frequency o f the instrument can be selected between 0.1 to 25 Hz, and 

velocity range settings can be selected between ± 5 and ± 500 cm/s.

The output o f ADVOcean includes time series o f instantaneous velocity components, 

amplitudes (signal strengths), and correlation parameters, for all three directions. At a few 

selected locations, where the signal strengths and correlations are high, data based on 10, 15, 

and 20 Hz measurement frequencies (with duration o f 2, 4, and 6 minutes, respectively) are 

processed to check the differences o f the mean velocities. Since there is no significance 

difference, velocity measurements in this study are collected at 10 Hz for 2 minutes (i.e.,

1200 measurements) in these places, except for a few extremely high turbulence areas close 

to the pump outlet.

To obtain the time-averaged flow velocities from the measured time series o f 

instantaneous velocity «(/), v(/), and u>(/), raw data were first filtered based on signal strength 

and its correlation. Signal strength is a measurement o f the intensity o f the reflected signal
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and is recorded as a raw signal amplitude in units o f  counts, which is related to the 

signal-to-noise ratio (SNR) in dB by 1 count = 0.43 dB. SNR is used to demonstrate if there 

is sufficient particulate seeding. For a good measurement, SNR > 15 dB (or 35 counts) is 

required. This requirement is always satisfied in this study. Correlation coefficient is another 

filtering parameter, in which low correlation indicates the output velocity is dominated by 

noise. For median or low turbulent flow, such as most places in natural environments or those 

in the tank but far from the pump outlet, correlation is generally higher than 70%, with some 

places higher than 90% and even close to 100%. For high turbulent flow near the pump outlet, 

however, a correlation as low as 30% is considered suitable in this study (SonTek, 2001). 

Note that a sufficient amount o f data (usually more than 70%) should be retained after 

filtering (Martin et al., 2002). For extremely high turbulence flow close to the pump outlet, 

little data may remain even after filtering with a 30% correlation. Increasing the velocity 

range is a practical way to increase the correlation coefficient (SonTek, 2001). Although the 

basic principle for selecting a velocity range is to use the lowest range that can cover the 

maximum expected velocities, it is worth it to increase the velocity range to reduce the noise 

and keep more data. If the problem o f insufficient data still remains, these points might have 

to be excluded from the measurements (e.g., the points within 5 cm around the pump outlet in 

this study). After filtering data based on the signal strength and correlation, the mean flow 

velocities can be obtained by:

where T  is time duration (2 min), and U, V, and W are time-averaged velocity components.

Because o f the axially symmetrical flow, the ADVOcean is held in such a manner that
200
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the marked direction on one o f the three sensors is aligned with the radial direction (r), and

thus, measures the radial velocity component, u. The other two measurements are the vertical 

velocity component, w, in the vertical direction, z, and the tangential velocity component, v, 

in the 0 direction. In general, the tangential velocity component is miniscule (v « 0). Flow 

field in the z-r plane in the tank is displayed in Fig. 5.1b. Thus, a conceptual streamtube may 

be assigned which starts from a measurable point close to the outlet o f the pump (s = 0). The 

streamtube goes straight up until it is close to the water’s surface at the center (5  = 0 to 80 

cm), and then turns 90 degrees and goes horizontally to the side wall (s = 80 to 116 cm). 

From there, it turns another 90 degrees and moves downward along the side wall from 

surface to bottom (s = 116 to 226 cm). Finally, it goes back to the pump and then returns to 

the starting point. Notice that the tangential velocity component is generally low, except at 

the bottom o f the tank. The flow field below z = 80 cm is measured by holding the ADV 

downward as shown in Fig. 5.1a, while the flow close to the surface is measured by holding 

the ADV upside down. Therefore, the vertical velocity measured within s = 0 to 80, and 116 

to 226 cm, is set as Us (velocity along the streamtube) with positive along the transport 

direction. For s = 80 to 116 cm, measured U  velocity (which is parallel to the marked ADV 

receiver) is the main flow direction and thus it is set as Us. The velocity at X = 36 cm (s = 116 

to 226 cm) is assumed close to X = 27 cm, since it is the measured point closest to the side 

wall. Notice that Us is always positive in this idealized streamtube.

Turbulent Kinetic Energy (TKE), K, is calculated as

where v' and w' are velocity fluctuations with u '= u - U ,  v ' - v - V , andw '= w - W ,
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respectively, and the over bar denotes the time average within the time duration T. Note that 

the velocity time series are usually contaminated by a few spikes. While the spikes have little 

influence on computing the mean velocities, they have a significant impact on computing 

TKE. Thus, de-spiking is required before calculating TKE. Various de-spiking methods have 

been reported. For example, Fugate (2002) suggests using a high pass filter in its energy 

spectrum with a cutoff frequency o f 1.5 Hz to remove spikes. Islam and Zhu (2013) and 

Botev et al. (2010) suggest a kemel-density-based algorithm for de-spiking ADV data. 

However, none o f these methods has shown good results in this study, and thus, by 

trial-and-error, any fluctuation that is larger than five times o f the standard variation is 

considered a spike and is discarded from the statistics.

In a turbulent flow, instability o f  the main flow produces an eddy with similar wave 

length or scale as the main flow. This eddy is unstable and disintegrates into smaller and 

smaller eddies until all o f  their energy is dissipated by viscosity and converted to thermal 

energy (Kumar, 2010). It is understood that to directly measure the energy dissipation rate, e, 

is difficult, because it is hard to capture precisely the smallest turbulent structures 

(Saarenrinne and Piirto, 2000). The method based on e = P / (p ■ Vot) (e.g., Ducoste et al., 

1997; Sanchez Perez et al., 2006; Shen and Maa, Submitted a), where P is the total power 

dissipated in mixing, p is the fluid density, and Vol is the system volume, is not for estimating 

the local e (Zhou and Kresta, 1996; Ducoste and Clark, 1999).

Tennekes and Lumley (1972) suggest that in the inertial subrange in the region o f fully 

turbulent flow, the wave-number-based energy spectral density E  (m3/s2) can be expressed as 

E(k) = A - s 2 l3 -k~5/3 (5.3)
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where A is the 1-D Kolmogorov universal constant, e is in units o f m2/s3, k  (in units o f m f1) is 

the wave number, and the inverse o f k  is the size o f the eddy. Since the ADV noise level is the 

lowest for the flow component that is parallel to the ADV instrument’s source wave 

propagation direction, the vertical velocity spectrum is used in this study to estimate the 

energy dissipation rate (Feddersen, 2010; Thomson et al., 2012; Nimmo Smith et al., 2005).

Results o f Fourier transform o f  w (t) show energy at each frequency, f  thus it is 

necessary to transfer wave number k  to wave frequency f  Based on the Taylor’s frozen 

turbulence hypothesis, Lumley and Terray (1983) suggest

k  = 2 n lL  = 2jrflW  (5.4)

in which L is the wave length, and W  is the mean vertical velocity. Although Lien and 

D'Asaro (2006) suggest using instantaneous velocity instead o f  mean velocity, this study 

found that using instantaneous velocity merely introduces more spikes, and thus, was not 

used. Therefore, the energy spectrum based on wave frequency/ can be obtained as (Fugate, 

2002; Thomson et al., 2012)

( w V/3
£ ( / )  = z L£2/3- / - 5/3- (5. 5)

\ 2  7t j

The selected spectrum domain is from about 1 Hz (same as that used by Feddersen, 2010) to 

about 5 Hz (Nyquist frequency, because o f  the 10 Hz sample frequency). In general, the 

inertial subrange is within this domain where the spectrum slope is -5 /3 , as shown in Fig. 

5.2.

From Eq. 5.5, the energy dissipation rate e can be estimated as (Fugate, 2002; Liu et al., 

2011; Thomson et al., 2012)
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where C = E  (f=  1) is the reading o f energy a t / =  1 from the least square fitted line with a 

fixed slope o f -5/3 in the log-log plot o f E(J) v s . /  Although A is a constant on the order o f 1, 

it is selected as 0.7 because o f  the suggestions that 4̂ = 0.71 from Liu et al. (2011) and A = 

0.69 from Thomson et al. (2012). MATLAB codes for finding energy dissipation rate based 

on spectrum method can be found in Shen (2016).

Because the created flow field is quite complex, it is difficult to use the typical 

formulation (G = dujdxj + du/dx„ where i and j  are index notation) for estimating the shear 

rate. Camp and Stein (1943) suggest that the shear rate G can be expressed as Eq. 5.7 after 

knowing the energy dissipation rate e

where v is the kinematic viscosity o f the fluid. In addition, Kolmogorov (1941) proposes that

major mechanism to dissipate energy (Thomas et al., 1999), can be estimated as

This length scale can be used to determine the possible maximum floe size. The eddy 

diffusivity D  is assumed close to the eddy viscosity and can be estimated by

in which C^ = 0.09 is a constant that is widely used in turbulence models (e.g., Rodi, 1993).

(5.7)

the Kolmogorov micro length scale 2, which is a length scale o f eddy where viscosity is the
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2.2 FSD measurements

Kaolinite was soaked in de-ionized water for more than 30 days to reach a fully 

water-saturated condition (Ha, 2008). Then, a properly selected amount o f high concentration 

sediment-water mixture was poured into the cylindrical tank and diluted with tap water until 

the same water depth (i.e., z = 110 cm) was reached as that o f the previous flow field 

measuring experiment. As shown in Fig. 5.1b, from s = 0 to s = 226 cm, the main flow is 

along the streamtube. The transport time from s = 0 to s = 226 cm is around 33 s, according to 

the measured mean velocities along the streamtube. It is difficult to estimate when the 

flocculation process will reach the stable status, thus we wait for 48 hrs to give sufficient time 

for the system to become stable. An OBS (Optical Backscatter Sensor) is mounted at 50 cm 

above the bottom o f the tank with the measuring point around 10 cm away from the wall. The 

measurements show the SSC is 0.38 g/L at the beginning and decreases to 0.36 g/L after 48 

hrs (Fig. 5.3). This result is based on the calibration results o f SSC and OBS counts for the 

same kaolinite suspension carried out earlier in the mixing chamber experiments (Shen and 

Maa, Submitted a). Several water samples were also collected from the port on the tank’s wall 

at / = 30 min, and the results indicate that the average SSC is 0.40 g/L, which is close to the 

OBS monitoring results. If assuming the change o f floe size distribution has no effect on the 

OBS calibration, an average SSC o f 0.38 g/L may be used as one o f the input parameters to 

model the FSDs along the entire streamtube.

An underwater camera system was developed to measure t h e ' FSDs o f kaolinite 

suspensions. This camera system is improved based on that given by Shen and Maa 

(Submitted a). It includes a Sony Alpha NEX-5R camera body with 4912 * 3264 pixels for
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images, a NEX E mount to Nikon F mount adaptor, three Kenko extension tubes (36 + 20 + 

12 mm), a NiKon Macro Nikor 55 mm lens, and a +10 close-up lens that mounted 

sequentially (Fig. 5.4). These settings magnify the subject, from a subject size o f  10.7 * 7.2 

mm to an image size o f 23.5 * 15.6 mm, i.e., a Subject-to-Image Ratio (SIR) o f 1: 2.2, and 

thus, changes the resolution from 4.8 pm per pixel to 2.2 pm per pixel. Using at least 2 x 2  

pixels to identify a floe, the minimum sphere equivalent floe size that can be identified by 

this camera system is around 5 pm, which is roughly consistent with the primary particle 

median size o f cohesive sediment minerals in the natural environment. The shutter speed is 

set to 1/1000 s to catch the fast moving particles, the aperture is set at the maximum, f/2.8, to 

receive more lights and to limit the focus depth to about 2 mm. The ISO is set to 100 to 

minimize noise which may be considered as primary particles or small floes. The trigger to 

take pictures is controlled by a commercially available remote control unit which is powered 

and controlled via a 4-pin connector, J2, on the control board. A 150 milliwatt (mW) green 

laser module with a concave lens to spread the laser light is mounted on the same side o f the 

camera lens (i.e., ffont-illumination) and points to the center o f the image window. This 

module is connected and controlled by the control board via a 3-pin connector, J l.

The above components are assembled and protected in a PVC tube with one cover made 

by PVC plate, and the other made by a 23 mm thick plexiglass plate to allow pictures to be 

taken. Through air dielectric, the Distance between the Subject and Lens (DSL) is slightly 

larger than 23 mm, but it increases to 29 mm when the plexiglass cover is placed between the 

lens and the subject. This gives around 5 mm distance between the cover and the front o f the 

camera lens to take pictures for any subject that is within 1 mm o f the other side o f the
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plexiglass cover. The power for this camera system is provide by a set o f four 18650 li 

rechargeable batteries (i.e., 16VDC) inside the PVC tube via the connector, J3. This power is 

converted to 3.7 V to provide power for the laser source, converted to 5 V for the 

microcontroller, and converted to 3 V for the camera remote control. A magnetic switch 

which is attached on the PVC cover can be turned on if a magnetic bar is placed on the other 

side o f the PVC cover. Once the switch is closed, the microcontroller begins to work 

following the instruction o f  the control program. This program generates periodic pulses 

which are fed into the gate o f two Field Effect Transistors (FETs), (i.e., 2N7000 and 

RFP2N08L, respectively) which behave as two electronic switches, K1 and K2. The timing 

o f these two pulses matches so that when the camera is taking images, the laser light is on. 

The program is set to take pictures every 2 s until the battery for the camera is exhausted. 

Nevertheless, this system operates for 3 hours before the batteries need to be changed. This 

working duration is sufficient for the current application, and much longer than that which 

uses LED light source described in the earlier version o f the camera system (Shen and Maa, 

Submitted a). Even for field measurements in a typical tidal estuary, it is tolerable because the 

batteries only need to be replaced once between a deployment for a flood, slack, and ebb 

period.

The acquired floe images are processed using the MATLAB Image Processing toolbox. 

Details o f those processes have been reported in an earlier study (Shen and Maa, Submitted a), 

and thus, only a brief description is given next. These procedures include converting RGB 

images to grayscale images, removing background noise, contrast stretching and thresholding, 

removing small objects, dilation and erosion, filling the holes, removing on-border particles,
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and checking pixel gradients. Since the laser source is in green, only the green part o f the 

RGB figure is extracted and its intensity is used to generate the grayscale image. The 

histogram o f the grayscale image shows intensities varying from 10 to 180, with the span 

three times wider compared with that from the image taken with LED light source (Fig. 5.5). 

This is one o f the advantages to using laser light, since a quality image spans its pixels on a 

wider range (full range is from 0 to 255). The background light intensity is estimated by 

finding the minimum light intensity for a pixel within a block o f each 30 x 30 pixels. The 

resulting 163 x 108 square blocks are bi-interpolated to all pixels to generate a continuous 

background light intensity. Notice that the selected block in this study is much smaller than 

that used in Shen and Maa (Submitted a). This is because the laser is better than the LED 

light in this application for generating the finer grid background. The range o f the intensity o f 

the background is from 0 to 0.6 in this study, compared with 0.2 to 0.3 for polystyrene 

particles used by Shen and Maa {Submitted a). Images are enhanced by a non-linear contrast 

stretching with input intensity [0, 0.6] and mapping parameter 2 (mapping toward darker). 

Then, particles are separated and converted to a binary display using a constant threshold 

value 0.18 (a number determined by trial-and-error). Small objects with area less than 4 

pixels or minor elliptic equivalent axis less than 2 pixels are removed as noise, dilation and 

erosion are applied to collect the morphology o f floes, and particles on the border are 

removed. The critical pixel gradient, which is estimated based on pixel gradient statistics, is 

set as 120. Any identified floe with a maximum pixel gradient below 120 is considered an 

out-of-focus particle or threshold noise, and thus, is removed. These values are used 

throughout this experiment. Circular equivalent diameter is thus calculated based on the



number o f pixels to construct a floe, and converted to floe size in microns based on the SIR 

ratio o f the camera system.

3. Floe size distribution model

A simplified FSD model along a selected streamtube is presented. A bundle o f  nearby 

streamlines may be used to constitute a streamtube. For a steady turbulent flow, the location 

o f the selected streamtube may be considered as a fixed tube in space, except that this tube 

has no friction on the fluid flow. Since fluid only flows along the streamline, the transport o f 

sediment also only moves along the tube. As shown in Fig. 5.1a, this idealized streamtube 

starts from s = 0 (close to the outlet o f the pump where the velocity can be measured), goes 

along the measured streamline (with some degrees o f idealization), and back to the starting 

point. The actual condition in our prediction is from 5 = 0 to s = 226 cm, and there is no 

measurement for s > 262 cm.

To find the governing equation for this 1-D floe distribution model, consider a control 

volume along a streamtube between two control surfaces, CS 1 and CS 2 (Fig. 5.6), in which 

we focus on size L particles. These particles enter the control volume at CS 1 with a number 

density (number o f particles with size L per unit volume) n. At this location, the streamtube 

cross section is A, and the mean velocity along the streamtube is Us. When leaving the control 

volume at CS 2, the corresponding properties become n + dn, A + dA, and Us + dUs. Since 

Us »  w* (settling velocity), the settling is ignored in the formulation.

At time t, the control volume contains particles with various sizes. Among these sizes, 

particles o f  size L have number density n (L, s, t) at a location s and time t. At time t + dt, it is
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assumed that the streamtube does not change, while the number density n (L , s, /) might be

because particles flocculate within the control volume. During the flocculation processes in 

the control volume, total particle mass is conserved but particle number (number of particles 

either with all sizes and/or with a particular size L) may change because o f aggregation and 

breakup processes.

The governing equation for the change o f  total particle number (N) for a particular size L 

is based on a balance o f  local change, advective transport, and flocculation sources and sinks:

in which Nm and N oat are the total particle number transported in and out o f  the control 

volume through the control surfaces CS1 and CS2, respectively, and N Floc is the rate of 

particle number change due to flocculation processes within the control volume.

Since length o f the control volume As and cross section A are selected as independent o f 

time, the first term in Eq. 5.10 is given by

The net difference o f total number o f size L particles entering and leaving the control 

volume (second term in Eq. 5.10) can be given as

altered. This is not only because particles flux in and out o f the control volume, but also

(5.10)
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where higher order terms are ignored. The third term in Eq. 5.10 can be expressed as: 

( * L = S  A-As

Here, S  is the flocculation source and sink terms describing the rate o f change o f number o f 

size L particles per unit volume due to aggregation and breakup. As a consequence, the 

instantaneous number density n for a particular size L at time t in a steady flow field along a 

streamtube can be written as:

d n ^ U ^ n ^ d A ^ s  ( j  J ( )
dt ds A ds

Applying the classical Reynolds averaging procedure to decompose the instantaneous 

properties into time-averaged and fluctuant sections gives:

n = n + ri (5.12)

Us =Us + l/s (5.13)

The cross section A is assumed to be independent o f time, so that it does not have a 

turbulent contribution. The flocculation source and sink terms S  is more or less empirical and 

therefore the turbulent contribution is neglected as well (Winterwerp and van Kesteren, 2004). 

Substituting Eqs. 5.12 and 5.13 into Eq. 5.11 and averaging over the turbulent time scale 

gives

dn d in-U i) d{ri-U[) n-TTs dA T U I  dA _—  + —i------*z + _ i + ------*.-----+ ------ —------ = S  (5.14)
dt ds ds A ds A ds

Applying Fick’s law, i.e., assumimg the ri ■ U's term is proportional to the gradient o f 

time average number density along the streamtube, gives
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dn
n -U's = - D • —  (5.15)

ds

in which D  is the turbulent diffusivity coefficient, which can be evaluated by assuming it is 

close to the eddy viscosity o f the fluid.

Substituting Eq. 5.15 into Eq. 5.14 yields

dn | d(n-Us) d 
dt ds ds

d n \  n -Us dA D dn dAD —  £  (5.16)
ds J A ds A ds ds

After this point the symbol “bar” in n  and Us is omitted, thereby all variables are taken 

to be time-averaged. Therefore, the following governing equation for particles with a 

particular size L that specifies its time-averaged number density n at time t in a steady flow 

field along a streamtube is obtained:

dn(L,s,t) | d(n(L,s,t)-Us(s)) d ( D <  ̂ d«(Z, s, 
dt ds 5s v ds j

| n(L,s,t)- Us(s) dA(s) D(s) d n ( l , s , t ) dA(s) _ „
A(s) ds yf(s) ds ds

In Eq. 5.17, the variables Us, A, and D  do not change with time, but do vary along the

direction o f  the streamline s'. The number density n is for a particular particle size L and can

change with time t and space s. The flocculation source and sink term S  can be expressed as

(Shen and Maa, 2015).

\L -  X )
dks = — \

2 Jo

-  n(L, s, t )j*  0(L ,  A )a(£, A)«(A, s, t)dX + a(A) • b(L \ A) •«(A, s, t)dk -  a(L) • n(L, s, t) (5.18)

in which X is the integral variable with the same dimension o f floe size L, ft(L, X) is the

Euclidean collision frequency function that describes the frequency o f two spheres with size

L and X colliding to form a particle with size (Z3+ /3)1/3, a(L, X) is the collision efficiency that
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includes the effects o f particle geometry, contact efficiency, and sticking probability, a(L) is a 

breakup frequency function that denotes the frequency o f disruption for particles with size L, 

and b(L\X) is a fragmentation distribution function that represents particles with size L 

produced by the breakup o f  a particle with size X. The four terms in Eq. 5.18 includes: the 

birth o f floes with size L due to aggregation o f smaller particles, the death o f floes with size L 

due to aggregation with other particles, the birth o f  floes with size L due to fragmentation o f 

larger particles with size X, and the death o f floes with size L due to themselves break up into 

smaller particles.

Eq. 5.17 with flocculation source and sink terms represented by Eq. 5.18 is the governing 

equation for the number density o f size L particles. To further track the number, surface area, 

volume, etc. o f particles o f all sizes, the moment method is selected to solve the governing 

equation by applying Gaussian quadrature approximation with an adjustable factor, p. 

Details are given elsewhere (Shen and Maa, 2015).

mklp( s j )  = [ L k'pn(L,s,t)dL = f dcol(s , ty L l{s,t)klp (k = 0,l,...,2Nd - \ )  (5.19)
1=1

in which n is integrated over the whole size range. m*/p is the (Jdp)th order moments o f  FSD,

with mo (i.e., k = 0), mj (i.e., k = 2 p), and m3 (i.e., k = 3p)  proportional to the total number of

all particles, total surface area, and total volume o f all particles per unit fluid volume. The

integral in Eq. 5.19 is numerically modeled using Nd - node Gaussian quadrature

approximation (Press et al., 1992) using Nd Gaussian quadrature nodes Lj (i = 1 ,2,  ..., Nd)

and Nd corresponding weights oj, (/ = 1,2, ..., Nd) by tracking the first (2Nd -1 )  moments k =

0, 1, ..., 2Nd-  1. The Gaussian quadrature nodes and corresponding weights are actually the

characteristic sizes and number densities that can constitute the number-based FSD (Shen and
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Maa, 2015). The variable p  is an adjustable factor that controls the number o f nodes {Nd) that 

can be tacked. For example, p  = 1, 2, 3, 4, 5 for N j  = 8, and p  = 1, 2, 3, 4 for N j = 7. The

optimum p  is usually selected by trial-and-error.

Applying Eq. 5.19 to Eqs. 5.17 and 5.18, the governing equation becomes 

d m k /p M  . d f  ^  x dmllp(s,t)k i p '

dt 8s ds
D (sy k / p \

ds

+
milp( s , t y u , ( s )  8 A(s) D(s) dmtlp{s,t) dA(s) _ p , v 

A(s) ds J (s )  ds ds ilp ’’
(5.20)

where

;=1 7=1

+ ± a , b » \  - t l T ' a *
1=1 7=1 i= l )=1

and bt(k'P) = ̂ L k,pb (L \k)dL

(5.21)

(5.22)

The flocculation kinetic kernels given in the above equation (i.e., collision frequency /?, 

collision efficiency a, breakup frequency a, and fragmentation distribution function b) for 

suspended kaolinite can be summarized as (Shen and Maa, 2015)

o

a ( L i,L J) = C l

a(L,) = C 2

(  V /2 
P G  •£, ■(—L-l ) '

P

3~nf

(5.23)

(5.24)

(5.25)

b, = 2  L " "  (5.26)

in which G is the local shear rate, Ci and C2 are the aggregation and breakage parameters 

respectively, p  is the fluid dynamic viscosity, lp = 5 pm is the representative primary particle
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size, Fy is the floe strength with a constant value o f  10 10 N following the values given by 

Maggi et al. (2007) and Lee et al. (2011), and n f  = 3 -(L /lp)~° l is the fractal dimension 

following the formulation given by Maggi et al. (2007) and Shen and Maa (2015) for 

suspended kaolinite. Eq. 5.26 assumes a floe splits into two equal sized spheres if it breaks 

up.

Note that Eq. 5.20 actually is a series o f  (2Nd -1 ) equations. At each time t, the left hand 

side o f  Eq. 5.20 is updated using a finite difference method, while the source and sink terms 

at time / (Eq. 5.21) is a constant if the value o f ! , ( /  = 1,2, and a)j(i=  1,2, . . . ,N d)arc

available. A total o f 2Nd variables o f L, and co, at time t are calculated from a finite set o f  2Nd 

moments (m0, mup, . . . ,m  am-xyp) at time (/ -  At) using Eq. 5.19 based on the long quotient 

modified difference algorithm (Sack and Donovan, 1972; Wheeler, 1974; Press et al., 1992; 

Shen and Maa, 2015). Since advective transport dominates in this case, to avoid numerical 

instabilities, an explicit upwind scheme is used. Time step At is selected as 1 .OE-4 s for both 

transport and flocculation processes. Since the flow velocity is always positive along the 

streamtube, the upwind scheme actually becomes a backward difference scheme. The entire 

streamtube (292 cm) is divided into 58 grids with a resolution o f 5 cm. The streamtube 

between s = 0 to s = 226 cm corresponds to grid cells 1 to 45.

The total mass o f fluid and sediment (i.e., all particles) within the tube should be 

conserved. This is because the streamtube may be considered a rigid tube with no local 

storage (i.e., incompressible flow). This suggests that the cross section areas o f the 

streamtube are altered according to its mean velocity. The conservation o f total sediment 

volume, i.e., w3 (indicator o f  volume) will remain unchanged, thus the source and sink term
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S 3 =  0 when k  =  3p in Eq. 5.20.

A repetitive boundary condition is applied for m3 between the last grid and the first grid. 

That is, m3 in grid 59 (fictitious grid) is equal to m3 in grid 1. This relation is also valid for the 

eddy diffusivity D, mean velocity u, and cross section A. For other moments mup ( &*3p), 

which are a indicator o f FSD and other properties such as total particle number and total 

particle area, there is no need to specify the boundary condition because these moments at a 

downstream-most grid are only influenced by the one before.

4. Results and discussions

4.1 Model inputs

The measured flow properties along the streamtube are represented in Fig. 5.7, with 5 = 0 

to s = 80 cm indicating a path near the center o f the tank (center zone), s = 80 cm to s -  116 

cm indicating close proximity to the water surface (surface zone), s = 116 cm to s = 226 cm 

indicating the side wall (side zone), and s > 226 cm indicating a return path for water to go 

back into the pump. Data from s = 0 to s = 116 cm are measured, while data from s = 116 to s 

= 226 cm at X = 37 cm (Fig. 5.1b) are assumed close to the vertical component for the 

measured data at X = 27 cm. The turbulence close to the pump outlet is high, with the main

2 3flow, Us, more than 80 cm/s, the energy dissipation rate, e, up to 1000 cm /s , the TKE, K, up 

to 1000 cm2/s2, and the eddy diffusivity, D, in the order o f 100 cm2/s. Between 5  = 0 to s = 80 

cm, Us, e, and K  all decrease more than one order o f magnitude, while D  shows a local 

minimum at s -  25 cm. At the water surface from s = 80 cm to s = 116 cm, Us and K  shows a 

gradual decrease, e is relatively stable, and D  continuously decreases to 1 cm2/s. At the side
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from s = 116 cm to s = 226 cm, which is a vertical downward flow, Us and K  are relatively 

stable. D  shows a parabolic character with small values at the surface and bottom o f the side, 

while their local maximum is located around 30 cm above the bottom, e continues to decrease 

until s = 190 cm, and it must increase again between 226 cm < s < 262 cm, since the velocity 

increases along the tank bottom and toward the pump. The local shear rate G and 

Kolmogorov micron scale X are proportional to 1/2 and -1 /4  power o f e, respectively, such 

that they display similar or reverse shape as that o f e . From Fig. 5.7e, it is clearly seen that the 

shear rate close to the pump outlet could be as high as 300 s-1, while at s = 190 cm it may be 

as low as 5 s-1. With this level o f shear rate, the Kolmogorov microscale shows that the 

maximum floe size without organic matter influences usually cannot exceed 60 -  500 |xm 

even with sufficient residence time for flocculation (Fig. 5.7f).

4.2 Model validation

The FSDs at s = 130, 145, 160, 175, 190, 205, and 220 cm are processed using the 

MATLAB Image Processing toolbox based on the images taken by the underwater camera 

system. Particles from a consecutive 50 images are used (more than 1,000 particles) to have a 

stable FSD. In other words, all FSDs are the results o f 2 minute measurements that were 

displayed with a 5 pm bin size. These images were taken after running the pump for 48 hrs to 

assure it was steady. All FSDs (Fig. 5.8) show a decreasing trend with its peak at the smallest 

bin. At s = 205 cm (about 20 cm above bottom close to the side wall), it has the most 

abundant small particles with number fraction more than 60%, while at other measuring 

points the number fraction of floes in the 5 -  10 pm bin varies around 40 -  50%. The short
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residence time (only - 3 3  s) is the reason that why small particles are abundant because floes 

do not have enough time to flocculate. The FSD at s = 205 cm with the lowest shear rate (G = 

4 s-1) is somewhat opposite to our expectation; thus, this may be an outlier.

The original selected timing for taking images (i.e., 48 hrs after starting the pump) does 

not reflect the residence time, since it only takes 33 s for the particles to go through the 

streamtube. Since this is an initial value problem (i.e., the FSD at any place along the 

streamtube is controlled by the strong pumping shear at the beginning), the 48 hour wait was 

proved to be unnecessary. As discussed in Shen and Maa {Submitted b), the selection o f 

absolute values for the parameters C\ & Ci should be based on matching the measured and 

predicted mean floe sizes at t -  33 s. Meanwhile, the ratio C1/C2 should be the same as that 

given in Shen and Maa {Submitted b)'s box model, which simulates the FSDs in a mixing 

chamber experiment using the same sediment. This is because the ratio C1/C2 determines the 

FSD at the final equilibrium state while their absolute values determine the growth pathway 

to arrive at the final state in the box model (Shen and Maa, Submitted b). The fitted Ci & C2 

based on both flocculation path and final FSD in the 0-D modeling results can be used in a 

1-D model. However, it is important to notice that the simulated final FSDs in the 0-D and 

1-D models may be different even for the same shear rate (i.e., chamber-averaged shear in the

0-D model and local shear rate in the 1-D model), due to the possible difference in residence 

time experienced by the floes. By trial-and-error, Q  = 0.034 and C2 -  1.28E-6 are selected in 

this study for a reasonable match between the simulated and measured mean sizes at t = 33 s 

(Fig. 5.9). The ratio o f C1/C2 is the same as that used in the Shen and Maa {Submitted b).

At t = 33 s, the normalized moments show the particle volume (m3) along the tube is the
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same as that specified for the initial condition, which illustrates the conservation o f total 

particle volume in the tube (Fig. 5.10). If  the initial m3 is not uniform along the tube, it will 

arrive at uniform status quickly because o f strong advective transport, mo, mi, and m2 show 

that the total particle number, total particle length, and total particle surface area continuously 

decrease from s = 0 to s = 150 cm while relatively unchanged in the side zone (Fig. 5.10). On 

the other hand, m4 and ms, which are proportional to the total surface area o f sediment settling 

per unit time and the settling flux respectively (Mehta, 2013), continuously increase (Fig. 

5.10). The same m3 at s = 0 (starting point) and s = 292 cm (ending point) also illustrate the 

assigned repetitive boundary condition o f sediment volume in the tube. Other moments, 

however, do not have this boundary condition.

At the beginning o f  the simulation, the total number o f all particles (mo) is the same 

everywhere. Between .s = 0 and 50 cm, this number changes quickly to an equilibrium status, 

and does not change anymore because o f strong shear. With enough residence time, mo should 

also approach an equilibrium status at t = 60 s (Fig. 5.11). The side zone is the last place to 

approach the equilibrium status, and only this zone has not reached the equilibrium status at t 

= 33 s. This is also an indication that the residence time is giving up its control to other 

parameters in the flocculation process after t = 60 s.

At t = 33 s, the predicted FSDs at s -  176 cm are compared with measured results, and 

show a reasonable agreement (Fig. 5.12). The initial condition at / = 0, and simulated FSDs at 

t = 1 s, 5 s are also shown in this figure. It appears that the model prediction at / = 33 s has 

more large floes. This is different from the measurements, and may be caused by a more 

favorable aggregation condition specified in the modeling. Besides, as examples o f  a few
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selected points, at s = 58 cm (at the center zone) and s = 113 cm (at the surface zone close to 

the starting point o f the side zone), the time evolutions o f the mean size show that it only 

takes 5 s and 10 s to reach the equilibrium state (Fig. 5.13), with their predicted FSDs (Fig. 

5.14) illustrating that most o f the particles are small floes but large floes are also present. At s 

= 218 cm (close to the end o f the side zone), however, the residence time (/ = 33 s) is less 

than that required to attend the equilibrium status (see Fig. 5.13), and thus, there are less large 

floes (see the FSD at t = 50 s in Fig. 5.14).

5. Conclusions

A conceptual one-dimensional floe size distribution model along a conceptual streamtube 

is developed. The fluid and sediment are assumed to travel only along the streamtube. The 

governing equation shows the change o f number density o f  a particular particle size based on 

a balance o f local change, advection, diffusion, and flocculation. The settling term is omitted 

due to high advection and short residence time in this case.

A laboratory experiment was carried out to validate this model. A 3700 GPH marine 

pump was placed at the bottom center o f a 0.5 m3 cylindrical tank, with its outlet re-fitted to 

eject fluid upward at the center to create an axially symmetrical flow. The flow field was 

measured by using a 5MHz ADV-Ocean, and the measured data (mean flow, energy 

dissipation rate, turbulent kinetic energy, and the eddy viscosity, Kolmogorov micro length 

scale, and local shear rate) are put into the streamtube model for solving the change o f Floe 

Size Distribution (FSD) along the streamtube. Both the measured and predicted FSDs show a 

small particle dominated distribution, with the peak at the smallest particle size. The ratio of
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aggregation and breakage parameters C\ / Ci is consistent with that obtained in a five liter 

mixing chamber test for the same clay mineral (kaolinite). The absolute values o f Ci and Ci 

depend on local environments, and they were determined by trial and error.

While this model is applied along a streamtube in a laboratory tank, minor modifications 

can be made so that it can be used in vertical 1-D applications for natural environments as 

long as the erosion and deposition rates can be reasonably estimated. For a vertical 1-D 

simulation, G = du/dz can be used instead. This will provide a better method to study floe 

density and settling velocity in the near future. The efficiency o f this model makes coupling 

with hydrodynamic models relatively easy, and thus, make it possible for further 

improvements for modeling fine, cohesive sediment transport in estuaries.
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CHAPTER VI 

CONCLUSIONS AND PERSPECTIVES
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1. Conclusions

This dissertation has contributed to the understanding o f flocculation processes o f 

cohesive sediments through numerical modeling and laboratory experiments. Essential 

findings o f this study include:

(1) Generally, flocculation processes change the performance o f  suspended cohesive 

sediments as they enter natural water columns. Thus, floe characteristics (such as floe size, 

floe shape, floe density and their settling velocity) should be better simulated using a 

flocculation model to respond to various environmental parameters (such as flow and wind 

conditions, suspended sediment concentrations, and organic matters), rather than using 

empirical space and/or time independent values.

(2) Population Balance Model (PBM) solved by the Quadrature Method O f Moments 

(QMOM) can efficiently and reasonably simulate the evolution o f Floe Size Distribution 

(FSD) o f  cohesive sediments for a relatively large domain.

(3) Better understanding the process will contribute to the further extension o f  the PBM. 

For example, more studies on the determination o f flocculation parameters (e.g., the collision 

efficiency, the breakup frequency, and the fragmentation distribution function) will improve 

the model predictions by including various chemical and biological effects.

(4) Laboratory experiments such as those in mixing tanks or settling columns are critical 

to isolate environmental variables and provide data for model improvements based on its 

physical meanings. For example, settling columns can provide 0-D (zero-dimensional, 

without transport, e.g., Maggi, 2005; Maggi et al., 2007; Mietta et al., 2008) or 1-D 

(one-dimensional, e.g., Van Leussen, 1994) environments and mixing tanks/jars can provide
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0-D (e.g., Mietta et al., 2009; Keyvani and Strom, 2014; Shen and Maa, Submitted a), 1-D 

(e.g., Shen and Maa, Submitted b) or 3-D (three dimensional, e.g., Prat and Ducoste, 2006) 

environments.

(5) Since floes are too fragile to withstand collection, transportation, and storing, in-situ 

measurements (even in the laboratory) are required for reliable results. Thus, the image 

acquiring and processing system should be one o f  the necessary instruments to directly 

observe floe characteristics. Usually, a camera with faster shutter speed will better “freeze” 

particle movement to find the FSDs but requires a stronger light source. The cost and 

performance o f a camera system should be considered for different applications.

2. Future Study

This section suggests the logical next steps in the line o f investigation associated with 

this study. Future efforts to build upon this dissertation might address the following 

considerations:

(1) Flocculation models that can simulate FSDs o f cohesive sediments include, for 

example, the PBM (Maggi et al., 2007; Shen and Maa, 2015) and the extended Boltzmann 

model (Zhang and Zhang, 2011; Zhang et al., 2013). Recent studies showed these two models 

might have the same origin (Ramkrishna, 2000; Solsvik and Jakobsen, 2015). In some cases, 

the Lattice Boltzmann Method (LBM), which is typically used to solve the Boltzmann 

equation, can also be employed to solve the PBM by including the source terms in PBM as 

force terms in LBM (Majumder et al., 2012a, 2012b). In other cases, the QMOM, which was 

one o f the solution methods for PBM, can also be modified to solve the Boltzmann equation
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(Yuan and Fox, 2011). However, a thorough description to relate these two models in terms o f 

describing the fluid system with particulate suspensions is still not complete. If someone can 

clearly express the relationships and assumptions to bridge these two models, then it would 

be an improvement in flocculation modeling o f cohesive sediments.

(2) It is difficult for the LBM and Class Method PBM (CM-PBM) to simulate the 

spatial and time variable FSDs for reasonably large domains, since they are limited by 

computational capabilities. Thus, FSD-capable QMOM-PBM is one o f  the most efficient 

models that can couple with computational fluid dynamics models. In this study, the 

monovariate (e.g., floe size) PBM is solved by the QMOM to give reasonable FSDs with a 

maximum o f eight size classes using double precision. Besides floe size, floe shape, which is 

indicated by fractal dimension or floe density, is also critical to determine the floe settling 

velocity. Therefore, it would be a great improvement if someone could develop a bivariate 

(one property is floe size and the other can be floe density or fractal dimension) PBM to 

simulate the aggregation and breakage processes. Although various numerical schemes for 

solving bivariate (or multivariate) PBM have been reported (Wright et al., 2001; Buffo et al., 

2013; John and Suciu, 2014), the difficulty in applying this model lies in modifying the fine 

sediment kinetic kernels (i.e., collision frequency, collision efficiency, breakup frequency, and 

fragmentation distribution function) to reasonably include both floe size and floe shape. 

Nevertheless, even the formulation o f  monovariate kinetic kernels (i.e., kinetic kernel only 

modeled as functions o f floe size) needs further study (Maggi, 2007; Mietta et al., 2008). 

More variables (e.g., the concentration o f different compositions for a floe) can be included in 

the PBM after bivariate PBMs are well-tested.

(3) Current flocculation models usually cannot explicitly include biological effects,
246



which nevertheless play an essential role in suspended particle flocculation dynamics. There 

will be a great improvement if someone can include the effect o f organic matter in the model. 

The methods chosen to include the biological effects might depend on how the organic matter 

influences the total mass o f the particle system. If  the biological effects on total floe mass o f 

the system can be neglected, then the flocculation model can be improved by extending the 

expression o f fitting parameters Cj & C2  in the model (e.g., Furukawa and Watkins, 2012; 

Shen and Maa, 2015). I f  the organic matter fraction in a particle system is roughly fixed, a 

practical approach to include biological effects in the model is to use two independent PBMs 

to simulate the inorganic and organic fractions respectively, similar to the study by Maggi 

(2009). In most environments, however, the total mass may not be conserved Mien biological 

effects are included. At that condition, it might be necessary to add the processes o f  growth 

and/or nucleation in the source and sink terms o f PBM (Kumar, 2006). The former term 

“growth” (distinguished with the term “aggregation” at this time) describes non-particulate 

organic matters that are added to the surface o f a particle. This leads to an increased mass but 

unchanged number in a particle system. The latter term “nucleation” describes a new particle 

formed by non-particulate organic matters. The inclusion o f these terms in the source terms o f 

PBM will lead to a more comprehensive representation o f flocculation in natural 

environments.

(4) Up untill now, only the flocculation model itself is focused on, which needs flow 

condition, salinity profile, water depth, etc. as model inputs. A further objective is to couple 

this flocculation model with hydrodynamic models and turbulence models (e.g., k-e model) to 

simulate current, turbulence, and sediment transport simultaneously in estuaries. Such
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performances can be initiated from vertical 1-D cases without wind and wave effects (Maa et 

al., Submitted), and then extended to vertical 2-D and 3-D cases. Surface wave and wind 

models can be further added as improvements when no-wind conditions are tested well. It is 

critical to notice that a robust flow-mud model also requires an understanding o f the bottom 

boundary layer, the hindered settling process, and the erosion and deposition conditions o f 

cohesive sediments. Some mathematical models give a nice start (e.g., Winterwerp, 2002; 

Lee et al., 2014) to include flocculation models in large scale flow-mud models, but more 

efforts should be emphasized besides the flocculation model, such as the determination of 

bottom roughness length, sediment gelling concentration, and critical shear stress for 

sediment erosion and deposition.

(5) Code speed accelerating based on parallel computing is another direction for future 

studies o f model extensions. The majority o f the scientific programs are written in sequence 

and only run on a single CPU (Central Processing Unit) core. The performance o f a single 

CPU doubles approximately every 18 months, according to the widely accepted Moore’s Law. 

Since 2003, however, clock frequency and the performance o f  products within a single CPU 

core are limited due to excessive power consumption and heat-dissipation issues. Since then, 

microprocessor vendors began to focus on increasing the number o f cores rather than 

improving the performance o f a single core. Traditional CPU-level parallel computing using 

MPI (Message Passage Interface, e.g., see Gropp et al., 1996) and OpenMP (Open 

Multi-Processing, e.g., see Dagum and Menon, 1998) can accomplish such parallel tasks 

through message passing and memory sharing. Nevertheless, these CPU parallels have to run 

on large-scale, expensive computers only affordable to a few institutes. With the advent o f
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NVIDIA’s CUDA (Compute Unified Device Architecture) architecture in 2007 and PGI (the 

Portland Group Inc) CUDA Fortran complier in 2009, it is possible to use a single PC with 

many Graphic Process Units (GPUs) to accelerate scientific codes (Kirk and Hwu, 2013; 

Ruetsch and Fatica, 2014). Recently, a few groups have been working to accelerate PBM 

codes (e.g., Santos et al., 2013) or finite difference (a typical solution method for transport 

equations) codes using GPUs (e.g., Ruetsch and Fatica, 2014). There will be a contribution if 

one can apply the GPU technique to any 1-D floe size distribution model, and then to a 

coupled flow-mud model.

(6) Model validation needs data from laboratory experiments and field measurements. 

Since the processes o f cohesive sediments in natural environments are still poorly understood, 

laboratory experiments are initially favorable to simplify the environments, enhance the 

theory fundamental to the model, and understand the mechanisms and processes. The 

formulation of flocculation parameters, such as collision efficiency and breakup frequency, 

are most likely improved through laboratory experiments. Also, o f course, the importance o f 

collecting in-situ flow, wind, and sediment data from fields can never be underestimated. For 

example, salinity, temperature, and water depth data through CTD (Conductivity, 

Temperature and Depth sensor), flow profile through ADCP (Acoustic Doppler Current 

Profiler), point flow velocity and turbulence through ADV (Acoustic Doppler Velocimeter), 

sediment mass concentration through OBS (Optical Backscatter Sensor), FSDs through 

combinations o f LISST (Laser In Situ Scattering Transmissometer) and a camera system etc., 

are critical to validate and improve the model predictions in natural waters.
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APPENDIX A:

FLOC SIZE DISTRIBUTION BOX MODEL 

(CODE IN FORTRAN)

File name: 'FlocOD.190'.

! This is a 0-D Floe Size Distribution (FSD) model for flocculation processes 

of cohesive sediments.

! Written by Xiaoteng Shen
! (Virginia Institute of Marine Science, xiaoteng0vims.edu).

! Short-term Purpose: Solve FSDs.
! Long-term Purpose: Couple with hydrodynamic models, turbulence models,

and sediment transport models.
! Governing Equation: Population Balance Equation (PBE).
! Solution Method: Quadrature Method Of Moments (QMOM).

! Input file: (*.log)
! File 1: Selected quadrature points.log (For future extensions)
!------- ---  Only used when fixed pivot QMOM approach is selected.

! File 2: FloclD.log
!------- ---  Basic input parameters.
! File 3: Initial moments.log (Optional)
!------- ---  Only used when primary particle size distribution is available.

! Output file: (*.lis)

File 92: Time record.lis ---  Records time for results saving.

File 93: SSTERM_death_bre.lis ---  Death of floes due to b r e a k a g e .

File 94: SSTERM birth bre.lis --- Birth of floes due to b r e a k a g e .

File 95: SSTERM death agg.lis ---  Death of floes due to aggregation.

File 96: SSTERM birth agg.lis ---  Birth of floes due to aggregation.

File 97: Abscissas and Weights lis — - Records the characterist
class sizes and corresponding characteristic number frequencies.
! File 98: Adjustable moments evolution.lis ---  Records the time evolution
of the adjustable moments of FSDs.
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! File 99: Warning File.lis (Optional)   Warning.

! Global constant 
module global

integer, parameter:: NP = selected_real_kind(8) ! Double precision

r e a l (kind=NP), parameter:: pi = 3.141592653589793d0

real(kind=NP), parameter:: mvis = 1.0d-6 ! Molecular viscosity, m2/s
real(kind=NP), parameter:: rho_w = 1.0d3 ! Density of water, kg/m3

! real (kind=NP), parameter:: haymaker = 3.5d-21 ! Hamaker constant, J 

real(kind=NP), parameter:: rho_s = 2.65d3 ! Density of sediment, kg/m3

end module

! Main program 

PROGRAM FLOCOD 
use global 

implicit none
integer i, il, j, n, Nd, nt, ncheck, Ninital, N_ml, N_m2, N_m3, & 

nout, break_flag 
integer option_solv, option_Gauss, option_initial, &

option_beta, option_alpha, option_break, option_fragdis 
real(kind=NP) G, dt, adjust, Cl, C2, lp, NO, time, lpmax, Cm 

r e a l (kind=NP),a llocatable:: b i r t h _ a g g (:), b i r t h _ b r e (:),&
d e a t h _ a g g (:), d e a t h_b re(:), a n u (:), ssterm(:), x (:), w(:),& 

a g g (:), b r e (:) 
character*100 mark

w r i t e (*,*) 'This program is solving the population-balance-based' 
write(*,*) 'flocculation model using quadrature method of moments.' 

write(*,*) '(Xiaoteng Shen, Virginia Institute of Marine Science,' 
w r i t e (*,*) ' xiaoteng0vims.edu, 2014.'
write(*,*) '-------------------------------------------------------------------------- '
w r i t e (*,1020)

1020 f o r m a t (' time(s) Number ssterm(l) Volume
Mean dlO(urn)')

! Read the input file of this flocculation model
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open(2, file = 'FlocOD.log', form = 'formatted', status = 'old') 

do i = l ,17

r e a d (2,'(alOO)') mark 

end do
read(2,*) Nd, n, adjust, dt, nt, ncheck, option_solv, option_Gauss, & 

lp, G, Cm

allocate(x(Nd), w(Nd), anu(n), ssterm(n), birth_agg(n),&
birthjore(n), death_agg(n), death_bre(n), agg (n) , bre (n))

do i=l,4

r ea d(2 ,' (alOO)') mark 
end do
r e a d (2,*) option_initial

do i=l,9

r e a d (2,'(alOO)') mark 
end do
r e a d (2,*) option_beta, option_alpha, option_break, option_fragdis, & 

Cl, C2
close (2) 

ti me = 0 .OdO
N_m3 = Int(adjust*3.0 d0+0.4 0d0)+1 
N_m2 = Int(adjust*2.0 d0+0.4OdO )+1 

N_ml = Int(adjust*1.0 d0+ 0.40d0)+1

if (option_initial == 1) then
! "Cm" in g/L; "rho_s" in kg/m3; "lp" in micron; "NO" in #/m3 

NO = Cm/rho_s/lp**3.0 d 0 * l .0dl8 
do i = 1,n

anu(i) = N 0 * l p * * ({i— 1)/adjust) 
end do 

else

! Read the initial ADJUSTABLE moments
open(3, file = 'Initialmoments.log', form = 'formatted', status = 'old')

2 5 6



do i = 1,32 ! 32 is possible maximum number of size class

r e a d (3,*, end = 1006) anu(i) 

end do

1006 Ninital=i-1 ! # of initial moments in "Initial moments.log"

close (3)
NO = a n u (1)*Cm/rho_s/anu(N_m3)*1.0dl8 

do i = l,n
anu(i)=N0*anu(i) 

end do 

end if

o p e n (98,file = "Adjustable Moments Evolution.lis")
w r i t e (98, *) "% Evolution of Moments (Row - Time Evolution; &

Column 1 to 2Nd - Adjustable Moments)" 
write(98, *) "% Number of tracked m o m e n t s n , &

Number of a b s c i s s a s N d

w r i t e (98, *) "%---------------------------------------------------------
write(98, '{6 4D19.10)') (anu(i)/N0,i = l,n) 

close (98)

! Compute and record the initial abscissas and nodes 

if (option_solv == 1) then
call wheeler(Nd, anu, x, w, option_Gauss, lp, nout) 

elseif (option_solv == 2) then
o p e n (99,file="Warning F i l e .lis")

w r i t e (99,*) "Warning; Please give subroutine for & 
fixed pivot quadrature!"

c l o s e (99) 

stop 
end if

do i=l,Nd
x(i)=x(i)**adjust 

end do

lpmax=x(nout)
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do i = l,Nd

if (x(i) < O.OdO) then 

x (i ) = 0.OdO 

w(i) = O.OdO 

nout = nout-1 

end if 

end do

o p e n (97,file="Abscissas and W e i g h t s .lis")
write (97, *) ” % Evolution of Abscissas and Weights"

write (97, *) "% Number of tracked m o m e n t s n , "; &
Number of a b s c i s s a s N d  

write (97, *) ”% Note: Row - Time Evolution; Column 1 to Nd - Abscissas;

Column Nd+1 to 2Nd - Weights."
write (97, *) "%------------------------------------------------------------ "

w r i t e (97, * (64D19.10) ') (x (i),i = l,Nd), (w(i)/anu(1),i = l,Nd) 

c l o s e (97)

! Compute and record initial source and sink terms 

break_flag = 1
call flocssterm (option_beta, option_alpha, option_break, &

option_fragdis, nout, n, G, adjust, Cl, C2, lp, & 
x, w, NO, anu(l), lpmax, nout, break_flag, N_m2, &

N_m3, anu, birth_agg, death_agg, & 
birth_bre, death_bre, agg, bre, ssterm)

o p e n (96,file = "SSTERM_birth_agg.lis")
w r i t e (96, *) "% Source and Sink Terms &

Part 1. Floe birth due to aggregation. " 
w r i t e (96, *) "% Number of tracked m o m e n t s n , ";&

Number of a b s c i s s a s , N d

write (96, *) "%--------------------------------------------------------------- "
write(96, ' (64D19.10)') (birth_agg(i ),i =l,n) 

c l o s e (96)

o p e n (95,file = "SSTERM_death_agg.lis")

write (95, *) "% Source and Sink Terms &
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Part 2. Floe death due to aggregation" 

w r i t e (95, *) "% Number of tracked m o m e n t s :" , n , &

Number of a b s c i s s a s , N d

w r i t e (95, *) "%------------------------------------------------

write(95, ' (64D19.10)') (death_agg(i ),i = l,n) 

c l o s e (95)

open(94,file = "SSTERM_birth_bre.lis")

write(94, *) "% Source and Sink Terms &
Part 3. Floe birth due to breakup" 

write (94, *) "% Number of tracked m o m e n t s n , &
Number of a b s c i s s a s N d

write (94, *) "%-------------------------------------------------

w r i t e (94, ' (64D19.10)') (birth_bre(i),i = l,n) 

c l o s e (94)

o p e n (93,file = "SSTERM_death_bre.lis")
w r i t e (93, *) "% Source and Sink Terms &

Part 4. Floe death due to breakup" 
w r i t e (93, *) "% Number of tracked m o m e n t s :",n , &

Number of abscissas:",Nd

write(93, *) "%-------------------------------------------------
w r i t e (93, ' (64D19.10)') (death_bre(i),i = l,n) 

c l o s e (93)

open(92,file = "Time record.lis")

w r i t e (92, *) "% Time (in second)"
w r i t e (92, *) "%-------------------------------------------------

write(92, ' (f12.3) ’) time 
c l o s e (92)

w r i t e (*,1021) time, anu(l)/N0 , ssterm(l)/NO, & 
anu(N_m3)/NO, anu(N_ml)/ a n u (1)

1021 format (fl3.2, fl8.10, fl8.10, fl8.6, fl0.3)

! Next time step 

do j = l,nt
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1030 time=time+dt

! Update the moment
! Can be extended to 1-D for adding a subroutine 

do i = l,n

anu(i) = anu(i)+dt*ssterm(i) 

end do

! Find the abscissas and weights, depending on different solving method 

if (option_solv == 1) then

call wheeler(Nd, anu, x, w, option_Gauss, lp, nout) 
elseif (option_solv == 2) then ! Leave for further extension 

o p e n (99,file="Warning F i l e .lis")

w r i t e (99,*) "Warning: Please give subroutine & 
for fixed pivot quadrature!"

c l o s e (99) 
stop 

end if

do i = l,Nd
x(i) = x(i)**adjust 

end do

do i=l,Nd
if (x(i) < O.OdO) then 

x (i) = O.OdO 

w (i ) = 0.OdO 
nout = nout-1 

end if 
end do

break_flag=2
call flocssterm (option_beta, option_alpha, option_break, &

option_fragdis, nout, n, G, adjust. Cl, C2, lp, & 
x, w, NO, anu(l), lpmax, nout, break_flag, N_m2, &
N_m3, anu, birth_agg, death_agg, & 

birth_bre, death_bre, agg, bre, ssterm)
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if (j == 6 0 0*i nt(j/600) .OR. j == nt) then
w r i t e (*,1021) time, anu(l)/N0 , s s t e r m (1)/NO, & 

anu(N_m3)/NO, anu(N_ml)/ a n u (1)

end if

! Record every "ncheck" time step and the last time step 

if (j == ncheck*int(j/ncheck) .OR. j == nt) then

o p e n (98,file = "Adjustable Moments Evolution.lis", & 

position = "append") 

write (98, ’ (6 4D1 9.10) ') (anu(i)/NO,i = 1,n) 

c l o s e (98)

open (97,file = "Abscissas and We i g h t s .lis", position = "append") 
write (97, • (64D19.10) ') (x(i),i = 1,N d ) , (w(i)/ a n u (1),i = 1, Nd) 

c l o s e (97)

o p e n (96,file = ”SSTERM_birth_agg.lis" , position = "append") 
w r i t e (96, ' (64D19.1 0 ) ’) (birth_agg(i),i = l,n) 

c l o s e (96)

open(95,file = "SSTERM_death_agg.lis", position = "append") 
w r i t e (95, ' (64D19.10)') (death_agg(i ),i = l,n) 

close (95)

o p e n (94,file = "SSTERM_birth_bre.lis" , position = "append") 

write (94, ' (64D19.10) ') (birth_bre(i),i = l,n)
close (94)

open(93,file = "SSTERM_death_bre.lis", position = "append") 

write (93, ' (64D19.10) ') (death_bre(i),i = l,n) 

c l o s e (93)

o p e n (92,file = "Time record.lis", position = "append") 

w r i t e (92, '(f12.3)’) time
close (92) 

end if
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if (j == nt) pause 

end do

END PROGRAM FLOCOD

SUBROUTINE FLOCSSTERM (option_beta, option_alpha, optionjbreak, &
option_fragdis, Ndd, n, G, adjust, Cl, C2,lp,& 

x, w, NO, amuO, lpmax, nout,break_flag, &
N_m2, N_m3, anu, birth_agg, death_agg, birth_bre, & 
death_bre, agg, bre, ssterm)

use global 
implicit none 

integer 
integer 
real (kind=NP) 

real (kind=NP) 
r e a l (kind=NP) 
real(kind=NP)

option_beta, option_alpha, option_break, option_fragdis 

n, Ndd, break_flag, N_m2, N_m3, nout 
eps, adjust, Cl, C2, lp, lpmax 

ssterm(n), x(Ndd), w(Ndd)
birth_agg(n), birth_bre(n), death_agg(n), death_bre(n) 
agg(n), bre(n), birth(n), death(n), anu(n)

! Purpose: For each time step, computing flocculation source and sink term, 

! as well as the abscissas and weights.

Input:
option_beta Indicator of function of collision frequency.
option_alpha Indicator of function of collision efficiency.

option_break Indicator of function of breakup frequency.
option_fragdis Indicator of breakup distribution function.
Ndd Number of nodes,
n Number of tracked moments.
G Shear rate,
adjust Adjustable factor.
Cl Empirical factor for collision efficiency.
C2 Empirical factor for breakup frequency,

lp Size of primary particle, in micrometer.
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x(Ndd) Abscissas.
w(Ndd) W e i g h t s .

Out put :

ssterm(n) Total source and sink terms for n moment equations.

birth_agg(n) Birth of floes due to aggregation.

birth_bre(n) Birth of floes due to breakup.

death_agg(n) Death of floes due to aggregation.

! deathjbre(n) Death of floes due to breakup.
j

! Others:
! beta(Ndd,Ndd) Collision frequency
! alpha(Ndd,Ndd) Collision efficiency

! breakup(Ndd) Break frequency of particle with size xi(i= l,...Nd)
! fragdis (Ndd, n) Breakup distribution of particle with size xi (i=l, .. .Nd) for

n moment equations.

integer i, j, k
real(kind=NP) G, lambda, NO, amuO
real(kind=NP) beta(Ndd,Ndd), alpha(Ndd,Ndd), breakup(Ndd),fragdis(Ndd,n)
r e a l (kind=NP),e xt ern al:: ws, nf, strength

! Initialize source and sink term for each time step 

do k = 1, n
birth_agg(k) = O.OdO 
death_agg(k) = O.OdO 

birth_bre(k) = O.OdO 
death_bre(k) = O.OdO 

end do

! Collision frequency 
if (option_beta == 1) then 

do j = 1,Ndd
do I = l,Ndd

! Effect of shear only
beta (i,j ) = 1.OdO/6.18dO*G*(x(i )+ x (j ))**3.O dO*l.Od-18

end do
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end do 

else

o p e n (99,file = "Warning File.lis")

w r i t e (99,*) "Warning: Please give other used defined & 

collision frequency function!"

c l o s e (99) 

stop 

end if

! Collision efficiency 

if (option_alpha == 1) then 
do j = 1,Ndd

do i = l,Ndd

alpha(i,j)=C1 ! Constant
!if (alpha(i,j) > l.OdO ) alpha(i,j) = l.OdO 

end do 
end do 

else
o p e n (99,file = "Warning File.lis")

write (99,*) "Warning: Please give other used defined & 
collision efficiency function!"

c l o s e (99) 
stop 

end if

! Aggregation source and sink term 

do k = l,n
do j = 1,Ndd

do i = 1,Ndd
b i r t h _ a g g (k)= b i r t h _ a g g (k)+ 0.5 d0* b e t a (i ,j) &

*alpha(i,j)*w(i)*w(j)* (x(i)**3.0d0+ & 
x (j )**3.OdO)* * ( (k-1.O d O )/ 3 .OdO/adjust) 

d e a t h _ a g g (k)= death_agg(k)+beta(i,j)*alpha(i,j) &
*w ( i ) * w (j )*x(i)* * ( (k-1.OdO)/adjust)

end do 
end do 

end do
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! Breakup frequency 

if (option_break == 1) then 

do i = l,Ndd

if (x(i) < l p * 2 .OdO**(1.OdO/3.OdO)) then 

breakup(i) = O.OdO 

else

breakup(i) = C2*(mvis*rho_w/strength(x(i),lp) ) &

**0.5d0*G**l.5d0*x(i)* (x(i)/lp-1.0d0)** &

(3.O d O- n f ( x (i ),lp ))*1.0d-6 ! Winterwerp, 1998

end if

! if breakup frequency>l, let it equal to 1 
if (breakup(i)>1.OdO) b r e a k u p (i )=1.OdO 

end do 

else
o p e n (99,file="Warning F i l e .lis")

w r i t e (99,*) "Warning: Please give other used defined & 

breakup frequency function!"
c l o s e (99) 
stop 

end if

! Fragmentation distribution function 
if (option_fragdis == 1) then 

do k = 1, n

do i = 1,Ndd
if (x(i) >= l p * 2 .O d O * * (1.O d O/3 .OdO)) then 

! Binary Breakup
fragdis(i,k)= x(i)**((k - 1 .OdO)/adjust)* &

(2.O d O * * ((3.OdO*adjust-(k - 1 .OdO ))/ 3 .OdO/adjust))
else

fragdis(i,k) = O.OdO 
end if 

end do 
end do 

else

2 6 5



o p e n (99,file = "Warning File.lis")

w r i t e (99,*) "Warning: Please give other used defined & 

Fragmentation distribution function!"

c l o s e (99) 

stop 

end if

! Breakup source and sink term 

do k = l,n

do i = 1,Ndd
birth_bre(k) = birthjore(k)+fragdis(i,k)*breakup (i)*w (i) 
death_bre(k) = d e a t h j b r e (k)+x(i)**((k - 1 .OdO)/adjust)& 

‘breakup(i)*w(i)

end do 
end do

! Total source and sink term 
do k = l,n

ssterm(k) = birth_agg(k)-death_agg(k)+birth_bre(k)-death_bre(k)

agg(k) = bi r t h _ a g g (k)-death_agg(k)
bre(k) = birthjbre(k)-death_bre(k)
birth(k) = b i r t h _ a g g (k)+birth_bre(k)
death(k) = d e a th_ agg (k)+death_bre(k)

end do

RETURN

END SUBROUTINE FLOCSSTERM

SUBROUTINE WHEELER (n, mom, x, w, option_Gauss, lp, nout) 

implicit none
integer,parameter:: NP = selected_real_kind(8) 
integer n, option_Gauss, nout
r e a l (kind=NP) mom(2*n), x(n), w(n) 
r e a l (kind=NP) lp
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! This program is to extract the abscissas and weights from the given moments.

! Reference:
! [1] Press,W.H., Teukolsky, S.A., Vetterling,W.T., and Flannery, B.P., 1992. 

Numerical Recipes in Fortran 77: The Art of Scientific Computing, Cambridge 
University Press, Cambridge.

! [2] Yuan., C., and Fox, R.O.,2011. Conditional quadrature method of moments 

for kinetic equations. Journal of computational physics 230, 8216-8246.

INPUT:

n Maximum # of nodes
mom(2*n) Moments from 0 to 2*n-l [mom(l),...,mom(2*n)]

! OUTPUT:
! x(n) Abscissas in descending order. Actual # of nodes is "nout", the rest

is set to null.
! w(n) Corresponding weights.
! nout Actual # of nodes (with positive weight) (0 < nout <= n)

! Others:
! werror This algorithm fails when werror > 0
! eabs Minimum distance between distinct abscissas
! rmin Minimum ratio w(min)/w(max). rmin(l) is for 'vacuum' state, i.e.,

density is null;
! rmin(nl) is minimum ratio for nl nodes, nl = 2,3,...,n

integer i, j, k, 1, werror, nl, m
real(kind=NP) eabs, cutoff, bmin, dab, mindab, maxdab, minw, maxw, amuO 

real(kind=NP) rmin(n), nu(n), a(n), b(n), d_sig(2*n+l), al(n) 
r e a l (kind=NP),allocatable:: z (:, : )

amuO = m o m {1) 
do i = l,2*n

mom(i) = mom(i)/amu0 
end do

! Control parameter
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! eabs: Minimum distance between distinct abscissas, 

eabs = 1.0d-5

! rmin: Depend on how accurately the moments are reproduced, with less

accurate moments requiring larger values. A larger value would reduce the number 

of nodes.

! rmin(l) can be set very small
! r m i n (2) controls the switch from one-to two-node quadrature, can be 

relatively small since lower-order moments are typically more accurate, 

r m i n (1) = 1.0d-26 

do i = 2,n
rmin(i) = 1.0d-20 

end do

! Set initial value of abscissas, weights 

do i = l,n
x(i) = O.OdO 
w (i )=0.OdO 

end do

cutoff = O.OdO 
werror = 0

if (mom(l) < 0) then
print*, 'Negative number den sit y!' 
werror = 1 

pause 
goto 1007 

elseif (mom(l) == 0) then 
nout=l 
goto 1007 

end if

if (n == 1 .OR. mom(l) < rmin(l)) then 
w (1) = m o m (1) 
x (1) = m o m (2)/ m o m (1) 

nout = 1
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goto 1007 

end if

! Compute modified moments equal to moments 

do i=l,n

n u (i )= m o m (i ) 

end do

! Construct recurrence matrix 

do i = 1,n

a (i ) = O.OdO 

b(i) = O.OdO 
end do

call whorthogfn, mom, a, b, option_Gauss, lp, d_sig)

! Determine maximum n using diag elements of sig 
m  = n
do k = (n+1),3,-1

if (d_sig(k) <= cutoff) then 

m  = k-2
if (m == 1) then 

w (1) = m o m {1) 
x (1) = m o m (2)/ m o m (1) 
nout = 1 
goto 1007 

end if 
end if 

end do

! Compute quadrature using maximum n 
do i = 1,n

a(i) = 0 . OdO 
b(i) = O.OdO 

end do

call whorthog(m, mom, a, b, option_Gauss, lp, d_sig)
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! Check if moments are not realizable (should never happen) 

! Find bmin 

bmin = b (1) 

do i = 1,m

if (bmin > b(i)) bmin = b(i) 

end do

if (bmin < 0) then

print*, 'Negative number d ens ity !' 

pause 
werror = 1 
goto 1007 

end if

! Setup Jacobi matrix 
do nl = m , 1,-1

if (nl == 1) then 

w (1) = m o m (1) 

x(l) = m o m (2)/ m o m (1) 
nout = 1 
goto 1007 

end if

allocate(z(nl,nl))

do j = l,nl
do i = l,nl

z(i,j) = O.OdO 
end do 

end do

do i = 1 , (nl-1)
b(i) = b(i)**0.5d0 

end do
b(nl) = O.OdO
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! Compute weights and abscissas 

call imtql2(nl, a, b, al, z) 

call eigsrttal, z, nl)

do i = l,n
w(i) = O.OdO 

x(i) = O.OdO 

end do

do i = l,nl

w(i) = m o m (1)*(z (1,i)**2.OdO) 

x (i) = al (i) 

end do

mindab = a b s ( x (1)- x (2)); maxdab = mindab 

do i = nl,2,-l 

do j = lfi- l
dab = abs(x(i)-x (j )) 
if (mindab > dab) mindab = dab
if (maxdab < dab) maxdab = dab

end do 

end do

if (nl == 2) then 
maxdab = 1 

end if

! Check conditions that weights and abscissas must both satisfy 

minw = w (1); maxw = w (1) 
do i = l,nl

if (minw > w(i)) minw = w(i)
if (maxw < w(i)) maxw = w(i)

end do

if ( minw/maxw > rmin(nl) .AND. mindab/maxdab > eabs) then 
nout = nl 

goto 1007
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else

de all o c a t e (z(nl,nl)) 

end if 

end do

1007 do i = l,n

w(i) = w(i) * amuO 

end do

do i = l,2*n

mom(i) = mom(i) * amuO 
end do

RETURN 
END SUBROUTINE WHEELER

! + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

SUBROUTINE WHORTHOGfn, anu, a, b, option_Gauss, lp, d_sig) 
implicit none
integer,parameter:: NP = selected_real_kind(8) 

integer n, option_Gauss
real(kind=NP) a(n), anu(2*n), b(n), d_sig(2*n+l), lp

! This program is modified from that given by program "orthog" in Press et 
al.(1992), Numerical Recipes in Fortran 90.

Purpose: Calculate the coefficients a(i) & b(i) of the real symmetric 
tridiagonal Jacobi matrix using Wheeler's algorithm (Press et al.,1992) 
In other words, construct the following matrix: 

a ( 1 )  b ( 1 )  

b (1) a (2) b (2)

b (2) a (3) b (3)

b (n— 2) a(n-l) b(n-l)

b(n-l) a(n) J (n x n)
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Input:

n # of quadrature points

anu(2*n) Moments m(0), m(2*n-l);

with a n u (1)=m (0); a n u (2)= m ( 1 anu(2*n)=m(2*n-l)

Ou tpu t:
a(n) Coefficients of the main diagonal of the Jacobi matrix

a (1) / a (2) , . . .a (n)

b(n) Coefficients of the subdiagonal/superdiagonal of the Jacobi
matrix b (2),...,b(n) . Note: b(n) could be arbitrary.

integer k, 1, i, j
real (kind=NP) sig(2*n+l,2*n+l)

do j = 1, (2*n+l)
do i = 1, (2*n+l)

sig(i,j) = O.OdO 
end do 

end do

do 1 = 2,2*n+l
sig(2,l) = anu(l-l) 

end do

a(l) = anu (2)/ a n u (1)
b (1) = O.OdO ! Here, b(l) is arbitrary!

do k = 3,n+l
do 1 = k,2*n-k+3

sig(k,l) = sig(k-1,1+1)-a(k-2)*sig(k-1,1)-b(k-2)*sig(k-2,1) 
end do
a(k-l) = s i g (k,k+1)/ s i g (k,k )-s ig(k-1,k)/sig(k-1,k-1) 
b(k-l) = s i g (k,k)/sig(k-1,k - 1 ) 

end do
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do i = l,2*n+l

d_sig(i) = sig(i,i) 

end do

if (option_Gauss == 2) then

open (99,file = "Warning File.lis")

w r i t e (99,*) "Warning: Please give subroutine for Gauss Radau

quadr atu re!"

c l o s e (99) 
stop

elseif (option_Gauss == 3) then
o p e n (99,file = "Warning File.lis")

w r i t e (99,*) "Warning: Please give subroutine for Gauss Lobatto
quadr atu re!"

c l o s e (99) 
stop 

end if

do i = l,n-l
b(i) = b(i+l) ! Change to b(n) is arbitrary!

end do
b(n) = O.OdO

RETURN
END SUBROUTINE WHORTHOG

! + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

SUBROUTINE IMTQL2(n,d,e,dl,z)
implicit none
integer,parameter:: NP = selected_real_kind(8)
integer 
r e a l (kind=8)

i, j, k, 1, m, n, ii, nm, mml, ierr
d(n), e(n), z(n,n), dl(n), el(n)

r e a l (kind=8) b, c, f, g, p, r, s, tstl, tst2, pythag, t

! This subroutine is a translation of the algol procedure imtql2, num. math.
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12, 377-383(1968) by martin and wilkinson,

! as modified in num. math. 15, 450(1970) b y  dubrulle. Handbook for auto, com p., 

v o l .ii-linear algebra, 241-248(1971).
! www.netlib.org/eispack/imtql2.f (EISPACK)

! This subroutine finds the eigenvalues and eigenvectors of a symmetric 

tridiagonal matrix by the implicit QL method.

! Use pythag for dsqrt(a*a + b*b) .

! Input:

! n The order of the matrix.
! d(n) The diagonal elements of the input matrix.

! e(n) The subdiagonal elements of the input matrix
! in its last n-1 positions. e(n) is arbitrary.

! Output:
! dl(n) The eigenvalues in ascending order. If an error exit is made, the 

eigenvalues are correct but unordered for indices 1,2, ...,ierr -1.
! e (n) Output of e(n) = [Input of e(n)]**2.
! z Orthonormal eigenvectors of the symmetric tridiagonal matrix.
! If an error exit is made, z contains the eigenvectors associated with
the stored eigenvalues.

! Others
! ierr ierr=0 for normal return; ierr=j if the j-th eigenvalue has not been
! determined after 30 iterations.

! Questions and comments should be directed to burton s. garbow, mathematics 
and computer science div, argonne national laboratory. This version dated august 

1983.

! Store the value of d(n) and e(n) in dl(n) and el(n) , respectively 

do i = l,n

dl(i) = d(i) 
el (i) = e (i) 

end do
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! Initialize 

ierr = 0 

nm = n 

do j = l,n

do i = l,nm

z (i, j) = 0.OdO 

end do 

end do

do i = l,n
z(i,i) = 1 

end do

do 1015 1 = 1, n 

j = 0
! Look for small sub-diagonal element

1012 do m = 1, n
if (m .eq. n) go to 1013 
tstl = dabs(d(m)) + dabs(d(m+l)) 
tst2 = tstl + dabs(e(m)) 
if (tst2 .eq. tstl) go to 1013 

end do

1013 p = d (1)
if (m .eq. 1) go to 1015 
if (j .eq. 30) go to 1010 
j = j + 1

! Form shift
g = (d (1+1) - p) / (2.OdO * e (1) ) 
r = pythag(g,1.OdO)
g = d(m) - p + e (1) / (g + dsign(r,g)) 
s = l.OdO 

c = l.OdO 
p = O.OdO 

mml = m -  1

2 7 6



! For i=m-l step -1 until 1 do 

do ii = 1, mml 
i = m - ii

f = s * e (i)

b = c * e (i)

r = pythag(f,g) 

e(i+1) = r

if (r .eq. O.OdO) go to 1014 
s = f / r

c = g / r

g = d {i+1) - p
r = (d(i) - g) * s + 2.OdO * c * b

p = s * r 

d(i+1) = g + p 
g = c * r - b

! Form vector 

do k = 1, n
f = z (k,i+1)
z(k,i+l) = s * z(k,i) + c * f
z(k,i) = c * z(k,i) - s * f

end do 
end do

d(l) = d (1) - p 
e (1) = g 
e(m) = O.OdO 

go to 1012

! Recover from underflow
1014 d (i +1) = d ( i + 1 ) - p 

e(m) = O.OdO
go to 1012

1015 continue

! Order eigenvalues and eigenvectors .
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do 1017 ii = 2, n 

i = ii - 1 

k = i 

p = d(i)

do 1016 j = ii, n

if (d(j) .ge. p) go to 1016 
k = j 

P = d (j )
1016 continue

if (k .eq. i) go to 1017 

d (k) = d(i) 

d (i) = p

do j = 1, n 

P = z (j , i) 
z (j , i) = z (j , k) 

z (j , k) = p 
end do

1017 continue 

go to 1011

! Set error —  no convergence to an eigenvalue after 30 iterations.

1010 ierr = 1

! Exchange d (1) and dl(l), e (1) and el(l)
1011 do i = 1, n

t = dl (i) 
dl (i) = d (i) 

d(i) = t 
end do

do i = 1,n 

t = el(i)

2 7 8



el (i) = e (i) 

e(i) = t 
end do

do i = 1,n

e(i) = e(i)**2.OdO 

end do

RETURN 

END SUBROUTINE IMTQL2

SUBROUTINE EIGSRT(d, v, n) 
implicit none
integer, parameter:: NP = selected_real_kind(8) 

integer n
real(kind=NP) d(n), v(n,n)

! This program is originally presented in Press et al., 1992.
I

! Purpose: Given the eigenvalue matrix d(n) and eigenvector matrix v(n,n), 
! this routine sorts the eigenvalues into descending order,
! and rearranges the columns of v correspondingly.

! The method is straight insertion.
j

! Input:
! n Integer. The order of the input matrix.

! d(n) Real. Eigenvalue.
! v(n,n) Real. Eigenvectors. The i-th colume of matrix V is the

! eigenvector correspond to eigenvalue d(i) .

! O u t p u t :
! d(n) Real. Eigenvalue in descending order.
! v(n,n)Real. Corresponding eigenvectors of d(n).

integer i, j, k

real(kind=NP) p
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do i = l,n-l 

k = i 

p = d(i) 
do j = i+l,n

i f ( d (j ) .ge.p)then 

k = j 

p = d (j ) 
end if 

end do

if(k.ne.i)then 
d(k) = d(i) 

d(i) = p 
do j = l,n 

p = v (j , i) 
v (j , i) = v (j , k) 
v( j,k) = p 

end do 

end if 
end do

RETURN 
END SUBROUTINE EIGSRT

! + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

DOUBLE PRECISION FUNCTION PYTHAG(a,b) 
implicit none 

double precision a,b

! Finds dsqrt(a**2+b**2) without overflow or destructive underflow 
! www.netlib.org/eispack/3090vf/double/pythag.f (EISPACK)

double precision p,r,s,t,u

p = dmaxl(dabs(a),dabs (b)) 

if (p .eq. O.OdO) go to 1019
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r = (dminl(dabs(a),dabs(b))/p)**2

1018 continue 

t = 4.OdO + r

if (t .eq. 4.OdO) go to 1019 

s = r/t

u = l.OdO + 2 . OdO* s 

p = u*p

r = (s/u)**2 * r 

go to 1018

1019 pythag = p

RETURN 

END FUNCTION PYTHAG

FUNCTION NF(L,lp) 
use global 

implicit none 
real(kind=NP) L, lp 
real(kind=NP) nf

! This function is used to compute the fractal dimension nf based on the floe 

s i z e .

real(kind=NP) xi_nf, delta_nf

! Maggi et al., 2007, can also be expressed based on other relationships 

xi_nf = -O.ldO
delta_nf = 3.OdO

if (L <= lp) then 
nf = 3.OdO 

else
nf = delta_nf*(L/lp)**xi_nf 

! Can be 

end if
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RETURN 

END FUNCTION NF

FUNCTION STRENGTH(L,lp) 

use global 

implicit none

r e a l (kind=NP) L,lp 
r e a l (kind=NP) strength

! This function is used to compute the floe strength based on the floe size. 

! Uses function NF

!r e a l (kind=NP) Cl 
!r e a l (kind=NP),e xte rna l:: nf

Strength = 1.0d-10 ! Constant
! Can be extended to variable floe strength

RETURN 

END FUNCTION STRENGTH
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APPENDIX B:

EXAMPLE OF INPUT FILE OF FLOC SIZE DISTRIBUTION BOX MODEL 

File name: 'FlocOD.log'.

Input File of Flocculation Box Model.
(Xiaoteng Shen, Virginia Institute of Marine Science, College of William & Mary, 

xiaoteng@vims.edu, Jan 2014.)

1. Basic parameters.
Note: (1) Maximum number of nodes, Nd.

(2) Number of tracked moments, n.

(3) Adjustable factor, p.
(4) Size of time increment, dt, in second.

(5) Number of time step, nt.
(6) To skip this number of time steps before saving, ncheck.
(7) Solution method. 1 for unfixed pivot approach; 2 for fixed pivot 

approach.
(Note: If one chooses fixed pivot approach, specify the quadrature nodes 

in the file 'Selected quadrature p oin ts. log 1);
(8) Quadrature type. For unfixed pivot approach, 1 - Standard Gaussian 

quadrature, 2 - Gaussian-Radau quadrature, 3 - Gaussian-Lobatto quadrature. 

For fixed pivot approach, set to 0.
(9) Size of primary particle lp, in micron;
(10) Shear rate (/s);

(11) Suspended sediment concentration (g/L).
8 16 5.OdO O.ldO 180000 1000 1 1 5.0d0 45.0d0 0.28

2. Initial condition.
Note: 1 - Initially one class with size of primary particles;

2 - Refer to the file 'Initialmoments.log' to read the initial normalized 

m o m e n t s .
1

3. Kernel structures.
(1) Collision frequency, beta: 1 for default, others for user defined;
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(2) Collision efficiency, alpha: 1 for default, others for user defined;

(3) Breakup frequency, a: 1 for default, others for user defined;

(4) Fragment distribution function, b: 1 for default, others for user defined.
Note: Cl is the fitting parameter for collision efficiency, set to 0 if no

aggregation;

C2 is the fitting parameter for breakup frequency, set to 0 if no breakup. 

(1) (2) (3) (4) Cl C2

1 1 1 1  0.85d0 3.2d-5
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APPENDIX C:

MICRO-CONTROLLER OPERATING PROGRAM 

(CODE IN ASSEMBLER LANGUAGE) 

File name: 'FlocCameraSony.asm'.

; Assembler codes for Teensy 2.0 (with Atmel microcontroller Mega32U4, 16 MHz) 

; For control a remote control for Sony NEX-5R and the external flush light.

Port-address

. equ DDRB = 0x04

. equ PORTB = 0x05

. equ CLKPR = 0x61

. equ PORTD = OxOA

. equ DDRD = OxOB

; The following two statements are directives 

.cseg ; Code segment

.org 0 ; Set program origin

; Use clock prescaler to reduce power. If someone leaves this 

; plugged into their laptop, which continues providing USB power 
; in sleep mode, i t ’s nice to conserve their battery.

; One can easily try different speeds by just uncommenting a 
; different line, instead of having to edit the delay code below.

ldi rl6, 0x80 ; CPU Clock LED Off LED On

ldi rl 7, 0x00 ; 16 MHz 11.07 mA 13.97 mA

ldi rl 7, 0x01 ; 8 MHz 6.71 mA 9.65 mA
ldi rl7, 0x02 ; 4 MHz 4.67 mA 7.61 mA
ldi r l 7 , 0x03 ; 2 MHz 2.98 mA 5.93 mA

ldi r ! 7 , 0x04 ; 1 MHz 2.18 mA 5.14 mA

ldi rl7, 0x05 ; 500 kHz 1.70 mA  4.66 mA
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; ldi r!7, 0x06 ; 250 kHz 1.46 mA 4.43 mA

; ldi rl7, 0x07 ; 125 kHz 1.34 mA 4.30 mA

; ldi rl7, 0x08 ; 62.5 kHz 1.28 mA 4.25 mA

sts CLKPR, rl6 

sts CLKPR, rl7

sbi DDRB,0 

cbi PORTB,0

; Set Port B.( 

; Clear Port I

sbi DDRB,1 
cbi PORTB,1

; Set Port B.l 
; Clear Port I

sbi DDRD,6 
cbi PORTD,6

; Set Port D.<

Blinking on-board LED 5 times 
sbi PORTD,6 

rcall delay_100ms 
cbi PORTD,6 
rcall delay_100ms 

sbi PORTD,6 
rcall delay_100ms 
cbi PORTD,6 
rcall delay__100ms 
sbi PORTD,6 
rcall delay_100ms 
cbi PORTD,6 

rcall delay_100ms 
sbi PORTD,6 
rcall delay_100ms 
cbi PORTD,6 
rcall delay_100ms 
sbi PORTD,6 
rcall delay_100ms 
cbi PORTD,6 

rcall delay_100ms

Set PORTD.6 
Delay about 
Set PORTD.6

for output 

.0 (For flush light)

for output 
. 1 (For camera)

for output

high 
100 ms 
low



loop:

sbi PORTB,1 ; Set Port B.l high to trigger camera.

rcall delay_100ms 

rcall delay_100ms

sbi PORTB,0 ; Set Port B.O high to turn on flush light,

rcall delay_100ms 
rcall delay_100ms

cbi PORTB,1 

rcall delay_100ms

; Set Port B.l low to stop camera.

cbi PORTB, 0 ; Set Port B.O low to turn off flush light.

rcall

rcall
rcall
rcall

rcall
rcall
rcall
rcall
rcall
rcall
rcall

rcall

delay

delay_
delay_
delay

delay_
delay

delay_
delay_
delay

delay_
delay

delay_

100ms

100ms
100ms
100ms

100ms
100ms

100ms
100ms
100ms

100ms
100ms

100ms

Blink on-board LED once 
sbi PORTD,6 
rcall delay_100ms 
cbi PORTD,6 
rcall delay_100ms 
rjmp loop

; Set PORTD.6 high

; Set PORTD.6 low

; Endless loop
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; Simple Delay Function (Approximately 100 ms, not exactly) used in Teensy 2.0 

(Atmel mega32U4, 16 MHz)

delay_100ms: 

ldi

delayO: ldi

delayl: nop

dec

R19, 50 

R20,255

R20 

brne delayl 
dec R19 

brne delayO 

ret

R19 = 50 

R20 = 255

Decrease R20 value

if (R20 != 0) goto delayl label
Decrease R19 value

if (R19 != 0) goto delayO label

Return to the caller
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APPENDIX D:

EMPIRICAL IMAGE PROCESSING SOFTWARE 

(CODE IN MATLAB)

% This program is an image processing tool to find the Floe Size 

% Distributions (FSDs) of suspended particles for a SINGLE image.

% One can easily modify it as a subroutine to process a large number of 

% images.

% Written by Xiaoteng Shen (xiaoteng@vims.edu, May 2015)
% Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA

% Camera: Sony Alpha NEX-5R
% Original Sensor resolution: 4912 x 3264 (23.5 mm x 15.6 mm),
% 4.8 micron/pixel
% Subject to image ratio: 1: 2.2, thus, 2.2 micron/pixel for 10.7 x 7.1 mm 

% Light Source: Laser

clc; clear all; close all; imtool close all;

f = imread ('DSC02161.jpg'); % RGB figure, matrix [3264 x 4912 x 3] 
Resolution = 2 . 2 ;  % micron/pixel 
figure, imshow (f);

F = f(:,:,2); % Converts RGB images to grayscale (0 —  black, 255 —  white) 

% Note: This laser source is Green, 
figure, imshow (F);

sigma = 2 . 0 ;  % Standard deviation of the Gaussian distribution
[Igx,Igy]= gaussgradient(F,sigma);
Ig = abs(Igx)+ abs(Igy);

Igg = reshape(Ig,1,[]);

% Statistical distribution of pixel gradients
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figure, plot(Igg); x l a b e l ('Pixels'); ylabel('Gradient');

% Background illumination correction

% Light may strong in some place but weaker in other. This may cause 

% problem with the thresholding to detect the objects. The 

% image is divided into small parts and computes the minimum value (the 

% blackest pixel) in each part. Then it creates an image with the size of 

% the original one with these values. Finally, this background 
% representation image is subtracted from the original image.

backApprox = blkproc (F, [30 30], 'min(x(:))');
[XbApp,YbApp]=size(backApprox); 
backApprox(XbApp,:)=backApprox(XbApp-1,:); 
b a c k A p p r o x (:,Y b A p p )=bac kAp pro x(:,YbApp-1);

backApprox = double(backApprox)/255;
figure,surf(backApprox);

set(gca,'ydir', 'reverse');axis equal;
% co lo r m a p ('g r a y '); 
set (gca,'Fontsize',16);

BBB=imresize(backApprox,size(F), 'bilinear'); 

fl=im2double(F)-BBB;
fl=max(min(fl,1),0); % Clip the pixel vales to the valid range [0 1].

% Image Enhancement (Contrast stretching / correction)
% It is necessary to adjust the contrast. It rescales the image 

% intensity redistributing the pixel intensity values between the 
% minimum and the maximum intensity values.

f2 = imadjust (fl, [0 0.60], [), 2); % Empirical 
i m t o o l (f 2 )

% Thresholding
% Highly empirical, other threshold methods may use for different 

I applications.

2 9 0



level = 0.18;
% level = gra yt h r e s h (f2) % Otsu's method; Otsu (1979)

% Convert to a binary image 

f3 = i m 2 b w (f2,level); 

i m t o o l (f3)

% Manipulate the binary image 

% Remove background noise

% Remove small objects with area < 4 pixels or minor axis < 2 pixels 

f4 = bwareaopen(f3, 4, 8);
Conn = bwlabel(f4,8);
MinAx = regionprops(Conn, 'MinorAxisLength');
f4 = ismember(f4, find ([MinAx.MinorAxisLength]>=2));

clear Conn MinAx;

% Morphological operations

% Connect pixels separated by single-pixel gaps 
f4 = bwmorph (f4, 'bridge');

% Dilation and Erosion.
% Pixels are added and then removed from the outside of each floe.

B = [1 1 1; 1 1 1; 1 1 1]; 
f4 = imdilate(f4, B) ; 

f4 = imerode (f4, B ) ;

% Fill the holes

f4 = imfill(f4, 'holes');

% Remove incomplete objects on the border 
f4 = imclearborder (f4);

% Remove small objects again. 
f4 = bwareaopen(f4, 4, 8);

Conn = b w l a b e l (f4,8};

MinAx = regionprops(Conn, 'MinorAxisLength');
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f4 = ismember(f4, f i n d ([MinAx.MinorAxisLength]>=2)); 

clear Conn MinAx;

% Find processed objects 

f 5 = f 4;

[L, N] = bwlabel (f5, 4);

N

% Removing out-of-focus objects 

alpha_cr = 100; % Critical clarity value

f6 = f5; % "f6" is original "f5", will not change; "f5" will be updated,
for ii=l: N;

%ii
[RR, CC]=find(bwlabel(f6)= = i i );

ROIxl = min(RR)-l; R0Ix2 = max(RR)+l; % Boundary Removed
ROIyl = min(CC)-1; ROIy2 = max(CC)+l;
alpha = m a x ( m a x (Ig(ROIxl:R OI x2, R O I y l :R OIy 2)));

if alpha < alpha_cr; % If the object is out-of-focus 
for j j = l :length(RR);

f5 (RR(j j ),C C (j j ))= 0; % Remove the object, set it to background 
end

end
end

% Find objects after removal of out-of-focus objects 
[LI, Nl] = bwlabel (f5, 4);

N1

RemainlnFoucs = Nl/N % The ratio of particle remain in focus.

% Particle properties
graindata = regionprops (LI, 'area', 'EquivDiameter','MajorAxisLength', 

' M i n o r A x i s L e n g t h P e r i m e t e r S o l i d i t y '); % N x 1 struct, i.e., N objects

% Plot FSDs
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% Compute equivalent diameter based statistics 

De = [graindata.EquivDiameter]; % in pixel 

De = De * Resolution; % in micron 

Dmin_micron = min(De)

Dmaxjmicron = max(De)

Dmean_micron = mean(De)

Dmedian_micron = median(De)

% In this program, only FSDs based on one image is plotted.
% However, one can record the size of particles, for example, in 100 images, 

% and find a converged FSD.

% May use other edges for different applications. 

edges= [Dmin_micron 7.5:5:62.5];
[bincounts] = histc(De, edges)

figure, bar(edges, bincounts, 'histc');
t i t l e ('Histogram of Floe Size Distribution');
x l a b e l ('Size (Micron)');y l a b e l ('Number');
set (gca,'xtick',[5 10 15 20 25 30 35 40 45 50 55 60]);

% The following subroutine are freely available online and contributed by 

% anyone else.

function [gx,gy]=gaussgradient(IM,sigma)

% GAUSSGRADIENT Gradient using first order derivative of Gaussian.
% [gx,gy] = gaussgradient(IM,sigma) outputs the gradient image gx and gy of

% image IM using a 2-D Gaussian kernel. Sigma is the standard deviation of 
% this kernel along both directions.

%

% Contributed by Guanglei Xiong (xgl99@mails.tsinghua.edu.cn)
% at Tsinghua University, Beijing, China.

% Determine the appropriate size of kernel. The smaller epsilon, the larger

% size.

epsilon=le-2;
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halfsize=ceil(sigma*sqrt(-2*log(sqrt(2*pi)*sigma*epsilon))); 

size=2*halfsize+l;

% Generate a 2-D Gaussian kernel along x direction 

for i=l:size

for j=l:size

u=[i-halfsize-1 j-halfsize-1];
hx ( i , j )= g a u s s ( u (1),sigma)*dgauss(u(2),sigma);

end
end

hx=hx/sqrt(sum(sum(abs(hx).*abs(hx))));

% Generate a 2-D Gaussian kernel along y direction 

h y = h x ';

%2-D filtering
gx=i mfi lte r(IM,hx,'replicate', 'c o n v '); 
gy=imfilter(IM,hy,'replicate', 'conv');

function y = gauss(x,sigma)

%Gaussian

y = exp (-x/'2/(2*sigma/'2) ) / (sigma*sqrt (2*pi) ) ;

function y = dgauss(x,sigma)
%first order derivative of Gaussian 
y = -x * gauss(x,sigma) / sigmaA2;
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APPENDIX E:

TURBULENCE CHARACTERISTICS COMPUTING SOFTWARE 

(CODE IN MATLAB)

% This program is used to analysis ADV data to find the mean flow and 
% turbulence AT ONE POINT (one file).

% One can easily modify it as a subroutine to process large number of files.

% Write by Xiaoteng Shen (Virginia Institute of Marine Science,

% xiaoteng@vims.edu, Sep 2014, Version 2.0)

% Instrument: 5MHz ADVOcean.
% Data is collected by the software: SonTek SonUtils.

clc; clear all; close all; format short g;

Hz = 1 0 ;  % Frequency of ADV, Hz
T = 2; % Time average, min

Npm = Hz*60; % # of recorded data per min
Ntot = Npm*T; % Total # of data used for analysis

time = 1/Hz:1/Hz: T*60;

% Read the ADV raw data.

A = l o a d ('Aug2014_#100.l o g ');

% Totally 15 columns 
% Column 1: Sample number.
% Column 2-4: Three instantaneous velocity components. (Units: 0.1 mm/s) 
% Column 5-7: Amplitude. Signal strength for the 3 acoustic receivers.
% (Unit: counts, 1 count = 0.43db) If in units of db, it
% becomes SNR.
% Column 8 -10: Correlation (0-100).
% Column 11-13: Heading (0-3600, step 0.1 deg r e e ),Pitch, Roll.

% Column 14 : Temperature. (Unit: 0.01 C)
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% Column 15 : Pressure. (Unit: counts, can converted to d B a r ) .

RawData = A (l:Ntot,:); % For T min average, find the first Ntot data, 

clear A;

% Velocity time series (Raw data) 

f i g u r e (1);clf; 
s u b p l o t (311);

plot(time,RawData(:,2)/10 0 , 'b-'); 
yl a bel (’u ( cm/s )'); xlabel ('Time (s )*); 

t i t l e ('Velocity Time Series (Raw Data)');

s u b p l o t (312);

plot(time,RawData(:,3)/100,’r- ') ; 
ylabel('v ( cm/s )'); xlabel ('Time {s )');

s u b p l o t (313);
plot(time, RawData(:,4)/100,'k-'); 
ylabel('w ( cm/s )'); xlabel ('Time (s ) ');

% SNR & Correlation filtering to find mean flow.

% Filter the data based on SNR. SNR is to verify there are sufficient 

% particulate matter. For good operating conditions: SNR > 15 db (35 
% c o unt s).

strl = 'Raw data filtering based on SNR and correlation.'

j j=i;
for ii = 1: Ntot;

if RawData(ii,5)>= 35 && RawData(ii,6)>= 35 && RawData(ii,7) >= 35; 

Filter Dat al(j j ,:)=RawData(ii,:);

jj=jj+i;
end

end

N_fltl = j j —1;
clear ii jj;
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% Filter the data based on correlation coefficient. Ideally, correlation 

% values should >= 70%. Conditions in high turbulent flows,

% correlation >= 30 - 40%. After filtering, sufficient # of data should be 

% retained, 

j j =1;
for ii = 1: N_fltl;

if FilterDatal(ii,8)>= 30 && FilterDatal(ii,9)>= 30 ...

&& FilterDatal(ii,10)>= 30;

Fi lte rData2(j j ,:)= FilterDatal(ii,:); 

jj=jj+1;
end

end
N_flt2 = j j — 1;
RatioDataRemain=N_flt2/Ntot 
clear ii jj;

f i g u r e (2);elf; 
s u b p l o t (311);
plot(F ilt erD ata 2(:,2)/100,'b-'); 
ylabelf'u ( cm/s )'); xlabel ('# of Data');
t i t l e ('Velocity Time Series (After SNR and Correlation Filtering)'); 

su b p l o t (312);
pl ot( FilterData2(:,3)/I00,'r - '); 

ylabelf'v ( cm/s )'); xlabel {'# of Data');

s u b p l o t (313);
p l o t (FilterData2(:,4)/100,'k-'); 

ylabel('w ( cm/s )'); xlabel ('# of Data');

% Note: After SNR and Correlation Filtering, it may still have spikes,
% but have little influence on mean velocity,
u = FilterD ata 2(:,2)/100; % Instaneous u velocity, in cm/s

v = FilterData2 (:,3)/100; % Instaneous v velocity, in cm/s
w = FilterData2 (:,4)/100; % Instaneous w velocity, in cm/s
U = mean(u) % in cm/s 

V = mean(v) % in cm/s
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W = mean(w) % in cm/s

% Despiking (based on standard variation) to find reasonable 

% Turbulent Kinetic Energy (TKE)

str2 = 'Despiking based on mean standard variation.' 

std_u = m e a n {(u-U).A2 ) ; 

std_v = m e a n ((v-V).A2 ) ; 

std_w = m ean t(w -W) . A2 ) ;

j j=i;
for ii = 1: N_flt2;

if (u(ii)-U)A2 <= 5* std_u && (v(ii)-V)A2 <= 5* std_v ...
&& (w(ii)-W)A2 <= 5* std_w 

F ilterData3(j j ,:)= FilterData2(i i ,:);

jj=jj+i;
end

end
N_flt3 = jj-1;
RatioDataRemain=N_flt3/Ntot 
clear ii jj;

f i g u r e (3);e l f ; 
s u b p l o t (311) ;
p lot(FilterData3(:,2)/100,'b-'); 
ylabel('u ( cm/s )'); xlabel ('# of Data');

t i t l e ('Velocity Time Series (After SNR, Correlation Filtering & D ispiking)'); 

su b p l o t (312);

plot(FilterData3(:,3)/ 100 ,'r - ' ) ; 
ylabel('v ( cm/s )'); xlabel ('# of Data');

su b p l o t (313);
p l o t (FilterData3(: , 4 ) /100, 'k - '); 
ylabel('w ( cm/s )'); xlabel ('# of Data');

% clear u v w;

ul = F ilterData3(:,2)/100; % Instaneous u velocity, in cm/s
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vl = F ilterData3(:,3)/100; % Instaneous v velocity, in cm/s

wl = FilterDa ta3 (:,4)/100; % Instaneous w velocity, in cm/s

U1 = mean(ul); % in cm/s
VI = mean(vl); % in cm/s

Wl = mean(wl); % in cm/s

TKE = 0 . 5 * (mean((ul-Ul).A2 )+ m e a n ((vl-Vl).A2 )+ m e a n ((wl-Wl).A2 )) % cm2/s2

% Spectrum Analysis to find reasonable Energy Dissipation Rate (EPS)

uu = Fi lte rDa ta3 (:,2)/10000; % Instaneous u velocity, in m/s

vv = Fi lte rDa ta3 (:,3)/10000; % Instaneous v velocity, in m/s
ww = Fi lte rDa ta3 (:,4)/10000; % Instaneous w velocity, in m/s

dt = 1/Hz; % Time interval for two continuous data, s

N = length(uu); % # of data for spectrum analysis
Time = (0:N-l)*dt; Time = Time'; % in second, assuming first data at t=0

UU = mean(uu); % Mean velocity, in m/s 
VV - m e a n (v v );
WW = mean(ww);
Vel = sqrt(UU.A2 + V V .A2 + W W .A2 );

% Frequency spectrum 
% Do FFT for time series 

delt_freq = 1 / (dt*N);
freq = 0 : delt_freq : ((N-l))*delt_freq;

uul = uu - UU; w l  = vv - VV; wwl = ww - WW; % Remove the mean
fu = fft(uul); fv = fft(vvl); fw = fft(wwl);

% Energy
Eu = [fu.*conj (fu)] / (N/dt);
Ev = [fv.*conj (fv)] / (N/dt);
Ew = [fw.*conj(fw)] / (N/dt);

% Because of symmetrical, fold it and multiple by 2 when plot it.
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Eu = Eu ■k 2;

Ev = Ev * 2;

Ew = Ew ★ 2;
Ek = Eu + Ev

f i g u r e (4); e l f ;

set(gcf,'position',[220 200 900 600]);

y 00 =l.0E-4*freq.A (-5/3); % Show -5/3 slope in the figure 

% y01=1.0E-4*freq.A (-4/3);
% y02=1.0E-4*freq.A (-6/3);

s u b p l o t (221) ;
loglog (freq, Eu,'r-', 'linewidth',1); hold on;

%loglog (freq, yOO, 'k— ',f req,yOl,'k— ',freq,y02,'k— ', 'l inewidth',2);
loglog (freq,y00,'k-', 'linewidth',2);

x l a b e l ('Frequency (Hz)');ylabel('E_u (mA2/sA2 / H z ) ');
set(gca,'xlim',[0 freq(end)/2]);

su b p l o t (222);
loglog (freq, E v , ’b - ','linewidth',1); hold on; 
loglog (freq,y00, 'k-', 'linewidth',2);

x l a b e l ('Frequency (Hz)');yla bel ('E_v (mA2/sA2/H z)'); 
set(gca,'xlim',[0 freq(end)/2]);

su b p l o t (223);

loglog (freq, E w , ' m - ','linewidth',1); hold on; 
loglog (freq,yOO,'k - ', 'linewidth',2); 
x l a b e l ('Frequency (Hz)');ylab el{'E_w (mA2/s A2 / H z ) '); 

set(gca,'xl im' ,[0 freq(end)/2]);

s u b p l o t (224);
loglog (freq, Ek, '-', 'c o l o r ', [0. 5 0.5 0.5],'linewidth',1); hold on;
loglog (freq,y00,’k-', 'linewidth',2);
x l a b e l (’Frequency (Hz)');ylabel('E (mA2/sA2/ H z )');
set(gca,'xlim',[0 freq(end)/2]);

% Taylor's frozen turbulence hypothesis
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% f — > k : k = 2*pi/L = 2 * p i * f / u

alpha = 0.7; % 0.71 (Liu et a l ., 2011), or 0.69 (Thomson et a l ., 2012)

IdFreUp = fix(length(freq)/2); % About 5 Hz

IdFreLow = fix(length(freq)/10); % About 1 Hz

Feq = f r e q (IdFreLow:IdFreUp)';

EW = E w (IdFreLow:IdFreUp);

% Least Squares with fixed slope 
Yi = loglO(EW); Xi = loglO(Feq);
Intercept = (sum(Yi)+5/3*sum(Xi))/length(Yi); Intercept = 10AIntercept; 
eps = (Intercept/alpha)A1 .5 /(abs(W/100)/2/pi)

f i g u r e (5);clf;

Energy = alpha* eps A (2/3) .*Feq.A (-5/3)*(abs(W/100)/2/pi)A (2/3);
loglog (Feq, E W , 'k o l i n e w i d t h ',1); hold on;
loglog (Feq,Energy, 'k-', 'linewidth',2.5);
x l a b e l ('Frequency (Hz)'); ylabel('E_w (mA2/sA2 / H z ) ');
s et (gca,1x t i c k ',[1 2 3 4]);

% Other flow parameters

ShearRate = sqrt(eps/1.Oe-6) % Shear Rate, s-1
KolmoScale = (1.0e-6A3/e ps) .A0 .25*1.0e6 % Kolmogorov microscale, micron

Az = 0 . 0 9 * (TKE*1.0e-4)A2/eps % Eddy viscosity, m2/s
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