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RÉSUMÉ

La surveillance de l’intégrité des structures (Structural Health Monitoring - SHM) est une
nouvelle technologie, et comme toute nouvelle avancée technologique, elle n’a pas encore pas
réalisé son plein potentiel. Le SHM s’appuie sur des avancées dans plusieurs disciplines, dont
l’évaluation non-desctructive, les matériaux intelligents, et les capteurs et actionneurs intégrés.
Une des disciplines qui permet son déploiement est la simulation numérique. Le SHM englobe
une variété de techniques basées sur la génération d’ondes vibratoires et d’ondes ultrasonores
guidées. L’utilisation d’ondes guidées offre en particulier une vaste gamme d’avantages.

Le défi majeur associé à la pleine utilisation de la simulation numérique dans la conception d’un
système SHM basé sur l’utilisation d’ondes guidées réside dans les ressources de calcul requises
pour une simulation précise. La principale raison pour ces exigences est la dispersion induite par
la discrétisation numérique, tel qu’indiqué dans la littérature. La méthodes des éléments spectraux
(SEM) est une variante de la p-version de la méthode des éléments finis (FEM) qui offre certains
outils pour solutionner le problème des erreurs de dispersion, mais la littérature souffre toujours
d’une lacune dans l’étude systématique des erreurs de dispersion numérique et de sa dépendance
sur les paramètres de simulation.

Le présent ouvrage tente de combler cette lacune pour les théories d’ingénierie en vibrations. Il
présente d’abord le développement de la formulation des éléments spectraux pour différentes
théories d’ingénierie pertinentes pour la propagation des ondes vibratoires dans différents types de
structures, comme des tiges et des plaques. Puis, une nouvelle technique pour le calcul des erreurs
de dispersion numériques est présentée et appliquée systématiquement dans le but d’évaluer
la dispersion numérique induite en termes d’erreurs dans les vitesses de propagation. Cette
technique est utilisable pour les différentes formes de propagation des ondes vibratoires dans les
éléments structuraux visés dans la présente thèse afin d’évaluer quantitativement les exigences de
précision en termes de paramètres de maillage. Les ondes de Lamb constituent un cas particulier
de la déformation plane des ondes élastiques, en raison de la présence des doubles frontières à
traction libre qui couplent les ondes longitudinales et de cisaillement et qui conduisent à une
infinité de modes propagatifs qui sont dispersifs par nature. La simulation des ondes de Lamb
n’a pas fait l’objet d’analyse systématique de la dispersion numérique dans la littérature autant
pour la SEM que la FEM. Nous rapportons ici pour la première fois les résultats de l’analyse
de dispersion numérique pour la propagation des ondes Lamb. Pour toutes les analyses de
dispersion numérique présentées ici, l’analyse a été effectuée àăla fois dans le domaine fréquentiel
et dans le domaine temporel.

En se basant sur la nouvelle compréhension des effets de discrétisation numérique de la propaga-
tion des ondes guidées, nous étudions l’application de la SEM à la simulation numérique pour des
applications de conception en SHM. Pour ce faire, l’excitation piézoélectrique est développée,
et une nouvelle technique de condensation statique est développée et mise en oeuvre pour
les équations de la matrice semi-discrète, qui élimine le besoin de solution itérative, ainsi
surnommée fortement couplée ou entièrement couplée. Cet élément piézoélectrique précis est
ensuite utilisé pour étudier en détails les subtilités de la conception d’un système SHM en mettant
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l’accent sur la propagation des ondes de Lamb. Afin d’éviter la contamination des résultats
par les réflexions sur les bords une nouvelle forme particulière d’élément absorbant a été
développée et mise en oeuvre. Les résultats de simulation dans le domaine fréquentiel jettent
un éclairage nouveau sur les limites des modèles théoriques actuels pour l’excitation des ondes
de Lamb par piézoélectriques. L’excitation par un élément piézoélectrique couplé est ensuite
entièrement simulée dans le domaine temporel, et les résultats de simulation sont validés par
deux cas de mesures expérimentales ainsi que par la simulation classique avec des éléments finis
en utilisant le logiciel commercial ANSYS.

Mots-clés : ondes de Lamb, SHM, éléments spectraux, dispersion numÃl’rique



ABSTRACT

Structural health monitoring (SHM) is a novel technology, and like any new technological
advancement it has yet not realized its full potential. It builds on advancements in several
disciplines including nondestructive evaluation, smart materials, and embedded sensors and
actuators. One of the enabling disciplines is the numerical simulation. SHM encompasses a
variety of techniques, vibration based, impedance and guided ultrasonic waves. Guided waves
offers a wide repertoire of advantages.

The major challenge facing the full utilization of the numerical simulation in designing a viable
guided waves based SHM System is the formidable computational requirements for accurate
simulation. The main reason for these requirements is the dispersion induced by numerical
discretization as explained in the literature review. The spectral element (SEM) is a variant of the
p-version finite element (FEM) that offers certain remedies to the numerical dispersion errors
problem, yet it lacks a systematic study of the numerical dispersion errors and its dependence on
the meshing parameters.

The present work attempts to fill that gap for engineering theories. It starts by developing the
formulation of the spectral element for different relevant engineering theories for guided waves
propagation in various structural elements, like rods and plates. Then, extending the utility of a
novel technique for computing the numerical dispersion errors, we systematically apply it in order
to evaluate the numerically induced dispersion in terms of errors in the propagation speeds. This
technique is employed for the various forms of guided waves propagation in structural elements
covered in the present thesis in order to quantitatively assess the accuracy requirements in terms
of the meshing parameters. The Lamb guided waves constitute a special case of the plane strain
elastic waves, that is due to the presence of the double traction free boundaries, couple in the
section plane and this coupling leads to an infinitude of propagating modes that are dispersive in
nature. Lamb waves simulation have not been a subject of numerical dispersion analysis in the
open literature neither for SEM nor FEM for that matter. We report here for the first time the
numerical dispersion analysis results for Lamb waves propagation. For all the numerical
dispersion analysis presented here, the analysis was done for both the frequency domain and time
domain analysis.

Based on the established understanding of the numerical discretization effects on the guided
waves propagation, we utilize this knowledge to study the application of SEM to SHM simula-
tions. In order to do so the piezoelectric excitation is developed, and a new static condensation
technique is developed for the semidiscrete matrix equations, that eliminate the need for
iterative solution, thus dubbed strongly coupled or fully coupled implementation. This accurate
piezoelectric element are then used to study in details the intricacies of the design of an SHM
system with specific emphasis on the Lamb waves propagation. In order to avoid the contamina-
tion of the results by the reflections from the edges a new special form of absorbing boundary
was developed and implemented. The Simulation results in the frequency domain illuminated
the limitations of the current theoretical models for piezoelectric excitation of Lamb waves. The
piezoelectric excitation of a fully coupled element is then simulated in the time domain, and the
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the results of simulation was verified against two cases of experimental measurements as well as
conventional finite element simulation using the commercial software ANSYS.

Keywords: Lamb Waves, Structural Health Monitoring, Spectral Element, Numerical Dis-
persion
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2013]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.12 Structure of the single-sided interdigital transducer: (a) top electrode; (b) bottom
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f) [Ambroziński, 2013]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.14 An illustration of the strain distribution and the induced shear stresses in the plate
according to different assumptions used in the simplified actuation models. . . 24

2.15 Predicted Lamb wave response of a 1.6 mm aluminum plate under piezoelectric
element excitation based on the ideal bonding assumption of a one dimensional
model developed by Giurgiutiu [Giurgiutiu, 2005]. . . . . . . . . . . . . . . . 25

xi



xii LIST OF FIGURES

2.16 Variation of amplitude of the plate in-plane displacement versus excitation
frequency at 5 cm from the source. Comparison of analytical (circle), semi-
analytical with Dirac applied stress (dashed line) and semi-analytical results
with FE-evaluated interface stresses (solid line) for the S0 (a) and A0 mode
(b) [Gopalakrishnan et al., 2011]. . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.17 Transmission of mechanical stresses from the PZT wafer to the host structure
through the adhesive layer, and the equivalent shear lag model solution. . . . . 28

2.18 The main steps of numerical simulation and the associated errors [Szabó and
Babǔska, 2011]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.19 Intersection of four LISA cells for the 2D case. Each cell contributes to the
common node P, thus the equilibrium conditions are considered separately and
matched by using stress continuity relations [Paćko, 2013]. . . . . . . . . . . . 34
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CHAPTER 1

Introduction

The purpose of computing is insight, not
number.

RICHARD HAMMING (1915-88)

AN elastic waveguide is a physical structure that supports the propagation of elastic waves
along its elongated direction, and dictates the behavior of such waves with respect to

wave propagation in the bulk material. There are two fundamental peculiarities of
guided waves propagation. The first is the quantization of waves into discrete propagating modes,
of which only a finite number are possible for a given frequency, and whose properties are
determined by the shape of the cross section and boundary conditions of the waveguide. The
second is the existence of dispersion, which is a nonlinear dependence of phase velocity on the
frequency. As a consequence, signals with a spectral bandwidth are distorted as they propagate
along the waveguide, because their spectral components propagate with different phase velocities.

The use of guided waves (GW) for damage detection is an active research area since Worlton first
recognized the benefits of using Lamb waves in non-destructive testing of plates [Worlton, 1957].
Guided waves generation using conventional hand held transducers is now well understood and
used in some non-destructive evaluation (NDE) systems, where the transducers operate by tapping

the surface thus generating normal stresses on the surface. On the other hand guided waves
generation using surface bonded/embedded piezoceramic transducers (piezos) for structural health
monitoring (SHM) is a relatively nascent field. Piezoceramic elements are inexpensive devices
that can be surface bonded to an already functioning structure for SHM purposes or embedded
between the layers of lap joints, or inside composite materials during the manufacturing process.

1.1 Background and motivation

Being a multidisciplinary field, SHM technology requires a thorough understanding of materials,
sensors and electronics, along with the ability to perform sophisticated numerical and analytical
modeling and signal processing. Modeling forms an indispensable component in developing SHM
technology. Simulated data are used to support the development of new algorithms for damage
detection, or for an improved understanding of the effects of damage on the wave propagation.

1
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Two major concerns are pertinent to GW based SHM techniques. The first is the fact that
different modes have varying sensitivity to geometrical location of the damage, necessitating
time consuming experimentation, as well as utilizing some modes that are only accessible at high
frequency. The second is the fact that the size of detectable damage is limited by the smallest
wavelength of the propagating modes, which again may require a high frequency excitation.
As mentioned earlier, a key characteristic of guided waves is that more than one mode can be
excited at any given frequency. This poses a difficulty in interpreting the complicated GW signals
which are usually found in NDE/SHM applications. The modal discretization plus the inherent
dispersion, when applied to the real world structures, limits the utility of analytical methods in
analyzing the real-world configurations. This makes numerical simulation an indispensable tool
especially at the design phase of a NDE/SHM system.

To allow such a numerical simulation, the finite element (FE) method has been the tool of
choice for structural dynamics analysis for almost half a century now. The method remains
under continuous development to improve its accuracy, efficiency, and reliability. The FE
method, although very versatile, is confronted by serious limitations when the high frequency
response of structures needs to be evaluated, or when configurations with very small features
need to be accurately represented (i.e. damages). Both of these situations arise abundantly in
the simulation of SHM problems. The numerical solution by the usual linear and quadratic
(h-type) finite elements gives rise to substantial amounts of numerical dispersion due to the
discretization and element characteristics. These dispersive errors exist for both lumped and
consistent mass matrices. As a consequence, the solutions can be significantly in error, even
when unusually fine meshes are used. For the explicit time integration case, this is particularly
true when the time increment used is less than the maximum permitted by stability considerations
(Courant-Friedrichs-Lewy CFL Condition).

Research on the p-version FE analysis, in which the error is reduced not by refining the mesh but
by increasing the order of interpolating polynomials, dates back to the late 1960’s. Many important
advances occurred in the 1970’s. The theoretical basis was established in 1981 and optimal
meshing strategies appropriate for the p-version were developed in the period 1984-1985 [Babuška
and Suri, 1994]. The main advantage of the p-version is that errors of approximation are reduced
at an exponential rate when the number of degrees of freedom are increased, provided that the
finite element mesh is properly constructed. The h-version can provide algebraic convergence
rates only. This makes error control much more effective in the p-version. Furthermore, a
converging sequence of solutions is much more naturally and conveniently obtained with the
p-version than with the h-version. This makes it feasible to employ quality control procedures in
the setting of practical engineering decision-making processes [Babuška et al., 1981].
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A specific variant of the p-version finite element method is increasingly gaining acceptance and
recognition in the field of high frequency wave propagation simulation: the spectral element in
time domain. This approach mainly addresses the issues of degraded accuracy for the elastic
wave propagation. Though in the literature it has been observed that this method suffers less
from the numerical dispersion errors, there is very few detailed and systematic analyses of the
numerical dispersion, and the work been done is mainly done for non-engineering applications,
i.e. generic 1D classical wave propagation and generic 2D elastodynamic equations. The present
work attempts to fill that gap, focusing on the main challenges facing the use of numerical
simulation as a development tool for SHM.

1.2 Research goals, scopes and objectives

Engineering decisions are increasingly based on computed information with the expectation
that those computed quantities will provide a reliable quantitative estimate of some attributes
of a physical system or process. SHM systems is not an exception. The question of how much
reliance on computed information can be justified is being asked with increasing frequency and
urgency. Assurance of the reliability of computed information has two key aspects: (a) selection
of a suitable mathematical model and (b) approximation of the solution of the corresponding
mathematical problem. The process by which it is assessed that a mathematical model meets
necessary criteria for acceptance (i.e., it is suitable for purposes of analysis) is called validation.
The process by which it is assured that the approximate solution, as well as the data computed
from the approximate solution, meet necessary conditions for acceptance, given the goals of
computation, is called verification.

Over the past decades numerical analysts and applied mathematicians have developed and
ascertained different measures of accuracy (see App. A). For the purpose of validation and
verification of guided waves based SHM systems design and simulation -as the author wishes
to demonstrate convincingly in the upcoming chapters- these conventional error measures are
more general and less pertinent to the errors of concern to the prediction accuracy of a certain
mathematical model and its numerical implementation in GWs propagation.

The main proposition that constitutes the underlying and unifying thread of the present thesis, is
the suggestion that dispersion is the major concern in the GWs simulation. For that purpose, not
only the analysis of the numerical dispersion of the approximate solution is valuable but also the
dispersion that is predicted by the mathematical model underlying the implementation.
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1.3 Thesis outline

The second chapter reviews the literature with main emphasis on the guided waves based SHM
system design requirements. The peculiarities of such systems from the point of view of numerical
simulation are used as the main points for evaluating the numerical methods typically used in
the numerical simulation of wave propagation phenomena. At the second half of the chapter a
review of the major issues that SHM design poses on numerical simulation using the present
methods is reviewed. In an attempt to justify the need for a more robust and efficient alternatives
to the available numerical methods, the focus is put in understanding why ultrasound guided
waves propagation is too computationally demanding. The main reason in the final analysis
is the induced numerical dispersion which emanates from the discretization and the nature of
interpolation used.

This lead to the emphasis on the concept of dispersion as an error measure both in the validation
and verification phases. The dispersion entailed by the mathematical model is analytically
determined, for different families of approximate engineering theories. These dispersion relations
are determined by the assumptions and simplifications of the mathematical model. Then spectral
element implementation of those theories are developed, and viewed from the point of verification
phase, i.e. the numerical dispersion are analyzed and quantified as dependent on the approximate
solution parameters.

The present thesis first develops the spectral element formulation for different approximate
engineering theories, for both rods and plates. As such the presentation is made as independent
of the specific shape functions used, or quadrature rule as possible, postponing the embodiment
in the spectral element framework to the last step. This unified approach of the representation
makes the comparison between different implementation of approximate theories more concise
as well as clear. Another benefit of this representation, especially with the rapid development in
symbolic mathematics software, is the possibility of the automatic production of numerical codes
from symbolic premises.

The third chapter deals with the one dimensional guided wave propagation in rods. An important
line of demarcation is drawn, between the exact solution, and the engineering approximate
theories, some of those theories are explained and their dispersion characteristics are studied
(validation phase). The spectral element formulation for the different theories have been developed
in detail, followed by a detailed numerical dispersion analysis of those developed formulations
(verification phase).

The fourth chapter is devoted to the GW in two dimensional structures, i.e. plane strain elastic
waves in unbounded media and in plates, with a similar emphasis on the distinction between the
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exact solution, and the approximate theories, and the difference in their dispersion relations. The
developed formulations are then analyzed from the perspective of numerical dispersion extending
the dispersion analysis method presented in chapter 3. The traction free boundary condition for
Lamb waves is incorporated in the analysis and the results illustrate the superiority of the spectral
element method in simulating the Lamb waves propagation. The chapter ends with a detailed
analysis of the numerical dispersion characteristics of the first order shear deformation theory.

Besides the formulation and implementation of the spectral elements for approximate engi-
neering theories, the added contribution of the present work is the consistent application of a
novel numerical dispersion analysis technique to all the developed formulations. This leads
to a more detailed understanding and appreciation of the major problematic error responsible
for deteriorating the accuracy of numerical simulation of guided waves propagation. To the
knowledge of the author, it is the first time that the numerical dispersion analysis incorporates
the boundary conditions, and it is reported here in the numerical dispersion analysis applied
to the Lamb waves in the plane strain 2D settings.

Having the knowledge established in the forth chapter of the meshing parameters needed for
accurate simulation of Lamb waves propagation, the spectral element formulation of the coupled
piezoelectric element with an elastic plate is developed in the fifth chapter, followed by using this
formulation in performing a detailed analysis of the effects of strong coupling of ideally bonded
PZT, as well as the adhesive layer and the effect of the thickness changes of the actuator, and
material properties of the adhesive layer on the amplitudes of the fundamental modes propagating.
In order to eliminate the reflections from the boundaries, a new absorbing boundary is developed
and implemented in the frequency domain, the proposed absorbing boundary formulation is
equally applicable to the time domain simulation.

Lastly, concluding remarks are presented in the final chapter.





CHAPTER 2

Literature review

When you can measure what you are talking
about and express it in numbers, you know
something about it.

LORD KELVIN (1824-1907)

ALL civil, mechanical and aerospace structures are subject to damage as a result of
fatigue, overloading conditions, and degradation through environmental effects, which

compromises the structure’s performance of its intended functions. Assessment of the
in-service structures’ health on a continuous basis is a very important objective for manufacturers,
end-users and maintenance teams.

2.1 Structural health monitoring (SHM)

Structural health monitoring (SHM) refers to the process of implementing a damage identification
strategy for aerospace, civil and mechanical engineering infrastructure [Farrar and Worden, 2007].
The increasing demand on SHM techniques is driven by economical and safety requirements.
SHM marks a transition in maintenance philosophy from preventive to predictive phase. The
drastic consequences in the work organization of maintenance services include: replacement of
scheduled and periodic maintenance inspection with performance-based (or condition-based)
maintenance (long term) or at least (short term) by reducing the required labour, in particular by
avoiding dismounting parts where there is no hidden defect; second by minimizing the human
involvement, and consequently reducing downtime and human errors, thus improving safety and
reliability. The adoption of SHM allows an optimal use of the structure, and gives an additional
advantage for design improvement [Balageas, 2006].

A primary application of SHM is to facilitate decision making regarding where and when to apply
maintenance remedies. A second application is to utilize SHM information to provide appropriate
estimates of future loads in order to feed a prognosis prediction system by relevant information as
to the mechanisms according to which the damage might progress and how long the structure may
survive without failing or requiring maintenance. The multitude of possible structural behaviours
and interactions often limit the utility of simple quantitative health assessments. Easy-to-measure

7
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quantities, such as geometry, provides only limited indicators as to the structural health state.
Other bits of information, such as incipient failure modes, which are more valuable, may be more
difficult to determine quantitatively.

Geometry
Forces/Stresses

and loads
Damage

PotentialH

ofHCollapse

Increasing complexityHand value

Easily measured
with a high degree

of certainty

Hard to measure

with a high degree
of certainty

Figure 2.1 Complexity and certainty over a range of structural health measure-
ments [Huston, 2011].

Figure 2.1 shows the relations between ease of measurement, complexity, information value, and
uncertainty. Structural health could be identified in terms of load, damage state, and estimated
life characteristics:

Usage Monitoring: Identification of the operational and environmental loads acting on the
structure mainly in the undamaged state [Adams, 2007; Farrar and Worden, 2007].

Structural Health Monitoring: Detection of the mechanical damage that is caused by load-
ing and monitoring the growth of damage as the structure operates; damage is defined as
changes to the material and/or geometric properties of the monitored structures, including
changes to the boundary conditions and components connectivity, which adversely affect
the current or future performance of these structures [Sohn et al., 2004].

Damage Prognosis: Estimating the future performance of the structure as damage accumu-
lates [Farrar and Lieven, 2007].

The ultimate purpose of the SHM system [Huston, 2011] is to:
— Provide early enough warning of collapse or catastrophic failure.
— Provide information for planning maintenance activities on-demand, rather than on a

usage or post-event basis.
— Determine if the structure meets predetermined performance criteria.
— Identify the presence of fault conditions.
— Provide structural condition assessment information for use in maintenance, operational,

and rehabilitation activities.
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— Evaluate the condition of the structure upon discovery of a problem, such as incipient
cracks.

— Assess the integrity of the structure following catastrophic events.
— Provide data to estimate the remaining lifetime of the structure.
— Provide information that aids in the development of new design codes and procedures.
— Assist in construction processes by increasing safety and/or productivity.
— Establish the viability and performance of novel sensor or SHM systems.
— Certify the safety of prototype and production designs.
— Provide a maintenance history and state assessment as part of an economic assessment of

a structure.

2.2 Advantages and design requirements of SHM systems

Boller suggests a unifying definition of SHM as [Boller, 2012]

the integration of sensing and possibly also actuation devices to allow the loading

and damaging conditions of a structure to be recorded, analysed, localized, and

predicted in a way that non-destructive testing (NDT) becomes an integral part of

the structure and a material.

This definition emphasizes on the similarities between the SHM, and NDT/NDE systems. It is
not arguable that non-destructive evaluation (NDE) is a generic name that encompasses numerous
techniques that can be used both in schedule-based inspection, on-site or in a maintenance facility,
or in SHM with permanently installed sensors for continuous or on-demand inspection [Achen-
bach, 2009]. But as Kroening et al. [Kroening et al., 2005] noted, the requirements for the design
of SHM systems are somewhat different from the requirements of NDE systems. Table 2.1 lists
some of the principal design requirements and the differences between the two.

A typical SHM system consists of an embedded network of sensors for data acquisition and
some central processor employing an algorithm to evaluate structural health. The schemes
available for SHM can be categorized into passive and active schemes. Passive schemes normally
require high sensor density per structure. Unlike passive methods, active schemes are capable of
checks-on-demand, and require less sensor density per structure [Raghavan and Cesnik, 2005b].

Another less emphasized feature is that whether the SHM system is going to be implemented
into an already functioning structure, or in a new in-design structure. For the first case, the
most important design requirement is that SHM system must not impact or alter the structural
performance, which could be called non-intrusiveness requirement. This requirement is more
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Table 2.1 Design requirements of NDE vs SHM systems [Kroening et al., 2005]
Requirement NDE System SHM System

Measurement interval Periodic Periodic or continuous

Transducer location Coupling or non-contact Structure integrated

Measurement location Scanning or imaging Local (hot spots) or
and modality averaging (fibers,

plate waves), imaging.

Performance versus cost High performance Moderate performance
High cost Low cost

Signal processing Signal preprocessing Intelligent
on board (processor + interface)

Replacement versus Easy to replace Extremely high
reliability reliability

Energy supply and Energy not critical Stand-alone
consumption energy management

important in the case of already functioning structures. In the second case, the SHM system is
being incorporated during the design of the new structure, the impact of the SHM implementation
on the structure performance could be assessed during the design phase, leaving a larger repertoire
of choices as to which SHM scheme and technology could be used. For the non-intrusive

SHM system, some aspects such as accessible configuration with respect to the structure, the
weight, sensitivity of the SHM technology to the working conditions limits the design choices
considerably. Ideally, a non-intrusive SHM system would have the minimum impact on the
structure performance as well as high durability, i.e. it must not constitute a new maintenance
burden, reliability, i.e. for an aircraft it must be isolated against possible interferences, and have a
low energy requirements.

In Table 2.2, a summary of the different techniques available for SHM with their main character-
istics is presented. The main characteristics definitions are:

Network Density: The density of the network of sensors and/or actuators that is needed to
achieve a full coverage of the structure. This is strongly connected with the Detection
Range. This is very important characteristic for the non-intrusiveness requirement, since
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a large network density will mainly affect the inertia of the system, increase its weight,
and most likely will impact the function performance of the structure.

Detection Range: The range the single sensor can cover, as well as the ability to cover both
surface and hidden damages.

Frequency Range: The range of the frequency that the technique are most effective at. This
is normally connected with the cost and energy requirements for active mode of operation,
and for passive mode it is more suitable to consider it as sensitivity parameter.

Reliability: The sensitivity to the changes of the boundary conditions, environmental effects,
as well as the ease with which a single measurement could be affected with noise.

Accuracy of Localization: The accuracy with which the damage could be located. This is
largely dependent on the post-acquisition signal processing, but it is also related to the
ability of the technique to yield reliable information about the location of the damage.

Mode of Operation: The ability to operate the SHM system in either passive or active mode,
this is directly related to the checks-on-demand requirement.

In comparison with other NDE approaches, those using GW can offer faster and more cost-
effective evaluation of various types of damage. For example, rather than using a single ultrasonic
probe to inspect a long insulated pipe point by point, one can employ a wave transmitter and
receiver pair at one location on the pipe, using the pulse-echo configuration to check the entire
pipe instantaneously by examining the reflected wave signals without removing the insulating
layer. Types of damage to which ultrasonic guided waves are particularly sensitive include voids,
porosity, debonding, corrosion, cracking, hole, delamination, resin variation, broken fibre, fibre
misalignment, resin crack, cure variation, inclusions and moisture [Su and Ye, 2009].

Smaller sizes of damage reaching a few millimetres can be detected using guided waves in the
frequency range from 100 kHz to 1 MHz, as seen in Fig. 2.2 for the case of Lamb waves, this
gives GW based damage detection techniques advantage over established NDE techniques. The
main reason for the limited damage size sensitivity is that the small wavelength waves could
interact with the micro-structural details of the material, such as grain size of rolled sheets, thus
contaminating the signal with multiple reflections to the degree that it yields no useful information.
Furthermore, less power is required by a Lamb wave transmitter for identifying damage than
by other methods since it offers a full coverage of the structure, as seen in Fig. 2.3, the energy
required per damage of LW technique is more economical.
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Figure 2.2 Comparison of Lamb-wave-based damage identification with other meth-
ods: minimum size of detectable damage vs size of sensor [Kessler, 2002].

Figure 2.3 Comparison of Lamb-wave-based damage identification with other meth-
ods: minimum size of detectable damage vs. power required by sensor (excluding the
power required for data acquisition) [Kessler, 2002].

2.3 Guided waves: its nature and generation

This section starts by a short description of the nature of elastic waveguides, and follows by the
most typical methods of exciting them in plate-like structures.
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2.3.1 Nature of guided waves

The only two modes of wave propagation on elastic waves in solid infinite isotropic medium are
the pressure waves and shear waves. Once a free surface in introduced to the medium the incident
wave experience a mode conversion as depicted in Fig 2.4. The ratio between the angles of
reflection are governed by Snell’s Law for elastic waves reflection sin θ1

sin θ2
= r where r2 =

c2
l

c2
s

= 2−2ν
1−2ν .
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Figure 2.4 The reflection coefficients for incident pressure (left) and shear vertical
SV (right), showing the mode conversion due to the presence of the free surface.

So, in the case of existence of two parallel surfaces plate-like structure, there will be multiple
reflections with the associated mode conversion from the upper and lower surfaces. After few
of these reflections (see Fig. 2.5), the reflected and converted modes (SV and P) start coupling
together, generating a standing wave in the thickness direction. Due to the finiteness of the
thickness, their are possible multiple vibration modes in the thickness direction.

Hence the mutimodal nature of Lamb waves. The second important feature that needs emphasis is
the dispersion, which is nonlinear dependence of the phase velocity on the frequency. This comes
from the fact that the propagation in elongated direction is determined by the material properties,
the thickness vibration modes available at a specific frequency and the thickness. The relation
between the phase velocity and the frequency of vibration is captured in the Rayleigh-Lamb
dispersion equations (see sec. 4.1 for a detailed derivation).
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(a) Partial waves from an incident pressure wave for two parallel surfaces of a plate
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direction of wave
propagation
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(b) Thickness modes carried by a propagating harmonic wave in the elongated direction

Figure 2.5 The thickness vibrations carried by a travelling harmonic wave in the x1

direction for the fundamental symmetric Lamb wave.

Waves in elastic structures can be excited using different methods. For NDT purposes the
excitation devices that can be used are not necessarily coupled or weakly coupled with the
structure, for SHM the wave actuators need to be integrated into the structure or mounted on its
surface.

2.3.2 Conventional wedge transducer

Piezoelectricity was discovered by Jacques and Pierre Curie in 1880, when they found that
some kinds of crystals were able to generate positive or negative electric charges when pressur-
ized [Katzir, 2006]. A charge is generated when molecular electrical dipoles are caused by a
mechanical loading: that is, the direct effect. Conversely, when an electric charge is applied, a
slight change occurs in the shape of the structure: that is, the inverse effect. Piezoelectric materials
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can be used at the same time as actuators and sensors, obtaining the self-sensing piezoelectric
actuator [Dosh et al., 1992].

Figure 2.6 conventional Lamb wave ultrasonic transducer, 25 grams, $400, 40-mm
tall (a); PZT element: 0.08 grams, $15, 0.2 mm thin (b) [Giurgiutiu, 2005].

Producing guided waves via a conventional piezoelectric transducer can be done by both contact,
and non-contact methods. Contact methods either place the transducer in direct contact with
the material using a small layer of coupling agent (such as water, glycerine, or ultrasonic gel)
to ensure the best transmission of the acoustic waves into the sample. Or, more typically, an
indirect contact arrangement is used, where the transducer is placed in contact with a wedge of a
known material (see Fig. 2.6), which, in turn, is in contact with the sample. The wedge material
is chosen to aid in transmission of acoustic waves and to obtain better resolution of the incidence
of acoustic waves within the substructure. Although it is widely used in NDE applications, the
conventional transducers being composed of a piezoelectric resonator disc, a protective layer and
a damping block are too bulky and expensive to be used for SHM purposes. For example, the
perspex wedge coupled angle-adjustable ultrasonic probes (ultrasonic transducers) frequently
used in NDT are normally non-negligible due to their weight and sizes because the properties of
the structure can be affected by the transducers considerably. Hence, they are less suitable for
using in SHM techniques.

2.3.3 Piezoceramic element

An alternative excitation method is available by piezoelectric lead zirconate titanate (PZT) thin
elements, which excite Lamb waves directly through the electromechanical coupling effect in a
piezoceramic material. If the applied voltage is oscillating, it produces propagating oscillatory
waves due to the in-plane strain coupling between PZT element and the structure. PZT elements
deliver excellent performance in guided wave generation and acquisition for SHM purposes, since
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it is particularly suitable for integration into a host structure as an in-situ actuator-sensor, as well
as for their negligible mass to volume ratio, easy integration, excellent mechanical strength, wide
frequency responses, low power consumption and acoustic impedance, as well as low cost [Su
et al., 2006].

The PZT actuator action as ultrasonic transducer is fundamentally different from that of conven-
tional wedge transducers. The main differences between the conventional wedge transducer and
the PZT element can be summarized in the following points [Giurgiutiu, 2005]:

1. Conventional wedge transducers are weakly coupled with the investigated structure
through gel, water, or air. In contrast, PZT element are strongly coupled with the structure
through an adhesive bond, as shown in Fig. 2.7.

2. Conventional wedge transducers are resonant narrowband devices, they function only at
certain frequencies, the resonance frequencies. In contrast, PZT element is a broadband
device not restricted to resonant frequencies.

3. Conventional wedge transducers excite and sense the GWs in the structure indirectly
through acoustic waves impinging on the structural surface and the associated mode
conversion. In contrast, PZT element excite and sense the guided waves in the structure
directly through in-plane strain coupling. In contrast to PZT elements, the ultrasonic
wedge transducers are characterized by the displacement coupling. Due to the electrome-
chanical coupling in PZT elements, the PZT elements can also be used as sensors for
measuring of propagating waves.

Adding to that the large difference in price and size as depicted in Fig. 2.6, the increasing tendency
toward utilizing the PZT elements for LW and in general GW generation in the industry as well
as the research is justifiable.

Figure 2.7 An illustration of the wedge-transducer setup for oblique incidence LW
generation (a) [Ditri and Rajana, 1997]. and an illustration of the PZT element
principle for Lamb wave generation (b).

For efficient use of Lamb waves for damage identification by piezoeceramic elements, the
appropriate mode, excitation form, wave magnitude and wavelength should be chosen. These
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parameters can be manipulated by selecting the appropriate actuator shape and dimensions and by
choosing the driving electric voltage signal. Another important factor which influences heavily
the wave propagation characteristics is the adhesive layer (glue) [Crawley and de Luis, 1987;
Giurgiutiu, 2005] as explained in Sec. 2.3.5.

2.3.4 Excitation signals and modes of operation

In order to avoid excessive dispersion, enhance the sensitivity of waves to damages and simplify
subsequent signal processing and interpretation, it is an adopted practice to use excitation signals
with a frequency spectrum that is concentrated near a single frequency.

As a first type of finite excitation pulses the n-cycles sine tone bursts are considered in [Glushkov
et al., 2010]:

vn(t) =

 sinωct, 0 ≤ t ≤ nT

0, t ≤ 0 || t ≥ nT
(2.1)

where the period of the oscillations T = 2π/ωc is defined using a central circular frequency ωc.
Such an excitation signal with 3.5 sine cycles with a central frequency fc = ωc/2π = 100 kHz is
presented in Fig. 2.8(a) with its frequency spectrum plotted in Fig. 2.8(b).

A concentration of the signal spectrum near to its central frequency fc = 100 kHz is clearly
observed here, so the wave dispersion can be considerably reduced [Su and Ye, 2009]. The main
disadvantage in using such driving signals lies in a possible significant contribution of waves
actuated at high frequencies, so that in spite of using relatively low central frequency also high
frequency effects should be taken into account.
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Figure 2.8 Three and half cycles sine excitation signal (a) with central frequency
fc = 100 kHz and its frequency spectrum (b).

Another frequently used pulse is an n cycles sine-windowed sine excitation [Glushkov et al.,
2011]:

vn(t) =

 sinωct sin ωct
2n , 0 ≤ t ≤ nT

0, t ≤ 0 || t ≥ nT
(2.2)
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Figure 2.9 Three and half cycles sine windowed excitation signal (a) with central
frequency fc = 100 kHz and its frequency spectrum (b).
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As for an n-cycles sine tone burst, the corresponding frequency spectrum of the sin windowed n

cycles is also concentrated near the excitation frequency as depicted in Fig. 2.9(b). Comparing
this spectrum with the previous one for n-cycles sine tone burst (Fig. 2.8(b)) it can be concluded
that amplitudes of high and low frequency waves are much smaller than for the main frequency
band. As a result only this main frequency band is needed to be analyzed.

A better yet localization of power around a single central frequency can be achieved in the case
of Hann-modulated toneburst [Salas and Cesnik, 2010]:

vn(t) =


(
1 − cos ωct

n

)
cosωct, 0 ≤ t ≤ nT

0, t ≤ 0 || t ≥ nT
(2.3)

This excitation pulse with central frequency 100 kHz and corresponding frequency spectrum
are plotted in Fig. 2.10(a). It seems to be a more suitable for practical applications since the
concentration of the power near a central frequency as seen in Fig. 2.10(b) is better, and the
contribution of low and high frequency side lobes is almost negligible.
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Figure 2.10 Three and half cycles Hann windowed excitation signal (a) with central
frequency fc = 100 kHz and its frequency spectrum (b).

With increasing number of cycles the signal becomes more and more concentrated near the
central frequency allowing the consideration of the excitation as nearly steady state harmonic.
A compromise between the required concentration and the spread in the time domain with the
increasing number of cycles is needed, since in the time domain this may induce excessive
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overlap between the different modes when reflected and converted which complicates the signal
processing.

The multi-point excitation concept is considered as a more versatile means to manipulate the
generation of Lamb waves [Moulin et al., 2000a]. In these cases, multiple PZT elements are
bonded normal to the surface in a straight line to produce a linear array of transducers. Different
operational modes of the linear array have been suggested, a linear phased array is operating by
adding a time delay to the signal sent to the individual elements of the array, or by interleaving
multiple arrays of elements and giving each array a signal with a different time delay. A common
mode of operation for linear array of transducers or elements is as a comb transducer [Rose et al.,
1998], where each element of the comb (each single transducer or PZT element) vibrates in phase
with each other. As can be seen form Fig. 2.11 the beam pattern is symmetric with respect to
the array axis, which is a source of ambiguity in imaging. Furthermore, it can be also seen that
the array has a considerable side lobe level. Another undesired feature of linear arrays is their
azimuth dependent angular resolution, the main lobe width of a steered array increases with
azimuth and achieves its maximum at the array’s fire ends.

Figure 2.11 (a) Linear uniform array operating in a comb mode (all the elements are
excited in phase). (b) A normalized beam pattern of a linear uniform array with 9 ele-
ments and d = λ/2, plotted in polar coordinates as a function of azimuth [Ambroziński,
2013].

A second typical operational mode is the inter-digital mode [Sadler and Maev, 2007], where
each element is excited at an inverted phase to its neighbour, so that even elements are excited
with wave form V(t), while odd elements are excited with wave form −V(t). Equivalently, an
inter-digital array can be created with two interleaved linear arrays, one of which operates with a
signal V(t), and the second with signal −V(t) (see Fig. 2.12).
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Figure 2.12 Structure of the single-sided interdigital transducer: (a) top electrode;
(b) bottom electrode; and (c) cross section [Mańka et al., 2013].

Both the comb configuration, and inter-digital configuration have the common feature that they
are linear arrays made of ordinary PZT elements and excite modes dependent on the inter-element
spacing. The modes produced by these linear arrays are indicated by the intersection of the line
of constant wavelength with the modes on the dispersion curves. A major shortcoming with the
different versions of the linear array is the inability to differentiate between echoes coming from
either side of the actuators line.

Figure 2.13 Comparison of three 2D array configurations with their beam patterns
obtained for steering angles of 70 deg and 180 deg: cross-shaped, 16 elements (a
and d); square matrix, 64 elements (b and e); and star-shaped, 32 elements (c and
f) [Ambroziński, 2013].
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To avoid the shortcomings of linear arrays different researchers considered a number of 2D array
topologies characterized by uniform element distribution with high degree of symmetry [Ambroz-
iński, 2013]. A 2D generalized variant of the linear array is the 2D phased array configuration,
which alleviates the problem of symmetry indifferentiability. It was initially developed for
radar applications where it operates with single-mode electromagnetic waves. The phased array
concept was adapted to Lamb waves by Giurgiutiu and Bao [Giurgiutiu and Bao, 2002] under
the name embedded ultrasonics structural radar (EUSR). The generation of guided Lamb wave
by 2D phased array utilizes an array of several closely spaced actuators that are attached to the
substructure, with a variety of spatial configurations, as circular, box, and rectangular grid to
mention a few. The wave pattern generated by the phased array is the result of the superposition
(with destructive/constructive interference) of the waves generated by each individual element.

By sequentially firing the individual elements of an array transducer at slightly different time
delays, the ultrasonic wave front can be focused or steered in a specific direction (see Fig. 2.13).
Thus, scanning and/or refocusing of the beam is achieved electronically without physically
manipulating the transducers, making the phased array concept more versatile to interrogate
different regions, specially inaccessible ones, from the same location. The main challenge in all
of the above applications is still the fact that Lamb waves are basically multi-modal and generally
dispersive.

2.3.5 Piezoelectric actuator coupling effects

Due to the presence of material discontinuity between the actuators and the host medium,
complicated stress fields will be generated when external electric fields are applied to the
actuators, which are usually difficult to deal with analytically. The interaction between the
piezoelectric element and the host structure is a complex process that is affected by the dynamics
of the actuators, the dynamics of adhesive layers and the dynamics of the plate itself, i.e. this is a
coupled problem.

The dynamic coupled contact problem of Lamb wave excitation by PZT thin elements was
considered by Glushkov et al. and Seemann et al. in [Glushkov et al., 2007; Seemann et al.,
2007] for actuators bonded on one side of the host structure. However, the effect of the bonding
layer was not considered, i.e. ideal bonding was assumed. The problem was reduced to a system of
differential integral equations obtained using the equations of motion of the piezoelectric element,
the elastodynamic equations of motion of the host structure, the conditions of ideal bonding
between the plate and the piezoelectric element, and boundary conditions. The dynamic coupled
contact problem of Lamb wave excitation by PZT was solved by Seemann [Seemann et al., 2007]
only for a plane strain case assuming sole dependence of the load and host structure properties on
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one of the in-plane coordinates, namely the propagation direction. Wang and Meguid [Wang and

Meguid, 2000] studied the static behavior of a thin-sheet piezoelectric actuator attached to an

infinite elastic medium using a one-dimensional model to investigate the load transfer between

the actuator and the host medium and the stress concentration near the ends of the actuator. The

static electromechanical field of a piezoelectric layer bonded to an elastic medium with both

interfacial and normal stresses being considered has also been studied in [Zhang et al., 2003a,b].

Due to the several complicating effects, the problem statement in coupled form is not suitable for

a real industrial application at the moment due to its complexity.

(a) strain distribution of the Bernoulli-

Euler model and the induced shear

stress in the plate

(b) strain distribution of the Kirchhoff

plate model and the induced shear

stress in the plate

Figure 2.14 An illustration of the strain distribution and the induced shear stresses in

the plate according to different assumptions used in the simplified actuation models.

Different simplified actuator models have been developed over the years to simulate the actuation

process. Crawley and de Luis [Crawley and de Luis, 1987] analyzed a beam-like structure with

surface-bonded and embedded thin-sheet piezoelectric actuators to study the load transfer from

the actuators to the host structure. In this analysis, the axial stress in the actuator was assumed to

be uniform across its thickness (see Fig. 2.14(a)). Crawley and Anderson [Crawley and Anderson,

1990] developed a Bernoulli-Euler model of a piezoelectric actuator by considering the linear

stress distribution across the thickness (see Fig. 2.14(b)). A refined actuator model based on the

plane stress condition was further studied to investigate the electromechanical behavior of a beam

with symmetrically surface-bonded actuator patches [Lin and Rogers, 1993]. Plate and shell
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models have been extensively used in modeling the electromechanical behavior of piezoelectric
structures [Banks et al., 1996; Dimitriadis et al., 1991].

A common methodology for calculating the waves generated by a specific traction applied to
the surface of the plate is based on the solution of the wave equation in the spatial Fourier
domain [Viktorov, 1967]. This technique has been applied to the analysis of waves generated
by several actuator configurations in isotropic structures in [Giurgiutiu, 2005, 2008], where they
demonstrated the effect of the size of the actuator as a very important parameter for tuning the
excitation to a specific frequency and wave mode.

(a) Displacement response for a 14 mm piezoelectric
element

(b) Strain response for a 7 mm piezoelectric element

Figure 2.15 Predicted Lamb wave response of a 1.6 mm aluminum plate under
piezoelectric element excitation based on the ideal bonding assumption of a one
dimensional model developed by Giurgiutiu [Giurgiutiu, 2005].

They concluded as shown in Fig. 2.15(a) and 2.15(b) that maximum amplitude will occur when
the piezoelectric element length equals an odd multiple of the half wavelength. In the same time,
minima will occur when the piezoelectric element length is integer multiple of the wavelength.
These results, which were limited to one-dimensional wave propagation, are extended to the
2D analysis of crested waves propagation in plates in [Raghavan and Cesnik, 2005a] where an
analytical model allows the investigation of the effects of the in-plane shape of the piezo-patch.
The formulation relies on the solution of the 3D equations of elasticity with the stress field
generated by the surface bonded piezoceramic element as a boundary condition. But again, all
this FFT based calculations were based on an equivalent loading of the piezo mainly using the
idealization put forward in [Crawley and de Luis, 1987], to obtain an analytical description of the
stress induced by a thin layer of piezoelectric material. These commonly used assumptions treat
the piezoelectric element as a Love-Kirkchoff layered system characterized by linear variations of
displacements through its thickness a shown in Fig. 2.14(b). Furthermore, the induced interface
shear stress computation assumes that no reacting forces are applied to the piezo element. In
addition, electro-mechanical coupling effects are largely simplified by considering a constant
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electrostatic field within the piezoelectric layer. This standard assumption allows removing the
electrical degrees of freedom from the fully coupled electro-mechanical formulation.

In case of ideal bonding, the forces is typically assumed to be transfered over an infinitesimal
region at the edges of the PZT-plate interface, and the induced strain is assumed to be fully
equivalent to that will be induced by two concentrated forces applied at its ends (pin force
model) as shown in Fig. 2.14. The pin force idealization has several limitations, The model is a
good approximation only if Young’s modulus and thickness of the actuator are small compared
to those of the host structure or the bonding layer is very thin and stiff. Gopalakrishnan et

al. [Gopalakrishnan et al., 2011] in an attempt to avoid these limiting assumptions, they performed
the analysis of the fully coupled electro-mechanical behavior of the layered structure. By
discretized the three-dimensional FE formulation, whose generality can be exploited to investigate
complex geometries and bonding conditions between the layers. The fully coupled model is used
specifically to estimate the interface stresses through the numerical estimation of the excitation
functions entering into the wave number solution. So they essentially extracted the shear stress
distribution under which the plate is subjected via FE fully coupled analysis for the part of
the PZT and the plate bonded into its, and substituted that numerical stress functions into the
wavenumber transform method to extract the propagated modal amplitudes. i.e. they included the
effect of the complicated changes in the actuation mode, but ignored the mechanical coupling
between the plate and the acutator. The results they obtained for a circular PZT element are
shown in Fig. 2.16. Their results corroborate what have been observed and reported earlier by the
author in [Mohamed and Masson, 2010a].

Figure 2.16 Variation of amplitude of the plate in-plane displacement versus exci-
tation frequency at 5 cm from the source. Comparison of analytical (circle), semi-
analytical with Dirac applied stress (dashed line) and semi-analytical results with
FE-evaluated interface stresses (solid line) for the S0 (a) and A0 mode (b) [Gopalakr-
ishnan et al., 2011].
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The PZT element when subjected to an electric voltage produces an interfacial stress between
the actuator and the structure. The corresponding stresses are usually unknown and depend on
the electric field applied on the electrode surface, its shape, shape of the actuator, the excitation
frequency (for the case of harmonic excitation), and on the properties and boundary conditions of
the plate under excitation. The assumption of ideal bonding between PZT element and the plate
are only one step into a more realistic simulation, the actual coupling between the PZT element
and the plate is achieved via a bonding material. Usually the actuators and sensors are bonded
onto the host structure using a thin adhesive layer (glue).

The first attempt for modeling of interaction between the PZT element and an isotropic plate
through the adhesive layer was proposed firstly by Crawley and de Luis [Crawley and de Luis,
1987] for a plane strain problem. It is based on the quasistatic modeling, taking into account the
effect of adhesive layer, considered classically using what is known as shear lag effect in the
adhesive layer analysis or Volkersen’s shear lag analysis [Crocombe and Ashcroft, 2008], and
relying on the independence of interfacial stresses on the excitation frequency, i.e. the model is
static. The configuration studied was of two piezoelectric elements bonded symmetrically on
both sides of an elastic thin structure. The in-plane induced strain in the PZT was calculated as:

εIS A = d31
v(t)
ha

(2.4)

where v(t) is the transient applied voltage, d31 the piezoelectric strain coefficient in m/V capturing
the coupling between the vertically polarized field and the in-plane induced strain and ha is the
thickness of the actuator. The interfacial stress in the adhesive layer under quasistatic conditions
then becomes

τxz =
haϕ

a(ϕ + α)
EaεIS A

(
Γa

sinh Γx
cosh Γa

)
(2.5)

for |x| ≤ a, where

Γ2 =
Gb(ϕ + α)
Eahahbϕ

(2.6)

with ϕ = Eh
Eaha

, where Gb is the shear modulus of the adhesive material, hb the thickness of the
adhesive layer, E, h, Ea, ha are Young’s modulus and thickness of the plate and the actuator
respectively. The parameter α is called the modal repartition number, and it depends on the
stress, strain, and displacements across the plate thickness. The shear lag parameter Γ was
found to depend on modal repartition number α which took the value α = 1 for symmetric (i.e.,
axial) excitation and α = 3 for antisymmetric (i.e., out of phase) excitation. This initial analysis
was further detailed by Crawley and Anderson [Crawley and Anderson, 1990]. Giurgiutiu
in [Giurgiutiu, 2005] extended Crawley’s theory [Crawley and Anderson, 1990; Crawley and
de Luis, 1987] to the case of only one piezoelectric element bonded to the thin-wall structure by
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calculating the total effect as a superposition of symmetric and antisymmetric contributions and
found the value for a single-sided piezoelectric excitation to be α = 4.

The piezo-plate interaction through the bonding layer is schematically represented in Fig. 2.17(a).
The classical shear lag solution described previously can be simplified in case of a very thin
bonding layer. Assuming hb � 1, one obtains Γ � 1, namely the shear transfer process becomes
very rapid and concentrates over some infinitesimal distances at the ends of the PZT element. So
the pin force model covered earlier is a limiting case for the classical shear lag analysis.

(a) Transmission of mechanical stresses from the PZT
element to the host structure through the adhesive
layer [Giurgiutiu, 2008].

(b) Equilibrium of a differential element of the struc-
ture where it is excited only by shear stress trans-
mitted into it through the adhesive layer [Yu
et al., 2010].

(c) variation of shear-lag transfer mechanism with
bond thickness for a PZT element with Ea = 63
GPa, ta = 0.2 mm, la = 7 mm, d31 = 175 mm/kV
attached to a thin-wall aluminum structure E = 70
GPa and t = 1 mm, through a bond layer of Gb =
2 GPa [Yu and Giurgiutiu, 2008].

(d) Effect of non-linear stress distribution on the repar-
tition parameter as frequency changes for an Alu-
minum 2024 plate [Yu et al., 2010].

Figure 2.17 Transmission of mechanical stresses from the PZT wafer to the host
structure through the adhesive layer, and the equivalent shear lag model solution.

In an attempt to relax the quasistatic assumption underlying the classical shear lag solution, Yu et

al. [Yu et al., 2010] have developed a closed form solution for the case of the nonlinear strain
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distribution in the plate cross section, which is the case for the mode shapes at higher frequencies.
Fig. 2.17(d) shows the variation of α when including this nonlinear distribution into the analysis.
It is apparent that, at low frequencies, the previously calculated values from the classical solution
α = 4 applies. As f d increases, α also increases, from α = 4 at low frequencies to α ≈ 5 at
high frequencies. It is also noticeable that, at high frequencies, the relative contribution of S0
and A0 changes, with S0 contribution decreasing while A0 contribution increases. There results
demonstrated a shift to higher frequency with the inclusion of the variable repartition parameter
with respect to the constant repartition parameter.

In a similar vein, attempting to remedy the observed discrepancy between the theoretically
predicted mode tuning curves and the experimentally observed measurements; Sohn and Lee
[Sohn and Lee, 2010] developed an adjustment method of relative amplitudes between Lamb
wave modes considering the strain distribution across the thickness of the structure in order to
reduce the amplitude discrepancy between the experimental and theoretical Lamb waves tuning
curves. Moreover, they introduced a PZT size calibration methods using a 3D shear lag model and
PZT admittance measurement to estimate the effective PZT size and to minimize the discrepancy
between the experimental and theoretical Lamb waves tuning curves where there is a shift to
higher frequency of maxima and minima of experimental results compared to theoretical mode
tuning curves. They attributed the observed frequency shift effect solely to the presence of the
adhesive layer.

2.4 Numerical methods for guided waves simulation

The goal of numerical simulation is to make predictions concerning the response of physical
systems to various kinds of excitation and, based on those predictions, make informed decisions.
To achieve this goal, mathematical models are defined and the corresponding numerical solutions
are computed.

Figure 2.18 The main steps of numerical simulation and the associated errors [Szabó
and Babǔska, 2011].
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Mathematical models are idealized representations of reality and should never be confused with
the physical reality that they are supposed to represent. The choice of a mathematical model
depends on its intended use: What aspects of physical reality are of interest? What data must
be predicted? What accuracy is required? The main elements of numerical simulation and the
associated errors are indicated schematically in Fig. 2.18.

Some errors are associated with the mathematical model and some errors are associated with its
numerical implementation. These are called errors of idealization and errors of discretization
respectively. For the predictions to be reliable both kinds of errors have to be sufficiently small.
The errors of idealization are also called modeling errors, the assessment of its relevance to the
problem at hand is commonly referred to as validation. Conceptualization is a process by which
a mathematical model is formulated. Discretization is a process by which the exact solution of
the mathematical model is approximated, the evaluation of its accuracy is commonly referred to
as verification. Extraction is a process by which the response quantities of interest are computed
from the approximate solution.

In this section a review of the most relevant numerical methods to elastic wave undamped
propagation are presented with special emphasis on the guided waves simulation. Since the
damping in isotropic media, in general, attenuate the wave amplitude either as a geometric
spread or in the form of material losses and typically is assumed to have no effect on the wave
propagation speed. The mathematical model that will be used as a concrete example is the scalar
wave equation without damping, or the one dimensional classical wave equation:

ρü − E∂2
xu = 0 (2.7)

which when combined with the specification of the boundary conditions,

Free : ∂xu(x, t) |x=0 or l = 0 (2.8)

Fixed : u(x, t) |x=l or 0 = 0 (2.9)

and the initial conditions
u(x, 0) = 0 ; u̇(x, 0) = 0 (2.10)

provides the mathematical model of a constant speed elastic wave propagating in a one di-
mensional media. This form of description of the mathematical model (i.e. partial differential
equation with BCs and ICs) is called strong form due to the strict requirements it imposes on the
approximating function continuity.
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2.4.1 Finite difference

Finite difference (FD) method is a collocation method based on the strong form, seeking an
approximate solution (based on local interpolation), and requiring that the residual at the specific
points of interpolation is exactly zero. In approximating an exact solution numerically, an infinite

expansion is typically replaced with a finite representation. u(x) =
N∑

j=0
u(x j)l j(x) +O(N + 1) where

l j(x) are the characteristic Lagrange polynomials, associated with a set of optimal nodes, and the
unknowns are the nodal values of the function u(x j).

We illustrate the development of the centered difference FD scheme in the following steps:
Q1: Given a set of grid points {x j} and a corresponding function values {u(x j)} how can we use
this data to approximate the derivative of u?. To be specific, consider a uniform grid {x1, . . . , xn}

with step size h = x j+1 − x j for each j, and a set of corresponding data values {u1, . . . , un}. Let g j

denote the approximation to u′(x j) the derivative of u at x j. In order to construct an approximation
of the derivative we start by interpolating the known points.
For j = 1, 2, . . . ,N

1. Let p j be the unique polynomial of degree ≤ 2 with p j(x j−1) = u j−1, p j(x j) = u j, and
p j(x j+1) = u j+1.

2. Set g j = p′j(x j)

This algorithmic description could be extended to higher orders as well be demonstrated further.
So, if we construct the interpolant based on the existing data using the Lagrange characteristic
polynomials p j(x) = u j−1l j−1(x) + u jl j(x) + u j+1l j+1(x), we have for the derivative to differentiate
the Lagrange polynomials, and evaluate it at x j. Thus g j = u j−1l′j−1(x j) + u jl′j(x j) + u j+1l′j+1(x j).

Q2: Knowing the relation between the function values at the uniform grid and its derivative, can
we obtain the values of the function from its derivative values? The solution starts by constructing
the derivative in matrix equation:

g1

g2
...

gN


=


l′1(x1) l′2(x1) l′3(x1) 0 · · ·

0 l′2(x2) l′3(x2) l′4(x2) 0
. . .

. . .
. . .

. . .
. . .

0 0 l′N−2(x2) l′N−1(x2) l′N(x2)




u1

u2
...

un


(2.11)

If we know the values of the derivative g but not the function u, we can approximate the function
values by inverting the tridiagonal derivative matrix. Since the interpolant p j is unique, this
means that the residual are exactly zero at the specific grid points of the approximation and hence
the term collocation.
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In FD methods, the number of interpolation points N is usually small and controls the accuracy
of the method. The approximating function is locally interpolated based on a mesh of N points,
not necessarily uniform. After substituting this approximation (which for the case of third order
unique interpolating polynomial g j =

u j+1−u j−1

2h ), the governing PDE is converted to a difference
equation in terms of the values of the dependent variable over a domain of local support (FD cell).
The essential and natural boundary conditions as well as the compatibility requirements at the cell
interface with the other cells are enforced, which gives a set of algebraic equations, then solving
these equations for the unknown nodal values. For the model equation, the finite difference
approximation needs to be constructed for second order derivative by repeated application of the
previous process.

The method has two sub categories, namely explicit and implicit methods. In explicit method,
the size of cell (also called the step size) is very critical for the solution accuracy. That is, the
explicit methods such as central difference scheme, have a constraint placed on the step size.
When the step sizes are larger than the critical value, the solution diverges. However, the solution
process mandates that the value at the present step is dependent only on the values preceding the
current step and hence at every step, we need to solve only an algebraic equation (conditionally

stable). For the wave propagation problem, this critical step size is determined by the well known
Courant-Friedrichs-Lewy (CFL) condition. In the implicit method, the value of an unknown
dependent variable also depends on the value preceding the current step and also values ahead of
the current step. Hence, we need to solve matrix system of equations at every step. The main
advantage is that this method does not constraint the step size (unconditionally stable).

In the context of high frequency wave propagation, cell size is very critical. If the size of the
damage is very small, then for the purpose of SHM, for the wavelength to be sensitive to damage
size this might require a signal having very high frequency content to be applied to the system.
At these high frequencies, the wavelengths are very small and hence the cell sizes need to be
compatible with the wavelength of the response of the structure. Typically 8 to 20 cells should
span each wavelength [Gopalakrishnan et al., 2011].

Several FD schemes have been utilized to model elastic wave propagation. The most important is
the staggered finite difference time domain (FDTD) or Yee scheme which was used in modelling
electromagnetic waves propagation in wave-guides, and has been used successfully in modelling
elastic waves propagation in the computational seismology, based on the velocity-stress for-
mulation [Virieux, 1986]. Higher order FD also have been used for elastic waves propagation
simulation [Balasubramanyamy et al., 1996; Zingg, 2000].
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2.4.2 Local interaction simulation approach

The local interaction simulation approach (LISA) was originally devised as FD similar scheme
that utilizes the computational parallel structure offered by the connection machine, and to avoid
the severe errors encountered in conventional FD schemes when modelling sharp change in
properties or discontinuities in the propagation medium. Strictly speaking LISA is not purely a
finite difference scheme [Delsanto et al., 1994, 1997, 1992]. It is different from the conventional
FD schemes in two respects. The first fundamental difference is that LISA starts with a discrete
form of the elastodynamic equations to be solved exactly, which avoids the problems associated
with the smoothing of any discontinuity in the FD schemes. The second difference is in the
handling of the boundary conditions, where in LISA the boundary is integrated directly into
the simulation without any need for a specific redefinition at the boundary as compared to FD
schemes [Sundararaman and Adams, 2008] . The LISA can be used for wave propagation in any
heterogeneous material of arbitrary shape and complexity. The method discretizes the structure
under investigation into a grid of cells. The material properties are assumed to be constant within
each cell but may differ between cells. A standard explicit time discretization is employed for
time marching. The algorithm can be derived from the elastodynamic wave equation for elastic,
isotropic and homogenous media given as:

(λ + µ)∇(∇ · u) + µ∇2u = ρü (2.12)

where λ and µ are Lamé constants, ρ is the material density and u is the vector of particle
displacements. For the 2D plane strain case Eq. (2.12) simplifies to:

ρüi = (λ + µ)∂liui + µ∂llui and i = 1, 2; l = 1, 2 (2.13)

This equation can be rewritten in matrix form as:

A︷       ︸︸       ︷λ + µ 0
0 µ

 ∂11u1

∂11u2

 +

B︷        ︸︸        ︷µ 0
0 λ + 2µ

 ∂22u1

∂22u2

 +

C︷            ︸︸            ︷ 0 λ + µ

λ + µ 0

 ∂12u1

∂12u2

 = ρ

ü1

ü2

 (2.14)

The structure is discretized into cells, as shown in Fig. 2.19. Consider A, B, C, are matrices
containing material data, D and F are the vectors of nodal displacements and forces respectively,
and τ is the 2D stress tensor. The junction of the four cells defines the nodal point P. The second
time derivatives across the four cells are required to converge towards a common value at point
P. This ensures that if the cell displacements are continuous at P for the two initial times t = 0
and t = 1, they will remain continuous for all later times. A finite difference scheme is used to
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calculate spatial derivatives in the four surrounding cells to P. This results in four equations in
eight unknown quantities, thus the remaining four equations are needed. Imposing continuity of
the stress tensor τ at the point P and using further finite difference formulae gives four additional
equations in the unknown quantities, thus allowing these unknown spatial first derivatives to be
solved.

Figure 2.19 Intersection of four LISA cells for the 2D case. Each cell contributes to
the common node P, thus the equilibrium conditions are considered separately and
matched by using stress continuity relations [Paćko, 2013].

This reveals the main advantage of LISA over FD; the fact that the local interaction nature of
boundaries in the model is enforced at each cell interface. The sharp interface model (SIM) is used
to average physical properties at the interface grid points which represent intersections of the four
elementary cells. In other words, cells are treated as discontinuous and displacements and stresses
are matched at interface grid points. The SIM allows for a more physical and unambiguous
treatment of interface discontinuities for different layers of material than the typical FD schemes.
The classical FD algorithms require parameters smoothing across material interfaces, which
depends on the applied scheme, therefore are not very accurate for sharp interfaces of high
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impedance mismatch. The SIM leads to more accurate results when wave propagation problems
in complex media with complex boundaries are studied [Packo et al., 2012].

Agostini et al. [Agostini et al., 2003] used the LISA to model the Lamb waves propagation in a
glass fibre reinforced plate considered as transversely isotropic in four cases, a through hole, and
notch and subsurface cracks, as well as delaminations, their results agreed well with experimental
measurements.

In a series of papers Lee and Staszewski [Lee and Staszewski, 2003a,b, 2007a,b] implemented
LISA for modelling GW propagation, and interaction with defects. An interesting feature is that
they implemented the LISA on a serial PC, as did Sundararaman and Adams in [Sundararaman
and Adams, 2008]. This reflects the versatility of the method, the high computational speed
is an advantage in using the LISA on parallel structures, but it is not restricted to the parallel
computers. Common to all the previously mentioned papers modelling GW with LISA is that
they simulated only the fundamental modes A0 and S0, to avoid the complexity associated with
the multi-mode propagation.

Lee and Staszewski [Lee and Staszewski, 2007a] applied the 1D model for the diffusion bond
model, with five different layers, a piezoelectric medium representing the excitation layer, a
copper layer, a coupling layer and again a copper layer and a piezoelectric layer representing the
sensor. The total of five layers were surrounded by vacuum, the excitation signal was Hanning
modulated five cycle sine wave. For the 2D case they simulated the excitation from a piezoelectric
piston, inducing normal stresses (8 mm diameter, and 0.5 mm thickness) distributed spatially as a
Gaussian distribution.

2.4.3 Pseudo-spectral method

Pseudo-spectral (PS) method could be seen as extending the FD collocation points to the limit of
all the collocation points, i.e. the value of the local derivative is dependent on all the values of
the function at the collocation points. The mesh of points is uniform only in the case of periodic
boundary conditions and the approximating function is expanded in terms of Fourier series.

In the case of non-periodic boundary conditions, the mesh that will achieve spectral accuracy is
the zeros of any of the Jacobi polynomials, usually Chebyshev or Legendre is used [Trefethen,
2001]. The convergence rate is spectral i.e. the approximation error decays in an exponential
rate O(ΛN), where Λ is Lebesgue constant. This rate distinguishes spectral methods from FD
methods, where the rate for the pth order method would be O(1/N p), reflecting polynomial rather
than exponential convergence.
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The solution is highly accurate provided that the sought solution is smooth enough [Fornberg,
1996]. Pseudo-spectral methods handle nonlinearities in material properties as well as material
interfaces more robustly than FD. Although, for hyperbolic systems, to which the elastodynamic
problem belongs, the boundary conditions needs special treatment [Carcione, 1991, 1994, 1996],
mainly as first order in velocity-stress formulation. The excitation signal is prescribed as a source
force term or as an initial condition.
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(a) Fourth-order convergence of the finite difference differentiation process. The use of
sparse matrices permits high values of N.
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(b) Spectral accuracy of the pseudospectral differentiation, until the rounding errors take over
around 10−14. The matrices are dense, but the values of N are much smaller than in FD
case.

Figure 2.20 A comparison between the fourth order FD differentiation of a smooth
function f (x) = exp(sin(x)), and the spectral differentiation of the same function, the
error estimate was the max norm.

For the same accuracy, the PS method, with its accurate spatial differentiation as shown
in Fig. 2.20(b) compared to the algebraic convergence rate of the FD differentiation shown
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Fig. 2.20(a), requires several orders of magnitude less computer memory and computation time
compared to other numerical modelling schemes. For example, for 2-D and 3-D modelling,
the memory requirements for the PS method are about 1/8 and 1/64 of that for the fourth-order
finite-difference scheme, respectively [Furumural and Takenaka, 1996].
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Figure 2.21 Degree N interpolation of u(x) = 1
1+16x2 in N + 1 equispaced and

Legendre points for N = 18. With increasing N, the errors increase exponentially in
the equispaced case i.e. the Runge phenomenon whereas in the Legendre case they
decrease exponentially, the error estimate was the max norm.

This spectral accuracy in the differentiation is related to the so called Runge Phenomenon.
Runge phenomenon was discovered independently more than a century ago by Carl Runge, C.
Meray and Emilie Borel: Their discovery was that polynomial interpolation on an equispaced
grid was unreliable. Borel gave an example of non-convergent interpolation at the Heidelberg
Mathematical Congress in 1904, but apparently did not publish it [Boyd and Ong, 2009]. Even
if f (x) is analytic for all real x, its interpolants fN(x) will diverge as N → ∞ near the endpoints
x = ±1 if f (x) has singularities within the "Runge Zone" in the complex x-plane [Epperson,
1987]. When smooth functions are interpolated by polynomials in N equally spaced points, the
approximations not only fail to converge in general as N → ∞, but they get worse at a rate that
may be as great as 2N [Trefethen, 2001]. If one were to differentiate such interpolants to compute
derivatives, the results would be in error by a similar factor. This phenomenon is illustrated in
Fig. 2.21(a), where the same example of Runge was used. The effect of using the clustered points
at the edges of the interval on the accuracy of the polynomial interpolant is dramatic as shown in
Fig. 2.21(b), where the interpolation points are the zeros of the Legendre polynomial.
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2.4.4 Boundary element method

In the Boundary Element method (BEM), the governing PDEs over the domain of interest are
converted into two components, one containing the integral over the domain surface and the
second component is a volume integral over the domain. The solution of the second component
comprised of the volume integral is obtained with the aid of special Green’s functions for a point
load on an infinite space, the so called Fundamental Solutions. The first component of the PDE,
namely the boundary integral on the surface of the domain are solved via standard FEM. This
process reduces the dimensionality of the problem by one, that is a 2D problem become 1D and
a 3D problem becomes a 2D problem. However, the main disadvantage of this method is that
the fundamental solutions are available only to small subset of problems. Analyzing non-linear
problems are very difficult. There is a great advantage of using BEM to SHM problems. This
is because, the internal part of the domain of interest need not be modeled. However, if a crack
or some damage is present in the structure, they form the part of the boundary. As in the other
two methods, the mesh sizes for the boundary should be small enough to be comparable to the
wavelength of the input signal.

Rokhlin [Rokhlin, 1980, 1981] started using the BEM to study the diffraction and resonance
phenomena of Lamb waves by a finite parallel crack in a plate using Wiener-Hopf technique and
multiple diffraction methods.

Cho and Rose [Cho and Rose, 1996] developed a hybrid BEM combined with the normal mode
expansion technique to study Lamb wave mode conversion from the edge of a plate and its
interaction with surface breaking defects. Later Zho and Rose [Zhu and Rose, 1999] used the
same hybrid BEM technique to simulate the wave generation procedure with time delay linear
periodic actuator arrays. Experimental results also were presented for two typical time-delay
periodic arrays to qualitatively validate the theoretical designs. The effects of the array parameters
on the array performance, such as the selectivity of Lamb modes and effectiveness of Lamb wave
generation, were investigated through the 2-D phase velocity-frequency spectrum analyses as
well as Lamb mode wave structure calculations. Their work have been further advanced in [Rose
et al., 2000] [Cho and Rose, 2000]. Rose and Zhao [Rose and Zhao, 2001] extended the same
technique to demonstrate the potential of SH wave for defect sizing. They studied the interaction
of the N0 mode SH wave with various crack and corrosion boundaries in a structure. Zhao and
Rose [Zhao and Rose, 2003] used the hybrid BEM normal mode expansion technique to the
study of both Lamb and SH waves of any mode of incidence onto a half-elliptical shaped surface
breaking defect.
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Ballandras et al. [Ballandras et al., 2009] developed a model combining periodic FEA and a
BEM to study the problem of elastic guided waves and surface waves generation using surface
acoustic wave transducers arranged in periodic structures in the saggital plane with general
geometry. Mazzotti et al. [Mazzotti et al., 2013] used a 2.5D boundary element technique to
extract the dispersion curves for waveguides with material attenuation. They analyzed waveguides
of complicated cross-section by discretizing its contour only with monodimensional elements.
Their method was based on a regularized boundary integral formulation leading to a nonlinear
eigenvalue problem in the complex axial wavenumber for any fixed frequency. The eigenvalue
problem is solved in the complex wavenumber domain by using a contour integration method to
extract the dispersion relations.

2.4.5 Finite element method

Either FD or PS methods are based on the strong form of governing partial differential equations,
making the method geometrically inflexible, and also pose problems in implementing boundary
conditions. The finite element method (FEM), and more generally numerical methods based
on Bubnov-Galerkin approximation, which rely on the variational formulation of the governing
equations, offer more flexibility in both of these respects.

The general approach of the FE method is as follows. Starting from the PDE with given boundary
conditions, multiplying it by appropriate test functions and integrating over the whole simulation
domain. Then performing a partial integration arrives at the variational formulation, also called
the weak formulation. Applying Galerkin’s approximation method using finite elements (FE)
results in the algebraic system of equations.

In the FEM, the solution for an elastodynamic problem is based on an assumed polynomial
approximation for displacements. These assumed displacement polynomials are required to
satisfy the weak form of the governing differential equation, which yields the stiffness and the
mass matrices.

These elemental matrices are assembled to obtain global stiffness and mass matrices. The
assembly process ensures equilibrium of forces between connected elements. This procedure
will give the discretized form Mü + Cu̇ + Ku = F(t) where M and K are the global mass and
stiffness matrix and ü, u̇ and u are the acceleration, the velocity and the displacement nodal
vectors, respectively. The damping matrix C is typically obtained from a proportional damping
scheme as a linear combination of stiffness and mass matrix [Zienkiewicz and Taylor, 2005;
Zienkiewicz et al., 2005].
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There are two methods of solving the obtained system of ordinary differential equations, the
Direct Time Integration (DTI) and the Mode Superposition (MS) Method. The MS method of
solution is not practical for wave propagation analysis, because the solution requires extraction of
all the higher order eigenmodes, which is computationally prohibitive. The preferred solution
method is the time marching scheme, which is essentially a finite difference scheme applied to a
system of 2nd order ODEs, thus two different strategies are available, the explicit methods which
are conditionally stable and the unconditionally stable implicit methods [Liu and Quek, 2003b].

For wave propagation and highly transient dynamic problems, explicit methods are normally
preferred [Hughes, 1987]. In the time marching scheme, the solution process takes place over
a small time step ∆t. The solution of the dynamic equations will give displacement, velocity
and acceleration histories. The solution process is repeated for n time steps until the total time
Ttotal = n∆t is reached. The solution computation time is directly proportional to the number of
degrees of freedom in the model, which is usually very high for wave propagation problems.

For sufficiently smooth problems on regular domains, h-type FE exhibit an algebraic convergence
to the exact solution, i.e. the approximation error is proportional to 1/N p+1 , where N is the
number of degrees of freedom (DOFs) of the problem, and p is the polynomial order of the
element shape functions. Low-order (p = 2 or 3) h-type elements, which are preferred in structural
dynamics for their computational efficiency, have a serious deficiency in that they propagate
elastic waves poorly [Sprague and Geers, 2007].

Alternatively, one may employ p-type FE where the spatial domain is discretized as with h-type
elements, but solution accuracy is improved by increasing the polynomial order p of element
shape functions, thereby increasing the number of DOFs in an invariant mesh of elements. For
sufficiently smooth problems on regular domains, p-type elements may exhibit exponential
convergence, i.e. the error is proportional to exp(βN) for some constant β that depends on the
polynomial degree [Babuška and Suri, 1994].

Utilizing its inherent versatility for modeling complex geometries, simulation studies of Lamb
waves (LW) interaction with defects almost exclusively were based on FEM. Alleyne and
Cawley [Alleyne and Cawley, 1992] used a 2D, uniform square mesh of 4-noded quadrilateral
with more than 10 elements per wavelength to model the interaction of the fundamental Lamb
modes with surface breaking straight sided notches. The excitation of each individual mode was
achieved by imposing the appropriate mode shape as a time dependent displacement boundary
condition. The transmission ratio is evaluated based on a 2D FFT. Lowe et al. [Lowe et al., 2002;
Lowe and Diligent, 2002] used a similar FEM approach, but with lumped mass formulation, to
study the reflection characteristics of the two fundamental modes, they have included the case of
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Figure 2.22 FEM road map for efficient simulation [pzflex, 2005].

zero width crack, by eliminating the connectivity between the neighboring nodes. There results
were compared with experimental results obtained using water wedge excitation by a conventional
pressure transducer for the A0 mode, and edge mounted transducer for exciting S0 mode. Lua et

al. [Lua et al., 2008] implemented a three dimensional FEM to study the interaction of oblique
incident Lamb waves at a varying range of frequencies (0.2-0.6 MHz) with a through-thickness
crack of different lengths in aluminium plates. They used the Hilbert transform to extract the
reflections and transmission coefficients. Nieuwenhuis et al. [Nieuwenhuis et al., 2005a,b]
used FE to model Lamb wave generation and reception by a PZT surface bonded element, and
compared their results with an equivalent force model, the agreement with the experimental
results were better than the pin-force model, although for the reception, they implemented a
coupled piezoelectric elastodynamic analysis using COMSOL multiphysics.

The semi-analytical finite element (SAFE) method was also applied for the study of Lamb
waves propagation in both isotropic homogeneous plates and anisotropic composite laminated
plates [Ahmad et al., 2013]. Dispersion curves for these complex materials were calculated
using SAFE. The effect of obstacles on the reflection and transmission of Lamb waves was also
considered. SAFE was also used for 2D point force response analysis. By applying the 2D
point response analysis for perfectly bonded strip actuators, mode tuning behavior is calculated.
Consideration for the edge reflections were also implemented by applying the ratio of Lamb
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mode reflections at plate edges, and representing the reflection at plate edges using infinite
plate solutions, the semi-analytical finite element method can be applied for transient response
simulation [Ahmad and Gabbert, 2012].

[Benmeddour et al., 2011] A three dimensional (3D) hybrid method combining the classical finite
element (FE) method with the semi-analytical finite element (SAFE) technique is developed. This
hybrid method was employed to study the interaction of guided waves with non-axisymmetric
damages in cylinders. The near field surrounding the damage is analysed with the 3D FE method.
The solution is expanded into sums of guided modes on both inlet and outlet cross-sections. Such
eigenmode expansions enabled the separation into ingoing and outgoing waves, i.e., incident,
reflected and transmitted waves. Using the SAFE method, elastic guided modes are then computed
at the cross-sections thus reducing the analysis to two dimensions (2D). The amplitudes of the
incident modes are imposed, whereas those of the scattered modes are determined by solving the
global system of the 3D hybrid FE-SAFE model.

Moulin et al. [Moulin et al., 2000a,b] used a coupled finite element-normal expansion method
to study the in-phase and phase-delayed excitation of Lamb wave using multiple transducers
integrated with composite laminates, by considering surface bonded or embedded transducers.
Due to the complexity of the problem, the input, i.e., the acoustic field related to each eigenmode
and the surface forcing function, was derived through the FEM. Grondel et al. [Grondel et al.,
2002] used the same approach for optimizing the spacing between double surface bonded
piezoelectric elements with in-phase excitation. Another benefit for using the normal mode
expansion, is minimizing the computational cost by treating the PZT actuator with the bonded
part of the structure by the FE, and applying the normal mode expansion for the wave propagation.
A similar economy was targeted by several FEM based studies [Kim et al., 1997; Sze and Pan,
1999], where Kim et al. [Kim et al., 1997], developed a transition element between the PZT
actuator modeled by a 3D 8 nodes brick element, and the plate modeled using a 2D plate element,
to minimize the computational cost. [Mori et al., 2013] studied the reflection and transmission
of Lamb waves at an imperfect joint of plates numerically by the modal decomposition method
and the finite element method. The joint was modeled as a spring-type interface characterized
by distributed normal and tangential stiffnesses. The analysis focused on two fundamental
symmetric and antisymmetric Lamb modes. The frequency-dependent reflection and transmission
characteristics of these Lamb modes are computed for different interfacial stiffnesses, together
with the generation behavior of localized, non-propagating higher-order Lamb modes.

In [Casadei et al., 2014] Casadei et al. used a new development in the FEM, the multiscale
FEM, to investigate the interaction between elastic waves and defects of different nature. The
Geometric Multiscale FEM,formulates multi-node elements which can model small geometrical
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features without resorting to excessive mesh refinements and without compromising the quality
of the discretization in the uniform portion of the domain.

2.4.6 Spectral element method

It is important to distinguish between two different spectral (SEM) element approaches reported
in the literature. The first one in the frequency domain and is based on the fast Fourier transform
(FFT-SEM) [Doyle, 1989; Gopalakrishnan et al., 2008], whereas the second one is the time
domain spectral element method (TD-SEM). TD-SEM refers to a spectral spatial approach. In his
first work on this subject, Patera [Patera, 1984] proposed a subparametric approach for standard
FEM. This means that the high-order polynomials are used for field variable approximation
while the geometry is described by a low order polynomial. He introduced high-order Lagrange
interpolants along with the Chebyshev-Gauss-Lobatto integration rule. This leads to an exactly
diagonal mass matrix which naturally allows for efficient explicit time integration.

Frequency domain spectral element

The frequency domain spectral element method based on fast Fourier transformation (FFT-SEM)
was initially proposed by Beskos and Narayan [Beskos and Narayanan, 1983]. But the main
impetus have been given to it by Doyle and co-workers [Doyle, 1989]. Among many frequency
domain methods based on FFT, the FFT-SEM is potentially the most effective numerical tool for
wave propagation modelling [Lee, 2009]. The FFT spectral element method is essentially a finite
element method formulated in the frequency domain. However, its method of implementation
are quite different from the conventional FEM. In the FEM the solution for an elastodynamic
problem is based on an assumed polynomial approximation for displacements. These assumed
displacement polynomials are required to satisfy the weak form of the governing differential
equation, which yields the stiffness and the mass matrices.

FFT-SEM on the other hand uses in most cases the exact solution to the wave equation in the
frequency domain as its interpolating function. Unlike the polynomials in the case of FEM, a
need to deal with complex exponentials as the interpolating functions arises. The exact solution
will have wave coefficients corresponding to the incident and reflected wave components. If one
wants to model an infinite domain, then the reflected components have to be dropped from the
interpolating functions. This gives what is called the throw-off elements formulation. Using the
complex interpolating functions for the displacement, the dynamic elemental stiffness matrix is
formulated. One can formulate this stiffness matrix as in the case of conventional FEM, using
the weak form of the governing equations. This approach will involve complex integration.
Alternatively, one can formulate the dynamic stiffness matrix using stress or force resultant
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expressions. This method is more suitable for structural dynamics simulation as it does not
involve complex integration.

Figure 2.23 The FFT-SEM workflow. The main ideas are the Fourier transform and
the dynamic shape functions [Paćko, 2013].

The basic steps involved in the analysis using FFT-SEM are as follows. First, the given forcing
function is transformed to the frequency domain using the forward Fast Fourier Transform (FFT).
In doing so, it is necessary to choose the time sampling rate and number of FFT points to
decide on the analysis time window. Care should be taken to ensure that the chosen window
is good enough to avoid what is called wraparound problems which arises from the periodic
nature of FFT [Gopalakrishnan et al., 2008, 2011]. The FFT output will yield the frequency,
the real and imaginary part of the forcing function, which are stored separately. Over a big
frequency loop, the element dynamic stiffness matrix is generated, assembled and solved as in
the case of conventional FEM. Then, the dynamic shape functions are built for each frequency.
These are derived, directly from the governing equation, which means that the functions are
exact and as accurate as the governing equation [Banerjee, 1997]. The exact solutions have
pair components representing incident and reflected waves. This is of particular importance for
the artificial boundary conditions that may be formulated at this level by influencing each part
independently, e.g. throw-off elements. This constitutes a frequency dependent dynamic stiffness
matrix. However, assembly and solution steps have to be performed at each sampled frequency.
This does not pose a major computational hurdle since the problem sizes are many orders smaller
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than conventional FEM. The solution process is first performed for a unit impulse, which directly
yields the frequency response function (FRF). The FRF is then multiplied with the load to get
the required output in the frequency domain. This output is then transformed to the time domain
using the inverse Fourier transform (IFFT). The workflow and employed numerical tools are
presented in Fig. 2.23.

The key advantages of the FFT-SEM over the conventional FEM include: high accuracy due to
the exact form of the shape functions, minimization of the number of degrees of freedom (DOFs)
since one element provides a very accurate solution for a regular part of the domain, relatively low
computational cost (to the resolution offered), effective for frequency-dependent problems, since
it is formulated in the frequency domain, easy formulation of absorbing boundary conditions and
the explicit availability of the system transfer functions.

This technique is well suited to simple problems, but becomes difficult to use for complex
geometries. Some difficulties also arise with the periodic nature of FFT when 2D or 3D problems
must be analysed. The FFT-based SEM demands additional throw-off elements due to the periodic
nature of the FFT. Because of that Doyle solves only problems of infinite or semi-infinite rods
and beams [Doyle, 1989]. To overcome the problem of the periodic nature of the FFT the Laplace
transform can be applied instead of the FFT [Igawa et al., 2004]. Another limitation of the
FFT-SEM method is the difficulty of solving coupled problems such as piezoelectric element
bonded to an elastic structure.

The FFT-SEM also has serious drawbacks that limit its application to certain classes of problems.
The most salient of those are: the nonavailability of exact shape functions, in general, except
only for relatively simple systems (this usually poses a problem for multidimensional systems).
Approximate methods may be used but the accuracy decreases. The method cannot be applied
directly to time-variant, nonlinear systems. The solution involves inverse time frequency transfor-
mation which may cause numerical problems (e.g. inverse Laplace transform) and deteriorates
the solution quality [Paćko, 2013].

Time domain spectral element

The spectral element method was derived from two previously developed numerical approaches,
which are the pseudo-spectral methods and the Finite Element Method. The former one is known
to be very accurate (it is exact up to the Nyquist frequency), whereas the latter has the advantage
of being highly flexible when dealing with complex geometries.

The spectral element method in time domain (TD-SEM) could be considered a special case of the
p-version FEM except for the specific approximation functions it uses. Elemental interpolation
nodes are located at points corresponding to zeros of an appropriate family of Jacobi polyno-
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mials (usually Legendre or Chebyshev). A set of local shape functions consisting of Lagrange
polynomials, which are defined at these points, are built and used. SEM differs from both PS
and conventional FE methods in two ways: first; pure spectral methods employ high degree
approximating functions with support over the entire domain, and second; finite element methods
use low degree approximating functions with compact support (piecewise polynomials) . Spectral
element methods exploit the advantage of high degree functions inherent in pure spectral methods,
along with the flexibility finite element methods provide in representing geometrically complex
domains. Henceforth, SEM will be used as acronym only for spectral element method in the time
domain.

The SEM was first conceived by Patera [Patera, 1984] in the context of computational fluid
dynamics. The idea was to combine the advantages of the global spectral methods with those
of the finite element method. That is, the accuracy and rapid convergence of the former and
the geometrical flexibility of the latter. The name was deduced from the fact that the SEM has
the same spectral convergence behaviour as the PS when the order of interpolating polynomials
N tends to infinity. Patera originally used Chebychev system as a basis. The main fields of
application of SEM currently include: fluid dynamics [Canuto et al., 2007; Karniadakis and
Sherwin, 2005], acoustics [Dauksher and Emery, 1996], seismology [Komatitsch et al., 2000;
Komatitsch and Tromp, 1999; Komatitsch and Vilotte, 1998; Komatitsch et al., 1999; Tromp
et al., 2008].

However, it appears that the use of SEM for problems of propagation of elastic waves in structural
elements is receiving an increasing attention more recently. Kudela et al. [Kudela et al., 2007a]
applied SEM in the time domain for detection of waves scattered by a lumped mass in 1D
structures based on simplified rod and Timoshenko beam theories. Numerical results have been
compared to those obtained from the classical finite element approach as well as experimental
results. The same approach have been extended for the analysis of the propagation of transverse
(SV) elastic waves in a 2D composite plate, using the first-order shear deformation theory for
plates in [Kudela et al., 2007b]. Peng et al. [Peng et al., 2009] implemented a 3D Lamb wave
model for damage detection in an Al plate, with a rectangular through thickness cut, they used
nodal forces for excitation of the two fundamental Lamb modes.

Desceliers et al. [Desceliers et al., 2008] introduced a numerical hybrid method to simulate
wave propagation in a multilayer semi-infinite medium subjected to given transient loads. The
method has a low numerical cost and is relatively straightforward to implement. It is based
on a time-domain formulation associated with a 2D-space Fourier transform for the variables
associated with the two infinite dimensions and uses a finite element approximation in the
direction perpendicular to the layers.
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Zak et al. [Zak et al., 2006] used spectral element method in the analysis of in-plane elastic
wave propagation in a composite panel. The composite panel is modelled by a 36-node spectral
membrane finite elements with nodes defined at Gauss-Lobatto-Legendre points. As approxima-
tion polynomials they used fifth order Lagrange polynomials. In order to calculate the element
stiffness and mass matrices the Gauss-Lobatto quadrature has been applied. Numerical calcula-
tions were carried out for various orientations of reinforcing fibres within the panel as well as for
various volume fractions of the fibers.

Zak [Zak, 2009] presented a novel formulation of a spectral plate finite element for analysis
of propagation of elastic waves in isotropic structures. In his formulation, the spectral plate
finite element shape functions are approximated by Chebyshev polynomials of the first kind.
The element makes use of on an extended form of the displacement field that enabled him to
investigate selectively or simultaneously both symmetric and anti-symmetric modes of Lamb
waves propagating in plate structures.

Schulte et al. [Schulte et al., 2010] presents what they call a flat shell spectral element approach,
which is an implementation of the Mindlin plate theory. They included the effect of the piezoce-
ramic excitation, via equivalent loading, to simulate the effect of piezoceramic element bonded
to the plate, which ignores the presence of the piezoceramic and substitute a mechanical load
generated by the piezoceramic.

Zak and Krawczuk [Zak and Krawczuk, 2011] discusses various numerical issues associated
with the spectral element formulation for longitudinal waves in rods, they conclude that out
of three nodal distributions considered, the Lobatto node distributions offer the best properties
of the elemental shape functions and characteristic matrices. In a similar vein, Witkowski
et al. [Witkowski et al., 2012] studied the 2D spectral elements in both static and dynamic
formulations. They verified the absence of Locking effect and spurious zero-energy modes as
opposed to the low order conventional finite elements for the same case. Another advantage of
the spectral element demonstrated in their work that the solution accuracy is less sensitive to
element distortions than the conventional finite elements.

Peng et al. [Peng et al., 2010] presents a two-dimensional spectral element method for character-
izing wave propagation in composite beam structures for the purpose of damage detection. The
interaction of Lamb waves with delamination in an 8-ply carbon fiber/epoxy (CF/EP) laminate is
investigated, and some mechanisms of interaction between Lamb wave modes and delamination
are revealed in detail. They demonstrated that the reflection at the far end of the delamination
is much stronger in magnitude than that from the near end, and when the delamination length
is comparable to the wavelength of the wave mode, the reflections from both ends of the de-



48 CHAPTER 2. Literature review

lamination merge into one. They concluded that the fundamental antisymmetric (A0) mode is
more suitable for identification of delamination in multi layered composite structures than the
fundamental symmetric (S0) mode, especially when the delamination is in the symmetric plane.

Kim et al. [Kim et al., 2008] developed a full 3D SEM-based method for modelling the outputs
of a built-in piezoelectric sensor in response to an excitation induced by a built-in piezoelectric
transducer in ultrasound range in isotropic metallic structure integrated with a network of
piezoelectric transducers and sensors. They are the only ones in the literature to include a
coupled electromechanical field equations and employs an explicit time-integration scheme for
the elastodynamic solver and Gauss elimination for static electric fields, which makes their
approach a weak coupling approach.

Ha and Chang [Ha and Chang, 2010] in an attempt to develop an efficient spectral element for
modelling piezoelectric actuator-induced high-frequency wave propagation in thin plates. They
proposed a hybrid spectral element that supposedly take advantage of both a high-order spectral
element in the in-plane direction and a linear finite element in the thickness direction in order to
efficiently analyse Lamb wave propagation in thin plates. Their claims about the computational
efficiency may be valid, but the approach to use reduced integration in the thickness directions
raises serious limitations regarding the range of frequency that could be simulated accurately.

Mulder [Mulder, 1999] analyzed the accuracy of the 1D acoustic SEM scheme. He concluded
that the error introduced by the spurious, or nonphysical, modes can be neglected and that SEM
using Gauss-Lobatto nodes and quadrature rules was more accurate than Chebyshev-SEM or
classical FEM. He also analyzed the asymptotic behavior of the grid dispersion.

Cohen [Cohen, 2002] analyzed the grid dispersion of the 1D, 2D, and 3D acoustic SEM schemes
analytically using Gauss-Lobatto nodes and quadrature rules. In his approach, he used an
eigenvalue formulation and Taylor-series to get the asymptotic behavior of the grid dispersion. In
his results, he showed dispersion curves for the 1D case using second or third-order methods and
various time-stepping schemes.

As for the elastic FEM or SEM, there seems to be fewer grid-dispersion or stability-analysis
results available in the literature. This has led to set the order of the elements and the grid spacing
according to the results available for the acoustic case [Chaljub et al., 2007; Komatitsch et al.,
2005].

Babase and Sen [Basabe and Sen, 2007] extended the approach introduced by Cohen [Cohen,
2002] to analyze the acoustic FEM and SEM schemes of any order and developed a similar
approach to analyze the elastic FEM and SEM schemes of any order. For the lowest order
elements, they use this approach to develop numerical dispersion formulas in closed form, and
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for the higher-order elements the numerical dispersion curves were calculated numerically. They
also demonstrated that the numerical dispersion curves of some classical acoustic and elastic FD
compare well with those corresponding FEM schemes. As a result, they confirm the assumption
in [Chaljub et al., 2007; Komatitsch et al., 2005] on the applicability of grid dispersion and
stability criteria of the acoustic case to the elastic case.

Seriani and Oliveira [Seriani and Oliveira, 2008] studied the numerical dispersion of spectral
element methods of arbitrary order for the isotropic elastic wave equation in two and three
dimensions by a simplified modal analysis of the discrete wave operators. This analysis is based
on a Rayleigh quotient approximation of the eigenvalue problem that characterizes the dispersion
relation. This approximation takes full advantage of the tensor product representation of the
spectral element matrices. They computed dispersion graphs that show the dependence of the
phase/group velocity, the polarization error, and the numerical anisotropy on the grid resolution as
well as the polynomial degree with both Gauss-Lobatto-Chebyshev and Gauss-Lobatto-Legendre
collocation points.

Overall, the time domain spectral element have the following advantages that makes it more
suitable for the simulation purpose of relatively high frequency guided waves propagation:

— Almost free from the shear locking effects and zero-energy modes,
— less sensitive to element distortions, due to the well conditioning of the elemental matrices,
— free from the Runge oscillations, which might contaminate the accuracy even of similar p

version of finite element, with equidistant nodal distribution,
— have less numerical dispersion for wave propagation.

2.4.7 Comparison of numerical methods for guided waves simulation

As a visual cue for the main differences between the different methods used, Fig. 2.24 illustrates
the type of dependence of the derivative approximation for each of the discussed methods.
Table 2.3, attempts to quantify the major differences between the numerical methods mentioned.

The estimated CPU time expenses are roughly based on the fact that a significant portion of
computational cost (often more than 50-90 % of the total running time) goes in solving the
linear system of equations, The CPU time for solving a symmetric positive-definite system of
equations is given by; CPU = Cnα, where n is the number of unknowns or the number of degrees
of freedom in the FE or SE model. The values of C and α depend on the choice of linear solver,
as well as sparsity and conditioning of matrix 1 [Fish and Belytschko, 2007].

1. This matrix could be the differentiation matrix corresponding to FD of PS methods, or the stiffness matrix in
either FE or SE.
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Pseuodospectral
one high order polynomial
Whole domain support 

Finite Difference
multiple low order polynomials
overlapping Whole domain support 

Finite/Spectral Element
 high order polynomials
non-overlapping compact support 

Figure 2.24 A schematic of the computational dependence of the derivative approxi-

mation for the different numerical methods. The thin, slanting lines illustrate all the

grid points (black circles) that directly affect the estimates of derivatives at the points

shown above the lines by open circles. The thick black vertical lines in the bottom

grid are the subdomain (element) walls.

Table 2.3 Comparison of numerical methods

Method Geometrical Convergence a Computational P/λmin
b

Flexibility Time (α)

FD pth order poor O(1/N p) nCpα−1 (1-2) 6

PS Fourier poor O(ΛN) Cnα (3) 2

PS Chebyshev poor O(ΛN) Cnα (3) π
FEM pth order c Excellent O(1/N p) Cn3α (1-2) 20

FEM pth order d Excellent O(1/N p) Cnα (1-2) 20

TD-SEM Jacobi Excellent O(ΛN) Cn2α (3) 5

TD-SEM Legendre Excellent O(ΛN) Cnα (3) 5

a. N is the total number of the grid points

b. The minimum number of points per wavelength needed to resolve a wave, the memory require-

ments is assumed to be ∝ P/λmin
d where d is the dimensionality.

c. Consistent mass matrix

d. Lumped mass matrix

If the matrix is dense, the value of the exponent α is 3 for most commonly used direct solvers. For

sparse matrix it is in the range of 1-2. Another factor that would make the comparison difficult, is

that in FE or SE based on any Jacobi polynomial except Legendre’s, there is the added cost of

inverting the mass matrix, which could increase considerably the amount of time, so it is assumed

that it will increase the CPU time 2 by multiples of α. Although, in the case of FD (pth order), the

2. The Jacobi SEM would take the same value of α for the mass matrix inversion and solution of the linear

system, but for FEM with consistent mass matrix (dense) it will take a value of 3, while for the sparse stiffness

matrix it will take the value 1-2.
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CPU time for solving the linear system is O(pα), but C in this case is approximately multiplied by
n/p, for each time step. The comparison is based on one time step CPU. Another important fact,
n the number of the unknowns are dependent on p, polynomial degree used in approximation for
both the FEM-p version and TD-SEM. This demonstrates the major advantage in adopting the
SEM as a CAD tool for SHM actuators and sensors pattern design.

2.5 SHM challenges to numerical simulation

In this section the main challenges facing the use of numerical simulation as a CAD tool for SHM
systems are reviewed.

2.5.1 Computational efficiency or errors

The classical error estimates of FEM such as the convergence rate which is based mainly on the
local truncation error are typically used to assess the accuracy, and consequently the efficiency of
the different algorithms. Though there are certain peculiarities of the wave propagation problem
that pose an extra need for a more representative error measures. As put by Bathe [Bathe, 1996]:

The major difference between a structural dynamics problem and a wave propagation

problem can be understood to be that in a wave propagation problem a large number

of frequencies are excited in the system. It follows that the one way to analyse a wave

propagation problem is to use a sufficiently high cut-off frequency to obtain enough

solution accuracy. The difficulties are in identifying the cut-off frequency to be used

and in establishing a corresponding finite element model.

The computational efficiency is not merely a time issue, as put elegantly by Lloyd N. Tre-
fthen [Trefethen, 2011], it is the main goal of the numerical analysis and engineering discipline:

Numerical analysis is the study of efficient algorithms for mathematical problems

not the study of rounding errors on computers. If computers had infinite precision

numerical analysis would still be here; if they had infinite speed, most of it would

not.

Another aspect of computational efficiency is that it reflects certain accuracy requirements. So,
the main reason behind the huge computational requirements is the existence of certain conditions
to ensure the accuracy of the solution. In this section, the main type of error introduced by
numerical discretization, and how it constitutes the main reason for the computational efficiency
problems facing the SHM simulation are explored. Since the FEM is the most dominant in the
field of simulation of the elastic wave propagation, it seems appropriate to confine the present
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discussion to FEM. Although the original ideas for this analysis originated mainly in the FD
analysis, the ideas are applicable to all the previously covered methods.

Typically the wave propagation problem are tackled using explicit time integration scheme, as
shown in Fig. 2.22. Generally the highest frequency of interest is determined first, then the
representative element size he is determined based on the wavelength resolution required. The
size of the elements are chosen in a manner so that the propagating waves are spatially resolved.
Alleyne and Crawley [Alleyne and Cawley, 1991] recommends that more than 10 nodes per
wavelength be used, while in [Ansys Inc., 2011], the recommendation is much higher of the order
of 20 nodes per minimum wavelength he = λmin/20. These recommendations can be considered
as a rule of thumb, but it again requires reconsideration when trying to model guided waves in
thin structures. The mode shapes that a rod or a plate could experience vary with the frequency,
and in that case a need to consider whether the mesh chosen is capable of representing the mode
shapes accurately enough even after considering the wavelength in the propagation direction.

The numerical models for SHM must be able to accurately represent ultrasonic waves with
frequencies in the MHz range. These high frequencies require an extremely high resolution in
time (the time increments between calculated solution points), even for very short real times
(µs range). Since these MHz frequencies have very short wavelengths, so as the numerical
model must have small element size to accurately resolve these spatial features; this high spatial
resolution requires very small elements, in the range of mm or even fractions of it, this refining
directly leads to very small time steps in explicit conditionally stable schemes for time integration.
An additional complication of this small element size is that a large number of elements (and thus
a large system of equations) is needed to model a realistic component. As a result, the solution
generally requires the inversion of a large stiffness matrix, leading to formidable computational
demands [Moser et al., 1999; Mulder, 1999].

Choosing an adequate integration time step, ∆t, is very important for the accuracy of the solution.
In general, the accuracy of the model can be increased with increasingly smaller integration time
steps but this depends on the time integration scheme employed. With time steps that are too
long, the high frequency components are not resolved accurately enough. On the other hand, too
small time steps are considered a waste of computational resources. Therefore, a compromise
must be found. For the implicit time integration schemes, this compromise is 20 points per cycle
of the highest frequency of interest ∆t = 1/20 fmax; this gives accurate solutions in an efficient
manner [Moser et al., 1999]. If the excitation gets closer to a step function, the ratio 20 might
not provide sufficient temporal resolution. In some cases, this ratio has to be increased up to
∆t = 1/180 fmax [Ansys Inc., 2011]. Also, the time step can alternatively be related to the time
the fastest possible wave needs to propagate between successive nodes in the mesh. This means
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that the fastest mode in the case of guided waves propagation controls the choice of the time step,
which is normally the interpretation that is adopted in the literature for the CFL condition for
explicit time schemes.

The view of CFL number as a ratio between the numerical speed with which the information is
propagating to the real speed of wave is more suitable for the analysis of numerical dispersion
for wave propagation problems. What Courant, Friedrichs, and Lewy in their seminal work in
1928 [Courant et al., 1967] 3 pointed out was that a great deal can be learned by considering
the domains of dependence of a partial differential equation and of its discrete approximation.
Consider an initial-value problem, the mathematical domain of dependence of the solution, is
defined as the set of all points in space where the initial data at t = 0 may have some effect on the
solution in time t. For hyperbolic equation either linear or nonlinear, the domain of dependence
is finite and bounded. The reason is that in hyperbolic problems, energy or information travels at
a finite speed. This is a characteristic of the hyperbolic partial differential equations. For elastic
waves, this is normally exemplified by the characteristic curves of the wave propagation, which
is only straight for the linear elastic media. A numerical approximation also has a domain of
dependence. With an implicit time integration scheme, since each value of the variables depends
on all the values at one or earlier steps, the domain of dependence is unbounded. On the other
hand, with an explicit formula, the value depends on only a finite range of values at previous
time steps. The CFL condition states that for a numerical scheme to be convergent (i.e. stable
and consistent), the mathematical domain of dependence should be contained in the numerical
domain of dependence. It is a necessary but not sufficient condition for stability. So, for example,
for a one dimensional wave, the numerical value of the mesh spatial distance between two nodes
divided by the time step, define a speed with which the information is numerically propagated
in time and this speed must be less than or equal to the physical speed of propagation in the
equation.

The stability of a numerical integration in time is a measure of how fast the perturbations in initial
conditions will decay when t → ∞, an unstable scheme will amplify the perturbations, which
comes mainly from the truncation errors of the spatial approximation, and possibly from the round-
off errors of the machine. So, if the stability requirements are satisfied, the question becomes: are
the truncation errors a good enough measure for the accuracy of the numerical approximation of
propagating waves? In other words, having satisfied the stability requirements, and established
convergent scheme based on the local truncation errors of the spatial approximation is that enough
to ensure the accuracy of the solution? The general answer to this question is NO as has been

3. In German: "Über die partiellen Differenzengleichungen der mathematischen Physik" Math. Ann.100 (1928),
32-74. An English translation appeared much later in IBM Journal 11 (1967), 215-234.
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demonstrated by Trefethen [Trefethen, 1982]. There is more to the inaccuracy of a numerical
scheme than truncation error. The convergence norms based on truncation errors such as energy
norms are satisfied stepwise, but in the normal error analysis, the errors are considered random
either emanating from truncation or random perturbations coming from round-off errors, but if
we base our estimate of the accuracy of the numerical wave propagation on the accumulation of
such errors which are assumed random in nature, the estimate will not provide a good measure
for the accuracy of the solution. This is due to the fact that errors caused by time integration
differencing are not random perturbations, but a systematic superposition of dispersions and
possibly dissipations of various orders. Understanding behavioral features such as phase and
group velocity of numerical errors can yield various benefits.

In designing a numerical approximation technique for a time dependent partial differential
equation, it is often useful to divide the process into two steps: first, discretize the problem with
respect to space, thereby generating a system of ordinary differential equations in time; next,
solve this system by some discrete method in time. A system of ordinary differential equations of
this kind is known as a semidiscrete approximation to a partial differential equation. The idea
of constructing a semi-discrete approximation and then solving it by a numerical method for
ordinary differential equations is known as the method of lines. In the spirit of the method of lines,
we shall discuss the effect of the time integration on the propagation of elastic waves numerically,
as well as the spatial discretization. This division between the spatial and temporal discretization,
stems from the fact that we need to distinguish between the dispersion errors emanating from
each.

The classical numerical dispersion analysis typically starts by assuming an unbounded mesh,
which means that all the system’s equations are of the same form. This assumption, for the
linear FE with equally spaced nodes, is typically followed by a reduction of the system to a
single degree of freedom. A wave with a prescribed wavenumber and amplitude is assumed and
substituted and the corresponding frequency is then determined.

If we substitute directly the harmonic displacements into the semi-discrete equations:

Mü + Ku = 0 (2.15)

we have an estimate of the dispersion error due to the spatial discretization alone. The order of
the method in this case is inherited from the classical convergence orders mentioned in § 2.4. If
we substitute the harmonic solutions, in the time integration scheme, we then are estimating the
dispersion error coming from both spatial and temporal discretization, thus including both the
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accumulative superposition as well as possible cancellation of the temporal and spatial errors,
each has its own order.

In order to motivate the discussion for the numerical dispersion errors, it is better to start
with explicit central difference scheme since it is the most suitable for the wave propagation
simulation. The explicit time central difference integration scheme is conditionally stable, i.e.

have a restriction on the maximum time step permitted. The semi-discrete system of equations is
solved iteratively via:

Mut+∆t − (2M − ∆t2K)ut + Mut−∆t = ∆t2f (2.16)

where the mass matrix M is assumed to be diagonal, either by a special diagonalising technique
or by construction. The numerical error arising from both the temporal and spatial discretization
could be formulated as a dispersion relation. Both phase and group velocity of the numerically
propagated wave is dependent on the spatial ∆x and temporal ∆t discretization parameters. For
example, considering a wave propagation in a one dimensional mesh of linear finite element
of length ∆x with the mass matrix given as ρ∆xI and stiffness matrix row at a node, given as
(E/∆x)[−1 2 − 1]. For each node, Eq. (2.16) becomes, with no forces:

ρ∆x(ut+∆t
n − 2ut

n + ut−∆t
n ) − E

∆t2

∆x
(ut

n+1 − 2ut
n + ut

n−1) = 0 (2.17)

which after plugging a harmonic solution gives the frequency equation of the central difference
scheme, for the one dimensional classical wave equation:

E
ρ

(
∆t
∆x

)2

(1 − cos(k∆x)) + (cos(ω∆t) − 1) = 0 (2.18)

where
√

E
ρ

∆t
∆x = c f is the CFL number for this specific case, (i.e. the ratio of the physical wave

phase velocity to the numerical wave phase velocity). So, solving for ω, gives the frequency
equation of this specific numerical scheme.

ω =
cos−1

(
1 − c2

f + c2
f cos(k∆x)

)
∆t

(2.19)

which is non-dispersive (i.e. ω/k = ∆x/∆t) and solves the problem exactly only if the c f = 1 (see
Fig. 2.25). Although it is believed that the smaller the time step the more accurate the solution
and that the only sacrifice is in the computational efficiency, this mainly depends on the choice
of the time integration scheme as shown by this analysis. Eq. (2.19) reveals that using CFL
numbers smaller than one, though still preserving the stability, it will lead to a dispersive phase
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and group velocity of the numerically propagated waves, even for the non-dispersive physical
wave propagation.
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Figure 2.25 The variation of the numerical wave speed with the changes in CFL
number at different values of circular frequency. The numbers on the contour is the
values of c f .

In general, the spatial and temporal discretizations may interact and their total dispersive errors
may not be a linear summation of the dispersive errors due to the two individual discretizations. A
dispersion analysis indicated that the explicit linear spatial discretization alone, in the absence of a
temporal discretization, is highly dispersive [Jensen, 1996; Trefethen, 1982]. A similar evaluation
demonstrates that the central difference in time discretization is also highly dispersive [Dablain,
1986; Dauksher and Emery, 2000].
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Nondispersed Signal

Figure 2.26 Phase velocity dispersion, for wide band one dimensional elastic wave.

Figure 2.26, demonstrate the effect of numerical dispersion with a Gaussian pulse, for a constant
phase velocity one dimensional elastic wave, integrated with CFL number = 0.8. Figure 2.27,
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shows a 5.5 tone burst modulated by a Hanning window, time marched with the same CFL
number as for the Gaussian pulse.
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Figure 2.27 Group velocity error in a one dimensional elastic wave a 5.5 tone burst.

The main observation is that although the packet in Fig. 2.27 has moved 20% too slowly, it has
broadened very little 5%. A packet is distorted with time only to the extent that its frequency
content is broad enough to include wave numbers whose speeds differ significantly, and in the
case of 5.5 the tone burst case the frequency band is fairly narrow, while the dispersion is more
pronounced in the Gaussian pulse, because its frequency content is wide enough for the dispersion
to be manifested as time distortion of the signal. Thus the absence of conspicuous dispersion in a
wave packet is not a guarantee that it has traveled at the right speed.

In order to estimate the ramification of this 20% delay in arrival time on a typical Time of Flight
(ToF) analysis, assume that the bar was 1 m long, and the speed of the propagation was that of
the rod of aluminum i.e. 5000 m/s. If the defect reflecting the wave was in the middle of the rod,
the incident wave packet would arrive in the numerical simulation 20% slower and the reflection
and transmission would suffer from a similar delay. If the distance of propagation was 0.5 m this
means that the signal would take in the physical rod 1x10−4 s, while in the numerical simulation
it will take 1.2x10−4 in the simulation. This will lead for the localization to errors of the order of
0.2 m. So, if the numerical simulation was used, for example, to determine the optimum sensor
placement, this will lead to erroneous design decisions.

For a more realistic example, in Fig. 2.28, there is an illustration of the effect of delay in the
ToF that could be caused by numerical dispersion of the simulated signal. Beside the complete
mis-localization there is also an added uncertainty in the determination of the damage location
emanating from the shrinking in the ellipses.
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(a) The accurate localization (b) The effect of the delay in ToF caused by numerical

dispersion

Figure 2.28 Damage localization using the ToF-based ellipse method. (a) Without

numerical dispersion errors and (b) with numerical dispersion errors.

While it is possible in one dimensional case which contains regions of different, but constant,

material properties to adjust the spacing in each region to maintain a constant CFL number of one

everywhere for a given value of the time step, this is clearly not possible for higher dimensional

cases where the waves travel in arbitrary directions. Likewise it is impossible to avoid the

numerical dispersion errors in 2D and 3D elastic systems, which contain both transverse and

longitudinal waves, since it is inevitable that we treat each wave with the same CFL number.

x = a x = a+ Lx

Figure 2.29 The unit cell of one dimensional element for numerical dispersion

analysis, for a 6 nodes Legendre spectral element

The extension of the classical dispersion analysis to higher order elements involves the following

steps:

1. Determine a set of characteristic nodes that represent the element behavior in an infinite

mesh as shown in Fig. 2.29, for a 6 node Legendre polynomial.
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2. Substitute harmonic waves with arbitrary amplitudes into the displacements,

3. Solve for the characteristic equations of the linear system.

For higher order elements, there are several characteristic equations (as many as the characteristic
nodes chosen in step 1), these nodes define a unique Unit cell for the mesh such that a repetition
of the unit cell will produce the unbounded mesh [Dauksher and Emery A. F., 1997; Seriani
and Oliveira, 2008; Zyserman and Gauzellino, 2005; Zyserman et al., 2003]. By examining the
dispersive behavior of the characteristic equations, the numerical dispersion of the mesh can be
quantified.

In order to include the effect of the temporal discretization, after a slight rearrangement of
Eq. (2.16) with zero forces, and considering only the matrix elements corresponding to the
characteristic nodes (the superscript c) we obtain:

Mcut+∆t − (2Mc + ∆t2Kc)ut + Mcut−∆t = 0 (2.20)

for u, we assume a harmonic solution of the form,

ut = Ae−ikxeiωt (2.21a)

ut+∆t = Ae−ikxeiω(t+∆t) (2.21b)

ut−∆t = Ae−ikxeiω(t−∆t) (2.21c)

where x is the vector of nodal locations. For t = 0 this leads to[
2 cos(ω∆t)Mce−ikx − 2Mce−ikx + ∆t2Kce−ikx

]
A = 0 (2.22)

So, for a specific choice of ∆t, Eq. (2.22) determines the relation between ω and k, in the form of
a generalized eigenvalue problem. The resulting eigenvalues correspond to values of cos(ω∆t).
One of the eigenvalues will be for the so called "acoustical branch", and the remaining typically
called optical branches. The acoustic radial frequency ω is the one with physical meaning, and
is obtained from the largest of the eigenvalues [Brillouin, 1946, 1960; Thompson and Pinsky,
1994]. Phase and group velocities follow from cp = ω/k and cg = cp + k dcp

dk . Since both spatial
and temporal components are included, the previous method of numerical dispersion analysis
predicts the total dispersion due to the finite/spectral element discretization.

It is generally accepted paradigm to think of the spatial discretization as the more constraining
factor, and as such, a decrease in the space discretization error by mesh refinement may reduce
the dispersion error as it is the starting step in the meshing procedure; but this remedy increases
considerably the computational costs. Therefore, several techniques have been proposed for the
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reduction in the numerical dispersion error which is also related to the pollution effect [Babuška
et al., 1995]. One simple approach for acoustic and elastic wave propagation problems is based
on the use of the averaged mass matrix instead of the consistent or lumped mass matrix with
Newmark scheme [Krenk, 2001; Mullen and Belytschko, 1982]. For linear finite elements, this
technique reduces the relative error in the wave velocity for harmonic waves from the second
order to fourth order in the 1D case, by the order of error we mean the proportionality constant
p in the error decay rate O(1/N p). However, this approach suffers from the same problem,
like the explicit time integration scheme namely the impossibility of eliminating the numerical
dispersion completely due to the presence of at least two wave velocities, nevertheless, in the
case of harmonic wave propagation for 2D and 3D problems, the averaged mass matrix gives
more accurate results compared with the lumped mass matrix [Idesman et al., 2010].

Since the dispersion errors are mainly dependent on the time integration scheme used because
it is typically of less order, this motivated the search for controlling the numerical dispersion
error through developing new time integration schemes that target specifically minimizing the
dispersion errors [Idesman et al., 2010, 2008; Semblat and Brioist, 2000].

2.5.2 Infinite and absorbing boundaries

Unwanted reflections from the boundaries of the system have been and still one of the major
challenges that limits the applicability of FE simulation of waves. In time domain, this leads to a
large increase in the model geometric size (and therefore a large increase in the number of degrees
of freedom to be solved) as it is needed to separate the interaction of the waves with defects from
unwanted boundary reflections. As illustrated in Fig. 2.30 where the plate had to be extended to
achieve appropriate separation of the signal of interest and the unwanted reflections in the time
signal. Moreover, in frequency domain, removal of unwanted reflections is a requirement in order
to correctly represent wave propagation in the system.

Very often the need arise to analyze a specific region of an engineering structure in detail, without
the need to consider the complications and the associated costs of simulating a fully blown
CAD model. This need arises in different aspects of the simulation of wave phenomena, such as
seismic wave simulation, electromagnetic waves propagation. The main four types of methods
that have emerged in order to achieve this objective are: boundary integral methods, infinite
element, absorbing layer and non-reflecting or absorbing boundary condition methods. The later
three methods are based on the FD or FE technique.
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Figure 2.30 2D plane strain model of a plate including a defect (a), and time signal
at the monitoring point (b) [Drozdz, 2008].

Infinite elements are a special type of element with modified properties which is used in conjunc-
tion with standard finite elements to simulate an infinite extension in the domain. A single row
of infinite elements is typically positioned outside the boundaries of the area of study [Bettess,
1992]. Infinite elements is known to perform relatively well for static cases as well as in certain
applications of wave propagation: electromagnetism, acoustics and elastic bulk waves with
incidence angles that almost normal. For guided waves simulation, the non-normal incidence of
the different modes, as shown by Liu and Quek [Liu and Quek, 2003a] limits the applicability of
the infinite elements as an appropriate radiation boundary condition.

Absorbing or non-reflecting boundary conditions are special boundary conditions used in FE or
FD methods to model wave propagation in unbounded media. The dimensions of the model are
the same as the area of study; only the boundary conditions are changed. The first conditions for
absorbing boundaries in elastic wave equations were introduced by Clayton and Engquist [Clayton
and Engquist, 1977], which is considered a first order absorbing boundary condition. Second
order absorbing boundary condition were developed later by Bayliss and Turkel [Bayliss and
Turkel, 1980] and Engquist and Madja [Engquist and Madja, 1979].

Absorbing layers differs than the absorbing boundary conditions, they are finite regions attached at
the boundaries of a model. The objective is to approximate the case of an unbounded problem by
absorbing waves entering them. Lysmer and Kuhlemeyer [Lysmer and Kuhlemeyer, 1969] were
the first to propose a non-reflecting boundary for elastic waves. They suggested that introducing
damping at the plane of the finite boundary and by choosing appropriate damping constants,
minimize the reflected wave energy. The conditions are applied by considering separately
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longitudinal wave, transverse wave and surface wave. Therefore, a general propagation problem
with a combination of waves will require an approximation. This approximation may not prove
effective for a guided waves whereby the wave propagates in a more complex manner in the form
of dispersive multiple modes.

The perfectly matched layer (PML) technique was created in 1994 by Berenger [Berenger, 1994]
for electromagnetism and has been extended to other fields such as acoustics [Qi and Geers,
1994]. As its name indicates, a PML matches perfectly the impedance of the area of study. This
means that, in theory, a wave enters a PML without reflection. Once inside it, the wave decays
exponentially. A PML can therefore be used to achieve total radiation of a wave out of the area
of study. The PML seem to be very efficient and may be sufficient for most of the problems
in elastic wave propagation. The PML were in the first part introduced for FD simulations of
wave propagation in heterogeneous media using the differential form of the wave equation in the
velocity-stress formulation by Collino and Tsogka [Collino and Tsogka, 2001]. Komatitsch and
Tromp [Komatitsch and Tromp, 2003] used a first order approximation based on a formulation by
Stacey [Stacey, 1988] for the absorbing boundaries.

Another variant of the damping layer is the absorbing layer with increased Damping (ALID),
The ALID is an absorbing layer which is made of a material with the same properties as those of
the area of study apart from having a gradually increasing damping. The general concept was
mentioned in 1980 by Israeli and Orszag [Israeli and Orszag, 1981] and was recently revisited [Liu
and Quek, 2003a] and [Drozdz et al., 2007].

2.5.3 Damage modeling

Reliable damage modelling is a key issue when considering numerical simulations as a means to
predict structures performance and lifetime, and provide a way to simulate and improve the SHM
and NDT/NDE systems. According to the level of consideration, damage modelling methods can
be classified analogously to multiscale modelling methods [Packo and Uhl, 2011] as single and
multiscale models (meso, micro and nano).

Different approaches have been proposed to model damages for the SHM simulation applications.
Among the different failure modes, delamination, and fibre breakages are important modes of
failure in composites. These failure modes correspond to horizontal and vertical cracks in metallic
structures. This section outlines some of the approaches adopted to model these failure modes in
metallic structures in the context of FE simulation.

It is quite well known that the presence of damage causes a reduction of stiffness in a structure. A
simple way of modeling damages is to incorporate the stiffness loss in the region of the damage
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by modifying the materials properties. The benefits of this approach is its ease of implementation,
and the preservation of continuity between the adjacent elements. So, no need for specific
algorithmic handling of singularities that normally arise in the fracture mechanics simulation.
Though it lacks the ability to feed a prognostic system with relevant data such as the direction and
the patterns of damage progression, since the reduction in stiffness is mainly arbitrary. It provide
a general qualitative understanding of the behavior of the structure. If the damage is a crack,
delamination, void, inclusion or other type of the material’s discontinuity then it may be modeled
by direct, local change of material properties. However, since a sharp discontinuity is considered,
the accuracy of the damage model relies on the numerical model’s ability to simulate the wave
interaction with the interface of high impedance mismatch. Since the vast majority of elastic
waves based monitoring strategies analyze the reflection from defects, this is the most important
phenomenon that must be simulated accurately, and SEM excels in that respect since it could
assign a different material to each node separately, and the ability to represent the continuous
function sharp variations at the sudden interfaces is superior to that of classical FEM [Fornberg,
1996]. What is more, nonlinear effects may arise during wave propagation and interaction
with damage, such as friction on the crack faces, temperature-related wavefield changes, e.g.
inhomogeneous temperature field or thermoelasticity, plasticity at the crack tip, etc. These may
be simulated by using contact algorithms [Martowicz et al., 2012], coupled thermomechanical
analysis considering the influence of temperature field on the material properties, thermoelastic
coupling based on strain calculations [P et al., 2010], nonlinear material models, etc. The broad
range of phenomena that should be taken into account, especially nonlinear effects, requires
significantly larger computational resources. However, these complex structure’s responses are
frequently confined to the damage region that is relatively small compared with the structure
dimensions and thus may be efficiently analysed by hybrid and multiscale approaches.

A better way of modeling cracks in FE is to completely model the entire crack front through
the so called "Duplicate Node Method". Modeling can be done using finite elements using the
concept of duplicate nodes. The modeling of a damage such as a delamination is done by keeping
the two nodes in same place, one for the elements above the damage and other below it. The
damage is modeled through proper nodal connectivity of the elements containing the crack or the
damage, this approach is creating an interior free surface [Gopalakrishnan et al., 2011].

2.6 Conclusion

The goal of this chapter was to review the advancements in the numerical simulation of GWs
with a specific focus on SHM requirements, and constraints on the numerical simulation. It is
the author’s hope that by now the reader is convinced that dispersion is an important if not the
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most important accuracy estimate in GW simulation. If so, it should be considered persistently
in both the validation and verification phases of the numerical simulation. Considering it in
the validation step means mainly; evaluating the dispersion as dictated by the mathematical
model. Fortunately, for the majority of the engineering theories the dispersion relations could
be determined analytically. On the side of verification, numerical dispersion is an important
error measure by its own right and as such it depends mainly on the numerical approximation
parameters.

The spectral element offers certain advantages with respect to the GWs simulation, as discussed
in the present chapter. This explains the growing adoption by the wave propagation community of
SEM, both for low frequency (mainly seismological applications that utilize SEM for its strengths
in representing material nonlinearities and interfaces) and high frequency applications for the
low numerical dispersion behavior. However, very few detailed studies aimed at an accurate
quantifications of the numerical dispersion and its dependence on the meshing parameters, and
those studies were more of a mathematical orientation than an engineering focus, and were more
focused on simple generic cases. In the present work an attempt to fill that gap, by focusing on the
mathematical models of engineering origin, analyzing its dispersion behavior and implementing
the SEM approximation of the solution, and analyzing the numerical dispersion.

In the next chapter, the dispersion relations of different approximate models of guided waves in
rods are deduced as well as compared with the exact solution. Next the spectral elements for
those approximate mathematical models are formulated in detail. The numerical dispersion are
analyzed for each model by applying a systematic novel numerical dispersion approach.



CHAPTER 3

Formulation and numerical dispersion analysis of
spectral element for guided waves propagation in
rods

Numbers as realities do misbehave.

DOUGLAS HOFSTADTER (1945-)

LONGITUDINAL waves are broadly used for the purposes of non-destructive evaluation of
materials and for generation and sensing of acoustic vibration of surrounding medium
by means of transducers. Many mathematical models describing longitudinal wave

propagation in solids have been developed in order to analyze the effects of different materials
and geometries on wave propagation characteristics without the need for costly experimental
studies.

Beside this, the main purpose of considering the rod elements in this chapter is to deploy the
numerical dispersion analysis as well as to explain clearly the details of the formulation of the
spectral element method without the need to tackle the complexity of multiple dimensionality. In
the rest of the chapter we follow a unified approach to derive three different families of differential
equations describing the longitudinal waves propagating in cylindrical waveguides based on the
Hamilton variational principle. Dispersion curves, representing the dependence of phase velocity
on the frequency of these theories are obtained in closed form then evaluated numerically and
compared with the exact solution as a reference. Those theoretical dispersion curves represent
the inherent accuracy in the approximate engineering theory (validation phase), and it could also
be considered as an upper limit on the accuracy of any numerical method adopting the theory.

Having knowledge of the upper limit on the accuracy does not necessarily mean that the numerical
solution implementing the respective theory is accurate to that limit. Following a detailed
explanation of the formulation of the spectral element, the main numerical error relevant to elastic
wave propagation simulation i.e. numerical dispersion caused by discretization is analyzed in
detail.

In the rest of this chapter, a review of the exact solution of longitudinal and flexural waves in rods
is presented, followed by a review of some of the approximate theories that are typically used in
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engineering approximations for longitudinal waves in rods. The following section solves for the
analytical dispersion relations in order to asses the adequacy of the approximation in terms of the
verification phase. The rest of chapter develops in detail the spectral element formulation of the
approximate theories covered with its implementation details, and this formulated elements are
then analyzed for numerical dispersion. The chapter ends with a set of relevant conclusions.

3.1 Exact solution: Pochhammer-Chree frequency equa-
tion

Propagation of elastic waves in cylindrical structural elements is described by the linear theory of
elasticity. In the case of isotropic materials, the equation of motion governing propagation of
elastic waves, in the absence of body forces, can be expressed in a vector form as:

(λ + 2µ)∇(∇ · u) − µ∇ × ∇ × u = ρü (3.1)

where u is the displacement vector, λ and µ are Lamé material elastic constants, ρ denotes
material density and ü is the acceleration vector. It is more convenient to analyze this problem in
the cylindrical (r, θ, x) rather than the Cartesian (x, y, z) coordinates (Fig. 3.1). In the cylindrical
coordinate system the components ur, uθ, and ux of the displacement vector u are scalar functions
of the space coordinates as well as time t. The solutions of the wave equation in a cylindrical

Figure 3.1 Cylindrical coordinate system for the rod system

waveguide are found by the use of potentials (Stokes Helmholtz decomposition theorem) [Rose,
2004] arriving at the following general form for the displacement vector (u) and stress tensor (σ),
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where only the radial component of the field is relevant:

u(r, θ, x) = u(r)einθei(kz−ωt) (3.2a)

u(r) = [ur(r) uθ(r) ux(r)]T (3.2b)

σ(r, θ, z) = σ(r)einθei(kz−ωt) (3.2c)

σ(r) = [σrr(r) σθθ(r) σxx(r) σθx(r) σrx(r) σrθ(r)]T (3.2d)

where ω is the angular frequency, k the wavenumber, and n is an integer separation constant called
the circumferential order, which determines the symmetry of the solutions in the θ direction.

The solution for three dimensional wave propagation in solids was derived independently by L.
Pochhammer in 1876 and by C. Chree in 1889 [Graff, 1991]. The solution describes torsional,
longitudinal and flexural wave propagation in cylindrical rods of infinite length and is known
as the Pochhammer-Chree solution [Achenbach, 1973; Graff, 1991]. The solutions of the wave
equation are classified in two classes of modes according to their axisymmetry, which depend on
the circumferential index n. Modes for which n = 0 have no dependence on the θ, thus they only
propagate symmetrically. They are further divided into torsional modes (which only involve the
uθ component), and longitudinal modes (with both radial and axial components). Antisymmetric
modes (n ≥ 1) are called flexural waves, and involve all three components of the displacement
vector.

Two forms of graphical representation are typically used to analyse the dispersion relation
governing wave propagation for mathematical models. The first is the frequency spectrum and
the other is phase velocity dispersion curves and are obtained from the frequency equation, which
shows the relation between circular frequency ω, wavenumber k and phase velocity cp for a
particular model. Although the frequency spectrum offers certain advantages, the dispersion
curves have been the more abundant in engineering literature, and this convention has been
adopted in this thesis.

3.1.1 Longitudinal waves (n = 0)

The strain field within the rod due to symmetry, have the following non vanishing components:

εxx = ∂xux, εrr = ∂rur, εθθ = ur/r, γxr = ∂xur + ∂rux (3.3)
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while the stress field can be calculated from Hooke’s law

σxx = 2µεxx + λ(εxx + εrr + εθθ), σrr = 2µεrr + λ(εxx + εrr + εθθ)

σθθ = 2µεθθ + λ(εxx + εrr + εθθ), σxr = µγxr

After applying the Helmholtz decomposition, we reach two decoupled ordinary differential
equations with arbitrary constants, then substituting the traction free boundary conditions (σrr =

σrx = 0 at r = R) and the harmonic solution this leads to two simultaneous algebraic equations,
the determinant of which must vanish leading to the well known Pochhammer-Chree frequency
equation for longitudinal waves [Rose, 2004].

2α
R (β2 + k2)J1(Rα)J1(Rβ) − (β2 − k2)2(Rα)J1(Rα)J0(Rβ)

−4k2αβJ1(Rα)J0(Rβ) = 0 (3.5)

where α2 = ω2/c2
L − k2, β2 = ω2/c2

T − k2, Jn(x) is the Bessel function of first kind of order n,
while cL, and cT are the pressure and shear bulk wave velocities in the rod material, respectively.

Figure 3.2(a) shows the phase velocities of longitudinal modes in terms of f R, the frequency
radius product. As f R → ∞ the first mode velocity approaches the surface wave velocity cR,
while the velocities of the higher modes tend to the bulk shear wave velocity cT .
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Figure 3.2 Pochhammer dispersion curves for longitudinal waves in an aluminum
rod, (cL = 6.334 km/s, cT = 3.042 km/s, co = 5 km/s, and ν = 0.35) [Seco and
Jiménez, 2012]
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3.1.2 Flexural waves (n = 1)

Flexural waves depend on the circumferential coordinate θ, which for n = 1 given as:

ur(r) = u(r) cos(θ)ei(kz−ωt) (3.6a)

uθ(r) = v(r) sin(θ)ei(kz−ωt) (3.6b)

ux(r) = w(r) cos(θ)ei(kz−ωt) (3.6c)

substituting these equations in Eq. (3.1), we reach a system of three ODEs with arbitrary constants,
after satisfying the traction free boundary conditions we reach an algebraic system of equations,
the determinant of the system must vanish in order to have a solution. leading to the following
form of Pochhammer-Chree frequency equations for the flexural waves for n = 1 [Pao and
Mindlin, 1960]. Similar procedures could be followed for n > 1.

J1(Rα)J2(Rβ)
(

f1J
2
β + f2JαJβ + f3Jβ + f4Jα + f5)

)
= 0 (3.7)

Jα = α J0(α)
J1(α) , Jβ = β J0(β)

J1(β) (3.8)

where fi are polynomials in α, β and k that could be found in [Graff, 1991; Pao and Mindlin,
1960].
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Figure 3.3 Pochhammer dispersion curves for flexural waves in an aluminum rod,
(cL = 6.334 km/s, cT = 3.042 km/s, co = 5 km/s, and ν = 0.35)[Seco and Jiménez,
2012].

Figure 3.3(a) shows the phase velocities of flexural modes in terms of f R, the frequency radius
product. as f R → ∞ the lowest mode velocity approaches the surface waves velocity cR, while
the velocities of the higher modes tend to the bulk shear velocity cT .
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3.2 Approximate longitudinal waves theories

The Pochhammer-Chree solution is valid for an infinite rod with simple cylindrical geometry only.
For slightly more complex geometries, such as conical or exponential, no exact analytical solution
exists. The need for useful analytical results for rods with more complex geometries motivated the
development of one dimensional approximate theories. The exact Pochhammer-Chree solution
typically has been used as a reference in order to assess the accuracy of the approximate theories
and the limits of their application.

The classical approximate theory of longitudinal vibration of rods was developed during the 18th
century by J. D’Alembert, D. Bernoulli, L. Euler and J. Lagrange. This theory is based on the
analysis of the one dimensional wave equation and is applicable for long and relatively thin rods
vibrating at low frequencies (i.e. the rod radius R � 2π/k). The classical theory completely
ignores lateral effects with the corresponding lateral and axial shear modes.

J. Rayleigh was the first to recognize the importance of the lateral effects and analysed the
influence of the lateral inertia on longitudinal vibration of rods. A. Love further developed this
theory, which is now referred to as the Rayleigh-Love theory. The lateral inertia effects are
important in the case of non-thin cross sections with respect to the wavelength. From the view
point of engineering application the Rayleigh-Love theory substantially improves the accuracy of
the frequency spectrum predictions in comparison with results based on the classical theory. R.
Bishop further modified the Rayleigh-Love theory by taking into consideration the lateral shear

effects. This widened the scope of applicability of the theory in terms of the frequency spectrum.

Consider a solid cylindrical bar with radius R and length l which experiences longitudinal
vibration along the x-axis and lateral shear vibrations, transverse to the x-axis in the direction of
the r-axis and in the tangential direction. Considering the wave propagation as a symmetrical
problem the axial and lateral wave displacements can be written as a power series expansion in
the radial coordinate r of the form:

ux(x, r, t) = ux(x, 0, t) + + r2

2!∂
2
r ux(x, 0, t) + · · · + r2m

(2m)!∂
2m
r ux(x, 0, t) (3.9a)

ur(x, r, t) = r∂rur(x, 0, t) + r3

3!∂
3
r ur(x, 0, t) + · · · + r2n+1

(2n+1)!∂
2n+1
r ur(x, 0, t) (3.9b)

The displacements in the tangential direction are assumed to be negligible (uθ(x, r, θ, t) = 0). That
is, no torsional vibrations are present. According to choice of m and n in Eq. (3.9), different
models of longitudinal vibration of bars can be obtained, including the well-known models
such as those of Rayleigh-Love, Rayleigh-Bishop, Mindlin-Hermann and a three-mode model
analogous to the Mindlin-McNiven second order approximation. Eqs. (3.9) are rewritten for the
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sake of simplicity in the following form, that will be adopted hereafter to discuss the approximate
theories:

ux(x, r, t) = u(x, t) = u0(x, t) + r2u2(x, t) + · · · + r2mu2m(x, t) (3.10a)

ur(x, r, t) = w(x, t) = rw1(x, t) + r3w3(x, t) + · · · + r2n+1w2n+1(x, t) (3.10b)

The classical, Rayleigh-Love and Rayleigh-Bishop theories are based on the fundamental as-
sumption of single mode propagation, which means that the dynamics of the rod is described by a
single unknown and hence, a single partial differential equation. Another fundamental assumption
is that the above mentioned theories are plane cross-sectional theories, i.e. displacements in the
longitudinal direction preserve their plane and are not functions of distance from the neutral axis
of the rod.

The boundary conditions on the outer cylindrical surface of the rod are ignored in the classical
theory. In the Rayleigh-Love theory these boundary conditions are implicitly taken into con-
sideration because the radial component of the surface stress is zero and moreover it is always
zero inside the rod while the shear stress is neglected. In the Rayleigh-Bishop theory the radial
component of the surface stress is zero inside and on the outer surface of the rod but the shear
stress is taken into consideration inside the rod and hence, it is non-zero on the outer surface of
the rod.

3.2.1 Classical theory

The classical theory is the simplest of the models discussed here. The longitudinal displacement
is represented by

u(x, t) = u0(x, t) (3.11a)

w(x, t) = 0 (3.11b)

The equations of motion (and the associated boundary conditions) is derivable from the application
of Hamilton’s variational principle. The Lagrangian defined as L = T − P, where T is the kinetic

energy, T = ρ/2
l∫

0

∫
A
(u̇2 + ẇ2) dA dx, and P is the potential energy P = 1/2

l∫
0

∫
A
σiiεii dA dx 1.

The Lagrangian density of the system is:

L =
1
2

(
ρAu̇2

0 − EA(∂xu0)2
)

(3.12)

1. The repeated summation convention is employed
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which after substitution in the Euler-Lagrange differential equation yields the classical wave
equation:

ρAü − EA∂2
xu = 0 (3.13)

with the associated natural boundary condition ∂xu0(0, t) = 0 or ∂xu0(l, t) = 0, or essential
boundary condition u0(0, t) = 0 or u0(l, t) = 0, we complete the mathematical description of
the problem. It is worth emphasizing that the traction free boundary conditions on the outer
cylindrical surface of the rod are fully ignored in the classical theory.

3.2.2 Rayleigh Love theory

In Rayleigh Love theory, the longitudinal and lateral displacements are defined by:

u(x, t) = u0(x, t) (3.14a)

w(x, t) = rw1(x, t) (3.14b)

Rayleigh and Love theory made the additional assumption that only the inertial effect of the
lateral displacements are taken into consideration and the effect of stiffness on shear stress is
neglected, γxr = ∂xw , 0 and σxr ≈ 0. Leading to the equation of motion:

2nd order wave equation︷          ︸︸          ︷
ρAü − EA∂2

xu −

Rayleigh Love correction︷    ︸︸    ︷
ρν2Ip∂

2
xü = 0 (3.15)

where Ip is the polar second moment of area (Ip = I2 =
∫

A
r2dA = πR4/2 for circular cross-

section).

3.2.3 Rayleigh Bishop theory

In the Rayleigh Bishop theory, the longitudinal and lateral displacements are represented by the
two term expansion

u(x, t) = u0(x, t) (3.16a)

w(x, t) = rw1(x, t) (3.16b)

Substituting Eqs. (3.16) into the equation for the radial stress component σrr and equating all
terms at R to zero yields w1(x, t) = −ν∂xu0(x, t). That is, the lateral displacement of a particle
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distant from the neutral axis is assumed to be linearly dependent on the longitudinal strain:

w(x, r, t) = −ν∂xu(x, t) = rν∂xu0(x, t) (3.17)

Applying this constraint to the lateral displacement means that σrr = 0 throughout the entire
thickness of the bar. The Rayleigh-Bishop model is a single mode, plane cross-section theory,
since both longitudinal and lateral displacements are defined in terms of a single mode of
displacement, u0, and the term rν∂xu0(x, t) in Eq. (3.17) means that lateral deformation occurs
in plane and hence all plane cross sections remain plane during deformation. The equation of
motion for this theory is:

2nd order wave equation︷          ︸︸          ︷
ρAü − EA∂2

xu −

Rayleigh Love correction︷    ︸︸    ︷
ρν2Ip∂

2
xü +

Bishop correction︷    ︸︸    ︷
µν2Ip∂

4
xu = 0 (3.18)

3.2.4 Mindlin Herrmann theory

At higher excitation frequencies, the high order modes can be activated and waves with the
same frequencies but different wave number will propagate through the rod. The single mode
assumption cannot be used to describe the dynamics at such frequencies, which motivated the
development of the first multi-mode approximation theory by R. Mindlin and G. Herrmann, now
referred to as the Mindlin Herrmann theory [Graff, 1991].

The Mindlin Herrmann theory is a two mode plane cross-sectional theory, where the lateral
displacement mode is defined as an additional independent function.

u(x, t) = u0(x, t) (3.19a)

w(x, t) = rw1(x, t) (3.19b)

The dynamics of a rod modeled by the Mindlin-Herrmann theory is therefore described by a
system of two coupled partial differential equation.

ρAü0 − (λ + 2µ)A∂2
xu0 − 2λA∂xw1 = 0 (3.20a)

ρIpẅ1 + 2λA∂xu0 − µIp∂
2
xw1 + 4A(λ + µ)w1 = 0 (3.20b)
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3.3 Dispersion analysis of approximate theories

In general, the frequency equation has multiple real roots, representing the number of modes that
coexist at a certain frequency. These roots yield a number of continuous curves in the k −ω plane
called branches. The number of branches corresponds to the number of independent variables
chosen to represent u(x, t) and w(x, t) in the relevant theory, and in turn corresponds to a specific
mode of propagation. Each branch shows the relationship between frequency ω and wavenumber
k for that particular mode of propagation. The collection of branches plotted in the k − ω plane
is the frequency spectrum of the system. Dispersion curves represent phase velocity cp versus
frequency ω for each mode (branch) and can be obtained from the frequency equation by using
the relation ω = cpk.

In order to find the frequency equation of a certain theory, it is assumed that each independent
function can be represented as harmonic function u j(x, t) = C jei(kx−ωt) where j is the expansion
index (2n + 1 or 2m) in Eq. (3.10). These harmonic assumptions for u j(x, t) are substituted into
the equation(s) of motion of the relevant theory, yielding the frequency equation. A similar
assumption applies for the multiple degrees of freedom, the frequency equation is then the
characteristic equation of the determinant of arbitrary coefficients C j.

The different approximate models of longitudinal vibrations of rods mentioned here will be
analysed in this section and assessment of their accuracy by comparing their dispersion curves
with the dispersion curve of the exact Pochhammer-Chree frequency equation are shown.

Classical theory: The dispersion equation of the Classical theory is:

ω2 = c2
ok2 (3.21)

where co =
√

E/ρ is the rod speed. This dispersion equation implies a non dispersive phase
velocity, i.e. the rod velocity.

Rayleigh Love theory: The dispersion equation of the Rayleigh Love theory is:

ω2 =
k2c2

o

1 + ν2Ink2 (3.22)

where In = Ip/A
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Rayleigh Bishop theory: The dispersion equation of the Rayleigh Bishop theory is:

ω2 =
c2

T Ink4ν2 + k2c2
0

1 + Ink2ν2 (3.23)

Mindlin Herrmann theory: The dispersion equation of the Mindlin Herrmann theory is:

ω2 =
c2

Lk2+c2
T k2

2 +
2c2

L−2c2
T

In

±

√
(−4Ac2

L+4Ac2
T−c2

Lk2Ip−c2
T k2Ip)2

−4Ip(4Ac2
Lc2

ok2−4Ac2
oc2

T k2+c2
Lc2

T k4Ip)
2Ip

(3.24)

where the two modes are entailed by the plus and minus of the root.
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Figure 3.4 A comparison between phase and group velocities as predicted by dif-
ferent approximate theories: Classical, Rayleigh Love (RL), Rayleigh Bishop (RB),
Mindlin Hermann two mode theory (MH) and exact solution. Longitudinal waves in
a one millimetre diameter aluminum rod, (cL = 6.334 km/s, cT = 3.042 km/s, co = 5
km/s, and ν = 0.35)

Figure 3.4(a) shows the phase velocity dispersion curves of the approximate longitudinal waves
theories. Comparing Fig. 3.4(a) with Fig. 3.4(b) shows that relying on the group velocity to
determine the limits of accuracy of the respective theories provides a more conservative estimate
of the accuracy of the theories. Another observation is that RL theory is in better match with
the exact theory for the low frequency range. It is noticeable that the second mode of Mindlin-
Herrmann theory is adequately approximating the third exact mode but not the second, this stems
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from the fact that this second mode is dependent on the value of Poisson’s ratio. So, for some
values of Piosson’s ratio it could match the second longitudinal mode [Graff, 1991].

3.4 Numerical approximation of approximate theories

As mentioned in the introduction the second phase of ascertaining the adequacy of the simulation
results as a component of successful engineering decision cycle, is the validation phase. In the
validation phase the numerical approximation of a mathematical model is studied with focus on
the errors introduced by the numerical approximation assumptions.

In this section, the spectral element approximation for the four previously studied mathematical
models of the guided waves propagation is rods are developed in detail. The presentation adopted
here has certain advantages, by developing the semidiscrete equations in matrix form from the
weak form derived in detail in App. B, the element shape functions and quadrature rules are not
specified a priori. Even the development can proceed to the fully discrete equations through
an explicit time-integration scheme without reference to the specific shape functions used in
the approximation. Finally, shape functions and quadrature rules are introduced to complete
the formulation making this approach more appropriate to compare the differences between the
classical FEM h-type, and Legendre spectral element. This presentation will emphasize the
particular differences in using certain shape functions, and will easily clarify the origin of the
merits of the spectral element in time domain method.

3.4.1 Galerkin method

Galerkin method assumes that both the test function and shape functions are approximated by the
same approximating function, and that the essential boundary condition is satisfied by the shape
function while the test function at the essential boundary are equal to zero.

Consider a rod of length l, that is divided into ne elements, Each physical element domain
x ∈ Ωe = [xe

1, x
e
2] is mapped onto the domain ξ ∈ Λ = [−1, 1], where ξ is the non dimensional

element coordinate. In the general case, where the elements have different lengths, the linear
mapping function has to be computed separately for every element. It has the following form

Fe : Ωe → Λ, ξ(x) =
2(x − xe

1)
xe

2 − xe
1
− 1 (3.25a)

F −1
e : Λ→ Ωe, x(ξ) =

(xe
2 − xe

1)(ξ + 1)
2

+ xe
1 (3.25b)

with the Jacobian Je = ∂ξx = (xe
2 − xe

1)/2.
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Figure 3.5 Simple domain decomposition and mapping. The rod is divided into ne

elements.

The dependent variable(s) are approximated over the element domain Ωe by

ui(x(ξ), t) = φi
T(ξ)ui(t) (3.26)

where φi is a column vector of p + 1 shape functions, and p is the degree of polynomial used to
approximate the dependent variable ui over the element. [ ]T denotes the transpose, and ui(t) is
p + 1 column vector of time dependent unknown coefficients representing the nodal approximate
solution. The specific choice of the shape functions is particular to each type of element, h-type,
p-type finite or spectral element, as shown in Fig. 3.6(a), Fig. 3.6(c), and Fig. 3.6(d).

Thus the semidiscrete equations are then obtained from the weak form (see App. B for detailed
derivation of the weak forms of the different theories studied in the present work), based on
Galerkin method by assuming that both the shape functions and the test functions are the same
polynomial and of the same degree i.e. φ. The matrix form for each element Meü + Keu = f
have the following components:

Classical theory: Substituting the approximation Eq. (3.26), in the weak form (see App. B)

ρ

l∫
0

üv dx + E

l∫
0

∂xv∂xu dx = 0 (3.27)
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and since v(x) is approximated similarly, the semidiscrete form becomes

Me = ρ

1∫
−1

φφTJe dξ

Ke = E

1∫
−1

∂ξφ∂ξφ
T(Je)−1 dξ (3.28)

Rayleigh Love theory: Substituting the approximation Eq. (3.26), in the weak form (see App. B)

ρ

l∫
0

üv dx + ρν2In

l∫
0

∂xü∂xv dx + E

l∫
0

∂xu∂xv dx = 0 (3.29)

and since v(x) is approximated similarly, the semidiscrete form becomes

Me = ρ

1∫
−1

φφTJe dξ + ρν2Ip/A

1∫
−1

∂ξφ∂ξφ
T(Je)−1 dξ

Ke = E

1∫
−1

∂ξφ∂ξφ
T(Je)−1 dξ (3.30)

Rayleigh Bishop theory: Substituting the approximation Eq. (3.26), in the weak form (see App. B)

ρ

l∫
0

üv dx + ρν2In

l∫
0

∂xü∂xv dx + E

l∫
0

∂xu∂xv dx + µν2In

l∫
0

∂2
xu∂

2
xv dx = 0 (3.31)

and since v(x) is approximated similarly, the semidiscrete form becomes

Me = ρ

1∫
−1

φφTJe dξ + ρν2Ip/A

1∫
−1

∂ξφ∂ξφ
T(Je)−1 dξ

Ke = E

1∫
−1

∂ξφ∂ξφ
T(Je)−1 dξ + µν2Ip/A

1∫
−1

∂2
ξφ∂

2
ξφ

T(Je)−3 dξ (3.32)
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Mindlin Herrmann theory: Since we have two degrees of freedom, the matrices are arranged
as follows: uMe 0

0 wMe

 ü0

ẅ1

 +

 1Ke
2Ke

2KeT
3Ke

 u0

w1

 = f (3.33)

Substituting the approximation Eq. (3.26), in the weak form (see App. B)

ρ
l∫

0
üv1 dx + (λ + 2µ)

l∫
0
∂xu0∂xv1 dx + 2λ

l∫
0
w1∂xv1 dx = 0 (3.34a)

ρR2
l∫

0
ẅ1v2 dx + 4λ

l∫
0

v2∂xu0 dx + 8(λ + µ)
l∫

0
v2w1 dx + R2µ

l∫
0
∂xw1∂xv2 dx = 0 (3.34b)

In order to preserve the symmetry of stiffness matrix we divide Eq. (3.34) by two, yielding the
following components of the matrix equation (3.33)

uMe = ρ
1∫
−1
φφTJe dξ, and wMe =

ρR2

2

1∫
−1
φφTJe dξ

1Ke = (λ + 2µ)
1∫
−1
∂ξφ∂ξφ

T(Je)−1 dξ,

2Ke = 2λ
1∫
−1
φ∂ξφ

T dξ

3Ke = 4(λ + µ)
1∫
−1
φφTJe dξ +

R2µ

2

1∫
−1
∂ξφ∂ξφ

T(Je)−1 dξ (3.35)

3.4.2 Centered difference explicit time integration

Time discretization of the semidiscrete equations may be accomplished with a number of standard
techniques. Here, an explicit time integration FD scheme is used. A FD scheme is explicit if it
contains only one nonzero term at time level t + ∆t, and implicit if it contains several. Implicit
formulas are typically more stable than explicit ones, but harder to implement. Another point
to be taken into consideration, for an unbounded time t ≥ 0, an implicit formula would seem to
require the solution of an infinite system of equations! This is essentially true, and in practice,
the system is usually developed to represent a problem with bounded time, where a finite system
of equations must be solved. But for the numerical dispersion analysis, we assume, merely as a
theoretical device, that the time is unbounded. So, explicit time integration is adopted for this
specific reason for the numerical dispersion analysis purpose.

The time domain 0 ≤ t ≤ T is discretized into equal increments ∆t, such that the time at the
beginning of interval j is t = ( j − 1)∆t. The solution for the displacement at the next time step
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j + 1 corresponds to t + Δt is obtained by inverting the mass matrix, which gives:

ut+Δt = (Δt)2
[
(Me)−1(f − Keut)

]
+ 2ut − ut−Δt (3.36)

3.5 One dimensional spectral element

Until this point the semidiscrete formulation presented is independent of the specific assumption

on the type of shape function (the interpolant of nodal variables φ), and the quadrature rules used

to evaluate the various integrals of the matrices. What distinguishes the different methods, is the

specific choice of these two main substitutions.

(a) Shape functions for h-type FE

quadratic three node element.

ξ

l i

(b) Characteristic Lagrange interpolation polynomials for p = 5 based on

Legendre nodes.

(c) Shape functions for h-type FE lin-

ear two node element.

(d) Shape functions for p-type FE high order element with 6 equally

spaced nodes.

Figure 3.6 An illustration of the different shape functions used in h-type, p-type
FEM, and spectral element used in the present study.
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3.5.1 Shape functions

Typically, a spectral element uses Lagrange polynomials of degree 4 to 10 for the interpolation of
functions. The p + 1 Lagrange polynomials (Fig. 3.6(b)) of degree p are defined in terms of p + 1
nodes −1 ≤ ξ j ≤ 1, j = 0, . . . , p, by

lp
j (ξ) =

qp(ξ)
(ξ − ξ j)q′p(ξ j)

, qp(ξ) =

p∏
j=0

(ξ − ξ j) (3.37)

The interpolation nodes ξ j are chosen to be the p + 1 Legendre-Gauss-Lobatto (LGL) nodes
which are the roots of

(
1− ξ2)P′p(ξ) = 0, where P′p(ξ) is the 1st derivative of Legendre polynomial

of degree p.

Since the interpolating functions satisfy the orthogonality condition i.e. li(ξ j) = δi j, where δi j

is the well known Kronecker-delta. This makes the φ = Ip+1 where Ip+1 is the unity p + 1
matrix, and ∂xφ =

[
l′1 · · · l

′
p+1

]T
, where the nth row l′n =

[
l′n(ξ1) · · · l′n(ξp+1)

]
. This is known as the

differentiation matrix.

3.5.2 Quadrature rules

The next step on the way to the matrix formulation, is the evaluation of the integrals over the
natural domain. This is done using the so-called LGL quadrature of integration, i.e. transferring
the integral into a finite weighted sum:∫

Λ

g(ξ) dξ ≈
p∑

i=0

ωig(ξi) (3.38)

ωi is the weights of the LGL quadrature, g(ξi) is the integrand evaluated at the LGL nodes. The
LGL quadrature is a special case of the Gauss quadrature, only the choice of collocation points is
different. In the Gauss quadrature the boundary points -1 and 1 of the standard interval are not
included. This leads to a numerical integration which is exact for polynomials up to degree 2p + 1.
In contrast to that the GLL quadrature is exact only for polynomials up to degree 2p−1. This may
seem very disadvantageous, because we have to integrate polynomials of degree 2p (resulting
from the product of the test function and the shape function). But only the LGL quadrature allows
for a diagonal mass matrix as the Lagrange polynomials for the interpolation can then be defined
on the same points.
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Classical wave equation: Starting with the integrals we obtain for a single element, the mass
and stiffness matrices:

Me = ρ

1∫
−1

φφTJe(ξ) dξ = ρ

1∫
−1

p∑
i=0

li(ξ)
p∑

i=0

l j(ξ)Je(ξ) dξ

= ρ

p∑
k=0

ωk

p∑
i=0

li(ξk)
p∑

j=0

l j(ξk)Je(ξk) = ρ

p∑
k=0

ωk

p∑
i=0

δik

p∑
j=0

δ jkJe(ξk)

= ρ

p∑
k=0

p∑
i=0

p∑
j=0

ωkJe
kδikδ jk = ρωiJe

i δi j = Me
i j (3.39)

where in Ke we will abbreviate li(ξk), l′i(ξk) and Je(ξk) by lik, l′jk and Je
k respectively.

Ke = E

1∫
−1

∂ξφ∂ξφ
T(Je(ξ))−1 dξ = E

1∫
−1

p∑
i=0

l′i(ξ)
p∑

i=0

l′j(ξ)(Je(ξ))−1 dξ

= E
p∑

k=0

ωk

p∑
i=0

l′i(ξk)
p∑

j=0

l′j(ξk)(Je(ξk))−1 = E
p∑

i=0

p∑
k=0

ωkl′ikl
′
jk(Je

k)−1 = Ke
i j (3.40)

Rayleigh Love theory: For the sake of brevity we will list the final results of the substitution of
the Legendre shape functions, and the application of the LGL quadrature rule.

Me
i j = ρωiJe

i δi j + ρν2Ip/A
p∑

i=0

p∑
k=0

ωkl′ikl
′
jk(Je

k)−1 (3.41)

Ke
i j = E

p∑
i=0

p∑
k=0

ωkl′ikl
′
jk(Je

k)−1 (3.42)

Rayleigh Bishop theory: One of the advantages of the spectral element formulation is the ease
with which a higher order derivative could be approximated, since the interpolant are pth order
polynomial, it automatically satisfy p − 1 continuity requirements on the variables.

Me
i j = ρωiJe

i δi j + ρν2Ip/A
p∑

i=0

p∑
k=0

ωkl′ikl
′
jk(Je

k)−1 (3.43)

Ke
i j = E

p∑
i=0

p∑
k=0

ωkl′ikl
′
jk(Je

k)−1 + µν2Ip/A
p∑

i=0

p∑
k=0

ωkl′′ikl
′′
jk(Je

k)−3 (3.44)

The second order differentiation matrix is obtained by the matrix multiplication of the first order
differentiation matrix twice [Fornberg, 1996; Funaro, 1992].
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Mindlin Herrmann theory: We list directly the results of the substitution of the shape functions
in Eq. (3.35).

uMe
i j = ρωiJe

i δi j, wMe
i j =

ρR2

2
ωiJe

i δi j,

1Ke
i j = (λ + 2µ)

p∑
i=0

p∑
k=0

ωkl′ikl
′
jk(Je

k)−1, 2Ke
i j = λ

p∑
i=0

p∑
k=0

ωklikl′jk(Je
k)−1

3Ke
i j = 4(λ + µ)ωiJe

i δi j +
R2µ

2

p∑
i=0

p∑
k=0

ωkl′ikl
′
jk(Je

k)−1 (3.45)

3.6 Dispersion analysis of numerical implementations

For higher-order methods like p-FEM and SEM, the numerical dispersion relation found by
the classical numerical dispersion analysis is expressed as an eigenvalue problem where the
eigenvalues and eigenvectors represent the approximate angular frequencies and the amplitudes
within an element, respectively. Most of these eigenvalues poorly approximate the exact angular
frequencies for each wavenumber and these are normally referred to as parasitic modes [Mulder,
1999]. In general, these eigenvalues do not represent eigenvalues that are entailed by the
mathematical model but are artifacts of the discrete approximation. We follow [Seriani and
Oliveira, 2008] where an estimate of the maximum eigenvalue by its best approximation is used,
which is the Rayleigh quotient. The Rayleigh quotient is unique, so parasitic modes are not an
issue.

In order to analyze the spatial discretization errors only. The harmonic displacement field is
written as:

u = Aeikxe−iωt (3.46)

where x is the vector of nodal coordinates, and A is the vector of amplitudes associated with those
nodes, not necessarily equal. Note that Eq. (3.46) is a vector equation i.e. the exponentiation is
carried for each element in the x and the multiplication of the amplitudes vector is carried on an
element by element basis. Substituting in the semidiscrete form, we have

Ω2
nMy = Ky (3.47)

y = Aeikx (3.48)

The solution Ω2 exists only if y is an eigenvector of the generalized eigenvalue problem (3.47).
This is not true in general because the wave sampled by the mesh nodes is not necessarily
a solution of the spectral element equation. However, we choose Ωn that best approximates
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the eigenvalue in the sense that the residual (K − Ω2
nM)y is orthogonal to y [Bathe, 1996;

Hochstenbach and van der Vorst, 2003]. This generalized eigenvalue problem for the spatial
discretization only, has as best approximation for the maximum eigenvalue, the Rayleigh quotient
as:

Ω2
n =

yTKy
yTMy

(3.49)

where yT is the conjugate transpose of y.

The temporal discretization errors, which only exist in interaction with the spatial discretization
errors, is computed by substituting Eq. (3.46) evaluated at t = tn; thus giving the displacement
vector at the current tn, the backward tn − ∆t and the forward tn + ∆t time steps as:

ut = Ae−ikxeiωtn (3.50a)

ut+∆t = Ae−ikxeiω(tn+∆t) (3.50b)

ut−∆t = Ae−ikxeiω(tn−∆t) (3.50c)

into:
Mut+∆t − (2M + ∆t2K)ut + Mut−∆t = 0 (3.51)

and dividing by e−iωtn , we have

Ω2
nMy = Ky (3.52)

Ωn∆t = 2 sin−1
(
Ω∆t

2

)
(3.53)

For the choice of ∆t, we refer to the CFL condition:

cp
∆t

∆xmin
≤ 1 (3.54)

where ∆xmin is minimum distance between any consecutive nodes regardless it is an interior node
or belong to the element boundary, this is function of the ratio between the element size to the
wavelength h/λ and polynomial order p. Since we are evaluating spectral element implementation
of different approximate theories, the numerical deviation of the velocity should be measured
from the exact phase velocity predicted by each theory. ∆tmax is the maximum allowable time
step, and is determined by the CFL number.

∆tmax = CFL
∆xmin

cp
(3.55)
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where cp = f (ω) according to the specific approximate theory. Numerical phase and group
velocities follow from cn

p = Ωn/k and cn
g = cn

p + k
dcn

p

dk .

3.6.1 Classical wave equation

For the numerical values of material parameters, although the graphs below comprise dimension-
less variables, we take the values of an aluminum rod to generate the stiffness and mass matrices,
cL = 6.334 km/s, cT = 3.042 km/s, co = 5 km/s, and ν = 0.35. The measure of the grid resolution
is taken to be the amount of the wavelength covered by a single element, h/λ. The error due
to numerical dispersion is measured as the relative deviation ε(c), where c could be the group
velocity or phase velocity. The difference between the numerically propagated wave cn

p and the
phase velocity cp, which in the case of the classical wave equation is the constant rod velocity co:

ε(cp) =
cn

p

cp
− 1 =

cn
p

co
− 1 (3.56)

similarly for the group velocity relative error

ε(cg) =
cn
g

cg
− 1 =

cn
g

co
− 1 (3.57)

Figure 3.7(a) shows the dispersion error on phase velocity due to spatial discretization alone,
obtained via the substitution of the harmonic displacements in the semi discrete equations directly.
The different polynomial orders for the Legendre spectral element are shown in the curves. The
general trend of the curves reveals a similar pattern, for the different polynomials, the numerical
speed is underestimated by the spatial discretization. Figure 3.7(b) shows the dispersion error
on group velocity of the harmonic case, i.e. due spatial discretization alone, as a function of the
element to wavelength ratio for different polynomial degrees.

The overall behavior demonstrates the following:

1. An increase in the element order decreases the dispersion.

2. The group velocity error is larger than the phase velocity error for the same polynomial
order at the same h/λ. Since the wavenumber is increasing linearly with the frequency
the change in group velocity follows the slope of the numerical phase velocity change
with respect to the wavenumber, and since the slope is always negative, it is normal that
the numerical group velocity decreases more steeply.

3. Increasing the mesh density decreases the overall error.
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(a) The phase dispersion error due to spatial discretization

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.1

−0.05

0

0.05

0.1

P =9

P =8P =7P =6

P =5
P =4

P =10
P =11

P =12

(b) The group dispersion error due to spatial discretization

Figure 3.7 Numerical dispersion errors according to the classical wave theory, for
different orders of polynomials used in Legendre one dimensional spectral element.

Figure 3.8 shows the effect of the time integration for the 5th order polynomial, with different
CFL numbers, on the phase dispersion errors. As low order method, the errors induced by the
centered time difference (time discretization errors) are larger, at the low frequency regime, and
tends to overestimate the wave velocity, this effect remains till certain ratio h/λ, which depends
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on the polynomial order used, after which the spatial discretization dominates the dispersion and
drags the numerical speed of wave propagation down with it.

0 0.5 1 1.5 2 2.5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

CFL = 1

CFL = 0.75

CFL = 0.50

CFL = 0.25

Harmonic

Figure 3.8 Dispersion of classical wave equation, for 5th order polynomial, for
different CFL numbers

Although the 2nd order time integration, might be sought of as deteriorating the accuracy, the
conflicting trends between the spatial dispersion underestimating the phase velocity, and the
overestimation of the phase velocity by the 2nd order centered difference, leads to another
accurate numerical phase velocity far beyond the typically accepted grid resolution of 5 points
per wavelength. As shown in Fig. 3.8, the error goes to zero again at much smaller grid resolution
of 2 points per wavelength for CFL = 0.75.

Figures 3.9(a) and 3.10(b) show the effect of two different CFL numbers, on the phase velocity
dispersion. Figures 3.10(a) and 3.10(b) show the effect the same two CFL numbers, on the group
velocity dispersion. The same observation made earlier in the harmonic case could be made here.
Namely the errors in the group velocity are larger by an order of magnitude than the errors in the
phase velocity. Increasing the polynomial order or decreasing the time step reduces markedly the
dispersive errors.
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Figure 3.9 Phase dispersion errors for classical wave theory for different CFL
numbers, for polynomial orders from 4 to 12
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Figure 3.10 Group velocity dispersion errors for the classical wave theory due
to both spatial and temporal discretization for polynomial orders from 4 to 12 for
different CFL numbers

3.6.2 Rayleigh Love theory

Again, for the numerical values of material parameters, the values of an aluminum rod taken to
generate the stiffness and mass matrices, are cL = 6.334 km/s, cT = 3.042 km/s, co = 5 km/s, and
ν = 0.35.
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(a) The phase dispersion error due to spatial discretization
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(b) Numerical group velocity dispersion error

Figure 3.11 The dispersion errors due to spatial discretization according to the
Rayleigh Love theory, for different orders of polynomials used in Legendre one
dimensional spectral element.

The measure of the grid resolution is taken to be the percentage of the wavelength covered by a
single element, h/λ.
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Figure 3.12 Phase velocity dispersion errors for the Rayleigh Love theory due to
both spatial and temporal discretization for polynomial orders from 4 to 12. For
different CFL numbers.

The amount of dispersion is measured as the relative difference between the numerically propa-
gated wave cn

p to the phase velocity cp. Where both the numerical and analytical phase velocities
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are non-linearly dependent on the frequency.The error in phase and group velocity is defined as:

ε(cp) =
cn

p

cp
− 1; ε(cg) =

cn
g

cg
− 1 (3.58)

where cp is the phase velocity as predicted by Eq. (3.22).

Figures 3.11(a) and 3.11(b) show the harmonic components of the phase, and group dispersion
errors, respectively. A trend similar to the case of classical wave dispersion (Sec. 3.6.1), for the
different polynomials, the numerical speed is underestimated by the spatial discretization.

The error in group velocity is more pronounced, and larger by an order of magnitude than the
error in phase velocity. This may be explained by the fact that both the wavenumber and the
slope of the change in the phase velocity are decreasing with the increase in the frequency. This
leads to the sharper decrease in the group velocity as compared with the classical wave numerical
dispersion.

Figures 3.12(a) and 3.12(b) illustrate a similar effect of the low order interaction with a high order
approximation. The centered difference approximation tend to overestimate the phase velocity,
this deviation tends ot decrease as the CFL number gets smaller. As with the CW theory, the
lowering tendency of the high order spatial discretization tends to dominate the total dispersion
error at larger element to wavelength ratios.

Figures 3.13(a) and 3.13(b) show the numerical dispersion errors on group velocity, with different
CFL numbers. The major assertion that could be drawn from the results is that the group errors
are more representative of the actual accuracy since it is the speed with which the wave packets
will propagate. Thus, the meshing parameters i.e. the element size and the time step should be
chosen based on the group dispersion analysis not the phase dispersion unless the analysis is in
the frequency domain with harmonic excitation, in such case phase dispersion analysis provide
an accurate measure of the expected accuracy of the simulation.
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Figure 3.13 Group velocity dispersion errors for the Rayleigh Love theory due to
both spatial and temporal discretization for polynomial orders from 4 to 12.

3.6.3 Rayleigh Bishop theory

Using the numerical values of material parameters of the aluminum rod as the previous two cases
to generate the stiffness and mass matrices, the amount of dispersion is defined, as before, as the
relative difference between the numerically propagated wave cn

p to the phase velocity cp. Where
both the numerical and analytical phase velocities are non-linearly dependent on the frequency.
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Figure 3.14 The dispersion errors due to spatial discretization according to the
Rayleigh Bishop theory, for different orders of polynomials used in Legendre one
dimensional spectral element.

The error in phase and group velocity is defined as:

ε(cp) =
cn

p

cp
− 1; ε(cg) =

cn
g

cg
− 1 (3.59)



3.6. Dispersion analysis of numerical implementations 95

where cp is the phase velocity as predicted by Eq. (3.23).

Figure 3.14(a) shows the phase dispersion induced by the spatial discretization alone, i.e. har-
monic components of numerical dispersion. The error is quite small for a large portion of the h

λ
.

The noticeable difference from the previous two theories, is that the error tend to overestimate
the phase velocity before decreasing sharply again. Figures 3.15(a) and 3.15(b) show the induced
numerical dispersion due the both the temporal and spatial discretization. The effect of the
positive error is magnified by the 2nd order accurate central difference time integration scheme.
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Figure 3.15 Phase dispersion errors for Rayleigh Bishop theory for different CFL
numbers
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Figure 3.16 Group velocity dispersion errors for the Rayleigh Bishop theory due
to both spatial and temporal discretization for polynomial orders from 4 to 12 with
different CFL numbers

Figures 3.16(a) and 3.16(b) show the effect of different values of the CFL condition on the total
numerical dispersion, the larger the CFL number the larger the departure from the accurate cg
velocity.
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3.6.4 Mindlin Herrmann theory

For the case of the multiple modes, a special treatment of the matrix equation (3.33) is needed.
Referring back to Sec. 3.6, we can write similar expansion for both DOFs u0 and w1:

u0 = A1eikxe−iωt, w1 = A2eikxe−iωt (3.60)

Then substitute Eq. (3.60) into the discrete Eq. (3.33) to compute the approximate parameters
A = (A1, A2) and Ωn. Such a substitution yields

−Ωn
2A1 uM w(k) + A1 1K + A2 2K w(k) = 0 (3.61)

−Ωn
2A2 wM w(k) + A1 2KTw(k) + A2 3K w(k) = 0 (3.62)

Where w(k) = eikx, We write the linear system into a block eigenvalue problem Ky = Ωn
2My

where:

K =

 1Ke
2Ke

2KeT
3Ke

 ; M =

uMe 0
0 wMe

 ; y =

A1w
A2w

 (3.63)

The best approximation Ω2
n exists and is given by the Rayleigh quotient

Ω2
n =

yTKy
yTMy

(3.64)

which is equivalent to the 2 by 2 eigenvalue problemd1 d2

d3 d4

 A1

A2

 = Ω2
n

A1

A2

 (3.65)

where

d1 =
wT

1K w
wT

uM w
; d2 =

wT
2K w

wT
uM w

(3.66)

d3 =
wT

2KT w
wT

wM w
; d4 =

wT
3K w

wT
wM w

(3.67)

The following explicit solution to Eq. (3.65) is:

Ω2
n =

d1 + d4

2
±

√(
d1 − d4

2

)2

+ d2d3 (3.68)
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The error in phase velocity and group velocity is defined as:

ε(cp) =
cn

p

cp
− 1; ε(cg) =

cn
g

cg
− 1 (3.69)
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Figure 3.17 The dispersion errors due to spatial discretization according to the
Mindlin Herrmann theory, for different orders of polynomials (4-12) used in Legendre
one dimensional spectral element.
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Figures 3.17(a) and 3.17(b) show the numerical dispersion induced error in the phase and group
velocity, respectively, for the first Mindlin Herrmann mode for different polynomial orders (p = 4
to 12). The errors tend to behave in a clustered fashion, as well as all the spatially induced
dispersion tend to overestimate the velocity.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

CFL = 1
CFL = 0.75

p=4

p=5
p=6

p=7

7

8

p=8

56

9

p=10

p=9

p=11

(a) CFL = 1, CFL = 0.75

0 0.5 1 1.5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

CFL = 0.50
CFL = 0.25

P=12

P=11

P=10

P=9

P=8

P=7

P=6 P=5

P=4

4

5

6

(b) CFL = 0.50 , CFL = 0.25

Figure 3.18 Phase dispersion errors for Mindlin Herrmann theory for different CFL
numbers, for polynomial orders from 4 to 12.
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Figure 3.19 Group velocity dispersion errors for the Mindlin Herrmann theory due
to both spatial and temporal discretization for polynomial orders from 4 to 12.

Figures 3.18(a) and 3.18(b) show the dispersion errors induced by the temporal discretization,
with CFL numbers 1, and 0.75. As the CFL number are decreased the dispersion errors are
decreased, with a similar tendency to of the errors to cluster. Figures 3.19(a) and 3.19(b) show
the effect of temporal discretization on the numerical group velocity. It confirms the suggestion
that the group velocity should be considered a more accurate measure of the accuracy, since it
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also predicts a deviation order of magnitude higher than that predicted by the phase velocity
dispersion.

3.7 Conclusions

Distribution of nodes within spectral finite elements influence directly the elemental shape
functions. In the case of the equidistant distribution of nodes the shape function exhibits undesired
high oscillations near the element ends for high orders of approximation polynomials which is
associated with the Runge phenomenon as recalled from Sec. 2.4.3. This behavior, however, is not
present for the Legendre and Chebyshev node distributions. The accuracy of the spectral element
approximation is demonstrated for the rod elements, for three different approximate theories of
increasing complexity. This fact is manifested in the decrease of the numerical dispersion error at

the same
h
λ

with increasing polynomial order, which is a general observation for all the cases
studied. In other words, it is not just the number of mesh nodes sampling the wavelength that
controls the accuracy, but also the distribution of those nodes in the sampled wavelength.

For the case of higher order derivatives, normally encountered in the more complex engineering
theories, the FEM, needs a special treatment for the continuity requirements, e.g. Hermite
polynomials for beam elements. In the case of the spectral element, it is a straightforward
extension of the concept of the differentiation matrices.

The conflict between orders of both temporal and spatial discretization, could become more
beneficial than normally believed, since the error goes back to zero at fewer grid points than
typically recommended in literature. This may be only valid for the simple geometries, but still a
point that is worth exploration.

At the end, the effect of numerical dispersion on the group velocity is larger by a magnitude of
order than its effect on the phase velocity, thus it makes a more accurate measure to set the mesh
parameters based on the errors induced in group velocity.

A well known result from the mathematical analysis of FEM [Strang and Fix, 1988] is the
underestimation of the eigenvalue by the discrete value, in the harmonic case ωn ≤ ω. Since in
the previous results a similar trend was witnessed, it could be hypothesized that for any of the
Jacobi family of polynomials, we could generalize this underestimation trend. For the temporal
discretization, the conflict of order, would as well be seen, but may differ in the amount from one
high order polynomial type to the other.

In the next chapter, the guided wave propagation in plates is studied, starting by laying the
foundations of Lamb waves as a plane strain wave confined to the section of an infinite plate.
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The dispersion relations of the classical plate theory and first order shear deformation theory
as approximate models of guided waves in plates are deduced as well as compared with the
exact solution. Next the spectral elements for those approximate mathematical models as well
as the plane strain elastic wave propagation in both unbounded and doubly bounded media are
formulated in detail. The numerical dispersion are analyzed for each model using and extending
the same approach of Rayleigh quotient.





CHAPTER 4

Formulation and numerical dispersion analysis of
spectral element for guided waves propagation in
plates

Whether in the world of truth [science] or in
the world of beauty [art], the human mind, on
its way towards the ultimate cognition,
endeavors to understand the intrinsic nature of
things; not to understand things as they are but
as they must be–this is the intrinsic necessity

CORNELIUS LANCZOS (1893-1974)

LAMB waves (LW) are guided waves that propagate in infinite doubly bounded medium, in
the sagittal plane, due to the presence of two traction free boundaries (i.e. in contact with
vacuum), for which displacements occur both in the direction of wave propagation and

normal to the plane of the plate. Lamb waves were first predicted mathematically and described
by H. Lamb [Lamb, 1917].

X3

X1

X2

P Mode

SH Mode

SV Mode

Propagation direction

Figure 4.1 Coordinate system, and the polarization directions of the three principal
wave propagation modes.
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Being two dimensional, Lamb waves can propagate over considerable distances without much
attenuation, and since they produce stresses throughout the plate (shell) thickness, the entire
thickness of the plate (shell) could be scanned, offering an opportunity for damage detection in
plate-like structures [Staszewski et al., 2004; Viktorov, 1967]. Unfortunately, Lamb waves are
dispersive and have at least two coexisting propagating modes at a specific frequency-thickness
product ( f d) [Royer and Dieulesaint, 2000].

Figure 4.1 depicts the coordinate system used to define the different modes that can propagate in
the plate. The sagittal plane (x1, x2), is the plane of polarization of LW, based on the plane strain
assumption, there is no coupling between the shear horizontal (SH) modes, polarized in the x3

direction, and the two P-SV modes. The primary (P) mode is polarized in the x1 direction - the
direction of wave propagation, i.e. primary mode is longitudinal - and shear vertical (SV) mode
is polarized in the x2 direction.

In the rest of the chapter; a review of the derivation of Rayleigh-Lamb frequency equations
are summarized mainly in order to unify the terminology and to lay the necessary background
for understanding the presented results. In the sections that follow two major engineering
approximate theories are covered

4.1 Exact solution: Rayleigh-Lamb frequency equations

The target of this deduction is twofold the first is to explain how the coupling between the P and
SV propagation modes emerge due to the presence of the traction free boundaries, thus leading to
specific Lamb modes. The second aim is to illustrate the plane wave nature of the Lamb modes,
which will play a major rule in the numerical dispersion analysis.

Based on Stokes-Helmholtz decomposition of the displacement field, the displacement field u
can be represented as:

u = ∇φ + ∇ × Ψ (4.1)

Where ∇ is the divergence operator, in Cartesian coordinates ∇ = ∂
∂x1

e1 + ∂
∂x2

e2 + ∂
∂x3

e3, φ is a
scalar potential, and Ψ is a vector potential. This is complemented with a gage condition to insure
uniqueness between the displacement field components u1, u2, u3 and both the scalar potential
field φ, and vector potential field components Ψ1, Ψ2, Ψ3.

∇ · Ψ = 0 (4.2)
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On substitution in Navier’s equations for isotropic linearly elastic medium, with the absence of
body forces:

(λ + 2µ)∇(∇ · u) − µ∇ × ∇ × u = ρü (4.3)

one obtains two uncoupled wave equations:

∇2φ − 1
c2

l
φ̈ = 0, c2

l =
(λ + 2µ)

ρ
(4.4)

∇2Ψ − 1
c2

t
Ψ̈ = 0, c2

t =
µ

ρ
(4.5)

where λ and µ are Lamé’s constants, cl, ct are longitudinal wave velocity, and transverse wave
velocity, respectively. Equations (4.4)) and (4.5) have a solution of the form

φ(x, t) = φ(n · x − clt) (4.6)

Ψ(x, t) = Ψ(n · x − ctt) (4.7)

Using the coordinate system depicted in Fig. 4.1, both potentials are independent of x3 coordinate,
due to the plane strain assumption. Thus if Ψ1 = Ψ2 = 0, leaving only Ψ3, the two potential
functions φ(x1, x2, t) and Ψ3(x1, x2, t) give the following displacement components [Achenbach,
1973; Graff, 1991]:

u1 =
∂φ

∂x1
+ ∂Ψ3

∂x2
(4.8)

u2 =
∂φ

∂x2
−

∂Ψ3
∂x1

(4.9)

so that Eqs. (4.4) and (4.5) can be written explicitly:

∂2φ

∂x2
1

+
∂2φ

∂x2
2

= 1
c2

l

∂2φ

∂t2 (4.10)

∂2Ψ3
∂x2

1
+ ∂2Ψ3

∂x2
2

= 1
c2

t

∂2Ψ3
∂t2 (4.11)

These equations have a solution of the form 1:

φ = φ(x2)ei(k1 x1−ωt) = φ(x2)eiξ

Ψ3 = iψ(x2)ei(k1 x1−ωt) = iψ(x2)eiξ
(4.12)

and, after substitution into the wave equations, this reduces to a couple of linear homogeneous
second order ordinary differential equations in both ϕ, and ψ, admitting the following form of

1. The derivation is following that given by Graff [Graff, 1991].
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solution:

φ = A sinαx2 + B cosαx2, α2 = ω2

c2
l
− k2

1 = k2
1

(
c2

p

c2
l
− 1

)
(4.13)

ψ = C sin βx2 + D cos βx2, β2 = ω2

c2
t
− k2

1 = k2
1

(
c2

p

c2
t
− 1

)
(4.14)

From Eqs. (4.8) and (4.9) we have:

u1 = i(Bk1 cosαx2 + Cβ cos βx2) + i(Ak1 sinαx2 − Dβ sin βx2) (4.15a)

u2 = (−Bα sinαx2 + Ck1 sin βx2) + (Aα cosαx2 + Dk1 cos βx2) (4.15b)

where eiξ is implied, and from this form the main advantage of the method of potential is seen:
the possibility of separating the symmetric and asymmetric modes. The first bracket in each
equation refers to the symmetric displacement with respect to the plane of symmetry (x2 = 0)
(see Fig. 4.2), while the second bracket is for the asymmetric mode.

(a) Symmetric

(b) Antisymmetric

Figure 4.2 Mode shapes of symmetric (a) and antisymmetric (b) fundamental Lamb
wave modes. Longitudinal displacements of symmetric (antisymmetric) wave modes
are equal (opposite) on either side of the median plane, transverse (vertical) displace-
ments are opposite (equal) [Royer and Dieulesaint, 2000].
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After imposing the natural boundary conditions,

σ22 = σ12 = σ23 = 0, y = ±d/2, (4.16)

we arrive after some manipulation to the Rayleigh-Lamb dispersion equations.

tan βd/2
tanαd/2

+

 4αβk2
1(

k2
1 − β

2
)2


±1

= 0,

 +1 symmetric
−1 asymmetric

(4.17)

The transcendental Rayleigh-Lamb dispersion equations do not have a closed form solution.
Moreover, more complicated dispersion equations for the anisotropic plate, multilayered isotropic
and multilayered anisotropic plates. Numerical solution of the characteristic equations is the only
method available for solution. One way for finding the roots is to fix one of the variables and
then vary the other, looking for a change of sign of the function [Kelly, 1995]. However, this
approach suffers from a serious shortcoming, when two roots are in close proximity, for example
near the crossing points of two modes, the function changes sign twice and such schemes can be
unstable. It is therefore safer to use a slower iteration technique such as bisection and to look for
a minimum of the absolute value of the function rather than a sign change [Lowe, 1992, 1995;
Pavlakovic and Lowe, 2003].
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Figure 4.3 Phase (a) and group (b) velocities of Lamb symmetric S n and anti-
symmetric An modes in an Al plate (cl= 6.420 mm/µs, ct= 3.040 mm/µs) as a function
of the frequency thickness product f d [Vallen, 2009].

A better technique for the calculation of a dispersion curve is to employ some curve tracing
algorithm which starts from a known solution. Initially, roots are found by varying the phase
velocity at fixed frequency, or the frequency at fixed velocity. Each of these roots is the starting
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point for the calculation of a dispersion curve. To calculate a dispersion curve, the wavenumber

is incremented steadily and a new solution is found at each fixed increment by iteration on the

frequency. The loci of roots of the characteristic function are the dispersion curves. They are

usually displayed as phase velocity against frequency thickness product [Rose, 2003]. Figure 4.3

shows the dispersion curves for aluminum plate, where S n and An stand for the nth symmetric and

anti-symmetric propagating modes, respectively. The two fundamental modes S0 and A0 are the

only coexisting modes at low frequency-thickness f d. As the f d product approaches zero, the S0

and A0 modes degenerate into the basic axial and flexural plate modes. At the other extreme, as

f d → ∞, Lamb wave modes degenerate into Rayleigh wave confined to the plate surface with a

constant unique velocity cR.

fd =0.5 fd =1

fd =1.5 fd =2

fd =2.5 fd =3

Figure 4.4 Mode shape of S0 at different f d values for Aluminum plate. The

normalized longitudinal displacement u1 (solid line) and transverse displacement u2

(dashed line).

Mode shapes of different modes play an important role in controlling the mode sensitivity to

defects, the fundamental S0 mode shapes at different f d are shown in Fig. 4.4 where both u1 and

u2 were normalized by the maximum value of the longitudinal displacement u1. The fundamental

A0 mode shapes at different f d are shown in Fig. 4.5 where both u1 and u2 were normalized

by the maximum value of the transverse displacement u2. It is apparent that the oscillation in

the mode shapes increase as the frequency thickness product increases. The fundamental modes

(S0, A0) are normally used in practice, typically confined to the almost non-dispersive region of

the frequency thickness product, targeting nearly constant group velocity cg by using a narrow

bandwidth excitation signal. S0 is more sensitive to through-thickness defects, while A0 is more
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sensitive to surface defects. Utilization of A0 is increasing due to its short wavelength, since the

wavelength of the selected mode must be lower than or equal to the size of the damage to be

detected [Su et al., 2006].

fd =0.5 fd =1

fd =1.5 fd =2

fd =2.5 fd =3

Figure 4.5 Mode shape of A0 at different f d values for Aluminum plate. The

normalized longitudinal displacement u1 (solid line) and transverse displacement u2

(dashed line).

4.2 Approximate plate waves theories

The 2D models exploited here are based on the so called axiomatic approach [Carrera et al.,

2011]. In this approach, the displacement field and/or stress field are postulated in the thickness

direction z:

f (x, y, z) = f1(x, y)F1(z) + f2(x, y)F2(z) + · · · + fn(x, y)Fn(z) (4.18)

where the generic function f can be the vector of displacements u = (u, v, w) in the case of a

displacement formulation, the vector of strain components ε in the case of a strain formulation,

and the vector of stress components σ in the case of a stress formulation. The fi functions are

the introduced unknowns that are defined on the domain, and Fi are the polynomials which have

been introduced as the base functions of the expansion in z. n is the order of expansion in the z

direction.
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4.2.1 Classical plate theory

Classical plate theories were originally developed for one-layered isotropic structures. These
theories can be divided into two main groups: Love first-approximation theories(LFAT) and Love
second-approximation theories (LSAT). LFAT are based on the well-known Cauchy-Poisson-
Kirchhoff-Love thin shell assumptions. The main postulates of the LFAT theories is that normals
to the reference surface remain normal in the deformed states and do not change in length. This
means that transverse shear and transverse normal strains are negligible with respect to the other
strains. When one or more of these LFAT postulates are relaxed, we obtain the so-called LSAT,
which means the effects of transverse shear and/or transverse normal stresses can be taken into
account.

Classical plate theory (CPT) is based on Kirchhoff assumptions
— straight lines that are perpendicular to the midsurface (i.e., transverse normals) before

deformation remain straight after the deformation;
— the transverse normals do not experience elongation (i.e., they are inextensible);
— the transverse normals rotate so that they remain perpendicular to the midsurface after the

deformation.
The first two assumptions imply that transverse displacement is independent of the transverse (or
thickness) coordinate and the transverse normal strain is zero. The third assumption results in
zero transverse shear strains: γxz = γyz = 0. The displacement field for a CPT thus is described
by:

u(x, y, z) = uo(x, y) − z∂xwo (4.19a)

v(x, y, z) = vo(x, y) − z∂ywo (4.19b)

w(x, y, z) = wo(x, y) (4.19c)

Only three degrees of freedom are used for this 2D theory: the displacements in the three
directions that refer to the midsurface. In CPT, in order to avoid the Poisson locking phenomenon,
the σzz = 0 condition must be enforced in the constitutive equations.

By setting uo(x, y), and vo(x, y) equal to zero, we ignore the thickness deformations, and allow only
for the flexural modes of deformation. The equation of motion of the CPT then becomes [Graff,
1991].

D
(
∂4

xwo + 2∂2
x∂

2
ywo + ∂4

ywo

)
= −ρdẅo (4.20)

where D = Ed3

12(1−ν2) is the plate flexural stiffness.
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4.2.2 First order shear deformation theory (FSDT)

One of the typical LSAT is the first-order shear deformation theory (FSDT). The third of the
Kirchhoff hypotheses is relaxed, therefore the transverse normals do not remain perpendicular to
the midsurface after deformation. This way, transverse shear strains γxz and γyz are included in
the theory. However, the inextensibility of the transverse normal remains, therefore displacement
w is constant in the thickness direction z. The displacement field for a FSDT thus is described by:

u(x, y, z) = uo(x, y) − zφx(x, y) (4.21a)

v(x, y, z) = vo(x, y) − zφy(x, y) (4.21b)

w(x, y, z) = wo(x, y) (4.21c)

The displacement field of FSDT has five unknowns (there were three for CPT): the midsurface
displacements (uo, vo, wo) and the rotations of a transverse normal around the x and y axes (φx, φy).
In the case of CPT, the rotations coincide with the derivatives φx = ∂xwo and φy = ∂ywo. Only
εzz is zero, therefore σxz and σyz are different from zero. Poisson locking phenomena still exist
because the transverse normal strain εzz remains zero, but it can be avoided by enforcing the
σzz = 0 condition in constitutive equations.

By nulling uo(x, y), and vo(x, y), we ignore the thickness deformations, and allow only for the
flexural modes of deformation [Graff, 1991], leading to the following equations of motion:

κGd
(
∇2wo + ∂xφx + ∂yφy

)
= ρdẅo (4.22)

−κGd (∂xwo + φx) + D
2

(
(1 + ν)∂x(∂xφx + ∂yφy) + (1 − ν)∇2φx

)
=

ρd3

12 φ̈x (4.23)

−κGd
(
∂ywo + φy

)
+ D

2

(
(1 + ν)∂y(∂xφx + ∂yφy) + (1 − ν)∇2φy

)
=

ρd3

12 φ̈y (4.24)

where κ is the shear correction factor, and G is the shear modulus. For further simplification we
shall use the following abbreviations:

G1 = κGd, D1 =
D(1 − ν)

2
, D2 =

D(1 + ν)
2

, I0 = ρd, and I2 =
ρd3

12

The shear strain is assumed to be constant across the thickness of the plate. This is inconsistent
with the assumption that the shear stress is distributed as a parabolic function. To account for the
inaccuracy in the shear strain, a shear correction factor (κ) is applied so that the correct amount
of internal energy is predicted by the theory. The value chosen for the shear correction factor κ
determine how asymptotically the approximate theory approaches the exact one.
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4.3 Dispersion analysis of approximate theories

In this section, we analyze the dispersion behavior of the approximate theories covered so far,
since they were developed originally for flexural modes, the analysis is confined to those modes.

4.3.1 Classical plate theory

In order to study the dispersion relations of the CPT for flexural modes, we assume that the
displacement is a plane wave of the form wo = A exp i(ωt − k.r). Where r is the position vector
of a point in the plate mid-plane x1 − x3. So, substituting this assumed field into Eq. (4.20), we
obtain the dispersion relation:

D(k2
x + k2

y)
2 = D(k2(cos2 θ + sin2 θ))2 = ρdω2

ω2 = k4 D
ρd

(4.25)

It is apparent that CPT gives the unrealistic prediction that cp → ∞ as ω → ∞, which limits
the applicability of the theory in the wave propagation studies, limiting its use only to very low
frequency regime as could be seen from Fig. 4.6(a). This inconsistency is what motivated the first
attempt to include the rotary inertia and then shear deformation to have a more realistic limiting
behavior for the asymptotic high frequency. i.e. cp → cR or at least a speed close to Rayleigh
surface wave speed as the frequency goes to∞.

4.3.2 First order shear deformation theory

For the FSDT we substitute a plane wave approximation for each component of the displacement
vector [wo, φx, φy]T to get the following system of equations:

G1k2 + I0ω
2 −iG1kx −kyiG1

iG1kx D1D2k2k2
x + I2ω

2 + G1 D2kxky
iG1kx D2kxky D1k2 + D2k2

y + I2ω
2 + G1



A

B

C

 =


0
0
0

 (4.26)
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Setting the determinant of the coefficients’ matrix equal to zero, we obtain a 6th order polynomial
equation which when factored yields:

ω2 =

k2d2

12 G1 + Dk2 + G1 ±

√(
− k2d2

12 G1 − Dk2 −G1

)2
− 4 D

ρdG1I2k4

2I2
(4.27)

ω2 =
G1 + k2D1

I2
(4.28)

Application of Eq. (4.27), leads to dispersion relation for two modes w1 and w2; the second as
stated by [Stephen, 1997], is irrelevant. Equation (4.28), gives the dispersion relation of the SH
mode. For the determination of the shear coefficient, Mindlin [Graff, 1991], based on asymptotic
analysis for the high frequency behavior, adopts a value of κ = cR

ct
. However, after a careful

analysis, based on second order approximation of the exact theory, [Stephen, 1997], suggests a
value of 5

6−ν .



116 CHAPTER 4. Spectral element for guided waves propagation in plates

(a) The Phase velocity of CPT, FSDT, and Lamb A0 mode

(b) The group velocity of CPT, FSDT, and Lamb A0 mode

Figure 4.6 The phase and group velocities of CPT, FSDT, and Lamb A0 modes, for
aluminum plate 1 mm thick., cL = 6.334 km/s, cT = 3.042 km/s, cp = 5.33 km/s, and
ν = 0.35.
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(b) Error with respect to A0 mode velocity, for different values of shear factor

Figure 4.7 Phase dispersion curves of FSDT and its errors with respect to the exact
A0 mode, for frequency range 100 Hz to 1 MHz.

Figure 4.6(a), and Fig. 4.6(b) shows the dispersion curves: phase and group velocities respectively.
The two values of the shear correction factor employed are those normally adopted in literature
for higher spectra agreement. Figure 4.7(a), shows the effect of different choices of correction
factor on the phase velocity, for a frequency range 100 Hz to 1 MHz. The errors with respect
to the fundamental Lamb antisymmetric mode A0 is plotted for the same frequency range in
Fig. 4.30(b). The major observation is that the agreement is better at high frequency range, which
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is the main design goal of the approximate theory; i.e. to remove the unrealistic tendency of the
flexural waves according to CPT to propagate at infinite speeds as the frequency increases. The
low frequency range is not in agreement with the A0 mode, this may be attributed to the plane
stress assumption that is inherent in almost all approximate plate theories.

4.4 Two dimensional spectral element

The two dimensional spectral element formulation starts with discretization of the physical
domain Ω into small geometrically conforming nel quadrilateral subdomains Ωe, e = 1, · · · , nel in
a similar way to the FEM.

4.4.1 Shape functions

As in the one dimensional element, we initially partition the 1D domain L into ne elements of
equal size h = L/ne subdivided into N interior subintervals, so that the total number of nodes is
N = Nne + 1. The numbering of the elements 1 ≤ e ≤ ne + 1, while the local index 1 ≤ j ≤ N + 1
locates a node within an element. These two indices provide a global ordering of all grid nodes,
which is given by l = j + (e−1)N. The grid coordinates are defined by xl = (e−1 + ξ j)h, where ξ j

is the jth collocation point in the reference interval [-1, 1]. The two dimensional mesh is defined
as a tensor product 2 of the 1D mesh; that is, we have n2

e elements with N2 interior nodes. The
coordinates of the mesh nodes are (xl, ym) defined by:

(x|y)l|m = (ex|y − 1 + ξ j)h, l|m = jx|y + (ex|y − 1)N (4.29)

Discretized computations often require a scalar index rather than an ordered pair of indices. For
this purpose, we define

e = ex + (ey − 1)ne; i = jx + ( jy − 1)(N + 1) (4.30)

So, we can define the 2D shape function as shown in Fig. 4.8, as the tensor product of one
dimensional shape function introduced earlier in Chapter 3:

φi(x, y) = φ jx(x) ⊗ φ jy(y) (4.31)

where both have the same order.

2. the Kronecker (or tensor) product operator: the Kronecker product C = A ⊗ B of N2 × M2 matrix A and
N1 × M1 matrix B is an N1N2 × M1M2 matrix defined as C(p1 + p2M1, q1 + q2M2) = A(p2, q2)B(p1, q1).
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Figure 4.8 Two dimensional (6 × 6) Legendre shape functions, used as interpolating
function for the nodal unknown solution

4.4.2 Spectral element matrices for two dimensional elastic wave
equation

We can now use the weak formulation of the elastic wave equation derived in Sec. B.4.1 to obtain
a system of ODEs by substituting the shape functions. The shape functions need to be substituted
in each of the two components of u and v. Substituting for u the following approximation:

u(x, y, t) = [u1iφi(x, y) u2iφi(x, y)]T (4.32)

where u1i and u2i are the nodal unknowns of the approximations to the horizontal and vertical
displacement respectively, and substituting v = [φi 0] for u1, and v = [0 φi] for u2 we obtain
the following system of equations:

Mü1(t) + K1u1(t) + K2u2(t) = 0 (4.33a)

Mü2(t) + K2
Tu1(t) + K3u2(t) = 0 (4.33b)
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where

Me
i j =

(
r
cl

)2 ∫
Ω

φi(x, y)φ j(x, y) dxdy

K1 i j = r2
∫

Ω

∂xφi(x, y)∂xφ j(x, y) dxdy +

∫
Ω

∂yφi(x, y)∂yφ j(x, y) dxdy

K2 i j = (r2 − 1)
∫

Ω

∂xφi(x, y)∂yφ j(x, y) dxdy

K3 i j =

∫
Ω

∂xφi(x, y)∂xφ j(x, y) dxdy + r2
∫

Ω

∂yφi(x, y)∂yφ j(x, y) dxdy (4.34)

Where r = cl
ct

is the P- to S-wave velocity ratio. The unknowns of the linear system Eq. (4.33) are
the vectors u1(t) and u2(t) which are the nodal approximations of the exact solution while the
matrices M and Ki are assembled from the elemental local matrices.

4.4.3 Spectral element matrices for first order shear deformation the-
ory

The propagation of FSDT flexural waves is approximated by three degrees of freedom per node.
So, we define a vector of nodal variables de = [w,Sx,Sy]T, that approximate the degrees of
freedom at each node. To avoid confusion we will explicitly formulate the problem in detail,
starting by assuming different interpolation functions:

wo(x, y, t) ≈ φ(x, y)w(t) (4.35)

φx(x, y, t) ≈ ψ(x, y)Sx(t) (4.36)

φy(x, y, t) ≈ ψ(x, y)Sy(t) (4.37)

where each of the interpolating functions φ(x, y), ψ(x, y) is expressed as a (p + 1)× (p + 1) matrix,
containing the Lagrange interpolation functions based on the Legendre nodes, and each of the
degrees of freedom are expressed as a square matrix, that then unfold into a column vector of
length (p + 1)2. This means that for the case of evaluating the derivatives, the tensor product of
an identity matrix I of the same size as the interpolating matrix is used, and the partial derivatives
can be evaluated as [Trefethen, 2001]:

∂xw = (I ⊗ φ′)w = Hxw, ∂yw = (φ′ ⊗ I)w = Hyw (4.38)

where φ′ is the familiar differentiation matrix (see App. C), and the differentiation matrix with
respect to x is abbreviated as Hx, and with respect to y as Hy. Each differentiation matrix is



4.4. Two dimensional spectral element 121

(p + 1)2 × (p + 1)2. Then we have the semi-discrete system of equations per element as [Reddy,
2002; Wang et al., 2000]:

Ke
11 Ke

12 Ke
13

Ke
12

T Ke
22 Ke

23

Ke
13

T Ke
23

T Ke
33




w
Sx

Sy

 +


Me

11 0 0
0 Me

22 0
0 0 Me

33




ẅ
S̈x

S̈y

 = f (4.39)

where

K11 i j = κGd
∫

Ω

(
∂xφi∂xφ j + ∂yφi∂yφ j

)
dxdy (4.40)

K12 i j = κGd
∫

Ω

∂xφiψ j dxdy (4.41)

K13 i j = κGd
∫

Ω

∂yφiψ j dxdy (4.42)

K22 i j =

∫
Ω

(
D∂xψi∂xψ j +

Gd3

12
∂yψi∂yψ j + κGdψiψ j

)
dxdy (4.43)

K23 i j =

∫
Ω

νD∂xψi∂yφ j +
Gd3

12
∂yψi∂xψ j dxdy (4.44)

K33 i j =

∫
Ω

Gd3

12
∂xψi∂xψ j + D∂yψi∂yψ j + κGdψiψ j dxdy (4.45)

M11 i j =

∫
Ω

I0φiφ j dxdy, M22 i j = M33 i j =

∫
Ω

I2ψiψ j dxdy (4.46)

So, in order to express these matrices in spectral element setting, we have the following substitu-
tions, assuming that we will use the same interpolation function for all degrees of freedom:

∂xφi∂xφ j → Hx
THx, ∂yφi∂yφ j → Hy

THy, ∂yψi∂xψ j → Hx
THy, and so on (4.47)

4.4.4 Quadrature rules

Derivatives are easily converted from one coordinate system to the other by means of the chain
rule of partial differentiation, best expressed in matrix form for two dimensions by:∂ξ

∂η

 =

∂ξx ∂ξy

∂ηx ∂ηy

 ∂x

∂y

 = (J)

∂x

∂y

 (4.48)

or alternatively ∂x

∂y

 = (J)−1

∂ξ
∂η

 (4.49)
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where J is the Jacobian matrix. The determinant of this matrix, det(J) must also be evaluated
because it is used in the transformed quadratures as follows:∫

Ω

dxdy =

∫
Π

det(J)dξdη (4.50)

For each of the spectral elements mapped subparametrically into the reference domain, that is
defined in a local system of coordinates (ξ, η) on the square Π =

[
−1, 1

]2, the integration of a
function f (x, y) is computed numerically as:∫

Ω

f (x, y) dxdy =

∫
Π

f (x(ξ, η), y(ξ, η))det(J)dξdη ≈
nx∑
i=1

ny∑
j=1

wiw j f (ξi, η j) (4.51)

where nx are the number of nodes of the spectral element in the ξ direction, as well as ny is the
number of nodes in the η direction.

4.4.5 Four corner nodes element

The element Ωe with four corner nodes (xi, yi) , i = 1 · · · 4, is mapped into the reference domain
Π (ξ, η) via 1st order Lagrange polynomials l1

0(ξ) = 1
2

(
1− ξ

)
and l1

1(ξ) = 1
2

(
1 + ξ

)
. The coordinates

of the corner nodes is defined in a 4 by 2 matrix as:

coordT(x, y) =

x1 x2 x3 x4

y1 y2 y3 y4

 (4.52)

with the four shape functions N written in matrix form:

N =
(
l1
0(ξ)l1

0(η) l1
1(ξ)l1

0(η) l1
0(ξ)l1

1(η) l1
1(ξ)l1

1(η)
)

=
(

1
4 (1 − ξ)(1 − η) 1

4 (1 + ξ)(1 − η) 1
4 (1 + ξ)(1 + η) 1

4 (1 − ξ)(1 + η)
) (4.53)

Such that any point x with a given coordinate in the reference domain can be mapped back into
the physical domain via

x(ξ, η) = N(ξ, η)coord(x, y) (4.54)

and the Jacobian matrix is evaluated at each node based on this mapping, as well as the inverse is
evaluated numerically at each node.
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Figure 4.9 Mapping the two dimensional element Ωe into the standard square
element Π , with node numbering corresponding to shape functions N for 4, 8, and 9
corner nodes.

4.4.6 Eight corner nodes element

Higher order subparametric mapping may be sometimes needed for the case of curved element
boundaries as in Fig. 4.9. The element Ωe with eight corner nodes (xi, yi) , i = 1 · · · 8, is mapped
into the reference domain Π (ξ, η) via 2nd order Lagrange polynomials l2

0(ξ) = 1
2ξ

(
ξ − 1

)
, l2

1(ξ) =(
1 − ξ2) and l2

2(ξ) = 1
2ξ

(
1 + ξ

)
, with:

coordT(x, y) =

x1 x2 x3 x4 x5 · · · x8

y1 y2 y3 y4 y5 · · · y8

 (4.55)
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with the eight shape functions

NT =



l2
0(ξ)l2

0(η)
l2
2(ξ)l2

0(η)
l2
2(ξ)l2

2(η)
l2
0(ξ)l2

2(η)
l2
1(ξ)l2

0(η)
l2
2(ξ)l2

1(η)
l2
1(ξ)l2

2(η)
l2
0(ξ)l2

1(η)



=



1
4ξη(ξ − 1)(η − 1)
1
4ξη(ξ + 1)(η − 1)
1
4ξη(ξ + 1)(η + 1)
1
4ξη(ξ − 1)(η + 1)
1
2 (1 − ξ2)η(η − 1)
1
2 (1 + ξ)(1 − η2)

1
2 (1 − ξ2)η(η + 1)
1
2 (ξ − 1)(1 − η2)



(4.56)

Using the same multiplication in Eq. (4.54), we can map back the point x into the physical
domain. Appendix C.2 presents an illustrative example of the mapping and the computation of
the Jacobian, and its inverse.

4.5 Dispersion analysis of numerical implementations

In this section, the numerical dispersion relations will be calculated for: 1) the previously
developed semidiscrete equations which is typically referred to as the spatial discretization, and
2) for the fully discrete equations i.e. temporal discretization case; through the same Rayleigh
quotient approach as best approximation of the maximum eigenvalues. The approach is based
on a generalized eigenvalue problem similar to the one utilized in Chapter 3 and the eigenvalue
problem is generally large. A use of a generalization of the eigenvalue decomposition introduced
by [Cohen, 2002] for the acoustic wave, and developed further for the case of plane strain
elastodynamic equation by [Basabe and Sen, 2007; Seriani and Oliveira, 2008], is utilized
to numerically separate the longitudinal velocity from the shear velocity for the case of two
dimensional wave equation and for numerically extracting the three modes of the FSDT, an
approach quite similar to the one used in the numerical dispersion analysis of the spectral
element formulation of Mindlin Herrmann rod theory in Sec. 3.6.4. In this section, although
the case of 2D plane strain has been analyzed by Seriani and Oleveira [Seriani and Oliveira,
2008], they only analyzed odd polynomial orders, due to the algebraic reduction they used to
compute the eigenvalues for a single element. Here it is numerically computed for the whole
assembled domain, thus we present both odd and even polynomial orders. It is also the first
time, to the knowledge of the author, that a numerical dispersion analysis of the spectral element
implementation of the FSDT is presented.
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4.5.1 Two dimensional elastic wave equation

This analysis is based on the von Neumann method [Hughes, 1987], which assumes a plane-wave
propagating through the discretized domain. Furthermore, we will assume that all the elements in
the domain are square with equal sides h. Note that with this assumption, the nodes are periodic
following the tensor product ordering, in both directions. We start by assuming that the solution
is a plane wave, then ux j , and uy j have the form

ux j(t) = A jei(k·x j−ωt) (4.57)

uy j(t) = B jei(k·x j−ωt) (4.58)

where k = k[cos(θ) sin(θ)] is the wavenumber vector, x j is a vector containing the jth node
coordinates, and A j, B j is an arbitrary amplitudes. Equations (4.57) and (4.58) represents a plane
wave evaluated at the jth node. Substituting Eq. (4.58) in Eq. (4.33) we get:

ΛMi j ux j = K1 i jux j + K2 i juy j (4.59)

ΛMi j uy j = K2 jiux j + K4 i juy j (4.60)

The eigenvalue is given by Λ = ω2
n, for the spatially discretized equations, and for the temporally

discretized equations is given by

Λ =
4

∆t2 sin2 ωn∆t
2

(4.61)

The above equations represent a generalized eigenvalue problem; this is clearly seen if we write
it in the form:

Λ

M 0
0 M

 u1

u2

 =

 K1 K2

K2
T K4

 u1

u2

 (4.62)

The best approximation ω2
n exists and is given by the Rayleigh quotient

ω2
n =

yTKy
yTMy

(4.63)

where y = eik·x, This generalized eigenvalue problem can be decomposed as done in Sec. 3.6.4
reducing the problem to the equivalent 2 by 2 eigenvalue problem:d1 d2

d2 d3

 A1

A2

 = ω2
n

A1

A2

 (4.64)
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where

d1 =
yTK1 y
yT M y

; d2 =
yTK2 y
yT M y

(4.65)

d2 =
yTK2

T y
yT M y

; d4 =
yTK3 y
yT M y

(4.66)

Which has an explicit solution in the form:

ω2
n =

d1 + d3

2
±

√(
d1 − d3

2

)2

+ d2
2 (4.67)

where the larger value of ωn is associated with the longitudinal wave ωn
l , and the smaller one

with the shear wave ωn
t .

Figure 4.10(a), shows the spatial discretization induced error in the longitudinal velocity, for
polynomial orders 8, 6, and 4 respectively at three different values of the incidence angle of the
plane wave. The numerical values used to compute the curves are those of aluminum, cl = 6.334
km/s, ct = 3.042 km/s, and ν = 0.35. The measure of the grid resolution is taken to be the
percentage of the wavelength covered by a single element, h/λ where here h is the length of the
edge of a square element, and the wavelength is that of the longitudinal wave velocity for all the
figures. The amount of dispersion is measured as the ratio between the numerically propagated
wave cn

l or cn
t to the longitudinal or shear velocity. The error is defined as:

ε(cl) =
cn

l

cl
− 1, ε(ct) =

cn
t

ct
− 1 (4.68)
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Figure 4.10 The error induced by spatial discretization in longitudinal and shear
wave velocities induced by the spatial discretization, for polynomial orders 8, 6, and 4
with different values of θ. Total number of one dimensional nodes are 24.
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Figure 4.11 The error induced by spatial discretization in longitudinal and shear
wave velocities, for polynomial orders 9, 7, and 5 with different values of θ. Total
number of one dimensional nodes are 35.

While in Fig. 4.10(b), the computed error in the shear wave velocity, in the harmonic case are
shown, where as expected the errors of zero angle of incidence coincide.

The main rule of thumb, that emanates from the dispersion analysis of the acoustic wave dis-
cretization by the spectral element [Cohen, 2002; Komatitsch et al., 1999; Kudela et al., 2007b],
that a 4 or 5 grid point per wavelength is enough to preserve the dispersion error below 1 %, is
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demonstrated. The major difference is that in the present approach we assembled the matrices
over a large domain, on the contrary to the approach of [Basabe and Sen, 2007; Seriani and
Oliveira, 2008], where both reduced the problem after some simplifying assumptions to an
algebraic problem for a single element, their assumptions make the algebraic reduction valid
only for even polynomial orders.The reason that here we reverted to the fully computational
approach, was to allow also for an analysis of odd polynomial orders, as well as to check whether
the assembly procedure have an effect on the computed eigenvalues as to whether it is robust
against round-off errors.

Figure 4.11(a), shows error induced by the spatial discretization in the longitudinal velocity, for
polynomial orders 9, 7, and 5 respectively at three different values of the incidence angle of
the plane wave. While in Fig. 4.11(b), the computed errors in the shear wave velocity, in the
harmonic case are shown, where as expected the errors of zero angle of incidence coincide.

The dispersion error in group velocity is computed by a numerical approximation of the directional
derivative:

cg = ∇~kω
n = (∂kxω

n~i + ∂kyω
n~j) ·

~k
|k|

(4.69)

εg(cl) = cg(ωn
l ) =

cg(cl)
cl
− 1, εg(ct) = cg(ωn

t ) =
cg(ct)

ct
− 1 (4.70)

Figure 4.12(a), shows the error in the group velocity propagation εg(cl) in the longitudinal wave,
as well as the shear group velocity errors is depicted in Fig. 4.12(b). The main observation is
that the group velocity departs from the accurate representation of the real velocity faster, the
error in group velocity is larger at the same h

λ
ratio when compared to the phase velocity errors.

Again confirming the same conclusion that was drawn from the previous one dimensional results
(see Sec. 3.7), that the dispersion error in group velocity is more representative estimate of the
accuracy of the numerical method. Figures 4.13(a) and 4.13(b) shows the error in group velocity
in both longitudinal and shear waves, respectively, for polynomial orders 9, 7, and 5. The reason
for analyzing the group velocity in the case of plane strain two-dimensional elastic wave, despite
the fact that they do not have a physical counterpart, is the observation that even if the mesh was
optimized based on the phase dispersion without the knowledge of the group numerical velocity,
this may lead to erroneous estimation of the propagation speed of the energy or wave packets,
which is pertinent to any time-of-flight post processing procedure.
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Figure 4.12 The numerical group dispersion error induced by spatial discretization
in longitudinal and shear wave velocities, for polynomial orders 8, 6, and 4 with
different values of θ. Total number of one dimensional nodes are 24.
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Figure 4.13 The numerical group dispersion error induced by spatial discretization
in longitudinal and shear wave velocities, for polynomial orders 9, 7, and 5 with
different values of θ. Total number of one dimensional nodes are 35.

For the temporal discretization, the time step is computed based on the fastest wave cl:

∆t =
CFL

cl

 1√
1/∆x2

min + 1/∆y2
min

 =
CFL

cl

 1√
2/∆x2

min

 (4.71)

Where for the square element ∆xmin = ∆ymin.
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Figure 4.14 Shows the temporal discretization induced errors, for even number polynomial orders.

The effect of decreasing the CFL number reduces the error markedly, as well as the conflict of

order is evident.

(a) Phase velocity dispersion errors in longitudinal wave cl

(b) Phase velocity dispersion errors in shear wave ct

Figure 4.14 The numerical dispersion error due to temporal discretization in longitu-

dinal and shear phase wave velocities, for polynomial orders 8, 6, and 4 with different

values of CFL, and θ =0. Total number of one dimensional nodes are 24.

since the low order temporal integration tends to overestimate the phase velocity, while the high

order spatial discretization tend to underestimate the phase velocity, this is what is referred to
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as the conflict of order. Decreasing the CFL number, tends to reduce the effect of the temporal
discretization. This makes the harmonic errors (spatial discretization alone) as the limiting value
of the induced errors.
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Figure 4.15 The numerical dispersion error due to temporal discretization in longitu-
dinal and shear phase wave velocities, for polynomial orders 9, 7, and 5 with different
values of CFL, and θ =0. Total number of one dimensional nodes are 35.
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Figure 4.15 Shows the temporal discretization induced errors for both the longitudinal phase
and group velocities, for odd number polynomial orders. It shows a similar behavior to the even
polynomial orders.
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Figure 4.16 Phase error as a function of the incidence angle θ of spatial discretization
with polynomial order of 8, 6, and 4, at approximately five points per wavelength
h
λ

= 1.9, h
λ

= 1.4, h
λ

= 0.95, respectively. The error is scaled as 1 + 20ε(cl) for the
longitudinal velocity (a) and 1 + 20ε(ct) for shear velocity (b).
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Figure 4.17 Phase error as a function of the incidence angle θ of spatial discretization
with polynomial order of 9, 7, and 5, at approximately five points per wavelength
h
λ

= 1.9, h
λ

= 1.4, h
λ

= 1.13, respectively. The error is scaled as 1 + 100ε(cl) for the
longitudinal velocity (a) and 1 + 100ε(ct) for shear velocity (b).

Figures 4.17 and 4.16 shows the dependence of the error in phase velocities on the incidence
angle for the harmonic case. The numerical anisotropy are very small and could be neglected.
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4.5.2 Lamb waves

As explained in Sec. 4.1, Lamb waves are a special case of the plane strain two dimensional
elastic wave. The previous numerical dispersion analysis was for unbounded media, and no
account for the boundary conditions was made. In order to understand the effect of the numerical
dispersion of the plane strain wave propagation on Lamb waves simulation, we need to modify
the analysis procedure to include the effect of the traction free boundaries at the upper and lower
surfaces of the plate.

The mesh is discretized in the x direction with rectangular elements of length h, the height of the
element is fixed and was taken equal to the thickness of the plate. Then the free traction boundary
condition is satisfied via the assumed displacement field. So, as for the case of the bulk waves,
the effect of the sampling at a specific grid points on the eigenvalues of the assembled matrices is
evaluated. We can extend this analysis to the assumed displacement fields which are satisfying
the plane strain discrete equations approximately, and see the effect of specific grid sampling on
the eigenvalues of the problem.

Symmetric modes

The displacement fields in the plate associated with the symmetric mode (Eqs. (4.15)) could be
rewritten in the plane wave form as:

ux =
iC
2

(
β
(
ei(kx−βy−ωt) + ei(kx+βy−ωt)

)
+

Bk
C

(
ei(kx−αy−ωt) + ei(kx+αy−ωt)

))
(4.72)

uy =
iC
2

(
k
(
ei(kx−βy−ωt) − ei(kx+βy−ωt)

)
+

Bα
C

(
ei(kx−αy−ωt) + ei(kx+αy−ωt)

))
(4.73)

where the amplitude ratio at any specific frequency is constant and given by [Graff, 1991]:

B
C

=
(k2 − β2) sin βd/2

2kα sinαd/2
(4.74)

where d is the thickness of the plate, which explicitly shows the plane nature of the wave
propagation. These displacements satisfy the free traction boundary condition as long as α and β
satisfy the dispersion relations for the symmetric modes. This means that the displacement of the
nodes are coupled together, the dispersion analysis could be interpreted as a test of how efficient
a specific number and distribution of nodes will sample this coupled motion.

For the purpose of dispersion analysis, we substitute the assumed displacement fields for the
symmetric mode. Where first the solution of the dispersion equation for the S0 mode is computed,
and then values of α2 , and β2 is determined. From this information, the assumed displacement
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fields is constructed, knowing that they satisfy the traction free boundary conditions. The last
step is a substitution into the assembled discrete equations the ux and uy. Since the B

C are known
and constant for a specific frequency, this means that only one approximate eigenvalue is required
to be evaluated, i.e. the one associated with the arbitrary amplitude C.

Recalling the plane strain discrete equation (4.62):

Λ

M 0
0 M

 u1

u2

 =

 K1 K2

K2
T K4

 u1

u2

 (4.75)

where
u1 = ux(k, xi, yi), u2 = uy(k, xi, yi) (4.76)

where (xi, yi) are the spectral node coordinates. For the computation of Rayleigh quotient,
the approximate eigenvector y becomes [u1 u2] and the matrices are assembled per location
according to the elemental connectivity map.

Figures 4.18(a), and 4.18(b), show the dispersion curves computed for aluminum plate, 1 mm
thick, with exactly the same properties used in the previous section. The length of the plate in
the x direction was 40 mm. The polynomial order 5, and as illustrated, increasing the elements
number (which increases only in the length direction), increases markedly the accuracy of the
spatial discretization as manifested in a decrease in the deviation of the numerical phase velocity
from the exact one.

The main noticeable remark is that though the error in Fig. 4.18(a) is highly sensitive to the
number of nodes in length direction, which is a valid assumption regardless of the number of
nodes in the thickness direction till the Lamb fundamental symmetric mode approaches the
asymptotic Rayleigh surface wave (around 4 MHz). After that increasing the number of nodes
in the length direction do reduce the error as shown in Fig. 4.19(a) but in a slower rate than in
Fig. 4.18(a). The resolution after 4 MHz is mainly controlled by the number of nodes in the
thickness direction, i.e. as the Lamb wave approaches the surface wave, the numerical error is less
controlled by the number of elements in the length direction, and more dominated by the number
of nodes in the thickness direction as could be seen from Fig. 4.19(a). This may be intuitively
explained by the fact that as the particle motion tends to be more confined to the surface, the
number of nodes used to sample the motion in that direction plays a more pronounced rule, which
means that the controlling factor in the dispersion error is the number of nodes in the thickness
direction in the high frequency regime.
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Figure 4.18 Numerical spatial dispersion of S0 mode, for spectral element of poly-
nomial order 5, for 10, 20, 30 and 40 elements. The computations were for aluminum
plate 1 mm thick, and 40 mm long
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Figure 4.19 Numerical spatial dispersion of S0 mode, for spectral element of poly-
nomial order 5, and for 50, 60, 70 and 80 elements. The computations were for
aluminum plate 1 mm thick, and 40 mm long.
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Figure 4.20 Numerical spatial dispersion of S0 mode, for spectral element of poly-
nomial order 5 and 7 for 80 elements in length direction. The computations were for
aluminum plate 1 mm thick, and 40 mm long.

In order to verify this hypothesis, we plot two different polynomial orders, 5 and 7, which
corresponds to the 6 and 8 nodes per thickness respectively, while fixing the number of elements in
the length direction to 80 elements in Fig. 4.20(a). The results confirm the previous interpretation
of the shift of the error sensitivity from being dominated by the sampling in the length direction
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to being dominated by the sampling in the thickness direction, this is as the Lamb fundamental
symmetric mode starts degenerating form a plane strain wave to surface wave (roughly at 4 MHz).
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Figure 4.21 Numerical Dispersion of S0 mode, for different polynomial orders. The
computations were for aluminum plate 1 mm thick, and 40 mm long.

Figures 4.21(a) and 4.21(b) show the amount of error induced by spatial discretization alone,
with different polynomial orders, on the phase and group velocities of the fundamental symmetric
Lamb mode, respectively. The resolution parameters, is taken as the amount of the wavelength
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covered by a single element. The interesting observation, that for a fixed h
λ

the increase in
accuracy due to the change of the polynomial order 4 to 5 is more pronounced than the form 5
to 6. After polynomial order 5, the error curves seem to follow a parallel pattern. This reflects
the efficiency of the representing the coupled motion of the nodes as dictated by the assumed
displacement. So, not all polynomial orders provide a good sampling for the mode shape.
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Figure 4.22 Temporal numerical Dispersion of S0 mode, for different polynomial
orders, with CFL number, 1, 0.75, 0.5 and 0.25. The computations were for aluminum
plate 1 mm thick, and 40 mm long.
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Figure 4.23 Temporal numerical group dispersion of S0 mode, for different poly-
nomial orders, with CFL number, 1, 0.75, 0.5 and 0.25. The computations were for
aluminum plate 1 mm thick, and 40 mm long.

Figures 4.22(a) and 4.22(b) show the numerical error in phase velocity of the fundamental
symmetric mode S0 due to the temporal discretization with different values of CFL number.
Similarly, Figures 4.23(a) and 4.23(a) show the error induced by the temporal discretization on
the group velocity of the S0 mode. The same procedure of computing the temporal discretization
error as the one used for the plane strain two dimensional wave equation was used to compute
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the error in those figures. The effect of decreasing the CFL condition plays a slight role in
reducing the errors induced by the temporal discretization. So, for efficient Lamb waves time
domain simulation using the spectral element, it would be recommended to focus on choosing
the appropriate polynomial order, and element size with less emphasis on undue over reduction
in the time step.

As could be seen from the figures, the overall behavior is that the group velocity dispersion error
is several orders of magnitude higher at the same h

λ
ratio compared to the phase errors. This

confirms the conclusion that was drawn earlier from the dispersion analysis of the one dimensional
element and the two dimensional elastic wave equation. Namely, it is more accurate to set the
discretization parameters on the group velocity, since the group velocity is more sensitive to the
numerical dispersion errors.

Antisymmetric modes

The displacement fields in Eq. (4.15) in the plate associated with the antisymmetric mode are:

ux = iD( A
Dk1 sinαx2 − β sin βx2) (4.77)

uy = D( A
Dα cosαx2 + k1 cos βx2) (4.78)

where the amplitude ratio at any specific frequency is constant and given by [Graff, 1991]:

A
D

= −
(k2 − β2) cos βd/2

2kα cosαd/2
(4.79)

These displacements satisfy the free traction boundary condition as long as α and β satisfy the
dispersion relations for the antisymmetric modes.

For the purpose of dispersion analysis, we substitute the assumed displacement fields for the
antisymmetric mode, where we first compute the solution of the dispersion equation for the A0
mode, and then compute the α2 , and β2. From this information we can construct the assumed
displacement fields that satisfy the traction free boundary conditions. Then, we substitute into the
assembled discrete equations the ux and uy. Since the A

D are known and constant for a specific
frequency, this means that we need only one approximate eigenvalue, associated with the arbitrary
amplitude D.

Λ

M 0
0 M

 u1

u2

 =

 K1 K2

K2
T K4

 u1

u2

 (4.80)



4.5. Dispersion analysis of numerical implementations 145

where
u1 = ux(k, xi, yi), u2 = uy(k, xi, yi) (4.81)

where (xi, yi) are the spectral node coordinates. For the computation of Rayleigh quotient,
the approximate eigenvector y becomes [u1 u2]. And the matrices are assembled per location
according to the elemental connectivity map. A similar behavior to the S0 mode is observed, as
the number of elements per length increase with a fixed polynomial order, the reduction in the
dispersion error tends be less. This is due to the same effect, i.e the sensitivity of the dispersion
error shifts toward the sampling density in the thickness direction as the wave moves toward a
surface wave.

Figure 4.24(a) shows the numerical dispersion curves and the exact dispersion curves for an
aluminum plate, the values are differing in the orders of 10−8 km/s in the region of low frequency,
which is negligible, as the frequency increases the discrepancy from the exact value increases and
fluctuates, though the fluctuation is bounded (stability measure). With an increase in the number
of elements in the length direction as shown in Fig. 4.25(a), the agreement between the exact
and numerical velocity is increased, till a similar effect to the one observed earlier in the S0 is
witnessed. Increasing of elements number in the length direction, as the exact velocity degenerate
into Rayleigh wave, is less effective in reducing the error. This could be explained by the fact that
as the frequency increases the particle motion becomes more and more confined into the surface
region of the plate and as such the numerical eigenvalue becomes more sensitive to the number
of nodes used in the thickness direction rather than the number of nodes used in the propagation
direction.

Figures 4.24(b) and 4.25(b) show the group velocity computed for different element numbers per
plate length for the same polynomial order 5. The group velocity witness a higher discrepancy
from the exact value, which again enforces the previous recommendation of basing the accuracy
of the numerical simulation on the group velocity. The deviation is following the same pattern as
for the phase velocity, but larger magnitude, e.g. at 1 MHz the phase velocity is around 3.2 km/s
while the group velocity is 5 km/s. This again confirms the conclusion that was drawn earlier, that
group velocity errors should be the major concern in the spectral element simulation of elastic
wave propagation, and the mesh parameters should be chosen based on the group velocity errors
as a more conservative estimate.

Both the phase and group errors, with respect to the exact A0 group and phase velocity are
shown in Figs. 4.26(a) and 4.26(b). On the contrary to the case of the symmetric mode, where
polynomial orders higher than 4 behaved in the same matter except the polynomial order 4 which
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witnessed a larger discrepancy at the same wavelength to element size ratio, the polynomial
orders behave in the same pattern from 4 to 9, with an increasing errors at higher frequencies.
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Figure 4.24 Numerical Dispersion of A0 mode, for spectral element of polynomial
order 5, for 10, 20, 30 and 40 elements. The computations were for aluminum plate 1
mm thick, and 40 mm long
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Figure 4.25 Numerical Dispersion of A0 mode, for spectral element of polynomial
order 5, and for 50, 60, 70 and 80 elements. The computations were for aluminum
plate 1 mm thick, and 40 mm long.
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Figure 4.26 Numerical Dispersion of A0 mode, for different polynomial orders. The
computations were for aluminum plate 1 mm thick, and 40 mm long.

Figures 4.27(a) and 4.27(b) show the effect of different values of CFL number on the dispersion
behavior, in terms of the errors induced by the spatial and temporal discretizations. The time step
and the numerical eigenvalues are computed in exactly similar manner to the elastic wave, since
Lamb waves are a special case of plane strain waves. The error is magnified by the temporal
discretization, but the overall pattern of the error is the same, i.e. the temporal discretization is
acting as an amplifier of the errors induced by the spatial discretization on the contrary to the
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cases studied in the one dimensional case and the plane strain two dimensional case where the
time discretization changed the trend of the error.
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Figure 4.27 Temporal numerical dispersion of A0 mode, for different polynomial
orders, with CFL number, 1, 0.75, 0.5 and 0.25. The computations were for aluminum
plate 1 mm thick, and 40 mm long.

Interestingly, the decrease of CFL number and correspondingly the time step does not reduce
much the errors unlike in the case of the two dimensional unbounded plane strain wave, where
the reduction in the CFL number reduced the errors with a tendency to return to the harmonic
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results. This remark is valid for both the errors induced in phase velocity and group velocity
depicted in Figs. 4.28(a) and 4.28(b). This could be understood in light of the fact of the absence
of conflict of order phenomenon, since the temporal errors interact linearly with the spatial errors,
acting as an amplification of the spatial discretization errors, reducing the time step, only reduced
the amplification.
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Figure 4.28 Temporal numerical group dispersion of A0 mode, for different poly-
nomial orders, with CFL number, 1, 0.75, 0.5 and 0.25. The computations were for
aluminum plate 1 mm thick, and 40 mm long.
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To summarize, the errors induced by the temporal discretization is typically a nonlinear function
of the spatially induced errors of discretization. This is because the time integration scheme
is low order, while the spatial discretization is a high order interpolation. This phenomena
are referred to as "conflict of order". The conflict of order is manifested in a change of the
trend of the dispersion errors, from underestimating the phase and group velocities in the
harmonic case (spatial discretization alone) to an overestimating both the velocities when temporal
discretization interacts with the spatial errors. This have been observed in the case of plane strain
two dimensional elastic waves. But in the special case of Lamb waves, it was absent. In the case
of Lamb waves the temporal discretization error are acting as a linear multiplier, and there is no
conflict of order. This is reflected in the smaller effect when reducing the CFL number on the
accumulative dispersion errors in the temporal discretization case.

4.5.3 First order shear deformation theory

For the FSDT, there are three degrees of freedom per material particle, and consequently three
modes, one associated with each degree of freedom. We start by postulating a plane wave as a
solution for each degree of freedom:

wi = Aei(k·xi−ωt) (4.82)

S x
i = Bei(k·xi−ωt) (4.83)

S y
i = Cei(k·xi−ωt) (4.84)

where k = [k cos θ, k sin θ], and xi = [xi, yi] is a vector containing the coordinates of the ith
node. After substituting these assumed fields into the semidiscrete equations Eqs. (4.46), we
arrive at a generalized eigenvalue problem Kd = χMd, where χ = (ωn)2, and:

K =


K11 K12 K13

K12
T K22 K23

K13
T K23

T K33

 , d =


w
Sx

Sy

 , M =


M11 0 0

0 M22 0
0 0 M33

 (4.85)

Then we approximate χ by the Rayleigh quotient of the system, which also is equivalent to the
decomposed eigenvalue problem: 

d1 d2 d3

d3 d4 d6

d7 d8 d9



A

B

C

 = χ


A

B

C

 (4.86)



152 CHAPTER 4. Spectral element for guided waves propagation in plates

and the coefficients are:

d1 = W
T

K11W
W

T
M11W

, d2 = W
T

K12W
W

T
M11W

, d3 =
W

T
K13W

W
T

M11W
(4.87a)

d4 = W
T

K12
TW

W
T

M22W
, d5 = W

T
K22W

W
T

M22W
, d6 =

W
T

K23W
W

T
M22W

(4.87b)

d7 =
W

T
K13

TW
W

T
M33W

, d8 =
W

T
K23

TW
W

T
M33W

, d9 =
W

T
K33W

W
T

M33W
(4.87c)

The computed eigenvalues of the equivalent system are, after sorting, associated, from smaller to
larger values, with the (ωn)2 of the w, S x and S y speeds. The first of which is the equivalent for
the flexural mode.

Figures 4.29(a) and 4.29(b) show the phase and group velocities of the three modes associated
with the discrete mesh of a very high density mesh of 2 element by 2 elements of a 4 mm by
4 mm by 1 mm thick aluminum plate, with a spectral element of polynomial order 6. w, S x,
and S y, as well as the theoretical FSDT dispersion curve, and the exact A0 Lamb mode. The
w mode of the spectral element is in large discrepancy from both the exact A0 mode and the
theoretical FSDT phase velocity. This may be understood, in light of the idea, that the plane wave
does not solve the semidiscrete system of equations based on the FSDT assumptions accurately.
Although the asymptotic behavior is tending to the surface wave velocity, the agreement at the
low frequency regime cannot be taken as accurate approximation of the A0 mode.



4.5. Dispersion analysis of numerical implementations 153

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Frequency (MHz)

C
p

 (
k

m
/s

)

 

 

FSDT−Analytical

A0 Exact

S
y
 mode

S
x
 mode

w  mode

(a) Numerical phase velocity dispersion curve for the default value of the correction factor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Frequency (MHz)

c
g
 (

k
m

/s
)

FSDT−Analytical

A0 Exact

S
y
 mode

S
x
 mode

w  mode

(b) Numerical group velocity dispersion curve for the default value of the correction factor

Figure 4.29 Spatial discretization numerical dispersion of FSDT three modes, and
analytical FSDT dispersion curve for w mode and the exact A0 mode, for highly dense
mesh, 4 by 4 mm aluminum plate, and 1 mm thick, the element used was p = 6, and 2
elements per square plate length.
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(a) Numerical phase dispersion curves for different values of shear correction factor

(b) Error with respect to A0 mode velocity, for different values of shear factor

Figure 4.30 Spatial discretization numerical phase dispersion of FSDT and its errors
with respect to the exact A0 mode, for highly dense mesh, 4 by 4 mm aluminum plate,
and 1 mm thick, the element used was p = 6, and 2 elements per square plate length.

Figure 4.30(a) shows the effect of different choices of shear correction factor κ on the numerical
phase speed of the semdiscrete equations based on the FSDT. The error with respect to the
fundamental antisymmetric Lamb mode A0 is shown for the same values of the shear correction
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factor in Fig. 4.30(b), the errors were computed as:

ε(cp) = cn
p/cp(A0) − 1 (4.88)
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Figure 4.31 Spatial discretization numerical dispersion of FSDT flexural mode for
different polynomial orders.
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Figures 4.31(a) and 4.31(b) show the numerically extracted phase dispersion curves for the
harmonic case, i.e the errors induced by the spatial discretization alone, for polynomial orders
from 3 to 10.
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Figure 4.32 Spatial discretization numerical dispersion of FSDT flexural mode for
different polynomial orders.
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The curves illustrate the well known shear locking behavior due to over constraining for low
order polynomial (i.e. p=3, and high order quadrature, which is normally remedied in the FEM
by reduced Gauss integration), the remaining higher order polynomials are following more or less
the same trend. The estimation of accuracy is rather difficult in the case of FSDT, since the nodal
approximations are not accurate approximations of the eigenvectors of the discrete system, there
is less information in comparing the extracted numerical speeds with a standard reference. For
this reason we have reverted to representing the dispersion curves in the same sense that normal
convergence tests are done in the conventional FEM literature. All of the presented results were
for an incidence angle of 0. The idea of the convergence is to refine the mesh incrementally until
the results are not affected, in this case we study the frequency convergence behavior, in the sense
that increasing the h/λ ratio, would not affect the global behavior of the numerical dispersion.
Figures 4.32(a) and 4.32(b) show the numerical group dispersion curves for the harmonic case,
the results were repeated with finer and finer mesh until no noticeable effect witnessed by the
numerical group velocity. The equivalent element to wavelength ratio to the frequency range is
also shown on the same curves, in order to be able to compare the resolution parameters between
different curves. Figures 4.33(a) and 4.33(b) show the temporally effected numerical phase
velocity for different polynomial orders (3 to 10), and the effect of the CFL number used in the
explicit time integration. As could be seen the low polynomial orders similarly manifest the shear
locking behavior which the higher order elements are free from. A similar convergence study
was done, and the plotted values are the ones that show no further change after refining the mesh.
The CFL number was computed with respect to the analytical value of the phase velocity:

∆t =
CFL
cp

 1√
1/∆x2

min + 1/∆y2
min

 =
CFL
cp

 1√
2/∆x2

min

 (4.89)

while temporal numerical speed is computed from the extracted eigenvalue χ:

ωn =
2 sin−1 0.5

√
χ∆t

∆t
(4.90)

Figures 4.34(a) and 4.34(b) show the effect of further decreasing the CFL number, the effect is
hardly noticeable for higher order polynomials.

Figures 4.36(a) and 4.36(b) show the group velocity dispersion curves for even and odd polyno-
mial orders. Figures 4.37(a) and 4.37(b) show the angular dependence of the numerical phase
velocity. The circular symmetry is evident, i.e. the FSDT spectral element is free from the nu-
merical anisotropy, which justify generalizing the previous dispersion curves, that was computed
for θ = 0 to all the incidence angles. Which is not the case for the plane two dimensional wave



158 CHAPTER 4. Spectral element for guided waves propagation in plates

where is suffers from numerical anisotropy (see Figs. 4.17(a) and 4.16(a) for example), albeit in a

very small percentage.

(a) even polynomial orders

(b) odd polynomial orders

Figure 4.33 Temporal discretization numerical dispersion of FSDT flexural mode

for different polynomial orders, and CFL number of 1 and 0.75.
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(a) even polynomial orders

(b) odd polynomial orders

Figure 4.34 Temporal discretization numerical dispersion of FSDT flexural mode

for different polynomial orders, and CFL number of 0.50 and 0.25.
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(a) even polynomial orders

(b) odd polynomial orders

Figure 4.35 Temporal discretization numerical group dispersion of FSDT flexural

mode for different polynomial orders, and CFL number of 1 and 0.75.
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(a) even polynomial orders

(b) odd polynomial orders

Figure 4.36 Temporal discretization numerical group dispersion of FSDT flexural

mode for different polynomial orders, and CFL number of 0.5 and 0.25.
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Figure 4.37 Spatial discretization phase dispersion of FSDT as a function of inci-
dence angle, at frequency 500 kHz.
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4.6 Conclusion

In this chapter, spectral element was developed for the two dimensional elastic wave equation
under a plane strain assumption, the numerical dispersion characteristics of the spectral element
implementation was studied using Rayleigh quotient approach for estimating the eigenvalues.

The conflict between orders of both temporal and spatial discretization, a previously observed
phenomena in rod elements, is also observed for the case of the spectral element developed for
the unbounded two dimensional elastic wave propagation, i.e. the change of the trend of the
error from underestimating the phase and group velocity in the harmonic case, to overestimation
induced by the low order temporal discretization. This phenomenon could also become more
beneficial than normally believed, since the error goes back to zero at fewer grid points, but the
fact that there at two propagating wave simultaneously might limit the applicability of this kind
of targeting zero error at few grid points.

The generality of using Rayleigh quotient in the numerical dispersion analysis suggests a new
interpretation: it could be viewed as a test for the efficiency of the sampling of an assumed
displacement continuous field at a certain number and locations of discrete points. This interpre-
tation opens a vista of applications for this numerical dispersion analysis technique, and one of
those possibilities are extending the analysis to Lamb waves. In the present chapter, we utilized
this point of view to study, for the first time, the numerical dispersion of elastic wave propagation
in bounded media. The spectral element formulated earlier for the plane strain elastic wave
propagation was used for the special case of Lamb waves, which is essentially a plane strain wave
propagation in a doubly bounded media. The traction free boundaries are included in the analysis
in terms of the assumed displacement fields satisfying the traction free boundary conditions.

On the contrary to the previously observed phenomena of the conflict of order between the high
order spatial discretization and low order temporal discretization, leading to a change in the
behavior of the dispersion error in the case of the unbounded two dimensional elastic wave, this
behavior is absent in the Lamb wave spectral element simulation. The Lamb waves numerical
dispersion errors induced by the spatial discretization does not change the pattern when interacting
with the errors coming from the temporal discretization, rather the temporally induced errors act
as an amplification of the spatial errors. This and the fact the decreasing the CFL numbers does
not affect much the accuracy, suggests that spectral element is very well suited to the simulating
the Lamb waves in both the frequency and the time domain efficiently.

The first order shear theory dispersion was studied for both the mathematical model and its
spectral element numerical implementation, i.e. in terms of the verification and validation
phases. The accuracy of the first order shear deformation as an approximate theory for the Lamb
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fundamental antisymmetric mode is poor. But this inaccuracy emanates from the nature of the
mathematical assumptions, not from the implementation, thus the limitation to low frequency
behavior of several results reported in literature.

Besides shinning the light on the limitations of the applicability of the FSDT to low frequency
regime as far as Lamb waves simulation is concerned, the presented analysis offered a beneficial
demonstration of the absence of the shear locking behavior for the spectral element (when using
polynomial orders p > 3), and the complete absence of the numerical anisotropy.

In the next chapter, having established the meshing parameters for an accurate simulation of
Lamb waves, a utilization of this knowledge in performing a parametric study of the different
effects of strongly coupled PZT generation of Lamb waves is studied.



CHAPTER 5

Application of SEM in SHM: formulation and
case studies

Mathematics is the part of physics where
experiments are cheap.

VLADIMIR I. ARNOLD (1937-2010)

ACTIVE SHM schemes based on the guided waves propagation requires a guided waves
generation agent, and according to its advantages the piezoelectric patches or elements

provide the best candidate for establishing a viable non-intrusive active guided waves
SHM scheme.

In this chapter, the problem of piezoelectric element strongly coupled with an elastic substruc-
ture is formulated, and the spectral element implementation is covered in details. Then the
developed implementation is utilized in performing a set of parametric studies of the effects
of the actuator thickness, the adhesive layer thickness and material on the modal amplitude
variation with frequency i.e. mode tuning curves. At the last part of the chapter the results of
experimental verifications for two case studies are reproduced from previously published papers
by the author [Mohamed and Masson, 2010b, 2011].

5.1 Formulation: piezoelectric generation of guided waves

The most common of piezoelectric ceramics are the piezoceramic barium titanate (BaTiO3) and
lead zirconate titanate (PZT). The crystal lattice of piezoelectric materials is of the face-centered
cubic (FCC) kind. Metallic atoms are located at the corners of the cubic unit cell as shown in
Fig. 5.1, while oxygen atoms remain at the center of the unit cell. A heavier atom is located at
the center and it can shift to positions with lower energy, with a consequent distortion of the
crystal lattice (metastable structure). If an electric field is applied to the structure, the central
atom can exceed the potential well threshold and move to a lower energy state. This is followed
by a rupture of symmetry yielding an electric dipole (Fig. 5.1). The previous phenomenon is
possible only below the so-called Curie temperature [Carrera et al., 2011].

165
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Figure 5.1 Piezoceramic cell before (left) and after (right) polarization.

Above Curie temperature, the piezoelectric effect disappears due to high thermal agitation. Polar-
ized piezoceramics are obtained by heating them above their Curie temperature and subjecting
the material to an intense electric field during cooling. In doing so, all the dipoles become aligned
in the same direction and the material ends with a stable polarization. Moreover, apart from a
residual polarization, the crystal lattice of the polarized piezoceramic will also undergo a residual
deformation. After the polarization process, a very small electric potential will be sufficient
to obtain a temporary deformation and vice versa. Even if the electromechanical coupling is a
nonlinear phenomenon, piezoelectric problems are usually studied using linear analysis.

5.1.1 Piezoelectric domain

For the purpose of completeness, we review here the fundamentals of the weak form derivation
of the piezoelectric domain [Carrera et al., 2011]. Consider the piezoelectric domain Ω depicted
in Fig. 5.2(a), within which the displacement field, u, and electric potential field, φ, are to be
determined. The u and φ fields satisfy a set of differential equations that represent the physics of
the continuum problem considered. Boundary conditions are usually imposed on the domain’s
boundary, Γ, to complete the definition of the problem.

The constitutive relations for piezoelectric media may be derived in terms of their associated
thermodynamic potentials. For linear piezoelectric materials, the interaction between the elec-
trical and mechanical variables can be described by linear relations (ANSI/IEEE Standard
176-1987 [ANSI/IEEE, 1987]). Under isothermal conditions, a constitutive relation is established
between mechanical and electrical variables in Voigt notation as:

T = cES − eTE, (5.1)

D = e S + εS E, (5.2)
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On the domain, Ω, and its boundary, Γ, (where the normal is directed outward from the domain),
the fundamental dynamics must satisfy the equilibrium conditions:

ρüi = ∂x jTi j (5.3)

where u is the displacement vector, ρ the mass density of the material, t the time, T the stress
tensor, and xi where i = 1, 2, 3, unit vector in the Cartesian coordinate system. When no macro-
scopic charges are present in the medium, Gauss’ theorem imposes for the electric displacement
vector, D:

∂xi Di = 0 (5.4)

Assuming electrostatic conditions, the electrostatic potential, φ, is related to the electric field E
by:

Ei = −∂xiφ (5.5)

Thus the governing equations becomes:

ρüi = ∂x jc
E
i jklS kl − eki jEk (5.6)

∂x j(eiklS kl + εS
i jE j) = 0 (5.7)

In order to complete the description of the problem in a way that ensures the uniqueness of the
solution, we need to complement the governing equations with the boundary conditions. The
mechanical conditions are as follows: The Dirichlet condition (essential) on the displacement
field, u, is given by:

ui = uo
i (5.8)

where uo
i is a known given vector. The Neumann condition on the stress field, T, is given by:

Ti j · n j = f o
i (5.9)

where n is the vector normal to Γ f , directed outward, and f o
i is a known traction vector. The

electrical conditions are as follows: The conditions for the excitation of the electric field between
those surfaces of the piezoelectric material that are not covered with an electrode and are,
therefore, free of surface charges is given by:

Di · ni = 0 (5.10)
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where n is the vector normal to the surface. When considering the conditions for the potential
and excitation of the electric field between those surfaces of the piezoelectric material that are
covered with electrodes, we assume that there are p electrodes in the system. The potential on
the whole surface of the pth electrode is:

φ = φp (5.11)

The charge on that electrode is:

−

"
dS p

Dini dS p = Qp (5.12)

In some cases, the potential is used, and in others it is the charge. In the former case, φp is known
and Eq. (5.12) is used to determine Qp. In the latter case, Qp is known and Eq. (5.11) is used to
determine φ. Finally, in order to define the origin of the potentials, it is necessary to impose the
condition that the potential at one of the electrodes be zero (φo = 0) i.e. ensure that one of the
electrodes are grounded [Kaltenbacher, 2007; Uchino, 2013].

Plane of deformation

Piezoelectric domain

Ω

Γ

electrode surface

deformed shape

(a) A schematic of a piezoelectric do-
main Ω and boundary Γ

x

1

3

x Ωp
g∂

e∂

sΩ

(b) A coupled piezoelectric domain with an elastic sub-
structure

Figure 5.2 Schematic of single piezoelectric domain and a piezoelectric domain
coupled to a substructure.

Since Lamb waves are plane strain waves, it is assumed that the actuator is acting dominantly in
the plane strain (i.e. extending to infinity in the z direction) as shown in Fig. 5.6. This assumption
limits the applicability of the presented results, since it excludes the possible electromechanical
resonances that could be excited by axisymmetric and three dimensional models.
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5.1.2 Coupled piezoelectric domain with substructure

Figure 5.2(b) illustrates the domain decomposition needed for the case of coupling a piezoelectric
element into an elastic substructure, where Ωp and Ωs are the domains of the piezoelectric and
the substructure, respectively. ∂p, ∂s, and ∂g are the domain boundaries of the piezoceramic, the
substructure, and the interface, respectively. We first introduce the two differential operators B,
and ∇, and the unit normal n:

B =


∂x1 0
0 ∂x3

∂x3 ∂x1

 , ∇ =


∂x1

∂x3

 , n =


n1 0
0 n3

n3 n1

 (5.13)

where for the 2D plane strain case considered in the present work, and since the PZT is transversely
isotropic:

T =


T1

T3

T5

 , S =


S 1

S 3

S 5

 , D =


D1

D3

 , E =


E1

E3

 , εS =


ε11 0

0 ε33

 ,

cE =


c11 c13 0
c13 c33 0
0 0 c55

 , e =


0 0 e15

e31 e33 0

 (5.14)

In Eq. (5.14), T is a vector containing the corresponding Cauchy stress 2nd order tensor elements,
S a vector containing the corresponding infinitesimal strain 2nd order tensor elements, D electrical
displacement vector, εS the 2D elements of dielectric permittivity 2nd order tensor, cE the 2D
elements of the elastic 4th order tensor of piezoelectric material, e the 2D elements of 3rd order
tensor of piezoelectric stress constants, and E electric field vector.

The superscripts E and S indicate that the corresponding material parameters have to be deter-
mined at constant electric field intensity E and at constant mechanical strain S , respectively. The
direct piezoelectric effect (sensor) is reflected in Eq. (5.2), while Eq. (5.1) refers to the converse
piezoelectric effect (actuator). The strong form of the governing equations in the absence of body
forces are:

B
T(cEBup + eT∇φ

)
= ρpüp ∀ x ∈ Ωp (5.15a)

∇T(eBup − ε
S∇φ

)
= 0 ∀ x ∈ Ωp (5.15b)

B
TcsBus = ρsüs ∀ x ∈ Ωs (5.15c)
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The displacement field of the PZT element is up, while that of the substructure is us, and φ is the
electric potential field defined in the domain of the PZT element. Assuming an ideal bonding,
the tractions and displacements at the interface between the two domains Ωp and Ωs should be
continuous, with the following boundary conditions:

Electrical:

φ = 0 on ∂g

φ = φl(t) on ∂e

nT
p
(
eBup − ε

S∇φ
)
= 0 on ∂Ωp − (∂e ∪ ∂g)

Traction:

nT
pTp = 0 on ∂Ωp − ∂g

nT
s Ts = 0 on ∂Ωs − ∂g

Coupling:

nT
s Ts = −nT

pTp on ∂g

us = up on ∂g

where ∂e is the electroded boundary of the PZT element, and ∂g is the dynamic interface electri-
cally grounded boundary. To complete the formulation, the initial conditions are all assumed to
be zero. The corresponding weak form (derived in Appendix B.5) is obtained by finding u ∈ H1

B

and φ ∈ H1
∇

satisfying φ(∂e, t) = φl(t) such that∫
Ωs

wTρsü dΩ +
∫

Ωp

wTρpü dΩ +
∫
Ωs

(
Bw

)TcsBu dΩ

+
∫

Ωp

(
Bw

)TcEBu dΩ +
∫

Ωp

(
Bw

)TeT∇φ dΩ = 0, (5.16a)∫
Ωp

(
∇v

)TeBup dΩ −
∫

Ωp

(
∇v

)T
εS∇φ dΩ = 0, (5.16b)

∀ w ∈ H1
B

(Ωs ∪Ωp) and v ∈ H1
∇
(Ωp)

5.1.3 Semidiscrete spectral element formulation

The spectral element discretization of the weak formulation (see App. B.5) starts with meshing
the physical domain Ω into small geometrically conforming nel quadrilateral subdomains Ωe, e =

1, · · · , nel as in classical FEM. Each of these elements are subsequently mapped into the reference
domain, defined in local system of coordinates (ξ, η) as a bi-unit square Π =

[
−1, 1

]2, using an
invertible local mapping f , based on low degree Lagrange polynomials.

On the reference domain a set of basis functions is defined as Lagrange polynomials of degree 4
to 10 for the interpolation of functions. The N + 1 Lagrange polynomials lN

j (ξ), j = 0, . . . ,N of
degree N are defined in terms of N + 1 nodes −1 ≤ ξ j ≤ 1, by

lN
j (ξ) =

qN(ξ)
(ξ − ξ j)q′N(ξ j)

, qN(ξ) =

N∏∏∏
j=0

(ξ − ξ j) (5.17)
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The approximating function for displacement ue
N |Ωe and electric potential φe

N |Ωe used in the 2D
case is:

ue
N(ξ, η) =

N∑
m=0

N∑
n=0

ue
mn(lN

m(ξ) ⊗ lN
n (η)) = Lue

φe
N(ξ, η) =

N∑
m=0

N∑
n=0

φe
mn(lN

m(ξ) ⊗ lN
n (η)) = Lφe

(5.18)

where, ue and φe are the vector of nodal values of the element’s displacement and potential
respectively; and L is the tensor product of the one dimensional Lagrange polynomials of degree
N based on LGL nodes, which by definition equals one at the corresponding node and zero
elsewhere (i.e. lm(ξi) = δmi).

On substitution of approximating functions in the weak form, we have the elements mass and
stiffness matrices defined as:

Me
us

=

∫
Ωe

ρsLTL dΩ, Me
up

=

∫
Ωe

ρpLTL dΩ,

Ke
usus, us∂g

=

∫
Ωe

(Be)TcsBe dΩ , Ke
upup, up∂g

=

∫
Ωe

(Be)TcEBe dΩ,

Ke
uφ =

∫
Ωe

(Be)TeTQe dΩ and Ke
φφ = −

∫
Ωe

(Qe)TεS Qe dΩ

(5.19)

where Be, and Qe are defined as:

Be = B ⊗ L =


∂x1L 0

0 ∂x3L
∂x3L ∂x1L

 , Qe = ∇ ⊗ L =


∂x1L

∂x3L

 (5.20)

The integrals in the element matrices are evaluated numerically over each element. In SEM,
a Legendre-Gauss-Lobatto (LGL) integration rule is used, because it leads to a diagonal mass
matrix when used in conjunction with LGL interpolation points, a highly desirable advantage
which allows for a very significant reduction in the computational cost, both in terms of code
complexity and computation time. Numerical integration of f (x) over elements is carried out as:

∫
Ωe

f (x) dΩ =

∫
Π

f (x(ξ, η))J(ξ, η) dΩ =

N,N∑
α,β=0

ωαωβ fαβJαβ (5.21)

where ωα > 0, for α = 0, . . . ,N, denote the weights of the LGL quadrature ωi = 2/(N(N +

1)P2
N(ξi)), and Jαβ = J(ξα, ηβ) is the Jacobian of the mapping f . A polynomial of degree ≤ 2N − 1
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is exactly integrated with N +1 nodes, using GL quadrature. Such a consistent integration scheme,
i.e. the quadrature nodes are the same as the basis nodes, is shown to be sufficient for complex
geometries [Maday and Rønquist, 1990].

Then the element matrices are assembled into the global coordinate system in a standard assembly
procedure, and we finally end up with the global semidiscrete system:


Mus 0 0 0

0 Mu∂g 0 0
0 0 Mup 0
0 0 0 0




üs

ü∂g
üp

φ̈

 +


Kusus Kusu∂g 0 0
KT

usu∂g
Ku∂gu∂g Ku∂gup Ku∂gφ

0 KT
u∂gup

Kupup Kupφ

0 KT
u∂gφ

KT
upφ

Kφφ




us

u∂g
up

φ

 =


0
0
0
fe

 (5.22)

where the solution vector is split into us =
(
u1 u3

)T
s defined on Ωs − ∂g, up =

(
u1 u3

)T
p defined

on Ωp − ∂g, u∂g =
(
u1 u3

)T
∂g

defined on ∂g and φ defined over Ωp, with Mu∂g and Ku∂gu∂g taking
contribution from both the PZT and the substructure element matrices. fe is the contribution of
the inhomogeneous Dirichlet electrical boundary condition representing the uniform excitation
voltage. Eq. (5.22) could be written in partitioned form as:M 0

0 0

 ü
φ̈

 +

Kuu Kuφ

KT
uφ Kφφ

 u
φ

 =

0
fe

 (5.23)

Characteristic matrices of elements are aggregated to the global form in a fashion typical of
the finite element method. Vectors of unknown displacements and electric potentials could
theoretically be computed directly from Eqs. (5.23). However, for piezoelectric materials typical
values of the matrix Ke

uu are of the order of 108, while those of the matrix Ke
φφ are of the order of

10−11. This huge difference in absolute values can lead to bad conditioning of the global system
of equations, when considered as a whole. In order to overcome these difficulties one can perform
matrix static condensation. In such a case Eqs. (5.23) are expressed in terms of displacements:

Mü +
(
Kuu −KuφK−1

φφKT
uφ
)
u = −KuφK−1

φφfe → MÜ + KU = F (5.24)

Which almost recovers the classical form of matrix SEM/FEM equations.

5.2 Formulation: boundary effects

One of the complicating factors in numerical simulation of guided waves propagation is the pres-
ence of reflecting boundaries of the computational domain. This complicates the understanding
of wave propagation characteristics in general, this becomes particularly true for Lamb waves due
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to the mode conversion at the reflecting boundaries. This limits the ability to draw conclusions
about the mode tuning behavior of a specific actuator-structure assembly. For that reason, in order
to be able to eliminate the reflections from the boundaries, an absorbing layer with increasing
damping was developed and implemented in the present work. The details of the developments
and implementation are described in this section.

There are different types of damping that could be used. The two major categories are the
structural damping and the viscous damping. In the structural damping the damping force is
assumed to be proportional to the displacement:

MÜ + (K+iH)U = F (5.25)

were H represents the damping force. Viscous type damping can be used whatever the form
of the excitation. The most common form of such damping is the so-called Rayleigh-type or
proportional damping. In which the damping force is proportional to the particle velocity.

MÜ + CU̇ + KU = F (5.26)

C = αM + βK (5.27)

In order to extract the amplitudes correctly while being faithful to the energy division between
the two fundamental propagating modes, an absorbing layer with gradually increasing damping is
added at the free edge of the plate. The absorbing layer used in the present study is a combination
of two concepts proposed earlier in the literature.

Figure 5.3 Artificial damping boundary section used by [Liu and Quek, 2003a].
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The first one was that that proposed by [Liu and Quek, 2003a], where they introduced an

exponentially increased damping coefficient. Where in order to create an artificial boundary to

damp down the oscillations, They introduced a section of elements near the finite boundary that

is being divided into n element sets as shown in Fig. 5.3. The damping coefficient and hence the

damping force defined for each of these sets are gradually increased from the inner most set to

the set next to the finite boundary.

While they used a gradual increase in damping force, Young’s modulus was defined for the kth

element set to be exponentially dependent on the set number:

Ek = E + iαoξ
kE, k = 0, 1, 2, · · · , n − 1 (5.28)

where αo is the initial material loss factor for the artificial damping layer and ξ is a constant factor,

and the damping model they used was a structural damping, (i.e. the damping was proportional

to the displacement rather than to the particle velocity as in viscous damping). However, their

procedure for insuring the absence of reflection is not sufficient for the case of guided waves

because the way they used to verify the efficacy of the damping is iterative in nature (trial and

error) where they increase the value of ξ, till the responses obtained for two (or more) cases of

different boundary conditions at the ends show no significant differences. This is based on the

concept that the damping has done its job such that the effects of the boundary are no longer

significant.

Figure 5.4 Sampling points for the frequency response, total of 512 equally spaced

points for the reflection coefficient computation via a wavenumber transform.

The second concept was that of providing a less sharp change in the damping coefficient in order

to avoid a high impedance mismatch. And it employs a viscous damping scheme, this concept

was first introduced by [Drozdz et al., 2007, 2006], and developed further by [Ke et al., 2009].
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The definition of the damping layer material properties are for purely elastic material defined as:

EAL = E(1 − D(r)) + i(ED(r)) (5.29)

ρAL =
ρ

(1 − D(r) + iD(r)
(5.30)

D(r) =

(
r

LABS

)3

(5.31)

where E and ρ are the material properties of the plate, and EAL, ρAL is the variable Young’s
modulus and density of the absorbing layer, respectively. r represents the distance away from the
interface separating the plate edge and damping layer of length LABS . Upon reformulating it into
the proportional damping coefficients, we have for the kth layer:

EAL
k = E(1 − D) (5.32)

αk =
D

1 − D
(5.33)

βk = αk (5.34)

ρAL
k = ρ

1 − d
(1 − D)2 + d2 (5.35)

This damping layer is assumed to be efficient when its length is equal to or greater than 1.5 of the
maximum wavelength.

The problem with this layer formulation is that its damping is dependent on the frequency and
that introducing a large mass proportional damping may introduce a large inertial effect into
the system. They also used a similar technique to the one used by [Liu and Quek, 2003a] for
checking for the absence of reflection.

The more accurate way to test for the absence of the reflection and is the one adopted in the
present study is to record the displacement at equally spaced distances and perform a wavenumber
transform on the frequency response [Alleyne and Cawley, 1990]. As depicted in Fig. 5.5(a) the
reflected peaks will be located at the negative wavenumber side since it is propagating in the
reverse direction while the incident peaks are located in the positive wavenumber region. But on
implementation of the proposed damping layer by [Drozdz, 2008; Ke et al., 2009] the frequency
dependent viscous damping was not sufficient to damp all the reflections as plotted in Fig. 5.5(a).

The theoretical reflection coefficient for Eqs. (5.35) was computed for each mode separately:

A =
Z2 − Z1

(Z2 + Z1)2 (5.36)

Z = ρALCAL
S 0||A0 (5.37)
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where the CAL
S 0 or CAL

A0 is the phase speed of S0 and A0 modes, respectively, for each damping
layer. Where the dispersion relation is solved numerically with the modified properties of the
damping layer, and Z2, Z1 are acoustic impedance of two consecutive layers.
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Figure 5.5 The reflection analysis for checking the efficiency of the damping layer
for multi-modal propagation. The different reflections for cubic law variation of
damping in the ALID

Figure 5.5(b) shows the variation of the theoretical reflection coefficient with the number of
damping layer at 50 kHz. This may explain the noticable reflection of the longer wavelength
mode that was noticed in Fig. 5.5(a). The damping layer adopted in the present study are based
on the combined definition of the structural damping that is proposed by [Liu and Quek, 2003a]
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and the spatial variation according to the third order equation proposed by [Ke et al., 2009]. The
total number of damping layers used was 36 sets of elements, and the density was held constant.
The length of the damping layer was 1.5 times the maximum wavelength.

As for the PML implemented in commercial finite element software, ANSYS [Ansys Inc.,
2011] provide an implementation of PML in one and three dimensional frequency domain
only. The same goes for COMSOL Multiphysics. ABAQUS in addition to the PML provide an
implementation of infinite elements that provide a radiation boundary condition. The current
proposed damping layer have an advantage that it could be implemented in both the time domain
and frequency domain since it is only a gradual increase in the attenuation via location dependent
material properties.

The kth set of elements properties were taken as:

EAL
k = E(1 − D) (5.38)

ξk = D (5.39)

were ξk is the percentage of the critical damping in the kth layer. The efficacy of this damping
layer are tested for each frequency using the wavenumber transform. An exemplary result of such
an analysis is depicted in Fig. 5.5(c). Throughout a frequency range of 50 kHz to 800 kHz, with
steps of 25 kHz, the maximum reflection never exceeded 0.01.

5.3 Actuator thickness effect

In the following sections a parametric study of the effect of the thickness of PZT element fully
coupled is compared with the pin force model. The first section includes the results of the
harmonic analysis, both forced response and normal modes analysis for a bounded plate, i.e.

includes the reflection from the edges of of the plate. The second section includes the forced
response simulation results with the absorbing layer with increased damping (AIDL) in the form
of the mode tuning curves extracted from the results of the forced frequency response.
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Table 5.1 Material properties used in the parametric study of the PZT thickness
effect

Component Property Value

Aluminum Plate Length 1.0 m
Thickness 1 × 10−3 m

Young’s modulus 67.5 GPa
Density 2700 kg/m3

Poisson’s ratio 0.35
PZT Element Diameter 10 × 10−3 m

Thickness 0.25, 0.5, and 1 × 10−3 m
Density 7650 kg/m3

Piezoelectric type PZT-5H
d31 -2.74 ×10−10 (m/V)
d33 5.93 ×10−10 (m/V)
d15 7.41 ×10−10 (m/V)
ε11 1704 ×εo (F/m)
ε22 1433 ×εo (F/m)
ε33 1704 ×εo (F/m)
S 11 1.65 ×10−11 (m2/N)
S 12 -4.78 ×10−12 (m2/N)
S 13 -8.45 ×10−12 (m2/N)
S 33 2.07 ×10−11 (m2/N)

5.3.1 Harmonic analysis

The steady state response can also be obtained by solving the harmonic excitation in Eq. (5.24):

MÜ + KU = Feiωt (5.40)

directly. This has the advantage that the frequencies and modes of free vibration of the undamped
system do not have to be calculated prior to the response analysis. Assuming that the steady state
response is harmonic with frequency ω gives

[K − ω2M]U = Feiωt (5.41)
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The solution of this equation is

U = [K − ω2M]−1Feiωt (5.42)

Figure 5.6 Illustration of the pin force model and the coupled piezoelectric model

used in the present study.

In this section, we will explore the effect of the PZT thickness, and compare it with the pin

force model with equivalent loading as illustrated in Fig. 5.6. The material properties used in

the analysis is listed in table 5.1. The plate section and the actuator are both assumed to be

in the plane strain, purely elastic materials with no losses for both the plate and the actuator

was assumed. The plate was loaded symmetrically by pin forces with the line of symmetry that

divides the plate thickness into two equal halves.

The equivalent pin force loading to was computed according to [Banks et al., 1996]:

F =
−Epzthpztd31

1 − νpzt
vpzt (5.43)

where Epzt and νpzt are the elastic modulus and Poisson’s ration of the piezoceramic material,

respectively, d31 the coupling coefficient, hpzt is the thickness, and vpzt is the applied voltage.

The mesh used for the forced response were one element (p = 6) per thickness of the plate and

piezoelectric, and 1 mm long in the length direction.

The forced frequency response using pin forces is shown in Figs. 5.7(a) and 5.7(b) in the u1

direction since the symmetric loading makes the steady state displacement dominant in the u1

direction. Figures 5.8(a) and 5.8(b) show the results of the harmonic forced response at the same

point in the u1 direction for 10 V electric excitation for a 0.5 mm thickness piezoceramic element.
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The loading was symmetrically applied by two identical piezoceramic elements on the upper and
lower surface of the plate.
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(b) Frequency Response of u1 at 400 mm distance pin force model, for frequency range 70 kHz-600 kHz

Figure 5.7 Frequency Response of u1 at 400 mm distance from the plate center, pin
force model, and separation of forces was 10 mm.

In Figs. 5.10(a) and 5.10(b) a comparison between the two predicted frequency response to both
pin force and a coupled PZT element with 0.5 mm thickness. The shift in resonance frequencies
toward higher frequency for the case of the PZT coupled plate may be attributed to the change in
modal behavior due to the presence of the PZT. The effect is purely mechanical due to the change
in the mechanical normal modes of vibration. To test this hypothesis, a normal mode analysis for
the range shown in figure is performed and the results of the modal analysis for the same mesh
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that was used for the harmonic response analysis is listed in Table 5.2. Showing that the mere
mechanical coupling of the PZT is enough to make this shift in resonance frequencies.
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(b) Frequency Response of u1 at 400 mm distance from the PZT actuator center, for frequency range 94.5 kHz-600
kHz

Figure 5.8 Frequency Response of u1 at 400 mm distance from the PZT actuator
center, PZT thickness is 0.5 mm, and the diameter of the actuator was 10 mm.



182 CHAPTER 5. Application of SEM in SHM: formulation and case studies

Table 5.2 Normal modes frequencies for the range 16600-76000 Hz

Mode Pin Force PZT Coupled Mode Pin Force PZT Coupled
(Hz) (Hz) (Hz) (Hz)

1 17500 17584 7 47500 47717
2 22500 22607 8 52500 52736
3 27500 27631 9 57500 57755
4 32500 32653 10 62499 62772
5 37500 37675 11 67499 67788
6 42500 42696 12 72498 72802

Figure 5.9 The first five Mode shapes in the frequency range 16.6-76 kHz. Consid-
ering the symmetry half the domain in both x1 and x3 is only plotted.

Figure 5.9 plots the first five free modes with symmetric placement of the actuator.
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Table 5.3 Normal modes frequencies for the range 76000-285000 Hz

Mode Pin Force PZT Coupled Mode Pin Force PZT Coupled
(Hz) (Hz) (Hz) (Hz)

1 77498 77814 22 1.82E+05 1.82E+05
2 82497 82824 23 1.87E+05 1.87E+05
3 87496 87832 24 1.92E+05 1.91E+05
4 92495 92837 25 1.97E+05 1.96E+05
5 97494 97839 26 2.02E+05 2.01E+05
6 1.02E+05 1.03E+05 27 2.07E+05 2.06E+05
7 1.07E+05 1.08E+05 28 2.12E+05 2.11E+05
8 1.12E+05 1.13E+05 29 2.17E+05 2.16E+05
9 1.17E+05 1.18E+05 30 2.22E+05 2.21E+05

10 1.22E+05 1.23E+05 31 2.27E+05 2.26E+05
11 1.27E+05 1.28E+05 32 2.32E+05 2.31E+05
12 1.32E+05 1.33E+05 33 2.37E+05 2.36E+05
13 1.37E+05 1.38E+05 34 2.42E+05 2.41E+05
14 1.42E+05 1.43E+05 35 2.47E+05 2.46E+05
15 1.47E+05 1.48E+05 36 2.52E+05 2.51E+05
16 1.52E+05 1.52E+05 37 2.57E+05 2.56E+05
17 1.57E+05 1.57E+05 38 2.62E+05 2.61E+05
18 1.62E+05 1.62E+05 39 2.67E+05 2.66E+05
19 1.67E+05 1.67E+05 40 2.72E+05 2.70E+05
20 1.72E+05 1.72E+05 41 2.77E+05 2.75E+05
21 1.77E+05 1.77E+05 42 2.82E+05 2.80E+05
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(a) Frequency Response of u1 at 400 mm distance from the PZT actuator center, for frequency range 16.6

kHz-76 kHz
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PZT Coupling
Pin Force Model

(b) Phase Response of u1 at 400 mm distance from the PZT actuator center, for frequency range 16.6 kHz-76

kHz

Figure 5.10 Comparison of Pin Force model frequency response and the PZT cou-

pled plate.
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(a) Frequency Response of u1 at 400 mm distance from the PZT actuator center, for frequency range 76

kHz-285 kHz
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(b) Phase Response of u1 at 400 mm distance from the PZT actuator center, for frequency range 76 kHz-285

kHz

Figure 5.11 Comparison of Pin Force model frequency response and the PZT cou-

pled plate.

5.3.2 Simulation results

For the modal amplitude extraction, the harmonic displacement components was recorded on

both the upper uU
x , uU

y and lower surface uL
x , uL

y of the plate at the same x value, then this is

followed by inverting the matrix of coefficients in the Lamb waves displacement expressions in
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Eqs. (4.15).


B

C
A

D

 =


ikS 0 cos(h

2αS 0) iβS 0 cos( h
2βS 0) ikA0 sin(h

2αA0) −iβA0 sin( h
2βA0)

ikS 0 cos(− h
2αS 0) iβS 0 cos(− h

2βS 0) ikA0 sin(− h
2αA0) −iβA0 sin(−h

2βA0)
αS 0 sin( h

2αS 0) kS 0 sin( h
2βS 0) αA0 cos( h

2αA0) kA0 cos( h
2βA0)

αS 0 sin(− h
2αS 0) kS 0 sin(− h

2βS 0) αA0 cos(− h
2αA0) kA0 cos(− h

2βA0)



−1 
uU

x

uL
x

uU
y

uL
y

 (5.44)

The analysis was done for a 1 m long plate with the same properties as listed in Table 5.1,
the mesh used was based on the results of the last chapter with 6 points per wavelength and
polynomial degree 8 spectral element, and two elements per the thickness of the plate. The PZT
thickness was varied through three values, 0.5 mm, 0.75 mm and 1 mm. The frequency range
(50 kHz-800 kHz) was swept with 25 kHz steps. The loading was not symmetrical, only one
PZT was bonded to the upper surface of the plate and the harmonic displacement responses were
extracted at 580 mm away from the center of a 10 mm long PZT.
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Figure 5.12 A comparison of the different A0 modal amplitudes with varying
thickness of the actuator PZT element.

Figure 5.12 shows the normalized displacement amplitudes of the A0 at a distance 580 mm from
the center of the plate. Figure 5.14 shows the normalized S0 amplitudes, the normalization was
done for each thickness separately, so the ratio between the S0 and A0 amplitudes are preserved.

The main observed effect of increasing the thickness of the PZT element, is the appearance of
new resonance like peaks when comparing the strongly coupled PZT with the pin force model.
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(a) 0.5 mm Thick PZT - 475 kHz

(b) 0.75 mm Thick PZT - 475 kHz

(c) 1 mm Thick PZT - 475 kHz

Figure 5.13 Mode Shapes at 475 kHz for the three thickness values of actuator.
Considering the symmetry half the domain in x1 direction is only plotted.

Figure 5.13 shows the shapes of the actuator and the attached plate at 475 kHz for the different
thicknesses of the actuator plotted with visually with the same scale. The variation of the actuation
mode is reflected in the different contour values and the their distribution across the domains.
The 1 mm thick clearly, have a higher amplitude excitation, with a higher energy transfer to the
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plate. This supports the interpretation that the frequency peak observed in Fig.5.12 is attributed
to the resonance behavior of the actuator.

For A0 mode plotted in Fig. 5.12 the first maximum amplitude of the pin force model occurs at
150 kHz, while for the three PZT thicknesses they are collocated, it occurs at 225 kHz. A similar
shift toward higher frequencies are also observable at second maximum frequency, 425 kHz for
pin force, 500 kHz for 0.5 mm PZT and 0.75 mm PZT, while the shift is smaller with respect to
frequency for the 1 mm PZT where the maximum is located at 475 kHz. The amplitude also gets
more resonance like as the thickness of the actuator PZT increases. Similar behavior is noticed at
the third peak located at 725 kHz for 0.75 mm Thick PZT and 625 kHz for the 1 mm thick PZT,
while no similar peak is evident for the 0.5 mm thick PZT.

100 200 300 400 500 600 700 800

0

0.1

0.2

0.3

Frequency (kHz)

N
or

m
al

iz
ed

 A
m

pl
itu

de

 

 

S0 1 mm PZT
S0 0.75 mm PZT
S0 0.5 mm PZT
S0 Pin Force

Figure 5.14 A comparison of the different S0 Modal amplitudes with varying
thickness of the actuator PZT element.

Figure 5.14 plots the amplitudes of S0 mode for the same results. The amplitudes were normalized
with respect to the maximum of the associated A0 mode. The first noticeable observation is the
appearance of peaking behavior at 175 kHz that is totally absent from the pin force amplitude,
and as the thickness of the PZT increases the amplitude of that peak increases.

Similar behavior are witnessed at other peak frequencies, with a trend to getting sharper in a
resonance like manner as the PZT thickness increases as could be observed at 475 kHz for 1 mm
PZT, and 500 kHz for 0.75 mm PZT.

As the thickness of the PZT increases from the 0 mm (pin force) to the 1 mm there is a change
in both the number and location of maxima with respect to the frequency. This type of curve is
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typically used in mode tuning for a specific mode. The idea is to find the frequency corresponding
to the maximum amplitude of a specific mode, and use that frequency for SHM purposes.

The shown change in behavior when considering the strongly coupled PZT actuator indicates
a change in the mode of actuation as well as a contribution coming form the extra stiffening of
the plate by the presence of the ceramic PZT itself. In order to test this hypothesis, a similar
frequency sweep were run for the plate with the existing ceramic PZT but without the electric
degrees of freedom and with the actuation as pin force. The thickness of the ceramic was 0.75
mm. The results of the pin force actuation with and without the ceramic PZT (mechanical only)
is shown in Fig. 5.15.
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Figure 5.15 The mechanical coupling effect on the pin force mode tuning curves

Considering the A0 alone in Fig. 5.15, it may be observed that there is a shift of the maximum
amplitude located at 150 kHz for the pin force toward a higher frequency (200 kHz) only due to
the existence of the ceramic stiffener (PZT element) when considered only mechanically coupled
and the electrical degrees of freedom are not considered. Another noticeable resonance like peaks
at 550 kHz, 675 kHz, and 750 kHz are completely absent for the Pin force loading. As for the
S0 amplitudes, the most salient observation is the start of peak in amplitude at 175 kHz, while
for the pin force model the amplitude decrease smoothly as would be predicted theoretically. A
similar peak is noticed at 500 kHz, while the comparable peak in amplitude for the pin force
model is located at 425 kHz. So an important contribution to both the shift in maxima and the
appearance of new resonance like peaks could be due to mechanical coupling alone, which are
typically ignored for simplification reasons in analytical modeling of the actuation.
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(a) Pin force model with 0.75 mm Thick PZT mechanically coupled only- no electrical degree of Freedom

(b) 0.75 mm Thick PZT fully coupled

Figure 5.16 Mode Shapes at 200 kHz for the pin force model with and without the
mechanical coupling of the actuator. Considering the symmetry in x1 direction half
the domain is only plotted.

Figure 5.16 shows the actuator modes at 200 kHz for both the pin force model with mechanically
coupled PZT ceramic, and the fully coupled piezoelectric actuator.

In order to quantify the change in the mode of actuation, shear stress distribution are extracted at
different frequencies at the interface between the PZT and the plate.
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Figure 5.17 Shear stress distribution at the interface of an ideally bonded PZT with
the aluminum plate at various frequencies, with the three PZT thicknesses studied.

Figure 5.17 shows the shear stress distribution at the interface between the plate and the PZT
element, extracted form the SEM simulations, with the three thicknesses studied for different
frequencies. The change in the overall trend as the frequency increases reflects the changes in
actuation mode. The first observation is that as frequency of excitation increases, the shear stress
distribution changes from sharp localization at the edges of the PZT and almost constant low value
under the PZT at low frequency (100 kHz) to a more periodic variation with increasing number
of cycles as the frequency increases (200kHz). The actuation mode is witnessing a more abrupt
change between frequency 300 kHz and 400 kHz, probably due to electromechanical resonance.
This reinforces the hypothesized change in mode of actuation as being one of the two major
reasons for the mode tuning shifts when compared to the pin force model and the appearance of
the resonance like energy transfer and accordingly the change in the energy partitioning between
the two excited fundamental modes of Lamb wave propagation.
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In Fig. 5.17(b), the shear stress at the PZT-plate interface is plotted for the three different values
of the PZT thickness used in the present parametric study. The frequency is relevant to the mode
tuning curve for the S0 mode where there is a salient discrepancy between the pin force tuning
curve and the fully coupled PZT analysis shown in Fig. 5.14. The changes in the shear stress
pattern reveals the inadequacy of the quasi-static assumptions underlying the pin force model.
Even with a similar shear distribution, the traction forces could barely be considered localized
at the edges of the PZT. The periodic shape with one cycle per length of the PZT is apparent.
The amplitude of the period changes with the thickness but the overall patterns remains the same
under the three thicknesses.
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Figure 5.18 Shear stress distribution at the interface of an ideally bonded PZT with
the aluminum plate at various frequencies, with the three PZT thicknesses studied.

Figure 5.18 shows the shear stress distribution at higher frequency range. The number of cycles
in the periodic behavior is increased when compared with the frequency range plotted in Fig. 5.17.
At 500 kHz plotted in Fig. 5.18(a) the 0.5 mm PZT reveals resonance like behavior, similarly at
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700 kHz shown in Fig.5.18(c) the 0.75 mm and 1 mm thick PZT show a large increase in the
amplitude of the shear stress as compared to the 0.5 mm PZT at the same frequency. The location
of the peaks in amplitude in the shear stress could provide a fair approximation of the effective
length of the PZT actuator which could improve the results of the simplified models.
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(b) 200 kHz

−5 0 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PZT length (mm)

N
or

m
al

iz
ed

 S
he

ar
 s

tre
ss

 

 

PinFroce
PinForce + PZT
PZT

(c) 300 kHz
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(d) 400 kHz

Figure 5.19 Shear stress distribution due to pin forces applied at the edges of the
PZT, and the mechanically cpoupled 0.75 mm PZT thick element considered as
ceramic only (Pin Force + PZT) and at the interface of an ideally bonded PZT 0.75
mm thick with the aluminum plate at various frequencies.

In order to separate the effect of the mechanical coupling from the electromechanical full
coupling Fig. 5.19 plots the shear stress distribution under the 0.75 mm PZT thick actuator, the
corresponding shear stress induced in the plate by pin forces alone, and the shear stress under
a ceramic PZT element mechanically coupled to the plate with pin forces as actuator. At 100
kHz, as shown in Fig. 5.19(a), the effect of the pin force and the inclusion of the PZT ceramic
on the shear stress is barely distinguishable, while the electromechanical coupling as shown for
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the 0.75 mm thick actuator changes the pattern of the shear stress completely. In Fig. 5.19(b)
the shear stress at 200 kHz under the mechanically coupled PZT departs from that of the pin
force and tends to be more like the electromechanically coupled PZT induced shear stress. A
convergence toward the pin force for both electromechanical and pure mechanical coupled PZT
is witnessed at frequency 300 kHz as shown in Fig. 5.19(c). from 400 kHz upward the three shear
stress distributions are completely different, and as could be seen from Fig. 5.20 the differences
gets more pronounced as the frequency increases.
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Figure 5.20 Shear stress distribution due to pure pin forces (PinForce), and same
pin forces applied at the edges of a mechanically coupled 0.75 mm PZT thick element
considered as ceramic only (PinForce + PZT) and at the interface of an ideally bonded
PZT 0.75 mm thick with the aluminum plate at various frequencies.

So, to sum up, the discrepancy between the theoretical pin force mode tuning curves and the real
mode tuning curves observed experimentally in literature can be seen in terms of two different
effects: the shift on frequency toward a higher frequency, and the appearance of resonance like
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peaks at some frequencies not typically predicted by the theoretical model. So, in order to test
the limits of the simplifying assumptions underlying the theoretical propagation model, we run
an analysis of the ideally bonded PZT, and the conclusion was that the effect of the ideally
bonded PZT element can be decomposed into two effects: the first is the change induced only
by the mechanical effect of the PZT bonding on the eigenvalues and eigenfrequencies of the
PZT plate assembly, this means that the energy imparted into the assembly will partition with
respect to the frequency in a different manner from that of the pin force model with traction free
surface between the pin forces and also the resonances of the PZT could be attributed to the
full electromechanical coupling. The second effect is the change that happens in the mode of
actuation, exemplified by the changes in the shear stress experienced by the plate, this in turn
will affect the energy partition between the Lamb modes which is reflected in a change in the
displacement amplitudes associated with those modes as the thickness of the actuator changes.

The limitations of the present parametric study is that it did not include the material damping
effects of the aluminum which may be frequency dependent.

5.4 Adhesive layer effect

In the next two sections, the results of a parametric study of the effect of the adhesive layer
thickness and material on the mode tuning behavior as well as the induced shear stresses are
reported and discussed.

5.4.1 The effect of adhesive layer thickness

The analysis was done for the same material properties listed in Table 5.1. The adhesive layer
thickness was changed from 25 µm, 50 µm and 100 µm with a shear modulus of 2 GPa. The
actuator thickness held constant for all the thicknesses at 0.5 mm. The measured displacement
amplitudes were recorded at 580 mm distance from the center of a 10 mm PZT element similar
to the case shown in Fig. 5.6. The mesh used for the thickness was one element per thickness and
10 elements of p = 6 per length like the PZT actuator.

Figure 5.21 shows the effect of the change in the adhesive layer thickness on the mode tuning
curve of the A0 mode. The normalization was done for the S0 and A0 using the maximum
value of the A0. Till 400 kHz the adhesive layer is likely to have a negligible effect on the
mode tuning behavior with the exception of narrow frequency band (125kHz-200kHz) where
the effect of the presence of the adhesive layer is manifested in a shift of the A0 amplitude local
minimum toward higher frequency when compared with the case of ideal bonding (depicted as 0
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µm thickness). The difference between the ideally bonded 0.5 mm PZT and the adhesive layer is
starting to be revealed more as the frequency increases, by 500 kHz, the 100 µm thick adhesive
layer witness a sudden spike of resonance like nature, probably could be attributed to the change
in the eigenfrequency due to the mechanical coupling of the adhesive layer. That was followed
but what looks like a damped anti-resonance drop in amplitude at 525 kHz. As the thickness
of the adhesive layer increases from 25 µm to 100 µm, the maximum located around 500 kHz
changes from a more gradual maximization to an abrupt resonance like spike. Similar behavior
could be observed as well for the amplitude of the S0 mode plotted in Fig. 5.22.
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Figure 5.21 The A0 mode tuning curve of adhesive layer thickness effect.
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Figure 5.22 The S0 mode tuning curve of adhesive layer thickness effect.
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(a) 25 µmm, 2 GPa

(b) 50 µmm, 2 GPa

(c) 100 µmm, 2 GPa

Figure 5.23 Mode shapes of the three thickness values of the bonding layer with
0.75 mm thick PZT actuator at 800 kHz.

Figure 5.23 shows the actuation modes at 800 kHz, with the three values of the bonding layer
thickness. In Fig. 5.22, the adhesive layer tend to shift the location of the maxima toward higher
frequencies, as well as the adhesive layer gets thicker it tends to increase the amplitude of the
S0 at the respective frequency. for example taking a close look at 200 kHz, the maximum of
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the S0 amplitude for the 100 µm attains a normalized value of 0.085 while for the 50 µm thick
adhesive layer the local maximum is located at the same frequency but at a slightly smaller
normalized value. All the local maxima of the three adhesive layer thicknesses are located at the
same frequency of 200 kHz which is shifted with respect to 175 kHz where the local maximum
of the ideally bonded 0.5 mm PZT actuator is located.

In the remaining of this section, a study of the effect of the adhesive layer presence and thickness
on the changes in the actuation mode is presented.

−5 0 5
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

PZT length (mm)

S
he

ar
 s

tre
ss

 (M
P

a)

 

 

25   µ m
50   µ m
100 µ m

(a) 100 kHz, upper surface

−5 0 5
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

PZT length (mm)

S
he

ar
 s

tre
ss

 (M
P

a)

 

 

25   µ m
50   µ m
100 µ m

(b) 100 kHz, lower surface

−5 0 5
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

PZT length (mm)

S
he

ar
 s

tre
ss

 (M
P

a)

 

 

25   µ m
50   µ m
100 µ m

(c) 200 kHz, upper surface

−5 0 5
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

PZT length (mm)

S
he

ar
 s

tre
ss

 (M
P

a)

 

 

25   µ m
50   µ m
100 µ m
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Figure 5.24 Shear stress distribution at the upper and lower interfaces of the ad-
hesive (2 GPa shear modulus) bonding the PZT with the aluminum plate at various
frequencies, with the three adhesive layer thicknesses studied.

The mode of actuation is quantified in terms of the shear stress distribution extracted at both the
upper and lower interfaces of the adhesive layer. The reason of this differentiation between the
upper and lower surface is to reveal if the variation through the thickness have a discernible effect
on the mode of actuation, since all the theoretical models are assuming that both the actuator and
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the adhesive layer are one dimensional in nature i.e. the variation of the shear stress assumed to
be solely dependent on the x direction as depicted in Fig. 2.17(b).

Figures 5.24 to 5.27 show the distribution of the shear stress under the PZT at the interface
between the PZT element and the adhesive layer (referred to in the figure as upper surface), and
between the adhesive layer and the plate (lower surface), respectively.

There are two salient observations, the first is that the variation in the actuation mode is compa-
rable to the case of ideal bonding. The shear stress distribution tend to cluster into groups of
similar patterns, originating in variations in actuation mode with the frequency similar to the case
of the ideal bonding. The shear lag effect is observed when comparing the upper shear stress
distribution with the lower one. The stress distribution at the same frequency is smoothed when
going from the upper to the lower surface.

Figure 5.24(a), and 5.24(b) shows almost the same pattern. When comparing the lower surface
shear stress distribution with the ideal bonding case, the localization of the loading at the edges
are more spread and diffused which is conformal with what is expected from the classical shear
lag effect. The other noticeable effect is the change of sign at the edges between the upper and
lower surface of the adhesive layer. This change in sign may be attributed to the weak satisfaction
of the zero shear stress at the edges of the upper surface while in the lower edge there is a
continuity of displacement between the adhesive layer and the plate. This observation seems
to be valid for all the frequency range studied, where similar change of signs are observed at
frequency 200 kHz as depicted in Fig. 5.24(c) and 5.24(d).

Fig. 5.25 shows the shear stress distribution at 300 kHz and 400 kHz, the sharp changes at the
edges of the upper surface of the adhesive layer are smoothed out when transfered through the
adhesive layer in the lower surface. This change with thickness are more apparent at thicker
adhesive layers than at thinner ones, as could be seen for the case of 100 µm thick adhesive layer
when compared with 25 µm.
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Figure 5.25 Shear stress distribution at the upper and lower interfaces of the ad-
hesive (2 GPa shear modulus) bonding the PZT with the aluminum plate at various
frequencies, with the three adhesive layer thicknesses studied.

There are two noticeable effects of the adhesive layer: the thicker the adhesive layer the sharper
the changes from a smooth cyclic pattern in inside the actuation zone to localized loading at the
edges. This is manifested in Fig. 5.25(a) and 5.25(c) when comparing the sharp transitions near
the edges of the adhesive layer for the 100 µm, 50 µm and 25 µm. The other effect, is the effect
of the thickness on the smoothening of the shear distribution, where the thicker adhesive layer
have more effect on the smoothening of the whole shear stress distribution when comparing the
upper to the lower surface as could be deduced form comparing the Fig. 5.25(b) and 5.25(d).
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Figure 5.26 Shear stress distribution at the upper and lower interfaces of the ad-
hesive (2 GPa shear modulus) bonding the PZT with the aluminum plate at various
frequencies, with the three adhesive layer thicknesses studied.

Figure 5.26 shows a new emerging pattern at frequencies 500 and 600 kHz, the interaction of
the resonances of the PZT actuator and the resonance of the adhesive layer itself. Recalling that
the actuator for all the three thicknesses of the adhesive layer was 0.5 mm thick, comparing
Fig. 5.26(b) with Fig. 5.18(a) the number of cycles are the same, but the amplitude of the shear
stress fluctuation is affected strongly with the thickness of the adhesive layer, where for adhesive
layer with 100 µm thickness presumably poses a large effect through interaction between the
two resonances. Similar interaction could be observed for the 25 µm thick adhesive layer at
frequency 600 kHz depicted in Fig. 5.26(c). Going from the upper surface to the lower surface,
the smothening effect of the adhesive layer persists as well as the change in sign at the edges of
the adhesive layer lower surface with respect to the signs at the edges of the upper surface.
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Figure 5.27 Shear stress distribution at the upper and lower interfaces of the ad-
hesive (2 GPa shear modulus) bonding the PZT with the aluminum plate at various
frequencies, with the three adhesive layer thicknesses studied.

While the same overall trends persist at the higher frequencies depicted in Fig. 5.27, i.e. the
changes are smoothed and the sharp fluctuations in the frequency range 700-800 kHz are smoothed
out while being transferred through the adhesive layer to the plate. There is new effect of the
presence of the adhesive layer when comparing Fig. 5.27(a) with the ideally bonded case depicted
in Fig 5.18(c), whereas the number of cycles in the shear stress remains the same the amplitude
seems to be modulated somehow, having lower amplitudes at the central region than near the
edges, and this effect seems to be amplified by when the shear stress in transfered into the lower
surface, to the extent that almost the central cycle is lost from the shear stress distribution at
thickness 25 and 50 µm. This can be tentatively understood as an interaction of two mode shapes,
one of the PZT and the other of the adhesive layer with slightly shifted location of zeros i.e.

interference of the two mode shapes with a phase shift.
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5.4.2 The effect of adhesive layer material

Figure 5.28 shows the effect of the shear modulus of the adhesive layer on the modal amplitude
at the same location (580 mm away from the center of actuator). The thickness of the adhesive
layer was fixed at 25 µm.
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Figure 5.28 The A0 mode tuning curve of adhesive layer shear modulus effect.

The resonance like peaks at 500 kHz for the 0.5 GPa adhesive layer, is a demonstration of the
duality effect that the stiffness and the thickness plays. Since in appears at the same frequency
of the the thick adhesive layer 100 µm in Fig. 5.21, this could be understood in terms of the
formulation of the shear lag solution, where in Eq. (2.6) the ratio Gb/hb is responsible for this
duality effect i.e. increasing the stiffness is equivalent to decreasing the thickness and vice versa.
Despite the fact that the theoretical shear lag solution is based on a lot of simplifying assumptions
and does not capture the resonances of the assembly nor the frequency shift effect due to the
complicated loading caused by the full coupling, it is still capable of shedding a light on this
observation which seems to remain valid even when taking the full coupling into consideration.

Figure 5.29 shows the mode shapes at the 500 kHz for the three different thicknesses of the
bonding layer. For 0.5 µmm thick the wavelength of the actuator is clearly different than the the
two non resonant modes.
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(a) 25 µmm, 2 GPa

(b) 25 µmm, 1 GPa

(c) 25 µmm, 0.5 GPa

Figure 5.29 Mode shapes of the three shear modulus values of the bonding layer
with 0.75 mm thick PZT actuator at 500 kHz.
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Figure 5.30 The S0 mode tuning curve of adhesive layer shear modulus effect.

In Fig. 5.30, the normalized amplitudes of the S0 displacement are plotted, and when compared
with Fig. 5.28 the effect of the shear modulus of the adhesive layer is more pronounced on S0
mode than A0 mode. This could be understood in terms of the change in the repartition parameter
in the modified shear lag solution introduced by [Yu et al., 2010], and shown in Fig. 2.17(d).

(a) 0.5 GPa, 725 kHz

(b) 2 GPa, 775 kHz

(c) 1 GPa, 750 kHz

Figure 5.31 Mode shapes at three resonating frequencies for the different shear
moduli bonding layer.
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The sensitivity of the different modal amplitudes to the excitation is dependent on the frequency.
Also, the author would hypothesize that the different modes respond differently to the what might
look minor variations in the shear stress distribution, as the ones that could be caused by the
change in the shear modulus of the adhesive layer. A similar effect for the earlier called "duality
effect" between the thickness and the shear modulus of the adhesive layer is manifested at 200
kHz. The stiffer the adhesive layer the more it approaches the similar effect of thinning the
adhesive layer.

Figure 5.31 shows the mode shapes at the three resonant like frequencies for the different shear
moduli of bonding layer material. The similarity between the modes are evident, supporting the
hypothesis that there is a maximum transfer of energy between the actuator and the substructure.
In Fig. 5.32 to Fig. 5.34, the shear stress at the upper and lower interfaces of the adhesive layer
are plotted. The effect of the presence of the adhesive layer is in accordance with the intuitive
understanding that the shear lag solution provide. The localized and sharp changes are smoothed
out. By smoothing out we refer to two actions: the fluctuation is reduced i.e. the difference
between the maximum and minimum is reduced, which is more apparent in Fig. 5.33, the second
action is that the originally localized and sharp jumps in shear stress are made more gradual when
they are sensed by the plate, and spread over a longer distance at the lower surface in comparison
with the upper surface.

It is not surprising that the shear stresses at frequencies 100, 200 and 300 kHz in Fig. 5.32 are
similar to the shear stresses plotted in Fig. 5.24 and Fig. 5.25 at the same frequencies since the
values of the shear modulus in this parametric study were specifically chosen to preserve Gb/hb

ratio in order to test the limits of the generalization of the duality effect.
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Figure 5.32 Shear stress distribution at the upper and lower interfaces of the adhesive
(25 µm thick) bonding the PZT with the aluminum plate at frequency range 100-300
kHz, with the three adhesive layer shear moduli studied.
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Figure 5.33 Shear stress distribution at the upper and lower interfaces of the adhesive
(25 µm thick) bonding the PZT with the aluminum plate at frequency range 400-600
kHz, with the three adhesive layer shear moduli studied.
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Figure 5.34 Shear stress distribution at the upper and lower interfaces of the adhesive
(25 µm thick) bonding the PZT with the aluminum plate at frequencies 700 and 800
kHz, with the three adhesive layer shear moduli studied.

The duality effect seems to break at frequency 400 kHz as could be deduced when comparing
Fig. 5.25(d) with Fig. 5.33(b), this may be attributed to the different interaction between the
resonance of the adhesive layer due the change in material properties and the interaction of the
resonance of different geometries of the adhesive layer with the rest of the assembly.

From Fig. 5.33 and 5.34, it could be concluded that the effect of changing the material properties
are more pronounced than changing the adhesive layer thickness. The changes in the shear stress
going from 0.5 GPa to 2 GPa is larger than those associated with thickness changes with the
same Gb/hb ratio. Which lead to the conclusion that designing the material properties of the
adhesive layer in order to control the mode tuning is a more effective approach than the thickness
considering the thickness variation.
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The limitation of the present results, is that they did not include the viscous damping or the
viscoelastic properties of the adhesive layer, which might be a pertinent feature of the adhesive
materials typically used in bonding the PZT elements.

5.5 Experimental verification

In this section, we conclude with an experimental verification of the time domain simulation of
two case studies. Recalling the discrete system of equation 5.24 after the static condensation:

Mü +
(
Kuu −KuφK−1

φφKT
uφ
)
u = −K−1

φφfe → MU + KU = F (5.45)

Explicit time integration was done using Hilber-Hughes-Taylor Method [Hughes, 1987], with
α = 0.5:

MÜn+1 + (1 + α)KUn+1 − αKUn = F(tn+α) (5.46)

where the time step is determined based on the appropriate CFL number from the results of the
previous chapter.

5.5.1 Case study 1

In this case study, a pitch and catch experiment was conducted using a rectangular aluminum
plate 1.54 mm thick, 700 mm long and 70 mm wide. The plate was milled to produce a square
notch of 0.8 mm length, in the middle of the plate length, as shown in Fig. 5.35(a). Three identical
piezoceramic patches (BM500, Sensor Technology Ltd.) were mounted on the upper surface of
the plate on the same side of the notch. Each extends over the whole width of the plate, 7 mm
wide, 0.4 mm thick. The actuator was bonded at the left edge of the plate using a rapid epoxy, as
well as the two sensors shown in Fig. 5.35(b). In order to suppress the reflections from the top
and bottom edges of the plate, to approximate as much as possible a two dimensional setting, a
damping paste was attached to the top and bottom edges of the plate.

The voltage amplitude of the exciting signal was 10 V and the excitation signal was a 3.5 cycles
sinusoid modulated by a Hanning window, the center frequency of the excitation signal was varied
from 250 kHz to 500 kHz, with a step size of 50 kHz. The exciting waveform was generated
using an HP 33120A signal generator with a sampling frequency of 15 MHz, and a delay 20 µs

to be able to window out safely the signal in further analysis. The acquisition of experimental
signals is performed using a LabVIEW interface with a high impedance National Instruments
PCI-5105 12 bits acquisition board. The recorded signal length was 1 ms and the sampling
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frequency is fixed at 60 MHz. Typically, each measurement was averaged 400 times with a pause
of 400 ms between each measurement in order to increase the signal to noise ratio.

(a)

70

Sensor 2Sensor 1Actuator

330210

1.54

700

0.8
0.8

(b)

Figure 5.35 The experimental setup for case study 1.
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Figure 5.36 shows the isolated fundamental modes S0, and A0 simulated interaction with the

notch. The excitation was implemented through symmetric and anti-symmetric application of

nodal forces at the edge. The time dependence of the nodal forces are 3.5 cycles modulated by a

Hanning window, with central frequency 250 kHz. The plotted values are for the longitudinal

displacement recorded at equally spaced points along the length of the plate, and rescaled for

clear visualization.
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Figure 5.36 Isolated fundamental modes interaction with the notch, using nodal

forces excitation (250 kHz, 3.5 cycles).

Each of the incident fundamental modes, incident with respect to the notch, experience reflection

and transmission, as well as mode conversion on impingement on the notch. In what follows,

the converted mode term will be used to identify both the transmitted converted mode (in the

propagation direction) and the reflected converted mode, where the distinction is clear from the

position of the sensor.

In all of the simulations presented, a polynomial degree of eight was used, with two elements per

minimum wavelength in the longitudinal direction, and one element per notch, which provide

17 points per plate thickness. The results of the comparison between the SEM results and

experimental signals are shown in Fig. 5.37, for the signal acquired at the 210 mm distant

sensor. The simulated output signal was calculated as proportional to the difference between the

longitudinal strain at the two edges of the sensor (strain approximation). Since the attenuation of

the signal was not included in the model, both of the simulated and experimental results were

normalized separately before comparison.



5.5. Experimental verification 213

Time (μs)

N
o
rm

a
li
ze
d
V
o
lt
a
g
e

(a) Incident S0 mode.

Time (μs)

N
o
rm

a
li
ze
d
V
o
lt
a
g
e

Incident A0

Reflected S0

from incident S0

Converted A0

from incident S0

(b) Interaction of S0 mode with the notch.

Figure 5.37 A comparison between the SEM and experimental normalized signals,

for sensor 1, 210 mm distant from the excitation edge, at a center excitation frequency

of 250 kHz.

Time (μs)

N
o
rm

a
li
ze
d
V
o
lt
a
g
e

(a) Incident S0 mode.

Time (μs)

N
o
rm

a
li
ze
d
V
o
lt
a
g
e

Incident A0

Converted A0

Reflected S0

(b) Interaction of S0 mode with the notch.

Figure 5.38 A comparison between the SEM and experimental normalized signals,

for sensor 1, 210 mm distant from the excitation edge, at a center excitation frequency

of 450 kHz.

The incident S0 is well simulated by the strain approximation as could be seen from the good

agreement between the SEM results and the experimental signal depicted in Fig. 5.37(a) for

an excitation center frequency of 250 kHz. The difference between the simulated waveform

associated with the A0 mode shown in Fig. 5.37(b), and the experimental signal could be

attributed to the inaccuracy of the approximation used to simulate the sensor response. Since A0

is dominated by out-of-plane displacement u3, as compared with the S0 mode which is dominated
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by longitudinal displacement u1. Figure 5.38, shows similar results for the 450 kHz excitation
center frequency, with higher amplitude of the A0 mode as shown in Fig. 5.38(b).

5.5.2 Case study 2

Figure 5.39 shows the experimental setup, consisting of relatively complex thin walled structure,
with an L shaped horizontal stiffener, adhesively bonded to the plate by epoxy, the structure
was made of aluminum (6066-T6) plate, and instrumented with two circular PZT elements, with
flipped electrodes, placed symmetrically on the two sides of the L shape stiffener. The material
properties used in the simulation and dimensions of the setup are listed in Table 5.4.

Figure 5.39 Experimental setup for case study 2.

Figure 5.40 The two dimensional model both for the FEM, and the SEM, the
mesh sizes were determined based on the resolution criteria for 200 kHz excitation
frequency.
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A damping tape was bonded along the boundaries of the region of interest to minimize the
reflection from the boundaries. Figure 5.40 shows the two dimensional idealization of the cross
section passing through the line connection between the two PZT elements. The measurements,
as well as the numerical simulations were done at three frequencies, 100 kHz, 200 kHz, and 450
kHz.

Table 5.4 Properties of the aluminium plate and piezoceramics.

Component Property Value

Plate (Al 6066-T6) Length 0.894 m
Width 0.894 m

Thickness 0.001 m
Young’s modulus 68.94 GPa

Density 2712.59 kg/m3

Poisson’s ratio 0.33
Stiffner (Al 2024) Length 0.35 m

Dimensions 0.01265 × 0.01265 m
Thickness 0.0016 m

Young’s modulus 37.10 GPa
Density 2767.90 kg/m3

Poisson’s ratio 0.33
PZT Element Diameter 0.0051 m

Thickness 0.0005 m
Inter-elements spacing

(center to center) 0.21 m
Density 7800 kg/m3

Piezoelectric type PIC255 (Physik Intsrumente, Inc.)
d31 = -180 ×10−12 (C/N) d33 = 400 ×10−12 (C/N)
d15 = 550 ×10−12 (C/N) ε11 = 1650 ×εo (F/m)
ε22 = 1650 ×εo (F/m) ε33 = 1750 ×εo (F/m)

C11 = 6.2112 ×1010 (N/m2) C12 = 1.576 ×1010 (N/m2)
C13 = 2.562 ×1010 (N/m2) C33 = 4.8309 ×1010 (N/m2)

C55 2.5641 ×1010 (N/m2)

A HP 33120A generator with a sampling frequency of 4 MHz and amplified by a voltage amplifier
(Musilab UA-8400) is used to send 5.5 cycles modulated sinusoidal bursts to the left piezoceramic.
Signal acquisition at the other piezoceramic is performed using a LabVIEW interface with a
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high-impedance National Instruments PCI-5105 12 bits acquisition board. The recorded signal

length is 1 ms and the sampling frequency is fixed at 60 MHz. All measurements are averaged 100

times. The actuators and sensors are made from PIC 255 piezoceramic from Physik Instrumente.

(a) 200 kHz

(b) 450 kHz

Figure 5.41 Time trace of the sensor signal, the simulated sensor signal using

ANSYS, and the SEM code at (a) 200 kHz, and (b) 450 kHz
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(a) 200 kHz

(b) 450 kHz

Figure 5.42 The simulation results of the Y component of the particle velocity, at

three different locations surrounding the stiffener, at (a) 200 kHz and (b) 450 kHz.

In order to illustrate the computational effectiveness of the SEM, the same case was simulated

using both classical FEM with the commercial FE software ANSYS, and the with SEM. The

results of the experimental measurements, and the numerical simulation of the sensor signal for

the two frequencies used in the present study are depicted in Figs. 5.41 and 5.42. The SEM

and ANSYS results are in prefect agreement. The differences between the experimental and

numerical results may be due to the geometrical simplification (the curvature of the stiffener was
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not modeled) and to the presence of the bonding layer at the PZT element and the plate interface
as well as at the interface between the stiffener and the plate which for the sake of simplicity was
not included in the simulation.

In order to illustrate the interaction with the stiffener, the vertical component of the numerical
simulation of the particle velocity is plotted at three locations in Fig. 5.42 the middle point
between the actuator and L stiffener, the center of the stiffener, and the middle point between
the stiffener and the sensor. The trend of interaction at the two frequencies are similar, with a
noticeable amplification of the signal at 450 kHz excitation frequency, which could be attributed
to the small wave interaction with the stiffener as a rigid body vibration at 200 kHz, since the
wavelength is much larger than the width of the stiffener. While at 450 kHz, a higher energy level
is imparted into the stiffener.

The CPU time, and the used resources in terms of the mesh size for both ANSYS and the SEM
code is shown in Table 5.5 for the two different frequencies that were used in the present study.
A reduction in time in the order of 50 % was achieved, without loss of accuracy.

Table 5.5 A comparison of the computational cost between FEM (ANSYS) and
SEM code.

Method Frequency (kHz) Number of elements computation time (min)

SEM 200 845 14
FEM 9123 32
SEM 450 1520 32
FEM 45132 54

5.6 Conclusion

As far as the limits of the applicability of the pin force idealization, the pin force model can only
provide qualitative estimation about the actuation mechanism for low frequency cases, which
needs to be calibrated by either numerical simulation or experimental testing, and piezoelectric
resonance effects cannot be captured in the model. The results presented in this chapter and their
discussions may be summarized into three main categories:

1. The shift with respect to frequency which is observed when considering the fully coupled
PZT-plate problem and is also observed with the inclusion of the adhesive layer in the fully
coupled model. Based on what was reported in [Gopalakrishnan et al., 2011] and shown in
Fig. 2.16 this form of shift could be attributed to changes in the traction spatial distribution
at the interface, even if the mechanical coupling was excluded. But what Sec. 5.3.1 have
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preliminarily showed is that even when the full traction loading from a fully coupled
PZT is taken into consideration there is a slight shift in the natural frequencies due to the
existence of the ceramic material i.e. mechanical coupling effect of the PZT.

2. The salient presence of the resonance of the PZT and its effect on the mode tuning curves.
This effect is only present for the numerical simulation of the fully coupled system. It is
has not been reproduced by any of the results of the reviewed analytical models, because
of the simplifying assumptions of the analytical models, typically the geometry of the
actuator is translated into traction condition at the interface with complete decoupling of
the actuator.

3. The changes induced by the adhesive layer, is playing a very important role in changing
the mode tuning curves. This is demonstrated in terms of the changes that the presence
of the adhesive layer causes on the shear stress as sensed by the plate. This effects are
qualitatively in accordance with the classical shear lag model, i.e. the presence of the
adhesive layer smooths the fluctuation, and spreads the localized loading over a longer
distance. Another aspect that remains valid from the classical shear lag solution is the
duality between the thickness and the shear modulus of the adhesive layer. Reducing the
thickness will induce a similar effect of increasing the shear modulus; this may be true at
certain frequencies till the complicated resonances of the assembly elements (plate, PZT
and adhesive layer) and their interactions take place.

Despite the shortcomings of today’s analytical models, they remain the best available signposts
for understanding the complicated phenomena associated with the PZT excitation of Lamb waves.
They may provide an understanding, but when it comes to designing real SHM systems they will
only provide guidelines that may not be sufficient or even may be erroneously misguiding when
an accurate determination of the optimum excitation frequencies is needed. So, at the conclusion,
any attempt to optimize the actuator for mode selectivity should take into consideration the whole
actuator substructure assembly. This may limit the generality of the idea of producing a general
mode selective actuator. The current paradigm in SHM design should be changing toward a
specific tailoring of the actuator and sensor systems with the host structure, and with a more
focus on certain areas to be detected.





CHAPTER 6

Conclusions

Mathematics is a logical method ...
Mathematical propositions express no
thoughts. In life it is never a mathematical
proposition which we need, but we use
mathematical propositions only in order to
infer from propositions which do not belong
to mathematics to others which equally do not
belong to mathematics.

LUDWIG WITTGENSTEIN (1889-51)

The design requirements of a guided waves SHM system pose certain challenges to numerical
simulation. In the second chapter it was demonstrated that the numerical dispersion is the
major challenge confronting numerical simulation of high frequency elastic waves in general,
moreover becomes more challenging in the case of guided waves propagation; this is due to
the presence of the inherent physical dispersion in the simulated waves. Numerical dispersion
is a complicated phenomenon, because it emanates from the accumulation (superposition) of
the approximation errors which in turn are dependent on the both the spatial and temporal
discretization, while the classical convergence criteria treats approximation errors as random and
have no preferred tendency. The CFL analysis provided a corner step toward the understanding
of this discretization effects and the nature of its accumulative superposition. The need to
distinguish between the physical dispersion inherent in the simulated guided waves propagation
and the discretization induced dispersion justify the work for the quantification of the numerical
dispersion. Since the major contributer to the approximation error in high order interpolation
is the Runge phenomena, minimizing these errors are expected to increase the accuracy of
the approximation. The pseudospectral approximations provide a remedy to this problem, but
lacks the geometrical flexibility provided by the finite element method and typically needed for
simulating real world structures. The spectral element combines the best of both worlds, the
geometrical flexibility to a certain extent, and the high accuracy or what is usually referred to as
the exponential convergence behavior.

In the spectral element and as demonstrated in the third chapter, the specific distribution of nodes
within the high order element overcome the Runge phenomenon associated with high order

221



222 CHAPTER 6. Conclusions

interpolation at equispaced nodes. The choice of Legendre distribution influence directly the
elemental shape functions and leads to diagonal mass matrices when combined with the corre-
sponding Lobatto quadrature, thus reducing not only the number of nodes needed to accurately
simulate the propagation but also the computational efforts needed for inverting the system. The
accuracy of the spectral element approximation was demonstrated for the rod elements, for three
different approximate theories of increasing complexity. This fact is manifested in the decrease
of the numerical dispersion error at the same h

λ
with increasing polynomial order, which is a

general observation for all the cases studied. It is worth noting that one of the conclusions from
that chapter is that not just the number of mesh nodes sampling the wavelength that controls the
accuracy, but also the distribution of those nodes in the sampled wavelength. For the case of
higher order derivatives, normally encountered in the more complex engineering theories, the
FEM, needs a special treatment to satisfy the continuity requirements, e.g. Hermite polynomials
for beam elements. In the case of the spectral element, it is a straightforward extension of the
concept of the differentiation matrices.

In this work we proposed a new concept, dubbed as conflict of order, and by which we meant the
conflict between orders of both temporal and spatial discretization since generally the direct time
integration used is low order while the spatial approximation is high order. The author proposed
that this conflict could become more beneficial than normally expected, since the error goes back
to zero at fewer grid points. This may be only valid for the simple geometries, but still a point
that is worth exploration.

The conflict between orders of both temporal and spatial discretization, a previously observed
phenomena in rod elements, is also observed for the case of the spectral element developed for
the unbounded two dimensional elastic wave propagation in the forth chapter, i.e. the change of
the trend of the error from underestimating the phase and group velocity in the harmonic case, to
overestimation induced by the low order temporal discretization. This phenomenon could also
become more beneficial than normally believed, since the error goes back to zero at fewer grid
points, but the fact that there at two propagating wave simultaneously might limit the applicability
of this kind of targeting zero error at few grid points.

In the forth chapter we utilized the fact that Lamb waves are plane waves in analyzing for the
first time the numerical dispersion of Lamb waves propagation using the same technique of
Rayleigh quotient. This analysis resulted in the discovery of the absence of the conflict of order
phenomenon. The other interesting conclusion is that in the case of Lamb waves simulation,
the numerical dispersion errors are less sensitive to the CFL numbers than the unbounded non
dispersive elastic strain waves, suggesting that spectral element is the perfect candidate for
simulating the Lamb waves in both the frequency and the time domain efficiently.
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Also in the fourth chapter, the first order shear theory dispersion was studied and the conclusion
was that the accuracy of the first order shear deformation as an approximate theory for the Lamb
fundamental antisymmetric mode is very poor. But this inaccuracy emanates from the nature of
the mathematical assumptions, not from the spectral element implementation. The analysis results
in a beneficial demonstration of the absence of the shear locking behavior for the spectral element
(when using polynomial orders > 3), and the complete absence of the numerical anisotropy for
the first order shear deformation theory.

In all the cases of numerical dispersion analysis, the effect of numerical dispersion on the group
velocity is larger by an order of magnitude than its effect on the phase velocity, thus it makes a
more accurate measure to choose the mesh parameters and time step based on the errors induced
in group velocity.

The generality of using Rayleigh quotient in the numerical dispersion analysis suggests a new
interpretation: it could be viewed as a test for the efficiency of the sampling of an assumed
displacement continuous field at a certain number and locations of discrete points. This inter-
pretation opens a new way of application of this numerical dispersion analysis technique as a
systematic approach that could lead to adaptive meshing approach.

The fifth chapter contains the application of the spectral element to the design of SHM systems,
the piezoelectric element for PZT patch excitation of Lamb waves are studied in detail. The
main limitations of the existing actuation analytical models are illuminated, and the time domain
simulation was verified experimentally for two case studies.

As far as the limits of the applicability of the pin force idealization, the pin force model can only
provide qualitative estimation about the actuation mechanism for low frequency cases, which
needs to be calibrated by either numerical simulation or experimental testing, and piezoelectric
resonance effects cannot be captured in the pin force model. The major conclusions are:

— The shift of the maxima and minima of S0 and A0 amplitudes toward higher frequencies
is observed when considering the fully coupled PZT-plate problem with and without the
adhesive layer. In the literature their is an abundant misconception that this shift is due to
the adhesive layer. The results demonstrate otherwise.

— The salient presence of the resonance of the PZT and its effect on the mode tuning
curves. This effect is only clear when simulating the fully coupled system. It has not been
captured by any of the analytical models reviewed.

— The changes caused by the adhesive layer plays a very important role in changing the
mode tuning curves. This is understood in terms of the changes it causes in the shear
stress acting on the plate. This effects are qualitatively in accordance with the classical
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shear lag model, i.e. the presence of the adhesive layer smooths the fluctuation, and
spreads the localized loading over a longer distance. Another aspect that remains valid
from the classical shear lag solution is the duality between the thickness and the shear
modulus of the adhesive layer.

So, at the end, we suggest that any attempt to optimize the actuator for mode selectivity should
take into consideration the whole actuator substructure assembly. This may limit the generality
of the idea of producing a general mode selective actuator. The current paradigm in SHM design
should be changing toward a specific tailoring of the actuator and sensor systems with the host
structure, and with a better focus on certain areas to be detected.

Future Work
— The developed numerical dispersion technique is not limited to the SEM or Cartesian

meshes. Extending the present study to both structured and unstructured meshes could
enable an adaptive accuracy measure for complex geometries.

— Test the possibility of using the numerical dispersion technique as an adaptive convergence
technique for complex meshes that does not have an exact solution.

— Extend the PZT full coupling model to the axisymmetric (2.5 dimensional models) and
3D dimensional model to account for the full spectrum of electromechanical resonance.



Conclusions

L’exigence de la conception d’un système SHM ondes guidées pose plusieurs défis de simulation
numérique. Dans le deuxième chapitre, il a été démontré que la dispersion numérique est le
principal défi auquel fait face la simulation numérique à haute fréquence des ondes élastiques en
général. Celle-ci devient en outre plus difficile dans le cas de la propagation des ondes guidées;
cela est dû à la présence de la dispersion physique inhérente dans les ondes simulées. La dispersion
numérique est un phénomène complexe, car elle émane de l’accumulation (superposition) des
erreurs d’approximation qui à leur tour dépendent de la discrétisation spatiale et temporelle,
tandis que les critères de convergence classiques traitent les erreurs d’approximation comme
aléatoire. L’analyse de la CFL fournit un outil important pour la compréhension des effets de
discrétisation et la nature de leur superposition. La nécessité de faire la distinction entre la
dispersion physique inhérente à la propagation de l’onde simulée et la dispersion induite par la
discrétisation justifie le travail pour la quantification de la dispersion numérique. Puisque la plus
grande contribution à l’erreur d’approximation en interpolation d’ordre élevé est le phénomène de
Runge, en minimisant cette erreur on peut s’attendre à augmenter l’exactitude de l’approximation.
Les approximations pseudospectrales fournissent une solution à ce problème, mais n’offrent pas
la flexibilité géométrique fournie par la méthode des éléments finis et généralement nécessaire
pour simuler les structures du monde réel. L’élément spectral combine le meilleur des deux
mondes, la flexibilité géométrique dans une certaine mesure, et la grande précision ou ce qui est
généralement dénommé le comportement de convergence exponentielle.

Dans l’élément spectral, et comme l’a démontré le troisième chapitre, la distribution spécifique
des noeuds dans l’élément d’ordre élevé permet de surmonter le phénomène de Runge associé
avec interpolation d’ordre élevé àă noeuds équidistants. Le choix de la distribution de Legendre
directement dans les fonctions de formes élémentaires conduit à des matrices de masse diagonale
lorsqu’il est combiné avec la quadrature de Lobatto correspondante, ce qui réduit non seulement
le nombre de noeuds nécessaires pour simuler avec précision la propagation mais aussi les efforts
de calcul nécessaires pour inverser le système. La précision de l’approximation par éléments
spectraux a été démontrée pour les éléments en forme de tige, pour trois différentes théories
approximatives de complexité croissante. Cet effet se manifeste par la diminution de l’erreur
de dispersion numérique pour un même ratio h

λ
avec l’augmentation de l’ordre polynomial,

qui est une observation générale pour tous les cas étudiés. Il est intéressant de noter que
l’une des conclusions de ce chapitre est que non seulement le nombre de noeuds du maillage
d’échantillonnage de la longueur d’onde contrôle l’exactitude, mais aussi la distribution de ces
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noeuds dans la longueur d’onde échantillonnée. Pour le cas des dérivées d’ordre supérieur,
normalement rencontrées dans les théries d’ingénierie les plus complexes, le FEM, a besoin d’un
traitement spécial pour satisfaire aux exigences de continuité, e.g. polynômes d’Hermite pour les
éléments de faisceau. Dans le cas de l’élément spectral, il s’agit d’un simple prolongement de la
notion de matrices de différenciation.

Dans ce travail, nous avons proposé un nouveau concept, baptisé conflit d’ordre, et par lequel
nous voulions faire ressortir le conflit entre les ordres de discrétisation temporelle et spatiale
puisque généralement l’intégration temporelle directe utilisée est d’ordre faible alors que l’ordre
d’approximation spatial est élevé. L’auteur a proposé que ce conflit pourrait devenir plus
avantageux qu’on ne le croit généralement, puisque l’erreur tend vers zéro à un nombre réduit
de points du maillage. Cette observation est peut-être uniquement valable pour les géométries
simples, mais c’est un point qui mérite exploration.

Le conflit entre les ordres de discrétisation temporelle et spatiale, un phénomène déjàă observé
dans les éléments de tige, est également observé pour le cas de l’élément spectral développé pour
le cas de propagation des ondes élastiques dans un milieu non-borné dans le chapitre quatre, i.e.

le changement de la tendance de l’erreur d’une sous-estimation de la vitesse de groupe et de
phase dans le cas harmonique, à une sur-estimation induite par l’ordre faible de discrétisation
temporelle. Ce phénomène pourrait aussi devenir plus avantageux qu’on ne le croit généralement,
puisque l’erreur tend vers zéro à un nombre réduit de points du maillage, mais le fait qu’il y ait
deux ondes se propageant simultanément peut limiter l’application de ce type de mise à zéro de
l’erreur à quelques points du maillage.

Dans le quatrième chapitre, nous avons utilisé le fait que ondes de Lamb sont des ondes planes
dans l’analyse, pour la première fois, de la dispersion numérique de la propagation des ondes de
Lamb utilisant la technique du quotient de Rayleigh. Cette analyse a abouti à la découverte de
l’absence du phénomène de conflit d’ordre. L’autre conclusion intéressante est que, dans le cas
de la simulation des ondes de Lamb, les erreurs de dispersion numériques sont moins sensibles
aux valeurs de la CFL que dans le cas de l apropagation des ondes élastiques non-bornées, ce
qui suggère que l’élément spectral est le candidat idéal pour simuler les ondes de Lamb dans le
domaine fréquentiel et le domaine temporel de manière efficace.

Toujours dans le quatrième chapitre, la dispersion de la théorie de déformation du cisaillement de
premier ordre a été étudiée et la conclusion était que la précision de la théorie de déformation
du cisaillement de premier ordre utilisée comme approximation pour le mode de Lamb anti-
symétrique fondamental est très faible. Mais cette imprécision émane de la nature des hypothèses
mathématiques, pas de la mise en oeuvre des éléments spectraux. Les résultats d’analyse per-
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mettent de démontrer l’absence du comportement de vérouillage en cisaillement de l’élément
spectral (lors de l’utilisation des polynômes d’ordre > 3), et l’absence complète de l’anisotropie
numérique pour la théorie de déformation de cisaillement de premier ordre.

Dans tous les cas d’analyse de la dispersion numérique, l’effet de dispersion numérique sur la
vitesse de groupe est plus grand d’un ordre de grandeur que l’effet sur la vitesse de phase, ce qui
rend plus approprié de choisir les paramètres de maillage et de pas de temps sur la base de les
erreurs induites dans la vitesse de groupe.

La généralité de l’utilisation du quotient de Rayleigh dans l’analyse de la dispersion numérique
propose une nouvelle interprétation: il pourrait être considéré comme un test pour l’efficacité
de l’échantillonnage d’un champ de déplacement continu sur un certain nombre de points à
différentes positions discrètes. Cette interprétation ouvre une nouvelle voie de l’application de
cette technique d’analyse de la dispersion numérique comme une approche systématique qui
pourrait conduire à une approche de maillage adaptatif.

Le cinquième chapitre contient l’application de l’élément spectral à la conception de systèmes
SHM; l’élément piézoélectrique PZT utilisé pour l’excitation des ondes de Lamb est étudié en
détails. Les principales limitations des modèles existants pour l’analyse de l’excitation sont
soulignées, et la simulation dans le domaine temporel a été validée expérimentalement pour deux
cas d’étude.

En ce qui concerne les limites de l’applicabilité du modèle idéalisé d’excitation piézoélectrique par
forces ponctuelles, le modèle de forces ponctuelles ne peut fournir qu’une estimation qualitative
sur le mécanisme d’excitation aux basses fréquences. Ce modèle doit être calibré, soit par
simulation numérique, soit par des essais expérimentaux. Les effets de résonance piézoélectrique
ne peuvent pas être capturés dans le modèle des forces ponctuelles. Les principales conclusions
sont les suivantes:

— Le décalage des maxima et des minima d’amplitude des modes S0 et A0 vers des
fréquences plus élevées est observé en considérant le problème du PZT complètement
couplé avec la plaque avec et sans la couche d’adhésif. Dans la littérature, il existe une
fausse conception que ce décalage est causé par la couche d’adhésif, mais les résultats
obtenus montrent que ce n’est pas le cas.

— La présence marquée de la résonance du PZT et son effet sur les courbes d’ajustement
modal. Cet effet est seulement apparent lors de la simulation avec le modèle complètement
couplé. Il n’a été capturé par aucun des modèles analytiques considérés dans ce travail.

— Les changements provoqués par la couche d’adhésif jouent un rôle très important dans
l’évolution des courbes d’ajustement modal. Ceci est peut être interprété en termes
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des changements qu’elle provoque dans la contrainte de cisaillement agissant sur la
plaque. Ces effets sont qualitativement en accord avec le modèle classique de décalage
de cisaillement (shear-lag), i.e. la présence de la couche d’adhésif lisse la fluctuation, et
étend la contrainte de cisaillement localisée sur une distance plus longue. Un autre aspect
qui reste valable dans le modèle classique de décalage de cisaillement est la dualité entre
l’épaisseur et le module de cisaillement de la couche d’adhésif.

Ainsi, à la fin, nous suggèrons que toute tentative visant à optimiser l’actionneur pour une
sélectivité modale devrait prendre en consideration l’ensemble de la sous-structure actionneur.
Cela peut limiter la généralité de l’idée de produire un actionneur sélectif pour un ensemble
d’applications. Le paradigme actuel dans la conception SHM doit évoluer vers une adaptation
spécifique des systèmes d’actionneurs et de capteurs sur la structure d’accueil, avec une plus
grande attention sur certaines régions qui doivent être surveillées.

Les travaux à venir
— La technique de dispersion numérique développée n’est pas limitée à la SEM ou maillages

cartésiens. Extension de la présente étude à deux mailles structurées et non structurées
pourrait permettre une mesure de la précision d’adaptation pour des géométries complexes.

— Test de la possibilité d’utiliser la technique de dispersion numérique comme une technique
de convergence adaptative pour les maillages complexes qui ne présente pas une solution
exacte.

— Étendre le modèle de couplage complet PZT à la révolution (2,5 modèles dimensionnels)
et un modèle tridimensionnel 3D pour tenir compte de la gamme complète de résonance
électromécanique.
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Mathematical definitions

A.1 Norms and seminorms
The norm of a function or vector is a measure of the size of the function or vector. Norms are
real positive numbers defined on some space X. Norms, denoted by ‖.‖X, have the following
properties:

1. ‖u‖X ≥ 0

2. ‖u‖X = 0 iff u = 0

3. ‖αu‖X = |α|‖u‖X
4. ‖u + v‖X ≤ ‖u‖X + ‖v‖X

The most commonly used norms in the numerical discretization analysis are the energy norm ‖u‖E
which is the square root of the strain energy stored in the elastic domain, for one dimensional
domain this is given as

‖u‖E =
√

U(u) =

√√√√√
1
2

b∫
a

(∂xu)2 dx (A.1)

the maximum norm defined as:
‖u‖max = Max|u(x)| (A.2)

and the L2 norm defined as:

‖u‖L2 =

√√√√√ b∫
a

u2 dx (A.3)

Seminorms satisfy properties 1, 3 and 4 of norms but do not satisfy property 2. Instead of property
2 seminorms have the property

‖u‖X = 0 u ∈ X̄ ⊂ X, u , 0

The relative error of un, a numerical approximation to u, is defined according to space X as:

(er)X =
‖u − un‖X

‖u‖X
(A.4)
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A.2 Convergence
A sequence of functions un ∈ X (n = 1, 2, . . .) converges in the space X to the function u ∈ X if
for every ε > 0 there is a number nε such that for any n > nε the following relationship holds:

‖u − un‖X < ε (A.5)

A.3 Legendre polynomials
The Legendre polynomials Pn(x) are solutions of the Legendre differential equation for n =

0, 1, 2, . . .:
(1 − x2)y′′ − 2xy′ + n(1 + n)y = 0, −1 ≤ x ≥ 1 (A.6)

The first three polynomials are

P0(x) = 0 (A.7)
P1(x) = 1 (A.8)

P2(x) =
1
2

(3x2 − 1) (A.9)

Legendre polynomials can be generated from the recursion formula:

Pn+1 =
(2n + 1)xPn(x) − nPn−1

n + 1
, n = 1, 2, . . . (A.10)

and Legendre polynomials satisfy the following relationship:

(2n + 1)Pn(x) = P′n+1(x) − P′n−1(x), n = 1, 2, . . . (A.11)

Legendre polynomials satisfy the following orthogonality property:

+1∫
−1

Pi(x)P j(x) dx =
2δi j

2i + 1
(A.12)

All roots of Legendre polynomials are located in the interval −1 < x < +1.

A.4 Numerical quadrature
In one dimension the domain of integration is the standard element −1 < x < +1. An integral
expression on the standard element is approximated by a sum:

+1∫
−1

f (ξ) dξ ≈
n∑

i=1

wi f (ξi) + Rn (A.13)
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where wi are the weights,ξi are the abscissas and Rn is the error term which depends on the
smoothness of the integrand.

A.4.1 Gauss quadrature
In Gaussian quadrature the abscissa ξi is the ith zero of Legendre polynomial Pn. The weights are
computed from:

wi =
2

(1 − ξ2
i )[P′n(ξi)]2

(A.14)

The error term is:

Rn =
22n+1(n!)4

(2n + 1)[(2n)!]3 f (2n)(ξ) (A.15)

where f (2n) is the 2nth derivative of f . It can be seen from the error term that if f (ξ) is a
polynomial of degree p and Gaussian quadrature is used, then the integral will be exact (up to
round-off errors) provided that n ≥ (p + 1)/2.

A.4.2 Gauss Lobatto quadrature
In the Gauss Lobatto quadrature the abscissas are as follows: x1 = −1, xn = 1 and for i =

2, 3, . . . , n − 1 the (i − 1)th zero of P′n−1(x) where Pn−1(x) is the (n − 1)th Legendre polynomial.
The weights are:

wi =

{ 2
n(n−1) i = 0 & n

2
n(n−1)[Pn−1(ξi)]2 i = 2, 3, . . . , (n − 1) (A.16)

The error term is

Rn =
−n(n − 1)322n−1[(n − 1)!]4

(2n − 1)[(2n − 2)!]3 f (2n−2)(ξ) (A.17)

from which it follows that if f (ξ) is a polynomial of degree p and Gauss Lobatto quadrature is
used, then the integral will be exact (up to round-off errors) provided that n ≥ (p + 3)/2.
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Weak form derivations

The strong form is the combination of the partial differential equation(s) governing the physical
phenomena and the boundary conditions, and the set of initial conditions.

B.1 Strong form of IBV elastodynamic problem
The strong form of the initial boundary value (IBV) problem of Elastodynamics could be stated
briefly as:

Momentum Conservation Equations
ρüi − ∂iσi j = fi(t) ∀ x ∈ Ω;
ui(x, 0) = 0, u̇i(x, 0) = 0 ∀ x ∈ Ω;
ui(x, t) = gi(x, t) ∀ x ∈ Γg;
σi j ni = hi ∀ x ∈ Γt;

Constitutive Equations
σi j = ci jklεkl

εi j =
1
2

(∂ jui + ∂iu j)

Where the physical domain Ω, is bounded by Γ = Γg ∪ Γt & Γg ∩ Γt = φ; where at Γg the
essential boundary condition is specified, and at Γt the natural boundary condition is specified,
and the initial conditions are homogeneous. The strong form is complemented by the constitutive
equations; where ci jkl is the 4th order elasticity tensor elements.

B.2 Weak form of IBV elastodynamic problem
The weak form of the IBV elastodynamic problem is obtained via a Galerkin scheme, by
multiplying the strong form by a test vector v.

(v, ρü) + a(v,u) = (v, f) + (v,h)Γ

where
a(v,u) =

∫
Ω

∂ jvici jkl∂luk dΩ

(v, f) =
∫
Ω

vi fi dΩ

(v,h)Γ =
nsd∑
i=1

∫
Γhi

vihi dΓ


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B.3 One dimensional theories

B.3.1 Classical theory
We start by stating the strong form formulation,

ρAü − EA∂2
xu = 0 (B.1)

Boundary conditions

Free : ∂xu(x, t) |x=0,l= 0 (B.2)
Fixed : u(x, t) |x=0,l= 0 (B.3)

Initial Conditions
u(x, 0) = 0 & u̇(x, 0) = 0 (B.4)

The first step to get the weak formulation is to multiply Equation (B.1) with a time-independent
test function v(x). This function must be H1 function for second order differential equation,
where H1 is the set of functions that are, together with their first derivative, square integrable (i.e.
continuous and well-behaved function) over the domain. Integrating the equation over the spatial
domain leads to

ρ

l∫
0

üv dx − E

l∫
0

v∂2
xu dx = 0 (B.5)

Integrating by parts the second term on left side,

ρ

l∫
0

üv dx − E(v∂xu) |l0 +E

l∫
0

∂xv∂xu dx = 0 (B.6)

After substituting the natural boundary condition (Free ends), we obtain the weak form as

ρ

l∫
0

üv dx + E

l∫
0

∂xv∂xu dx = 0 (B.7)

B.3.2 Rayleigh Love theory
We start by stating the strong form formulation,

ρAü − EA∂2
xu − ρν

2Ip∂
2
xü = 0 (B.8)

Boundary conditions

Free : AE∂xu(x, t) + ρν2Ip∂xü(x, t) |x=0,l= 0 (B.9)
Fixed : u(x, t) |x=0,l= 0 (B.10)
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Initial Conditions
u(x, 0) = 0 & u̇(x, 0) = 0 (B.11)

similar to the previous procedure, we multiply all sides of the equation (B.8) with a test function
v(x), and integrate

ρ

l∫
0

üv dx − E

l∫
0

∂2
xuv dx − ρν2In

l∫
0

∂2
xüv dx = 0 (B.12)

where In = Ip/A, then integrating by parts and rearranging

ρ

l∫
0

üv dx + ρν2In

l∫
0

∂xü∂xv dx + E

l∫
0

∂xu∂xv dx − v(E∂xu + ρν2In∂xü) |l0= 0 (B.13)

which after substituting the free boundary condition gives the weak form

ρ

l∫
0

üv dx + ρν2In

l∫
0

∂xü∂xv dx + E

l∫
0

∂xu∂xv dx = 0 (B.14)

B.3.3 Rayleigh Bishop theory
We start by stating the strong form formulation,

ρAü − EA∂2
xu − ρν

2Ip∂
2
xü + µν2Ip∂

4
xu = 0 (B.15)

Boundary conditions

Free : AE∂xu(x, t) + ρν2Ip∂xü(x, t) − µν2Ip∂
3
xu(x, t) |x=0,l= 0 & (B.16)

∂2
xu(x, t) |x=0,l= 0

Fixed : u(x, t) |x=0,l= 0 & ∂xu(x, t) |x=0,l= 0 (B.17)

Initial conditions
u(x, 0) = 0 & u̇(x, 0) = 0 (B.18)

Due to the presence of 4th order spatial derivatives, the test function v(x) should belong to H2 set

of functions (i.e. ,
l∫

0
(∂2

xv)2 dx < ∞). Since the first three terms are identical to Rayleigh Love

theory, the only additional term (4th order derivative) is then integrated by parts twice to yield
after rearrangement

ρ
l∫

0
üv dx + ρν2In

l∫
0
∂xü∂xv dx + E

l∫
0
∂xu∂xv dx + µν2In

l∫
0
∂2

xu∂
2
xv dx

−
[
v(E∂xu + ρν2In∂xü + µν2In∂

3
xu) + µν2In∂

2
xu∂xv

]
|l0= 0
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which after substituting the free boundary condition gives the weak form

ρ

l∫
0

üv dx + ρν2In

l∫
0

∂xü∂xv dx + E

l∫
0

∂xu∂xv dx + µν2In

l∫
0

∂2
xu∂

2
xv dx = 0 (B.19)

B.3.4 Mindlin-Herrmann theory
We start by stating the strong form formulation,

ρAü0 − (λ + 2µ)A∂2
xu0 − 2λA∂xw1 = 0 (B.20a)

ρIpẅ1 + 2λA∂xu0 − µIp∂
2
xw1 + 4A(λ + µ)w1 = 0 (B.20b)

Boundary conditions

Free : (λ + 2µ)∂xu0(x, t) + 2λw1(x, t) |x=0,l= 0 & (B.21)
∂xw1(x, t) |x=0,l= 0

Fixed : u0(x, t) |x=0,l= 0 & w1(x, t) |x=0,l= 0 (B.22)

Initial conditions

u0(x, 0) = 0 & u̇0(x, 0) = 0
w1(x, 0) = 0 & ẇ1(x, 0) = 0 (B.23a)

Here we assume two test functions v1 and v2. Then multiply equation (B.20) by v1, and integrate
over the length:

ρ

l∫
0

ü0v1 dx − (λ + 2µ)

l∫
0

∂2
xu0v1 dx − 2λ

l∫
0

∂xw1v1 dx

And Integrating by parts all the terms

ρ

l∫
0

üv1 dx + (λ + 2µ)

l∫
0

∂xu0∂xv1 dx + 2λ

l∫
0

w1∂xv1 dx − ((λ + 2µ)v1∂xu0 + 2λv1w1) |10= 0

(B.24)
Similarly for equation (B.20), after dividing all terms by A, and multiplying by test function v2,
and integrating over the length:

ρR2

l∫
0

ẅ1v2 dx − R2µ

l∫
0

∂2
xw1v2 dx + 4λ

l∫
0

v2w dx = 0 (B.25)
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And integrating by parts:

ρR2

l∫
0

ẅ1v2 dx+4λ

l∫
0

v2∂xu1 dx+8(λ+µ)

l∫
0

v2w1 dx+

l∫
0

∂xw1∂xv2 dx−∂xw1v2 |
l
0= 0 (B.26)

Which after the substitution of the natural boundary condition, leads to the following weak form:

ρ
l∫

0
üv1 dx + (λ + 2µ)

l∫
0
∂xu0∂xv1 dx + 2λ

l∫
0
w1∂xv1 dx = 0 (B.27a)

ρR2
l∫

0
ẅ1v2 dx + 4λ

l∫
0

v2∂xu1 dx + 8(λ + µ)
l∫

0
v2w1 dx +

l∫
0
∂xw1∂xv2 dx = 0 (B.27b)

B.4 Two dimensional theories
In this section we list the well known two dimensional weak form for the elastic wave equation
in plane strain setting. As for the first order shear deformation theory, we refer the reader to
[Reddy, 2002], where we followed the same derivation for the spectral element development.

B.4.1 Elastic wave equation

(c2
l − c2

t )∇(∇ · u) − c2
t∇ · ∇u = ü (B.28)

We will assume that the medium is isotropic, homogeneous, unbounded, and source free. Taking
a dot product of equation (B.28) with a vector test function, integrating over the domain, and
using the divergence theorem, we obtain the weak form of the elastic wave equation, given by

(c2
l − c2

t )
∫

Ω

(∇ · u)(∇ · v) dxdy + c2
t

∫
Ω

∇u : ∇v dxdy (B.29)

where v is a sufficiently smooth test function and the double dot product is defined as A : B =
n∑
1

n∑
1

Ai jBi j for A,B ∈ <n×n.



238 APPENDIX B. Weak form derivations

B.5 Piezoelectric element
The starting point is by multiplying Eq. (5.15b) by a test function w =

(
w1 w3

)T and integrating
parts and using Green’s theorem we obtain:∫

Ωp

wTρpüp dΩ =
∫

Ωp

wTB
T(cEBup + eT∇φ

)
dΩ (B.30a)

=
∮
∂Ωp

wTnT
p
(
cEBup + eT∇φ

)
d∂ −

∫
Ωp

(
Bw

)T(cEBup + eT∇φ
)

dΩ

=
∫

∂Ωp−∂g

wTnT(cEBup + eT∇φ
)

d∂ +
∫
∂g

wTnT
p
(
cEBup + eT∇φ

)
d∂

−
∫

Ωp

(
Bw

)T(cEBup + eT∇φ
)

dΩ

=
∫
∂g

wTnT
p
(
cEBup + eT∇φ

)
d∂ −

∫
Ωp

(
Bw

)T(cEBup + eT∇φ
)

dΩ (B.30b)

Where by the first part of the contour integral over ∂Ωp−∂g vanishes by virtue of Eq. (5.15d), and
the only remaining part is the second integral representing the traction continuity at the interface
∂g. For Eq. (5.15c), the same procedure yields:∫

Ωs

wTρsüs dΩ =
∫
Ωs

wTB
TcsBus dΩ (B.31a)

=
∮
∂Ωs

wTnT
s csBus d∂ −

∫
Ωs

(
Bw

)TcsBus dΩ

=
∫

∂Ωs−∂g

wTnT
s csBus d∂ +

∫
∂g

wTnT
s csBus d∂ −

∫
Ωs

(
Bw

)TcsBus dΩ

=
∫
∂g

wTnT
pcsBus d∂ −

∫
Ωs

(
Bw

)TcsBus dΩ (B.31b)

Summing up the two integrals and using the continuity conditions at the interface, we arrive at
the following weak form for the displacement field:∫

Ωs

wTρsüs dΩ+

∫
Ωp

wTρpüp dΩ+

∫
Ωs

(
Bw

)TcsBus dΩ+

∫
Ωp

(
Bw

)T(cE
Bup+eT∇φ

)
dΩ = 0 (B.32)

As for Eq. (5.15c), we use a scalar test function v, and perform the same procedure of multipli-
cation followed by integration by parts and application of Green’s theorem and substituting the
homogeneous Neumann boundary condition to obtain:∫

Ωp

v∇T(eBup − ε
S∇φ

)
dΩ =

∮
∂Ωp

vnT
p
(
eBup − ε

S∇φ
)

d∂ −
∫

Ωp

(∇v
)T(eBup − ε

S∇φ
)

dΩ

=
∫

Ωp

(∇v
)T(eBup − ε

S∇φ
)

dΩ = 0 (B.33)



APPENDIX C

MATLAB functions

In this appendix a list of some of the MATLAB functions used in the current thesis are presented
with some demonstration of the covered elementary processes of differentiation and integration
on regular and irregular domains.

C.1 Spectral element generation utilities
GenPlate: Generates a structure that hold the material properties.

1 function plate = GenPlate(name, c_L, c_T, rho, thick)
2

3 % plate = GenPlate(name, c_L, c_T, rho, thick)
4 % INNPUT: name is the material name string
5 % c_L is the longitudinal Velcity km/s
6 % c_T is the shear wave velocity km/s
7 % rho is the elastic Constant kg/m^3
8 % thick is the plate thickness in m
9 c_ll = c_L*1e3; % unit conversion

10 c_tt = c_T*1e3; % unit conversion
11 Rho = rho;
12 mu = Rho*c_tt^2;
13 lambda = Rho*c_ll^2 -2*mu;
14 plate.name = name;
15 plate.rho = Rho ; % kg/m^3
16 plate.h = thick/2; % m
17 plate.lambda = lambda; % Pa
18 plate.mu = mu; % Pa
19 plate.LongVel = c_ll; % m/s
20 plate.ShearVel = c_tt; % m/s
21 plate.elast = (plate.mu*(3*plate.lambda+2*plate.mu))/...
22 (plate.lambda+plate.mu);
23 plate.nu = plate.lambda/(2*(plate.lambda+plate.mu));

legendpf: Returns Legendre polynomial of order n at x ∈ [−1, 1].

1 % [p]=LEGENDPF(x, n)
2

3 % INNPUT: x, vector of points of evaluation
4 % n, the dgree of Legnedre polynomial P_n
5 % OUTPUT: p, vector of length(x)
6

7 function [p] = legendpf(x, n)
8 m=length(x);
9 if m==1

10 p=0;

239
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11 if n==0
12 p=1;
13 else
14 p1=1; p2=x(1); p3=p2;
15 for k =1:n-1
16 p3=((2*k+1)*x(1)*p2-k*p1)/(k+1);
17 p1=p2;
18 p2=p3;
19 end
20 p=p3;
21 end
22

23 else
24 %x=x(:);
25 p=zeros(m,1);
26 if n==0
27 p=ones(m,1);
28 else
29 p1=ones(m,1); p2=x; p3=p2;
30 for k =1:n-1
31 p3=((2*k+1)*x.*p2-k*p1)/(k+1);
32 p1=p2;
33 p2=p3;
34 end
35 p=p3;
36 end
37 end
38 return

legendld: Returns differentiation matrix based on LGL nodes(x) Which is the derivative
of Lagrange characteristic polynomials.

1 % [d]=LEGENDLD(x)
2 % INNPUT: x, vector of LGL nodes.
3 % OUTPUT: d, matrix of l’_{i} arranged in columns
4 %
5

6 function [d] = legendld(x)
7 np=length(x);
8 d=zeros(np);
9 n=np-1;

10 for j =1:np
11 lnxj = legendpf(x(j),n);
12 for i = 1:np
13 if i ~= j
14 lnxi = legendpf(x(i),n);
15 d(i,j) = lnxi/((x(i)-x(j))*lnxj);
16 end
17 end
18 end
19 d(1,1) = -0.25*n*np;
20 d(np,np) = -d (1,1);
21

22 return
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jacopip: Evaluates Jacobi polynomial, return P(n, n − 1, n − 2) and P′(n, n − 1, n − 2).

1 % [p,pd] = jacopip(x,alpha,beta, n)
2 % Input: x = scalar or vector of length (m)
3 % n = polynomial degree
4 % alpha, beta= parameters of Jacobi polynomial
5 %
6 % Output: p(m,3) = [Pn(x), P(n-1)(x), P(n-2)(x) ];
7 % pd(m,3) = [(P’n(x), P’(n-1)(x), P’(n-2)(x)];
8 %
9

10 function [pa, pda] = jacobip(x,alpha,beta,n)
11 apb=alpha+beta; ab2=alpha^2-beta^2;
12 nn=length(x);
13 if nn==1
14 pa=zeros(1,1); pda=zeros(1,1);
15 % x is a scalar
16 p =1; pd=0;
17 p1=0; pd1=0;
18 p2=0; pd2=0;
19 if n == 0
20 return
21 elseif n==1
22 p1 = p; p2=p1;
23 p = (alpha-beta+(apb+2)*x(1))*0.5;
24 pd1 = pd; pd2=pd1;
25 pd = 0.5*(apb+2);
26 else
27 p1 = p; p2=p1;
28 p = (alpha-beta+(apb+2)*x(1))*0.5;
29 pd1 = pd; pd2=pd1;
30 pd = 0.5*(apb+2);
31 for k = 1:n-1
32 k1=k+1; k2=k*2; k2ab=k2+alpha+beta;
33 k2ab1=k2ab+1; k2ab2=k2ab1+1;
34 p2=p1; p1=p;
35 pd2=pd1; pd1=pd;
36 a1 = 2*k1*(k1+apb)*k2ab;
37 a21 = k2ab1*ab2;
38 a22 = k2ab2*k2ab1*k2ab;
39 a3=2*(k+alpha)*(k+beta)*k2ab2;
40 p = ((a21+a22*x(1))*p1-a3*p2)/a1;
41 pd= (a22*p1+(a21+a22*x(1))...
42 *pd1-a3*pd2)/a1;
43 end
44 end
45 pa = p; pda = pd;
46 else
47 m=nn;
48 pa=[ones(m,1),zeros(m,1),zeros(m,1)];
49 pda=zeros(m,3);
50 if n == 0
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51 return
52 elseif n==1
53 pa(:,2) = pa(:,1); pa(:,3)=pa(:,2);
54 pa(:,1) = (alpha-beta+(apb+2)*x)*0.5;
55 pda(:,2) = pda(:,1); pda(:,3)=pda(:,2);
56 pda(:,1) = 0.5*(apb+2);
57 else
58 pa(:,2) = pa(:,1); pa(:,3)=pa(:,2);
59 pa(:,1) = (alpha-beta+(apb+2)*x)*0.5;
60 pda(:,2) = pda(:,1); pda(:,3)=pda(:,2);
61 pda(:,1) = 0.5*(apb+2);
62 for k = 1:n-1
63 k2=k*2; k2ab=k2+alpha+beta;
64 pa(:,3)=pa(:,2); pa(:,2)=pa(:,1);
65 pda(:,3)=pda(:,2); pda(:,2)=pda(:,1);
66 a1 = 2*(k+1)*(k+apb+1)*k2ab;
67 a21 = (k2ab+1)*ab2;
68 a22 = (k2ab+2)*(k2ab+1)*k2ab;
69 a3=2*(k+alpha)*(k+beta)*(k2ab+2);
70 pa(:,1) = ((a21+a22*x).*pa(:,2)...
71 -a3*pa(:,3))/a1;
72 pda(:,1)= (a22*pa(:,2)+(a21+a22*x).*...
73 pda(:,2)-a3*pda(:,3))/a1;
74 end
75 end
76 end
77 return

lglwx: Returns the np weigths (w) and the nodes (x) of the Legendre Gauss-Lobatto
quadrature formula in the interval [a,b]. When a, and b are left unspecified, it returns the np
weights (w) and nodes (x) of Legendre Gauss-Lobatto quadrature formula in the standard interval
[-1,1]. When no output is requested it returns x.

1 % [w, x]=LGLWX(np, a, b)
2 % [w, x]=LGLWX(np)
3 % INPUT: np, number of nodes
4 % a, b, extrema of the interval(default value [-1,1])
5 %
6 % Output: x = LGL nodes
7 % w = LGL weights
8 %
9

10 function [w, x] = lglwx(np,a,b)
11 if np <= 1
12 error(’The number of the quad nodes should be greater than 1’);
13 end
14

15 if np==2
16 x=[-1;1];w=[1;1];
17 else
18 x=zeros(np,1);
19 w=zeros(np,1);
20 n=np-1;
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21 x(1)=-1;x(np)=1;
22 x1=roots(n-1,1,1);
23 x(2:n)=x1;
24 coef=2/(n*np);
25 w=coef./(legendpf(x,n).^2);
26 end
27

28 if nargin ==3
29 bma=(b-a)*.5;
30 bpa=(b+a)*.5;
31 x=bma*x+bpa;
32 w=w*bma;
33 end
34 if nargout<2
35 w=x;
36 end
37 function [x]=roots(n, alpha, beta)
38 x=zeros(n,1);
39

40 x0=cos(pi/(2*n));
41 tol=1.e-16; kmax=15;
42 for j=1:n
43 diff=tol+1;kiter=0;
44 while kiter <=kmax && diff>=tol
45 [p,pd]=jacobip(x0, alpha, beta, n);
46 ss=sum(1./(x0-x(1:j-1)));
47 x1=x0-p/(pd-ss*p);
48 diff=abs(x1-x0);
49 kiter=kiter+1;
50 x0=x1;
51 end
52 x0=5.d-1*(x1+cos((2*(j+1)-1)*pi/(2*n)));
53 x(j)=x1;
54 end
55 x=sort(x);
56 end
57

58 end

Derivative: Computes the partial derivatives of a 2D function f (x, y) using the Galerkin
method over irregular domains.

1 function [dfdx, dfdy] = Derivative(f, coordinates, ngll)
2 XY = shape(coordinates, ngll);
3 xx = squeeze(XY(1, :,:));
4 yy = squeeze(XY(2, :,:));
5 [~, xgll] = lglwx(ngll,-1,1);
6 dershape = dshape(ngll, xgll);
7 jac = SE_Jacobian_e(coordinates, ngll, dershape);
8 jaci = SE_InverseJacobian_e(jac, ngll);
9 H = legendld(xgll);

10 dUz_dxi = f(xx,yy)*H’;
11 dUz_deta = H*f(xx,yy);
12 dxi_dx = squeeze(jaci(1,1,:,:))’;
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13 dxi_dy = squeeze(jaci(1,2,:,:))’;
14 deta_dy = squeeze(jaci(2,2,:,:))’;
15 deta_dx = squeeze(jaci(2,1,:,:))’;
16 dfdx = (dUz_dxi.*dxi_dx + dUz_deta.*deta_dx);
17 dfdy = (dUz_dxi.*dxi_dy + dUz_deta.*deta_dy);
18 end

shape: Computes the inverse mapping from the reference domain to the physical domain.

1 function mappedCoors = shape(Coorg, ngll)
2 [~, xgll] = lglwx(ngll, -1, 1);
3 for i = 1:ngll
4 eta = xgll(i);
5 for j = 1:6
6 xi = xgll(j);
7 mappedCoors(:,i,j) = map(xi, eta, Coorg);
8 end
9 end

10 function X = map(xi, eta, Coord)
11 shapeFuns = [0.25*(1-xi)*(1-eta) 0.25*(1+xi)*(1-eta)...
12 0.25*(1+xi)*(1+eta) 0.25*(1-xi)*(1+eta)];
13 X = shapeFuns*Coord;
14 end
15 end

dshape: Computes the derivative of the sub-parametric low order shape functions at each
Legendre node.

1 function sem_dshape = dshape(ngll, xgll)
2 sem_dshape = zeros(4,2,ngll, ngll);
3 for j = 1:ngll
4 eta = xgll(j);
5 for i = 1:ngll
6 xi = xgll(i);
7 sem_dshape(:,:,i,j) = getdershape(xi,eta);
8 end
9 end

10 end
11 function dershape = getdershape(s,t)
12 sp = s + 1;
13 sm = s - 1;
14 tp = t + 1;
15 tm = t - 1;
16 dershape(1,1) = 0.25 * tm;
17 dershape(2,1) = - 0.25 * tm;
18 dershape(3,1) = 0.25 * tp;
19 dershape(4,1) = - 0.25 * tp;
20 dershape(1,2) = 0.25 * sm;
21 dershape(2,2) = - 0.25 * sp;
22 dershape(3,2) = 0.25 * sp;
23 dershape(4,2) = - 0.25 * sm;
24 end
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SE_Jacobian_e: Computes the Jacobian matrix of the sub-parametric low order shape
functions at each Legendre node.

1 function jac = SE_Jacobian_e(coorg, ngll, dshape)
2

3 jac= zeros(2,2,ngll,ngll);
4

5 for j = 1:ngll
6 for i = 1:ngll
7 jac(:,:,i,j) = coorg’*dshape(:,:,i,j);
8 end
9 end

SE_InverseJacobian_e: Computes the inverse of the Jacobian matrix of the sub-
parametric low order shape functions at each Legendre node.

1 function jaci = SE_InverseJacobian_e(jac, ngll)
2

3 jaci= zeros(2,2,ngll,ngll);
4

5 for j = 1:ngll
6 for i = 1:ngll
7 jaci(:,:,i,j) = invert2(jac(:,:,i,j));
8 end
9 end

10

11 end
12

13 function B = invert2(A)
14

15 B = zeros(2,2);
16 determinant = A(1,1)*A(2,2) - A(1,2)*A(2,1);
17

18 B(1,1) = A(2,2);
19 B(2,1) = - A(2,1);
20 B(1,2) = - A(1,2);
21 B(2,2) = A(1,1);
22

23 B = B/determinant;
24 end

C.2 Examples

C.2.1 Construction of differentiation matrices
We will show an example of constructing a differentiation matrix on a rectangular element.

First we construct the standard interval, and nodes.

>> [wgll, xgll]= lglwx(6);
>> H = legendld(xgll);
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and after constructing the standard differentiation matrix H, we define a rectangular domain, then
we map the coordinates of the Legendre nodes into the physical domain:

>> coordinates = [0 0; 0.8 0; 0.8 1.5; 0 1.5];
>> XY = shape(coordinates, 6);
>> xx = squeeze(XY(1,:,:));
>> yy = squeeze(XY(2,:,:));

Then we define the following anonymous function:

>> f = @(x,y) x.^2+y.^3;

Then evaluating the function at the nodes (in physical domain),

>> fun = f(xx,yy);

We then construct the partial derivative operator with respect to x, and y. Which is referred to
into the body of the thesis as Hx, and Hy respectively.

>> DuDy = (1/0.75)*kron(eye(6), H);
>> DuDx = (1/0.4)*kron(H,eye(6));

Where by virtue of the properties of the tensor product the flattening of the function matrix into a
vector, follows directly the column convention of Matlab. The choice of points of the rectangular
element as shown in Fig. C.1 in the order specified facilitates the computation of the inverse of
the Jacobian.

J−1 =

( 1
0.5∆x 0

0 1
0.5∆y

)
(C.1)

1 2

3 4

Figure C.1 Rectangular Element



C.2. Examples 247

C.2.2 Differentiation on an irregular domain
As a way of illustrating the effectiveness with which the spectral differentiation accurately

represents the partial derivatives of a 2D function, f (x, y) = x2 + y3:

>> f = @(x,y) x.^2+y.^3;

which have partial derivatives, ∂x f = 2x and ∂y f = 3y2; So if we define an irregular sub-domain
with the following corner coordinates:

>> coordinates = [0 0; 0.8 0.5; 0.6 1; 0.1 0.75];

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure C.2 Irregular Sub-domain for 2D function f (x, y)

So, now we can evaluate the partial derivatives over that domain using the function Derivative

>> [dfdx, dfdy]=Derivative(f, coordinates, 6);

and comparing the exact values of the derivatives at the Legendre nodes:

>> XY = shape(coordinates, 6);
>> xx = squeeze(XY(1, :,:));
>> yy = squeeze(XY(2, :,:));
>> df_dx = @(x,y) 2*x;
>> norm(df_dx(xx, yy) - dfdx, inf)
ans =

1.526556658859590e-14

Similarly for the ∂y f

>> df_dy = @(x,y) 3*y.^2;
>> norm(df_dy(xx, yy) - dfdy, inf)
ans =

1.398881011027697e-14

For the purpose of FEM and SEM, in order to facilitate the assembly of global matrices; we
need a matrix column version of the differentiation matrix in physical coordinates like Hx, Hy,
for that reason we constructed the following function
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1 function [DDx,DDy, dfdx, dfdy] = Derivative_flat(f, coordinates, ngll)
2 A = 1:ngll:ngll.^2;
3 B = repmat(1:ngll, 1, ngll);
4

5 XY = shape(coordinates, ngll);
6 xx = squeeze(XY(1,:,:));
7 yy = squeeze(XY(2,:,:));
8 [~, xgll] = lglwx_mex(ngll,-1,1);
9 dershape = dshape(ngll, xgll);

10 jac = SE_Jacobian_e(coordinates, ngll, dershape);
11 jaci = SE_InverseJacobian_e(jac, ngll);
12 dxi_dx = squeeze(jaci(1,1,:,:))’;
13 dxi_dy = squeeze(jaci(1,2,:,:))’;
14 deta_dy = squeeze(jaci(2,2,:,:))’;
15 deta_dx = squeeze(jaci(2,1,:,:))’;
16

17 H = legendld_mex(xgll);
18 DuDxidx = kron(H, eye(ngll));
19 DuDxidy = DuDxidx;
20 DuDetadx = kron(eye(ngll), H);
21 DuDetady = DuDetadx;
22 %% Construct the flat diff matrices
23 % dUz_dxi = f(xx,yy)*H’; DuDxidx = dUz_dxi.*dxi_dx
24 % dUz_dxi = f(xx,yy)*H’; DuDxidy = dUz_dxi.*dxi_dy
25 for j = 1:ngll
26 for i = 1:ngll
27 Temp = DuDxidx((j-1)*ngll+1:j*ngll, (i-1)*ngll+1: i*ngll);
28 DuDxidx((j-1)*ngll+1:j*ngll, (i-1)*ngll+1: i*ngll) ...
29 = diag(diag(Temp).*dxi_dx(:,j));
30 Temp = DuDxidy((j-1)*ngll+1:j*ngll, (i-1)*ngll+1: i*ngll);
31 DuDxidy((j-1)*ngll+1:j*ngll, (i-1)*ngll+1: i*ngll) ...
32 = diag(diag(Temp).*dxi_dy(:,j));
33 end
34 end
35 % dUz_deta = H*f(xx,yy) => kron(eye(ngll), H); DuDetadx = dUz_deta.*deta_dx
36 % dUz_deta = H*f(xx,yy) => kron(eye(ngll), H); DuDetady = dUz_deta.*deta_dy
37 for i = 1:ngll
38 Temp = repmat(deta_dx(:,i), 1, ngll);
39 DuDetadx((i-1)*ngll + 1 : i*ngll, (i-1)*ngll + 1 : i*ngll) ...
40 = Temp.*DuDetadx((i-1)*ngll + 1 : i*ngll, (i-1)*ngll + 1 : i*

ngll);
41 Temp = repmat(deta_dy(:,i), 1, ngll);
42 DuDetady((i-1)*ngll + 1 : i*ngll, (i-1)*ngll + 1 : i*ngll) ...
43 = Temp.*DuDetady((i-1)*ngll + 1 : i*ngll, (i-1)*ngll + 1 : i*

ngll);
44 end
45

46 %% Compute The derivatives
47 % dfdx =(dUz_dxi.*dxi_dx + dUz_deta.*deta_dx);
48 % dfdy = (dUz_dxi.*dxi_dy + dUz_deta.*deta_dy);
49 DDx = DuDxidx+DuDetadx;
50 func = f(xx, yy);
51 dfdx = DDx*func(:);
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52 DDy = DuDxidy+DuDetady;
53 dfdy = DDy*func(:);

where DDx, and DDy, are Hx, and Hy.

C.2.3 Quadrature
Now for the integration, it is straight forward in the case we evaluate the matrix of function

in its original form as a matrix fun.

>> wgll2 = wgll * wgll’ ;
>> det = 0.75*0.4;
>> sum(sum(wgll2.*fun)).*det
ans =

1.268500000000001e+00

where the integration is equal to the exact value. For the case of unfolded matrix, which is more
appropriate for the case of spectral element formulations we can perform the integration of the
derivatives as follows:

>> W = wgll2(:);
>> W = diag(W);
>> det = 0.75*0.4;
>> sum(W*DuDx*fun(:)).*det
ans =

9.600000000000003e-01

which is equal to the exact value of the integral
0.8∫
0

1.5∫
0
∂x f (x, y) dxdy. Similarly for the ∂y f (x, y),

we have:

>> sum(W*DuDy*fun(:)).*det
ans =

2.700000000000001e+00
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Witkowski, W., Rucka, M., Chróścielewski, J. and Wilde, K. (2012). On some properties of 2D
spectral finite elements in problems of wave propagation. Finite Elements in Analysis and
Design, volume 55, pp. 31–41.

Worlton, D. C. (1957). Ultrasonic testing with Lamb waves. Non-Destructive Testing, volume 15,
pp. 218–22.

Yu, L., Bottai-Santoni, G. and Giurgiutiu, V. (2010). Shear lag solution for tuning ultrasonic
piezoelectric wafer active sensors with applications to lamb wave array imaging. International
Journal of Engineering Science, volume 48, pp. 848–861.

Yu, L. and Giurgiutiu, V. (2008). In situ 2-D piezoelectric wafer active sensors arrays for guided
wave damage detection. Ultrasonics, volume 48, pp. 117–34.

Zak, A. (2009). A novel formulation of a spectral plate element for wave propagation in isotropic
structures. Finite Elements in Analysis and Design, volume 45, number 10, pp. 650–658.

Zak, A. and Krawczuk, M. (2011). Certain numerical issues of wave propagation modelling in
rods by the spectral finite element method. Finite Elements in Analysis and Design, volume 47,
number 9, pp. 1036–1046.

Zak, A. A., Krawczuk, M. and Ostachowicz, W. (2006). Propagation of in-plane elastic waves in a
composite panel. Finite Elements in Analysis and Design, volume 43, number 2, pp. 145–154.

Zhang, J. Q., Zhang, B. N. and Fan, J. H. (2003a). A coupled electromechanical analysis of a
piezoelectric layer bonded to an elastic substrate: Part i, development of governing equations.
Int. J. Solids Struct., volume 40, pp. 6781–6797.

Zhang, J. Q., Zhang, B. N. and Fan, J. H. (2003b). A coupled electromechanical analysis of a
piezoelectric layer bonded to an elastic substrate: Part ii, numerical solution and applications.
Int. J. Solids Struct., volume 40, pp. 66799–6612.

Zhao, X. and Rose, J. L. (2003). Boundary element modeling for defect characterization potential
in a wave guide. International Journal of Solids and Structures, volume 40, pp. 2645–58.

Zhu, W. and Rose, J. L. (1999). Lamb wave generation and reception with time-delay periodic
linear arrays: A BEM simulation and experimental study. ieee transactions on ultrasonics,
ferroelectrics, and frequency control, volume 46, number 3.

Zienkiewicz, O. and Taylor, R. (2005). The Finite Element Method for Solid and Structural
Mechanics.

Zienkiewicz, O., Taylor, R. and Zhu, J. (2005). The finite element method: its basis and
fundamentals.



264 REFERENCES

Zingg, D. W. (2000). Comparison of high-accuracy finite-difference methods for linear wave
propagation. SIAM J Sci Comput, volume 22, number 2, pp. 476–502.

Zyserman, F. and Gauzellino, P. (2005). Dispersion analysis of a nonconforming finite element
method for the three-dimensional scalar and elastic wave equations. Finite elements in analysis
and design, pp. 1309–1326.

Zyserman, F. I., Gauzellino, P. M. and Santos, J. E. (2003). dispersion analysis of a non-
conforming finite element method for the Helmholtz equation. International Journal for
Numerical Methods in Engineering, volume 58, pp. 1381–1395.






	Introduction
	Background and motivation
	Research goals, scopes and objectives
	Thesis outline

	Literature review
	Structural health monitoring (SHM)
	Advantages and design requirements of SHM systems
	Guided waves: its nature and generation
	Nature of guided waves
	Conventional wedge transducer
	Piezoceramic element
	Excitation signals and modes of operation
	Piezoelectric actuator coupling effects

	Numerical methods for guided waves simulation
	Finite difference
	Local interaction simulation approach
	Pseudo-spectral method
	Boundary element method
	Finite element method
	Spectral element method
	Comparison of numerical methods for guided waves simulation

	SHM challenges to numerical simulation
	Computational efficiency or errors
	Infinite and absorbing boundaries
	Damage modeling

	Conclusion

	Spectral element for guided waves propagation in rods
	Exact solution: Pochhammer-Chree frequency equation
	Longitudinal waves (n=0)
	Flexural waves (n = 1)

	Approximate longitudinal waves theories
	Classical theory
	Rayleigh Love theory
	Rayleigh Bishop theory
	Mindlin Herrmann theory

	Dispersion analysis of approximate theories
	Numerical approximation of approximate theories
	Galerkin method
	Centered difference explicit time integration

	One dimensional spectral element
	Shape functions
	Quadrature rules

	Dispersion analysis of numerical implementations
	Classical wave equation
	Rayleigh Love theory
	Rayleigh Bishop theory
	Mindlin Herrmann theory

	Conclusions

	Spectral element for guided waves propagation in plates
	Exact solution: Rayleigh-Lamb frequency equations
	Approximate plate waves theories
	Classical plate theory
	First order shear deformation theory (FSDT)

	Dispersion analysis of approximate theories
	Classical plate theory
	First order shear deformation theory

	Two dimensional spectral element
	Shape functions
	Spectral element matrices for two dimensional elastic wave equation
	Spectral element matrices for first order shear deformation theory
	Quadrature rules
	Four corner nodes element
	Eight corner nodes element

	Dispersion analysis of numerical implementations
	Two dimensional elastic wave equation
	Lamb waves
	First order shear deformation theory

	Conclusion

	Application of SEM in SHM: formulation and case studies
	Formulation: piezoelectric generation of guided waves
	Piezoelectric domain
	Coupled piezoelectric domain with substructure
	Semidiscrete spectral element formulation

	Formulation: boundary effects
	Actuator thickness effect
	Harmonic analysis
	Simulation results

	Adhesive layer effect
	The effect of adhesive layer thickness
	The effect of adhesive layer material

	Experimental verification
	Case study 1
	Case study 2

	Conclusion

	Conclusions
	Mathematical definitions
	Norms and seminorms
	Convergence
	Legendre polynomials
	Numerical quadrature
	Gauss quadrature
	Gauss Lobatto quadrature


	Weak form derivations
	Strong form of IBV elastodynamic problem
	Weak form of IBV elastodynamic problem
	One dimensional theories
	Classical theory
	Rayleigh Love theory
	Rayleigh Bishop theory
	Mindlin-Herrmann theory

	Two dimensional theories
	Elastic wave equation

	Piezoelectric element

	MATLAB functions
	Spectral element generation utilities
	Examples
	Construction of differentiation matrices
	Differentiation on an irregular domain
	Quadrature


	REFERENCES

