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Summary

The systematic quantification of the uncertainties affecting dynamical systems
and the characterization of the uncertainty of their outcomes is critical for en-
gineering design and analysis, where risks must be reduced as much as possible.
Uncertainties stem naturally from our limitations in measurements, predictions
and manufacturing, and we can say that any dynamical system used in engi-
neering is subject to some of these uncertainties.

The first part of this work presents an overview of the mathematical framework
used in Uncertainty Quantification (UQ) analysis and introduces the spectral
tensor-train (STT) decomposition, a novel high-order method for the effective
propagation of uncertainties which aims at providing an exponential convergence
rate while tackling the curse of dimensionality. The curse of dimensionality is
a problem that afflicts many methods based on meta-models, for which the
computational cost increases exponentially with the number of inputs of the
approximated function – which we will call dimension in the following.

The STT-decomposition is based on the Polynomial Chaos (PC) approxima-
tion and the low-rank decomposition of the function describing the Quantity
of Interest of the considered problem. The low-rank decomposition is obtained
through the discrete tensor-train decomposition, which is constructed using an
optimization algorithm for the selection of the relevant points on which the
function needs to be evaluated. The selection of these points is informed by the
approximated function and thus it is able to adapt to its features. The number
of function evaluations needed for the construction grows only linearly with the
dimension and quadratically with the rank.

In this work we will present and use the functional counterpart of this low-rank
decomposition and, after proving some auxiliary properties, we will apply PC
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on it, obtaining the STT-decomposition. This will allow the decoupling of each
dimension, leading to a much cheaper construction of the PC surrogate. In
the associated paper, the capabilities of the STT-decomposition are checked on
commonly used test functions and on an elliptic problem with random inputs.

This work will also present three active research directions aimed at improving
the efficiency of the STT-decomposition. In this context, we propose three
new strategies for solving the ordering problem suffered by the tensor-train
decomposition, for computing better estimates with respect to the norms usually
employed in UQ and for the anisotropic adaptivity of the method.

The second part of this work presents engineering applications of the UQ frame-
work. Both the applications are characterized by functions whose evaluation is
computationally expensive and thus the UQ analysis of the associated systems
will benefit greatly from the application of methods which require few function
evaluations.

We first consider the propagation of the uncertainty and the sensitivity analy-
sis of the non-linear dynamics of railway vehicles with suspension components
whose characteristics are uncertain. These analysis are carried out using mostly
PC methods, and resorting to random sampling methods for comparison and
when strictly necessary.

The second application of the UQ framework is on the propagation of the un-
certainties entering a fully non-linear and dispersive model of water waves. This
computationally challenging task is tackled with the adoption of state-of-the-art
software for its numerical solution and of efficient PC methods. The aim of this
study is the construction of stochastic benchmarks where to test UQ method-
ologies before being applied to full-scale problems, where efficient methods are
necessary with today’s computational resources.

The outcome of this work was also the creation of several freely available Python
modules for Uncertainty Quantification, which are listed and described in the
appendix.



Resumé

En systematisk kvanticering af usikkerheder der påvirker dynamiske systemer
og den følgende karakterisering af usikkerhed i resultater er kritisk for tekniske
designs og analyser, hvor risiko skal reduceres mest muligt. Usikkerheder kan
stamme fra begrænsninger i målemetoder, tilnærmelser og fremstillingsprocesser,
og alle dynamiske systemer der anvendes til ingeniørmæssige formål er under
påvirkning af sådanne usikkerheder.

I den første del af dette arbejde gives en oversigt over den matematiske bag-
grund for anvendelsen af kvantificering af usikkerhed (På engelsk: “Uncertainty
Quantication” (UQ)) til analyse formål. Der gives en introduktion til metoden
“Spectral Tensor-Train (STT) decomposition” - en ny højere-ordens metode til
effektive beregninger hvor man ønsker at tage højde for udbredelse af usikker-
heder. Metoden søger at opnå en eksponentiel konvergenshastighed, samtidig
med at den reducerer virkningen af dimensionernes forbandelse (på engelsk:
“curse of dimensionality”). Dimensionernes forbandelse er et problem der opstår
ved brug af mange metoder, som er baseret på meta-modeller, for hvilke bereg-
ningstiden vokser eksponentielt med antallet af input variable ved approksima-
tion af funktioner af mange variable - et tal som vi i det følgende benævner
“dimension”.

Metoden bag STT dekomposition er baseret på “Polynomial Chaos” (PC) ap-
proximation og en udvikling af en lavere ordens dekomposition af funktionen
til beskrivelse af den størrelse (På engelsk: “Quantity of Interest”) man er in-
teresseret i at bestemme for et givet problem. Bestemmelsen af en lavers or-
dens dekomposition for en funktion af mange variable bestemmes ved en diskret
tensor-train decomposition, der konstrueres ved brug af en optimeringsalgo-
ritme. Optimeringsalgoritmen sørger for at vælge punkter hensigtmæssigt ud
fra egenskaberne i den tilnærmede funktion. Det nødvendige antal funktions-



iv

beregninger vokser kun lineært med dimensionen og kvadratisk med udviklin-
gens orden.

I dette arbejde præsenterer og anvender vi et funktionelt modstykke til ud-
viklingen af en sådan lavere ordens dekomposition, og efter at have bevist nogle
hjælpe-egenskaber, vil vi anvende PC på den, hvorved vi finder STT dekompo-
sitionen. Dette muliggør en adskillelse af de enkelte dimensioner, og leder til en
meget billigere konstruktion af PC surrogat modellen. I min reference bliver eg-
netheden af STT dekompositionen afprøvet på nogle almindeligt anvendte test
funktioner og på et elliptisk problem med stokastisk input.

I dette arbejde præsenteres endvidere tre aktive forskningsretninger som tjener
til at forbedre effektiviteten af STT dekompositionen. I forbindelse hermed
foreslår vi tre nye strategier til løsningen af “the ordering problem” som har til
formål at forbedre effektiviteten af en tensor-train dekomposition med henblik på
beregne fejlestimater baseret på sædvanligt anvendte normer der anvendes ved
UQ analyse og til brug for at muliggøre anisotropisk tilpasningsning i metoden.

I anden del af arbejdet præsenteres tekniske ingeniørmæssige anvendelser af
UQ metoder. I begge anvendelser indgår funktioner, hvis beregninger er tid-
skrævende når de evalueres og som følge heraf vil UQ analyse nyde stor fordel
af anvendelse af beregningsmetoder der kun kræver få funktionsevalueringer.

Vi undersøger først usikkerheder og følsomheder i tre jernbanedynamiske prob-
lemer, hvor komponenters egenskaber i affjedringen er behæftet med usikker-
heder. I disse beregninger anvendes oftest PC metoder, og gør brug af “random
sampling” metoder til sammenligning af resultater eller når det er strengt nød-
vendigt.

I den anden anvendelse af UQ metoden undersøges udviklingen af usikkerheder,
som indgår i en kompleks ikke-linear og dispersiv vandbølgemodel. Denne
krævende beregning behandles med en anvendelse af state-of-the-art software
til den numeriske løsning og af effektive PC metoder. Målet for denne under-
søgelse er at udvikle nye stokastiske tests (på engelsk: “benchmarks”) der kan
bruges til at teste UQ metoder, før de anvendes på fuld-skala problemer, hvor
effektive metoder er nødvendige med de beregningsressourcer der er til rådighed
i dag.

I dette arbejde indgår endvidere udvikling af adskillige frit tilgængelige Python
moduler til brug ved Uncertainty Quantification. De er opstillet og beskrevet i
et appendiks.
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To them, I said, the truth would
be literally nothing but the
shadows of the images.

The Republic
Plato, 380 B.C.

It is Mâyâ, the veil of deception,
which blinds the eyes of mortals,
and makes them behold a world
of which they cannot say either
that it is or that it is not.

The World as Will and
Representation

A. Schopenhauer, 1818

The probability wave [..]
introduces something standing in
the middle between the idea of an
event and the actual event, a
strange kind of physical reality
just in the middle between
possibility and reality.

W. Heisenberg

I cannot refute your opinion that
quantum theory is a complete
theory of phenomena [..] but I do
not share your faith that
quantum theory is a complete
theory of reality.

A. Einstein
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Chapter 1

Introduction

This work deals with the quantification of uncertainties in engineering anal-
ysis obtained through numerical simulations. The focus is on the theoretical
framework and on its application to engineering problems.

In Part I the mathematical development of UQ will be presented. UQ is a
quickly growing field and a very active research area. This work aims at giving
a general introduction while delving deeper on the topics used for practical ap-
plications. The mathematical theory will be presented with a broad perspective,
referring the interested reader to significant literature. Chapter 2 will present
the general framework of uncertainty quantification, explaining in broad terms
what the goals of each of its components are. Chapter 3 introduces dynami-
cal systems with random inputs. Chapter 4 will cover the delicate topic of the
characterization of the sources of uncertainty. Since the material presented will
not be used in applications, this chapter will only cover some basic techniques
and include references to more advanced works. Chapter 5 will present methods
for the forward propagation of uncertainty, covering both old workhorses, re-
cent developments and the novel Spectral Tensor-Train decomposition [Bigoni
et al., 9] described in section 5.2.4.2. These methods will be used on several
applications in the following chapters. Chapter 6 will present global sensitivity
analysis, based on the Sobol’s indices, which will be applied to a railway vehicle
dynamics problem. For completeness of exposition, chapter 7 covers broadly
the topic of probabilistic inverse problems.
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Much of the notation used in Part I conforms with the notation commonly used
in literature. Nevertheless, appendices A and B provide an introduction to the
topics of dynamical systems, probability theory and functional spaces, with the
the necessary notational definitions.

Part II will present engineering applications of UQ. Chapter 9 will present ap-
plications of novel techniques for the forward propagation of uncertainty and
sensitivity analysis on the dynamics of railway vehicles with uncertain suspen-
sion coefficients. Chapter 10 will focus on the application of methods for the
forward propagation of uncertainties on a computationally intensive water wave
model.

Part III contains appendices to the topics covered in this work.

The software developed along the project has been collected in three main
Python modules: the SpectralToolbox1, the UQToolbox2 and the Tensor-
Toolbox3, plus a number of smaller modules listed on the author’s personal
web-page4. Chapter D gives a short overview of these software packages along
with some examples.

1.1 Why quantifying uncertainties?

Uncertainties have been troubling the humanity since its appearance on the
earth. Philosophers first talked about uncertainties in the debate over reality
and senses. The first thinkers setting the problem into words were the Greek
geometers, who were stunned by the human ability of abstraction and of think-
ing about perfect forms. Plato (428-347 B.C.) sustained that abstract forms
were the reality itself, and humans were only exposed to it through sensations
which blurred the real objects like shadows in a cave [13]. Aristotle (384-322
B.C.) framed the subject into a more formal line of reasoning: he developed
the Hylomorphism theory [14], where he separated matter and form, and gave
to the latter a fundamental “holy” role, proving its priority over the matter.
The discussion was carried on over the centuries and revisited for example by
Arthur Schopenhauer (1788-1860) who argued the existence of the “Mâyâ veil”
which misleads our senses [15]. The problem gained popularity during the last
century thanks to “the Copenhagen interpretation of Quantum Theory” sus-
tained, among others, by Werner Heisenberg, Niels Bohr and Max Born. This
interpretation conjectured the probabilistic nature of reality, a point of view
which notoriously unsettled Albert Einstein. Einstein spent a good part of his

1https://pypi.python.org/pypi/SpectralToolbox/
2https://pypi.python.org/pypi/UQToolbox/
3https://pypi.python.org/pypi/TensorToolbox/
4http://www2.compute.dtu.dk/∼dabi/

https://pypi.python.org/pypi/SpectralToolbox/
https://pypi.python.org/pypi/UQToolbox/
https://pypi.python.org/pypi/TensorToolbox/
http://www2.compute.dtu.dk/~dabi/


Why quantifying uncertainties? 11

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y

Time=0

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y

Time=4.3

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y

Time=10.0

Figure 1.1: The double pendulum is one of the simplest examples of chaos: two
rods are attached in series and they are let swinging. The figures show the
path of the double pendulum started from two very close positions. We can see
that despite the starting positions are very close, the obtained trajectories differ
significantly after just 10s.

life devising paradoxes aiming at proving the incompleteness of the theory. The
debate between Einstein and Bohr that originated over these paradoxes gave
way to the spring of a number of different interpretations of how Quantum
mechanics informs our understanding of the nature. The matter is not settled
yet.

In this work we will not add a voice into the debate on reality, but we will
take a Platonic view of the world: we are unable to observe and/or predict na-
ture accurately. In practice this is due to several causes: the limited accuracy
of measurement instruments, the exceedingly high cost of performing accurate
experiments and/or measurements, the lack of accurate models or the computa-
tional need of using simplified ones. In the field of engineering, predictions are
the result of a combination of measurements, modeling and simulations. Anal-
ysis are regularly performed on the basis of these predictions and the standard
assumption made is that reality will not move significantly away from them.
Using the terminology from non-linear dynamics, this means that small per-
turbations of the system will cause only small perturbations of the predictions.
We can find a number of examples in nature where this is not the case. The
most disruptive example is chaos, where small perturbations of the system lead
to completely different dynamics – see figure 1.1 for an example. A notori-
ous example of a chaotic system is the atmospheric weather, for which Lorenz
[16] applied a simplification of the Saltzman’s model [17], characterized by the
presence of strange attractors and coined the now largely misused expression
“butterfly effect”.

In general non-linear systems show complex behaviors when perturbed and this
can lead to unforeseen effects, with the consequence of compromising the par-
ticular outcome of an engineering analysis. In engineering, the objectives of
such analysis are often related to the minimization of costs, the maximization
of revenue, the improvement of safety factors, etc., and unforeseen behaviors
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Figure 1.2: Continuation of the double pendulum example shown in figure 1.1.
Figure 1.2a shows 1000 trajectories of the system with perturbed initial condi-
tions. Figures 1.2b and 1.2c show the distribution of such trajectories at different
times.

can have a dramatic impact on them.

In the context of this work, a perturbation is not to be merely intended as
an external impulse to the system, but rather as a lack of knowledge on some
property of the system. The case presented in figure 1.1 shows an example
about the lack of knowledge regarding the exact initial position of the two
rods. Analogously we could have considered the lack of knowledge of the exact
lengths and masses of the two rods. This interpretation of perturbed systems is
the reason behind the adoption of probability theory for the description of the
possible outcomes of engineering analysis.

Uncertainty Quantification (UQ) is the mathematical field devoted to the de-
scription of uncertainties in dynamical systems. In the context of this work
uncertainties are to be intended as lack of knowledge. In Part I we will be
talking about several kinds of uncertainties. In the example in figure 1.1 the
uncertainty on the initial position of the rods belongs to the input uncertainties,
while the uncertainty on the trajectory of the pendulum belongs to the output
uncertainties. Probabilities will help us describing these uncertainties, thus en-
hancing the capabilities of engineering analysis, enabling the expression of the
likelihood of an event to happen. Figure 1.2 gives a glimpse to the forward
propagation of uncertainties: the initial position is described by a particular
probability distribution from which samples are drawn. Different trajectories
are computed and the distribution of them are obtained. We can see that the
strong sensitivity of the double pendulum to the initial conditions determines a
rapid spread of the initially concentrated distribution.

Considering uncertainties on a system, we have actually ignored a non-negligi-
ble assumption: the mathematical model used to describe the natural system
is correct. In spite of having physical evidences about the outcome of systems,
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many of the commonly adopted models are based on certain levels of approxi-
mation, introduced to make them better manageable. Moreover, as mentioned
in the previous discussion about quantum mechanics, we seem to be unable to
provide a deterministic model even for the most detailed of the systems. Even
if the model uncertainty is a critical problem for many engineering applications,
in this work we will not address it directly. In the description of UQ we will talk
about the construction of surrogate models of “black-box” systems, for which we
have no analytic knowledge. In the examples presented in Part II, the systems
are described by commonly adopted models and the reason behind the use of
the term “black-box” will become evident when we will talk about the different
approaches to UQ in chapter 5.

Despite the complexity of chaos, the example presented in figures 1.1 and 1.2 is
relatively simple from the UQ perspective. Simulations of the double pendulum
model are very fast on today’s computer architectures, and we can afford com-
puting thousands of different solutions in a matter of minutes. Unfortunately,
this is not the case for most of the models used in engineering. In Part II we will
see examples where the computation of a single solution can take hours even in
the most advanced architectures. Furthermore, the analysis that we sketched on
the double pendulum involved only one input uncertainty. In realistic cases we
often deal with tens/hundreds/thousands – sometimes infinite – number of in-
put uncertainties. This will rapidly limit the efficiency of the proposed methods
and thus a wide range of methods will be presented in Part I. In general there
is no unique recipe to all the problems in UQ, but different methods need to
be selected and combined in order to achieve the best outcome. In this context
as in many others in engineering, the quality of the outcome is a compromise
between the accuracy of the solution and the time (computational and human5)
required to obtain it.

5Research usually focuses on the minimization of the computational time, while the indus-
try, for obvious economic reasons, focuses more on the minimization of human time.
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Part I

Uncertainty Quantification





Chapter 2
A formal approach

to uncertainty quantification

Uncertainty Quantification (UQ) is a very active research area devoted to the
study of uncertainties that affect our prediction capabilities. The problems that
it addresses are based on the fields of probability theory [18, 19], dynamical
systems [20–22] and numerical simulations [23–30], while the methods used are
often rooted on statistics, machine learning [31, 32] and functions approximation
[33, 34]. During the last two decades UQ quickly grew as an independent field
and dedicated literature has appeared [35–37], providing the basis for a formal
approach to UQ.

Since our prediction capabilities are bound to the concept of causality, it is
obvious that the primary concern of UQ is to have – or sometimes to assume
the existence – of a model. A model is a mathematical entity describing the
causality connection between some input and some output – see figure 2.1. The
models we are going to investigate here are dynamical systems, i.e. time-space
dependent models, where the inputs are usually boundary conditions and/or
initial values, while the outputs are the states of the system. These models, as
well as their inputs, may very well depend on parameters p which affect their
outputs.

In order to have any predictive capability, models need to be evaluated, associ-
ating particular input conditions to particular output states. Many models have
closed form solutions which enable a fast analytic evaluation, but the majority of



18 A formal approach to uncertainty quantification

 Design of deterministic model
 Identification of uncertainty sources
 and quantity of interest

Quantification of 
Uncertainty Sources

Parametrization
of random fields

Model

x

p

Y
Distribution
estimation

Propagation of Uncertainty

 Sampling methods

Monte Carlo

Quasi MC

Stratified sampl.

Generalized Polynomial Chaos
and Multi-Element gPC

Stochastic Galerkin Method

Stochastic Collocation Method

Tensor Cubature Rules

Smolyak Sparse Grid

 Analysis
 Central dispersion,
 probability of failure

Sensitivity Analysis

 Analysis of Sensitivity

Surrogate Models 

 High-Dimensional
 Model Representation

ANOVA-HDMR

Cut-HDMR

Local Sensitivity Analysis

 Global Sensitivity Analysis

Method of Sobol'

Model refinement

High-dimensional models
Severe Non-smooth mod.

Low-dimensional models
Spectral Convergence

Reduced 
Dimensionality

Accounts for interactions

Tensor Decomposition

Spectral Tensor
Train

Low-rank
representation

Dimensionality
Reduction

Probabilistic Inverse
Problems

Markov Chain
Monte Carlo

Inference

Measurement Data

Figure 2.1: The workflow of Uncertainty Quantification. Extension of the flow
chart described in [38].

them need to be simulated by complex, time consuming and ultimately expen-
sive computational techniques. Despite the advances in numerical methods for
these simulations and the evergrowing computing power, the attained incredible
accuracy may very well be spoiled by the comparison with reality: the input
conditions, parameters and output states are often known within “engineering
accuracy”, known as probability distributions or in some cases not even known.
Chapter 3 will give formal definitions of dynamical systems with random inputs.

In many cases the output of dynamical systems is overabundant with respect to
the analysis that we want to carry out, thus we will restrict our attention to one
or more Quantities of Interest (QoIs) Y. With this perspective, we redefine the
model as the map between the input parameters and the output QoIs, despite
the fact that the full problem might need to be computed in order to retrieve the
QoIs. This map does not always need to be known analytically, but in general
we need to be able to drive/measure the input, evaluate the model and measure
the output, which is a minimum requirement for experiments.

Once the model, its parameters and its QoIs are defined, several kinds of analysis
can be performed, not necessarily in the precise order presented here.



19

Types of uncertainties

Sources of uncertainties are often split in two categories: aleatoric and epistemic
uncertainties [39]. The aleatoric uncertainties are the uncertainties which cannot
be reduced because we do not have control on them. The epistemic uncertainties
are uncertainties which could be reduced by more accurate measurements and
better modeling of the physics.

This distinction is not sharp because it depends on the problem setting and on
subjective judgment. Philosophically speaking, if one believes in the determin-
istic nature of nature – which is not the case for all the physicists –, there is no
such a thing as an aleatoric uncertainty.

From the practical point of view the distinction of which uncertainty is reducible
and which is not depends on the problem setting.

For example, one engineer who works on the structural safety of off-shore struc-
tures will consider the sea weather conditions to be aleatoric and can consider
some parameters of the structure as epistemic. On the other hand, one of the
goals of a person working on weather prediction is the reduction of the uncer-
tainty on the forecasting and description of the sea weather conditions, which
will be consider as epistemic.

Even for two different problem settings in the same engineering field, the set
of aleatoric and epistemic uncertainties can differ. The most relevant example
are laboratory experiments, where the explicit aim is to reduce the number
of aleatoric uncertainties to a minimum. Thus, some uncertainties which are
considered aleatoric in a field experiment, would be considered as epistemic in
the corresponding laboratory experiment.

Even if from the practical point of view it is important to know which are the
uncertainties that can be reduced, in this work we will not make any effort in
their reduction. Thus, the uncertainties considered in the following will not be
categorized with respect to the aleatoric and epistemic definitions.

Quantification of uncertainty sources

The uncertainty on the parameters driving the model output needs to be quan-
tified accurately in order for the UQ analysis to be reliable. The probability
distribution estimation of the parameters can be carried out in several ways:

• by assumption: probability distributions are assigned to the parameters
relying on experience and wisdom,
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• by measurement: extensive measurements of the parameters are carried
out and probability distributions are fitted to these experiments,

• by inference: the probability distributions are reconstructed using mea-
surements of the QoIs.

The quality of the UQ analysis carried out will depend strongly on the quality
of the distributions constructed.

Some uncertain parameters may have a time-space dependency and this leads to
the necessity of employing random processes – commonly called random fields
when they are indexed by a space variable – for the description of uncertainties.
Random processes are in general infinite dimensional objects, where an infinite
number of length scales – in the sense of Fourier – are involved. A notorious
random process is the “white noise”, where all the scales contribute equally to
the process. Other processes have a varying dependence on different scales and
thus can be approximated by finite dimensional processes. This approximation
is called parametrization – or sometimes dimensionality reduction – because it
transforms an infinite dimensional process into one which depends only on a
finite number of uncertain parameters.

Chapter 4 will present some techniques used for the probability density estima-
tion of parameters and for parametrization random processes.

Propagation of uncertainty

Having associated probability distributions to the parameters, we want to know
what the probability distributions of the QoIs look like, i.e. how the model
transforms the input probabilities to the output probabilities. An extensive
literature on this argument has appeared in the last 70 years, since Stanislaw
Ulman came up with the Monte Carlo method in 1946 [40]. As shown in table
2.1, many methods have appeared during the years, addressing different issues.
The list includes some of the methods that will be presented in chapter 5,
without the ambition to present all the methods available today. As it is often
the case in numerical methods, the main issues encountered in the propagation of
uncertainties are related to the achievement of a good balance between accuracy
and time consumed. Since “there ain’t no such thing as a free lunch”, all the
methods presented have strengths and weaknesses, thus methods applied to
particular problems need to be accurately selected.

Historically, the problem of the transformation of probability densities was first
encountered in statistical mechanics in the form of the Fokker-Plank equation
(1914), which is a Partial Differential Equation (PDE) describing the time evo-
lution of the probability density function of the velocity of a particle subject to
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Name Year
[41] Wiener chaos expansion 1938
[40] Monte Carlo method 1946
[42] Quasi-Monte Carlo method 1961
[43] Smolyak rule 1963

[44, 45] Latin Hyper Cube 1977
[46] Generalized Polynomial Chaos 2003

[47, 48] Sparse Grids Quadratures 2003
[49–51] Sparse Grid Pseudospectral approximations 2008

Table 2.1: Methods for propagation of uncertainty and approximate year of
appearance.

Brownian motion forces. Later, the same problem reappeared in the dawning
field of Stochastic Differential Equations (SDEs) [52] in the form of the Kol-
mogorov equations (1931) and the Feynman-Kac formula (1947). By all means
SDEs fall into the topic of propagation of uncertainty and through Itō calculus
[52, 53] they make extensive use of the techniques listed in table 2.1. This work
will make use of some theory on stochastic/random processes which belongs to
the theory of SDEs, but it will not delve into the solution of problems modeled
by SDEs which involve Itō calculus.

Sensitivity analysis

The propagation of uncertainties is useful in describing the probability distri-
butions of the QoIs, but it often overlooks the relation between different input
uncertainties and the output uncertainty. This is the task of sensitivity anal-
ysis: explaining how the output is sensitive to the uncertainty on the input
parameters.

Sensitivity analysis is also an important tool for model refinement: once the
most influential parameters have been identified, the remaining parameters can
be considered without uncertainty, leading to a model with a lower dimensional
input. This refined model can then be used for other more accurate and efficient
analysis.

Probabilistic inverse problems

In many practical problems the probability distribution of the input parameters
is unknown and the parameters themselves are difficult, if not impossible, to be
measured. In these cases we need to resort to the solution of an inverse problem,
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based on the few QoIs which we can measure – sometimes called observables.
In practice we wish to construct the inverse map of the model, in order to infer
the inputs from some measured outputs. In the context of UQ these inverse
problems are often severely under-determined, meaning that few measurements
of the QoIs are available and therefore many set of parameters can produce
the same results satisfying the constraints imposed by the model. Furthermore
the measurements of the QoIs are often noisy, voiding even the definition of a
particular set of parameters generating the output.

In this context it makes sense to rephrase the problem in terms of probability
distributions: having some measurements and knowing their measurement errors
try to construct probability distributions of the input parameters which are
likely to have generated the available data. Solving this kind of problems is
often hard, time consuming and requires a good deal of experience in the field
on which they are applied. Different approaches to the problem are available
and some of them will be presented in chapter 7.



Chapter 3
Dynamical systems with

random inputs

Essentially, all models are wrong,
but some are useful.

George E. P. Box, 1987

In this chapter we will blend the topics of dynamical systems and probability
theory in the definition of dynamical systems with random inputs.

A review on the key concepts on dynamical systems and probability theory as
well as the definition of the notation used in this work are provided in appendix
A and B. The main references used are [54] on the subject of dynamical systems,
[18, 19] for the subject of measure theory and probability theory, [55, 56] for
subjects related to Lp spaces.

3.1 Dynamical systems

This work will consider dynamical systems in the form of Differential Equations
(DE). The generic form of DE that we will use is an Initial Value Problem (IVP)
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for a n-th order Partial Differential Equation (PDE):




ut = Gu (t,x) ∈ T ×D
Bu = 0 (t,x) ∈ T × ∂D
u = u0 (t,x) ∈ T = t0 ×D

(A.10)

where G is a differential operator, B is a boundary differential operator and u0
are the initial conditions for the solution u ∈ Cn(T × D,Rm). Both G and B
can be non-linear.

We will consider the Boundary Value Problem (BVP) of a PDE to be a particular
case of (A.10) where the time dependency is disregarded and Gu = 0. In the
same way we will consider an IVP of an Ordinary Differential Equation (ODE)
to be a particular case of (A.10) where we disregard D.

3.1.1 Numerical solution of dynamical systems

Analytic solutions for ODEs and PDEs can be found for a limited number
of particular problems, where both the differential operator and the boundary
conditions are well behaved – linear – and the geometry of the domain is simple.
In most of the practical problems solved in engineering, the analytical solution
of ODEs and PDEs is cumbersome and approximations are the only achievable
results.

The last 60 years have seen the advent of computer aided simulations, with the
introduction of efficient algorithms and rapidly growing computational power.
Recent architectural developments pushed toward the use of massively parallel
architectures and many scalable algorithms for tackling different problems have
been introduced in the last decade [57, 58].

The two main approaches to the solution of the problem (A.10) are the colloca-
tion and the Galerkin methods – also known as the modal or spectral methods.
The two approaches are related to each other and ultimately built upon the
same approximation theory based on the Sobolev spaces to which the solution
is assumed to belong.

In the collocation approach (A.10) is discretized in time and space by the in-
troduction of the sets of points {ti}Ii=0 ∈ T and {xi}Ni=0 ∈ D and by the dis-
cretization of the differential operators G and B. Different selections of points
and discretizations of the operators lead to different methods for solving (A.10),
which however is pointwise numerically solved. The values of u ∈ Cn(T×D,Rm)
at the N spatially discretized points are the m ×N degrees of freedom (d.o.f.)
of the system.
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In the Galerkin approach the spatial part of problem (A.10) is rewritten in terms
of M modes (basis functions) which are then evolved in time accordingly with
the discretized modal operators G and B. In many cases, where the solutions
have a sufficient regularity, the number of modes M which need to be evolved is
significantly lower than N , leading to a reduced number of degrees of freedom.

The number of degrees of freedom is nowadays a milder problem than it was in
the past, because the introduction of parallel computing and the development
of scalable algorithms, which complexity grows almost linearly with respect to
the dofs, allows to tackle bigger problems by linearly adding computational
resources1. The other bottleneck in the solution of (A.10) is problem depen-
dent and regards the nature of the discretized integral operator G, which limits
the convergence of numerical linear solvers or the step-size of numerical time
integrators.

In general there is no recipe for all the problems, but a combination of different
techniques is usually employed in order to solve large-scale problems. A deeper
analysis of these numerical methods is out of the scope of this work, thus we
refer the interested reader to one of the many books on the topic [23–28].

In chapter 5 we will meet again the collocation and the Galerkin approaches in
the context of Uncertainty Quantification. By all means these two approaches to
UQ share much of the theory with their counterparts used in numerical methods
for PDEs.

3.2 Differential equations with random inputs

The operators defining dynamical systems are very often characterized by pa-
rameters which are known with a certain degree of uncertainty. We can take as a
simple example (A.10), representing the heat equation with Dirichlet boundary
conditions: 




ut = ∇ · (κ(x)∇u) (t,x) ∈ T ×D
u = g(x) (t,x) ∈ T × ∂D
u = f(x) (t,x) ∈ T = t0 ×D

(3.1)

where κ is a space dependent thermal diffusivity. Both κ, the boundary condi-
tion g and the initial condition f can, for instance, be finite variance random
fields:

κ, f ∈ L2(Ω,F , P ;L∞(D)) ,
g ∈ L2(Ω,F , P ;L∞(∂D)) .

1Often other technical problems, like bandwidth limitations, arise when using parallel
resources, but architectural improvements have been and are being continuously introduced.
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Consequently the solution u will be a random field in L2(Ω,F , P ;L∞(T ×D)).
Then the system (3.1) will be rewritten as





ut = ∇ · (κ(x, ω)∇u) (t,x, ω) ∈ T ×D × Ω
u = g(x, ω) (t,x, ω) ∈ T × ∂D × Ω
u = f(x, ω) (t,x, ω) ∈ T = t0 ×D × Ω

(3.2)

In general we will rewrite the IVP (A.10) as a IVP with random inputs:




ut = G(ω)u (t,x, ω) ∈ T ×D × Ω
B(ω)u = 0 (t,x, ω) ∈ T × ∂D × Ω
u = u0(ω) (t,x, ω) ∈ T = t0 ×D × Ω

(3.3)

3.3 Identification of the Quantities of Interest

Often the full result u of an ODE or PDE is overabundant for analysis purposes.
For example, consider the structural load of ocean water waves on offshore
structures: the full dynamics of the water waves need to be computed in order
to get reliable structural loads, but they will not be used for analysis.

In this perspective we define the functional

g : Ω→ Rn (3.4)

representing the relation between the probability space (Ω,F , P ) and n Quan-
tities of Interest (QoI). The function g will be sometimes called QoI function
and it is in practice a random variable on (Ω,F , P ). We will dedicate much of
this work to the characterization of this random variable, which can be viewed
as the model in figure 2.1.

The QoI function is practically hiding all the technicalities of the underlying
problem, from the DE model to its numerical solver. As a trivial example
consider the heat transfer problem (3.1), where we are interested only in the
temperature at a particular location x0 at the steady state time tf . In this case
we would use the definition g(ω) := u(tf ,x0, ω) as the QoI function.

In the following we will talk about non-intrusive methods as the methods which
have no access to the underlying model of the QoI function, but can only query
it. In this case the QoI function will be considered as a black-box function. On
the contrary, we will talk about intrusive methods when the methods have access
to the underlying model and can make use of this knowledge.



Chapter 4
Quantification of

sources of uncertainty

We concluded the last chapter with the introduction of the dynamical system
with random inputs (3.3) and the definition of the QoI function (3.4). In general
it is not needed to identify (Ω,F , P ), since in a certain sense “mother nature
provides it to us”. Instead what we need to characterize are the random vari-
ables and random fields defined on this space, namely quantify the sources of
uncertainty. We will proceed in two steps: first we will try to parametrize the
QoI function (3.4) in terms of a set of independent random variables, then we
will present some techniques for the characterization of the distributions of such
random variables.

4.1 Parametrization of the uncertainty

Let us first consider the case in which the random input ω to the QoI function
g is formed by the random vector X : Ω → S, where S ⊂ Rds is called the
parameter space, ds is the dimension of the parameter space, also known as the
co-dimension of the system, and the random variables {Xi}ds

i=1 are mutually
independent. The random vector X will have a distribution π in the sense of
(B.3). The function

f : X(ω) 7→ g(ω) (4.1)
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is the proper parametrization of the QoI function and it has to be intended
as the map between a realization X(ω) of X and the corresponding QoI value
g(ω). In the case that one has the analytic knowledge of the underlying model,
the parametrization of g corresponds to the parametrization of its underlying
dynamical system (3.3):





ut = G(X)u (t,x,X) ∈ T ×D × S
B(X)u = 0 (t,x,X) ∈ T × ∂D × S
u = u0(X) (t,x,X) ∈ T = t0 ×D × S

(4.2)

We stress the fact that a proper parametrization is given by a set of independent
random variables. If the random variables are dependent, we will simply talk
about a parametrization of the QoI function. We will see in section 4.2 that the
independence is a key property in order to introduce tensor product functional
spaces and this will turn useful in chapter 5.

Let us first introduce what happens when the random input is a random field.
In this case the parametrization needs to take into account the space-dependent
structure of the field and a parametrization is possible through the Karhunen-
Loève expansion [59, 60].

4.1.1 Karhunen-Loève expansion

We consider here a random field a defined on an arbitrary domain D with finite
variance, i.e. a ∈ L2(Ω,F , P ;L∞(D)). After removing the mean of the field,
we obtain ã = a−E [a] with covariance function Cã given by

Cã(x,y) =
∫

Ω
ã(x, ω)ã(y, ω)P ( dω) . (B.34)

We can then construct a compact Hermitian integral operator Vã : L2(D) →
L2(D) based on the kernel Cã(x,y):

(Vãu)(x) =
∫

y∈D
Cã(x,y)u(y) dy . (4.3)

Since Vã is compact and Hermitian, its spectrum is formed by a countable set of
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λi ≥ . . . whose only point of accumulation is zero
[55, 56] – i.e. λi ↘ 0. The eigenfunctions {φi}i=1 ⊂ L2(D) corresponding to
the non-zero eigenvalues {λi}i=1 form an orthonormal system in L2(D). Then
the random process a can be rewritten as the Karhunen-Loève (KL) expansion

a(x, ω) = E [a] +
∞∑

i=1

√
λiφi(x)Yi(ω) , (4.4)
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where E [Yi] = 0 and Cov [Yi, Yj ] = δij . As we point out in appendix B.5, the
uncorrelation of two random variables does not imply their independence. Thus
f : Y(ω) 7→ g(ω) is merely a parametrization of the QoI function. In the case
that a is a Gaussian random field, then Y is a Gaussian random vector and
Cov [Yi, Yj ] = δij implies that {Yi}∞i=1 are mutually independent. This means
that Yi ∼ N (0, 1) and f is a proper parametrization of the QoI function. In all
the other cases the independence assumption is not rigorous, even if it is still
used in common practice. Some techniques for finding a transformation from an
independent random vector Z to the dependent random vector Y are presented
in section 4.2.

The KL-expansion (4.4) needs to be truncated for practical use. Note that

‖V [a(x, ω)]‖L1(D) =

∥∥∥∥∥∥

∞∑

i,j=1

√
λiλjφiφjE [YiYj ]

∥∥∥∥∥∥
L1(D)

=
∞∑

i=1
λi
∥∥φ2

i

∥∥
L1(D) =

∞∑

i=1
λi .

(4.5)

Then we can select NKL ∈ N+ such that

q ≤
∑NKL
i=1 λi

‖V [a(x, ω)]‖L1(D)
, (4.6)

where 0 < q < 1 defines the portion of variance that will be represented by the
KL-approximation

â(x, ω) = E [a] +
NKL∑

i=1

√
λiφi(x)Yi(ω) ' a(x, ω) . (4.7)

Figure 4.1 shows an example of KL-approximation applied to a one-dimensional
Gaussian random field with squared exponential covariance. We can see that
the field becomes rougher as the correlation length becomes smaller and at the
same time the number NKL of retained components in the KL-approximation
increases for the same level of expressed variance.

The covariance Cã is said to be separable if for D =
∏d
i=1Di, there exist the

covariances Ci : Di ×Di → R such that

Cã(x,y) =
d∏

i=1
Ci(xi, yi) . (4.8)

In this case the KL-expansion can be separately applied to each of the covari-
ances Ci and then combined via tensor product.
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Figure 4.1: Example of KL-expansion on a Gaussian random field with squared
exponential covariance. Left: realizations with different correlation lengths l.
Center: first four eigenfunctions for l = 0.01. Right: decay of the eigenvalues
for different correlation lengths l. The crossed eigenvalues are the one retained
in the KL-approximation (4.7) in order to represent q = 95% of the variance.

Furthermore, we refer the reader to [61] for the case of vector-valued dependent
random fields, which need a special treatment in order for the approximation
error of each vector component to be correctly weighted.

The KL-expansion and its truncation strategy belong to the methods for dimen-
sionality reduction. In general, given some functional f ∈ Lp, these methods find
a subspace in Lp which lead to the minimum error in the corresponding Lp norm.
In the particular case of the KL-expansion (4.4), we see that a ∈ L2(D × Ω)
with dim(L2(D × Ω)) = ∞, and the truncation strategy (4.6)-(4.7) allows the
selection of the NKL-dimensional subspace such that

SNKL = arg min
B<L2(D×Ω)
dim(B)=NKL

‖a− PBa‖L2(D×Ω) (4.9)

where B < L2(D × Ω) means that B is a subspace of L2(D × Ω) and PB :
L2(D×Ω)→ B is the projection operator onto B. We will meet this technique
often along this work.

4.2 Independence of random vectors

In the next chapter we will aim at the characterization of the distribution of
f – c.f. (4.1) –, and we will need to query f at some particular values of X.
Doing so requires drawing some realizations – sampling – {X(i)(ω)}Ni=1 from π.
However, the distribution π can be very complex for ds � 1 and sampling from
it can be problematic.
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Figure 4.2: Figure 4.2a shows some samples of X in black, where we can see
that the distribution clusters on a two-dimensional subspace of R3. Finding
this subspace allows us to sample from the two dimensional random vector Z
as shown in figure 4.2b and to project back these points in R3, occurring in the
minimal error with respect to the norm on L2

π(R3).

In many situations one can assume that X = {X1, . . . , Xds} is formed by in-
dependent random variables, i.e. π is a product measure: π =

∏ds
i=1 πi. This

allows the introduction of a coordinate system in S = S1 × . . .× Sds for which
each dimension i has its own measure πi. As a consequence, in order to sample
from the ds dimensional distribution π one needs only to sample independently
from the one dimensional distributions {πi}ds

i=1. Additionally, this means that
L2
π(S) = L2

πi(Si)⊗ . . .⊗ L2
πi(Si) is a tensor product space1.

The independence of {Xi}ds
i=1 will turn out to be very useful in chapter 5, so

it is reasonable to try to parametrize the QoI function in terms of independent
random variables even when this cannot be assumed. Unfortunately this is not
an easy task in all the situations.

When the random vector X has a centered Gaussian distribution, its charac-
terization is solely given by its covariance matrix CX. An independent ran-
dom vector would have a diagonal covariance matrix with the variances of the
independent variables on its diagonal. If we let X = (X1, . . . , Xds) be a ran-
dom vector of dependent Gaussian variables, there is an easy linear transforma-
tion to the vector of independent Gaussian variables Y = (Y1, . . . , Yds) where
Yi ∼ N (0, σ2

i ), Y ∼ N (0,CY) and CY = diag(σ2). The transformation matrix

1Note that while the construction of tensor product Hilbert spaces is well behaved because
it relies on the construction of a new inner product, the construction of tensor product Banach
spaces is subtle because the construction of a new norm for the tensor product space is not
unique.
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Figure 4.3: Sampling from uncorrelated but dependent random variables.

A such that X = AY is given by the Cholesky decomposition of the covariance
matrix CX = AAT .

When CX is singular or close to singular, it means that two random variables
are strongly correlated and thus we can equivalently use a lower dimensional
vector Z = (Z1, . . . , ZdΞ), where dΞ < ds. This can be done employing the
Principal Components Analysis (PCA). This consists in the computation of the
eigenvalue decomposition CXP = PΛ, where CX is semi-positive definite, P
is a matrix of orthogonal columns containing the principal directions in Rds

and Λ are the eigenvalues of the principal directions. The directions with the
smallest eigenvalues λi will have a negligible influence on the total variance∑

V[Xi] =
∑
λi. Thus we can retain the dΞ largest eigenvalues and discard

the remaining directions. The principal directions are orthogonal and define a
coordinate system for Z, where Zi ∼ N (0, λi). Realizations Z = {Z(j)}Nj=1 of Z
can then be projected back to the S space to obtain realizations X = {X(j)}Nj=1
of X. This corresponds to the evaluation of X = PZ. This procedure is shown
in figure 4.2.

Unfortunately, the techniques presented up to here work only for Gaussian ran-
dom vectors. In fact, as we already stated, a non-Gaussian uncorrelated random
vector is not necessarily independent, thus diagonalizing the covariance matrix
doesn’t work for non-Gaussian vectors. For instance, in figure 4.3a X is an un-
correlated dependent random vector with a multi-modal Normal distribution π
with PDF

ρX(x) = 1
4

4∑

j=1

1√
2π

exp
(
−|x− µj |

2

2

)
, (4.10)

where µ = [(3, 3), (3,−3), (−3, 3), (−3,−3)]. In figure 4.3b X is a uncorrelated
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dependent random vector:

X1 ∼ N (0, 1) , X2 = X2
1 + Z , (4.11)

where Z ∼ N (0, 1). For both of these cases the correlation between the two
variables is zero, but they are strongly dependent by construction. For instance
in the second case:

Cov [X1, X2] = E [X1X2]−E [X1] E [X2] = E
[
X3

1
]

+ E [X1Z] = 0 .

In these cases what one needs to know are the relations between the variables, i.e.
the conditional CDF’s. This is the idea behind the Rosenblatt transformation
[62]. If we let X = (X1, . . . , Xds) ∼ π be a vector of dependent random variables,
we can define Z = (Z1, . . . , Zds) by

Z1 ∼ πX1 ,

Z2 ∼ πX2|X1 ,

. . .

Zds ∼ πXds |Xds−1,...,X1 .

(4.12)

It can be shown that Z is a vector of independent random variables. The
drawback of this approach is that it requires the knowledge of these conditional
probabilities which are rarely available in practice.

The Rosenblatt transformation belongs to the class of indirect methods for
proper parametrization. Given X : Ω → S ⊂ Rds with distribution πX, the
aim of these methods is the construction of a function t : Ξ → S such that
t(Z) ∼ πX, where Z : Ω → Ξ ⊂ RdΞ is an independent random vector with a
known distribution πZ =

∏dΞ
i=1 πi and dΞ ≤ ds. This can be achieved by the

solution of a probabilistic inverse problem for some parametric formulation of
t, with respect to some collected measurement.

Probabilistic inverse problems will be the topic of section 7, but they will be
defined in a slightly different context where the inference of the distribution of
the input parameters is done with respect to measurements of the output QoIs
rather than the input parameters themselves.

Other methods aim at the direct construction of the probability density function
and thus belong to the class of direct methods. In the next section we will see
some basic examples of this approach.

The interested reader is referred to [63–67] for more advanced direct and indirect
methods.
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4.3 Probability density estimation

Most of the distributions used in practical applications of probability theory
admit densities – c.f. (B.5). It is thus useful to identify these densities because
they completely characterize the distribution and can then be used to draw
realizations, e.g. by rejection sampling, for the propagation of uncertainty. The
identification of the densities goes under the name probability density estimation
and consists in the construction of densities which agree with measurement data
of the random vector of interest – at this stage the random vector of input
uncertainties.

We can distinguish between two classes of methods for probability density esti-
mation: the parametric methods and the non-parametric methods.

4.3.1 Parametric methods

The parametric methods are based on the a priori selection of a family of prob-
ability distributions {πθ : θ ∈ Θ} for X, parametrized by a finite set of param-
eters θ – e.g. the family of Normal distributions is parametrized by its mean
and variance – and a sufficient statistic which can completely determine those
parameters – e.g. for the family of Normal distributions the sufficient statistic
is the sample mean and the sample variance. In practical cases the family of
probability distributions can be formed by mixtures of multiple distributions. In
this case the unknown parameters are both the parameters of each distributions
and the mixing coefficients, called latent variables.

The problem of determining θ given a set of observations {xi}Ni=1 is commonly
rephrased into a Maximum Likelihood optimization problem:

θ̂ = arg max
θ∈Θ

`
(
θ; {xi}Ni=1

)
(4.13)

where ` is the log-likelihood

`
(
θ; {xi}Ni=1

)
= log

(
N∏

i=1
ρθ(xi)

)
=

N∑

i=1
log ρθ(xi) (4.14)

and ρθ is the PDF of πθ. The latest form of the log-likelihood in (4.14) is usually
preferred to the central one, because of the risk of arithmetic underflow when a
product of small values is taken.

In a limited set of cases this problem has a closed form and can be solved by
simple linear algebra. In general, however, the maximizer must be identified
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Figure 4.4: Kernel Density Estimation of examples in figure 4.3. Estimation
obtained using the kernel (4.17), and different smoothing parameter λ. On the
left figure, the dashed curves show the exact PDF.

numerically. If the optimization problem can be shown to admit only one max-
imizer, then a deterministic optimization algorithm can be used. In the most
general case the problem can have multiple maximizers, thus one need to resort
to random search algorithms. Alternatively, a Bayesian model of the form

ρpost(θ|{xi}Ni=1) ∝ `
(
θ; {xi}Ni=1

)
ρprior(θ) (4.15)

can be set up. The posterior distribution of the parameters ρpost(θ|{xi}Ni=1) can
be sampled as described in chapter 7, and the most probable parameter set θ
can be taken as the maximizer of problem (4.13). See [32] for further details on
these methods.

Once the parameters θ have been identified, the analytic knowledge of the dis-
tribution can be exploited in the forward propagation of uncertainty, by direct
sampling or by the construction of more advanced methods – see chapter 5.

4.3.2 Non-parametric methods

On the other hand the non-parametric methods do not make any assumption
regarding the family of probability distribution to which X belongs. They try
instead to construct the PDF ρ of the ds-dimensional random vector X ∼ π only
from the available data {xi}Ni=1, using the Kernel Density Estimation (KDE):

ρ(x0) = 1
N

N∑

i=1
K(x0,xi) . (4.16)

A common choice of K is the Gaussian kernel density:

K(x0,x) = 1
(2λ2π) ds

2
exp

(
−‖x0 − x‖2

2λ2

)
, (4.17)
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where λ, the variance, plays the role of a scaling factor which defines how quickly
the relevance carried by one measurement decay as we get farther from it. In
practice λ provides a tunable smoothing parameter for the approximation. With
λ → 0, the distribution ρ will tend to a sum of N Dirac distributions centered
at the measurements. For multiple dimensions, (4.17) can be rewritten in order
to have anisotropic variance. In literature λ is commonly called “bandwidth”
and the reader is referred to [68] for a review on its automatic selection.

Figure 4.4 shows the KDE applied to the examples (4.10)-(4.11) using the sam-
ples in figure 4.3. We notice that the smoothing parameter λ gives an important
contribution to the quality of the estimated PDF. A drawback of KDE is that
the number of measurements needs to be big in order to obtain reliable approx-
imations, in particular in high-dimension, i.e. for ds � 1.

Once the PDF has been estimated, it can be used for the forward propagation
of uncertainty. However, the lack of analytical knowledge of the associated
distribution, leads to the need of using algorithms such as rejection-sampling,
which are not efficient in high-dimension and for concentrated distributions, or
a Bayesian approach using Markov Chain Monte Carlo – see chapter 7.



Chapter 5

Propagation of uncertainty

In the last chapter we described the construction of the parametrization

f : X(ω) 7→ f(ω) (4.1)

of the QoI function g described in section 3.3, in terms of the random vector
X ∼ πx. In section 4.2 we stressed that if f is a proper parametrization, i.e. if
the components of X are mutually independent, we would gain many advantages
in the propagation of the uncertainty. However, not all the methods presented
here need a proper parametrization in order to work, but in general any of them
would benefit from having it.

In this chapter we will present methods for the analysis of the random variable
f ◦X : Ω→ Rn. We will use the shorthand πf for the distribution πf◦x defined
for any A ∈ B(Rn) as

πf◦x(A) = πx
(
f−1(A)

)
= P

(
X−1 (f−1(A)

))
, (5.1)

where X−1 and f−1 are the pre-images of X and f respectively.

From the UQ perspective the analysis of the random variable f ◦X can mean
several things:

• Statistics: we could be interested to the statistical moments of f , e.g. on
its average behavior E [f ] and its variance V [f ].
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• Distributions: since f ◦ X is very often a non-Gaussian random vari-
able, the first statistical moments do not provide sufficient information
regarding its distribution πf , thus we could aim at its approximation.

• Probabilities: In some cases we are not interested on the general distri-
bution πf , but only on the probability of some event to occur, i.e. on the
measure of this event under πf .

The particular analysis that is of interest is problem dependent and here we
will focus mainly on the analysis of statistics and distributions. The analysis
of probabilities is usually addressed in the context of reliability analysis, where
the events of interest are extreme events with, hopefully, low probability. The
reader is referred to [69–71] for more information regarding the methods for this
kind of analysis.

The methods presented here will make different levels of assumptions. Assump-
tions usually help improving the performances of the propagation of uncertainty,
but they also limit the applicability of the methods. Here we list the main as-
sumptions which will be mentioned later on.

(PU-0) Any desired value can be assigned to the random vector X. In other words,
one is able to drive the input of the QoI function f .

(PU-1) f is a proper parametrization, i.e. X ∼ πx is composed by mutually
independent random variables and S =

∏ds
i=1 Si, with Si ⊂ R,

(PU-2) f ∈ L2
πx

(S),

(PU-3) f ∈ Hkπx
(S) for some k ≥ 0, i.e. f possess a certain degree of regularity

with respect to X.

(PU-4) One has explicit knowledge of f and of the underlying dynamical system,
including its implementation.

Even if assumption (PU-0) seem to be obviously always fulfilled, there are sit-
uations where this is not the case. Consider for example the input data of a
laboratory experiment where X could only be measured but not controlled.

In the discussion of this chapter we will disregard analytical methods for the
calculation of the statistics and the transformation of distributions, due to their
limited applicability. We will instead focus on numerical methods which are
generally applicable to any problem in the form (4.1).
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Figure 5.1: Examples of the inverse sampling. The inverse CDF function is eval-
uated on values drawn from the uniform distribution U([0, 1]) (square dots along
the vertical direction), obtaining values with the desired distribution (crosses
along the horizontal direction).

5.1 Pseudo-random sampling methods

Pseudo-random sampling methods are the most general methods for propaga-
tion of uncertainty, making very little assumptions on the QoI function and its
parametrization. These methods are frequently referred to as brute force meth-
ods, because they practically try to mimic the probabilistic characteristics of
nature, which here is described by the probability space (Ω,F , P ).

Before introducing the pseudo-random sampling methods, we need to clarify
what pseudo-random sampling means.

Given a random vector X ∼ π – with not necessarily mutually independent com-
ponents – random sampling means to draw an ensemble {X(i)(ω)}Ni=1 formed
by N realizations from {X(i)}Ni=1, which are independent and identically dis-
tributed (i.i.d.) random vectors with X(i) ∼ π. Random sampling is impossible
in practice. Thus we always resort to pseudo-random sampling a sequence of
values {X(i)(ω)}Ni=1 which are selected according to π and not correlated to each
other. Since the generating algorithm is deterministic, the latter property is not
fulfilled in practice. However, the correlation length of the values generated
by nowadays pseudo-random number generators (RNG) is usually much longer
than the size N of the desired sample set, and thus it is never a problem. The
reader is referred to [72, 73] for more details on the practical implementation of
pseudo-random number generators.

All the basic algorithms for pseudo-random number generation try to sample
from a uniform distribution U([0, 1)) and thus we are in principle only able to
generate values between 0 and 1. In order to sample from a more complex
distribution π, we need to use a mapping from the uniform distribution to the
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Figure 5.2: Examples of rejection sampling.

distribution of interest. For example let X ∼ π be the random variable of
interest from which we want to sample and let FX be its CDF. From (B.4),
FX is continuous and non-decreasing and thus we can define its left-continuous
inverse as

F−1
X (u) = inf{x : FX(x) ≥ u} . (5.2)

With this definition and for U = FX(X) we have that

P (U ≤ u) = P (FX(X) ≤ u) = P (X ≤ F−1
X (u)) = FX(F−1

X (u)) = u

and thus U ∼ U([0, 1)). This implies that F−1
X (U) ∼ π. Thus, the application of

this transformation to a uniformly sampled variable, leads to the sampling from
the distribution of interest. This method is called inverse sampling and figure 5.1
shows its application for the generation of samples with different distributions.
Most of the software packages devoted to RNG provide samplers of commonly
used distributions implemented with the inverse sampling method.

In spite of being very efficient in the generation of pseudo-random numbers,
the applicability of the inverse sampling method is limited to one dimensional
distributions – this excludes dependent random vectors – and distributions for
which the inverse transform is known.

An alternative method of sampling, which only requires the knowledge of the
PDF ρX of the random vector X, is the rejection sampling. The idea is to
sample from a known distribution ρY which dominates almost everywhere CρX
for a properly selected 0 < C < 1. For example, let X ∼ Be(2, 5) and let
us assume that we know its density ρX its inverse CDF is unknown. We let
Y ∼ U([0, 1]) and fix C = 1.1 × max(ρX) as shown in figure 5.2a. Then we
can exploit the following property: if (X,Y ) is uniformly distributed in {(x, y) :
0 ≤ y ≤ ρX(x)}, then the PDF of X is ρX . Note that sampling uniformly
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under the dominating PDF ρY leads to sampling uniformly under the dominated
distribution ρX . Thus we can uniformly sample under the graph of ρY and
reject the samples which are above the graph of CρX . This strategy is shown
in figure 5.2a for the Beta distribution. Figure 5.2b shows the more involving
case regarding the dependent random vector (4.11) for which the PDF was
approximated using the KDE method in section 4.3.2.

Rejection sampling is a powerful method to be used when the PDF is known and
can be easily dominated by the PDF of a distribution from which we are able
to sample. The best dominating distribution is the one for which the volume of
the gap between its PDF and the PDF of interest is minimum, because in this
way one will accept the highest number of samples. If the PDF of interest does
not resemble any of the analytically known distributions – e.g. if it has peaks –,
then rejection sampling will end up selecting many values that will be rejected.
This problem quickly amplifies as the dimension increases, because the rejection
volume grows exponentially with the dimension, while the acceptance volume is
fixed. Sampling from high-dimensional distributions is usually addressed using
one of the Markov Chain Monte Carlo methods presented in chapter 7.

5.1.1 Monte Carlo method

Monte Carlo is an extremely bad
method, it should be used only
when all alternative methods are
worse.1

Alan Sokal, 1996

The aim of the Monte Carlo (MC) method is to sample from the distribution
πf of the parametrized QoI function f (4.1), and to characterize πf through the
collection of realizations {(f ◦X)(i)}Ni=1.

This is by far the most generic method among the ones for propagation of un-
certainty. Assumption (PU-0) is generally required, but in some cases it can
also be neglected. This assumption is usually not fulfilled when performing
laboratory experiments, where the input X ∼ π cannot be controlled but only
measured. However, if the laboratory experiment guaranties that the realiza-
tions of X are actually distributed with distribution π, then the assumption
(PU-0) is not even necessary. In this case we would refer to MC as a random
sampling method instead of a pseudo-random sampling method.

1Which is often the case.
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Given a parametrized QoI function f , X ∼ πX and an RNG for πX , the method
can be summarized in three steps:

1. Use the RNG to obtain the set {X(j)(ω)}Nj=1 of N realizations of the i.i.d.
random vector {X(j)}Nj=1.

2. Compute the set {(f ◦X)(i)(ω)}Ni=1, where (f ◦X)(j)(ω) = f(X(j)(ω)). In
other word this corresponds to the evaluation of f on {X(j)(ω)}Nj=1

3. Use {(f ◦X)(i)(ω)}Ni=1 to characterize πf . This can mean the computation
of the relevant statistics of πf or the characterization of πf through some
of the methods presented in section 4.32.

The method hinges on the definition of sample mean

E [f ] = µf ' µ̄f = 1
N

N∑

i=1
f(X(j)) (5.3)

and on the Central Limit Theorem, which implies that µ̄f → N (µf , σ2
f/N) as

N → ∞. This means that the standard deviation of the mean estimator (5.3),
which broadly speaking represents the error, decreases with the inverse of the
square root of N , i.e. O(N−1/2).

This convergence rate is rather slow compared to convergence rates that we
are used to encounter for numerical algorithms. This poses a big limitation to
the applicability of the method and its accuracy when the evaluation of f is
computationally expensive. However, the method is widely used mainly due to
its robustness and ease of implementation. But also for a more critical property:
the estimator (5.3) has a convergence rate of O(N−1/2) independently from
the dimension ds of X. This is a very useful property because many random
variables are often involved by f , and no other method possesses this property
unless other assumptions are made on f . Methods for which the convergence
rate deteriorates with the increase of the dimension ds are said to suffer the
curse of dimensionality

5.1.2 Latin Hyper Cube

The MC method uses the RNG to produce the ensemble {X(j)(ω)}Nj=1 which
is then used as an argument for f . As we discussed in the last section, the

2Section 4.3 describes the characterization of source of uncertainty. In this case however we
would use those methods for the characterization of the uncertainties of the QoI rather than
the sources. We see here an example of how the flowchart of the UQ workflow in figure 2.1 is
a simplification and methods belonging to different UQ stages can be used in other stages as
well.
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Figure 5.3: Monte Carlo and Latin Hyper Cube samples of X ∼ U([0, 1]2)

convergence of the estimated moments of πf to their exact counterparts is very
slow. This is partly due to the fact that the quality of the ensemble {X(j)(ω)}Nj=1
is poor and it converges very slowly to the desired distribution πX . Latin Hyper
Cube (LHC) [44] helps improving the quality of the ensemble and then it often
leads to a faster convergence of the estimators. Convergence rates are difficult
to obtain for this method because they are problem dependent, but an estimate
is given in [44].

But for the sampling strategy of the ensemble {X(j)(ω)}Nj=1, the LHC method
follows the same three steps of the MC method. Assuming that X ∼ U([0, 1]ds),
the ensemble {X(j)(ω)}Nj=1 is constructed as follows:

1. each of the ds axis are partitioned into N parts, creating Nds cells {ci}Ni=1,
2. the N samples are extracted such that each of them belongs to a cell ci

and no other sample is contained on cells which share indices with i,

where i = (i1, . . . , ßds) is a multi-index and the notation {·}Ni=1 means for all
i ∈ {i : 1 ≤ ij ≤ Nj , ∀j ∈ [1, . . . , ds]}. The second step seems difficult to be
enforced, because the number of cells grows exponentially with ds. However,
with a small implementation trick an algorithm with O(dsN) can be obtained3.

As usual, once that we are able to sample from the uniform distribution, we
can generate ensembles from other distributions using, for instance, the inverse
transform method.

Figure 5.4 shows the convergences of the Monte Carlo method and the Latin
Hyper Cube methods on the estimation of the mean of the function f(X) =

3For example, see the implementation in [Bigoni, 12]
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Figure 5.4: Convergence of Monte Carlo and Latin Hyper Cube mean estimator
to E [f(X)] = E

[
3
∑ds
i=1 X2

i

]
= ds with X ∼ U([0, 1]ds)

3
∑ds
i=1 X2

i , where X ∼ U([0, 1]ds). We can see that the LHC method sig-
nificantly outperform the MC method, which exhibits the usual convergence
O(1/

√
N). It is also interesting to note that none of the two methods suffer

from the curse of dimensionality.

An improvement of the LHC method is the Orthogonal LHC method [74], which
is able to construct ensembles of even better quality. A totally different approach
is instead taken by the Quasi-Monte Carlo (QMC) method [42], which is based
on deterministic sequences and their randomization, and leads to a convergence
of O

(
(logN)ds /N

)
which is asymptotically better than MC and LHC, but it

deteriorates with increasing ds.

5.2 Polynomial chaos methods

The pseudo-random sampling methods presented up to here are mainly designed
to compute the moments of the random variable f ◦X. The dependence relation
between f and its input X : Ω → S ⊂ Rds is mostly lost using these methods.
Polynomial chaos (PC) methods try to exploit this relation in order to get
better estimates with a lower computational burden. These better estimates
are achievable at the expense of assumptions (PU-0)-(PU-3) on f and X.

Assumption (PU-1) means that πx =
∏ds
i=1 πxi and consequently L2

πx
(S) =∏ds

i=1 L
2
πxi

(Si). This implies that we can construct a basis for L2
πx

(S) in terms
of the tensor product of basis for L2

πxi
(Si). Thus for now we will focus on the

theory regarding L2
πx(S) space with one dimensional support.
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For the sake of simplicity, backed by assumption (PU-1) and noticing that
B(S) ⊂ B(R), we will extend the domain of the measure πx : B(S)→ [0, 1] to
π̃x : B(R)→ [0, 1] assigning measure zero to the sets A \ S for A ∈ B(R), i.e.

π̃x(A) = πx(A \ Sc) for A ∈ B(R) . (5.4)

In order to reduce the notation we will denote π̃x by πx.

Let {φj}∞j=0 be an orthonormal basis for L2
πx(R) – its construction will be dis-

cussed later. Then (φi, φj)L2
πx (R) = δij and for any f ∈ L2

πx(R) – assumption
(PU-2) – we have that

f =
∞∑

j=0
f̂jφj f̂j = (f, φj)L2

πx (R) . (5.5)

For N ≥ 0, we define the projection operator PN : L2
πx(R)→ span

(
{φj}Nj=0

)
as

PNf =
N∑

j=0
f̂j φj f̂j = (f, φj)L2

πx (R) . (5.6)

Orthonormal basis for L2
πx(R), where πx is a probability distribution, are formed

by orthonormal polynomials, i.e. {φj}∞j=0 are polynomials such that

(φi, φj)L2
πx (R) = δij

∫

R
φi(x)πx( dx) =

{
1 if i = 0
0 otherwise

(5.7)

The orthonormal basis {φj}∞j=0 is usually sorted with increasing polynomial or-
ders. Orthogonal polynomials are presented in appendix C. The L2 convergence
of (5.6) to f ∈ Hkµx(R) – assumption (PU-3) – is given by [26, 28, 33]:

‖f − PNf‖L2
πx (R) ≤ C(k)N−k|f |R,πx,k . (5.8)

Thanks to assumption (PU-1), the construction of a projection operator for
dimension ds > 1 can be achieved by the tensor product of the basis {φi,j}∞j=0
for L2

πxi
(R). For the multi-index j = (j1, . . . , jds), we denote {Φj}∞|j|=0 the basis

for L2
πx

(Rds), with Φj = φ1,j1 ⊗ . . .⊗ φds,jds and total order |j| = j1 + . . .+ jds .
For N ≥ 0 we define the projection operator PN : L2

πx
(Rds)→ span

(
{Φj}N|j|=0

)

as

PNf =
N∑

|j|=0

f̂jΦj f̂j = (f,Φj)L2
πx (Rds ) . (5.9)
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In practice (5.9) provides a surrogate model for f , which lives in the simplex
tensorized space span

(
{Φj}N|j|=0

)
with

dim
(

span
(
{Φj}N|j|=0

))
=
(
N + ds
N

)
. (5.10)

One could also select the fully tensorized space span
(
{Φj}N|j|0=0

)
, where |j|0 =

max(j), with
dim

(
span

(
{Φj}N|j|0=0

))
= (N + 1)ds . (5.11)

We can see that (5.11) grows faster than (5.10) as N and ds grow. These are not
the only choices available and we will see in the following that finding a space
with a mild dimensional growth with respect to ds is crucial for the application
of PC to high-dimensional problems.

The statistical moments of f(X) can be obtained from the expansion (5.5) and
the properties in (5.7):

E [f ]πx
= E



∞∑

|j|=0

f̂jΦj



πx

=
∞∑

|j|=0

f̂jE [Φj]πx
= f̂0E [Φ0]πx

,

V [f ]πx
= E









∞∑

|i|,|j|=0

f̂if̂jΦiΦj


−E [f ]πx




2


πx

=
∞∑

|i|=1

f̂2
i ,

(5.12)

at an insignificant additional computational expense. In the same way, the
statistical moments can be approximated using PNf by properly truncating the
sums in (5.12).

The development up to now has relied on the exactness of the inner products
in (5.5)-(5.6) and (5.9). In practice one needs to approximate the inner product
f̂j = (f,Φj)L2

πx (Rds ) using a discrete inner product based on cubature rules –
high-dimensional quadrature rules – and this leads to an error in the projec-
tion. Given the distribution πx, the corresponding Gauss-type quadrature rule,
defined by the points and weights {(xi, wi)}Ni=0 can be constructed as described
in appendix C. Then the integral of g ∈ L2

x(R) can be approximated using the
quadrature rule QN :

∫

R
g(x)πx( dx) '

N∑

i=0
g(xi)wi =: QNg . (5.13)

Gauss, Gauss-Radau and Gauss-Lobatto quadrature rules can be applied to
open intervals, intervals open on one side and closed intervals respectively, be-
ing exact for functions g of polynomial orders up to 2N + 1, 2N and 2N − 1
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respectively. A basic construction of cubature rules for higher dimension is
based on the tensor product of one dimensional quadrature rules:

QN = QN ⊗ . . .⊗QN . (5.14)

The discrete version of the projection (5.9) is given by the following definition.

Definition 5.1 (Discrete projection) Let (zi, wi)Ni=0 be a set of quadrature
points and weights. The discrete projection of f is defined in terms of the oper-
ator P̃N : L2

π(Rds)→ span({Φi}Ni=0), defined by

P̃Nf =
N∑

i=0
f̃iΦi, f̃i = QN(fΦi) =

N∑

j=0
f(zj)Φi(zj)wj . (5.15)

If the quadrature rule is a Gauss quadrature rule, then the discrete projection
will be exact for f ∈ PN, the set of polynomials of degree up to N.

Polynomial chaos methods can be implemented in two different flavors which be-
long to the class of Mean Weighted Residual (MWR) methods [75]: the Galerkin
method and the collocation method. In the following sections we will review
both of them.

Aside from the projection operator, we can also define a polynomial interpolation
operator. A number of collocation methods can be based on the interpolation
operator. Among the author’s publications one of these methods appears in
[Bigoni et al., 9]. We refer the interested reader to the presentation therein or
to more complete books on the topic [36, 37].

A critical condition in order to be able to approximate integrals by cubature
rules is that assumption (PU-0) is fulfilled. When this is not the case, then it
is not possible to use the desired quadrature points and alternative methods
need to employed. To the author’s knowledge works related to PC in these
cases are still lagging, with the exception of [76–78]. The literature on machine
learning proposes alternative approaches based, for example, on reproducing
kernel Hilbert space [32], such as the Kriging estimate [79].

Historical note on Polynomial Chaos methods

Polynomial approximation methods for random variables were first introduced
by Wiener (1938) [41] as the Homogeneous chaos, where any random variable
X ∈ L2(Ω,F , P ) was expanded in terms of a truncated series of Hermite poly-
nomials [80] – see appendix C.2 – denoted as Polynomial Chaos (PC) expansion.
Hermite polynomials form a basis for L2

π(R) with π being the Normal distribu-
tion and they turn out to be optimal in representing Gaussian random variables.
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The generalized Polynomial Chaos (gPC) [46] was introduced as an extension
of PC, where polynomials from the Askey-scheme [81], which are orthogonal
with respect to different densities, were related to the distributions with the
corresponding densities. This allows a faster convergence of the gPC-expansion
of random variables with the corresponding distributions. Appendix C lists
some of these orthogonal polynomials.

Along the same lines of thought, orthogonal polynomials can be constructed
also for arbitrary densities using Gram-Schmidt orthogonalization or by finding
their recursion coefficients. A collection of methods to find recursion coefficients
for arbitrary densities was implemented by W.Gautschi [33, 82]4.

5.2.1 Galerkin methods

Galerkin methods belong to the class of intrusive methods: this means that an
explicit knowledge of the underlying model needs to be available, i.e. (PU-4)
must hold. Given the generic dynamical system with random inputs





ut = G(X)u (t,x,X) ∈ T ×D × S
B(X)u = 0 (t,x,X) ∈ T × ∂D × S
u = u0(X) (t,x,X) ∈ T = t0 ×D × S

(4.2)

the Galerkin method aims at its spectral discretization with respect to S. In
order to obtain a numerical solution of (4.2), T and D need to be discretized as
well using one of the methods commonly used for the solution of deterministic
PDEs. What is finally obtained is a mixed discretization of the system.

In the Galerkin approach, we first identify the orthonormal basis {Φj}∞|j|=0 for
L2
πx

(Rds) and select a truncation parameter N ≥ 0, defining the orthonormal
system {Φj}N|j|=0. Disregarding for now the discretization of T and D, every
function and operator – linear – in (4.2) is expanded in terms of the orthonormal

4A porting to Python is available at https://pypi.python.org/pypi/orthpol/

https://pypi.python.org/pypi/orthpol/


Polynomial chaos methods 49

system {Φj}N|j|=0:

u(t,x,X) ' uN (t,x,X) =
N∑

|j|=0

ûj(t,x)Φj(X) ,

G(t,x,X) ' GN (t,x,X) =
N∑

|j|=0

Ĝj(t,x)Φj(X) ,

B(t,x,X) ' BN (t,x,X) =
N∑

|j|=0

B̂j(t,x)Φj(X) ,

u0(x,X) ' u0,N (x,X) =
N∑

|j|=0

û0,j(x)Φj(X) .

(5.16)

In the following we will call {ûj(t,x)}N|j|=0 the stochastic modes of uN (t,x,X).
Then we will require for the error (u−uN ) to be orthogonal to span

(
{Φj}N|j|=0

)
.

This is achieved by the solution of the following weak formulation: “find uN ∈
span

(
{Φj}N|j|=0

)
such that





E [∂tuNΦi] = E [GNuNΦi] (t,x,X) ∈ T ×D × Rds

E [BNuNΦi] = 0 (t,x,X) ∈ T × ∂D × Rds

E [uNΦi] = E [u0Φi] (t,x,X) ∈ T = t0 ×D × Rds

(5.17)

for all i such that 0 ≤ |i| ≤ N .”

If the operator G or B is non-linear then the formulation is more involved.
Note that when we consider linear deterministic ODEs/PDEs and we rewrite
them as stochastic ODEs/PDEs, they can become non-linear ODEs/PDEs due
to the dependence of G on the random input [83]. Then their application to
uN ∈ span

(
{Φj}Nj=0

)
can easily lead to a result lying outside of span

(
{Φj}Nj=0

)
.

This problem will be discussed in section 5.2.3.

In the following we will use an example in order to explain how the Galerkin
method works. We will consider the two dimensional heat equation with the
diffusivity coefficient distributed log-normally.

Example 5.1 (Heat Equation) Consider the parametrized heat equation:




−∇ · (κ(X)∇u(x, X)) = h(x) x ∈ [0, 1]2

u(x, X) = 0 x ∈ ΓD = [0, x2] ∪ [x1, 0] ∪ [x1, 1]
∂xu
∂n (x, X) = 0 x ∈ ΓN = [1, x2]

(5.18)
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Figure 5.5: Example 5.1: Heat equation. Left: sparsity pattern of a part of
the discretized operator. Each block of 212 × 212 corresponds to the spatial
discretization of the operator. Center and Right: mean and variance of the
solution.

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

1
e

2

1

0

1

2

3

4

5

Mode 0

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

1
e

2

2.0

1.5

1.0

0.5

0.0

0.5

Mode 1

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

1
e

3

1
0
1

2

3

4

5

6

Mode 2

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

1
e

3

1.4
1.2
1.0
0.8
0.6
0.4
0.2

0.0
0.2

Mode 3

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

1
e

4

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Mode 4

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

1
e

5

5

4

3

2

1

0

1

Mode 5

Figure 5.6: Example 5.1: Heat equation. Stochastic modes {ûi(x)}Ni=0.
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where h(x) = exp
(
− |x−x0|2

l

)
, l = 0.01, κ = exp(X), X ∼ N (µ, σ2), µ = 0

and σ = log(
√

10)/2.85. Let {φi}Ni=0 be the normalized Hermite probabilists’
polynomials – see appendix C.2.3. These polynomials form a basis for the space
of normally distributed random variables. For the interest of the presentation
of this example, let us assume that we don’t know the analytic relation between
κ and X. Then we expand the function u and the diffusivity coefficient κ:

u(x, X) ' uN (x, X) =
N∑

i=0
ûi(x)Φi(X)

κ(X) ' κN (X) =
N∑

i=0
κ̂iΦi(X)

(5.19)

Next we define the weak formulation of problem (5.18): “Find uN (x, X) ∈
C2([0, 1]2)⊗ span

(
{φi}Ni=0

)
such that:





E [−∇ (κN (X)∇uN (x, X)) Φk] = E [h(x)Φk] x ∈ [0, 1]2

E [uN (x, X)Φk] = 0 x ∈ ΓD
E
[
∂xuN
∂n (x, X)Φk

]
= 0 x ∈ ΓN

(5.20)

for all 0 ≤ k ≤ N”. Using the fact that h is deterministic, and using the
properties of orthonormal polynomials, we get:




∑N
i,j=0 κ̂j

(
−∇2ûi(x)

)
E [ΦiΦjΦk] = δ0,kh(x)E [Φk] x ∈ [0, 1]2

ûk(x) = 0 x ∈ ΓD
∂xûk
∂n (x) = 0 x ∈ ΓN

(5.21)

for all 0 ≤ k ≤ N . Now each stochastic mode {ûi(x)}Ni=0 can be discretized in
space with one of the many discretization schemes available for deterministic
PDEs. In this case we chose to use a spectral discretization also in the spatial
direction with Nx = 21 collocation points for each direction [26, 29], leading to
Nx = 212 d.o.f. for each stochastic mode. Thus, the weak formulation (5.21)
results in a sparse linear system of equations with N × Nx unknowns. The
sparsity pattern is shown in figure 5.5a. The solution of such system leads to
the stochastic modes shown in figure 5.6. Using these modes and relation (5.12)
we can estimate the mean and the variance of the fields as shown in figure 5.5b
and 5.5c.

Figure 5.7a compares the convergence rates of the PC Galerkin method with
the MC and LHC methodsa. The convergence rate of the PC Galerkin method
is faster than algebraic as the estimate (5.8) predicts for smooth solutions.
The approximation of the solution uN can be used to estimate the PDF of
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Figure 5.7: Example 5.1: Heat equation. Left: Convergence of the Galerkin
method (gPC), MC and LHC. The timings consider both the assembly and
the solution of the system for all the methods. The error is computed as
‖E [uN ]L2

π(R) − E [uref ]L2
π(R) ‖L2(D) where uref is a high-accuracy reference so-

lution computed with the Galerkin method N = 10. Right: convergence of the
PDF ρN associated with the probability distribution πN of uN ([1, 0.5], X)

the solution. In fact, one can sample from X ∼ N (µ, σ2) and use (5.19) to
retrieve approximate samples of u(X) ∼ πu. This operation has a negligible
computational cost compared to the evaluation of (5.18) for the samples of
X, which a MC method would use. The KDE method can then be used to
approximate the PDF ρu as shown in figure 5.7b.

aThe timings include both the assembly times and the solution times and have been
obtained using a routine written in Python. Better timings could be achieved using a lower
lever programming language, but this was not necessary for the sake of this comparison.

5.2.2 Collocation methods

Unlike the Galerkin method, the collocation method is non-intrusive. This
means that no knowledge of the underlying model is required, but only the as-
sumptions (PU-0)-(PU-3) need to hold. The collocation methods can be based
on projection operators or interpolation operators. We will present here the pro-
jection approach, where we use the discrete projection presented in definition
5.1:

P̃Nf =
N∑

i=0
f̃iΦi, f̃i = QN(fΦi) =

N∑

j=0
f(zj)Φi(zj)wj . (5.15)
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Figure 5.8: Example 5.2: Heat equation. Solutions {u(x, zi)}5i=0 at the {zi}5i=0
collocation nodes.

One needs to define a quadrature QN based on point {zj, wj}Nj=0 and evalu-
ate {f(zj)}Nj=0. These values can then be used in (5.15) to find the desired
approximation.

We will use the same example used for the Galerkin method in order to introduce
the collocation method.

Example 5.2 (Heat Equation) Consider the parametrized QoI function:

f : R→ C2([0, 1]2)
X 7→ u(·, X)

(5.22)

where X and u are as in example 5.1. We construct the quadrature rule QN
defined by the points and weights {zi, wi}Ni=0 based on the Gaussian distribu-
tion and the corresponding Hermite polynomials. Then we evaluate {f(zi)}Ni=0
solving the deterministic system (5.18). The solutions for N = 5 are shown
in figure 5.8. These solutions can be used in the quadrature formula (5.15),
obtaining the corresponding stochastic modes {f̃i}Ni=0. Now the mean and the
variance can be approximated by (5.12).

The convergence rate of the collocation method is compared to the MC and the
LHC methods in figure 5.7. We can see that the convergence rate achieved is
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Figure 5.9: Example 5.2: Heat equation. Left: Convergence of the colloca-
tion method (gPC), MC and LHC. The timings consider both the assembly
and the solution of the system for all the methods. The error is computed as
‖E [uN ]L2

π(R) −E [uref ]L2
π(R) ‖L2(D) where uref is a high-accuracy reference solu-

tion computed with the Galerkin method N = 10. Right: convergence of the
PDF ρN associated with the probability distribution πN of uN ([1, 0.5], X)

similar to the one obtained by the Galerkin method. The difference in the total
accuracy at the machine precision is due to the usage of a Krylov method in
the Galerkin case, for which the fixed tolerance is preventing the achievement
of the machine precision accuracy. When the convergence rate is related to the
CPU timing, we can see that the collocation method outperforms the Galerkin
method. The Galerkin problem was preconditioned using an Incomplete LU
preconditioner, without doing any additional analysis with regard to other pre-
conditioners. It is thus possible that the results for the Galerkin method could
be improved using a more suitable preconditioner.

5.2.3 Limitations of Polynomial Chaos

We can draw few observations already from the example presented for the
Galerkin method and the collocation method. A part from requiring the knowl-
edge of the underlying problem – assumption (PU-4) –, the Galerkin method is
more cumbersome in its implementation because one needs to construct a mixed
discretization of both the stochastic and the deterministic part of the problem.
But for the assumptions (PU-0)-(PU-3), the collocation method requires the
same knowledge of the model that a random sampling method requires, making
it more flexible than the Galerkin approach. This is particularly useful when the
deterministic solver that one needs to use is very complex or the source code of
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its implementation is not available, as it happens for example with proprietary
software. Furthermore, the Galerkin method requires additional tuning in order
to solve the big system of discretized equations, which, in spite of being sparse,
can quickly become problematic when one considers multiple random inputs.
Thus, iterative methods such as Krylov solvers or multigrid solvers [84] need to
be used. Ad-hoc preconditioners and algorithms which take into consideration
the particular sparsity pattern of the operators can be designed to improve the
convergence rate of these methods [85]. However, the complexity of develop-
ing these new codes makes Galerkin methods not very attractive in situations
where the deterministic problems are very complex and/or big investments have
already been made for the development of deterministic solvers and/or the hu-
man resources are limited. In these situations, collocation methods are instead
very attractive, because they require very little additional implementation with
respect to the implementation required for the deterministic solver.

In spite of being cumbersome, Galerkin methods provide a good insight into the
problems by giving the user direct control over the stochastic modes, whereas
collocation methods can reconstruct the modes only through quadrature or ma-
trix inversion [36, 37].

This control is actually crucial in non-linear problems, where two common phe-
nomena occur: (1) the solution does not belong to the space spanned by the
orthonormal system used for the random input, (2) the basis selected is not opti-
mal anymore with respect to the probability measure of the solution. With this
perspective, the growth in magnitude of the higher stochastic modes is a good
indicator that one of these two problems is occurring. One possible workaround
to this problem is the re-orthogonalization of the basis as proposed in [83, 86].
Alternatively one can enrich the orthogonal system by adding orthogonal com-
ponents, by the construction of Multi-Element gPC (MEgPC) basis functions
[87–89] or by the employment of multi-resolution analysis (MRA) [90–92]

In the following example we will present one of these problems and use the re-
orthonormalization proposed in [83] to alleviate it. We will work on the linear
test equation ∂tu = −ku and we will consider its stochastic formulation where
the decay coefficient is a function of a random input. This will transform the cor-
responding equation to a non-linear equation due to the quadratic dependence
on the random input, as described in [83].

Example 5.3 (Test equation with random input)



56 Propagation of uncertainty

0 5 10 15 20 25 30
t

0.2

0.0

0.2

0.4

0.6

0.8

1.0

E
[u

(t
)]

Exact Mean
gPC Mean - Galerkin
Exact Std.
gPC Std. - Galerkin

(a) Mean and Std.

0 5 10 15 20 25 30
t

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

lo
g
(e

rr
)

Mean
Variance

(b) Error

Figure 5.10: Example 5.3: Test equation with random input. Left: Mean and
standard deviation Right: Time-dependent errors in mean and variance.

Consider the parametrized test equation

∂tu(t,X) = −k(X)u(t,X), u(0, X) = u0 ,

X ∼ U([−1, 1]), ρx(X) = 1
2 k(X) = 1

2X + 1
2 .

(5.23)

Let {φi}Ni=0 be normalized Legendre polynomials – see appendix C. Legendre
polynomials form a basis for the space of uniformly distributed random vari-
ables, and thus are suitable for this case. Let us expand the function u, the
linear operator k and the initial condition u0 in terms of the Legendre polyno-
mials:

u(t,X) ' uN (t,X) =
N∑

i=0
ûi(t)φi(X) ,

k(X) ' kN (X) =
N∑

i=0
k̂iφi(X) ,

u0(X) ' u0,N (X) =
N∑

i=0
û0,iφi(X) .

(5.24)

Using a quadrature rule or by analytic calculation, one finds that

k̂0 = 1
2
√

2
, k̂1 = 1

2
√

6
, k̂i = 0 for i > 1 ,

û0,0 = u0√
2
, û0,i = 0 for i > 0 .

(5.25)

Next we define the weak formulation of the problem: “Find uN ∈ span
(
{φi}Ni=0

)
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such that

E [∂tuN (t,X)φk(X)]ρx
= E [−k(X)u(t,X)φk(X)]ρx

∂tûk(t) =
N∑

i,j=0
k̂iûj(t) E [φi(X)φj(X)φk(X)]ρx︸ ︷︷ ︸

Eijk

(5.26)

for all 0 ≤ k ≤ N .” This turns the test equation into a set of N coupled ODEs,
where the coupling term E can be precomputed and the initial conditions are
given by {û0,i}Ni=0 in (5.25). Figure 5.10a shows the time dependent mean and
standard deviation obtained using an Adams-Bashforth 4-th order numerical
integrator [23, 93] on the system of N ODEs. Note that the variance is not
very representative here for the description of the distribution of the solution.
In fact we can see that the standard deviation attains also negative values, and
thus it extends to a region where no realization of the solution of the system
(5.23) would ever be. Indeed the distribution πu of the solution is characterized
by a bigger and bigger skewness as time increases.

Figure 5.10b shows the magnitude of the error in the estimation of the mean and
the variance. We can notice that the approximation degrades over time due to
what is known as the stochastic drift. A possible remedy to this effect is a re-or-
thonormalization of the basis functions with respect to the probability measure
of the solution [83]. This is achieved using Gram-Schmidt orthogonalization
[94] at every integration time t when the magnitude of one of the stochastic
modes {ui(t)}Ni=2 exceeds |u1(t)|/α, where α > 1 determines the frequencies
with which the re-orthonormalization should occur.

Figure 5.11a shows the time-dependent magnitudes of the stochastic modes: the
basis corresponding to the modes are re-orthonormalized when the magnitude
of the stochastic modes {ui(t)}Ni=2 increase too much. This re-orthonormaliza-
tion leads to the periodic decay of the highest stochastic modes. In figure 5.11b
we see that the error is better bounded for both the mean and the variance of
the solution.

All the examples solved with PC up to here have only a one dimensional source
of uncertainty. From the Galerkin perspective, assumption (PU-1) allows the
construction of multidimensional basis for L2

πx
(Rds) as the result of tensor prod-

uct of one dimensional basis functions for L2
πxi

(R). In (5.11) we already saw
that

#{Φj}|j|0≤N = dim
(
span

(
{Φj}|j|0≤N

))
= (N + 1)ds . (5.27)

This means that as ds increases, one needs to determine an exponentially grow-
ing number of stochastic modes. This quickly becomes prohibitive and goes
under the name of curse of dimensionality [95]. The collocation method suffers



58 Propagation of uncertainty

0 5 10 15 20 25 30
t

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

û0
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Figure 5.11: Example 5.3: Test equation with random input. Left: Time-
dependent magnitude of the first four stochastic modes. Right: Time-dependent
errors in mean and variance.

of the same deficiency when high dimensional cubature rules are simply con-
structed using the full tensor product of one dimensional quadrature rules. This
does not come as a surprise because these cubature rules are strictly related to
the space span

(
{Φj}|j|0≤N

)
. If on one hand the fully tensorized Galerkin method

requires the solution of a system of equations for an exponentially growing num-
ber of unknowns, on the other hand the fully tensorized collocation method re-
quires the evaluation of the QoI function on an exponentially growing number
of points. In the next section we will present several methods appeared in the
last decade aimed to the alleviation of the curse of dimensionality on PC based
methods.

5.2.4 Polynomial chaos in high dimensions

The bottleneck in the application of PC in high-dimension is the curse of di-
mensionality: the dimension of the space spanned by the orthonormal system
{Φj}|j|0≤N grows exponentially with the dimension ds, and the computational
work required to identify an approximation grows at least as fast.

To the knowledge of the author, all the available techniques for tackling the
curse of dimensionality aim at the identification of an optimal subspace of
span

(
{Φj}|j|0≤N

)
, where the optimality is meant in terms of the approximation

error on the QoI function and in terms of the dimension of the subspace. From
this perspective the simplex tensorized space span

(
{Φj}|j|≤N

)
with dimension(

N+ds
N

)
– c.f. (5.10) – is a good a priori candidate subspace of span

(
{Φj}|j|0≤N

)
.

However, since it is an a priori construction, it does not take into consideration
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Figure 5.12: Left: points belonging to the full tensor product cubature rule of
order 3. Right: points belonging to the Stroud’s rule of order 3.

the approximation error on the QoI function.

In section 5.2.4.1 we will discuss, without the presumption of completeness,
some of the research directions in the field of PC for high-dimensional problems.
Section 5.3 will present the High Dimensional Model Representation (HDMR)
which will be used in chapter 6 and in some of the practical applications. Section
5.2.4.2 will present the Spectral Tensor-Train decomposition which is a novel
technique for the alleviation of the curse of dimensionality.

5.2.4.1 Research directions

When the available computational resources are limited with respect to the size
of the problem and only few simulations can be run within an acceptable amount
of time, one could wonder on how many collocation points will be needed to
obtain an approximation of a fixed total order N with respect to the dimension
ds. It turns out that using Stroud’s rules [96–98] one can construct cubature
rules – not based on the tensorization of one dimensional quadrature rules – of
order 2 with ds + 1 points. Furthermore, for the symmetric Gaussian and Beta
distributions, one can achieve order 3 using only 2ds points. Figure 5.12 shows a
comparison between the Gauss cubature rule obtained by the full tensor product
of one dimensional rules and the Stroud’s rule of the same order of integration5

3. A part from the estimation of the first statistics of a random variable, the
Stroud’s rules find little usage in the construction of PC approximations. In
fact, in order to construct these approximations with the projection approach
(5.9), one must approximate the inner product (f,Φi) by a quadrature rule to
obtain the discrete projection (5.15). If the selected rule is a Stroud’s rule of
order 2 or order 3, the maximum polynomial degree of f must be 1, in order for

5Note that the Gauss cubature rule has an accuracy of 2N + 1.
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the approximation to be exact. Thus this approach allows, at its best, only the
construction of order 1 PC approximations.

A more flexible collocation approach is given by Sparse Grids. This method is
based on nested one dimensional quadrature rules such as the Kronrod-Patterson
[99, 100], the Clenshaw-Curtis [101, 102] and the Fejèr rules [102, 103]. These
rules have the property that doubling the degree of accuracy of the rule – in
Sparse Grids terminology this is equivalent to augmenting the level – leads to the
usage of points of lower order quadratures. Figure 5.13a shows this property for
the Fejèr rule. The nestedness of the rule is useful because one can increase the
accuracy of an approximation without wasting already computed values. Gauss-
type rules do not possess this property, making it difficult to devise adaptive
rules based on them. These nested quadrature rules can be used to construct
nested high-dimensional cubature rules through the Smolyak formula [43, 47,
104] which aims at the decomposition of a high-order cubature rule in terms of
incremental difference rules over a lower order rule. In practice if we let Q(1)

l be
a level l quadrature rule in one dimension – c.f. (5.13) –, we can define the one
dimensional increment formula as

∆l :=
(
Q(1)
l −Q

(1)
l−1

)
. (5.28)

Then the cubature rule of level l in ds dimensions can be defined in terms of
these incremental quadrature rules as:

Q(ds)
l :=

∑

l∈L

(
∆l1 ⊗ · · · ⊗∆lds

)
. (5.29)

In the approach to tackle the curse of dimensionality, the selection of L = {l :
|l| ≤ l + N − 1} in place of L = {l : |l|0 ≤ l} is similar to the selection of the
simplex tensorized space span

(
{Φj}|j|≤N

)
in place of the bigger fully tensorized

space span
(
{Φj}|j|0≤N

)
. However this is not the only possible choice. In recent

years PC approximations based on sparse grids cubatures, known in the field
as Smolyak pseudo-spectral approximations, have appeared. The most advanced
of these techniques employ an anisotropic adaptive approach: in practice the
set L is allowed to grow by the addition of multi-indices l which improve the
approximation, and this can end up refining the space more in certain directions
than others, i.e. anisotropically. The only constraint for the set L is that it must
be admissible with respect to a certain definition of admissibility [48] that allows
the Smolyak rule to hold. In order to detect which multi-index needs to be added
to L a posteriori error estimators have been proposed in [48, 50, 51]. When
knowledge of the underlying system is available an a priori anisotropy index
can be pre-computed as in [49] and used to prioritize the refining directions.

An attractive alternative to Sparse Grids is provided by the methods based on
compressive sensing [105]. The PC interpolation problem can be phrased as
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Figure 5.13: Sparse grids. Left: Points of the Fejèr one dimensional quadrature
rule for increasing levels. Center: Points of the sparse grid cubature rule using
the Smolyak construction with L = {l : |l| ≤ l+N − 1} on the Fejèr quadrature
rule. Right: Scaling of the number of points needed from the Fejèr sparse grid
rule with respect to the dimension ds.

finding c ∈ RM such that
Ac = f , (5.30)

where A is a generalized Vandermonde matrix of dimensions n ×M based on
some orthogonal system with dimension M and f = (f(x1), . . . , f(xn))T . The
methods based on compressive sensing recast this PC interpolation problem
to a problem of sparse signal recovering. The underlying assumption made in
these methods is that only few elements of the candidate orthogonal system
{Φj}|j|≤N – or the bigger {Φj}|j|0≤N – need to be used in order to approximate
the function. Since the problem associated to `0 minimization is NP-hard, these
methods aim at the solution of the `1 minimization problem

min ‖c‖1 subject to ‖Ac− f‖2 ≤ ε , (5.31)

which, under some mild conditions, leads to the same result which would be
obtained by `0 minimization and to the identification of a small subspace of
span

(
{Φj}|j|≤N

)
with orthogonal components corresponding to the multi-indices

j for which cj 6= 0. The interested reader is referred to [106–108] for more details
regarding these methods.

Galerkin methods for time-dependent problems in high-dimensions can bene-
fit from the direct availability of the stochastic modes. Also in this case the
subspace of span

(
{Φj}|j|0≤N

)
which provides the best approximation is seeked.

Once this is identified, only the relevant stochastic modes are evolved in time,
reducing the total dimensionality of the problem. All these methods include a
strategy for tracking whether the space needs to be enriched with new orthog-
onal components and thus new stochastic modes needs to be evolved. In the
literature these methods go under the name of adaptive PC [109] and gPC [110,
111].
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In recent years the development of Galerkin methods has focused on the de-
coupling of the deterministic and stochastic part of differential equations with
random input data. These methods use techniques originally developed for the
model reduction of experimental measurements of fluid flows, which go under
the name of Proper Orthogonal Decomposition (POD) [112, 113]. Subsequently
the same ideas have been applied to the solution of deterministic PDEs of re-
duced dimension under the name of Proper Generalized Decomposition (PGD)
[114]. While in deterministic PDEs the POD and the PGD were employed to
decouple the temporal and the spatial parts of the problem, in the stochastic
setting they are used to decouple the deterministic part from the stochastic
part. These techniques go under the name of PGD [115–117] when applied to
time-independent problems, and Dynamically Orthogonal (DO) decomposition
[118, 119], when applied to time-dependent problems. The advantages carried
by these techniques are two-fold: (1) the decoupling allows the use of existing
solvers for the deterministic part, (2) the dimensionality of the problem is split,
improving the solution performances.

In the following section the spectral tensor-train decomposition [Bigoni et al.,
9, 11] will be introduced. This technique is based on linear algebra techniques
for the decomposition of tensors, but it also shares much of its theory with PC
and POD/PGD techniques.

5.2.4.2 Spectral tensor-train decomposition

The spectral tensor-train decomposition (STT-decomposition) is a low-rank de-
composition for the spectral approximation of functionals. The goal of this
method is the construction of an approximation f̃ of the QoI function f which
converges exponentially to f without suffering the curse of dimensionality. In
the same fashion of the methods presented in the preceding sections, this method
fully exploits assumptions made on f in order to tackle the curse of dimensional-
ity. Here we present its collocation version for the approximation of functionals.
Its Galerkin counterpart could be treated similarly, and its application to elliptic
PDEs with random inputs is presented in [120, 121].

In the following we collect and summarize the main results we described in
[Bigoni et al., 9]. The interested reader is referred to the original article for
a more detailed presentation. The construction of the STT-decomposition will
proceed in four steps:

1) extension of the discrete tensor-train (DTT) decomposition to the func-
tional tensor-train (FTT) decomposition,

2) characterization of the convergence of the FTT-decomposition depending
on the regularity of f ,
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3) characterization of the regularity of the FTT-decomposition,
4) application of PC to the FTT-decomposition, obtaining the spectral tensor-

train (STT) decomposition.

After the presentation of these results, we will present some of the new research
directions, which span mainly three topics:

1) automatic reordering,
2) re-weighted DTT-decomposition,
3) anisotropic adaptivity.

These last three features are subject of ongoing development and are scheduled
to be soon included in [Bigoni, 11].

Discrete and functional tensor-train decompositions. The discrete ten-
sor-train decomposition (DTT-decomposition) was first introduced by I. Os-
eledets [122] as a robust low-rank alternative to existing tensor decompositions
such as the Canonical decomposition (CANDECOMP) and the Tucker decom-
position [123, 124]. The DTT-decomposition is a particular case of the hierarchi-
cal Tucker decomposition (H-Tucker) [125], but with a simpler implementation
which, however, leads to similar performances [126].

Definition 5.2 (DTT-decomposition) Let A ∈ Rn1×···×nds , with A(i1, . . . , ids)
denoting one of its entries. For ε > 0, the DTT-decomposition of A is

ATT (i1, . . . , ids) =
r∑

α0,...,αds =1
G1(α0, i1, α1) · · ·Gds(αds−1, ids , αds) , (5.32)

such that ‖A − ATT ‖F ≤ ε‖A‖F , where ‖ · ‖F is the Frobenious norm, and
〈Gk(αk−1, ·, αk), Gk(αk−1, ·, α′k)〉 = δαk,α′k‖Gk(αk−1, ·, αk)‖2, where δαk,α′k is
the Kronecker symbol. The vector r = (r0, . . . , rds) contains the TT-ranks of
the decomposition where r0 = rds = 1. We will use the notation ETT for the
residual tensor A−ATT .

Such a decomposition is recovered in [122] using the algorithm TT-SVD. The
main property of the DTT-decomposition is that, given the tensor A, where for
simplicity we take n1 = . . . = nds = n, its DTT-decomposition ATT requires
the storage of only O(dsnr

2) parameters where r is independent of ds and is
optimally selected during the truncation procedure. For more details on the
advantages of this decomposition format over the CANDECOMP and the Tucker
decompositions we refer to [122] and [Bigoni et al., 9].
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In the context of UQ we would consider the tensor A to be the output of the
evaluation of the QoI function f on the tensor grid of points X = ×ds

j=1xj ,
where xj = (xij )

nj
ij=1 for j = 1, . . . , ds. This is denoted by A = f(X ), with

A(i1, . . . , ds) = f(xi1 , . . . , xids ). It makes sense then to define the functional
tensor-train decomposition (FTT-decomposition) as the functional counterpart
of the discrete tensor-train approximation.

Definition 5.3 (FTT-decomposition) Let (PU-1) and (PU-2) hold for f . For
r = (1, r1, . . . , rd−1, 1), a TT-rank r FTT-decomposition of f is:

fTT (x) :=
r∑

α0,...,αd=1
γ1(α0, x1, α1) · · · γd(αd−1, xd, αd) , (5.33)

where γi(αi−1, ·, αi) ∈ L2
πi and 〈γk(i, ·,m), γk(i, ·, n)〉L2

πk

= δmn. The residual
of such approximation will be denoted by RTT := f − fTT . We will call {γi}di=1
the cores of the approximation.

This decomposition is constructed [Bigoni et al., 9] by the recursive application
of the functional-SVD.

Definition 5.4 (Functional-SVD) Let X × Y ⊂ Rds , f ∈ L2
π(X × Y ), where

π : B(X × Y )→ R is a product measure π = πx × πy and let T be the integral
operator based on f :

T : L2
πy (Y )→ L2

πx(X)

g 7→
∫

Y

f(x, y)g(y)πy( dy)
. (5.34)

Let {λ(i)}∞i=1 and {ψ(x; (i))}∞i=1, {φ(y; (i))}∞i=1 be the sets of eigenvalues and
eigenfunctions of the integral operators TT ∗ and T ∗T respectively. Then the
functional-SVD of f is:

f =
∞∑

i=1

√
λ(i)ψ( · ; (i))⊗ φ( · ; (i)) . (5.35)

The existence, uniqueness and convergence of such decomposition are explained
in [Bigoni et al., 9] and are properties of Hilbert-Schmidt kernels [55, 127] such
as the function f defined. In different fields the functional-SVD takes different
names: this is the SVD in linear algebra [128], the KL-expansion in stochastic
processes [59], the POD/PGD for PDEs [113, 114]. This definition has also
appeared in [129].
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Optimality and convergence of the FTT-decomposition. The first re-
sult for the FTT-decomposition is a standard result of optimality inherited from
the functional-SVD.

Proposition 5.1 Let the functional tensor-train decomposition be truncated re-
taining the largest singular values {{

√
λi(αi)}riαi=1}di=1 of the associated functional-

SVDs. Then the approximation (5.33) fulfills the condition:

‖RTT ‖2L2
π

= min
g∈L2

π

TT-ranks(g)=r

‖f − g‖2L2
π

=
d−1∑

i=1



i−1∏

j=1
rj




∞∑

αi=ri+1
λi(αi) . (5.36)

This means that among all the FTT-decompositions of rank r, the one retaining
the biggest singular values is the best in the L2 sense. However, we need to
characterize how the right hand side of (5.36) behaves and we want to link its
behavior to the regularity of f . To this end we will use assumption (PU-3).
For the sake of simplicity in the following analysis, we will let the ranks be
r = (r, . . . , r).

Theorem 5.1 (FTT-decomposition convergence) Let f ∈ Hkπ(S), then

‖RTT ‖2L2
π
≤ ‖f‖2Hkπ(S)ζ(k, r + 1) r

ds − r
r(r − 1) for r > 1 , (5.37)

where ζ is the Hurwitz Zeta function. Furthermore

lim
r→∞

‖RTT ‖2L2
π
≤ ‖f‖2Hkπ(S)

1
(k − 1) for k = ds − 1 (5.38)

and
lim
r→∞

‖RTT ‖2L2
π

= 0 for k > ds − 1 . (5.39)

This means that if f ∈ Hkπ(S), for k > ds − 1, then fTT
L2
−−→ f . See [Bigoni et

al., 9] for a detailed proof.

Regularity of the FTT-decomposition. In theorem 5.1 we found a relation
between the regularity of f and the convergence of the FTT-decomposition. The
goal of this work is going to be the construction of a polynomial approximation
of f which complexity scales only linearly with the dimensionality thanks to
the FTT-decomposition. To this end one should wonder whether the FTT-
decompostion retains any of the regularity properties of f . In particular we will
show that the k-th core {γk(αk−1, ·, αk)}rk−1,rk

αk−1,αk=1 of the FTT-decomposition
retains the regularity of f in the k-th direction.
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Theorem 5.2 (FTT-decomposition and Sobolev spaces) Let S1 × · · · ×
Sd = S ⊂ Rd be closed and bounded, and f ∈ L2

π(S) be a Hölder continuous func-
tion with exponent α > 1/2 such that f ∈ Hkπ(S). Then the FTT-decomposition
(5.33) is such that γj(αj−1, ·, αj) ∈ Hkπj (Sj) for all j, αj−1 and αj.

The results above have the limitation of holding for functions defined on closed
and bounded domains. In many practical cases encountered in UQ, however,
functions are defined on the real line, equipped with a finite measure. As proven
in [Bigoni et al., 9], the theorem 5.2 uses a result by Smithies [130, Thm. 14]
which hinges on a result by Hardy and Littlewood [131, Thm. 10] on the con-
vergence of Fourier series. This is the only passage in the proof where the
closedness and boundedness of the domain is explicitly used. A similar result
for an orthogonal system in L2

π(−∞,∞), where π is a finite measure, would be
sufficient to extend Smithies’ result to the real line. To the author’s knowledge,
the corresponding result for such cases has not been proved in literature.

Since the goal of this section is the construction of an approximation method
based on PC, all the results have been obtained with respect to the weak deriva-
tives of f . One may also wonder about the strong regularity of the FTT-
decomposition, i.e. with respect to the strong derivatives of f . First we mention
a result on the continuity of the FTT-decomposition which follows directly from
Mercer’s theorem [132].

Proposition 5.2 (Continuity) Let S1 × · · · × Sds = S ⊂ Rds , and f ∈ L2
π(S)

be a continuous function with FTT-decomposition (5.33). Then γi(αi−1, ·, αi)
are continuous for every i and αi.

For a Lipschitz continuous function f , the preservation of the strong derivatives
follows from the uniform convergence of the functional-SVD, which is a result
by Hammerstein [129, 133]. The following result is mentioned without proof in
[Bigoni et al., 9]. Here we provide also its proof.

Proposition 5.3 (Differentiability) Let S1 × . . . × Sds = S ⊂ Rds be closed
and bounded, and f ∈ L2

π(S) be a Lipschitz continuous function such that
∂βf

∂x
β1
1 ···∂x

βds
ds

exists and is continuous on S for β =
∑ds
i=1 βi. Then the FTT-

approximation (5.33) is such that γk(αk−1, ·, αk) ∈ Cβk(Sk) for all k, αk−1 and
αk.

Proof. Let us first show this for the functional-SVD (5.35) of the Lipschitz
continuous function f ∈ L2

π(X×Y ) for which ∂β

∂xβ1∂β2 f exists and is continuous
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on the compact set X × Y . We have that

1
λi

〈
∂β1

∂xβ1
f(x, y), ψi(y)

〉

L2
πy

(Y )
= 1
λi

〈
∂β1

∂xβ1

∞∑

j=1
λjφj(x)ψj(y), ψi(y)

〉

L2
πy

(Y )

= 1
λi

〈 ∞∑

j=1
λj

∂β1

∂xβ1
φj(x)ψj(y), ψi(y)

〉

L2
πy

(Y )

= ∂β1

∂xβ1
φi(x)

(5.40)
where the second equality is given by the uniform convergence of the functional-
SVD (5.35). Since ∂β1

∂xβ1 f(x, y) is continuous by assumption, {ψi}∞i=1 are con-
tinuous by Proposition 5.2, the left hand side of (5.40) is continuous. Thus
{φi}∞i=1 ∈ Cβ1(X) and {ψi}∞i=1 ∈ Cβ2(Y ).

Since the FTT-decomposition (5.33) is constructed by repeated functional SVDs,
then for fixed α = (α0, . . . , αds):

∂βk

∂xβkk
γk(αk−1, xk, αk) = 1

σ(α) 〈
∂βk

∂xβkk
f(x), γ1(α0, x1, α1) · · ·

γk−1(αk−2, xk−1, αk−1)γk+1(αk, xk+1, αk+1) · · ·
γds(αds−1, xds , αds)〉

(5.41)
exists and is continuous. This means that γk(αk−1, ·, αk) ∈ Cβk(Sk) for any k,
αk−1 and αk. �

The spectral tensor-train decomposition. We can now apply the PC ma-
chinery to the FTT-decomposition. Let {Φj}N|j|0=0 be the fully tensorized or-
thogonal/orthonormal system with respect to π, where Φj = φ1,j1⊗ . . .⊗φds,jds .
The projection operator PN : L2

π(Rds) → span
(
{Φj}N|j|0=0

)
defined by (5.9) is

built upon the tensor product of one dimensional projections P(n)
N : L2

πn(R) →
span

(
{φn,jn}Njn=0

)
:

PN = P(1)
N ⊗ . . .⊗ P

(ds)
N . (5.42)
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Then the projection of the FTT-decomposition fTT onto span
(
{Φj}N|j|0=0

)
is

PNfTT =
N∑

i=0
c̃iΦi ,

c̃i =
∫

Rds
fTTΦiπ( dx)

=
r∑

α0,...,αds =1
σ(α)β1(α0, i1, α1) · · ·βds(αds−1, ids , αds) ,

(5.43)

where

βn(αn−1, in, αn) = P(n)
N γn(αn−1, ·, αn)

=
∫

R
γn(αn−1, xn, αn)φn,in(xn)πn( dxn) .

(5.44)

Note that the particular format of the FTT-decomposition allows the usage
of one dimensional projection operators P(n)

N on the cores instead of the ds-
dimensional projection operator PN on f . The approximation PNfTT is called
the spectral tensor-train decomposition. Note that the STT-decomposition pro-
vides also the tensor of generalized Fourier coefficients CTT with entries CTT (i) =
ci, which is already in the format of a DTT-decomposition.

Thanks to theorem 5.1 and standard results on the convergence of polynomial
projection approximations [26, 28] we have the following convergence result.

Proposition 5.4 (Convergence of the STT-decomposition) For k > ds−
1, let f ∈ Hkπ(Rds), then:

‖f − PNfTT ‖L2
π(Rds ) ≤‖f‖Hkπ(Rds )

√
(r + 1)−(k−1)

k − 1
rds−1 − 1
r − 1 +

+ C(k)N−k|fTT |Rds ,π,k .

(5.45)

The convergence rate of the STT-decomposition is thus the consequence of the
combined benefits of the FTT-decomposition and the PC high-order methods.

Analogous construction and convergence results can be obtained using interpo-
lation operators. We refer the reader to [Bigoni et al., 9] for more details about
them.

Practical computation of the STT-decomposition. The construction of
the STT-decomposition up to now has relied on exact inner products for the
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computation of the projection (5.43). In practice the inner products must be
approximated by discrete inner products using the quadratures (5.13)-(5.14).
These quadratures define the tensor grid of points X = ×ds

j=1xj and the tensor
of weights W = w1◦· · ·◦wds , where ◦ denotes here the outer product of vectors.
The evaluation of f on all the elements of X provides the tensor A = f(X )
which can be approximated by ATT using the TT-SVD [122].

In spite of providing a decomposition with O(dsnr
2) parameters, the TT-SVD

requires the full computation of A, and thus does not alleviate the curse of di-
mensionality. Thus, instead of using the TT-SVD, we employ the TT-dmrg-cross
[134, 135] which is a method for the construction of the DTT-decompositions
requiring only a sparse sampling of A and leading to O(dsnr

2) function eval-
uations. The tensor of generalized Fourier coefficients CTT is then obtained
from ATT . This step and the subsequent evaluation of PNfTT are detailed in
[Bigoni et al., 9]. Note that in both of these steps the algorithms always handle
only O(dsnr

2) parameters, in contrast to the O(nds) parameters required for
the computation of PNf .

The construction of ATT is further improved by the adoption of the Quantics
tensor-train decomposition (QTT-decomposition) [120, 121, 136, 137]. This
mainly consists in a folding of the tensor A which leads to better scaling
of the number of function evaluations and stored parameters for its DTT-
decomposition. If we let A ∈ Rn1×···×nds , where for simplicity ni = . . . =
nds = n and n is a power of q, i.e. n = qm, then we can reshape A into the
quantics-tensor A(q) ∈ Rq×···×q which is a (mds) dimensional tensor. Thus,
its approximation A(q)

TT involves O(mdsqr
2) parameters. Since the best scal-

ing is obtained when q = 2, the practical implementation [Bigoni, 11] of the
QTT-decomposition uses a cost free padding technique to obtain n = 2m.

Strengths of the STT-decomposition. The scalability of the STT-decom-
position with respect to ds is characterized by O(mdsr

2), where m = dlog2 ne.
This property, along with the convergence rate obtained in proposition 5.4 is
now checked on two test functions. Other similar results and comparisons with
other methods are presented in [Bigoni et al., 9].

Example 5.4 (Convergence rate) Here we will use the modified Genz func-
tions [Bigoni et al., 9], [138, 139] to test the convergence rate of the STT-
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Figure 5.14: Convergence of the STT-decomposition on the modified test func-
tions. For exponentially increasing polynomial order ( 2i − 1 for i = 1, . . . , 4 )
and for different dimensions, 30 modified Genz functions have been constructed
and approximated by the STT-decomposition. The scattered dots show the
L2 error and the number of function evaluations needed for each of these re-
alizations. The circled dots represent the mean L2 error and mean number of
function evaluations for increasing polynomial order.

decomposition. Let the two QoI functions be

oscillatory : f1(x) = cos
(

2πw1 +
ds∑

i=1
cixi

)
,

corner peak : f2(x) =
(

1 +
ds∑

i=1
cixi

)−(ds+1)

,

(5.46)

where the parameters w1 and c are drawn uniformly from [0, 1]. A set of 30
functions are generated for each QoI function and then approximated by STT-
decompositions of increasing polynomial order. The L2 error

‖f − LfTT ‖L2
π(Rds )

‖f‖L2
π(Rds )

=

√∫
Rds (f − LfTT )2π( dx)∫

Rds f
2π( dx) (5.47)

of these approximations are shown in figure 5.14. We can see that the ap-
proximation of the “oscillatory” function is considerably easier respect to the
approximation of the “corner peak” function. This is due to the fact that the
“oscillatory” function has an exact rank-two representation – one can see it
using basic trigonometric rules – and thus the r = 2 truncation of the FTT-
decomposition (5.33) leads to an exact representation of f1. On the contrary
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the “corner peak” function has no exact low-rank representation leading to
truncation errors in the FTT-decomposition. In order to limit these errors the
ranks r needs to be increased and this leads to an increased number of function
evaluations.

Next, we will show two additional properties which are peculiar of the method.
We will show these properties through two examples.

Example 5.5 (Detection of features) This property is actually a property
of the TT-dmrg-cross algorithm when applied on a tensor or on a quantics-
tensor. Let the QoI function be

f(x) = exp
(
−|x− x0|2

2l2

)
, (5.48)

for x ∈ S ≡ [0, 1]ds , ds = 2, x0 = [0.2, 0.2] and l = 0.05. This function is
smooth and has the exact rank-one representation

f(x) = exp
(
− (x1 − x0,1)2

2l2

)
· exp

(
− (x2 − x0,2)2

2l2

)
. (5.49)

This makes the function relatively easy to be represented by an FTT-decompo-
sition. However, the function is characterized by an off-centered feature which
requires high-order quadrature rules in order to be detected. Figure 5.15a shows
the function f along with the evaluation points used by the TT-dmrg-cross
algorithm for the construction of an approximation of accuracy ε = 10−8.
Gauss quadrature rules of order 67, i.e. with N = 33 points, are constructed for
each dimension, determining the candidate points for the evaluation of f . Out
of these N2 = 1089 points, the TT-dmrg-cross algorithm selects a relatively
small subset of 294 points where to evaluate the function. These points are the
white and black points in figure 5.15a. The black points are the ones retained
for the final approximation and we can see that they have clustered around the
function’s peak feature at x0. Examples in higher dimensions are reported in
[Bigoni et al., 9].

Example 5.6 (A posteriori basis selection) Unlike many other methods
which aim at the alleviation of the curse of dimensionality, the STT-decompo-
sition does not make any attempt to reduce the dimension of span

(
{Φj}N|j|0=0

)
.

In principle the whole space is used. Here we construct an ad-hoc function to
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Figure 5.15: Left: Features detection example 5.5. The STT-decomposition of
the function (5.48) is constructed through the evaluation at the points shown in
the figure. The black points are the ones retained by the TT-dmrg-cross algo-
rithm for the final approximation. Right: A posteriori basis selection example
5.6. The log10 of the magnitude of the generalized Fourier coefficients is shown.

pinpoint this property. Let the QoI function be

f(x) =
c∏

k=1
φlk(xjk) . (5.50)

where x ∈ S ≡ [−1, 1]ds , ds = 2, φlk are polynomials of order lk and l = [23, 24].
Let us consider the space of polynomials span

(
{Φj}N|j|0=0

)
with N = 31 and

construct the STT-decomposition PNfTT . Figure 5.15b shows the magnitude
of the generalized Fourier coefficients C of the STT-decomposition in the log10
scale. We can see that the right polynomial order is identified. In spite of the
high polynomial order of the function f is reconstructed using only 209 function
evaluations out of 1024 candidate points. The following table shows the per-
formances of the STT-decomposition for increasing dimensions and polynomial
order l = [24, . . . , 24]:

ds Rank r #f.eval. #Cand.Points
2 1 209 1024
3 1 626 32768
4 1 1210 1048576
5 1 1442 33554432
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Figure 5.16: Ordering problem example 5.7. Magnitude of the slowly decaying
generalized Fourier coefficients of (5.52) in the log10 scale.

The ordering problem. The major weakness of the STT-decomposition as
well as of the DTT-decomposition is the ordering problem. Even if this problem
does not produce erroneous results, it can lead to a higher number of function
evaluations than needed. In the following we will say that a function f has an
analytical low-rank representation if there exist

{
{gi,j}ds

j=1

}r
i=1

such that

f(x) ≡
r∑

i=1

ds∏

j=1
gi,j(xj) , for r <∞ . (5.51)

The ordering problem will be presented through an example.

Example 5.7 (The ordering problem) Let S ≡ [−1, 1]ds and consider the
sub-cube Sj1 × · · · × Sjc , where J = {ji}ci=1 ⊆ [1, . . . , ds]. For x ∈ S, let the
QoI function be

f(x) =
nj1∑

ij1 =0
· · ·

njc∑

ijc=0

[
exp

(
−iTΣi

) c∏

k=1
φijk (xjk)

]
, (5.52)

where Σ is a c × c matrix defining the level of interaction between different
dimensions, {φijk }

njk
ijk=1 are chosen to be the normalized Legendre polynomials,

i = (ij1 , . . . , ijc)T and the φlk are possibly high order polynomials. To simplify
the notation, we will set njk = n for all jk. For ds = 2, J = [0, 1] and

Σ =
[

1 −0.9
−0.9 1

]
,
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figure 5.16 shows the decay of the log10 magnitude of the generalized Fourier
coefficients of f . Retaining the same accuracy target, the following table reports
the ranks and the number of function evaluations used for the construction of
the STT-decomposition of f for different dimensions and sets J :

ds J r #f.eval. #Cand.Points
2 [0, 1] [1, 11, 1] 256 256
5 [1, 2] [1, 1, 11, 1, 1, 1] 3935 1048576
5 [0, 4] [1, 11, 11, 11, 11, 1] 73307 1048576

Note that the functions relative to the last two entries are totally equal but
for the ordering of their axis. However the different ordering causes a 20-fold
increase in the number of function evaluations!

The causes of the ordering problem are to be searched in the formats of the
DTT-decomposition and the FTT-decomposition. Let us consider the DTT-
decomposition defined in (5.32):

ATT (i1, . . . , ids) =
r∑

α0,...,αds =1
G1(α0, i1, α1) · · ·Gds(αds−1, ids , αds) . (5.53)

In terms of the traditional matrix SVD [128] A = UΣVT , where U and V are
two unitary matrices and Σ = diag(σ) is the matrix of singular values, the rank
of a matrix A is given by the number of non-zero values in σ – this corresponds
to the number of the independent rows/columns of A. The numerical rank
r to which we will refer here is the number of retained singular values Σ̂ =
diag ({σi}ri=1) in the SVD of a matrix A in order to have ‖A −ASVD‖F ≤ ε,
where ASVD = UΣ̂VT .

If we consider the function of example 5.7, we see that it is constant along all
the directions but J . A restriction of the function to the two directions in J
produces a function f̃ and an associated matrix A = f̃(X) with a high numerical
rank.

The truncation performed in order to obtain the DTT-decomposition (5.53) is
totally equivalent to the truncation used in the traditional matrix SVD. How-
ever, while in the two dimensional case of a matrix the two dimensions are
directly related to each other by UΣVT , in the DTT-decomposition each core
Gi is connected only to the two neighboring cores Gi−1 and Gi+1 – the name
tensor-train derives from this property. Thus, if J = [i, j] for two neighboring
indices i < j, the numerical TT-rank r will be high only between the two cores
Gi and Gj . On the contrary, if i < j are not neighboring, all the TT-ranks
between the cores Gi, Gi+1, . . . , Gj will be high. Tensors with high numerical
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TT-ranks require the approximation and the storage of a higher number of pa-
rameters as it is clear from (5.53), and thus they lead to an increase in the
number of function evaluations.

In the following we will propose a method for the approximation of a correct
ordering. A first approach to the problem could be to consider the second order
sensitivities of the function6 – see chapter 6. However, this can be misleading,
as we will show in the following non-pathological example.

Example 5.8 (TT-ranks vs. Sensitivity Indicies) Let us consider the QoI
function

f(x) = 10x1x2 + 10x2x3 + 1
x1 + x3 + 1 , (5.54)

where x ∈ S ≡ [0, 1]ds and ds = 3. Using the ANOVA decomposition of f , we
can compute the second order sensitivities Si,j described in (6.1):

(i, j) Si,j

(1, 2) 0.051226
(1, 3) 0.000114
(2, 3) 0.051226

These values are computed to machine precision with high order cubature rules
and a 3-rd order cut-HDMR decomposition – which is exact because ds = 3.
These sensitivities suggest correctly that the contribution given to the variance
by the combination of the first and third inputs is significantly smaller than
the other combinations. This is also intuitively reasonable observing that the
first two summands of the function (5.54) determine a bigger gradient respect
to the last summand. These sensitivities would suggest (1, 2, 3) to be a correct
ordering of the dimensions. Unfortunately, the first two summands of (5.54)
have an analytical rank-one representation, whereas the last summand has no
analytical low-rank representation. Thus the ordering (1, 2, 3) is actually the
only wrong possible ordering!

We can see this by the construction of the STT-decomposition for different
tolerances ε and for two different orderings:

6This approach was also suggested in [140]
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Order: (1, 2, 3) (1, 3, 2)
ε TT-Ranks #f.eval. TT-Ranks #f.eval.

10−1 [1, 2, 2, 1] 263 [1, 2, 2, 1] 152
10−2 [1, 2, 2, 1] 283 [1, 2, 2, 1] 276
10−3 [1, 3, 3, 1] 294 [1, 3, 2, 1] 289
10−4 [1, 4, 4, 1] 340 [1, 4, 2, 1] 313
10−5 [1, 4, 4, 1] 460 [1, 4, 2, 1] 331
10−6 [1, 5, 5, 1] 431 [1, 5, 2, 1] 317
10−7 [1, 6, 6, 1] 465 [1, 6, 2, 1] 302

For the wrong ordering (1, 2, 3) the ranks keep increasing as ε is decreased. This
indicates that the high numerical rank is being propagated through dimension
2. On the contrary, with the ordering (1, 3, 2), only the first of the TT-ranks
increases with the decrease of ε, whereas the TT-rank between dimensions 3
and 2 is constant, having (5.54) an analytical rank-two representation with
respect to these two variables. The effect of selecting the wrong ordering is
also evident from the count of function evaluations.

Here we propose a novel greedy algorithm for the approximation of the best
ordering, leading to the minimum TT-ranks. It builds up on the ideas used in
the cut-HDMR decomposition presented in section 5.3, and it thus suffer of the
same problems regarding the choice of an anchor point. The strategy will be
presented through a simple example.

Example 5.9 (Second-order ordering strategy) The function

f(x) = 1
x1 + x2 + 1 x ∈ S ≡ [0, 1]2 (5.55)

has no analytical low-rank representation of the form (5.51). This is a particular
case of the “corner peak” Genz function in two dimensions. We will use this
function as a building block for a function which DTT/FTT-decomposition will
be sensitive to the ordering.

Let {Mi}ki=1 such that
∑k
i=1Mi = ds and letM =

{{
i
(1)
j

}M1

j=1
, . . . ,

{
i
(k)
j

}Mk

j=1

}

be an arbitrary partition of [1, 2, . . . , ds]. In the same fashion of the Genz
functions (5.46), let {ci ∼ U([0, 1])}ds

i=1. Then we define the QoI function to be
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f(x) =

Low-rank in between partitions︷ ︸︸ ︷
k∏

l=1


1 +

Ml∑

j=1
c
i

(l)
j

x
i

(l)
j



−1

︸ ︷︷ ︸
High-rank intra the

partition sets
{
i

(l)
j

}Ml
j=1

. (5.56)

For this example we select ds = 20 and we aim at the construction of the STT-
decomposition of polynomial order 7. This means that the candidate points of
the Gauss cubature rule are 820. We generate the partitiona

M = {{3, 16, 6}, {10, 2, 14, 4, 17}, {7, 1, 13},
{0, 19, 18, 9, 15}, {8, 12, 11, 5}} , (5.57)

where we also denote by T = {tj}ds
j=1 the concatenated entries ofM:

T = {3, 16, 6, 10, 2, 14, 4, 17, 7, 1, 13,
0, 19, 18, 9, 15, 8, 12, 11, 5} . (5.58)

Of course f assumes the natural order of the dimensions (0, . . . , 19) and the
partition M is only used internally. A direct approximation of f without
reordering the dimensions turns out to be computationally very expensive and
we are not going to attempt its construction. Instead we will approximate T
with T̃ and construct the approximation of the function f̃ defined by:

f̃(xt̃1 , . . . , xt̃ds
) = f(x1, . . . , xds) (5.59)

We will proceed in several steps.

Construction of the vicinity matrix.
Let (x̂1, . . . , x̂ds) = x̂ ∈ X be an anchor point and define

fi,j(xi, xj) = f(x̂1, . . . , x̂i−1, xi, x̂i−1, . . . , x̂j−1, xj , x̂j+1, . . . , x̂ds) . (5.60)

In this example we chose x̂ to be one of the points in X close to the center of the
domain S. Then we estimate the numerical rank of all the matrices defined by
the evaluation of fi,j on the subset of the candidate Gauss points X along the
planes passing through x̂. These ranks can be estimated by the matrix-SVD,
which requires the evaluation of all the entries along the planes, or they can
be approximated using the TT-dmrg-cross algorithm on the quantic folding of
these planes. We will call these ranks second order ranks and collect them in
the ds×ds matrix R. Figure 5.17a shows the second order ranks of the function
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f . We can define the vicinity matrix V by

Vi,j =
{

1
Ri,j

i 6= j

0. i = j
(5.61)

Traveling Salesman Problem.
The following conjecture is used in the following in order to state the ordering
problem in terms of the vicinity matrix.

Conjecture 5.1 If the approximation of the second order ranks is constant
with respect to the anchor point, then the shortest path connecting all the nodes
of the graph defined by the vicinity matrix defines the ordering with minimum
TT-ranks.

The problem of finding the shortest path connecting all the nodes of the graph
defined by the vicinity matrix is known as the Traveling Salesman Problem
(TSP) [141] and is NP-hard. Several algorithms have appeared in the last
50 years to solve this problem using different heuristics. The study of these
algorithms along with their application to the tensor-train ordering problem is
still under active research.

In this example however we want to show that an approximate ordering can
also be useful for the problem at hand. Instead of solving the TSP, we solve
the relaxed problem of clustering the nodes of the graph defined by the vicinity
matrix. We use a hierarchical clustering [32] on the vicinity matrix and we
obtain the dendrogram shown in figure 5.17b. We manually select a truncation
on the dendrogram at level 4, obtaining the partition

M̃ = {{2, 4, 10, 14, 17}, {0, 9, 15, 18, 19},
{5, 8, 11, 12}, {1, 7, 13}, {3, 6, 16}} . (5.62)

Despite not having the same order ofM in (5.57), this partition identifies the
dimensions which must be kept contiguous.

Approximation of the re-ordered function.
Using the partition M̃, the function f̃ can now be approximated by the STT-
decomposition. Since f̃ and f are related by (5.59), the approximation of f̃
leads to the approximation of f . The L2 error of this approximation is then
checked against the L2 error of the approximation obtained using the exact
ordering M and they are found both to be of the order 10−5. The benefit of
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Figure 5.17: Second-order ordering strategy. Left: Matrix of second-order ranks
from which the vicinity matrix will be constructed. Right: clustering of the
nodes of the graph defined by the vicinity matrix.

the usage of a correct ordering is shown by the TT-ranks of the approximation:

r = [1, 8, 10, 9, 8,2, 8, 8, 7, 6,1, 7, 7, 5,1, 7, 7,1, 6, 6,1] ,

where we have highlighted the ranks between each cluster. These ranks are
small as expected from the definition (5.52) of f .

aHere and in the following the counting of the dimensions is started from 0, in accordance
with the implementation.

Re-weighted DTT-decomposition. Given the tensor A = f(X ) the DTT-
decomposition is based on the optimization problems stated in definition 5.2:

“find ATT in the format (5.32) such that ‖A−ATT ‖F ≤ ε‖A‖F ”. (5.63)

The same optimality condition is seeked whether one uses the TT-SVD algorithm
or the TT-dmrg-cross algorithm.

The optimization (5.63) with respect to the Frobenious norm is not satisfactory
from the UQ perspective, where often there are parts of the domain which are
more relevant than other. In general one seek the best approximation with
respect to the L2

π(Rds) norm – see (B.10). To this end, let W = w1 ◦ . . . ◦
wds be the tensor containing the Gauss-type weights of the tensorized grid X ,
associated to the product measure π. Now, let h(X i) = f(X i)

√W i. For
B = h(X ), one can seek the DTT-decomposition BTT satisfying ‖B−BTT ‖F ≤
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ε‖B‖F . Without loss of generality, let all the tensors involved be in Rn×···×n,
and note that

‖B −BTT ‖2F =
n∑

|i|0=1

(h(X i)− hTT (X i))2

=
n∑

|i|0=1

(f(X i)− fTT (X i))2W i = ‖f − fTT ‖L2
π(Rds ) ,

‖B‖2F =
n∑

|i|0=1

h2(X i) =
n∑

|i|0=1

f2(X i)W i = ‖f‖L2
π(Rds ) .

(5.64)

Thus, the application of TT-SVD or TT-dmrg-cross to B will result in the
construction of the approximate tensor BTT such that ‖f − fTT ‖L2

π(Rds ) ≤
ε‖f‖L2

π(Rds ), which is the right norm to be used in the UQ context. The tensor
ATT can then be recovered from ATT = BTT /

√
W .

Anisotropic adaptivity. The algorithm TT-dmrg-cross provides already an
adaptive mechanism for the selection of the important evaluation points for the
construction of the DTT-decomposition ATT ' f(X ). The construction of the
STT-decomposition is then obtained by projection and the core element of this
projection is the tensor of generalized Fourier coefficients CTT , which is already
in the DTT-decomposition format (5.32).

The QoI function f fulfills (PU-0)-(PU-3) by assumption and we additionally
assume f ∈ Hkπ(Rds) for k > ds − 1, which implies the convergence of the FTT-
decomposition by theorem 5.1. These assumptions, however, do not provide any
information relative to the required polynomial order of the STT-decomposition
needed to fulfill a target tolerance ε > 0 in the approximation. The choice of
this polynomial order must be done adaptively and anisotropically, because the
QoI function can exhibit anisotropic complexity – i.e. different complexity along
different dimensions.

To this end, let N = (n1, . . . , nds) and M = (m1, . . . ,mds) be two multi-indices
such that N < M, with the meaning ni < mi for all i ∈ [1, . . . , ds]. Let us
define the two projection operators PN : L2

π → span ({Φj}j<N) and PM : L2
π →

span ({Φj}j<M). Assuming exact inner products, using the orthonormality of
{Φj}j<M and by the definition (5.9) of the projection operators, we have

‖PNfTT − PMfTT ‖2L2
π

=
M∑

i=N
c2i ‖Φi‖2L2

π
=

M∑

i=N
c2i , (5.65)

where ci are the generalized Fourier coefficients forming the tensors CN and CM.
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Figure 5.18: Splitting of the tensor CM of generalized Fourier coefficients.

Now, let us define

Cj = CM|I , I =
{

i :
{
nk + 1 ≤ ik ≤ mk if k ∈ j
0 ≤ ik ≤ nk if k /∈ j

}
(5.66)

where CM|I denotes the restriction of tensor CM to the indices in I and j =
(j1, . . . , jk) is a multi-index with k ≤ ds. See figure 5.18 for a graphical definition
of Cj for ds = 3. From (5.65) and assuming exact inner products, we have

‖PNfTT − PMfTT ‖L2
π

=

∥∥∥∥∥∥
⊕

#i=1
Ci ⊕

⊕

#i=2
Ci ⊕ · · · ⊕ C(1,...,ds)

∥∥∥∥∥∥
F

=
√∑

#i=1
‖Ci‖2F +

∑

#i=2
‖Ci‖2F + · · ·+ ‖C(1,...,ds)‖2F ,

(5.67)

where #i = k indicates all the multi indices of size k ≤ ds belonging to
{(i1, . . . , ik) : ij ∈ [1, . . . , ds] and i1 < . . . < ik}. Since the inner products
are approximated by discrete quadratures, also the core tensor CN will be dif-
ferent from CM

0 := CM|I, where I = {i : ik ≤ nk, ∀k ∈ [1, . . . , ds]}. Then the
total error needs to be adjusted with the error introduced by the quadratures:

∥∥P̃NfTT − P̃MfTT
∥∥
L2
π

=
√
‖CN − CM

0 ‖2F +
∑

#i=1
‖Ci‖2F + · · ·+ ‖C(1,...,ds)‖2F .

(5.68)
Using these observations, we define the error contribution in direction j ∈
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[1, . . . , ds] to be

Ej =


‖Cj‖2F +

∑

#i=2
j∈i

‖Ci‖2F +
∑

#i=3
j∈i

‖Ci‖2F + · · ·+ ‖C(1,...,ds)‖2F




1
2

. (5.69)

Thus the error in one direction is estimated considering all the errors which
involve the refinement – the increase of polynomial order from N to M – in
this direction. As we will see in section 5.3 and in chapter 6, this definition is
similar to the ANOVA splitting of the variance. In practice both CN and CM

are approximated by CN
TT and CM

TT in the DTT-decomposition format. The esti-
mation of the Cj’s in (5.66) can be rapidly obtained in the DTT-decomposition
format from the DTT-decompositions CN

TT and CM
TT , by a truncation of the

corresponding modes7 – see (5.66) and figure 5.18. The Frobenious norm of
tensors in the DTT-decomposition format is a computationally cheap operation
– O(dsnr

3) [122]. However for ds � 1, the summation (5.69) includes an expo-
nentially increasing number of summands. Thus we define the n-th order error
contribution in the j-th direction to be

E
(n)
j =


‖Cj‖2F +

∑

#i=2
j∈i

‖Ci‖2F + · · ·+
∑

#i=n
j∈i

‖Ci‖2F




1
2

. (5.70)

On the base of (5.70), different strategies for the selection of the directions to
be refined are possible. One strategy is to use a one-at-a-time approach, where
the direction of refinement is

j = arg max
j

E
(n)
j . (5.71)

An alternative is to allow the refinement of multiple dimensions at a time. For
example a cut-off approach is to define E

(n)
max = maxj E

(n)
j and E

(n)
min = minj E

(n)
j

and refine the directions j such that for all j ∈ j,

log10 E
(n)
j ≥ log10 E (n)

max − α
∣∣∣log10 E (n)

max − log10 E
(n)
min

∣∣∣ , (5.72)

where 0 ≤ α ≤ 1. For α = 0 this strategy corresponds to the one-at-a-time
strategy – maximum anisotropy –, while for α = 1 this strategy refines all the
directions at once – minimum anisotropy.

7In the multi-linear algebra terminology, the “mode” or “way” i is what we have been
calling the dimension/direction i.
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The stopping criterion can be based on the error in the estimation of the core∥∥CN
TT − CM

0,TT
∥∥
F
with respect to a threshold εad > 0. A more accurate estimate

can be based on the approximation of the total error (5.68), reusing the partial
contributions Cj – c.f. (5.66) – already computed for (5.70). The n-th order
estimate of the total error is then

E =


‖CN − CM

0 ‖2F +
∑

i

‖Ci‖2F + · · ·+
∑

#j=n
‖Cj‖2F




1
2

. (5.73)

The anisotropic adaptivity needs to be carefully implemented in order not to
waste already computed information. One needs first to chose appropriate
nested quadrature rules [99–103], in order to have any hope of reusing previ-
ous computations. Unlike other approximation techniques, where a refinement
determines the evaluation of the QoI on some a priori known points, the STT-
decomposition based on the TT-dmrg-cross algorithm looks for the optimal
points out of a set of candidate points. This means that there is no guaran-
tee of reusing already computed function evaluations, unless the refinement is
implemented carefully. Furthermore, a refinement can also cause the increase
of the TT-ranks, and this is not know a priori. Different techniques for the
initialization of a refined approximation are the topic of ongoing research.

In the following example we present the anisotropic adaptivity strategy, where
we use second order error estimators to determine the refinement directions and
the stopping criteria. The correct implementation of the strategy is still under
investigation, thus we will not use the nested rules and restarting strategies
discussed before. However, the example helps showing the benefits obtained by
the adoption of anisotropic adaptivity.

Example 5.10 (Anisotropic adaptivity) Let ds = 6 and the QoI function
be defined by

f(x) =
(

1 +
ds∑

i=1
xie

i−1

)−1

, (5.74)

where (x1, . . . , xds) = x ∈ S ≡ [0, 1]ds . The function f decays slowly with
respect to the first dimensions, and very quickly with respect to the higher
dimensions.

This example does not involve any re-usage strategy of the already computed es-
timates during the refinement stepsa. Thus, we construct the STT-decomposition
using Gauss-type quadrature rules (not nested). The aim of this example is the
sole investigation of different adaptivity patterns. We use second order error
estimators for both the selection of the anisotropic refinement directions and



84 Propagation of uncertainty

103 104 105

#f.eval.

10-6

10-5

10-4

10-3

10-2

10-1

100

L
2

 E
rr

o
r

(a) Approximation errors

0 2 4 6 8 10 12
Iteration

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

o
r

d=1

d=2

d=3

d=4

d=5

d=6

(b) 2-nd order errors

0 2 4 6 8 10 12
Iteration

0

5

10

15

20

25

30

O
rd

e
r

d=1

d=2

d=3

d=4

d=5

d=6

(c) Polynomial orders

Figure 5.19: Example 5.10: Isotropic adaptivity for the construction of the STT-
decomposition of (5.74). Left: evolution of the L2 error in the approximation
with respect to the number of samples needed for increasing polynomial orders.
Center: evolution of the directional errors (5.70) with respect to the refinement
iterations. Right: polynomial order in the different directions with respect to
the refinement iterations.
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Figure 5.20: Example 5.10: Anisotropic adaptivity with linear increase of the
polynomial order for the construction of the STT-decomposition of (5.74). Left:
evolution of the L2 error in the approximation with respect to the number of
samples needed for increasing polynomial orders. Center: evolution of the direc-
tional errors (5.70) with respect to the refinement iterations. Right: polynomial
order in the different directions with respect to the refinement iterations.
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the error approximation – n = 2 in (5.70) and (5.73). We consider three kinds
of refinements:

• Linear isotropic: the polynomial order is increased linearly – by steps
of 2 – along all the directions at each refinement step. This strategy
corresponds to the cut-off strategy (5.72) with α = 1.

• Linear anisotropic: we use the cut-off strategy (5.72) with α = 0.5. The
polynomial order is increased linearly – by steps of 2 – in the directions
which need refinement.

• Exponential anisotropic: we use the cut-off strategy (5.72) with α = 0.1.
The polynomial order is increased exponentially – it is doubled each time
– in the directions which need refinement.

Figures 5.19, 5.20 and 5.21 show the performances of these different strategies.
Figures 5.19a, 5.20a and 5.21a show the error L2 error (5.47) estimated using
the LHC method. The isotropic strategy requires approximately three times the
number of function evaluations required from both the linear and exponential
anisotropic strategies in order to almost reach the same accuracy. The final
ranks of the three estimates are approximately the same:

Linear isotropic [1, 5, 7, 9, 10, 10, 1]
Linear anisotropic [1, 5, 7, 10, 10, 10, 1]
Exponential anisotropic [1, 6, 9, 10, 10, 11, 1]

This means that the gain due to the anisotropic adaptivity is only caused by the
lower number of candidate points in the DTT-decomposition via TT-dmrg-cross.
This also suggests that this gain would increase rapidly with ds due to expo-
nential growth of the candidate points. The flattening of the approximation
around 10−6 in the linear and exponential cases is due to the tolerance ε = 10−6

set in the TT-dmrg-cross algorithm – c.f. (5.63).

Figures 5.19b, 5.20b and 5.21b show the decay of the directional contributions
(5.70) to the error. While for the isotropic adaptivity in figure 5.19b small errors
decrease even more rapidly than big errors, for the anisotropic adaptivity in
figures 5.20b and 5.21b the big errors are tackled first. In fact, the anisotropic
adaptivity aims at making the directional contributions to the error converge.

Finally, figures 5.19c,5.20c and 5.21c show the polynomial orders used for each
direction. While in the isotropic adaptivity case all the orders are increased
at each iteration, figures 5.20c and 5.21c show that in the anisotropic case the
last direction is the one on which most of the refinement is applied, accordingly
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Figure 5.21: Example 5.10: Anisotropic adaptivity with exponential increase of
the polynomial order for the construction of the STT-decomposition of (5.74).
Left: evolution of the L2 error in the approximation with respect to the number
of samples needed for increasing polynomial orders. Center: evolution of the
directional errors (5.70) with respect to the refinement iterations. Right: poly-
nomial order in the different directions with respect to the refinement iterations.

with the definition (5.74) of the QoI function.
aThis is a functionality under active development in [Bigoni, 11].

5.3 High dimensional model representation

Any vector valued QoI function f : S → Rn can be written as

f(x) ≡ f0 +
∑

i

fi(xi) +
∑

i<j

fij(xi,xj) + · · ·+ f12···ds(x1, . . . ,xds) , (5.75)

for x ∈ S. This decomposition is called a High Dimensional Model Repre-
sentation (HDMR) and it turns the high-dimensional function f into a sum of
functions representing increasing parameter interactions. Decomposition (5.75)
if far from being unique. The most trivial of these decomposition is obtained by
taking f0 = fi = fij = . . . = fi = 0, where i are multi-indices of size ds − 1, and
letting f12···ds := f . The HDMR method [140, 142–146]-[Bigoni et al., 4–6] aims
at the construction of an approximation (5.75) where the low-dimensional func-
tions f0, {fi}i, {fij}i<j , . . . carry most of the information8 regarding f and the
high-dimensional functions can be assumed to be zero, leading to a truncation
of (5.75). For example a truncation including up to second order interactions is

8In this case the word “information” is used in an informal way and not in the context of
information theory.
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given by
f(x) ' f0 +

∑

i

fi(xi) +
∑

i<j

fij(xi,xj) . (5.76)

This relies on the assumption that f has such a form and its behavior is strongly
influenced by single/couples/triples of variables. This is a pretty commonly
fulfilled assumption in dynamical systems.

Without loss of generality the following theory will be presented considering the
scalar function f in place of f and we will extend S to Rds by extension of the
measure πx : B(S)→ R to πx : B(Rds)→ R as done in (5.4).

In the following we will make use of assumptions (PU-1),(PU-2) and (PU-0).
We will also require assumption (PU-3) for a mixed PC-HDMR approach.

By assumptions (PU-1) πx =
∏
πxi . We will let f ∈ X , where X is a linear

vector space of πx integrable and measurable functions – c.f. appendix B –
equipped with the πx-weighted inner product

(f, g)πx =
∫

Rds
fgπx( dx) f, g ∈ X . (5.77)

Now let the spaces V0, {Vi}, {Vij}i<j , . . . , V12...n ⊂ X be defined as:

V0 ≡ {f ∈ X : f = c, c ∈ R} ,

Vi1,...,il ≡
{
f ∈ X :f(x) = fi1,...,il(xi1 , . . . ,xil) and

∫

R
f(x)πxk( dxk) = 0 , ∀k ∈ {i1, . . . , il}

}
.

(5.78)

Then we have that

X = V0 ⊕
∑

i

Vi ⊕
∑

i<j

Vij ⊕ · · · ⊕ V12...n (5.79)

Due to the orthogonality of the spaces V0, {Vi}, {Vij}i<j , . . . , V12...n and (5.79),
it’s possible to define projection operators from the space X to the subspaces
V0, {Vi}, {Vij}i<j , . . . , V12...n such that the following properties are fulfilled:

1. Pi1,...,il : X → Vi1,...,il defines fi1,...,il := Pi1,...,ilf uniquely,

2. (fi, fj)πx = ‖fi‖πxδij,

3. (5.75) contains (2n − 1) summands.
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ANOVA-HDMR Now, using assumption (PU-2), let X = L2
πx

(Rds). With
this choice, the projection operators are given by

fA0 ≡ PA0 f(x) =
∫

Rds
f(x)πx( dx) ,

fAi (xi) ≡ PAi f(x) =
∫

Rds−1
f(x)

∏

i 6=j
πxj ( dxj)− PA0 f(x) ,

fAi1,...,il(xi1 , . . . ,xil) ≡ PAi1,...,ilf(x) =
∫

Rds−l
f(x)

∏

k/∈{i1,...,il}
πxk( dxk)

−
∑

j1<···<jl−1⊂{i1,...,ßl}
PAj1,...,jl−1f(x)

− . . .−
∑

j

PAj f(x)− PA0 f(x) .

(5.80)

The ANalysis Of VAriance HDMR (ANOVA-HDMR) expansion of f is given
by:

f(x) ≡ fA0 +
∑

i

fAi (xi) +
∑

i<j

fAij (xi,xj) + · · ·+ fA12···ds(x1, . . . ,xds) . (5.81)

By construction, such expansion is exact. We will see in the following that its
L-th order truncation

f(x) ' fA(x) ≡ fA0 +
∑

i

fAi (xi) +
∑

i<j

fAij (xi,xj) + · · ·
︸ ︷︷ ︸

L-th order interactions

, (5.82)

can be used as an approximation of the QoI function. Furthermore this ex-
pansion will turn useful for the computation of sensitivity indices in section
6.1.1.

The ANOVA-HDMR approximation has a significant drawback: its evaluation
requires the computation of several high-dimensional integrals, in particular for
low order terms. For this reason we introduce the Cut-HDMR approximation,
also known as anchored ANOVA decomposition.

Cut-HDMR Instead of computing the ANOVA-HDMR by expensive cuba-
ture rules or by pseudo-random sampling method, one can rely once more on
the assumption that the function f can be represented mostly by low order non-
linear interactions, whereas high-order interactions are only additive and thus
a truncation in the form (5.76) is accurate. This assumption leads to the Cut-
HDMR approximation. Let y ∈ S be the anchor point of the approximation
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and let the projection operators be defined by

fC0 ≡ PC0 f(x) = f(y),
fCi (xi) ≡ PCi f(x) = f i(xi)− PC0 f(x),
fCi1,...,il(xi1 , . . . ,xil) ≡ PCi1,...,ilf(x) = f i1,...,il(xi1 , . . . ,xil)−∑

k1<···<kl−1∈{i1,...,il}
PCk1,...,kl−1f(x)−

. . .−
∑

k∈{i1,...,il}
PCk f(x)− PC0 f(x),

(5.83)

where f i1,...,il(xi1 , . . . ,xil) is the function f(x) with all the remaining variables
set to y and PCi can be interpreted as the projection operator PAi where the
measure πx is substituted by the Dirac measure π( dx) := δ(x − y) dx. This
leads to the expansion

f(x) ≡ fC0 +
∑

i

fCi (xi) +
∑

i<j

fCij (xi,xj) + · · ·+ fC12···ds(x1, . . . ,xds) , (5.84)

which requires the evaluation of f along lines, planes and hyperplanes passing
through the anchor point. An L-th order truncation of this decomposition leads
to the approximation:

f(x) ' fC(x) ≡ fC0 +
∑

i

fCi (xi) +
∑

i<j

fCij (xi,xj) + · · ·
︸ ︷︷ ︸

L-th order interactions

. (5.85)

Now the ANOVA-HDMR decomposition (5.81) can be computed using fC in
place of f . Thanks to the form of the Cut-HDMR, the projections (5.80) involve
only low-dimensional integrals. Exploiting assumption (PU-0) these can be
approximated by random sampling [144] or, assuming also (PU-3), using PC
based quadratures [145–147]-[Bigoni et al., 4–6]. Recent developments have also
explored the usage of Tensor-Train based quadratures [140] – see section 5.2.4.2.

The construction of the ANOVA-HDMR from an M -th order PC based Cut-
HDMR expansion involving interactions of order L for a function f in ds argu-
ments requires the evaluation of f at

Ncut =
L∑

i=0

(
ds
i

)
N i (5.86)

points, whereM = 2N+1 is the order of the tensorized cubature rule with N+1
points. For L� ds, Ncut � (N + 1)ds . Figure 5.22 shows the PC based Gauss
quadrature points of order M = 13 for the computation of the ANOVA-HDMR
from a Cut-HDMR including interactions of order L = 2, for a function f with
ds = 3.
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Figure 5.22: Full cubature rule and cubatures for 2-nd order interactions in
Cut-HDMR, for ds = 3.

Effective Dimension It is left to determine a sufficient value of L for the
approximation to be accurate. To this end we will use the concept of effective
dimension of a function.

By assumption (PU-1), the inputs x consist of independently distributed random
variables. Then the overall variance of f can be expressed in terms of (5.81):

D ≡ V [f ] =
∑

i

Di +
∑

i<j

Dij + · · ·+D1,2,...,n ,

Di1,...,il =
∫

Rl

(
fAi1,...,il

)2 ∏

k∈{i1,...,il}
πxk( dxk) .

(5.87)

For 0 < q ≤ 1, the effective dimension of f is 0 ≤ L ≤ ds such that
∑

0<|i|≤L
Di ≥ qD . (5.88)

Thus, the truncation parameter L for the ANOVA-HDMR is determined by the
number of interactions which must be considered in order to express a q fraction
of the total variance.

For high-dimensional problems, D can be estimated by a random sampling
method or by one of the advanced method presented in section 5.2.4. Then
ANOVA-HDMR approximations of increasing orders L can be constructed until
the requirement (5.88) is fulfilled for a selected value of q. Note however that
whether one is using a Cut-HDMR expansion based on random sampling or
based on PC, both the estimate on the left hand side of (5.88) and D are
approximations and their convergence needs to be checked.



Chapter 6

Sensitivity analysis

With the propagation of uncertainty we aim at the characterization of the distri-
bution πf . With the sensitivity analysis we investigate how the different input
parameters X influence πf . The goal is to identify the parameters which give
the biggest contribution to the uncertainty of f ◦X. This goal however requires
a formal definition of what is uncertainty.

Traditionally, sensitivity analysis has been used in optimization problems, where
the sensitivity of an objective function to its parameters is represented by its
derivatives along the directions of such parameters. In this setting the uncer-
tainty is defined in terms of the gradient: if ∇f(X0) = 0 then the point X0 is
located on a plateau of f and the uncertainty is zero, whereas if ∇f(X0) � 0
then the point X0 is located on a steep plane of f and small variations of X0 will
lead to big variations of f . In many PDE-constrained optimization problems
the computation of the gradient of the objective function requires a negligible
overhead when the adjoint method [148–152] is used1. The sensitivities used
for these kind of optimization problems go under the name of local sensitivities
because they rely on the linearization of the model around some point of interest
in the space of parameters and they are only locally representative.

Local sensitivity analysis is unsatisfactory from the UQ perspective, where the
probability distribution of the parameters is not necessarily narrow around their

1Note that the derivation of the adjoint of complex models is not always trivial, but can
sometimes be achieved by automatic differentiation [153].
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nominal values and thus not local. The sensitivity analysis in the UQ context
must describe the sensitivity of the output distribution of the QoIs to the input
distribution of the parameters. This sensitivities go under the name of global
sensitivities. In this context the uncertainty of a model is defined by its variance,
and the sensitivity to a particular input is described by the amount of total
variance due to such input.

The analysis of the sensitivity of the QoI function to its inputs helps grading
them according to their importance. This ranking will also allow to detect in-
puts which are not influential on the uncertainty of the QoI. These inputs can
therefore be set to their nominal values without altering the overall uncertainty
characteristics of the QoI. This technique goes under the name of model refine-
ment and helps decreasing the dimensionality of the input space, leading to a
model which is more manageable. Note that when sensitivity analysis is used for
model refinement, its goal is primarily qualitative and secondarily quantitative.
Thus, one aims to a correct ranking of the inputs rather than to the accuracy
of the TSI. These accurate indices can be more easily obtained considering the
refined model.

6.1 Variance-based sensitivity analysis

Variance-based sensitivity analysis [143] is the most commonly used type of
global sensitivity analysis. In this context we will present the method of Sobol’
[143, 144, 154] which defines indices of sensitivity as the amount of variance
explained by one input and all its combinations with other inputs. This indices
are said to be high-order2 indices and we will call them Total Sensitivity Indices
(TSIs). The first-order indices – including only variances due to single inputs –
are also called Importance measures [143]. The TSIs are going to be obtained
using the HDMR decomposition presented in section 5.3. The indices can also
be found by the Fourier amplitude sensitivity test (FAST) method [143, 155]
which is however out of the scope of this work.

6.1.1 Method of Sobol’

The method of Sobol’ is very much based on the HDMR decomposition pre-
sented in section 5.3. We consider the ANOVA-HDMR decomposition of the

2In this context “high-order” has nothing to share with the high-order methods based on
polynomial approximation presented in section 5.1.
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QoI function f :

f(x) ≡ fA0 +
∑

i

fAi (xi) +
∑

i<j

fAij (xi,xj) + · · ·+ fA12···ds(x1, . . . ,xds) . (5.81)

and we decompose the variance as

D ≡ V [f ] =
∑

i

Di +
∑

i<j

Dij + · · ·+D1,2,...,n ,

Di1,...,il =
∫

Rl

(
fAi1,...,il

)2 ∏

k∈{i1,...,il}
πxk( dxk) .

(5.87)

Then, we let
Si1,...,il = Di1,...,il

D
(6.1)

be the contribution of {Xi}i∈{i1,...,il} to the total variance D. The Total Sensi-
tivity Index (TSI) TS(i) for the input Xi is defined as

TS(i) = 1− S¬i , (6.2)

where S¬i is the sum of all Si for which i /∈ i. The TSIs do not sum to one
because for i 6= j there are many multi-indices i which contain both, but they
are very useful because they allow the identification of inputs which not only
affect directly the uncertainty, but which affect the uncertainty in combination
with other inputs.

In order to approximate the TSI, one should first truncate the ANOVA-HDMR
expansion (5.81) up to a certain level of interactions, then approximate the
high-dimensional integrals in the ANOVA-HDMR expansion. To this end MC
methods can be used. Alternatively, the Cut-HDMR expansion can be em-
ployed, which reduces the dimensionality of the integrals and allows the usage
of PC based cubature rules.

We will use an example to show the efficacy of the TSI in highlighting the im-
portant inputs in a multivariate QoI function and the efficiency of the approach
based on the Cut-HDMR expansion.

Example 6.1 Let the QoI be defined as

f(X) =
ds∏

i=1

sin(2πXi) + ai
1 + ai

, (6.3)

where ds = 8, Xi ∼ U([0, 1]) and a = (0, 1, 2, 4.5, 9, 20, 50, 99). The factor ai
determines the degree of importance of the input Xi: in fact sin(2πXi)+ai

1+ai →
sin(2πXi) as ai → 0 and sin(2πXi)+ai

1+ai → 1 as ai → ∞. Figure 6.1 shows the
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TSI
L M Ncut q X1 X2 X3 X4 X5 X6 X7 X8

1
7 17 0.26 0.275 0.000 0.000 0.000 0.000 0.000 0.000 0.000
11 33 0.56 0.560 0.000 0.000 0.000 0.000 0.000 0.000 0.000
15 49 0.56 0.557 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2
7 129 0.36 0.360 0.065 0.016 0.003 0.001 0.000 0.000 0.000
11 481 0.91 0.911 0.272 0.068 0.013 0.003 0.001 0.000 0.000
15 1057 0.98 0.977 0.295 0.074 0.015 0.004 0.001 0.000 0.000

3
7 577 0.35 0.350 0.067 0.019 0.004 0.001 0.000 0.000 0.000
11 4065 0.96 0.957 0.315 0.104 0.022 0.006 0.001 0.000 0.000
15 13153 1.01 1.012 0.337 0.111 0.023 0.006 0.001 0.000 0.000

2
7 33 0.35 0.354 0.064 0.016 0.003
11 113 0.96 0.958 0.287 0.072 0.014
19 417 0.98 0.981 0.297 0.074 0.015

3
7 65 0.35 0.352 0.067 0.019 0.004
11 369 1.02 1.019 0.335 0.111 0.023
19 2465 1.01 1.009 0.336 0.111 0.023

Table 6.1: Example: Method of Sobol’. Results of the sensitivity analysis of
(6.3), obtained using the method of Sobol’ through ANOVA-HDMR and Cut-
HDMR. L is the degree of interactions considered in the Cut-HDMR expansion.
M = 2N + 1 is the polynomial degree of exactness of the Gauss quadrature
rules used in the ANOVA-HDMR, where N is the number of points used for
each direction. Ncut is the total number of function evaluations (5.86) used for
the construction of the Cut-HDMR. q is the ratio between the variance expressed
by the ANOVA-HDMR and the total variance σ̂f .
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Figure 6.1: Example: Method of Sobol’. Scattering with respect to the first
three inputs of the LHC points f(X).
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scattering with respect to the first three inputs of the LHC points f(X).

We first use the LHC method in order to estimate the total variance V [f ◦X].
We use 2000 samples, obtaining σ̂f = 0.0449, with an accuracy up to the second
non-zero digit.

The ANOVA-HDMR decomposition is then constructed from several Cut-HDMR
decompositions with increasing interaction orders L. PC based Gauss quadra-
tures are employed with increasing order M = 2N + 1, where N is the number
points used for each direction.

Table 6.1 collects the results. Ncut is the total number of function evalua-
tions used for the construction of the Cut-HDMR, thus excluding the function
evaluations used for the estimation of σ̂f . The ratio q between the variance
expressed by the ANOVA-HDMR and the total variance σ̂f allows the control
over the effective dimensionality (5.88) of the function. We can see that L = 1
is not sufficient in representing the total variance, but already with L = 2 we
achieve a satisfactory 98% of the total variance.

The TSIs show that the uncertainty in the QoI function is mostly influenced by
the first input factors. Thus we refine the model by fixing the last four inputs to
their nominal values and we perform a more accurate sensitivity analysis with
regard to the first four inputs. The second part of table 6.1 shows such results.
Due to numerical errors in both the quadratures and the LHC estimation of the
total variance, the value q is slightly bigger than 1 in certain cases. However,
this error is in the expected range of error given by the convergence of the
LHC method for the total variance σ̂f , and moreover the qualitative results
regarding the ranking of the inputs are not affected by this error.

Figure 6.2 shows a graphical interpretation of the results listed in table 6.1,
where pie charts are used to represent the relative importance of the different
inputs.
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Figure 6.2: Example: Method of Sobol’. Pie plot of the TSI for (6.3).



Chapter 7

Probabilistic inverse problems

Probabilistic inverse problems are presented here for completeness of the expo-
sition of the field of Uncertainty Quantification. A broad overview of the topic
is given by setting the fundamental concepts defining the problem. Probabilistic
inverse problems will not be used in the practical applications presented in part
II, and thus we will not delve very deep into the topic.

In many problems in science and engineering, one is exposed to the observation
of the outputs Y ∈ Rn of a system without knowing its inputs X ∈ Rds . If the
forward mathematical model f : Rds → Rn is assumed to model the physical
phenomena relating X and Y, then the problem

“Given the forward model f and the observations Yobs,
find the inputs X∗ such that Yobs = f(X∗)”

(7.1)

defines an inverse problem. Inverse problems can be over-determined if n > ds
– big data – or under-determined if n < ds – small data. While over-determined
problems often suffer the lack of existence of a solution satisfying all the outputs,
under-determined problems often suffer the lack of uniqueness of a solution
satisfying the outputs. Furthermore, the forward model can be very sensitive
to its inputs, leading to difficulties in inferring them from its outputs. Inverse
problems are said to be ill-posed if they lack existence, uniqueness or if they
are highly sensitive to their inputs. Techniques used for solving ill-posed inverse
problems go under the name of regularization techniques.
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In UQ we usually work with severely under-determined problems n� ds, where
the forward model is sometimes very sensitive to its inputs. If the forward
model is exact – i.e. it represents exactly the physical model generating the
observations – and the observations are noiseless, there must exist at least one
solution satisfying the observations. However, the fact that the problem is
under-determined and the forward model is sensitive to its inputs makes finding
such a solution very difficult. Furthermore, in all practical cases the observations
are not noiseless either. Then many solutions possibly satisfy the observations
within the maximum accuracy allowed by the noise. For these reasons inverse
problems in UQ are usually tackled using probabilistic methods.

In broad terms, the deterministic inverse problem (7.1) is rephrased into the
probabilistic inverse problem:

“Given the forward model f , the noise function g and
the observations Yobs = g(f(X)), find X which

is likely to have generated Yobs”.
(7.2)

The term “likely” should be substituted by an optimality condition for X with
respect to a discrepancy function between the forward model output Y = f(X)
and the observations Yobs.

This function is known as the likelihood and denoted by L(X) ≡ py|x(Y =
Yobs|X) = h(Yobs−f(X)), for some function h which weights the misfit between
Yobs and Y. A common assumption for the noise function g is that it is additive
with mutually independent and identically distributed components, i.e.:

Y = g(f(X)) = f(X) + η , (7.3)

where η are i.i.d. random variables with distribution πη. If the distribution πη
has density ρη, then the likelihood function is defined by

L(X∗) ≡ py|x(Y = Yobs|X = X∗) :=
n∏

i=1
ρη(Yobs

i − fi(X∗)) (7.4)

In the following we will present the two main formulations, based on the likeli-
hood function, for the solution of the probabilistic inverse problem (7.2). The
reader is referred to the literature therein for further details.

Maximum likelihood. One approach to the solution of the probabilistic in-
verse problem (7.2) is to maximize the likelihood function:

Xmax = max
X

L(X) . (7.5)
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This approach goes under the name of maximum likelihood [32]. The maximum
likelihood problem could be tackled directly with deterministic optimization
techniques. However these techniques suffer the ill-posedness of the problem –
the problem is under-determined and the likelihood is defined in terms of the
forward model which can be nonlinear and highly sensitive with respect to the
inputs – by getting stuck in local-maxima. Then probabilistic techniques [63,
65, 66] are needed to solve the problem.

Bayesian inference. One should notice that Y in (7.3) is a random variable
with distribution πy and so it is X if we seek it solving the problem (7.2). Thus
it makes sense to seek the distribution πx of X such that (f(X) + η) ∼ πy.

This is the main task of Bayesian inference [156, 157]. It is based on the Bayes
rule

ρx|y(X|Y = Yobs) ∝ py|x(Y = Yobs|X)ρx(X) , (7.6)

where we have assumed that the PDFs ρx|y and ρx exist for the distributions
πx|y and πx respectively – see appendix B.6 for more details on conditional
probabilities. In Bayesian terminology, ρx represents the belief that one has
regarding possible values of X prior to the observation of Yobs, while ρx|y is
the posterior belief on the possible values of X after the observation of Yobs. The
prior and posterior beliefs are connected by the likelihood function py|x(Y =
Yobs|X) – see (7.4) – which determines how informative Y is in the inference
of X.

At this point one should notice the analogy between the parametric methods
for the quantification of source of uncertainties presented in section 4.3.1 and
the machinery for probabilistic inverse problems presented here. The methods
are practically the same, but for scope of their application. In section 4.3.1 one
seeks the distribution πx from observed values of X, and the forward model
is determined by the a priori selection of a family of probability distributions.
This kinds of problems are known as identification problems. Here, instead,
we seek πx from observed values of Y, where the forward model represents the
physics governing the relation between X and Y.

Markov Chain Monte Carlo. Few Bayesian inference problems (7.6) have
analytic solutions. In general they need to be solved through simulations by
means of the Markov Chain Monte Carlo (MCMC) method [156–158]. This is
a pseudo-random sampling method – see section 5.1 – which allows the gener-
ation of Markov chains1 with an invariant distribution. In Bayesian inference

1A Markov chain is a sequence of random variables X(1),X(2), . . . which fulfill the Markov
property P (X(n+1)|X(1) = x(1), . . . ,X(n) = x(n)) = P (X(n+1)|X(n) = x(n)). Note that,
unlike the methods in section 5.1, the variables X(1),X(2), . . . of a Markov chain can be
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the invariant distribution is the posterior probability πx|y, and the transition
probabilities of the chain are defined by the likelihood function L and the prior
probability πx. Thus, MCMC applied on the Bayesian inference problem (7.6)
allows one to generate samples from the posterior distribution πx|y without
actually knowing it analytically.

We will not adventure any further on these topics and we refer the reader to
more complete literature [156–158, 160]. We only mention that applications
involving MCMC are some of the most computationally expensive due to the
slow convergence of MC type approaches.

Recently, the PC framework presented in section 5.2 has been used for the
acceleration of Bayesian inference in inverse problems [161, 162], where the
computationally expensive evaluation of the forward model was substituted by
the cheap evaluation of a PC approximation.

In the context of Bayesian inference in inverse problems, PC techniques have
been used also for the identification problem [64, 65] presented in section 4.3.1.
Instead of selecting an exponential family and inferring its parameters from the
observations, in this case the observations are assumed to have a distribution
described by a PC model, where the PC coefficients are then inferred from the
observations.

dependent by definition. We refer the reader to [159] for details on Markov chains



Chapter 8

Conclusions and outlook

The presented framework for Uncertainty Quantification represents a valuable
tool in the analysis of dynamical systems subject to uncertainties. These analy-
sis have been traditionally performed using probabilistic methods, some of which
have been presented in this part of the work. The computational bottleneck in
UQ is often located in the computation of the forward model, which is required
for every step of the UQ framework but the quantification of the input uncer-
tainties – unless these are being characterized using probabilistic inversion. This
forward model describes the physics of the problem, and despite big progresses
in the field of high-performance computing, the solution of many of these models
is computationally challenging. This fact limits the applicability of traditional
probabilistic methods, which often require hundreds or thousands of evaluations
of the forward model.

This justifies the appearance of a number of methods based on meta-models,
which try to find a useful approximation of the forward model to the end of
performing the analysis of interest. In this work we have investigated Polyno-
mial Chaos methods which are based on the polynomial approximation of the
forward model. These methods have recently gained a lot of popularity as a
consequence of a big research effort into their expansion to the approximation
of high-dimensional functions. The main contribution of the first part of this
work falls into this path.

Approximation methods based on polynomials have been used in science since
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Karl Weierstrass’s proved the approximation theorem (1885) which bears his
own name. Polynomials found large application in numerical methods during
the last 50 years, in particular in the solution of physical problems modeled
by PDEs. However these approximation methods had an hard time in entering
the field of UQ, due to their poor performances – curse of dimensionality –
on problems with the usual dimensionality found in UQ problems, which often
exceed the three dimensions considered in PDE problems.

The novel Spectral Tensor-Train decomposition method – see section 5.2.4.2 and
[Bigoni et al., 9] – aims at the polynomial approximation of high-dimensional
functions while alleviating the curse of dimensionality typical of methods based
on polynomials. This result is achieved at the expense of an additional assump-
tion on the regularity of the approximated function, which is in practice required
to belong to the Sobolev space of the same order as the dimensionality of its
input.

The STT-decomposition exhibits performances on test functions which agree
with the theory and are comparable and sometimes better than state of the art
methods such as Sparse Grids [Bigoni et al., 9]. The method has been tested
also on an elliptic PDE with random inputs in [Bigoni et al., 9], without however
exploiting the anisotropy characteristic of the problem.

The method is still young and has room for improvement. Three research di-
rections have been presented in this work which aim at solving the ordering
problem characteristic of tensor-train decompositions, at providing better ap-
proximations in suitable norms and at exploiting the anisotropy of the approx-
imated function in order to limit the number of function evaluations. All these
enhancements are in the process of being incorporated in the TensorToolbox
[Bigoni et al., 11] described in appendix D.3.

The application of the STT-decomposition for the propagation of uncertainty to
engineering problems is under active investigation, in particular in the field of
stochastic water wave simulation described in chapter 10. In this field we have
identified several problems, involving optimization and probabilistic inversion,
which would benefit from the usage of surrogate models based on the STT-
decomposition.

If on one hand, many problems which complexity posed serious limits in the
past, are now entering a domain of computational time for which the stochastic
simulation and the UQ analysis becomes possible, thanks to recent developments
in the field of high-performance computing. On the other hand new numerical
methods for UQ are appearing which provide better analysis while requiring a
lower computational burden. These two trends suggest that UQ will become
increasingly important and applied in the future.



Part II

Applications of Uncertainty
Quantification





Chapter 9

Railway Vehicle Dynamics

Nowadays railway transport is challenged with the demand of providing faster,
cheaper and environmentally cleaner connections on medium distances, where
aviation transport has been dominating during the last fifty years. These de-
mands are pushing the development of high-speed trains and high-speed lines
which are now allowing fast intra-continental transport.

New vehicles as well as new railway lines need to comply with strict regula-
tory safety standards and every vehicle needs to undergo a series of static and
dynamic tests before being homologated by the regulatory authority. In the Eu-
ropean Union (EU) tests on-track [163] are required for newly designed vehicles
and, in many cases, also for modifications to old ones.

These tests are costly and often not fully representative of the possible run-
ning conditions. The advances achieved in computer aided simulation offer a
cheaper and sometimes more representative approach, which could complement
and in the end substitute some of the on-track tests [164, 165]. In order for this
“virtual homologation” to be representative, UQ methods can be applied and
standardized UQ procedures may enter the design phases of new vehicles.

In the last few years several works have been focusing on the characteriza-
tion of the track irregularities, which are a major source of uncertainty for the
dynamics of the vehicle. In [166] techniques for modeling non-stationary non-
Gaussian dependent vector-valued random fields have been developed and used
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Figure 9.1: The simple Cooperrider bogie vehicle

for the characterization of track irregularities. Then, using MC simulations,
the uncertainty related to these irregularities have been propagated through the
dynamical systems modeling vehicles [167].

In our works [Bigoni et al., 1–6] we instead investigate the influence that the
uncertainty on the characteristics of the suspension components has on the
dynamic stability of vehicles. Our focus will be on the non-linear dynamics of the
model under such uncertainty and we are going to neglect external excitations
from track irregularities.

9.1 The models.

In the several works we have done on the topic, we study the dynamics of a more
and more complex version of a vehicle equipped with the Cooperrider bogie [168,
169].

The simplest of such versions is shown in figure 9.1. We will call this the simple
Cooperrider bogie vehicle. This model is composed by two conical wheel sets
rigidly connected to a bogie frame, that is in turn connected to a fixed car
body by linear suspensions: a couple of lateral springs and dampers and one
torsional spring. The parameters used for the model as well as its Newton-
Euler governing equations can be found in [Bigoni et al., 1]. The model has
been developed in Python and solved by time integration routines belonging to
the package SciPy1.

The half-wagon with Cooperrider bogie vehicle is an extension of the simple
Cooperrider bogie vehicle, where the car body is fixed but for the roll motion,

1http://www.scipy.org/

http://www.scipy.org/
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Figure 9.2: The half/complete-wagon with Cooperrider bogie vehicle.

linear stiffness is added in the primary suspensions and both linear stiffness
and damping are added in the secondary suspensions. Figure 9.2 shows the
deployment of the suspensions and the relative positions of the vehicle’s bodies.
The vehicle is equipped with wheel-sets with the realistic wheel profile S1002
and runs on a track with cant 1/20 and rail profile UIC60. The parameters used
for this vehicle can be found in [4, 5, 170].

The complete-wagon with Cooperrider bogie vehicle corresponds to the half-
wagon with Cooperrider bogie vehicle, but for the fact that the car body is
not fixed. The characteristics of this vehicle can be found in [6, 170].

The half-wagon and the complete-wagon with Cooperrider bogie vehicles are
modeled using the Newton-Euler governing equations which are automatically
obtained through the multi-body dynamics software DYnamics Train SImulation
(DYTSI). The description of the software along with the study of its applica-
tions is available in [170]. The wheel-rail interaction is modeled using tabulated
values generated with the routine RSGEO [171] for the static penetration at the
contact points. These values are then updated using Kalker’s work [172] for the
additional penetrations. The creep forces are approximated using Shen-Hedrick-
Elkins nonlinear theory [173]. The system of differential equations deriving from
these modeling choices of the wheel-rail interaction is not only non-linear, but
also non-smooth, due to the possible jumps in position of the contact patch.
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(a) Super-critical Hopf bifurcation
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Figure 9.3: Sketches of a sub-critical and a super-critical Hopf bifurcation. Note
that the super-critical Hopf bifurcation is the result of the collapse of the bifur-
cation point and the folding of the sub-critical Hopf bifurcation.

9.2 Identification of the QoI: the critical speed.

All the mathematical models used for the description of the dynamics of the
vehicles presented here are characterized by strong non-linearities in the wheel-
rail interaction forces. Above a design dependent critical speed, these non-
linearities determine the appearance of sideways oscillations known as hunting
motion [168]. The maximum allowed speed for vehicles is then determined in
relation to the critical speed and the best designs available today are able to
push this limit well above 300 km h−1 on straight tracks.

The hunting motion is due to the non-linearities appearing in the modeling
of the wheel-rail contact, and the sideways oscillations appearing above the
critical speed find explanation through the theory of non-linear dynamics and
chaos [174]. The hunting motion appears as the result of an Hopf bifurcation
which can be super or sub-critical [175]. Figure 9.3 shows two sketches of these
bifurcations. At low speeds, only the central solution is stable and the system
restores it whenever perturbed. When the speed is higher than the bifurcation
point, then sideways oscillation appears and the system is attracted by the stable
limit cycle. In the sub-critical case, this stable limit cycle extends below the
bifurcation point, thus in the range of speeds between the critical speed and the
bifurcation point there are two possible stable solution.

Hopf bifurcations are not the only non-linear effects that can appear in railway
dynamics. For non-smooth systems chaos [7, 176, 177] has been observed as
well. However, the vehicle models considered in our works related to UQ will
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Figure 9.4: Bifurcation diagram and detection criterion for a vehicle running
on straight track. Left: complete bifurcation diagram where the folding point
is detected by continuation (ramping) method from the periodic limit cycle.
Right: criterion for the determination of the critical speed based on the power
of the lateral oscillations in a sliding window. LB, LLW and LTW stand for the
bogie frame, the leading wheel set and the trailing wheel set respectively.

only exhibit an Hopf bifurcation in the range of speeds considered. We refer the
reader to [7] for a review on non-smooth railway vehicle dynamics.

The right way to compute the critical speed is described in [178]. On straight
track, a linearization of the system around the stable solution positioned at the
center-line of the track can be used for the detection of the Hopf bifurcation.
Then the stable limit cycle needs to be detected via numerical simulation and
followed backwards until the fold of the sub-critical Hopf bifurcation disappears.
This procedure for the detection of the fold of the sub-critical Hopf bifurcation
is called continuation or ramping. On curved tracks the center-line of the track
is not a stable solution, thus the bifurcation point needs to be detected through
simulation as well.

The gambling way to detect the critical speed [178] consists in trying to enter
the hunting limit cycle at a lower speed than the bifurcation point. Since one
is interested only on the speed at which the folding disappear, this approach
saves the time which would be wasted in the computation of an unnecessary
part of the folding. However, in order to enter the hunting limit cycle, one
needs to provide the right initial condition to the system. In the context of UQ
where many simulations are often necessary, a candidate initial condition can
be precomputed finding the full solution along the limit cycle. Since this limit
cycle is an attractor, small perturbations within its domain of attraction will
not drive the solution away from it.
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In the following we will consider the critical speed as the QoI in several UQ
analysis. Thus, it is useful to define a criterion for the automatic detection
of the critical speed from numerical simulations. This criterion is based on the
power of the lateral oscillations in a 1 s sliding window of the computed solution.
In particular, a threshold is selected and the critical speed is defined as the speed
at which the powers of the lateral displacement of all the components fall below
such threshold. Figure 9.4 shows the bifurcation diagram of the half-wagon with
Cooperrider bogie running on straight track along with the detection criterion
of the critical speed. The threshold was conservatively set to 10−11. Figure 9.5
shows the same analysis for the complete-wagon with Cooperrider bogie running
on a curved track. Here the threshold was relaxed to 10−5, in order to neglect
unavoidable oscillations due to the slowly decreasing speed used along the curve.
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Figure 9.5: Bifurcation diagram and detection criterion for a vehicle running
on straight track. Left: complete bifurcation diagram where the folding point
is detected by continuation (ramping) method from the periodic limit cycle.
Right: criterion for the determination of the critical speed based on the power
of the lateral oscillations in a sliding window. LB, LLW and LTW stand for the
bogie frame, the leading wheel set and the trailing wheel set respectively.

The detection of the hunting motion, not only needs careful modeling, but also
the right selection of the numerical integrator. In [7] we investigate the adoption
of explicit and implicit numerical methods, leaning in the end toward the explicit
ones which do not introduce unnecessary and sometimes misleading numerical
damping. Furthermore, the choice is driven by the computational efficiency of
explicit methods in the detection of the hunting motion.

Despite the selection of a good numerical integrator, the problem of accurately
detecting the hunting motion is computationally demanding and the accuracy
of the following UQ analysis will be mainly limited by this factor.
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9.3 Sources of uncertainty: suspension compo-
nents.

In all the analysis performed on the three models, the suspension components are
considered to be subject to manufacturing uncertainties. Due to the lack of data,
this uncertainty has been assumed to be Gaussian with 5% standard deviation
around the suspension’s nominal value. This assumption does not undermine
the applicability of the method to other settings, where other distributions might
be more suitable.

Uncertainties stemming from manufacturing errors can be considered to be in-
dependent. The characterization of these uncertainties should be carried out
through extensive measurements.

The suspension components are also subject to uncertainties due to prolonged
wear. It is likely that this kind of uncertainty have a clear structure due to
the particular design of the vehicle and that uncertainty on the components is
mutually dependent. Due to the lack of real data, we don’t investigate this fact
in this work.

9.4 Propagation of the uncertainty.

The propagation to the critical speed of the uncertainty stemming from man-
ufacturing errors of the suspension components was first investigated in [179]
using the MC method with good results.

In [180] PC methods – see section 5.2 –, in the form of gPC [46] and MEgPC [88,
89], were first applied on the dynamics of a two-degree-of-freedom quarter-car
model.

In [Bigoni et al., 1–3] we apply gPC on the simple Cooperrider bogie vehicle.
We compare both the Galerkin and the collocation methods to the MC and
the QMC method in estimating the uncertainty of both the time-dependent
evolution of the system at fixed speed, and of the critical speed of the model.

Figure 9.6 shows the distribution of the critical speed and the convergence of the
three methods used on the simple Cooperrider bogie vehicle subject to uncertain-
ties on the three suspension components – the model is considered completely
symmetric here, so that the left and right stiffness and damping are changed
together. We refer the reader to [Bigoni et al., 1–3] for more detailed results.
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Figure 9.6: The PC collocation method – named Stochastic Collocation Method
(SCM) – is compared to the MC and QMC methods in the estimation of the
mean and variance (left) of the critical speed and in the approximation of its
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SCM method is positioned on the top axis.

48 50 52 54 56 58 60 62 64
Critical speed (m/s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

KDE

PSLL_LEFT_K2

PSLL_LEFT_K3

PSLL_RIGHT_K2

PSLL_RIGHT_K3

PSLT_LEFT_K2

PSLT_LEFT_K3

PSLT_RIGHT_K2

PSLT_RIGHT_K3

Figure 9.7: Sensitivity analysis on straight track. Left: histogram of the critical
speed obtained using the LHC method and estimated density function obtained
with the KDE method. Right: pie plot of the TSIs of the reduced stochastic
model, where only the most influential components are analyzed. See table 9.1
for the definition of the notation used for the suspension components.

9.5 Sensitivity analysis.

The sensitivity of the critical speed to the uncertainty on the suspension com-
ponents is presented in [Bigoni et al., 4–6]. In these works the left and right
suspension components are considered separately, accounting for asymmetric
vehicles which are normally appearing in reality due to uncertainties.
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Straight track. In [Bigoni et al., 4, 5] the sensitivity of the critical speed
on all the suspension components of the half-wagon with Cooperrider bogie ve-
hicle is analyzed for the train running on straight track. The co-dimension2

of the system is 24. The Total Sensitivity Indices (TSIs) are obtained using
the ANOVA-HDMR estimated through the PC based Cut-HDMR – see section
5.3 and chapter 6. Different orders of approximation are used in order to con-
struct a refined model with co-dimension 8, obtained neglecting uninfluential
uncertainties due to the remaining 16 suspension components.

Figure 9.7 shows the propagation of the uncertainty obtained using the LHC
method and the pie plot of the TSIs obtained for the refined model. Table 9.1
lists the numerical values of the TSIs of the components in the refined model
along with the nominal value of the stiffness/damping parameters associated
with each component. We refer the reader to [Bigoni et al., 4, 5] for detailed
results.

For the studied setting of uncertainties, it was found that the most relevant com-
ponents driving the critical speed on straight track are the primary longitudinal
suspension components. Surprisingly the yaw dampers, which are known to be
important in counteracting the hunting motion, showed to have little effect on
the critical speed of the vehicle. In [Bigoni et al., 4] we provide some insight on
this fact. UQ analysis are always based on some characterization of the input
uncertainties. For the chosen uncertainties in this work, most of the probability
mass of the distribution of the yaw damper is concentrated in a flat location of
the response surface of the critical speed. Nonetheless, a different distribution
could have had non-negligible mass concentrated in a more sensitive location of
the response surface, leading to higher sensitivities for the yaw dampers.

Curved track. In [Bigoni et al., 6] the sensitivity on all the suspension compo-
nents of the complete-wagon with Cooperrider bogie vehicle is analyzed for the
train running on a curved track with curve radius 1600 m and super-elevation
110 mm. The co-dimension of the system is 48 and the same combination of
techniques used on the straight track case is used for the study of the sensitiv-
ities. Figure 9.8 and table 9.2 show the results of the sensitivity analysis. The
reader is referred to [Bigoni et al., 6] for detailed results. On the considered
curved track and for the considered characterization of the sources of uncer-
tainty, the critical speed was found to be greatly influenced by the yaw dampers
in the leading secondary suspensions. This result is consistent with experience,
where yaw dampers are known to play an important role in both the steering of
the car in the curve and the stabilization of the dynamics of rail cars.

2The co-dimension is the dimension of the parameter space, which in this case is the number
of suspension components in the system
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Suspension Nom. Value TSI
PSLL_LEFT_K2 3646.0 kN m−1 0.09
PSLL_LEFT_K3 3646.0 kN m−1 0.07
PSLL_RIGHT_K2 3646.0 kN m−1 0.11
PSLL_RIGHT_K3 3646.0 kN m−1 0.05
PSLT_LEFT_K2 3646.0 kN m−1 0.63
PSLT_LEFT_K3 3646.0 kN m−1 0.05
PSLT_RIGHT_K2 3646.0 kN m−1 0.59
PSLT_RIGHT_K3 3646.0 kN m−1 0.08

Table 9.1: Sensitivity analysis on straight track. Nominal values of the sus-
pension components and TSIs of the critical speed for the refined model. The
naming convention used for the suspensions works as follows. PSL and SSL
stand for primary and secondary suspension of the leading bogie respectively.
The following L and T in the primary suspension stand for leading and trailing
wheel sets. The last part of the nomenclature refers to the particular suspension
components as shown in figure 9.2.
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Figure 9.8: Sensitivity analysis on curved track. Left: histogram of the critical
speed obtained using the LHC method and estimated density function obtained
with the KDE method. Right: pie plot of the TSIs of the reduced stochastic
model, where only the most influential components are analyzed. See table 9.2
for the notation used for the suspension components.
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Suspension Nom. Value TSI
PSLT_LEFT_K2 3646.0 kN m−1 0.09
PSLT_RIGHT_K2 3646.0 kN m−1 0.09
PSTT_LEFT_K2 3646.0 kN m−1 0.24
PSTT_RIGHT_K2 3646.0 kN m−1 0.24
SSL_LEFT_D6 166.67 kN s/m 1.07
SSL_RIGHT_D6 166.67 kN s/m 1.07
SST_LEFT_D6 166.67 kN s/m 0.15
SST_RIGHT_D6 166.67 kN s/m 0.15

Table 9.2: Sensitivity analysis on curved track. Nominal values of the suspension
components and TSIs of the critical speed for the refined model. The naming
convention used for the suspensions works as follows. PS and SS stand for
primary and secondary suspensions. The following L or T stands for leading or
trailing bogie frame. The second L or T in the primary suspension stands for
leading or trailing wheel sets. The last part of the nomenclature refers to the
particular suspension components as shown in figure 9.2.

9.6 Conclusions and outlook

We have proven the applicability of UQ methods, based on PC, on a range of
problems of increasing complexity in the field of railway vehicle dynamics. In the
computationally expensive task of analyzing the uncertainty of the critical speed
of railway vehicles, the UQ analysis benefits greatly from the fast convergence
of PC methods.

This gain has been first showed on a low dimensional simple problem in section
9.4, where both the Galerkin and the collocation PC methods were tested in the
propagation of the uncertainty due the manufacturing errors in the suspension
components. Both of the methods showed a great improvement in the conver-
gence rate with respect to random sampling methods. The Galerkin method
was excluded in subsequent applications with more complex models, where its
derivation was cumbersome and not practical due to a number of non-linear
terms entering the system of equations.

The global sensitivity of the critical speed of two railway cars on straight and
curved tracks to their suspension components has been analyzed in section 9.5
using the method of Sobol’ based on the PC-HDMR approach. The suspension
components are assumed to be subject to manufacturing errors with a certain
distribution, and the methods highlights which of these components give the
biggest contribution to the variance of the critical speed.

The method can be easily applied to other quantities of interest, and a logical
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step would be its application to the characterization of the sensitivity of the
lateral and vertical forces applied to the track by a railway vehicle running
through a curve.

In order to move this application towards a real industrial setting, a complete
characterization of the input uncertainties must be performed, starting from the
collection of data regarding manufacturing uncertainties.

An even more important uncertainty suffered by the suspension components
is caused by the wear. This uncertainty is added to the uncertainty due to
manufacturing errors and leads to time-varying distributions of the suspension
components. The random variables modeling the uncertainty in the suspension
components will very probably be dependent, thanks to the coupling of the
dynamics of the system, and this will most likely lead to challenging problems
in the characterization of their distribution.



Chapter 10
Stochastic water wave

simulation

Coastal, off-shore and maritime engineering are all subject to a number of uncer-
tainties related to the weather conditions and the sea bed characteristics. The
weather conditions are grouped into a number of sea states and each of these is
characterized by a set of parameters, which determine particular waves, wind,
currents, sea level and ice characteristics. The transition of sea states is usually
modeled by stationary processes of the parameters of probability distributions
describing the waves, wind, currents, sea level and ice conditions. Since safety,
costs and profits in the coastal, off-shore and maritime industry are sensitive
to these uncertainties, extensive measurements of environmental uncertainties
have been and are being carried out [181–183].

In our contribution [Bigoni et al., 8] we focus on the propagation of uncertainties
through a fully non-linear and dispersive model of water waves. The numerical
solution of such a model is known to be computationally expensive and less
accurate low-order models have been often preferred when applicable. However,
recent developments in computer architectures and high-performance comput-
ing, thruogh the introduction of massively parallel algorithms, are allowing the
solution of this high-order model in computationally feasable time [184]. Despite
these developments, the simulation of water waves thorugh this model is still
computationally expensive, and thus the UQ analysis of it can greatly benefit
from the use of high-order methods which require a smaller number of function
evaluations than traditional random sampling methods.
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To highlight the potential of UQ analysis, we construct and propose new stochas-
tic benchmarks based on traditional deterministic ones for testing UQ tech-
niques, useful for proceeding towards advanced applications. The MC method
and the high-order PC method in its collocation form are then tested on these
benchmark problems. The results are compared to laboratory experimental
results1.

Several works have appeared in recent years treating uncertainties with PC
methods in the computationally cheaper Shallow Water Equations (SWE). In
[185] the MC and the PC method in the Galerkin and collocation form were
compared when applied on the SWE modeling the propagation of a wave over
a submerged hump. In [186] random sampling methods, sparse grids, PC in
Galerkin and collocation form, and a novel quadrature technique called Com-
pound Uncorrelated Dimension (CUD) quadrature were compared when applied
on the SWE modeling flood prediction under an uncertain river bed topogra-
phy and characteristics. In [187] a combination of non-intrusive (collocation)
PC and ANOVA decomposition was used for the propagation and sensitivity
analysis of the uncertain parameters entering the SWE modeling the runup of
waves.

The propagation of uncertainties in coastal and off-shore engineering is often
related to the ability of structures or ships to withstand fatigue due to external
loadings [188, 189]. In many of these applications, the interest is focused on the
prediction of extreme ocean environments [190], which can lead to catastrophic
consequences. This topic is out of the scope of our contribution [Bigoni et al.,
8] but it is a subject of ongoing research.

10.1 The mathematical and numerical models

We consider unsteady water waves described by a potential model for two and
three-dimensional fully nonlinear and dispersive free surface flows under the in-
fluence of gravity [191]. The flow is assumed inviscid and irrotational. The
model can, without simplifications, be used for short and long wave propaga-
tion in both shallow and deep water where viscous and rotational effects are
negligible. The sea bed is assumed variable and impermeable. The derivation
of the model is presented in [184].

The model is characterized by non-linearities up to the fourth order, making its
solution computationally challenging. Flexible-order finite differences are used
to discretize the model [192], obtaining the numerical solver presented in [193].

1The benchmarks settings and data are made available at
http://www2.compute.dtu.dk/ apek/OceanWave3D/

http://www2.compute.dtu.dk/~apek/OceanWave3D/
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Description Variable Value
Bar height from bottom hbar 0.3 m
Bottom floor hb −0.4 m
Entering wave period T 2.02 s
Basin Length 29.0 m

Table 10.1: Nominal values and experimental settings used for the deterministic
solution of the harmonic generation over a submerged bar.
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Figure 10.1: Deterministic bottom topography and realizations of uncertain
bottom topographies, modeled by the Gaussian random field with Ornstein-
Uhlenbeck covariance used for the benchmark (T2D-4).

The chosen discretization is prone to the massive parallelization, which is treated
in [184, 194, 195] and implemented in the multi-GPU solver OceanWave3D2.

10.2 Deterministic and stochastic benchmarks

We consider two deterministic benchmarks which we then transform to stochas-
tic benchmarks by assuming uncertainties on some of their parameters. The
purpose of this exercise is to highlight opportunities for improved engineering
analysis.

Harmonic generation over a submerged bar (2D) The first benchmark
considered is the two dimensional experimental setting proposed by Beji et al.

2More details are available at http://www2.compute.dtu.dk/∼apek/OceanWave3D/

http://www2.compute.dtu.dk/~apek/OceanWave3D/
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Figure 10.2: Deterministic solution of the submerged bar experiment at eight
different gauge locations. The experimental data are due to Luth et al. [197].

[196] of the propagation of non-linear waves over a submerged bar. An experi-
mental tank is considered, waves are generated at one end of the experimental
domain and propagated through the tank. Figure 10.1 shows the deterministic
bottom topography of this benchmark along with examples of uncertain bottom
topographies. Table 10.1 lists the nominal values of the experiment.

The submerged bar causes a transformation of the wave due to the transfer of
energy between its harmonics [198]. It is generally accepted that the experi-
ment can be reproduced within engineering accuracy by the deterministic wave
model considered here, which describe both the nonlinear and dispersive effects
accurately.

Experimental measurements for this benchmark were carried out by Luth et al.
[197] and are used here for comparison with the numerical results. Eight gauges
are positioned at locations x = {4.0, 10.5, 13.5, 14.5, 15.7, 17.3, 19.0, 21.0} and
they measure the time-dependent wave amplitude. Figure 10.2 compares the
experimental measurements with the numerical solutions obtained setting the
parameters of the model to the nominal values used for the experiment.

The following stochastic benchmarks are constructed by the assumption of un-



Deterministic and stochastic benchmarks 121

(a) Bottom topography
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Figure 10.3: Bottom topography and deterministic solution of the wave propa-
gation in three dimensions. The first three harmonics of the numerical solution
(full lines) at the center-line of the experimental domain are compared with the
corresponding experimental measurements at different longitudinal locations in
the basin (dots).

certainties on some of the model parameters:

(T2D-1) still water height3: −hb ∼ trN
(
0.4 m, 0.0125 m2, [0.375 m, 0.425 m]

)
,

(T2D-2) input wave period: T ∼ N
(
2.02 s, 0.01 s2)

(T2D-3) still water height and input wave period: (T2D-1) and (T2D-2)
(T2D-4) bottom topography: h ∼ N

(
h̄, σ2C

)
, where h̄ is the nominal bottom

topography, σ2 = 0.012 and C is the Ornstein-Uhlenbeck covariance (B.36)
with a = 1.0. One realization of this setting is also show in figure 10.1a.
This model tries to capture small macroscopic uncertainties in the slope
of the basin’s bottom.

Harmonic generation over a semi-circular shoal (3D) The second bench-
mark is the three dimensional propagation of a regular wave over a semi-circular
shoal, based on the experiments in [199]. Figure 10.3a shows the bottom to-
pography of the experiment and table 10.2 lists the nominal values of the input
wave characteristics. The result of the experiment, with the prescribed nominal
values of its parameters, is decomposed into its harmonics. In figure 10.3b the
evolution of the first three harmonics along the experimental domain is com-
pared to the measured harmonics.

The following stochastic benchmarks are constructed by the assumption of un-
certainties on some of the model parameters:

3trN stands for the truncated normal distribution.
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Description Variable Value
Entering wave height H 0.015 m
Entering wave period T 2.0 s

Table 10.2: Nominal values and experimental settings used for the deterministic
solution of the harmonic generation over a semi-circular shoal.

(T3D-1) input wave height: H ∼ N
(
0.015 m, 0.75× 10−6 m2)

(T3D-2) input wave period: T ∼ N
(
2.0 s, 0.01 s2)

(T3D-3) input wave height and period: (T3D-1) and (T3D-2)

10.3 Uncertainty quantification

Even if the constructed benchmarks do not aim at representing the real uncer-
tainty in the practical experiments, they are compared to laboratory experi-
ments and thus all the uncertainties can be considered to be epistemic.

The methods applied in this work are the MC method and the collocation PC
method, known also as the Stochastic Collocation Method (SCM). Collocation
PC has been applied both in its tensorized form and in the non-adaptive Sparse
Grid form. MC method has been applied to all the experimental settings for
validation purposes. However, for the low-dimensional problems considered, it
was always outperformed by PC based methods, so the results showed in [Bigoni
et al., 8] are always the ones obtained using PC methods.

In the following we will present the main results obtained. The interested reader
is referred to [Bigoni et al., 8] for more detailed results.

Harmonic generation over a submerged bar (2D) Figure 10.4 shows the
convergence rates of MC and SCM for the benchmarks (T2D-1) and (T2D-2).
We can see that the SCM method converges exponentially fast to the solution
whereas the MC converges with its typical O(1/

√
N) rate. The convergence of

the SCM method correctly flattens around 10−6, which is the accuracy limit set
in the deterministic solver.

Figure 10.5 shows the probability distribution of 10 s of the steady state of the
solution of benchmark (T2D-3), along with its mean and 95% confidence interval
obtained using the SCM. In [Bigoni et al., 8] we show that the two uncertainties
entering the benchmark (T2D-3) have a non-trivial combined influence on the
resulting wave dynamics, which could not be explained by simple superposition.
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Figure 10.4: Convergence rate of the MC method and the SCM method on the
submerged bar benchmarks (T2D-1) and (T2D-2). The L2 error of the approx-
imation of 10s of simulation is computed against an highly accurate reference
solution of order 20. The different lines belong to different gauges. The MC
method exhibit its slow convergence of O(1/

√
N), while the SCM method shows

spectral convergence.

Note also how little informative the 95% confidence interval is of the uncertainty
in the solution at some of the gauges locations, where the distribution is clearly
non-Gaussian. While the fixed-time probability distribution upstream of the
submerged bar resemble Gaussian distributions, the probability distributions
downstream of the bar are often multimodal due to the phase shifting effect
that the two input uncertainties have.

Figure 10.6 shows the application of non-adaptive Sparse Grids of sufficient
level l = 3 on benchmark (T2D-4), where the random field is expanded using
a KL-expansion retaining 95% of the total variance, resulting in a truncated
KL-expansion with 3 terms. We can see that the uncertain bottom topography
considered plays an important role in the wave transformation downstream of
the bar, even if the random field considered has a relatively long correlation
length and small variance.

Harmonic generation over a semi-circular shoal (3D) Here we show the
results regarding benchmark (T3D-3). Figure 10.7a shows the space-dependent
probability distribution of the first three harmonics of the solution along with the
mean, the variance, the 95% confidence interval and the experimental results.
We can clearly spot how the change of the slope in the bottom topography –
see figure 10.3a – not only influences the deterministic solution but also the
transformation of its probability distribution.
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Figure 10.5: Probability distributions of the time-varying solution of the sub-
merged bar benchmark (T2D-3) with uncertain still water height hb and wave
period T , at different measurement locations. The thick black lines show the
experimental results at the different gauges, while the dashed lines show the
95% confidence intervals.

A 5-th order PC expansion was used for this test, resulting in 36 function evalua-
tions. By a close investigation of the decay of the generalized Fourier coefficients
in figure 10.7b, we can deduce that the PC approximation struggles to converge
in the region x ∈ [20, 30], where we see the solution drifting away from the usual
Gaussian shape. This is clearly due to the slope in the bottom topography.
Furthermore, note that the generalized Fourier coefficients in figure 10.7b are
sorted with increasing orders, listing first the coefficients in the direction of the
wave period4. Thus, the decay rate shown in figure 10.7b suggests that the
PC expansion struggles more in the approximation in the direction of the wave
period, where the decay is slower, than on the direction of the wave height.

4This means that if {ci,j}5
i,j=0 are the generalized Fourier coefficients, with i listing the

basis for the uncertain wave height and j listing the basis for the uncertain wave period, the
listing in figure 10.7b goes as follows: c0,0, c0,1, c0,2, . . . , c1,0, . . ..
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Figure 10.6: Mean (solid line) and standard deviation (shaded) of the solution of
the submerged bar benchmark (T2D-4) at the different measurement locations.
The experimental data (dashed line) is also shown. The results are obtained
using the Sparse Grid method with 19 function evaluations and checked against
the MC method.

10.4 Conclusions and outlook

Two and three dimensional stochastic benchmarks for the propagation of waves
under uncertain input conditions have been constructed and used to demon-
strate the applicability of PC based methods for the propagation of such un-
certainties. The collocation approach has been preferred over the Galerkin ap-
proach due to its applicability to already developed state-of-the-art software for
the solution of a fully non-linear and dispersive potential flow model of water
waves. Despite the high efficiency of the implementation, the UQ analysis of
this kind of model is computationally demanding. Thus, the UQ analysis ben-
efits greatly from the possibility given by collocation methods of using parallel
resources with no additional implementation burden.

The non-linear nature of the problem and the varying bottom characterizing the
considered benchmarks lead to complex transformations of the input Gaussian
distributions to distributions which are often multi-modal. Nevertheless, the
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Figure 10.7: Space-dependent probability distribution and decay of the general-
ized Fourier coefficients in benchmark (T3D-3). In the top figure, the white solid
line represent the mean for the three harmonics. The dashed lines show the 95%
confidence interval around the mean. The scattered dots are the experimental
measurements. In the bottom figure the 36 generalized Fourier coefficients are
sorted top-to-bottom from the lowest order to the highest, ranging first along
the direction of the wave period.
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PC method used is able to detect such transformations and approximate the
distributions accurately. The work has thus highlighted the potential of the PC
method in the context of an application with a small number of uncertainty
parameters, but with a big computational burden.

Ongoing works are focusing on tackling problems with an higher number of un-
certainties affecting the water wave dynamics and ultimately the extreme loads
on off-shore structures. The uncertainties considered stem from the lack of
accurate measurements of the bathymetry and its change over time due to sed-
imentation. Surrogate models such as the sparse grids pseudo-spectral method
[49–51] and the spectral tensor-train decomposition [Bigoni et al., 9] are being
used to accelerate this analysis.
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Appendices





Appendix A

Dynamical systems

In this work we will consider dynamical systems in the form of Differential
Equations (DE). These express the relation of an unknown function with its
derivatives. Differential equations are used to describe physical phenomena
defined on continuous domains (space, time, etc.). Our attention will be focused
on real valued solutions of DE.

Definition A.1 (Ordinary Differential Equation - ODE)
Let t ∈ T = [0, Tf ] ⊂ R and u ∈ Cn(T,R) be an unknown real-valued function
satisfying

F
(
t, u, u′, . . . , u(n)

)
= 0 (A.1)

where u(i) = d(i)u/dt(i). Equation (A.1) is an ODE of order n.

The independent variable t represents usually the time domain. Some ODEs
can be written in normal form:

u(n) = f
(
t, u, u′, . . . , u(n−1)

)
(A.2)

and through the definition of u ∈ Cn(T,Rn) by

u1 = u, u2 = u′, . . . un = f
(
t, u, u′, . . . , u(n−1)

)
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we can rewrite (A.2) into the system of first order ODEs

u′ = g(t,u) =
[
u, u′, . . . , f

(
t, u, u′, . . . , u(n−1)

)]T
(A.3)

In case t appears explicitly in the definition of f , the system will be called
non-autonomous. Non-autonomous systems can be converted to equivalent au-
tonomous ones by the insertion of the additional dummy variable un+1 = x.
The equation u′n+1 = 1 can then be included in the definition of the problem.
The autonomous system will then be written as

u′ = g(u) (A.4)

Particular solutions passing by a specified point (t0,u0) can be determined for
(A.4). This is an Initial Value Problem.

Definition A.2 (Initial Value Problem (IVP)) Given an n-th order ODE,
an Initial Value Problem is finding u ∈ Cn(T,Rn) such that

{
u′ = g(u)
u(k)(t0) = u0 for k = 1, . . . , n− 1 .

(A.5)

The values (t0,u0) are called initial values.

It can be shown that under continuity conditions known as Lipschitz, the IVP
(A.5) has an unique local, and sometimes global, solution. We refer the reader
to one of the many books on ODEs [20, 54] for further properties and solutions
of such problems.

When the function u is multivariate, partial derivatives with respect to different
dimensions can define Partial Differential Equations.

Definition A.3 (Partial Differential Equation - PDE)
Let x ∈ Rd and let u ∈ Cn(Rd,R) be a multivariate unknown real-valued function
satisfying

F (x1, . . . , xn, u, ux1 , . . . , uxd , . . . , ux1,xd , . . . ) = 0 (A.6)

where uxi = ∂u
∂xi

and the maximum order of derivation is n. Equation (A.6) is
a PDE of order n.

The condition u ∈ Cn(Rd,R) can in general be relaxed because only the partial
derivatives involved in (A.6) need to be defined and continuous. An equivalent
notation of (A.6) is given by

Lu = 0 (A.7)
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where L : Cn(D,Rm)→ C(D,Rm) is a – possibly non-linear – differential oper-
ator.

A time-dependent PDE can be viewed in the context of the same definition
A.3 by setting for example t = x1 ∈ T = [0, Tf ]. For clarity in the following
we will denote D ⊂ Rd the spatial domain of the problem, x ∈ D the spatial
variable and for a time-dependent PDE, u ∈ Cn(T×D,R). PDEs can be defined
on vector valued functions that we will denote u ∈ Cn(T ×D,Rm). This form
includes also the case in which the PDE can be written in an autonomous system
of PDEs in normal form and reduced by the insertion of dummy variables – as
it was done in (A.4) – obtaining1

ut = Gu (A.8)

This formulation is often useful for the solution of time-dependent PDEs by
the Method of Lines, where the operator G is first discretized to obtain a set
of semi-discrete ODEs which can be solved by one of the many time-stepping
methods available [23].

Particular solutions of the PDE (A.6)-(A.7) can be found for particular domains
D if particular values are defined for its boundaries ∂D.

Definition A.4 (Boundary Value Problem - BVP)
Let D ⊂ Rd be compact of dimension d and let ∂D be the d − 1 dimensional
manifold bounding D. A Boundary Value Problem is formed by the n-th order
PDE and a set of conditions for the solution on the boundary

{
Lu = 0 x ∈ D
Bu = 0 x ∈ ∂D (A.9)

where B is a – possibly non-linear – boundary differential operator.

If these equations define a unique solution, then the problem is said to be well
posed. Proving the well posedness of such a boundary value problem is a non-
trivial task, and we refer the reader to the extensive existing literature on the
topic [21, 200].

When a PDE is time dependent, in order to look to particular solutions, condi-
tions must be specified both at the boundaries and at some fixed time, usually
the initial. This results in an initial value problem for PDEs.

1This is to be intended for u ∈ Cn(D,Rm×(n+1))
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Definition A.5 (Initial Value Problem (IVP)) Given an n-th order PDE,
the Initial Value Problem is to find u ∈ Cn(T ×D,Rm) such that





ut = Gu (t,x) ∈ T ×D
Bu = 0 (t,x) ∈ T × ∂D
u = u0 (t,x) ∈ T = t0 ×D

(A.10)



Appendix B
Probability theory and

functional spaces

In the following sections the measure theoretic approach to probability will be
shortly presented in order to fix the notation used along this work. For a deeper
introduction to measure theoretic probability theory the reader is referred to
one of the many books on the topic [18, 19].

B.1 Probability space

Whether randomicity is a property of nature or a limit in human observation, the
word random has pervaded the human vocabulary, sometimes inappropriately,
in the last century1. At the heart of the term random there are events which
we will group in the space of events Ω. Our ultimate goal is to assign a non-
negative real number to subsets of Ω, which will represent its measure and can
be thought as its volume or, from a statistician perspective, the odds that the
particular event will occur. However, without other constraints, the space Ω
can be rather complex and its power set 2Ω can lack properties which would
allow the definition of a “reasonable” measure on its elements2. Thus we will

1https://books.google.com/ngrams/graph?content=random
2See for example the “Vitali set” [18].

https://books.google.com/ngrams/graph?content=random
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work with more manageable σ-algebras – also called σ-fields –, namely the sets
F ⊂ 2Ω such that

• Ω ∈ F ,

• F is closed under complementation (F ∈ F ⇒ FC ∈ F ),

• F is closed under countable unions (F1, F2, . . . ∈ F ⇒ (∪∞i=1Fi) ∈ F ).

A commonly used σ-algebra in probability theory is the Borel σ-algebra B(Rk)
– just denoted by B in the following – on Rk, which is the σ-algebra generated
by the open sets in Rk. Being generated by the open sets in Rk means that
B(Rk) is the smallest σ-algebra containing the open sets.

σ-algebras allow the definition of measures π : F → R satisfying the following
properties

• non-negativity: π(F ) ≥ 0, ∀F ∈ F ,

• zero measure of the empty set: π(∅) = 0,

• countable additivity: For all countable collections {Fi}∞i=0 ⊂ F with dis-
joint elements, π (∪∞i=1Fi) =

∑∞
i=1 π(Fi).

A measure is called finite if π(Ω) < ∞. In probability theory we mostly work
with finite measures with π(Ω) = 1, representing the fact that the set of all
events has probability 1 to occur. To distinguish probability measures on Ω from
other measures, they will be denoted by P : F → [0, 1]. The triple (Ω,F , P ) is
called the probability space.

Probability theory make extensive use also of σ-finite measures. A measure
is called σ-finite if the set Ω can be decomposed into a countable union of
measurable sets – i.e. belonging to F – with finite measure. The most commonly
used σ-finite measure is the the Lebesgue measure on the real line λ : B(R)→ R
defined by (a, b) 7→ (b− a). The Lebesgue measure can similarly be defined on
B(Rk).

The intuitive way of thinking about a measure is to consider the Lebesgue
measure and realize that it assign to any set in B(Rk) its volume. Singletons
in Rk have Lebesgue measure zero. We will say that a property holds almost
everywhere (a.e.) if the measure of the set where the property doesn’t hold is
zero. Sets of measure zero can be rather complex, for example consider the set
Q which in spite of being dense in R, it has λ(Q) = 0.
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B.2 Random variables

Random variables are the core objects that are investigated in probability theory.
In spite of the name, random variables are functions.

Definition B.1 (Random variable) Let (Ω,F , P ) be a probability space and
let (Ω1,F1) be another space with the associated σ-algebra. A random variable
X is a function

X : Ω→ Ω1 , (B.1)
which is F −F1-measurable, i.e. such that

X−1(F ) ∈ F ∀F ∈ F1 , (B.2)

where X−1 denotes the pre-image of F .

For example, real valued continuous random variables are defined with (Ω1,F1) =
(R,B). In the following we will work mainly with this kind of random variables,
so the remaining of the presentation will be focused on them.

A random variable is characterized by its probability distribution which is ex-
pressed by the measure π as3

π(F ) = P (X ∈ F ) = P ({ω ∈ Ω : X(ω) ∈ F}) =
∫

F

π( dx) , (B.3)

defined for any F ∈ B and where π( dx) = P (ω ∈ X−1( dx))4. The integral in
(B.3) has to be interpreted in the sense of Lebesgue [18, 19]. We will use the
notation X ∼ π to express the fact that X is a random variable with probability
distribution π. Commonly used distributions are

• the Normal/Gaussian distribution N (µ, σ2), where µ is the mean and σ2

is the variance – see sec. B.5,
• the Beta distribution Be(α, β), where α, β > 0,
• the Uniform distribution U = Be(1, 1),
• the Gamma distribution Γ(k, θ), for k, θ > 0.

It is common to characterize real valued random variables by their Cumulative
Distribution Function (CDF)

FX(x) = P (X ≤ x) =
∫ x

−∞
π( ds) . (B.4)

3The measurability of X plays an important role here.
4In literature the notation π( dx) is sometimes written dπ(x) even if this is not perfectly

consistent from the measure theoretic perspective.
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If the measure π is absolutely continuous with respect to the Lebesgue measure
λ, i.e. λ(F ) = 0 implies π(F ) = 0 for all F ∈ B, by the Radon-Nikodym theorem
there exists the density ρ : R→ R+ such that

π(F ) =
∫

F

ρX(x)λ( dx) =
∫

F

ρX(x) dx , (B.5)

where in the last equality the notation was simplified for the Lebesgue measure.
The function ρ is called the Probability Density Function (PDF) of X.

Another way of characterizing the distribution of X is through its characteristic
function, but its treatment is out of the scope of this work, so the reader is
referred to [18] for further reading.

We call X = (X1, . . . , Xn) a random vector , where Xi are one dimensional real-
valued random variables. The random vector X is associated to a distribution
π defined on B(Rn). In some cases this distribution can be a product measure
of the form π =

∏d
i=1 πi, where Xi ∼ πi. In these cases we will say that the

random variables are independent.

Since the distribution π assigns probabilities to the events in B(Rn), it is rea-
sonable to be able to sample X accordingly to π, obtaining the realization X(ω).
In many cases we would like to sample the random vector many times, then we
will define the set of random vectors {X(j)}Nj=1 from which to sample. We will
usually require an additional condition on {X(j)}Nj=1, namely that they must be
independent and identically distributed (i.i.d.) random vectors. Then a partic-
ular sample or realization of {X(j)}Nj=1 will be denoted by {X(j)(ω)}Nj=1. This
is commonly called an ensemble.

B.3 The Lp(Ω, F , P ) and Lp
π(R) spaces

Different spaces of real valued random variables can be defined depending on
the order of their integrability. Given the probability space (Ω,F , P ) and for
1 ≤ p <∞, the Lp space of X-valued random variables is

Lp(Ω,F , P ;X) =
{
X : Ω→ X :

∫

Ω
|X(ω)|pP ( dω) <∞

}
. (B.6)

For simplicity we will omit the range of the random variables when X = R and
denote the Lp space by Lp(Ω,F , P ). The space L1(Ω,F , P ) is called the space
of integrable random variables. The L2(Ω,F , P ) space is the space of variables
with finite variance. For p =∞, the L∞(Ω,F , P ) space of a.e. bounded random
variables is defined by

L∞(Ω,F , P ) =
{
X : Ω→ R : ess sup

ω∈Ω
[X(ω)] <∞

}
, (B.7)
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where ess supω∈Ω[X(ω)] = inf{a ∈ R : P ({ω ∈ Ω : X(ω) > a}) = 0}. The
spaces Lp(Ω,F , P ) are all Banach spaces [55, 56] with norm defined by

‖X‖Lp(Ω,F ,P ) =
(∫

Ω
|X(ω)|pP ( dω)

) 1
p

for 1 ≤ p <∞ ,

‖X‖L∞(Ω,F ,P ) = ess sup
ω∈Ω

[X(ω)] for p =∞ .
(B.8)

The space L2(Ω,F , P ) is a Hilbert space [55, 56] with inner product defined by

(X,Y )L2(Ω,F ,P ) =
∫

Ω
X(ω)Y (ω)P ( dω) . (B.9)

In spite of being functions, random variables owe their names to the fact that
they are commonly used as arguments of functions. The real valued function
f applied to the real valued random variable X generates the random variable
Y = f(X) ∼ f(π), where f(π) is the transformed probability distribution of
Y . The random variable Y is a new random variable defined on (Ω,F , P ), so
the definition of the Lp spaces for the functions f is closely related to the ones
already presented. For the probability space (Ω,F , P ), the random variable
X : Ω → S ⊂ R with distribution π, and for 1 ≤ p < ∞, the Lp space of
functions of X is

Lpπ(S) =
{
f : S → R :

∫

S

|f(x)|pπ( dx) <∞
}
,

L∞π (S) =
{
f : S → R : ess sup

x∈S
[f(x)] <∞

}
.

(B.10)

where we remind that π( dx) = P (ω ∈ X−1( dx)). The space L1
π(S) is the space

of integrable functions, the space L2
π(S) is the space of square integrable functions

while the space L∞π (S) is the space of functions bounded almost everywhere. The
space L2

π(S) is an Hilbert space while the spaces Lp are only Banach for any
other p. The norms and the inner product are defined accordingly:

‖f‖Lpπ(S) =
(∫

S

|f(x)|pπ( dx)
) 1
p

,

‖f‖L∞π (S) = ess sup
x∈S

[f(x)] ,
(B.11)

(f, g)L2
π(S) =

∫

S

f(x)g(x)π( dx) . (B.12)
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B.4 The Ck(S) and the Hk
π(S) Sobolev spaces

Along this work we refer to the regularity of a function f as its maximum degree
of differentiability. We distinguish between strong and weak differentiability by
the definition of two different spaces of functions. We define the class Ck(S) to
be

Ck(S) =
{
f : S → R : f (i) exists and is continuous ∀i ∈ [0, k]

}
, (B.13)

where f (i) is the strong derivative of f . This definition is generalized to the
multidimensional case, with f (i) replaced by the partial derivatives up to order
k of f .

If a probability measure π is associated with the space S and the derivative of f
is required to be integrable with respect to π, then the existence and continuity
of functions on sets of measure zero is not relevant. This fact is formalized by
the definition of weak derivatives and Sobolev spaces. Here we will give the
corresponding definitions for the multidimensional case.

Let f ∈ L1
π(S) and i = (i1, . . . , idS ) be a multi-index. The i-th order weak

derivative D(i)f is the function in L1
π(S) such that

∫

S

fϕ(i)π( dx) = (−1)|i|
∫

S

D(i)fϕπ( dx) ∀ϕ ∈ C∞(S) (B.14)

The k-th Sobolev space associated to the probability measure π is:

Hkπ(S) =



f ∈ L

2
π(S) :

∑

|i|≤k
‖D(i)f‖L2

π(S) < +∞



 . (B.15)

This space is equipped with the norm ‖ · ‖2Hkπ(S) defined by

‖f‖2Hkπ(S) =
∑

|i|≤k
‖D(i)f‖2L2

π(S) (B.16)

and the semi-norm | · |S,π,k defined by

|f |2S,π,k =
∑

|i|=k
‖D(i)f‖2L2

π(S). (B.17)
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B.5 Statistical moments

Useful properties for the interpretation of random variables are their statistical
moments. The expectation or mean of the random variable X ∼ π is given by

µX = E[X] =
∫

R
xπ( dx) . (B.18)

The (centered) variance of X is

σ2
X = V[X] =

∫

R
(x− µX)2 π( dx) . (B.19)

In general the n-th centered statistical moment of X is

E[(X − µX)n] =
∫

R
(x− µX)n π( dx) . (B.20)

When dealing with random vectors, the expectation is given by

µX = E[X] = (E[X1], . . . ,E[Xn]) . (B.21)

The second order moment of X is called the covariance and is given both by the
variance of the single variables Xi, as defined in (B.19), and by combinations
of two variables. The covariance is expressed in what is called the covariance
matrix:

(CX)i,j = Cov [Xi, Xj ] = E[(Xi − µXi)(Xj − µXj )] . (B.22)

The normalized version of the covariance is the correlation:

Corr [Xi, Xj ] = Cov [Xi, Xj ]
σXiσXj

. (B.23)

Two random variables Xi, Xj are called uncorrelated if Corr [Xi, Xj ] = 0. Note
that two independent random variables are uncorrelated, while the converse is
not true in general. In particular, if X and Y are Gaussian random variables
with joint distribution π, then Corr [X,Y ] = 0 implies that π is a product
measure – π = πX × πY – and thus X and Y are independent.

If the random variable considered is Y = f(X) where f is a real valued function
and X ∼ πx, then we will use the subscript πx for all the statistical moments of
f . For example, the mean of Y will be denoted by:

µY = E [f ]πx
=
∫

R
f(x)πx( dx) (B.24)
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B.6 Conditional probability and expectation

In some situations, partial information about experiments is available and prob-
ability theory makes wide use of it through conditional probabilities. For dis-
crete probability distributions the conditional probability of event A ∈ F given
B ∈ G ⊂ F is commonly defined as

P (A|B) = P (A ∩B)
P (B) (B.25)

If B is an event with probability zero, we can assign any constant value to
P (A|B). From this it is clear that there can be many versions of P (A|B) all
agreeing but for sets of measure zero, which are irrelevant in practical situations.
If B is unknown yet, we can still devise an experiment to test its occurrence: this
corresponds to partitioning Ω by a countable set {Bi} and define the experiment
to be G = σ({Bi}). Then the conditional probability will be defined as

P (A|G ) = P (A|Bi) if ω ∈ Bi, i = 1, 2, . . . (B.26)

In the general case let G ⊂ F be a σ-subfield generated by the sets {Bi} ∈ F .
The experiment associated with G corresponds to the determination of which
set of G contains ω. If we now fix A ∈ F , we can define the finite measure
ν : G → R+ by

ν(G) = P (A ∩G) , G ∈ G (B.27)
Since this measure is absolutely continuous with respect to P , by the Radon-
Nikodym theorem, there exists a G -measurable and P -integrable random vari-
able P [A|G ] such that

P (A ∩G) = ν(G) =
∫

G

P [A|G ]P ( dω) , ∀ G ∈ G . (B.28)

P [A|G ] is the conditional probability of A given G .

The most common use of conditional probabilities is to condition one random
variable against other ones. Let us consider the simplest case of (X,Y ) : Ω →
R2 with distribution π : σ(X,Y ) → R+. Then we let F = σ(X) × R and
G = R×σ(Y ). If we fix A = E×R, for E ∈ σ(X), we can define the conditional
probability of A given G as the G -measurable and π-integrable random variable
π[A|G ] defined accordingly to (B.28), which is the probability of X ∈ A given
G . In the following we will use the shorthand π[X ∈ A|Y ] to denote π[A|G ].

The fact of conditioning against a σ-field will not be of central importance in
this work, but be aware that the simple conditioning against a random variable
can lead to paradoxes, as for example the Borel’s paradox [18], which is not a
pathological mathematical paradox, but a rather realistic one.
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Along analogous lines of thought, we can define the conditional expectation
of X given Y as the G -measurable and π-integrable random variable E [A|G ]
identified uniquely by the Radon-Nikodym theorem as

∫

G

E [A|G ]π( dx) =
∫

G

Aπ( dx) , G ∈ G . (B.29)

Also in this case we will use the shorthand E [X ∈ A|Y ], to denote E [A|G ].

Using the definition of conditional probability, we can define the conditional
cumulative distribution function:

FX|Y (x) = π[X ≤ x|Y ] . (B.30)

If the conditional distribution πX|Y – which exists by [18, Thm. 33.3] – admits
a density with respect to the Lebesgue measure, we can define the conditional
probability density function:

ρX|Y (x) = d
dxFX|Y (x) . (B.31)

For practical applications, if ρX,Y (x, y) and ρY (y) are the densities of π and πY
respectively, we have that:

ρX|Y=y(x) = ρX,Y (x, y)
ρY (y) , for ρY (y) > 0 . (B.32)

B.7 Stochastic processes

A stochastic process – also called random process – is a collection {Xi}i∈I of
random variables on a probability space (Ω,F , P ). The set I can represent
several things:

• I = T = [0,∞) is usually used for continuous random processes evolving
in time,

• I = T = [t0, t1, t2, . . .] is usually used for discrete random processes evolv-
ing in time,

• I = [a, b] is frequently used for continuous random processes defined on
bounded intervals of time or space, in which case the are also called random
fields.

In the context of this work we will only use random fields denoted by the P -
measurable random variable a(·, ω) : Ω → L∞(I), with the set of a.e. bounded
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functions as range. If we fix a particular ω, a will represent a particular path of
the field. If instead we fix a particular x ∈ I, a(x, ·) : I → (Ω → R) will have
the set of real valued random variables as range.

In general, random fields are not fully characterized by their finite-dimensional
distributions πi1,...,ik , for the finite set {i1, . . . , ik} of distinct indices of I. An
exception to this fact are the Gaussian random fields, for which

Xi1,...,ik = (a(xi1 , ·), . . . , a(xik , ·)) (B.33)

is a Gaussian random vector for any finite set of indices {i1, . . . , ik} in I.

Along this work we will consider random fields with finite variance, i.e. a ∈
L2(Ω,F , P ;L∞(I)), of which Gaussian random fields are an example, being
completely determined by their first two statistical moments. In these cases it
is common practice to work on processes with mean zero, defining ã = a−E[a].
Then the process ã is completely characterized by its covariance function

Cã(x, y) =
∫

Ω
ã(x, ω)ã(y, ω)P ( dω) . (B.34)

Many analytical covariance functions exist, but the most practically used are
the squared exponential

Cã(x, y) = exp
(
−|x− y|

2

2l2

)
(B.35)

and the Ornstein-Uhlenbeck

Cã(x, y) = exp
(
−|x− y|

l

)
, (B.36)

where l is the correlation length, which describes how strongly the value of the
field at a location x ∈ I is correlated to locations in its neighborhood. The same
definitions presented up to here can be easily rewritten for multi-dimensional
arbitrary domains I.

We will say that the random field is stationary if the covariance Cã depends
only on x− y and not on the position of x and y in I. The random field is said
to be isotropic if the random field depends on the Euclidean distance |x − y|
and not on the particular direction of x− y.

For further details regarding stochastic processes and their applications, the
reader is referred to [18, 52].
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Orthogonal Polynomials

Two function f, g ∈ L2
π(S) on S ⊂ B(R) are said to be orthogonal if

(f, g)L2
π(S) =

∫

S

f(x)g(x)π( dx) = 0 . (C.1)

In the following we will be interested in functions which have a polynomial form
φi(x) =

∑i
j=0 ajx

j , where i is the order of the polynomial. A set of polynomials
{φi}Ni=0 ⊂ L2

π(S) is said to be an orthogonal system if

(φi, φj)L2
π(S) = γiδij , (C.2)

where δij is the Kroneker delta function and γi = ‖φi‖L2
π(S). In many cases we

will rather work with orthonormal systems {φ̃i}Ni=0 satisfying

(φ̃i, φ̃j)L2
π(S) = δij . (C.3)

Orthonormal systems can easily be obtained from orthogonal systems by nor-
malization: φ̃i = φi/‖φi‖L2

π(S). The orthogonal/orthonormal system {φi}∞i=0
is total [55] in L2

π(S) and thus it forms an orthogonal/orthonormal basis for
L2
π(S). On the other hand L2

π(S) is a separable Hilbert space, and every sepa-
rable Hilbert space has a total orthogonal/orthonormal system [55].

All these definitions and results are given with respect to the measure π, which in
this work will be mainly a probability measure. The most common distributions
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Distribution of Z gPC basis polynomials Support
Continuous Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)
Beta Jacobi [a, b]
Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, 2, . . .}
Binomial Krawtchouk {0, 1, 2, . . . , N}
Negative binomial Meixner {0, 1, 2, . . .}
Hypergeometric Hahn {0, 1, 2, . . . , N}

Table C.1: Correspondence between distributions and polynomial basis that
ensure a strong gPC approximation.

are strictly related to some well studied polynomials. This relation is shown in
table C.1. In this work our attention will be focused on continuous distribution.
To this end we will present the Jacobi, the Hermite and the Laguerre polynomials
in App. C.1, C.2 and C.3.

All the orthogonal polynomials can be defined by a three-terms recurrence re-
lation [33, 201]:

φi+1(x) = (Aix+Bi)φi(x)− Ciφi(x) , (C.4)

where φ0 = 1 and φ1 = x. For standard polynomials like the Jacobi, the Hermite
and the Laguerre, the coefficients Ai, Bi and Ci are known analytically. The
coefficients of other orthogonal polynomials with respect to non-standard mea-
sures can be approximated [33, 82]. Alternatively one can construct monomial
polynomials and orthogonalize them using the Gram-Schmidt orthogonalization
[73, 94] procedure.

Using the recursion coefficients Ai, Bi and Ci one can define Gauss-type quadra-
ture rules QN , based on the points and weights {(xi, wi)}Ni=0, to approximate
integrals over S:

∫

S

g(x)π( dx) '
N∑

i=0
g(xi)wi =: QNg . (C.5)

In order to obtain the point and weights {(xi, wi)}Ni=0 one can use the Golub-
Welsch algorithm [73, 94], which requires only the knowledge of the recursion
coefficients.

More details on the topic of orthogonal polynomials are available in [26, 29, 33,
202].



Jacobi Polynomials 147

0.0 0.2 0.4 0.6 0.8 1.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PDF
i=0
i=1
i=2
i=3

(a) Legendre polynomials
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(b) Chebyshev polynomials
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(c) J(4,1) polynomials

Figure C.1: Jacobi Polynomials with different different α and β coefficients.
Left: Legendre polynomials orthogonal with respect to U([0, 1]). Center: Cheby-
shev polynomials orthogonal with respect to Be

( 1
2 ,

1
2
)
. Right: J (4,1) polynomi-

als orthogonal with respect to Be(2, 5).

C.1 Jacobi Polynomials

The Jacobi polynomials are defined on the interval S = [−1, 1] and are orthog-
onal with respect to the weight function

w(x;α, β) = Γ(α+ β + 2)
2α+β+1Γ(α+ 1)Γ(β + 1)(1− x)α(1 + x)β . (C.6)

By appropriate rescaling they can be adapted to any finite and bounded interval
and in particular to the interval [0, 1] on which the Beta distribution is usually
defined. The Beta distribution function has PDF

ρBe(x;α, β) = Γ(α+ β)
Γ(α)Γ(β)x

α−1(1− x)β−1 . (C.7)

The relation between the weight of the Jacobi polynomials (C.6) and the PDF
of the Beta distribution (C.7) is:

ρBe(x;α, β) = 2w(2x− 1;β − 1, α− 1) . (C.8)

• Recurrence relation

xJ
(α,β)
i (x) = 2(i+ 1)(i+ α+ β + 1)

(2i+ α+ β + 1)(2i+ α+ β + 2)J
(α,β)
i+1 (x)

+ β2 − α2

(2i+ α+ β)(2i+ α+ β + 2)J
(α,β)
i (x)

+ 2(i+ α)(i+ β)
(2i+ α+ β)(2i+ α+ β + 1)J

(α,β)
i−1 (x)

(C.9)

Figure C.1 shows the first Jacobi polynomials for different measures.
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C.1.1 Legendre Polynomials

The Legendre polynomials are a special case of the Jacobi polynomials where
α = β = 0. When rescaled appropriately these polynomials are orthogonal with
respect to the uniform Be(1, 1) = U([0, 1]) distribution. See Fig. C.1a.

C.1.2 Chebyshev Polynomials

The Chebyshev polynomials are a special case of the Jacobi polynomials where
α = β = − 1

2 . Thus on the rescaled interval [0, 1] they are orthogonal with
respect to the Be

( 1
2 ,

1
2
)
. See Fig. C.1b.

C.2 Hermite Polynomials

The Hermite polynomials are defined on the real line S := (−∞,∞). They are
orthogonal with respect to measures which decay exponentially as x→ ±∞. We
will see two different kinds of polynomials with this property and one associated
function which is orthogonal with respect to the Lebesgue measure. Figure C.2
shows the first polynomials of these kinds.

C.2.1 Hermite Physicists’ Polynomials

The Hermite Physicists Polynomials denoted by Hi(x) are eigenfunctions of the
Sturm-Liouville problem:

ex
2
(
e−x

2
H ′i(x)

)′
+ λiHi(x) = 0, ∀x ∈ S := (−∞,∞) (C.10)

• Recurrence relation




H0(x) = 1
H1(x) = 2x
Hi+1(x) = 2xHi(x)− 2iHi−1(x)

(C.11)

• Derivatives 



H
(k)
i (x) = 2iH(k−1)

i−1 (x)
H

(0)
i (x) = Hi(x)

H
(k)
0 (x) = 0 for k > 0

(C.12)



Hermite Polynomials 149

3 2 1 0 1 2 3
x

4

2

0

2

4

PDF
i=0
i=1
i=2
i=3

(a) Physicists’

3 2 1 0 1 2 3
x

1.0

0.5

0.0

0.5

1.0

PDF
i=0
i=1
i=2
i=3

(b) Hermite functions
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(c) Probabilists’

Figure C.2: Different kinds of Hermite polynomials and functions. Left: Her-
mite physicists’ polynomials orthogonal with respect to w(x) = exp(−x2). Cen-
ter: Hermite functions orthogonal with respect to w(x) = 1. Right: Hermite
probabilists’ polynomials orthogonal with respect to w(x) = 1√

2π exp(−x2/2).

• Orthogonality

w(x) = e−x
2

(C.13)
γi =

√
π2ii! (C.14)

• Gauss Quadrature points and weights
The Gauss points {xj}Nj=0 corresponding to HN+1(x) can be obtained
using the Golub-Welsh algorithm [73] where:

aj = 0 bj = j

2 (C.15)

The Gauss weights are obtained as:

wj = λN
λN−1

(HN (x), HN (x))
HN (xj)H ′N+1(xj)

= γN
(N + 1)H2

N (xj)
(C.16)

C.2.2 Hermite Functions

Hermite Functions are used because of their better behavior respect to Hermite
Polynomials at infinity.

• Recurrence relation




H̃0(x) = e−x
2/2

H̃1(x) =
√

2xe−x2/2

H̃i+1(x) = x
√

2
i+1H̃i(x)−

√
n
n+1H̃i−1(x), i ≥ 1

(C.17)
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• Derivatives
The recursion relation for the k-th derivative of the function of order n is:

H̃
(k)
i (x) =

√
i

2H̃
(k−1)
i−1 (x)−

√
i+ 1

2 H̃
(k−1)
i+1 (x) (C.18)

Using this recursion formula we end up having an expression involving only
Hermite Functions H̃(0)

i (x), that can be computed using the recurrence
relation, and derivatives of the first Hermite Function H̃(k)

0 that have the
following form:

H̃
(k)
0 = a0e

−x2/2 + a1xe
−x2/2 + a2x

2e−x
2/2 + . . .+ akx

ke−x
2/2 (C.19)

The values {ai}ki=0 can be found using the following table:

k a0 a1 a2 a3 a4 a5 a6 a7 a8 . . .
0 1 . . .
1 -1 . . .
2 -1 1 . . .
3 3 -1 . . .
4 3 -6 1 . . .
5 -15 10 -1 . . .
6 -15 45 -15 1 . . .
7 105 -105 21 -1 . . .
8 105 -420 210 -28 1 . . .
...

...
...

...
...

...
...

...
...

...

that can be generated iteratively using the following rules:




A(0, 0) = 1
A(i, j) = 0 if i < j

A(i, j) = A(i, j)−A(i− 1, j − 1) if j 6= 0
A(i, j) = A(i, j) +A(i− 1, j + 1)(j + 1) if i > j

• Orthogonality

w(x) = 1 (C.20)
γi =

√
π (C.21)

• Gauss Quadrature points and weights The Gauss points {x̃j}Nj=0 cor-
responding to H̃N+1(x) can be obtained using the Golub-Welsh algorithm
[73] where:

aj = 0 bj = j

2 (C.22)
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These points are exactly the same of the Hermite Polynomials in (C.15).
The Gauss weights are obtained as:

w̃j = γN

(N + 1)H̃2
N (xj)

(C.23)

C.2.3 Hermite Probabilists’ Polynomials

The Hermite Probabilists’ Polynomials denoted by Hei(x) are eigenfunctions of
the Sturm-Liouville problem:
(
e−x

2
He′i(x)

)′
+ λie

−x2
Hei(x) = 0, ∀x ∈ S := (−∞,∞) ∧ λ ≥ 0 (C.24)

• Recurrence relation




He0(x) = 1
He1(x) = x

Hei+1(x) = xHei(x)− iHei−1(x)
(C.25)

• Derivatives 



He
(k)
i (x) = iHe

(k−1)
i−1 (x)

He
(0)
i (x) = Hei(x)

He
(k)
0 (x) = 0 for k > 0

(C.26)

• Orthogonality

w(x) = 1√
2π
e−x

2/2 (C.27)

γi = i! (C.28)

• Gauss Quadrature points and weights
The Gauss points {xj}Nj=0 corresponding to HeN+1(x) can be obtained
using the Golub-Welsh algorithm [73] where:

aj = 0 bj = j (C.29)

The Gauss weights are obtained as:

wj = γN
(N + 1)He2

N (xj)
(C.30)
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(c) Laguerre functions

Figure C.3: Left: Laguerre polynomials orthogonal with respect to Γ(3, 1). Cen-
ter: Laguerre polynomials orthogonal with respect to Γ(9, 1). Right: Laguerre
functions relative to Γ(1, 1) and orthogonal with respect to w(x) = 1.

C.3 Laguerre Polynomials

The Laguerre polynomials are defined on the real half line S := (0,∞) and they
are orthogonal with respect to the weight function

w(x;α) = xαe−x

Γ(α+ 1) for α > −1 . (C.31)

The Gamma distribution Γ(k, θ) has density

ρΓ(x; k, θ) =
xk−1 exp

(
−xθ
)

Γ(k)θk . (C.32)

This means that for θ = 1,

ρΓ(x; k, 1) = w(x; k − 1) . (C.33)

Likewise for the Hermite polynomials, the Laguerre polynomials can be trans-
formed into the Laguerre functions orthogonal with respect to the Lebesgue
measure, by distributing the weight w. Figure C.3 shows some of these orthog-
onal polynomials and functions for different Gamma distributions.

• Recurrence relation




L(α)
0 (x) = 1
L(α)

1 (x) = α+ 1− x
(i+ 1)L(α)

i+1(x) = (2i+ α+ 1− x)L(α)
i (x)− (i+ α)L(α)

i−1(x) i ≥ 2
(C.34)
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• Orthogonality

w(x;α) = xαe−x

Γ(α+ 1) , (C.31)

γ
(α)
i = Γ(n+ α+ 1)

Γ(n+ 1) (C.35)

C.3.1 Laguerre Functions

The Laguerre functions are defined as

L̃(α)
i (x) := exp

(
−x2

)
L(α)
i (x) for α > −1 . (C.36)

Some Laguerre functions for α = 0 are shown in Figure C.3c.
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Appendix D

Software

Along the PhD project resulting in this work, several software packages have
been developed and used. All the results in this work have been obtained with
software developed at the Technical University of Denmark (DTU). All the
software is Open-Source and can be used for reproducing the results found in
this thesis or for experimenting with new problems.

The main programming language used for the UQ part of this project is Python.
Python is an interpreted high-level programming language which provides flex-
ibility in prototyping algorithms and efficiency by the usage of an extensive
C/C++/Fortran backend. The efficiency of Python is driven by the amount of
work that one is able to condense on operations performed by the low-level back-
end. Thus the development of low-level numerical algorithms – like numerical
linear algebra – is discouraged in Python, whereas the interfacing to low-level
implementations is suggested and made easy by several tools, such as CPython.

Since this work focuses on non-intrusive techniques for UQ, most of the workload
is always assumed to take place in the function evaluations, which should be
implemented in an efficient low-level programming language. For this reason and
the one listed before, Python is suitable for the job of constructing non-intrusive
UQ methods, where the computational bottleneck is the function evaluation.

Three main packages and several collateral ones have been developped for UQ:

Spectral Toolbox : Construction of one and n dimensional polynomial basis
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and quadrature rules. It includes also Sparse Grids and Stroud’s quadrature
rules. It provides also an interface to the Python package orthpol.
PyPI : https://pypi.python.org/pypi/SpectralToolbox
Documentation : http://pythonhosted.org/SpectralToolbox
Code and Tracker : https://launchpad.net/spectraltoolbox
License : LGPL v.3

Uncertainty Quantification Toolbox : tools for dimensionality reduction,
random sampling, Polynomial Chaos (Galerkin and Collocation), HDMR,
ANOVA decomposition and sensitivity analysis.
PyPI : https://pypi.python.org/pypi/UQToolbox
Documentation : http://pythonhosted.org/UQToolbox
Code and Tracker : https://launchpad.net/uqtoolbox
License : LGPL v.3

Tensor Toolbox : tensor-train decomposition, multi-linear algebra, spectral
tensor-train decomposition.
PyPI : https://pypi.python.org/pypi/TensorToolbox
Documentation : http://pythonhosted.org/TensorToolbox
Code and Tracker : https://launchpad.net/tensortoolbox
References : Bigoni et al. [9]
License : LGPL v.3

orthpol : Python porting of the package ORTHPOL by Gautschi [82].
PyPI : https://pypi.python.org/pypi/orthpol
Code and Tracker : https://launchpad.net/pyorthpol
License : LGPL v.3

mpi_map : the map function in Python applies a input function to the ele-
ments of a list by a low-level iteration. mpi_map accomplishes the same but
in parallel using the Message Passing Interface (MPI)
PyPI : https://pypi.python.org/pypi/mpi_map
Code and Tracker : https://launchpad.net/py-mpi-map
License : LGPL v.3

In part II of this work, some of the forward models used are the result of past
projects taking place at the Technical University of Denmark:

DYnamics Train SImulation : Object oriented multi-body dynamics tool
for the design and dynamical simulation of railway cars.
Language : C++
Code and Tracker : https://launchpad.net/dytsi

https://pypi.python.org/pypi/SpectralToolbox
http://pythonhosted.org/SpectralToolbox
https://launchpad.net/spectraltoolbox
https://pypi.python.org/pypi/UQToolbox
http://pythonhosted.org/UQToolbox
https://launchpad.net/uqtoolbox
https://pypi.python.org/pypi/TensorToolbox
http://pythonhosted.org/TensorToolbox
https://launchpad.net/tensortoolbox
https://pypi.python.org/pypi/orthpol
https://launchpad.net/pyorthpol
https://pypi.python.org/pypi/mpi_{}map
https://pypi.python.org/pypi/mpi_map
https://launchpad.net/py-mpi-map
https://launchpad.net/dytsi
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References : Bigoni [170]
License : LGPL v.3

OceanWave3D : The OceanWave3D is an efficient solver of the Fully Nonlin-
ear and Dispersive Potential Flow equations. A parallel implementation of
the solver for modern multi-GPU environment is also available.
Language : C++
Website : http://www2.compute.dtu.dk/ apek/OceanWave3D/
References : Engsig-Karup et al. [193, 194] and Glimberg et al. [203]
License : LGPL

D.1 Spectral Toolbox

The package SpectralToolbox version 0.1.9 provides the following function-
alities:

• Construction of one-dimensional polynomials (listing D.1):
– Jacobi – see section C.1
– Hermite physicists’ – see section C.2.1
– Hermite functions – see section C.2.2
– Hermite probabilists’ – see section C.2.3
– Laguerre – see section C.3
– Laguerre functions – see section C.3.1
– Construction of orthogonal polynomials with respect to arbitrary

measure (requires the package orthpol)
• Construction of n-dimensional polynomials and simplex bases (listing D.2).
• Construction of quadrature rules (listing D.3):

– Gauss
– Gauss-Lobatto
– Gauss-Radau

• Nested quadrature rules (listing D.1):
– Kronrod-Patterson on the real line
– Kronrod-Patterson uniform
– Clenshaw-Curtis
– Fejer’s

• Sparse Grids quadratures and heterogeneous quadratures (listing D.5).

http://www2.compute.dtu.dk/$\sim $apek/OceanWave3D/
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Listing D.1 Jacobi polynomials shown in figure C.1a �
1 import numpy as np
2 import scipy.stats as stats
3 import matplotlib . pyplot as plt
4 from SpectralToolbox import Spectral1D as S1D
5 N = 3
6 ls = [’-’,’--’,’-.’,’:’]
7 x = np. linspace (0 ,1 ,100)
8 # Uniform distribution
9 alpha = 0
10 beta = 0
11 dist = stats.beta(alpha +1, beta +1)
12 P = S1D. Poly1D (S1D.JACOBI ,[ alpha ,beta ])
13 V = P. GradVandermonde1D (2*x-1,N,0, norm=True)
14 plt. figure ( figsize =(6 ,5))
15 plt.plot(x,dist.pdf(x),’k-’,linewidth =2, label=’PDF ’)
16 for i in xrange (N+1):
17 plt.plot(x,V[:,i],’k’+ls[i],label=’$i$ =%d’%i)
18 plt. xlabel (’x’)
19 plt. legend (loc=’best ’)
20 plt.show(False)

Listing D.2 Simplex basis (5.10) with Jacobi times Hermite polynomials – fig. D.1a �
1 import numpy as np
2 import matplotlib . pyplot as plt
3 from mpl_toolkits . mplot3d import Axes3D
4 from SpectralToolbox import Spectral1D as S1D
5 from SpectralToolbox import SpectralND as SND
6 N = 3
7 # Legendre x Hermite
8 x = [np. linspace ( -1 ,1 ,20) , np. linspace ( -3 ,3 ,20)]
9 (XX , YY) = np. meshgrid (*x)
10 alpha = 0
11 beta = 0
12 polys = [ S1D. Poly1D (S1D.JACOBI ,[ alpha ,beta ]), S1D. Poly1D (

S1D. HERMITEP_PROB ,None) ]
13 P = SND. PolyND (polys)
14 V = P. GradVandermondePascalSimplex ( x, N, [0]*2 )
15 fig = plt. figure ( figsize =(6 ,5))
16 ax = fig. add_subplot (111 , projection =’3d’)
17 ax. plot_surface ( XX , YY , V[: ,7]. reshape ((20 ,20)), rstride =1,

cstride =1, cmap=plt.cm.coolwarm , linewidth =0,
antialiased =False)

18 plt.show(False)
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(c) Listing D.4

Figure D.1: Examples

Listing D.3 Gaussian quadrature rules for the uniform distribution – fig. D.1b �
1 import numpy as np
2 import matplotlib . pyplot as plt
3 from SpectralToolbox import Spectral1D as S1D
4 Ns = range (20)
5 # Uniform distribution
6 alpha = 0
7 beta = 0
8 P = S1D. Poly1D (S1D.JACOBI ,[ alpha ,beta ])
9 plt. figure ( figsize =(6 ,5))
10 for i in Ns:
11 (x,w) = P. Quadrature (i, quadType =S1D.GAUSS)
12 x = (x+1.) /2.
13 w /= np.sum(w)
14 plt.plot(x,i*np.ones(x.shape),’ko’)
15 plt. xlabel (’x’)
16 plt.ylim ([ -0.5 , Ns [ -1]+0.5])
17 plt.show(False)

Listing D.4 Kronrod-Patterson rule – fig. D.1c �
1 import numpy as np
2 from matplotlib import pyplot as plt
3 from SpectralToolbox import SparseGrids as SG
4 Ls = range (1 ,6)
5 plt. figure ( figsize =(5 ,4))
6 for l in Ls:
7 (x,w) = SG.KPU(l)
8 x = np. asarray (x)
9 x = np. hstack ([1-x[1:][:: -1] ,x])
10 plt.plot(x,l*np.ones(len(x)),’o’)
11 plt.ylim ([0 ,6])
12 plt.xlim ([0. ,1.])
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13 plt.show(block=False)

Listing D.5 Sparse Grids with Fejèr’s rule – fig. 5.13b �
1 import numpy as np
2 from matplotlib import pyplot as plt
3 from mpl_toolkits . mplot3d import Axes3D
4 from SpectralToolbox import SparseGrids as SG
5 sg = SG. SparseGrid (SG.FEJ ,3,5, sym =1)
6 (sgX ,sgW) = sg. sparseGrid ()
7 fig = plt. figure ( figsize =(5 ,4))
8 ax = fig. add_subplot (111 , projection =’3d’)
9 ax. scatter (sgX [:,0], sgX [:,1], sgX [:,2], ’.k’)
10 plt.show(False)

D.2 Uncertainty Quantification Toolbox

The uqtoolbox version 0.1.13 provides several methods for the propagation of
the uncertainty and for sensitivity analysis. We refer the reader to the examples
and tests shipped along with the software. We list here the main features of the
toolbox:

• Random sampling methods with MPI support through mpi_map:
– Monte Carlo
– Latin Hyper Cube
– Quasi Monte Carlo

• Building blocks for Polynomial Chaos (gPC)
– Galerkin
– Collocation

• High Dimensional Model Representation
– cut-HDMR
– ANOVA-HDMR

• Global sensitivity analysis with the Sobol’ method (listing D.6)
• Model reduction (Karhunen-Loève expansion)

Listing D.6 Computation of Sobol’ indices using ANOVA-HDMR through PC based
cut-HDMR, on the Sobol’ g-function. �

1 import numpy as np
2 import scipy. special as scsp
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3 import scipy.stats as stats
4 from matplotlib import pyplot as plt
5 from SpectralToolbox import Spectral1D
6 from UQToolbox import CutANOVA
7 import UQToolbox . RandomSampling as RS
8
9 DIM = 8
10 pp = Spectral1D . Poly1D ( Spectral1D .JACOBI ,[0. ,0.])
11 polys = [pp for i in range(DIM)]
12 Ns = [6 for i in range (DIM)]
13 cut_order = 2
14 X_cut = np.zeros ((1, len(polys)))
15
16 tol = 2. * np. spacing (1)
17
18 cut_HDMR = CutANOVA . CutHDMR (polys ,Ns ,cut_order ,X_cut ,tol)
19
20 def fun(X, params =None):
21 a = np. asarray ([0. , 1. ,4.5 , 9., 99., 99., 99., 99.]);
22 if len(X.shape) == 1:
23 Y = np.prod( (np.abs (4.*X - 2.) + a)/(1. + a) );
24 elif len(X.shape) == 2:
25 Y = np.prod( (np.abs (4.*X - 2.) + a)/(1. + a) , 1);
26 return Y
27
28 def transformFunc (X):
29 # from [-1,1] to [0 ,1]
30 return (X+1.) /2.
31
32 # Evaluate f on the cutHDMR grid
33 print "N. eval = %d" % np.sum( [scsp.binom(DIM ,i) * Ns [0]**i

for i in range ( cut_order +1)] )
34 cut_HDMR . evaluateFun (fun , transformFunc )
35 print "End evaluation "
36
37 print "Start HDMR computation "
38 # Compute the cutHDMR
39 cut_HDMR . computeCutHDMR ()
40
41 # Compute the ANOVA -HDMR
42 cut_HDMR . computeANOVA_HDMR ()
43 print "End HDMR computation "
44
45 # Compute an estimate for the total variance (using Monte

Carlo)
46 dists = [stats. uniform (0 ,1) for i in xrange (DIM)]
47 exp_lhc = RS. Experiments (fun ,None ,dists ,False)
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48 exp_lhc . sample (2000 , method =’lhc ’)
49 exp_lhc .run ()
50 MC_vals = np. asarray ( exp_lhc . get_samples ())
51 MC_exp = np. asarray ( exp_lhc . get_results ())
52 MC_mean = np.mean( MC_exp )
53 MC_var = np.var( MC_exp )
54 plt. figure ()
55 plt. subplot (2 ,1 ,1)
56 plt.plot(np.array ([np.mean( MC_exp [:i]) for i in range(len(

MC_exp ))]))
57 plt. subplot (2 ,1 ,2)
58 plt.plot(np.array ([np.var( MC_exp [:i]) for i in range(len(

MC_exp ))]))
59
60 # Compute individual variances
61 D = []
62 for level_grids in cut_HDMR .grids:
63 D_level = []
64 for grid in level_grids :
65 D_level . append ( np.dot(grid. ANOVA_HDMR_vals **2. ,

grid.WF) )
66 D. append ( D_level )
67 Var_ANOVA = np.sum(D[1]) + np.sum(D[2])
68 print " TotVar / Var_Anova = %f" % ( Var_ANOVA / MC_var )
69
70 # Compute Total variances per component
71 TV = np.zeros(DIM)
72 for idx in range(DIM):
73 for level , level_idxs in enumerate ( cut_HDMR .idxs):
74 for j, idxs in enumerate ( level_idxs ):
75 if idx in idxs:
76 TV[idx] += D[level ][j]
77 TS = TV/ MC_var
78 print "N TV TS"
79 for i,grid in enumerate ( cut_HDMR .grids [1]):
80 print "%2d %.4f %.4f" % (i+1, TV[i], TS[i])
81
82 plt. figure ()
83 plt.pie(TS/np.sum(TS),labels =["x%d"%(i+1) for i in range (DIM

)])
84 plt.show(False)
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D.3 Tensor Toolbox

The TensorToolbox is a collection of tools for the decomposition of tensors
and the approximation of high-dimensional functions. Examples and unit tests
for all the functionalities of the toolbox are shipped with the source code and
are well documented. The TensorToolbox version 0.3.1 provides the following
functionalities:

• TT formats
– Tensor vectors TTvec
– Tensor matrices TTmat

• TT construction
– TT-svd [122]
– TT-cross [204]
– TT-dmrg-cross [134]

• Quantics TT vectors and matrices [136]
• Basic arithmetic in TT format
• Multi-linear algebra in TT format

– Steepest descent
– Conjugate Gradient (CG)
– Generalized Minimal Residual method (GMRES)

• Spectral TT for functionals and fields

– Projection
– Interpolation
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ABSTRACT 
 
This paper describes the results of the application of Uncertainty Quantification methods to a railway vehicle 
dynamical example. Uncertainty Quantification methods take the probability distribution of the system parameters 
that stems from the parameter tolerances into account in the result. In this paper the methods are applied to a low-
dimensional vehicle dynamical model composed by a two-axle bogie, which is connected to a car body by a lateral 
linear spring, a lateral damper and a torsional spring. 
Their characteristics are not deterministically defined, but they are defined by probability distributions. The model - 
but with deterministically defined parameters - was studied in [1], and this article will focus on the calculation of the 
critical speed of the model, when the distribution of the parameters is taken into account. 
Results of the application of the traditional Monte Carlo sampling method will be compared with the results of the 
application of advanced Uncertainty Quantification methods such as generalized Polynomial Chaos (gPC) [2]. We 
highlight the computational performance and fast convergence that result from the application of advanced 
Uncertainty Quantification methods. Generalized Polynomial Chaos will be presented in both the Galerkin and 
Collocation form with emphasis on the pros and cons of each of those approaches. 
 
Keywords: railway vehicle dynamics, nonlinear dynamics, uncertainty quantification, generalized polynomial chaos, 
high-order cubature rules. 
 

1. INTRODUCTION 

In the engineering field, deterministic models have been extensively exploited to 
describe dynamical systems and their behaviors. These have proven to be useful in the 
design phase of the engineering production, but they always fell short in providing 
indications of the reliability of certain designs over others. The results obtained by one 
deterministic experiment describe, in practice, a very rare case that likely will never 
happen. However, we are confident that this experiment will explain most of the 
experiments in the vicinity of it, i.e. for small variation of parameters. This assumption is 
wrong, in particular for realistic nonlinear dynamical systems, where small perturbations 
can cause dramatic changes in the dynamics. It is thus critical to find a measure for the 
level of our knowledge of a dynamical system, in order to be able to make reasonable risk 
analysis and design optimization. 

Risk analysis in the railway industry is critical for as well the increase of the safety as 
for targeting investments. Railway vehicle dynamics are hard to study even in the 
deterministic case, where strong nonlinearities appear in the system. A lot of phenomena 



develop within such dynamical systems and the interest of the study could be focused on 
different parameters, such as ride comfort or wear of the components. This work will 
instead focus on ride safety when high-speeds are reached and the hunting motion 
develops. The hunting motion is a well known phenomenon characterized by periodic as 
well as chaotic lateral oscillations, due to the wheel-rail contact forces, that can appear at 
different speeds depending on the vehicle design. This motion can be explained and 
studied with notions from nonlinear dynamics [3], as well as suitable numerical methods 
for non-smooth dynamical systems [4]. It is well known that the behavior of the hunting 
motion is parameter dependent, thus good vehicle designs can increase the critical speed 
where the hunting motion starts. This also means that suspension components need to be 
carefully manufactured in order to really match the constructor’s expectations. However, 
no manufactured component will ever match the simulated ones. Thus epistemic 
uncertainties, for which we have no evidence, and aleatoric uncertainties, for which we 
have a statistical description, appear in the system as a level of knowledge of the real 
parameters [5]. 

Uncertainty quantification (UQ) tries to address the question: “assuming my partial 
knowledge of the design parameters, how reliable are my results?”.  The UQ field can 
then be split in the study of rare events (e.g. breaking probability), that develop at the tails 
of probability distributions, and the study of parameter sensitivity, that focus on events 
with high probability. This work will focus on the sensitivity of the critical speed of a 
railway vehicle model to the suspension parameters. 

2. THE VEHICLE MODEL 

This work will investigate the dynamics of the well known Cooperrider model [1] 
shown in Fig. 1. The model is composed by two conical wheel sets rigidly connected to a 
bogie frame, that is in turn connected to a fixed car body by linear suspensions: a couple 
of lateral springs and dampers and one torsional spring.  

 
Fig. 1: Top view of the Cooperrider bogie model. 

We use the governing equations of this dynamical system as in [1]: 
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where ,  and  are the damping coefficient and the stiffness coefficients 
respectively,  and  are the lateral and longitudinal creep forces and  is the flange 
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The ideally stiff bogie runs on a perfect straight track where the constant wheel-rail 
friction enters the system through the lateral and longitudinal creep-forces: 
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where the creepages are given by: 

		, 							 		,

		, 						 		.
 

The flange forces are approximated by a very stiff non-linear spring with a dead band: 

exp ⁄ 	, 							0
⋅ 	,

	, 0
		, 

The parameters used for the analysis are listed in the following: 

4963	  1.5 0.7163	  
8135	 ⋅  29200 ⋅ / 14.60 ⋅ 10 	 /
0.1823 ⋅ 10 	 /  2.710 ⋅ 10 / 0.05 
0.4572	  0.910685 ⋅ 10 0.60252 
0.54219 6.563 ⋅ 10 10 	  
0.0091	  0,1474128791 ⋅ 10 1,016261260 
1,793756792 0.9138788366 ⋅ 10  
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3. UNCERTAINTY QUANTIFICATION 

The stochastic solution of the system is now represented by , , where  is a 
vector of random variables distributed according to (3). We can think about it as a 
function that spans over a three dimensional random space. In this work we will restrict 
our interest in the first few moments of this solution, namely the mean ,  and 
variance , , but the following is valid for higher moments too. Mean and variance 
are defined as 

, , ,

, , 		 ,
 (4)

where   is the probability density function of the random vector  and the integrals 
are computed over its domain. 

A straightforward way of computing the moments of the solution is to approximate the 
integrals as: 

1
, ,

1
1

, ̅ ,
 (5)

where  are realizations sampled randomly from the probability distribution of . 

This is the Monte-Carlo (MC) method and it has a probabilistic error of 1 √⁄ . 
Even if MC methods are really robust and versatile, such a slow convergence rate is 

problematic when the solution of a single realization of the system is computationally 
expensive. Alternative sampling methods are the Quasi Monte-Carlo methods (QMC). 
These can provide convergence rates of log / , where  is the dimension of the 
random space. They use low discrepancy sequences in order to uniformly cover the 
sampling domain. Without presumption of completeness, in this work we will consider 
only the Sobol sequence as a measure of comparison with respect to other advanced UQ 
methods. QMC methods are known to work better than MC methods when the integrand 
is sufficiently smooth, whereas they can completely fail on an integrand of unbounded 
variation [6]. Furthermore, randomized versions of the QMC method are available in 
order to improve the variance estimation of the method. 

3.1 Generalized Polynomial Chaos (gPC) 

Polynomial Chaos was first used by Wiener studying the decomposition of Gaussian 
processes [7]. It has been recently extended by Xiu for generalized distribution functions 
[2]. The idea is to expand the input parameters with respect to a set of  orthogonal 
polynomials that span  and seek a solution such that its residue is orthogonal to . 
Depending on the knowledge of the analytical form of  a strong convergence (e.g. in 
the -norm) or a weak convergence (in probability) can be achieved. Furthermore, given 



the projection operator : → , with measure , the following result holds for 
unbounded domains [8]: 

‖ ‖ ‖ ‖  (6)

where , ‖∙‖  is the Sobolev space and  is its order. 

For Gaussian random variables, strong convergence is guaranteed by the Hermite 
probabilists’ polynomials: 

, 0 , 

1

√2
! . 

(7)

Thus, let’s consider the set of basis | | , where  is a multi-index, that span 
the 3-dimensional random space up to the polynomial order  and let  be 
the parameterization of the random space where  and  are the vectors of means and 
standard deviations of the input parameters. We can now rewrite the random input and the 
solution as: 

	
| |

,
1

			, 

, 	
| |

,
1

, 		. 

(8)

We then seek ,  that for all | |  satisfies the Galerkin formulation 
, 	 , , 0,

0 , , 0
 (9) 

where the expectation operator is the projection with measure  and  is the operator 
defined by the right hand side of the deterministic equation. This gives a system of 

∑ 1
1

 coupled equations that can be treated with standard ODE solvers. 

The moments of the solution can then be recovered by: 
, , 

,
| |

. (10)

3.2 Stochastic Collocation Method (SCM) 

Collocation methods require the residual of the governing equations to be zero at the 

collocation points , i.e. 

, , , 0,

																						 0 , 0
 (11)

Then we can find ,  in the polynomial space Π  that approximates , . We 
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5. CONCLUSIONS 

Two approaches to the stochastic treatment of a railway dynamical system have been 
presented. MC doesn’t make any assumption on the regularity of the stochastic solution, 
thus it is outperformed by QMC, gPC and SCM, when a certain level of smoothness is 
present. In particular gPC and SCM can be 100 times faster than MC for low-dimensional 
problems. For high-dimensional problems gPC/SCM methods suffer from the “curse of 
dimensionality”. Techniques, such as sparse grids [9], are available to reduce this effect, 
but these all rely on the smoothness of the solution and in most cases only work for 
standard distributions. 

We have shown how modern techniques for UQ can improve efficiency in the 
computation of statistics for models with a limited number of uncertainties. This 
represents a useful tool for engineers during the design phase, where potential risks due to 
uncertainties can be readily detected. 
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Anwendung der „Uncertainty Quantification“ bei eisenbahndynamischen Problemen 
 
Application of the „Uncertainty Quantification“ in railway dynamical problems 
 
M.Sc. Daniele Bigoni, Professor Allan P. Engsig-Karup und Professor em. Hans True 
 
Zusammenfassung 
 
Die Anwendung von 'Uncertainty Quantification Methoden' in der Eisenbahnfahrzeugdynamik wird 
präsentiert. Die Systemparameter sind durch Verteilungsfunktionen gegeben. Die Ergebnisse der 
Anwendung von Monte-Carlo und  'generalized Polynomial Chaos' Methoden auf einem einfachen 
Drehgestell Modell wird diskutiert. 
 
Abstract 
 
The paper describes the results of the application of Uncertainty Quantification methods in railway 
vehicle dynamics. The system parameters are given by probability distributions. The results of the 
application of the Monte-Carlo and generalized Polynomial Chaos methods to a simple bogie model 
will be discussed. 
 
1. Einführung. 
 
Bei den theoretischen Untersuchungen in der Eisenbahnfahrzeugdynamik werden für die 
Anwendungen dynamische Modelle mit größter Sorgfalt mathematisch formuliert. Für die 
Parameter in den Problemen wie Adhäsionsbeiwert und die Charakteristiken der Aufhängung 
werden Festwerte oder wohldefinierte Funktionen gewählt um zu einem deterministischen System 
zu gelangen. Die Analyse der Probleme der Eisenbahnfahrzeugdynamik ist sowieso wegen der 
Anzahl der Körper und der damit verbundenen vielen Freiheitsgrade, und der Nichtlinearität und 
Nicht-Glattheit vieler Funktionen schwierig. Im Fall der Untersuchung eines schon existierenden 
Fahrzeugs müssen alle Parameterwerte und funktionale Zusammenhänge in dem dynamischen 
Problem von vornherein gemessen werden, was aber beim Entwurf eines Fahrzeugs nicht möglich 
ist. Beim Entwurf werden deswegen die nominellen Werte und Funktionen in das dynamische 
Problem substituiert, dessen Lösung dann als Grundlage für die Bewertung der dynamischen 
Eigenschaften des Fahrzeugs dient. Viele Werte wie auch Funktionen werden paarweise gleich 
gesetzt, wobei sehr oft mindestens eine Symmetrie, nämlich die um die Längsachse des 
Eisenbahnfahrzeugs, in das dynamische Problem eingeführt wird. Die Symmetrie spielt eine Rolle 
für die Existenz der Lösungen des dynamischen Problems. Zum Beispiel haben symmetrische 
nichtlineare dynamische Probleme im Allgemeinen keine chaotischen Lösungen, die dann erst nach 
einer symmetriebrechenden Verzweigung bei höheren Geschwindigkeiten existieren können. 
Alle Elemente in der Fahrzeugaufhängung werden aber mit Fertigungstoleranzen hergestellt, und 
erstens existiert deswegen kein symmetrisch gebautes Eisenbahnfahrzeug, und zweitens sind die 
Lösungen des deterministischen dynamischen Problems mit den wohldefinierten Parameterwerten 
im Vergleich zur Dynamik des wirklichen Fahrzeugs eine Annäherung, deren Güte nicht 
abgeschätzt ist. Der Ingenieur hat dabei ein ungutes Gefühl. Wie zuverlässig sind die 
Rechenergebnisse – z.B. eine Berechnung der kritischen Geschwindigkeit eines 
Eisenbahnfahrzeugs? Er kann sich nur auf Erfahrungen mit früheren Berechnungen stützen, aber 
halten die Ergebnisse wirklich auch für ein neues Fahrzeug mit seinen noch nicht in der 
Konstruktion geprüften Elementen? 
Eine Abschätzung kann mit Hilfe der Monte-Carlo Methode wie in der Arbeit von Mazzola und 
Bruni [1] durchgeführt werden. Ihre Berechnungen brauchen aber viel Rechenzeit, und wir schlagen 
deswegen eine andere Methode vor, die weniger zeitaufwendig ist und mindestens genau so gute 
Ergebnisse liefert. Es ist die Methode der „Uncertainty Quantification“ (UQ). Die Methode ist im 



Buch von Xiu [2] beschrieben und wurde in der Fahrzeugdynamik zuerst von Fünfschilling und 
Perrin [3] und dann von Kewlani u.a. angewandt [4]. In [3] wird der Einfluss der Variationen der 
Rad/Schiene Kontaktgeometrie auf die Fahrzeugdynamik untersucht.  In [4] untersucht Kewlani u.a. 
die senkrechte Dynamik eines 'Viertel-Wagen Modells' mit zwei Freiheitsgraden und 
parametrischer Unsicherheit unter einer deterministischen Erregung. In [4] findet man auch eine 
kurze Beschreibung der Methode. 
In dieser Arbeit wollen wir statt der Abschätzung von Ergebnissen eines erregten Systems mit 
parametrischer Unsicherheit die Abschätzung der kritischen Parameterwerte, wie die kritische 
Geschwindigkeit eines Eisenbahnfahrzeugs, unter Einfluss der parametrischen Unsicherheit 
berechnen. Die Berechnungsmethode wird kurz präsentiert und auf einem einfachen Drehgestell 
Modell angewandt. Die Ergebnisse der Anwendung werden präsentiert und diskutiert. Zum Schluss 
wird die Erweiterung auf realistische Probleme mit mehreren Freiheitsgraden und einer hohen Zahl 
von Federn und Dämpfern in einem Modell eines Wagens erörtert. Dieses Problem ist, wie diese 
Präsentation, ein Teil der laufenden Doktorarbeit von Daniele Bigoni. 
 
2. Die Methode der „Uncertainty Quantification“ (UQ) 
 
Das fahrzeugdynamische Problem ist in der Form 
 
    dq/dt = F(q,Z)         (1) 
 
mit zugehörigen Bindungen und Anfangsbedingungen gegeben.  Hier ist q(t, Z) ein 2N-
dimensionaler Vektor, wo N die Zahl der Freiheitsgrade des dynamischen Systems ist, und t die 
Zeit ist. F ist eine Vektorfunktion und Z ist ein Vektor dessen M Komponenten Zufallsparameter 
mit gegebenen Verteilungen sind. Gesucht sind der Mittelwert E [q(t, Z)] und der Varianz V [q(t, 
Z)] für t > 0. 
Die Lösung des dynamischen Problems mit Parameterverteilungen, die als die einzige Bedingung 
stetig sind, wird durch eine Reihenentwicklung der Verteilungen in orthogonale Funktionen 
angenähert, für die der Einfachheit wegen ein Basis von Hermitpolynomen | |   gewählt 
wird. Jedes Glied in der Entwicklung besteht aus einem Tensor Produkt von drei 'eindimensionalen'  
Hermitpolynomen. k ist ein dreidimensionales Multiindex, dem dreidimensionalen euklidischen 
Raum entsprechend – zum Beispiel, für |k| = 0 ist k = (0,0,0) und  k = 1. Für |k| = 1 gibt es drei 
Kombinationen für k: (1,0,0) ~ k = 2, (0,1,0) ~ k = 3 und (0,0,1) ~ k = 4 und so weiter. Für |k| = 2 
gibt es z.B. sechs Kombinationen des dreidimensionalen Multiindexes. Ein Vorteil der Anwendung 
von Hermitpolynomen ist, dass in vielen Rechenprogrammen wie z.B. MATLAB eine Annäherung 
einer willkürlichen Funktion mittels  Hermitpolynomen nach der Eingabe einiger Stützpunkte durch 
eine Operation durchführbar ist. 
Im weiteren Verlauf kann man zwei Methoden anwenden. Erstens kann man eine Spektralmethode, 
die als 'Generalized Polynomial Chaos' oder gPC bekannt ist, oder die 'Stochastische Kollokation 
Methode' (SKM) anwenden. Der Name 'Generalized Polynomial Chaos' wurde von Wiener [5] 
1938 eingeführt, und er hat nichts mit dem dynamischen Begriff 'Chaos' zu tun. In gPC werden die 
Reihenentwicklungen der Parameterverteilungen in das dynamische Problem (1) substituiert, und 
unter Ausnutzung der Ortogonalität der unterschiedlichen Hermitpolynome vereinfacht. Dadurch 
entsteht ein größeres dynamisches System, worin in jeder einzelnen Gleichung nur eine 
Kombination von Hermitpolynomen statt der ursprünglichen Verteilungsfunktionen auftritt. Die 
Gleichungssysteme sind in Gruppen aufgeteilt,  die die unterschiedlichen Kombinationen von 
Hermitpolynomen enthalten und sonst alle gleich sind, was die numerische Lösung des größeren 
dynamischen Systems sehr vereinfacht. 
Für die numerische Lösung qj(ti) des 'großen Problems', müssen die Stützpunkte ti für alle j, das 
heißt in allen Gruppen, gleich gewählt werden, damit man den Mittelwert und Varianz über j 
berechnen kann. Das Ergebnis liefert dann die Annäherung von dem gesuchten Mittelwert E [q(t, 
Z)] und Varianz V [q(t, Z)] für t > 0. 



In SKM werden die Hermitpolynome durch Kollokation angenähert. Aus der Verteilungsfunktion 
wird eine Folge von Punkten - die sogenannten Kollokationspunkte – gewählt, deren 
Funktionswerte zur Bestimmung der Koeffizienten in der gewählten Entwicklung in 
Hermitpolynome dienen. Die dadurch gebildete Annäherung nennt man eine Surrogatfunktion.  
Dadurch entsteht wie bei der gPC Methode ein großes Gleichungssystem, das in Gruppen aufgeteilt 
ist. Auf die Wahl der Kollokationspunkte wird hier nicht eingegangen, aber es ist klar dass der 
Fehler in der Annäherung von dieser Wahl abhängig ist. Bis auf die unterschiedlichen 
Kombinationen von Hermitpolynomen, sind alle Gruppen gleich, und das dynamische Problem 
wird, wie oben für die gPC Methode beschrieben, numerisch gelöst. Für mehr Information wird der 
Leser auf die früher genannte Literatur [2] [4] hingewiesen. 
 
3. Ein Beispiel aus der Eisenbahnfahrzeugdynamik 
 
In diesem Beispiel wollen wir eine Simulation wie die von Mazzola und Bruni [1], Fünfschilling 
und Perrin [3] und Kewlani u.a. [4] nicht durchführen, sondern den wichtigen Systemparameter, die 
kritische Geschwindigkeit eines Eisenbahnfahrzeugs abschätzen. Als Modell wählen wir das früher 
untersuchte 'einfache Cooperrider Drehgestell' [6], Bild 1. Das Drehgestell Modell besteht aus zwei 
Radsätzen mit konischem Radprofil, die frei rotieren können aber sonst fest mit dem Drehgestell 
Rahmen verbunden sind. Sie werden alle als Festkörper betrachtet. Wir sind nur in den 
Querbewegungen interessiert und nehmen deswegen an, dass die senkrechten Bewegungen und 
Beschleunigungen so klein sind, dass sie in allen Bewegungsgleichungen vernachlässigbar sind. 
Deswegen werden die senkrechten Elemente der Aufhängung vernachlässigt, und die Verbindung 
zwischen dem Rahmen und dem Wagenkasten besteht nur aus einem Paar von seitlichen Feder-
Dämpfern und einer Torsionsfeder, die alle lineare Abhängigkeiten besitzen. 
 
    Here please insert your fig 1 in WORD.docx 
 
 
Bild 1. Das einfache Cooperrider Drehgestell Modell von oben 
 
Das dynamische System ist [6]: 

2 2 2 , , ,
2 , , 2 , ,  

(2)

 
D2 ist der lineare Dämpfungswert und k4 und k6 sind die linearen Federsteifigkeiten. Fx und Fy sind 
die Schlupfkräfte in bzw. Quer- und Längsrichtung. FT ist die Rückführungskraft des Spurkranzes. 
Das Drehgestell läuft auf einem geraden und idealen Festkörpergleis mit konstantem 
Adhäsionsbeiwert. 
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Die Schlupfkräfte sind laut Vermeulen und Johnson [7]: 
  



, 		,

, 		.
 

Die Rückführungskraft des Spurkranzes ist angenähert durch eine nichtlineare Feder mit Spiel und 
hoher Steifigkeit: 

exp ⁄ , 0
⋅ ,

, 0
		, 

Die angewandten Parameterwerte sind unten aufgelistet: 
4963	  1.5  0.7163	  
8135	 ⋅  29200 ⋅ /  14.60 ⋅ 10 	 /
0.1823 ⋅ 10 	 /  2.710 ⋅ 10 /  0.05 
0.4572	  0.910685 ⋅ 10  0.60252 
0.54219 6.563 ⋅ 10  10 	  
0.0091	  0,1474128791 ⋅ 10  1,016261260 
1,793756792 0.9138788366 ⋅ 10  

 
3.1 Die kritische Geschwindigkeit des deterministischen Modells 
 
Wie erwartet ist die kritische Geschwindigkeit des Drehgestell Modells die höchste 
Geschwindigkeit an der die stationäre Gleichgewichtslösung des dynamischen Problems eindeutig 
ist. Im Zustands-Parameterraum haben wir also mit einem Problem zu tun, das dieselben 
Eigenschaften hat wie das im Bild 2. 
 

Bild 2. Beispiel eines Verzweigungsdiagrammes für ein Drehgestell, Amplitude der Querbewegung 
des führenden Radsatzes vs. Fahrzeuggeschwindigkeit. Der ungestörte Lauf ist die Nulllösung – die 
Abszissenachse. Der kleinste Verzweigungspunkt, liegt bei 134 km/h aber nicht auf dieser Achse. 
Dort verzweigen eine instabile – gestrichelt – und eine stabile – aufgezogen – periodische Lösung, 
die die Schlingerbewegung darstellt, von einander. Die Nulllösung ist für V > 160 km/h instabil. 
 
Die subkritische Verzweigung der instabilen, periodischen Lösung liegt in unserem Fall bei vL = 
66.6107 m/s ~ 239.80 km/h. Über vL  ist unsere stationäre Gleichgewichtslösung instabil. vL  wurde 
mit großer Genauigkeit durch eine Stabilitätsuntersuchung der stationären Lösung unter 
Anwendung der Eigenwerte der Jacobiante des um Null linearisierten Systems, gefunden. Danach 
wurde die stabil schwingende Bewegung – die Schlingerbewegung – im Zustandsraum gefunden, 
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durch eine Normalverteilung gegeben, und die berechneten Mittelwert und Varianz der kritischen 
Geschwindigkeit sind im Bild 4 abgebildet. 
 
    Here please insert your Fig.4 with German text 
   SCM Points → SKM Punkte,  Mean → Mittelwert,  Variance → Varianz 
   N MC of simulations → Anzahl MC Simulierungen,  SCM → SKM, 
   distribution → Verteilung,  Sampling → Probenahme, samp. → Proben 
   Nonlin. critical speed → Kritische Geschwindigkeit, fEval ? 
 
Bild 4. Die Ergebnisse der Berechnung der kritischen Geschwindigkeit mit Hilfe sowohl der SKM 
wie der MC und QMC Methoden. Nur k4 ist mit Unsicherheit behaftet. Links die Abschätzung des 
Mittelwerts und der Varianz. Rechts Histogramme der kritischen Geschwindigkeit. Für die MC 
Methode wurden 500 Simulationen des Modells und für die SKM Methode nur zwei 
Funktionsauswertungen benutzt. Für die Verteilungsfunktion der SKM Methode wurden 105 
Realisierungen der Surrogatfunktion angewandt. Die Standard Abweichung ist beschattet – blau für 
SKM und rot für MC. 
 
Man sieht dass die Abschätzung bei SKM schon bei niedriger Ordnung zufriedenstellend ist, und 
der Gewinn bei höhrerer Ordnung nur gering ist. Es bedeutet dass die ersten wenigen Glieder in der 
Entwicklung laut Abschnitt 2 für eine gute Abschätzung der Verteilung der kritischen 
Geschwindigkeit ausreichen. 
Bild 5 ist wie Bild 4, bloß ist statt k4  hier k6 durch eine Normalverteilung gegeben. Wieder reichen 
die ersten wenigen Glieder in der Entwicklung laut Abschnitt 2 für eine gute Abschätzung der 
Verteilung der kritischen Geschwindigkeit aus. Ferner sieht man dass die Steifigkeit der 
Torsionsfeder einen größeren Einfluss als die Steifigkeit der Querfederung auf die kritische 
Geschwindigkeit ausübt. 
 
 
     Here please insert your Fig.5 with German text 
    SCM Points → SKM Punkte,  Mean → Mittelwert,  Variance → Varianz 
    N MC of simulations → Anzahl MC Simulierungen,  SCM → SKM, 
    distribution → Verteilung,  Sampling → Probenahme, samp. → Proben 
    Nonlin. critical speed → Kritische Geschwindigkeit, fEval ? 
 
Bild 5. Die Ergebnisse der Berechnung der kritischen Geschwindigkeit mit Hilfe sowohl der SKM 
wie der MC und QMC Methoden. Nur k6 ist mit Unsicherheit behaftet sonst wie Bild 4. Die 
Standard Abweichung ist beschattet – blau für SKM und rot für MC. 
 
Schließlich wird die SKM Methode auf das Problem (1) mit den drei Verteilungen (3) angewandt. 
Die Ergebnisse sind im Bild 6 präsentiert. Wieder sieht man dass eine Annäherung niedriger 
Ordnung für die Berechnung der Lösung mit der größten Genauigkeit ausreicht. 
 
    Here please insert your Fig.6 with German text 
    SCM Points → SKM Punkte,  Mean → Mittelwert,  Variance → Varianz 
    N MC of simulations → Anzahl MC Simulierungen,  SCM → SKM, 
    distribution → Verteilung,  Sampling → Probenahme, samp. → Proben 
    Nonlin. critical speed → Kritische Geschwindigkeit, fEval ? 
 
Bild 6.  Die Ergebnisse der Berechnung der kritischen Geschwindigkeit mit Hilfe sowohl der SKM 
wie der MC und QMC Methoden mit dreidimensionaler Unsicherheit. Die Anzahl der 
Auswertungen bei MC wurde hier auf 103 erhöht, sonst wie Bilder 4 und 5. Rechts Histogramme 
der kritischen Geschwindigkeit. Die Standard Abweichung ist beschattet – blau für SKM und rot für 
MC. 
 
Tabelle 1 zeigt das Endergebnis mit der größten erreichten Genauigkeit bei der Anwendung der drei 
Berechnungsmethoden: Monte-Carlo (MC), Quasi-Monte-Carlo (QMC) und Stochastische 



Kollokation (SKM). Es ist interessant zu bemerken dass die Varianzen in den zwei- und 
dreidimensionalen Fällen fast gleich der Summe der Varianzen der eindimensionalen Fälle sind. Es 
bedeutet dass die gegenseitige Beeinflußung der drei Elemente der Aufhängung durch die 
Nichtlinearität des Problems bei den gewählten Varianzen unbedeutend ist. 
 

 MC QMC SKM 
  #fA CPUt   #fA CPUt   #fA CPUt 

 62,26 1,64 169 ~24S 62,24 1,47 152 ~21 S 62,23 1,55 2 ~10M
 62,23 0,14 17 ~2,5S 62,25 0,14 22 ~3 S 62,25 0,14 2 ~11M
 62,23 0,02 9 ~1 S 62,25 0,02 4 ~30M 62,25 0,03 2 ~11M

,  62,22 1,53 148 ~21 S 62,22 1,62 152 ~22 S 62,28 1,69 4 ~36M
,  62,18 1,72 216 ~30 S 62,24 1,50 142 ~20 S 62,28 1,57 4 ~37M
,  62,25 0,17 25 ~3,5S 62,25 0,16 25 ~3,5S 62,30 0,17 4 ~35M

, , 1 62,18 1,68 221 ~32 S 62,23 1,63 154 ~22 S 62,23 1,72 8 ~1 S
 
    Here please insert your table 1 with German text 
    eval → Ausw.,  max. order  → Max. Ordnung 
 
Tabelle 1. Die geschätzten Mittelwerte und Varianzen der krirtischen Geschwindigkeit bei der 
Anwendung der MC, QMC und SKM Methoden. 
 
4. Diskussion und Ausblick 
 
In dieser Arbeit haben wir gezeigt, wie die Fertigungstoleranzen in dynamische Untersuchungen 
von Fahrzeugen eingeführt werden können. Ein neues Verfahren, die stochastische Kollokation als 
'Uncertainty Quantification', wird angewandt, und die Genauigkeit und der Rechenaufwand mit 
denen der Anwendung des Monte-Carlo Verfahrens verglichen. Die 'Uncertainty Quantification' 
wird zur Abschätzung der berechneten kritischen Geschwindigkeit angewandt, und die kritische 
Geschwindigkeit wird als ein Mittelwert mit Varianz geliefert. Die Ergebnisse zeigen dass unter der 
Voraussetzung derselben Genauigkeit ist der Konvergenz des neuen Verfahrens dem Konvergenz 
des Monte-Carlo Verfahrens überlegen.   Rechenaufwand    Der gesamte Rechenaufwand ist 
selbstverständlich größer als der einer deterministischen Berechnung, weil dasselbe dynamische 
System, bloß mit unterschiedlichen Parameterwerten, wiederholt numerisch gelöst werden muss. 
Unter diesen Umständen lässt sich aber die Rechenzeit bei einer geschickten Anwendung der 
Parallelisierung erheblich reduzieren. Die Dynamik des Fahrzeugmodells wird unterwegs 
berechnet, weil sie für die Berechnung der kritischen Geschwindigkeit die Grundlage bildet, aber 
das Ergebnis wird hier wegen der Begrenzung der Länge dieser Veröffentlichung nicht präsentiert. 
Wir haben ein sehr einfaches Beispiel gewählt um die Überlegenheit der Methode gegenüber dem 
MC Verfahren zu demonstrieren. Deswegen haben wir durch die Anwendung nur einer Verteilung  
für die lateralen Feder- bzw. Dämpferkräfte den Einfluß der in einem realistischen Wagen 
fehlenden Symmetrie hier nicht untersucht. Der Rechenaufwand wächst bei der Untersuchung eines 
ganzen realistischen Fahrzeugs mit einer hohen Codimension, die leicht 20 übersteigt, gewaltig. 
Deswegen wird die Doktorarbeit mit dem Ziel den Rechenaufwand zu reduzieren weitergeführt. Die 
Codimension könnte durch Anwendung statistischer Methoden zur Auswahl der einflußreichsten 
Systemparameter reduziert werden.  
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Abstract 

We present an approach to global sensitivity analysis aiming at the reduction of its computational cost without 
compromising the results. The method is based on sampling methods, cubature rules, High-Dimensional Model 
Representation and Total Sensitivity Indices. The approach has a general applicability in many engineering fields 
and does not require the knowledge of the particular solver of the dynamical system. This analysis can be used as 
part of the virtual homologation procedure and to help engineers during the design phase of complex systems. 
The method is applied to a half car with a two-axle Cooperrider bogie, in order to study the sensitivity of the 
critical speed with respect to suspension parameters. The importance of a certain suspension component is 
expressed by the variance in critical speed that is ascribable to it. This proves to be useful in the identification of 
parameters for which the exactness of their values is critically important. 

1.  INTRODUCTION 

The past couple of decades have seen the advent of computer simulations for the study of deterministic dynamical 
systems arising from any field of engineering. The reasons behind this trend are both the enhanced design 
capabilities during production and the possibility of understanding dangerous phenomena. However, deterministic 
dynamical systems fall short in the task of giving a complete picture of reality: several sources of uncertainty can 
be present when the system is designed and thus obtained results refer to single realizations, that in a probabilistic 
sense have measure zero, i.e. they never happen in reality. The usefulness of these simulations is however proved 
by the achievements in Computer-Aided Design (CAD).  
The studies of stochastic dynamical systems allow for a wider analysis of phenomena: deterministic systems can 
be extended with prior knowledge on uncertainties with which the systems are described. This enables an 
enhanced analysis and can be used for risk assessment subject to such uncertainties and is useful for decision 
making in the design phase. 
In the railway industry, stochastic dynamical systems are being considered in order to include their analysis as a 
part of the virtual homologation procedure [1], by means of the framework for global parametric uncertainty 
analysis proposed by the OpenTURNS consortium. This framework splits the uncertainty analysis task in four 
steps: 

A. Deterministic modeling and identification of Quantities of Interest (QoI) and  source of uncertainties 
B. Quantification of uncertainty sources by means of probability distributions 
C. Uncertainty propagation through the system 
D. Sensitivity analysis 

Railway vehicle dynamics can include a wide range of uncertainty sources. Suspension characteristics are only 
known within a certain tolerance when they exit the manufacturing factory and are subject to wear over time that 
can be described stochastically. Other quantities that are subject to uncertainties are the mass and inertia of the 
bodies, e.g. we don’t know exactly how the wagon will be loaded, the wheel and track geometries, that are subject 
to wear over time, and also external loadings like wind gusts. 
In this work the QoI will be the critical speed of a fixed half-wagon with respect to uncertain suspension 
components (step A). The deterministic and stochastic models will be presented in section 2. Step B requires 
measurements of the input uncertainty that are not available to the authors, so the probability distribution of the 
suspension components will be assumed to be Gaussian, without losing the generality of application of the 
methods used in C and D. 
Techniques for Uncertainty Quantification (UQ) will be presented in section 3.1. They have already been applied 
in [2] and [3] to perform an analysis of Uncertainty propagation (step C). They will turn useful also in section 3.2 
and 3.3 for the sensitivity analysis technique to be presented (step D). This is based on Total Sensitivity Indices 
(TSI) obtained from the ANOVA expansion of the function associated to the QoI [4]. Section 4 will contain the 
results of such analysis. 
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2.  THE VEHICLE MODEL 

In this work we will consider a fixed half wagon equipped with a Cooperrider bogie, running on tangent track with 
wheel profile S1002 and rail UIC60. The position of the suspension components is shown in Fig. 1. In [5] a 
framework for the simulation of the dynamics of complete wagons running on straight and curved tracks has been 
implemented and tested based on the Newton-Euler formulation of the dynamical system: 
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where iF  and iM  are respectively the forces and the torques acting on the bodies, m  and  J  are the mass and 

inertia of the bodies, a


 and 


 are the acceleration and the angular acceleration of the bodies. 
In this work the wagon will be fixed in order to alleviate the lateral oscillations during the hunting motion that 
would, in some cases, break the computations. The mathematical analysis and the generality of the methods 
proposed are not weakened by this assumption, even if the results may change for different settings. The wheel-rail 
interaction is modeled using tabulated values generated with the routine RSGEO [6] for the static penetration at the 
contact points. These values are then updated using Kalker’s work [7] for the additional penetrations. The creep 
forces are approximated using Shen-Hedrick-Elkins nonlinear theory [8]. The complete deterministic system 

,),()( tt
dt

d
ufu   (2) 

is nonlinear, non-smooth, and it has 28 degrees of freedom. 

2.1 Nonlinear dynamics of the deterministic model 

The deterministic dynamics of the complete wagon with a couple of Cooperrider bogies were analyzed in [5]. The 
stability of the half-wagon model considered in this work is characterized by a subcritical Hopf-bifurcation 

at smvL /114 , as it is shown in Fig. 2a, and a critical speed smvNL /47.50 . The critical speed is found 

using a continuation method from the periodic limit cycle detected at a speed greater than the Hopf-bifurcation 
speed Lv . In order to save computational time, we try to detect the periodic limit cycle at speeds lower than Lv  

perturbing the system as described in [9]. This is the approach that we will take during all the computations of 
critical speeds in the next sections. The criterion used in order to detect the value of the critical speed is based on 
the power of the lateral oscillations in a s1  sliding window of the computed solution. Fig. 2b shows how this 
criterion is applied. 

Fig. 1 The half-wagon equipped with the Cooperrider bogie. 
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2.2 The stochastic model 

In the following we will assume that the suspension characteristics are not deterministically known. Rather, they 
are described by probability distributions stemming from the manufacturing uncertainty or the wear. 
If experimental information is available, then some standard distributions can be assumed and an optimization 
problem can be solved in order to determine the statistical parameters of such distributions (e.g. mean, variance, 
etc.). Alternatively the probability density function of the probability distribution can be estimated by Kernel 
smoothing [10]. 
Due to the lack of data to the authors, in this work the probability distributions associated with the suspension 
components will be assumed to be Gaussian around their nominal value, with a standard deviation of 5%. We 

define Z to be the d-dimensional vector of random variables  d

iiii Nz 1,(~  describing the distributions of 

the suspension components, where d is called the co-dimension of the system. The stochastic dynamical system is 
then described by  

      .,0,,,, dTtt
dt

d
RZufZu   (3) 

3.  SENSITIVITY ANALYSIS 

Sensitivity analysis is used to describe how the model output depends on the input parameters. Such analysis 
enables the user to identify the most important parameters for the model output. Sensitivity analysis can be viewed 
as the search for the direction in the parameter space with the fastest growing perturbation from the nominal 
output. 
One approach of sensitivity analysis is to investigate the partial derivatives of the output function with respect to 
the parameters in the vicinity of the nominal output. This approach goes by the name of local sensitivity analysis, 
stressing the fact that it works only for small perturbations of the system. 
When statistical information regarding the parameters is known, it can be embedded in the global sensitivity 
analysis, which is not restricted to small perturbations of the system, but can handle bigger variability in the 
parameter space. This is the focus of this work and will be described in the following sections. 

3.1 Uncertainty Quantification 

The solution of (3) is  Zu ,t , varying in the parameter space. In uncertainty quantification we are interested in 

computing the density function of the solution and/or its first moments, e.g. mean and variance: 

   ,)(),(,)( 
d

dFttt zzuZuE Zu Z
  

(4) 
      ,)()(,,)( 22 zzuZuV Zuu Z

dFtttt
d     

(a) bifurcation diagram (b) Critical speed detection criteria 

Fig. 2 Left: complete bifurcation diagram where the folding point is detected by continuation (ramping) method 
from the periodic limit cycle. Right: criterion for the determination of the critical speed based on the power of the 
lateral oscillations in a sliding window. LB, LLW and LTW stand for the bogie frame, the leading wheel set and the 
trailing wheel set respectively. 
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where )(zZ and )(zZF  are the probability density function (PDF) and the cumulative distribution function 

(CDF) respectively. Several techniques are available to approximate these high-dimensional integrals. In the 
following we present the two main classes of these methods. 

Sampling based methods 

The most known sampling method is the Monte Carlo (MC) method, which is based on the law of large numbers. 
Its estimates are: 

,),(
1

)()(
1

)( 


M

j

jt
M

tt Zuuu   

(5) 
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where  M

j
j

1
)(

Z are realizations sampled randomly within the probability distribution of Z . The MC method has 

a probabilistic error of  MO /1 , thus it suffers from the work effort required to compute accurate estimates. 

However the MC method is very robust because this convergence rate is independent of the co-dimensionality of 
the problem, so it’s useful to get approximate estimates of very high-dimensional integrals. 
Sampling methods with improved convergence rates have been developed, such as Latin Hypercube sampling and 
Quasi-MC methods. However, the improved convergence rate comes at the expense of several drawbacks, e.g., the 
convergence of Quasi-MC methods is dependent of the co-dimensionality of the problem and Latin Hypercube 
cannot be used for incremental sampling. 

Cubature rules 

The integrals in (4) can also be computed using cubature rules. These rules are based on a polynomial 
approximation of the target function, i.e. the function describing the relation between parameters and QoI, so they 
have superlinear convergence rate on the set of smooth functions. Their applicability is however limited to 
low-co-dimensional problems because cubature rules based on a tensor grid suffer the curse of dimensionality, i.e. 
if m is the number of points used in the one dimensional rule and d the dimension of the integral, the number of 

points at which to evaluate the function grow as )( dmO . They will however be presented here because they 

represent a fundamental tool for the creation of high-dimensional model representations that will be presented in 
the next section. 

Let Z  be a vector of independent random variables in the probability space ),,( ZBD F , where dRD  , B is 

the Borel set constructed on D  and ZF  is a probability measure (i.e. the CDF of Z ). For this probability 

measure we can construct orthogonal polynomials   iN

nin z 1)(   for di 1 , that form a basis for each 

independent dimension of D  [11]. The tensor product of such a basis forms a basis for D . From these orthogonal 

polynomials, the Gauss quadrature points and weights   d

dididi
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jjjjjj







1

1,,,,,, ,wz  can be derived using the 

Golub-Welsch algorithm [11], obtaining approximations for (4): 
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(6) 

Gauss quadrature rules of order N are accurate for polynomials of order up to degree 12 N . This high accuracy 
comes at the expense of the curse of dimensionality due to the use of tensor products in high-dimensional 
integration. This effect can be alleviated by the use of Sparse Grids techniques proposed by Smolyak [12] that use 
an incomplete version of the tensor product. However, in the following section we will see that we can often avoid 
working in very high-dimensional spaces. 

3.2 High-dimensional model representations 

High-dimensional models are very common in practical applications, where a number of parameters influence the 
dynamical behaviors of a system. These models are very difficult to handle, in particular if we consider them as 
black-boxes where we are only allowed to change parameters. One method to circumvent these difficulties is the 
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HDMR expansion [13], where the high-dimensional function RD :f , nRD   is represented by a function 

decomposed with lower order interactions: 

.),,,(),()()( 21,,2,10 
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This expansion is exact and exists for any integrable and measurable function f , but it is not unique. There is a 

rich variety of such expansions depending on the projection operator used to construct them. The most used in 
statistics is the ANOVA-HDMR where the low dimensional functions are defined by 
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where DD 
lii 1

is the hypercube excluding indices lii ,,1   and   is the product measure 


i

ii xx )()(  . This expansion can be used to express the total variance of f , by noting that 
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However, the high-dimensional integrals in the ANOVA-HDMR expansion are computationally expensive to 
evaluate. 
An alternative expansion is the cut-HDMR, that is built by superposition of hyperplanes passing through the cut 

center  nyyy ,,1  : 
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where ),,(
1

1 ,,

l

l
xi

ii xxf 
 is the function )(xf  with all the remaining variables set to y . This expansion 

requires the evaluation of the function f on lines, planes and hyperplanes passing through the cut center. 

If cut-HDMR is a good approximation of f at order L , i.e. considering up to L -terms interactions in (7), such 

expansion can be used for the computation of ANOVA-HDMR in place of the original function. This reduces the 
computational cost dramatically: let n be the number of parameters and s the number of samples taken along each 
direction (being them MC samples or cubature points), then the cost of constructing cut-HDMR is 
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3.3 Total Sensitivity Index 

The main task of Sensitivity Analysis is to quantify the sensitivity of the output with respect to the input. In 
particular it’s important to know how much of this sensitivity is accountable to a particular parameter. With the 
focus on global sensitivity analysis, the sensitivity of the system to a particular parameter can be expressed by the 
variance of the output associated to that particular input. 
One approach to this question is to consider each parameter separately and to apply one of the UQ techniques 
introduced in section 3.1. This approach goes by the name of one-at-a-time analysis. This technique is useful to get 
a first overview of the system. However, this technique lacks an analysis of the interaction between input 
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parameters, which in many cases is important. 
A better analysis can be achieved using the method of Sobol’ [14]. Here single sensitivity measures are given by 
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          for ,1 1 nii l   (12) 

where D and
liiD ,,1 
are defined according to (9). These express the amount of total variance that is accountable to 

a particular combination lii ,,1  of parameters. The Total Sensitivity Index (TSI) is the total contribution of a 

particular parameter to the total variance, including interactions with other parameters. It can be expressed by 

,1)( iSiTS   (13) 

where iS is the sum of all
liiS ,,1 
that does not involve parameter i . 

These total sensitivity indices can be approximated using sampling based methods in order to evaluate the integrals 
involved in (9). Alternatively,  [4] suggests to use cut-HDMR and cubature rules in the following manner: 

1. Compute the cut-HDMR expansion on cubature nodes for the input distributions. 
2. Derive the approximated ANOVA-HDMR expansion from the cut-HDMR. 
3. Compute the Total Sensitivity Indices from the ANOVA-HDMR. 

This approach gives the freedom of selecting the level of accuracy for the HDMR expansion depending on the 

level of interaction between parameters. The truncation order L  of the ANOVA-HDMR can be selected and the 
accuracy of such expansion can be assessed using the concept of “effective dimension” of the system: for 1q , 

the effective dimension of the integrand f is an integer L such that 

,
0

qDD
Lt

t 


 (14) 

where t is a multi-index lii ,,1  and t is the cardinality of such multi-index. The parameter q  is chosen based 

on a compromise between accuracy and computational cost. 

4.  SENSITIVITY ANALYSIS ON RAILWAY VEHICLE DYNAMICS 

The study of uncertainty propagation and sensitivity analysis through dynamical systems is a computationally 
expensive task. In this analysis we adopt a collocation approach, where we study the behaviors of ensembles of 
realizations. From the algorithmic point of view, the quality of a method is measured in the number of realizations 
needed in order to infer the same statistics. Each realization is the result of an Initial Value Problem (IVP) 
computed using the program DYnamics Train SImulation (DYTSI) developed in [5], where the model presented in 
section 2 has been set up and the IVP has been solved using the Explicit Runge–Kutta–Fehlberg method ERKF34 
[15]. An explicit solver has been used in light of the analysis performed in [16], where it was found that the hunting 
motion could be missed by implicit solvers, used with relaxed tolerances, due to numerical damping. In particular 
implicit solvers are frequently used for stiff problems, like the one treated here, because their step-size is bounded 

Fig. 3: Histogram of the Critical Speed obtained using 
Latin Hypercube sampling and the estimated density 
function (KDE) obtained using Kernel Smoothing. 

Fig. 4: Pie plot of the Total Sensitivity Indices on the 
reduced stochastic model, where only the most 
influential components are analyzed. (See Table 1 for an 
explanation of the notation used) 
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by accuracy constraints instead of stability. However, the detection of hunting motion requires the selection of 
strict tolerances, reducing the allowable step-sizes and making the implicit methods more expensive than the 
explicit ones. Since the collocation approach for UQ involves the computation of completely independent 
realizations, this allows for a straightforward parallelization of the computations on clusters. Thus, 25 nodes of the 
DTU cluster have been used to speed up the following analysis. 
The first step in the analysis of a stochastic system is the characterization of the probability distribution of the QoI. 
Since the complete model has co-dimension 24, a traditional sampling method, among the ones presented in 
section 3.1, is the most suited for the task of approximating the integrals in eq. (4). Fig. 3 shows the histogram of 
the computed critical speeds with respect to the uncertainty in the suspension components. In order to speed up the 
convergence, we used 200 samples generated with the Latin Hyper Cube method [17]. Kernel smoothing [10] has 
been used to estimate the density function according to this histogram. The estimated mean and variance are 

m/sv 51.83 and 22 /07.4 smv  . 

Suspension 
One-at-a-time ANOVA ANOVA - Refined 

v  v  Tot. Sensitivity v  Tot. Sensitivity 

PSLL_LEFT_K1 0.00 0.03 0.01   
PSLL_LEFT_K2 0.06 0.18 0.06 0.18 0.09 
PSLL_LEFT_K3 0.02 0.13 0.04 0.14 0.07 
PSLL_RIGHT_K1 0.00 0.05 0.02   
PSLL_RIGHT_K2 0.06 0.17 0.06 0.22 0.11 
PSLL_RIGHT_K3 0.03 0.17 0.06 0.10 0.05 
PSLT_LEFT_K1 0.00 0.02 0.01   
PSLT_LEFT_K2 0.54 1.71 0.56 1.29 0.63 
PSLT_LEFT_K3 0.14 0.20 0.07 0.11 0.05 
PSLT_RIGHT_K1 0.00 0.05 0.02   
PSLT_RIGHT_K2 0.55 1.73 0.56 1.22 0.59 
PSLT_RIGHT_K3 0.03 0.13 0.04 0.17 0.08 
SSL_LEFT_K4 0.00 0.01 0.00   
SSL_LEFT_K5 0.00 0.01 0.00   
SSL_LEFT_K6 0.00 0.02 0.01   
SSL_LEFT_D1 0.00 0.02 0.01   
SSL_LEFT_D2 0.02 0.04 0.01   
SSL_LEFT_D6 0.00 0.02 0.01   
SSL_RIGHT_K4 0.00 0.01 0.00   
SSL_RIGHT_K5 0.00 0.00 0.00   
SSL_RIGHT_K6 0.00 0.02 0.01   
SSL_RIGHT_D1 0.00 0.03 0.01   
SSL_RIGHT_D2 0.00 0.04 0.01   
SSL_RIGHT_D3 0.00 0.02 0.01   
Table 1: Variances and Total Sensitivity Indices obtained using the One-at-a-time analysis, the ANOVA expansion 
of the complete model and the more accurate ANOVA expansion of the reduced model. The naming convention 
used for the suspensions works as follows. PSL and SSL stand for primary and secondary suspension of the leading 
bogie respectively. The following L and T in the primary suspension stand for leading and trailing wheel sets. The 
last part of the nomenclature refers to the particular suspension components as shown in Fig. 1. 

4.1 One-at-a-time analysis 

When each suspension component is considered independently from the others, the estimation problem in (4) is 
reduced to the calculation of a 1-dimensional integral. This task can be readily achieved by quadrature rules that 
have proven to be computationally more efficient on problems of this dimensionality than sampling methods [3]. 
Fourth order quadrature rules have been used to approximate the variances due to the single components. The 
convergence of this method enables a check of accuracy through the decay of the expansion coefficients of the 
target function [3]. 
The second column in Table 1 lists the results of such analysis. The amount of variance described by this analysis 

is given by the sum of all the variances: 22
OAT /47.1 sm . This quantity is far from representing the total 

variance of the stochastic system, suggesting that interactions between suspension components are important. 
Anyway the method is useful to make a first guess about which components are the most important: the critical 
speed of the railway vehicle model analyzed in this work shows a strong sensitivity related to the longitudinal 
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springs (K2) in the trailing wheel set. 

4.2 Total Sensitivity Analysis 

The technique outlined in section 3.3 can fulfill three important tasks: taking into account parameter interactions, 
performing the analysis with a limited number of realizations and enabling an error control in the approximation. 
In a first stage we consider the full stochastic model and we construct a cut-HDMR expansion which takes into 
account 2nd order interactions and describes the target function through 2nd order polynomials, computing the 
realizations for up to 2-dimensional cubature rules. The ANOVA-HDMR expansion of the cut-HDMR expansion 

can be quickly computed, due to the low dimensionality of the single terms in (10). At this point, the 
liiD ,,1 
values 

in (9) can be obtained and the “effective dimensionality” of the target function, given by (14) for 95.0q , is 

found to be 2L . This confirms that the 1st and 2nd order interactions are sufficient to describe most of the 
variance. The third and fourth column of Table 1 list the total variances induced by each parameter, including 
interactions with other parameters, and the Sobol’ total sensitivity indices. 
Once the first approximation of the sensitivities is obtained, the parameters with the lowest sensitivity indices can 
be fixed to their nominal values and we can perform a more accurate analysis of the remaining stochastic system. 
Longitudinal and vertical springs (K2 and K3) in the primary suspensions have shown to be very influential for the 
critical speed of the analyzed model, thus a new cut-HDMR expansion, with 2nd order interactions and 4th order 
polynomial approximation is constructed. The resulting total variances and total sensitivity indices are listed in the 
fifth and sixth column of Table 1. A visual representation of the sensitivity indices is shown in the pie chart in Fig. 
4. 
The results obtained by the one-at-a-time analysis are confirmed here by the total sensitivity analysis, but we stress 
that the latter provide a higher reliability because they describe a bigger part of the total variance of the complete 
stochastic system. 

4.3 Discussion of the obtained results 

Even if the results obtained are formally correct, the interpretation of such results can raise some questions. A 
railway engineer might wonder why the yaw dampers D2 are not listed among the most important by the 
sensitivity analysis. The yaw dampers in the secondary suspension are known to provide stability to the vehicle 
ride, helping to increase its critical speed. This result is true also with the vehicle model considered here, in fact 
low values of D2 cause a drastic worsening of the ride stability. However, the total sensitivity indices embed the 
probability distributions of the uncertain parameters in the global sensitivity analysis: the impact of a component is 
weighted according to these distributions. Thus we say that the yaw damper has little influence on the riding 
stability with respect to the distributions chosen. A change in the distributions can dramatically change these 
results, thus particular care should be taken with the quantification of the source of uncertainty. 
Finally, observe that, even if they are not as important as the primary suspension components, the yaw dampers 
seem to be the most important components among the secondary suspensions. 

4.4 Remarks on sensitivity analysis on non-linear dynamics 

Uncertainty quantification and sensitivity analysis require a rigorous preliminary formulation of the stochastic 
system, its sources of uncertainty and the Quantities of Interest. We already mentioned in section 2.2 that in this 
work the characterization of the sources of uncertainty was bypassed by assuming Gaussian distributions for all the 
parameters, without loss of generality for the methods presented. The selection of the QoI, however, merits some 
more discussion. In section 2.1 the continuation method used to estimate the critical speed was presented and the 
threshold used to determine the end of the hunting motion was chosen in a conservative way, as it is shown in Fig. 
2b. However, the value of the computed critical speed will depend also on the deceleration chosen for the 
continuation method, i.e. the computed critical speed will be exact in the limit when the deceleration goes to zero. 
Of course, the exact computation of the critical speed is not computationally feasible. With the limited 
computational resources available, we then chose a fixed deceleration coefficient for the continuation method, and 
thus we introduced numerical uncertainty in the computations. Therefore, the variance expressed from the analysis 
is given both by the variance due to the stochastic system and the variance introduced by the computation of the 
QoI. This is, however, a conservative consequence, meaning that a decision taken on the basis of the computed 
results is at least as safe as a decision taken using the “exact results”. 

4.  CONCLUSIONS 

Sensitivity analysis is of critical importance on a wide range of engineering applications. The traditional approach 
of local sensitivity analysis is useful in order to characterize the behavior of a dynamical system in the vicinity of 
the nominal values of its parameters, but it fails in describing wider ranges of variations, e.g., caused by long-term 



 9

wear. The global sensitivity analysis aims at representing these bigger variations and at the same time it embeds the 
probability distributions of the parameters in the analysis. This enables the engineer to take decisions based on the 
risk of a certain event to happen. 
Wrongly approached, global sensitivity analysis can turn to be a computationally expensive or even prohibitive 
task. In this work a collection of techniques are used in order to accelerate such analysis for a high-co-dimensional 
problem. Each of the techniques used allows for a control of the accuracy, e.g., in terms of convergence rate for the 
cubature rules in section 3.1 and the “effective dimension” in section 3.3. This makes the framework flexible and 
easy to be adapted to problems with more diversified distributions and target functions. 
The analysis performed on the half wagon equipped with a Cooperrider bogie shows a high importance of the 
longitudinal primary suspensions, and this reflects the connection between hunting and yaw motion. Furthermore, 
the importance of the yaw damper in the secondary suspensions is confirmed, even if its influence is little 
compared to the primary suspensions. 
It is important to notice that the same settings for global sensitivity analysis can be used for the investigation of 
different Quantities of Interests, such as wear in curved tracks, angle of attack etc., once they have been properly 
defined. Furthermore, the “non-intrusive” approach taken allows the engineer to use closed software for the 
computations. The machinery for sensitivity analysis needs only to be wrapped around it, without additional 
implementation efforts. 
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ABSTRACT 

This paper describes the results of the application of 
Uncertainty Quantification methods to a simple railroad vehicle 
dynamical example. Uncertainty Quantification methods take 
the probability distribution of the system parameters that stems 
from the parameter tolerances into account in the result. In this 
paper the methods are applied to a low-dimensional vehicle 
dynamical model composed by a two-axle truck that is 
connected to a car body by a lateral spring, a lateral damper and 
a torsional spring, all with linear characteristics. 

Their characteristics are not deterministically defined, but 
they are defined by probability distributions. The model - but 
with deterministically defined parameters - was studied in [1] 
and [2], and this article will focus on the calculation of the 
critical speed of the model, when the distribution of the 
parameters is taken into account. 

Results of the application of the traditional Monte Carlo 
sampling method will be compared with the results of the 
application of advanced Uncertainty Quantification methods 
[3]. The computational performance and fast convergence that 
result from the application of advanced Uncertainty 
Quantification methods is highlighted. Generalized Polynomial 
Chaos will be presented in the Collocation form with emphasis 
on the pros and cons of each of those approaches. 

NOMENCLATURE 

𝑚, 𝐼 mass and inertia of the bogie 
𝐷2,𝑘4, 𝑘6 suspension parameters 
𝑏, 𝑘0, 𝑥𝑓,𝛼,  
𝛽, 𝛿, 𝜅 

nonlinear spring constants used to approximate 
the flange forces 

𝜙,𝜓 constants determined by the sizes of the semi 
axes of the contact ellipse 

𝑟0 nominal rolling radius 
𝜆 conicity 

INTRODUCTION 

 In engineering, deterministic models have been extensively 
exploited to describe dynamical systems and their behaviors. 
These have proven to be useful in the design phase of the 
engineering products, but they always fall short in providing 
indications of the reliability of certain designs over others. The 
results obtained by one deterministic experiment describe, in 
practice, a very rare case that likely will never happen. 
However, engineers are confident that this experiment will 
explain most of the experiments in the vicinity of it, i.e. for 
small variation of parameters. Unfortunately, this assumption 
may lead to erroneous conclusions, in particular for realistic 
nonlinear dynamical systems, where small perturbations can 
cause dramatic changes in the dynamics. It is thus critical to 
find a measure for the level of knowledge of a dynamical 
system, in order to be able to make a reasonable risk analysis 
and design optimization. 
 Risk analysis in the railroad industry is critical for as well 
the increase of the safety as for targeting investments. Railroad 
vehicle dynamics is difficult to study even in the deterministic 
case, where strong nonlinearities appear in the system. A lot of 
phenomena develop in such dynamical systems, and the interest 
of the study could be focused on different parameters, such as 
the ride comfort or the wear of the components. This work will 
instead focus on ride safety when high speeds are reached and 
the hunting motion develops. The hunting motion is a well 
known phenomenon characterized by periodic as well as 
aperiodic lateral oscillations, due to the wheel-rail contact 
forces, that can appear at different speeds depending on the 
vehicle design. This motion can be explained and studied with 
notions from nonlinear dynamics [4], combined with suitable 
numerical methods for non-smooth dynamical systems [5]. It is 
well known that the behavior of the hunting motion is 
parameter dependent, thus good vehicle designs can increase 
the critical speed. This also means that suspension components 
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need to be carefully manufactured in order to really match the 
demands of the customer. However, no manufactured 
component will ever match the simulated ones. Thus epistemic 
uncertainties, for which we have no evidence, and aleatoric 
uncertainties, for which we have a statistical description, appear 
in the system as a level of knowledge of the real parameters [6]. 
 Uncertainty Quantification (UQ) tries to address the 
question: “assuming my partial knowledge of the design 
parameters, how reliable are my results?”.  This work will focus 
on the sensitivity of the critical speed of a railroad vehicle 
model to the suspension parameters. 

THE VEHICLE MODEL 

This work will investigate the dynamics of the well known 
simple Cooperrider truck model [2] shown in Fig. 1. The model 
is composed by two conical wheel sets rigidly connected to a 
truck frame, that is in turn connected to a fixed car body by 
linear suspensions: a couple of lateral springs and dampers and 
one torsional spring. 

 
Fig. 1: Top view of the Cooperrider truck model. 

 
The following equations govern this dynamical system [2]: 

𝑚�̈�1 = −2𝐷2�̇�1 − 2𝑘4𝑞1
− 2�𝐹𝑥�𝜉𝑥1 , 𝜉𝑦1� + 𝐹𝑥�𝜉𝑥2 , 𝜉𝑦2��
− 𝐹𝑇(𝑞1 + ℎ𝑎𝑞2) − 𝐹𝑇(𝑞1 − ℎ𝑎𝑞2), 

𝐼�̈�2 = −𝑘6𝑞2 − 2ℎ𝑎�𝐹𝑥�𝜉𝑥1 , 𝜉𝑦1� − 𝐹𝑥�𝜉𝑥2 , 𝜉𝑦2��
− 2𝑎�𝐹𝑦�𝜉𝑥1 , 𝜉𝑦1� + 𝐹𝑦�𝜉𝑥2 , 𝜉𝑦2��
− ℎ𝑎[𝐹𝑇(𝑞1 + ℎ𝑎𝑞2)
− 𝐹𝑇(𝑞1 − ℎ𝑎𝑞2)], 

(1) 

where 𝐷2, 𝑘4 and 𝑘6 are the damping coefficient and the 
stiffness coefficients respectively, 𝐹𝑥 and 𝐹𝑦 are the lateral and 
longitudinal creep forces and 𝐹𝑇 is the flange force. 

The ideally stiff truck runs on a perfect straight track where 
the constant wheel-rail adhesion coefficient enters the system 
through the lateral and longitudinal creep-forces: 

𝐹𝑥�𝜉𝑥 , 𝜉𝑦� =
𝜉𝑥
𝜙
𝐹𝑅(𝜉𝑥, 𝜉𝑦)
𝜉𝑅(𝜉𝑥 , 𝜉𝑦)

  , 𝐹𝑦�𝜉𝑥 , 𝜉𝑦� =
𝜉𝑦
𝜓
𝐹𝑅(𝜉𝑥, 𝜉𝑦)
𝜉𝑅(𝜉𝑥, 𝜉𝑦)  , 

𝜉𝑅�𝜉𝑥, 𝜉𝑦� = �
𝜉𝑥2

𝜙2 +
𝜉𝑦2

𝜓2  , 

𝐹𝑅�𝜉𝑥, 𝜉𝑦�
𝜇𝜇

= �𝑢(𝜉𝑅) −
1
3
𝑢2(𝜉𝑅) +

1
27

𝑢3(𝜉𝑅)    for 𝑢(𝜉𝑅) < 3

1                                                          for 𝑢(𝜉𝑅) ≥ 3
  , 

𝑢(𝜉𝑅) =
𝐺𝐺𝑎𝑏
𝜇𝜇

𝜉𝑅   , 

where 𝜙 and 𝜓 are real numbers that are determined by the size 
of the semi axes of the contact ellipse, which are constant in our 
problem [7]. The creepages are given by: 

𝜉𝑥1 =
𝑞1̇
𝑣

+ ℎ𝑎
𝑞2̇
𝑣
− 𝑞2  ,        𝜉𝑦1 = 𝑎

𝑞2̇
𝑣

+
𝜆
𝑟0

(𝑞1 + ℎ𝑎𝑞2)  ,

𝜉𝑥2 =
𝑞1̇
𝑣
− ℎ𝑎

𝑞2̇
𝑣
− 𝑞2  ,       𝜉𝑦2 = 𝑎

𝑞2̇
𝑣

+
𝜆
𝑟0

(𝑞1 − ℎ𝑎𝑞2)  .
 

The flange forces are approximated by a very stiff non-
linear spring with a dead band: 

𝐹𝑇(𝑥) = �
exp�−𝛼 �𝑥 − 𝑥𝑓�⁄ � − 𝛽𝑥 − 𝜅 ,        0 ≤ 𝑥 < 𝑏
𝑘0 ⋅ (𝑥 − 𝛿) , 𝑏 ≤ 𝑥
−𝐹𝑇(−𝑥) , 𝑥 < 0

  , 

The parameters used for the analysis are listed in the 
following: 
𝑚 = 4963 𝑘𝑘 ℎ = 1.5 𝑚 
𝐼 = 8135 𝑘𝑘 ⋅ 𝑚2 𝐷2 = 29200 𝜇 ⋅ 𝑠/𝑚 
𝑘0 = 14.60 ⋅ 106 𝜇/𝑚 𝑘4 = 0.1823 ⋅ 106 𝜇/𝑚 
𝑘6 = 2.710 ⋅ 106 𝜇/𝑚 𝜆 = 0.05 
𝑟0 = 0.4572 𝑚 𝑏 = 0.910685 ⋅ 10−2 𝑚 
𝜙 = 0.60252 𝜓 = 0.54219 
𝐺𝐺𝑎𝑏 = 6.563 ⋅ 106 𝜇 𝜇𝜇 = 104 𝜇 
𝛿 = 0.0091 𝑚 𝛼 = 0,1474128791 ⋅ 10−3 
𝛽 = 1,016261260 𝜅 = 1,793756792 
𝑥𝑓 = 0.9138788366 ⋅ 10−2 𝑎 = 0.7163 𝑚 

Non linear dynamics of the deterministic model 

The dynamics of the deterministic model at high speed has 
been investigated in [2]. The existence of a subcritical Hopf-
bifurcation has been detected at 𝑣𝐿 = 66.61 m/s. Fig. 2 shows 
the bifurcation diagram of the deterministic system. The Hopf 
bifurcation point is obtained by observation of the stability of 
the trivial solution using the eigenvalues of the Jacobian of the 
system. The nonlinear critical speed, the fold bifurcation, 
characteristic in subcritical Hopf-bifurcations, is found at 
𝑣𝑁𝐿 = 62.02m/s using a ramping method, where the speed is 
quasi-statically decreased, according to 

�̇� = � 0 ,                      if 𝑡 < 𝑡𝑠𝑠 ∨ ‖�⃗�‖2 < 𝜖𝑚𝑚𝑚
−Δ , otherwise    . (2) 

The stochastic model 

Let us now consider suspensions that are provided by the 
manufacturer with a certain level of working accuracy. Due to 
the lack of real data regarding the probability distributions of 
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such working accuracies, this initial study will consider 
Gaussian distributions to describe them: 

𝑘6 ∼ 𝒩�𝜇𝑘6 ,𝜎𝑘6
2 �  , (std. ~ 5%)

𝑘4~𝒩�𝜇𝑘4 ,𝜎𝑘4
2 �  , (std. ~ 7%)

𝐷2~𝒩�𝜇𝐷2 ,𝜎𝐷2
2 �  . (std. ~ 7%)

 (3) 

where the symmetry of the model is taken into consideration in 
the standard deviation of the parameters 𝑘4 and 𝐷2 that both 
represent two elements. The applicability and efficiency of the 
methods presented in the next section will not be affected by 
the particular choice of distribution. 

Now the deterministic model is turned into a stochastic 
model, where the single solution represents a particular 
realization and probabilistic moments can be used to describe 
the statistics of the stochastic solution. 

UNCERTAINTY QUANTIFICATION 

The stochastic solution of the system is now represented by 
𝒒(𝑡,𝒁), where 𝒁 is a vector of random variables distributed 
according to (3). The solution is a function that spans over a 
three dimensional random parameter space. The dimension of 
the parameter space is called the co-dimension of the dynamical 
problem. In this work the focus will be restricted to the first two 
moments of this solution, namely the mean 𝑬[𝒒(𝑡,𝒁)] and 
variance 𝑽[𝒒(𝑡,𝒁)], but the following derivations can be used 
similarly for higher moments too. Mean and variance are 
defined as 

𝝁𝒒(𝑡) = 𝑬[𝒒(𝑡,𝒁)]𝜌𝒁 = �𝒒(𝑡, 𝒛)𝜌𝒁(𝒛)𝑑𝒛   ,

𝝈𝒒2(𝑡) = 𝑽[𝒒(𝑡,𝒁)]𝜌𝒁 = ��𝒒(𝑡, 𝒛) − 𝜇𝒒(𝑡)�
2
𝜌𝒁(𝒛)𝑑𝒛   

 (4) 

where  𝜌𝒁(𝒛) is the probability density function of the random 
vector 𝒁 and the integrals are computed over its domain. 

A straightforward way of computing the moments of the 
solution is to approximate the integrals as: 

𝝁𝒒(𝑡) ≈ 𝝁�𝒒(𝑡) =
1
𝑀
� 𝒒�𝑡,𝒁(𝑗)�

𝑀

𝑗=1
  ,

𝝈𝒒2(𝑡) ≈ 𝝈�𝒒2(𝑡) =
1

𝑀 − 1
� �𝒒�𝑡,𝒁(𝑗)� − �̅�𝒁(𝑡)�

2𝑀

𝑗=1
  ,

 (5) 

where �𝒁(𝑗)�
𝐽=1
𝑀

 are realizations sampled randomly from the 
probability distribution of 𝒁. This is the Monte-Carlo (MC) 
method and it has a probabilistic error of 𝒪�1 √𝑀⁄ �. 

Even though the MC methods are really robust and 
versatile, such a slow convergence rate is problematic, when 
the solution of a single realization of the system is 
computationally expensive. Alternative sampling methods are 
the Quasi Monte-Carlo methods (QMC). These can provide 

convergence rates of 𝒪((log𝑀)𝑑/𝑀), where 𝑑 is the co-
dimension of the problem. They use low discrepancy sequences 
in order to uniformly cover the sampling domain. Without 
presumption of completeness, in this work only the Sobol 
sequence will be considered as a measure of comparison with 
respect to other advanced UQ methods. QMC methods are 
known to work better than MC methods when the integrand is 
sufficiently smooth, whereas they can completely fail on an 
integrand of unbounded variation [8]. Furthermore, randomized 
versions of the QMC method are available in order to improve 
the variance estimation of the method. 

Stochastic collocation method (SCM) 

Collocation methods require the residual of the governing 
equations to be zero at the collocation points �𝒁(𝒋)�

𝒋=𝟏
𝑸

, i.e. 

� 𝜕𝑠𝒒�𝑡,𝒁
(𝑗)� = ℒ �𝒒�𝑡,𝒁(𝑗)�� , (0,𝑇]

                                  𝒒(0) = 𝒒0, 𝑡 = 0  .
 (6) 

 

Fig. 2: Non-linear dynamics of the deterministic system. The subcritical Hopf-bifurcation is highlighted and the critical speed is 
determined exactly at 𝑣𝐿 = 66.61 𝑚/𝑠. The ramping method is then used in order to detect the non-linear critical speed at 
𝑣𝑁𝐿 = 62.02 𝑚/𝑠. 
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Then an approximation  𝒘(𝑡,𝒁) of 𝒒(𝑡,𝒁) is found as an 
expansion in a set of Hermite polynomials, which are suitable 
for approximations of the Gauss distribution functions: 

𝒘𝑁(𝑡,𝒁) = � 𝒘�𝑘(𝑡) ℋ𝑘(𝒁)
|𝑘|≤𝑁

  , 

𝒒�𝑘 =
1
𝛾𝑘
�𝒒(𝑡, 𝒛) ℋ𝑘(𝒛)𝜌𝒁(𝒛)𝑑𝒛 ≈ 𝒘�𝑘

=
1
𝛾𝑘
�𝒒�𝑡, 𝒛(𝑗)� ℋ𝑘�𝒛(𝑗)�𝛼(𝑗)

𝑄

𝑗=1

  , 

(7) 

where we used a cubature rule with points and weights 
�𝒛(𝑗),𝛼(𝑗)�

𝑗=1
𝑄

. The points �𝒛(𝑗)�
𝑗=1
𝑄

 are the set of parameter 
values for which deterministic solutions must be computed. 
Cubature rules with different accuracy levels and sparsity exist. 
In this work simple tensor product structured Gauss cubature 
rules will be used. These are the most accurate but scale with 
𝒪(𝑚𝑑), where 𝑚 is the number of points in one dimension and 
𝑑 is the co-dimension. The fast growth of the number of 
collocation points with the dimensionality goes under the name 
of “the curse of dimensionality” and can be addressed using 
more efficient cubature rules such as Smolyak sparse grids [9]. 

UNCERTAINTY QUANTIFICATION IN RAILROAD 
VEHICLE DYNAMICS 

Uncertainty quantification is recently gaining much 
attention from many engineering fields and in vehicle dynamics 
there are already some contributions on the topic. In [10] a 
railroad vehicle dynamic problem with uncertainty on the 
suspension parameters was investigated using MC method 
coupled with techniques from Design of Experiments.  

Here SCM will be applied to the simple Cooperrider truck 
[2] in order to study its behavior with uncertainties, and the 
results will be compared to the ones obtained by the MC and 
QMC methods.  

These methods belong to the class of non-intrusive 
methods for Uncertainty Quantification. This means that they 
only require a deterministic method to compute the quantity of 
interest (QoI) for different parameters. In this work this is the 
ramping method to detect the critical speed. 

The focus of this work is on the determination of the 
nonlinear critical speed with uncertainties, so the investigation 
of the stochastic dynamics with respect to time will be 
disregarded here. Fig. 3 shows the SCM method applied to the 
model with 1D uncertainty on parameter 𝑘4, for the 
determination of the first two moments of the nonlinear critical 
speed. The estimation done by the SCM is already satisfactory 
at low order and little is gained by increasing it. This means 
that the few first terms of the expansion (7) are sufficient in 
approximating the nonlinear critical speed distribution. 

Fig. 4 shows the SCM method applied to the same problem 
with 1D uncertainty on the torsional spring stiffness 𝑘6. Again 
the first few terms in expansion (7) are sufficient in order to 
give a good approximation of the nonlinear critical speed 
distribution. It is worth noting that the torsional spring stiffness 
𝑘6 has an higher influence on the critical speed than 𝑘4. 

Fig. 5 shows the SCM method on the problem with 
uncertainty on parameters 𝑘6, 𝑘4 and 𝐷2. Again, a low-order 
SCM approximation is sufficient to get the most accurate 
solution. 

In the figures 3-5, left, we have compared the convergence 
of the SCM method with that of the MC method. Therefore the 
number of evaluations was prescribed. It is also of interest to 
compare the computation time of the methods expressed by the 
CPU time. For the comparison we used the calculated mean 
values of the critical speed as the basis for the comparison. For 
the SCM method the iteration process was ended when the 
second decimal remained constant. The mean values in the MC 
and QMC methods change however a good deal as shown in 
the figures 3-5, left. Therefore, for the comparison a window 
with 20 iterative values, which is glided over the number of 
iterations was used. When the second decimal of the average of 

  
Fig. 3: SCM on the model with 1D uncertainty on parameter 𝑘4 compared with MC and QMC. Left, estimation of mean and 
variance of the nonlinear critical speed. Right, histograms of NL critical speeds obtained using 500 MC simulations of model (1)-(2) 
and 105 realizations using the approximated stochastic solution (7) with only 2 function evaluations. The standard deviation is 
shown as a shaded confidence interval, blue for SCM and red for MC. The two confidence intervals are overlapping almost exactly. 
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the iterated values in the window remained constant, when the 
widow was pushed one more step, then the iterations were 
stopped, and the CPU time was stored. 
 

Table 1 shows the final results obtained with the chosen 
accuracy, using the three methods, Monte-Carlo (MC), Quasi-
Monte-Carlo (QMC) and Stochastic Collocation (SCM). We 
can observe that the variances in the multi-dimensional cases 
are almost equal to the sum of the single-dimensional cases. 
This means that the effect of the nonlinear interactions between 
the three elements of the suspension is small with the variances 
chosen in this problem. 

CONCLUSIONS 

Manufacturing tolerances have been introduced into the 
dynamical investigations of vehicles. A new method, the 
Stochastic Collocation Method (SCM) is applied as a tool for 
“Uncertainty Quantification”, and the accuracy and 
computational effort is compared with that of Monte-Carlo 

(MC) and Quasi-Monte-Carlo (QMC) methods. The 
“Uncertainty Quantification” methods are applied to the 
estimate of the calculated critical speed of a railroad vehicle 
model. The critical speed is delivered as a mean value with 
variance. The results show that under the condition of the same 
accuracy the convergence rate of the SCM outperforms the 
rates of as well the MC as the QMC methods. Table 1 shows 
that the CPU time and thus the computational effort by 
application of the SCM is much smaller than the computational 
effort by application of the MC or QMC methods. By all three 
methods the total computational effort is larger than the effort 
by a deterministic computation, because the same dynamical 
system must be solved repeatedly only with different parameter 
values. Under these conditions it is however possible to reduce 
the total elapsed time significantly by straightforward 
application of parallel computing. The dynamics of the vehicle 
model is calculated in the process, but the results are not shown 
here due to the limited space. A very simple model was chosen 
in order to demonstrate the superiority of SCM over the MC 

  
Fig. 4: SCM on 1D uncertainty on parameter k6 compared with MC and QMC. Left, estimation of mean and variance of the non-
linear critical speed. Right, histograms of NL critical speeds obtained using 500 MC simulations of model (1)-(2) and 105 
realizations using the approximated stochastic solution (7) with only 2 function evaluations. The standard deviation is shown as a 
shaded confidence interval, blue for SCM and red for MC. The two confidence intervals are overlapping almost exactly. 

  
Fig. 5: SCM on 3D uncertainty compared with MC and QMC. Left, estimation of the mean and variance of the non-linear critical 
speed. Right, histograms of nonlinear critical speeds. 
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and QMC methods. By using the same distributions for the 
characteristics of the two lateral springs and dampers the effect 
of the loss of symmetry in a real vehicle was not investigated 
here. SCM can be 100 times faster than MC for low co-
dimensional problems, but for high co-dimensional problems 
SCM methods suffer from the “curse of dimensionality”. The 
computational effort of the SCM grows very fast with the 
number of independent parameters. In a realistic vehicle model 
that number easily surpasses 20. Therefore the work continues 
with an investigation of the application of statistical methods 
that may reduce the computational effort by singling out the 
parameters that have the most important influence on the 
wanted result of the dynamical problem. Some early results are 
shown in [11].  
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 MC QMC SCM 
 2σ  #fE CPUt µ  2σ  #fE CPUt µ  2σ  #fE CPUt 

6k  62,26 1,64 169 ~24h 62,24 1,47 152 ~21 h 62,23 1,55 2 ~10m 

4k  62,23 0,14 17 ~2,5h 62,25 0,14 22 ~3 h 62,25 0,14 2 ~11m 

2D  62,23 0,02 9 ~1 h 62,25 0,02 4 ~30m 62,25 0,03 2 ~11m 

46 ,kk  62,22 1,53 148 ~21 h 62,22 1,62 152 ~22 h 62,28 1,69 4 ~36m 

26 , Dk  62,18 1,72 216 ~30 h 62,24 1,50 142 ~20 h 62,28 1,57 4 ~37m 

24 , Dk  62,25 0,17 25 ~3,5h 62,25 0,16 25 ~3,5h 62,30 0,17 4 ~35m 

246 ,, Dkk  62,18 1,68 221 ~32 h 62,23 1,63 154 ~22 h 62,23 1,72 8 ~1 h 

Table 1: Estimated mean and variance of the nonlinear critical speed using MC, QMC and SCM. The three methods are compared in 
terms of number of function evaluations (#fE) and computation time (CPUt). 
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We present an approach to global sensitivity analysis aiming at the reduction of its computational
cost without compromising the results. The method is based on sampling methods, cubature rules,
high-dimensional model representation and total sensitivity indices. It is applied to a half car with
a two-axle Cooperrider bogie, in order to study the sensitivity of the critical speed with respect to
the suspension parameters. The importance of a certain suspension component is expressed by the
variance in critical speed that is ascribable to it. This proves to be useful in the identification of
parameters for which the accuracy of their values is critically important. The approach has a general
applicability in many engineering fields and does not require the knowledge of the particular solver
of the dynamical system. This analysis can be used as part of the virtual homologation procedure and
to help engineers during the design phase of complex systems.

Keywords: reliability analysis; uncertain dynamics; vehicle safety; bifurcation analysis

1. Introduction

The past couple of decades have seen the advent of computer simulations for the study of
deterministic dynamical systems arising in any field of engineering. The reasons behind this
trend are both the enhanced design capabilities during production and the possibility of under-
standing dangerous phenomena. However, deterministic dynamical systems fall short in the
task of giving a complete picture of reality: several sources of uncertainty can be present
when the system is designed and thus obtained results refer to single realisations that in a
probabilistic sense have measure zero, i.e. they never happen in reality. The usefulness of
these simulations is, however, proved by the achievements in computer-aided design. The
studies of stochastic dynamical systems allow for a wider analysis of phenomena: determin-
istic systems can be extended with prior knowledge on uncertainties with which the systems
are described. This enables an enhanced analysis and can be used for risk assessment subject
to such uncertainties and is useful for decision-making in the design phase. In the railway
industry, stochastic dynamical systems are being considered in order to include their analysis
as a part of the virtual homologation procedure,[1] by means of the framework for global

∗Corresponding author. Email: dabi@dtu.dk

c© 2014 Taylor & Francis
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2 D. Bigoni et al.

parametric uncertainty analysis proposed by the OpenTURNS consortium. This framework
splits the uncertainty analysis task in four steps:

(a) deterministic modelling and identification of quantities of interest (QoI) and source of
uncertainties;

(b) quantification of uncertainty sources by means of probability distributions;
(c) uncertainty propagation through the system and
(d) sensitivity analysis.

Railway vehicle dynamics can include a wide range of uncertainty sources. Suspension char-
acteristics are only known within a certain tolerance when they exit the manufacturing factory
and are subject to wear over time that can be described stochastically. Other quantities that
are subject to uncertainties are the mass and inertia of the bodies, e.g. we do not know exactly
how the wagon will be loaded, the wheel and track geometries, which are subject to wear over
time, and also external loadings like wind gusts.

In this work the QoI will be the critical speed of a fixed half-wagon with respect to
uncertain suspension components – step (a). The deterministic and stochastic models will
be presented in Section 2. Step (b) requires measurements of the input uncertainty that are
not available to the authors, so the probability distribution of the suspension components
will be assumed to be Gaussian, without losing the generality of application of the meth-
ods used in (c) and (d). Techniques for uncertainty quantification (UQ) will be presented in
Section 3.1. They have already been applied in [2,3] to perform an analysis of uncertainty
propagation – step (c). They will turn useful also in Sections 3.2 and 3.3 for the sensitivity
analysis technique to be presented – step (d). This is based on total sensitivity indices (TSIs)
obtained from the analysis of variance (ANOVA) expansion of the function associated with
the QoI.[4] Section 4 will contain the results of such analysis.

2. The vehicle model

In this work, we will consider a fixed half-wagon equipped with a Cooperrider bogie,[5]
running on a tangent track with wheel profile S1002 and rail UIC60. The position of the
suspension components is shown in Figure 1. The original design of the Cooperrider bogie
included a torsional spring among the secondary suspensions, connected vertically from the
geometrical centre of the bogie to the car body, in order to counteract the yaw motion. The
design used in this work substitute such spring with two yaw springs that execute an equiv-
alent torsional resistance to the original model. Thus, the spring K6 and the yaw damper D6
are mounted in parallel in this setting. See Tables 1 and 2 for the list of parameters of the
model used in this work. In [6], a framework for the simulation of the dynamics of complete
wagons running on straight and curved tracks has been implemented and tested based on the
Newton–Euler formulation of the dynamical system:

n∑
i=1

�Fi = m�a,

m∑
i=1

Mi = d

dt
([J] · �ω)+ �ω × ([J] · �ω),

(1)

where Fi and Mi are, respectively, the forces and torques acting on the bodies, m and [J] are
the mass and inertia of the bodies, �a is the acceleration and �ω is the angular velocity of the
bodies.
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Vehicle System Dynamics 3

Figure 1. The half-wagon equipped with the Cooperrider bogie. (a) Front view and (b) top view.

Table 1. Dimension (see Figure 1), mass and inertia values for
the components of the Cooperrider model.

Parm. Value Unit Parm. Value Unit

r0 0.425 (m) a 0.75 (m)
h1 0.0762 (m) h2 1.5584 (m)
l1 0.30 (m) l2 0.30 (m)
l3 0.30 (m) x1 0.349 (m)
v1 0.6488 (m) v2 0.30 (m)
v3 0.30 (m) v4 0.3096 (m)
s1 0.62 (m) s2 0.6584 (m)
s3 0.68 (m) s4 0.759 (m)
u1 7.5 (m) u2 1.074 (m)
mf 2918.0 (kg) Ifx 6780.0 (kg m2)
Ify 6780.0 (kg m2) Ifz 6780.0 (kg m2)
mw 1022.0 (kg) Iwx 678.0 (kg m2)
Iwy 80.0 (kg m2) Iwz 678.0 (kg m2)

Note: The subscript f stands for bogie frame, whereas w stands for wheel
set. The nominal values of the suspension components are listed in the
first column of Table 2.

In this work, the wagon will be fixed in order to alleviate the lateral oscillations during
the hunting motion that would, in some cases, break the computations. The mathematical
analysis and the generality of the methods proposed are not weakened by this assumption,
even if the results may change for different settings.

Since we are considering a wagon running at quasi-constant speed, the longitudinal motion
of the bodies has been neglected in the model. The motion of the bogie frame is then mod-
elled using lateral, vertical and angular degrees of freedoms, with the following equations of
motion:

m�̈x = F �Fg
Bl + F �Fc

Bl + F �Fs
SSl + F �Fs

PSll + F �Fs
PSlt ,

[J] �̇ω = B �M g
Bl + B �M c

Bl + B �M s
SSl + B �M s

PSll + B �M s
PSlt ,

(2)

where the upper left superscript identifies the reference frame (F, track following, and B,
body following) on which the forces are applied, and the right superscript identifies Bl , the
leading bogie frame; SSl, the secondary suspension of the leading bogie frame; and PSll/lt, the
leading/trailing primary suspensions of the leading bogie frame. The right subscripts g, c, s
refer instead to the gravity, centrifugal (not used for this work) and suspension forces.
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4 D. Bigoni et al.

Table 2. Nominal values of the suspension components, variances and TSI of the crit-
ical speed, obtained using the one-at-a-time analysis, the ANOVA expansion of the
complete model and the more accurate ANOVA expansion of the reduced model.

ANOVA ANOVA-Ref.
Suspension Nom. value One-at-time

σ̄v σ̄v TSI σ̄v TSI

PSLL−LEFT−K1 1823.0 kN/m 0.00 0.03 0.01
PSLL−LEFT−K2 3646.0 kN/m 0.06 0.18 0.06 0.18 0.09
PSLL−LEFT−K3 3646.0 kN/m 0.02 0.13 0.04 0.14 0.07
PSLL−RIGHT−K1 1823.0 kN/m 0.00 0.05 0.02
PSLL−RIGHT−K2 3646.0 kN/m 0.06 0.17 0.06 0.22 0.11
PSLL−RIGHT−K3 3646.0 kN/m 0.03 0.17 0.06 0.10 0.05
PSLT−LEFT−K1 1823.0 kN/m 0.00 0.02 0.01
PSLT−LEFT−K2 3646.0 kN/m 0.54 1.71 0.56 1.29 0.63
PSLT−LEFT−K3 3646.0 kN/m 0.14 0.20 0.07 0.11 0.05
PSLT−RIGHT−K1 1823.0 kN/m 0.00 0.05 0.02
PSLT−RIGHT−K2 3646.0 kN/m 0.55 1.73 0.56 1.22 0.59
PSLT−RIGHT−K3 3646.0 kN/m 0.03 0.13 0.04 0.17 0.08
SSL−LEFT−K4 182.3 kN/m 0.00 0.01 0.00
SSL−LEFT−K5 333.3 kN/m 0.00 0.01 0.00
SSL−LEFT−K6 903.35 kN/m 0.00 0.02 0.01
SSL−LEFT−D1 20.0 kNs/m 0.00 0.02 0.01
SSL−LEFT−D2 29.2 kNs/m 0.02 0.04 0.01
SSL−LEFT−D6 166.67 kNs/m 0.00 0.02 0.01
SSL−RIGHT−K4 182.3 kN/m 0.00 0.01 0.00
SSL−RIGHT−K5 333.3 kN/m 0.00 0.00 0.00
SSL−RIGHT−K6 903.35 kN/m 0.00 0.02 0.01
SSL−RIGHT−D1 20.0 kNs/m 0.00 0.03 0.01
SSL−RIGHT−D2 29.2 kNs/m 0.02 0.04 0.01
SSL−RIGHT−D6 166.67 kNs/m 0.00 0.02 0.01

Notes: The naming convention used for the suspensions works as follows. PSL and SSL stand for
primary and secondary suspension of the leading bogie, respectively. The following L and T in the
primary suspension stand for leading and trailing wheel sets. The last part of the nomenclature refers
to the particular suspension components as shown in Figure 1.

The equations of motion for the wheel sets are given by

m�̈x = F �Fg
Wll + F �Fc

Wll + �FF Wll

L + �FF Wll

R + F �Fs
PSll

Jφφ̈ = { MB Wll
L }φ + { MB Wll

R }φ
+ { B �M g

Wll}φ + { B �M c
Wll}φ + { B �M s

PSll}φ
Jχ β̇ = { MB Wll

L }χ + { MB Wll
R }χ

Jψψ̈ = { MB Wll
L }ψ + { MB Wll

R }ψ
+ { B �M g

Wll}ψ + { B �M c
Wll}ψ + { B �M s

PSll}ψ ,

(3)

where the same notation for Equation (2) was used, W stands for wheel set and the additional
L and R subscripts indicate the left and right forces on the axle due to the wheel–rail contact
forces. The pitch motion of the wheel set is substituted by the angular velocity perturbation
β due to the odd distribution of the forces among the wheels.

The wheel–rail interaction is modelled using tabulated values generated with the routine
RSGEO [7] for the static penetration at the contact points. These values are then updated
using Kalker’s [8] work for the additional penetrations. The creep forces are approximated
using the Shen–Hedrick–Elkins nonlinear theory.[9] The complete deterministic system [6]
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Vehicle System Dynamics 5

can be written abstractly as

d

dt
u(t) = f(u, t). (4)

It is nonlinear, non-smooth and has 28 degrees of freedom.

2.1. Nonlinear dynamics of the deterministic model

The deterministic dynamics of the complete wagon with a couple of Cooperrider bogies were
analysed in [6]. The stability of the half-wagon model considered in this work is characterised
by a sub-critical Hopf bifurcation at vL = 114 m/s, as it is shown in Figure 2(a), and a critical
speed vNL = 50.47 m/s. The critical speed is found using a continuation method from the
periodic limit cycle detected at a speed greater than the Hopf-bifurcation speed vL. In order
to save computational time, we try to detect the periodic limit cycle at speeds lower than vL

perturbing the system as described in [10]. This is the approach that we will take during all
the computations of critical speeds in the next sections. The criterion used in order to detect
the value of the critical speed is based on the power of the lateral oscillations in a 1 s sliding
window of the computed solution. In particular, a threshold is selected – in this case a strict
threshold of 10−11 was used – and the critical speed is defined as the speed at which the power
of the lateral displacement of all the components fall below such threshold. Figure 2(b) shows
how this criterion is applied.

2.2. The stochastic model

In the following, we will assume that the suspension characteristics are not determinis-
tically known. Rather, they are described by probability distributions stemming from the
manufacturing uncertainty or the wear.

If experimental information is available, then some standard distributions can be assumed
and an optimisation problem can be solved in order to determine the statistical parameters of
such distributions (e.g. mean, variance, etc.). Alternatively the probability density function
(PDF) of the probability distribution can be estimated by kernel smoothing.[11, Ch. 6]

Bifurcation diagram Critical speed detection criteria

(a) (b)

Figure 2. Left: complete bifurcation diagram where the folding point is detected by continuation (ramping) method
from the periodic limit cycle. Right: criterion for the determination of the critical speed based on the power of the
lateral oscillations in a sliding window. LB, LLW and LTW stand for the bogie frame, the leading wheel set and the
trailing wheel set, respectively. (a) Bifurcation diagram and (b) critical speed detection criteria.
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6 D. Bigoni et al.

Due to the lack of data to the authors, in this work the probability distributions associ-
ated with the suspension components will be assumed to be Gaussian around their nominal
value, with a standard deviation of 5%. We define Z to be the d-dimensional vector of ran-
dom variables {zi ∼ N (μi, σi)}d

i=1 describing the distributions of the suspension components,
where d is called the co-dimension of the system. The stochastic dynamical system is then
described by

d

dt
u(t, Z) = f(u, t, Z), (0, T] × Rd . (5)

3. Sensitivity analysis

Sensitivity analysis is used to describe how the model output depends on the input parameters.
Such analysis enables the user to identify the most important parameters for the model output.
Sensitivity analysis can be viewed as the search for the direction in the parameter space with
the fastest growing perturbation from the nominal output.

One approach of sensitivity analysis is to investigate the partial derivatives of the output
function with respect to the parameters in the vicinity of the nominal output. This approach
goes by the name of local sensitivity analysis, stressing the fact that it works only for small
perturbations of the system.

When statistical information regarding the parameters is known, it can be embedded in the
global sensitivity analysis, which is not restricted to small perturbations of the system, but
can handle bigger variability in the parameter space. This is the focus of this work and will
be described in the following sections.

3.1. Uncertainty quantification

The solution of Equation (5) is u(t, Z), varying in the parameter space. The random vector
Z is defined in the probability space (�,F ,μZ), where F is the Borel set constructed on �
and μZ is a probability measure (i.e. μZ(�) = 1). In UQ we are interested in computing the
density function of the solution and/or its first moments, e.g. mean and variance:

μu(t) = E[u(t, Z)]ρZ =
∫
�d

u(t, z) dFZ(z),

σ 2
u (t) = Var[u(t, Z)]ρZ =

∫
�d

(u(t, z)− μu(t))
2 dFZ(z),

(6)

where ρZ(z) and FZ(z) are the probability density function (PDF) and the cumulative distri-
bution function (CDF), respectively. Several techniques are available to approximate these
high-dimensional integrals. In the following, we present the two main classes of these
methods.

3.1.1. Sampling-based methods

The most known sampling method is the Monte Carlo (MC) method, which is based on the
law of large numbers. Its estimates are

μu(t) ≈ μ̄u(t) = 1

M

M∑
j=1

u(t, Z(j)),
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Vehicle System Dynamics 7

σ 2
u (t) ≈ σ̄ 2

u (t) = 1

M − 1

M∑
j=1

(u(t, Z(j))− μ̄u(t))
2, (7)

where {Z(j)}M
j=1 are realisations sampled randomly with respect to the probability distribution

Z. The MC method has a probabilistic error of O(1/
√

M ), thus it suffers from the work effort
required to compute accurate estimates (e.g. to improve an estimate of one decimal digit, the
number of function evaluations necessary is 100 times bigger). However, the MC method
is very robust because this convergence rate is independent of the co-dimensionality of the
problem, so it is useful to get approximate estimates of very high-dimensional integrals.

Sampling methods with improved convergence rates have been developed, such as Latin
hypercube sampling and quasi-MC methods. However, the improved convergence rate comes
at the expense of several drawbacks, e.g. the convergence of quasi-MC methods is dependent
on the co-dimensionality of the problem and Latin hypercube cannot be used for incremental
sampling.

3.1.2. Cubature rules

The integrals in Equation (6) can also be computed using cubature rules. These rules are
based on a polynomial approximation of the target function, i.e. the function describing the
relation between parameters and QoI, so they have super-linear convergence rate on the set
of smooth functions. Their applicability is, however, limited to low-co-dimensional problems
because cubature rules based on a tensor grid suffer the curse of dimensionality, i.e. if m is
the number of points used in the one-dimensional rule and d the dimension of the integral, the
number of d points at which to evaluate the function grows as O(md). They will, however, be
presented here because they represent a fundamental tool for the creation of high-dimensional
model representations (HDMRs) that will be presented in the next section.

Let Z be a vector of independent random variables (i.e. Z : � → Rd ) in the probability
space (�,F ,μZ), where F is the Borel set constructed on � and μZ is the measure of Z. By
the independence of Z, we can write� as a product space� = ×d

i=1�i, with product measure
μZ = ×d

i=1μi. For A ⊆ Rd , we call FZ(A) = μZ(Z−1(A)) the distribution of Z.
For each independent dimension of � we can construct orthogonal polynomials

{φn(zi)}Ni
n=1, i = 1, . . . , d, with respect to the probability distribution Fi, where FZ =

×d
i=1Fi.[12] The tensor product of such basis forms a basis for

L2
FZ

�
{

f : I ⊆ Rd → R
∣∣∣∣
∫

I
f 2(z) dFZ(z) = Var[f (Z)] < ∞

}
(8)

that means that there exists a projection operator PN : L2
FZ

→ PN such that for any f ∈ L2
FZ

,
and with the notation i = (i1, . . . , id) ∈ [0, . . . , N1] × · · · × [0, . . . , Nd ],

f ≈ PN f �
N1,...,Nd∑

i=0

f̂i
i, f̂i �
(f ,
i)L2

FZ

‖
i‖2
L2

FZ

, (9)

where 
i = ∏
k∈i φk , ‖f ‖2

L2
FZ

= (f , f )L2
FZ

and

(f , g)L2
FZ

=
∫
Rd

f (z)g(z) dFZ(z). (10)

In the following, we will be marginally interested in the approximation (9) of the QoI func-
tion. However, the fast – possibly spectral – convergence of such approximation is inherently
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8 D. Bigoni et al.

Tensor grid cut-HDMR grid

(a) (b)

Figure 3. Example of the distribution of points for tensor cubature rules (left) and the distribution of points for the
cut-HDMR grid accounting for second-order interactions (right). (a) Tensor grid and (b) cut-HDMR grid.

connected with the convergence in the approximation of statistical moments, because μf = f̂0
and σ 2

f = ∑
i f̂ 2

i − f̂ 2
0 .[13]

From the orthogonal polynomials used in the construction of Equation (9), the one-
dimensional Gauss quadrature points and weights {zji , wji}Ni

ji can be derived using the

Golub–Welsch algorithm.[12] Gauss quadrature points and weights {zj1,...,jd , wj1,...,jd }N1,...,Nd
j1,...,jd=1

for the tensor product space can be obtained as tensor product of one-dimensional cubature
rules (see Figure 3(a)), obtaining the following approximations for Equation (6):

μu(t) ≈ μ̄u(t) =
N1∑
j1

· · ·
Nd∑
jd

u(t, zj1,...,jd )wj1,...,jd ,

σ 2
u (t) ≈ σ̄ 2

u (t) =
N1∑
j1

· · ·
Nd∑
jd

(u(t, zj1,...,jd )− μ̄u(t))
2wj1,...,jd .

(11)

Gauss quadrature rules of order N are accurate for polynomials of order up to degree 2N − 1.
This high accuracy comes at the expense of the curse of dimensionality due to the use of
tensor products in high-dimensional integration. This effect can be alleviated by the use of
sparse grid techniques proposed by Smolyak [14] that use an incomplete version of the tensor
product. However, in the following section, we will see that we can often avoid working in
very high-dimensional spaces.

3.2. High-dimensional model representation

High-dimensional models are very common in practical applications, where a number of
parameters influence the dynamical behaviours of a system. These models are very difficult to
handle, in particular if we consider them as black boxes where we are only allowed to change
parameters. One method to circumvent these difficulties is the HDMR expansion,[15] where
the high-dimensional function f : � → R, � ⊆ Rd is represented by a function decomposed
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Vehicle System Dynamics 9

with lower order interactions:

f (x) ≡ f0 +
∑

i

fi(xi)+
∑
i<j

fi,j(xi, xj)+ · · · + f1,2,...,d(x1, . . . , xd). (12)

This expansion is exact and exists for any integrable and measurable function f , but is
not unique. There is a rich variety of such expansions depending on the projection oper-
ator used to construct them. The most used in statistics is the ANOVA-HDMR where the
low-dimensional functions are defined

f A
0 ≡ PA

0 f (x) =
∫
�

f (x) dμ(x),

f A
i (xi) ≡ PA

i f (x) =
∫
�i

f (x)
∏
i�=j

dμj(xj)− PA
0 f (x),

f A
i1,...,il(xi1 , . . . , xil) ≡ PA

i1,...,il f (x) =
∫
�i1,...,il

f (x)
∏

{k /∈i1,...,il}
dμk(xk)

−
∑

k1<···<kl−1∈{i1,...,il}
PA

k1,...,kl−1
f (x)

− · · · −
∑

k∈{i1,...,il}
PA

k f (x)− PA
0 f (x),

(13)

where �i1,...,il ⊆ � is the hypercube excluding indices i1, . . . , il and μ is the product measure
μ(x) = ∏d

i=1 μi(xi). This expansion can be used to express the total variance of f , by noting
that

D ≡ E[(f − f0)
2] =

∑
i

Di +
∑
i<j

Di,j + · · · + D1,2,...,d ,

Di1,...,il =
∫
�i1,...,il

(f A
i1,...,il(xi1))

2
∏

k∈{i1,...,il}
dμk(xk),

(14)

where �i1,...,il ⊆ � is the hypercube including indices i1, . . . , il. However, the high-
dimensional integrals in the ANOVA-HDMR expansion are computationally expensive to
evaluate.

An alternative expansion is the cut-HDMR, which is built by superposition of hyperplanes
passing through the cut centre y = (y1, . . . , yd):

f C
0 ≡ PC

0 f (x) = f (y),

f C
i (xi) ≡ PC

i f (x) = f i(xi)− PC
0 f (x),

f C
i1,...,il(xi1 , . . . , xil) ≡ PC

i1,...,il f (x) = f i1,...,il(xi1 , . . . , xil)

−
∑

k1<···<kl−1∈{i1,...,il}
PC

k1,...,kl−1
f (x)

− · · · −
∑

k∈{i1,...,il}
PC

k f (x)− PC
0 f (x),

(15)

where f i1,...,il(xi1 , . . . , xil) is the function f (x) with all the remaining variables set to y. This
expansion requires the evaluation of the function f on lines, planes and hyperplanes passing
through the cut centre.
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10 D. Bigoni et al.

If cut-HDMR (15) is a good approximation of f at order L , i.e. considering up to L-terms
interactions in Equation (12), such expansion can be used for the computation of ANOVA-
HDMR in place of the original function. This reduces the computational cost dramatically: let
d be the number of parameters and s the number of samples taken along each direction (being
them MC samples or cubature points), then the cost of constructing cut-HDMR in terms of
function evaluations is

L∑
i=0

d!

(d − i)!i!
(s − 1)i. (16)

3.3. Total sensitivity indices

The main task of sensitivity analysis is to quantify the sensitivity of the output with respect
to the input. In particular, it is important to know how much of this sensitivity is accountable
to a particular parameter. With the focus on global sensitivity analysis, the sensitivity of the
system to a particular parameter can be expressed by the variance of the output associated
with that particular input.

One approach to this question is to consider each parameter separately and to apply one
of the UQ techniques introduced in Section 3.1. This approach goes by the name of one-at-
a-time analysis. This technique is useful to get a first overview of the system. However, this
technique lacks an analysis of the interaction between input parameters, which in many cases
is important.

A better analysis can be achieved using the method of Sobol.[16] Here single sensitivity
measures are given by

Si1,...,il = Di1,...,il

D
for 1 ≤ i1 < · · · < il ≤ n, (17)

where D and Di1,...,il are defined according to Equation (14). These express the amount of
total variance that is accountable to a particular combination i1, . . . , il of parameters. The TSI
is the total contribution of a particular parameter to the total variance, including interactions
with other parameters. It can be expressed by

TS(i) = 1 − S¬i, (18)

where S¬i is the sum of all Si1,...,il that do not involve parameter i.
These TSIs can be approximated using sampling-based methods in order to evaluate the

integrals involved in Equation (14). Alternatively, Gao and Hesthaven [4] suggest to use
cut-HDMR and cubature rules in the following manner:

(1) compute the cut-HDMR expansion on cubature nodes for the input distributions
(Figure 3(b)),

(2) derive the approximated ANOVA-HDMR expansion from the cut-HDMR,
(3) compute the TSI from the ANOVA-HDMR.

This approach gives the freedom of selecting the level of accuracy for the HDMR expan-
sion depending on the level of interaction between parameters. The truncation order L of the
ANOVA-HDMR can be selected and the accuracy of such expansion can be assessed using
the concept of ‘effective dimension’ of the system: for q ≤ 1, the effective dimension of the
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Vehicle System Dynamics 11

integrand f is an integer L such that

∑
0<|t|≤L

Dt ≥ qD, (19)

where t is a multi-index i1, . . . , il and |t| is the cardinality of such multi-index. The parameter
q is chosen based on a compromise between accuracy and computational cost.

4. Sensitivity analysis on railway vehicle dynamics

The study of uncertainty propagation and sensitivity analysis through dynamical systems is
a computationally expensive task. In this analysis, we adopt a collocation approach, where
we study the behaviours of ensembles of realisations. From the algorithmic point of view,
the quality of a method is measured in the number of realisations needed in order to infer
the same accuracy in statistics. Each realisation is the result of an initial value problem
(IVP) computed using the program DYnamics Train SImulation developed in [6], where the
model presented in Section 2 has been set up and the IVP has been solved using the explicit
Runge–Kutta–Fehlberg method ERKF34.[17] An explicit solver has been used in light of
the analysis performed in [18], where it was found that the hunting motion could be missed
by implicit solvers, used with relaxed tolerances, due to numerical damping. In particular,
implicit solvers are frequently used for stiff problems, like the one treated here, because their
step size is bounded by accuracy constraints instead of stability. However, the detection of the
hunting motion requires the selection of strict tolerances, reducing the allowable step sizes
and making the implicit methods more expensive than the explicit ones. Since the colloca-
tion approach for UQ involves the computation of completely independent realisations, this
allows for a straightforward parallelisation of the computations on clusters. Thus, 25 nodes
of the DTU cluster have been used to speed up the following analysis. The first step in the
analysis of a stochastic system is the characterisation of the probability distribution of the
QoI. Since the complete model has co-dimension 24, a traditional sampling method, among
the ones presented in Section 2, is the most suited for the task of approximating the integrals
in Equation (6). Figure 4(a) shows the histogram of the computed critical speeds with respect
to the uncertainty in the suspension components. In order to speed up the convergence, we
used 200 samples generated with the Latin hypercube method.[19] Kernel smoothing [11]
has been used to estimate the density function according to this histogram. The estimated
mean and variance are μ̄v = 51.83 m/s and σ̄v = 4.07 m2/s2. It is important to keep in mind
that the first two moments do not account for all the information about the distribution of the
QoI unless it is Gaussian. As shown in Figure 4(a), the distribution is not Gaussian and the
ensemble spans approximately 14 m/s. However, in this particular case, the outliers appear
only in the upper end of the distribution, whereas the lower end is fairly well defined by the
ensemble.

4.1. One-at-a-time analysis

When each suspension component is considered independently from the others, the estima-
tion problem in Equation (6) is reduced to the calculation of an one-dimensional integral. This
task can be readily achieved by quadrature rules that have proven to be computationally more
efficient on problems of this dimensionality than sampling methods.[3] Fourth-order quadra-
ture rules have been used to approximate the variances due to the single components. The
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12 D. Bigoni et al.

(a) (b)

Figure 4. Left: histogram of the critical speed obtained using Latin hypercube sampling and the estimated density
function (KDE) obtained using kernel smoothing. Right: pie plot of the TSI on the reduced stochastic model, where
only the most influential components are analysed (see Table 2 for an explanation of the notation).

convergence of this method enables a check of accuracy through the decay of the expansion
coefficients of the target function.[3]

The second column in Table 2 lists the results of such analysis. The amount of variance
described by this analysis is given by the sum of all the variances: σ̂ = 1.47 m2/s2. This
quantity is far from representing the total variance of the stochastic system, suggesting that
interactions between suspension components are important. Anyway the method is useful
to make a first guess about which components are the most important: the critical speed of
the railway vehicle model analysed in this work shows a strong sensitivity related to the
longitudinal springs (K2) in the trailing wheel set.

4.2. Total sensitivity analysis

The technique outlined in Section 3.3 can fulfil three important tasks: taking into account
parameter interactions, performing the analysis with a limited number of realisations and
enabling an error control in the approximation. In a first stage, we consider the full stochastic
model and construct a cut-HDMR expansion which takes into account second-order inter-
actions and describes the target function through second-order polynomials, computing the
realisations for up to two-dimensional cubature rules. The ANOVA-HDMR expansion of the
cut-HDMR expansion can be quickly computed, due to the low dimensionality of the single
terms in Equation (15). At this point, the Di1,...,il values in Equation (14) can be obtained and
the effective dimensionality of the target function, given by Equation (19) for q = 0.95, is
found to be L = 2. This confirms that the first- and second-order interactions are sufficient to
describe most of the variance. The third and fourth columns of Table 2 list the total variances
induced by each parameter, including interactions with other parameters, and the Sobol TSIs.

Once the first approximation of the sensitivities is obtained, the parameters with the lowest
sensitivity indices can be fixed to their nominal values and we can perform a more accurate
analysis of the remaining stochastic system. Longitudinal and vertical springs (K2 and K3)
in the primary suspensions have shown to be very influential for the critical speed of the
analysed model, thus a new cut-HDMR expansion, with second-order interactions and fourth-
order polynomial approximation, is constructed. The resulting total variances and TSI are
listed in the fifth and sixth columns of Table 2. A visual representation of the sensitivity
indices is shown in the pie chart in Figure 4(b).

The results obtained by the one-at-a-time analysis are confirmed here by the total sensitiv-
ity analysis, but we stress that the latter provide a higher reliability because they describe a
bigger part of the total variance of the complete stochastic system.
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Vehicle System Dynamics 13

Figure 5. Critical speed and maximum Nadal’s ratio with respect to the yaw damping coefficients on the left and
right side of the bogie frame. We can see that the value of the critical speed is not significantly affected by the value
of the yaw damping coefficient for the mean value chosen for sensitivity analysis (1.66 × 105 Ns/m). However, if
the yaw damping coefficient is lowered too much, the intensity of the lateral oscillations increase, as shown by
the growing Nadal ratio. The missing values in the critical speed plot are due to the oscillations being so big, that
the model exit the computational domain for which the employed contact model works. The missing values in the
Nadal’s ratio plot are both due to the computations exiting the domain of the contact model and due to the vertical
force being zero (lifting) at some instants during the ramping of the speed for the computation of the critical speed.
(a) Critical speed vs. D6 and (b) maximum Nadal’s ratio vs. D6.

4.3. Discussion of the obtained results

Even if the results obtained are formally correct, the interpretation of such results can raise
some questions. A railway engineer might wonder why the yaw dampers D6 are not listed
among the most important by the sensitivity analysis. The yaw dampers in the secondary
suspension are known to provide stability to the vehicle ride, helping to increase its critical
speed. This result is true also with the vehicle model considered here, in fact low values of
D6 cause a drastic worsening of the ride stability. However, the TSI embed the probability
distributions of the uncertain parameters in the global sensitivity analysis: the impact of a
component is weighted according to these distributions. Thus, we say that the yaw damper
has little influence on the riding stability with respect to the distributions chosen. A change
in the distributions can dramatically change these results, thus particular care should be
taken with the quantification of the source of uncertainty. To better show this fact, we looked
for the relation of the critical speed with respect to the yaw dampers, for values below the
mean value used for sensitivity analysis (1.66×105 Ns/m). We selected a range between
[1.0×105, 1.5×105] Ns/m and looked at the value of the critical speed. Figure 5(a) shows
such response surface: the critical speed is not significantly changing when the yaw damping
is high, as it is the case for the nominal value used in sensitivity analysis, but it increases
drastically when the yaw damping is lowered too much. Unfortunately this does not mean that
the car will run more safely. On the contrary, Figure 5(b) shows that the maximum Nadal’s
ratio, obtained while decreasing the speed in the continuation method for the detection of
the critical speed, increases while lowering the yaw damping parameters. This suggests that
the lateral oscillations become more violent and less compensated by the vertical forces. The
missing values in Figure 5(a) and 5(b) are due to the lateral oscillations being outside the
range of applicability of the contact model employed. Additionally, Figure 5(b) has some
missing values due to the lifting of a wheel, leading to zero vertical forces.

This example suggests some observations on the extent to which sensitivity analysis should
be used: it provides a measure of how much a QoI depends on a parameter, when the param-
eter value is not exactly known. In principle, from a risk management perspective, we would
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14 D. Bigoni et al.

like the QoI not to be sensitive to any parameter – i.e. the change in QoI should be little
with respect to the parameter, like the yaw damper in the flat part of Figure 5(a). The fact
that a QoI is sensitive to a certain parameter does not mean that this will be dangerous, but it
must lead to a more detailed investigation. Furthermore, in real cases of virtual homologation
we must look at several QoIs, as the previous example showed for the critical speed and the
maximum Nadal’s ratio.

4.4. Remarks on UQ and sensitivity analysis

The first question that an engineer performing analysis of a stochastic model has to wonder
about is whether the uncertain input parameters considered are independent from a probabilis-
tic point of view (we remind that the events A, B are independent if P(A ∩ B) = P(A)P(B))
or at least uncorrelated. In motivating our example of the uncertainty on the suspension com-
ponents, we mentioned that their values are uncertain at the manufacturing time and are even
more uncertain after thousands of running kilometres, due to the wear. However, the two
cases are slightly different: in the first case, the value of each component can be considered
independent and uncorrelated from the others, whereas in the second case the wear on each of
the components cannot be considered independent from the others, because they undergo cou-
pling dynamics. This does not mean we can do nothing, but we need first to find a map from
the correlated random variables, to some lower dimensional uncorrelated random variables.
If the distributions are Gaussians, a simple Cholesky factorisation of the correlation matrix
will be sufficient as a map. In this case uncorrelation implies independency and we are well
set for the application of the methods presented. If the distributions are non-Gaussian, then
additional care should be paid to the particular problem at hand and one possible solution is
the application of the Rosenblatt transformation.[13]

The second remark regards the influence of the selection of the QoI in UQ and sensitiv-
ity analysis. In Section 2.1, the continuation method used to estimate the critical speed was
presented and the threshold used to determine the end of the hunting motion was chosen in a
conservative way, as it is shown in Figure 2(b). Thus, the value of the computed critical speed
will depend also on the deceleration chosen for the continuation method, i.e. the computed
critical speed will be exact in the limit when the deceleration goes to zero. Of course, the exact
computation of the critical speed is not computationally feasible. With the limited computa-
tional resources available, we then chose a fixed deceleration coefficient for the continuation
method, and thus we introduced numerical uncertainty in the computations. Furthermore, the
value has been found to be numerically accurate up to the first decimal digit, due to different
choices of initial conditions and the tolerances set in the time steppers (these can have a large
effect, considering the long-time integration needed for this problem and the accumulation
of rounding errors). Therefore, the variance expressed from the analysis is given both by
the variance due to the stochastic system and the variance introduced by the computation of
the QoI. This is, however, a conservative consequence, meaning that a decision taken on the
basis of the computed results is at least as safe as a decision taken using the ‘exact results’.
A test performed with different initial conditions showed that the sensitivity values found are
qualitatively accurate up to the first decimal digit.

5. Conclusions

Sensitivity analysis is of critical importance in a wide range of engineering applications.
The traditional approach of local sensitivity analysis is useful in order to characterise the
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Vehicle System Dynamics 15

behaviour of a dynamical system in the vicinity of the nominal values of its parameters, but
it fails in describing wider ranges of variations, e.g. caused by long-term wear. The global
sensitivity analysis aims at representing these bigger variations and at the same time it embeds
the probability distributions of the parameters in the analysis. This enables the engineer to
take decisions, such as improving a design, based on the partial knowledge of the system.

Wrongly approached, global sensitivity analysis can turn to be a computationally expensive
or even prohibitive task. In this work, a collection of techniques are used in order to accelerate
such analysis for a high-co-dimensional problem. Each of the techniques used allows for a
control of the accuracy, e.g. in terms of convergence rate for the cubature rules in Section 3.1
and the ‘effective dimension’ in Section 3.3. This makes the framework flexible and easy to
be adapted to problems with more diversified distributions and target functions.

The analysis performed on the half-wagon equipped with a Cooperrider bogie shows a high
importance of the longitudinal primary suspensions, and this reflects the connection between
hunting and yaw motion.

It is important to notice that the same settings for global sensitivity analysis can be used for
the investigation of different QoIs, such as wear in curved tracks, angle of attack, etc. once
they have been properly defined. Furthermore, the ‘non-intrusive’ approach taken allows the
engineer to use closed software for the computations. The machinery for sensitivity analysis
needs only to be wrapped around it, without additional implementation efforts.
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ABSTRACT
This work addresses the problem of the reliability of sim-

ulations for realistic nonlinear systems, by using efficient tech-
niques for the analysis of the propagation of the uncertainties of
the model parameters through the dynamics of the system. We
present the sensitivity analysis of the critical speed of a railway
vehicle with respect to its suspension design. The variance that
stems from parameter tolerances of the suspension is taken into
account and its propagation through the dynamics of a full car
with a couple of two-axle Cooperrider bogies running on curved
track is studied.
Modern Uncertainty Quantification methods, such as Stochas-
tic Collocation and Latin Hypercube, are employed in order to
assess the global uncertainty in the computation of the critical
speed. The sensitivity analysis of the critical speed to each pa-
rameter and combination of parameters is then carried out in
order to quantify the importance of different suspension compo-
nents. This is achieved using combined approaches of sampling
methods, ANOVA expansions, Total Sensitivity Indices and Low-
dimensional Cubature Rules.

NOMENCLATURE
SSL/T Leading/Trailing Secondary Suspensions
PS Primary Suspensions
LL Leading wheel set on the Leading bogie frame
LT Trailing wheel set on the Leading bogie frame

TL Leading wheel set on the Trailing bogie frame
TT Trailing wheel set on the Trailing bogie frame

INTRODUCTION
The last couple of decades have seen the advent of

Computer-Aided Design in many areas of engineering. This al-
lows for enhanced design capabilities and the prediction and un-
derstanding of dangerous phenomena that would be difficult and
expensive to reproduce in physical experiments. The simulation
of deterministic physical systems, however, falls short in the task
of explaining the phenomena that happen in reality. One part of
the problem comes from the fact that models by definition are
simplification of the reality and the engineer in charge of mak-
ing a model bears always in mind Einstein’s words: “Everything
should be made as simple as possible, but not simpler”. This part
of uncertainty is very difficult to be dealt with and the validity of
a particular model can be assessed only through experimentation.
A second kind of uncertainty is related to the correctness of the
working conditions at which the model is applied: in this case
the model is assumed to be describing the physics accurately, but
its working conditions – the parameters involved in the model –
don’t match the reality. This kind of parametric uncertainty can
be dealt with and the continuous improvements in computational
science allows for more involved analysis of the uncertainty.

In this work we will deal with the safety analysis of a com-
plete rail car running on curved track. Railway vehicle dynam-
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(a) Front view (b) Top view

FIGURE 1: THE RAIL CAR.

ics is subject to a number of uncertainties that can affect the
rider’s safety. Some of them are external loads applied to the
system, such as track perturbations, wind gusts or different dis-
positions of the loaded goods. Others uncertainties are related
to the car design, such as the suspension characteristics and the
wheel wear.
The work will focus on the stability of a rail car equipped with
two Cooperrider bogies and running on a curved track [1] under
uncertain suspension characteristics, due to manufacturing tol-
erances. It is now well known that railway vehicles running at
speeds higher than a fixed critical speed develop what is called
the hunting motion: a sideways periodic or chaotic oscillation
that can lead to increased wheel-rail wear and worsened com-
fort. This phenomenon can be described in terms of nonlinear
dynamics of the system [2] and analyzed using suitable numeri-
cal methods for non-smooth dynamical systems [3].

The analysis of the uncertainty of the riding safety of the ve-
hicle model will not be limited to the quantification of the total
uncertainty, but will also focus on the identification of the pa-
rameters that most influence it. We will do it from a probabilis-
tic point of view, where the safety is more or less sensitive to a
particular suspension component depending on how much of the
uncertainty is caused by it. This allows the engineer to detect the
critical components that are required to be very accurately built
by the manufacturer.

THE VEHICLE MODEL
The vehicle model chosen for this work is a complete rail car

equipped with two Cooperrider bogies and four axles with wheel
profile S1002, running on a curved track with rail profile UIC60.

The rails have a cant of 1/40. A total of 48 suspension compo-
nents connect the car body, the bogie frames and the wheel-sets.
Figure 1 shows the top and frontal view of half of the car. The
dimensions, the masses and the inertia values of the components
of the car are listed in Tab. 1, where the subscript c stands for car
body, f for bogie frame, w for wheel set. The dynamical system
is described using the Newton-Euler formulation:

n

∑
i=1

~Fi = m~a,

m

∑
i=1

Mi =
d
dt

([J] ·~ω)+~ω× ([J] ·~ω) ,

(1)

where ~Fi and ~Mi are the forces and torques applied on the center
of mass of the bodies, m and [J] are the mass and tensor moment
of inertia respectively,~a and ~̇ω are the linear acceleration and the
angular acceleration of the bodies.
In our model we will neglect the longitudinal displacements be-
cause we will not take into account the brake and the acceleration
of the car. We will consider lateral and vertical displacement for
all the bodies in the car and we will account also for their three
possible rotations. On the wheel set the pitch angle will not be
considered and instead we will consider only its angular velocity,
to describe the rotation of the wheels. This results in a system of
66 coupled ordinary differential equations (ODEs) describing 35
degrees of freedom.
The static penetration at the contact points between wheels and
rails is obtained using the routine RSGEO [4]. These values are
tabulated and interpolated as needed during the solution of the
system of ODEs and updated according to Kalker’s work [5] in

2 Copyright © 2014 by ASME



Parm. Value Unit Parm. Value Unit

r0 0.425 [m] a 0.75 [m]

h1 0.0762 [m] h2 1.5584 [m]

l1 0.30 [m] l2 0.30 [m]

l3 0.30 [m] x1 0.349 [m]

v1 0.6488 [m] v2 0.30 [m]

v3 0.30 [m] v4 0.3096 [m]

s1 0.62 [m] s2 0.6584 [m]

s3 0.68 [m] s4 0.759 [m]

u1 7.5 [m] u2 1.074 [m]

mc 44388.0 [kg] Icx 2.80 ·105 [kgm2]

Icy 5.0 ·105 [kgm2] Icz 5.0 ·105 [kgm2]

m f 2918.0 [kg] I f x 6780.0 [kgm2]

I f y 6780.0 [kgm2] I f z 6780.0 [kgm2]

mw 1022.0 [kg] Iwx 678.0 [kgm2]

Iwy 80.0 [kgm2] Iwz 678.0 [kgm2]

K1 1823.0 [kN/m] K2 3646.0 [kN/m]

K3 3646.0 [kN/m] K4 182.3 [kN/m]

K5 333.3 [kN/m] K6 903.35 [kN/m]

D1 20.0 [kNs/m] D2 29.2 [kNs/m]

D6 166.67 [kNs/m]

TABLE 1: DIMENSIONS, MASS, INERTIA AND SUSPEN-
SION PARAMETERS OF THE RAIL CAR.

order to account for the additional penetration due to the dynam-
ics. The creep forces are approximated using the Shen-Hedrick-
Elkins nonlinear theory [6].
The complete deterministic system is nonlinear and non-smooth
and can be written abstractly as

d
dt

u(t) = f(u, t). (2)

The model is implemented in a general framework [1] for
the simulation of railway vehicle dynamics on tangent or curved
tracks. The framework allows, among other things, to select a
variety of numerical ODE solvers and perform some analysis of
the nonlinear dynamics of the system.

Nonlinear dynamics
of the Deterministic Model

The dynamics of the complete car presented in the previ-
ous section were analyzed in [1], for trains running on tangent
and curved tracks. On tangent tracks the car undergoes a sub-
critical Hopf-bifurcation at a speed of vL = 114m/s, entering a
periodic limit cycle. This sub-critical Hopf-bifurcation is char-
acterized by a significant fold, setting the critical speed of the
car to vNL = 50.47m/s. On tangent tracks the Hopf-bifurcation
can be found using the Lyapunov’s second method for stability
and exploiting the fact that the center line of the track is a point
of equilibrium for the system. The critical speed is then found
using a continuation method following the periodic limit cycle
backward (i.e. decreasing the speed quasi-statically).
On curved track, the Lyapunov’s second method cannot be used
anymore because the center line is not a point of equilibrium
anymore. Thus the system of ODEs needs to be solved first ac-
celerating, to detect the Hopf-bifurcation, and then decelerating
to detect the critical speed for the curve under analysis. It is well
known now that the critical speed may decrease when the train
is running through a curve rather than on tangent track. Further-
more it was found that for some combination of curve profile and
vehicle model, the sub-critical Hopf-bifurcation merges with the
fold into a super-critical Hopf-bifurcation: this means that the
speed where the Hopf-bifurcation occurs is also the one where
the periodic limit cycle (the hunting motion) disappears when
ramping down the velocity.

Figure 2 shows an example of a bifurcation analysis for the
car running through a curve with radius 1600m and with the track
super-elevated on the outer rail of 110mm. Both the bifurca-
tion point and the folding point cannot be detected precisely, but
we can design a criteria based on the qualitative observation of
the data. Using a sliding window Fourier analysis of the lat-
eral displacement of the different components, and adjusting for
the fact that the train is running on a curved track, we can de-
fine a detection criteria for the end of the hunting motion, based
on the remaining power in the signal ‖Y‖: a threshold of 10−5

was found to be a good indicator of the disappearance of the
hunting motion. The application of such criteria can be seen in
Fig. 2b. The legend in the figure stands for the different bod-
ies: CB=“Car Body”, LB=“Leading Bogie frame”, TB=“Trailing
Bogie Frame”, LBLW=“Leading Wheel-set of the Leading Bogie
frame”, and so on.

The Stochastic Model
In the previous model we made the unrealistic assumption

that we knew exactly the parameters involved in the system.
From now on we will admit that the suspension parameters are
not exactly known, but we can describe them with probability
distributions. With this setting we want to model the realistic
case where manufacturing fluctuations are present in the suspen-
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FIGURE 2: NONLINEAR DYNAMICS OF THE RAIL CAR ON CURVED TRACK.

sion components.
In a rigorous setting, the distribution of such parameters should
be assessed from collected data. Several approaches, that make
different assumptions, are available in order to construct a prob-
ability distribution from data. One of the most popular is the
Kernel Smoothing [7, Ch. 6].
Due to the lack of data, in this work the probability distribu-
tions of the suspension parameters will be assumed to be Gaus-
sian around their nominal values with a standard deviation of
5%. This assumption does not undermine the applicability of the
method to other settings, where other distributions might be more
suitable. We let Z be the d-dimensional vector of random vari-
ables {zi ∼N (µi,σi)}d

i=1 describing the suspension parameters,
where d is called the co-dimension of the system. The stochastic
dynamical system that we will aim to solve is then of the form

d
dt

u(t,Z) = f(u, t,Z), (0;T ]×Rd . (3)

With this system we will investigate the critical speed vNL(Z)
and the sensitivity of it with respect to Z.

SENSITIVITY ANALYSIS
Sensitivity analysis is used to identify the input parameters

that affect the model output in the biggest amount. This analysis
provides a useful tool to engineers in both the design phase and
in the risk analysis phase of the production.
The traditional approach to a sensitivity analysis is to investigate
the partial derivatives of a Quantity of Interest (QoI) with respect
to the parameters. The directions with the highest gradients will
be considered the most influential. Due to the locality of deriva-
tives, this method goes under the name of local sensitivity analy-
sis and it reduces to the computation of finite difference formulas

around the nominal values of the parameters.
In this work we will instead look at the global sensitivity: the
most influential parameters in the system are represented by the
ones that give the biggest contribution to the total variance of the
model output. This approach is not restricted to small perturba-
tions, but it takes into account the uncertainty on the parameter
values.

Uncertainty Quantification (UQ)
The solution of (3) is u(t,Z), varying in the parameter

space. The random vector Z is defined in the probability space
(Ω,F ,µZ), where F is the Borel set constructed on Ω and µZ
is a probability measure (i.e. µZ(Ω) = 1). In uncertainty quan-
tification we are interested in computing the density function of
the solution and/or its first moments, e.g. mean and variance:

µu(t) = E [u(t,Z)]ρZ
=
∫

Ωd
u(t,z)dFZ(z),

σ2
u(t) = Var [u(t,Z)]ρZ

=
∫

Ωd
(u(t,z)−µu(t))

2 dFZ(z),
(4)

where ρZ(z) and FZ(z) are the probability density function
(PDF) and the cumulative distribution function (CDF) respec-
tively. Several techniques are available to approximate these
high-dimensional integrals. In the following we present the two
main classes of these methods.

Sampling based methods. The most known sampling
method is the Monte Carlo (MC) method, which is based on the
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law of large numbers. Its estimates are:

µu(t)≈ µ̄u(t) =
1
M

M

∑
j=1

u
(

t,Z( j)
)
,

σ2
u(t)≈ σ̄2

u(t) =
1

M−1

M

∑
j=1

(
u
(

t,Z( j)
)
− µ̄u(t)

)2
,

(5)

where
{

Z( j)
}M

j=1
are realizations sampled randomly with respect

to the probability distribution Z. The MC method has a proba-
bilistic error of O(1/

√
M), thus it suffers from the work effort

required to compute accurate estimates (e.g. to improve an es-
timate of one decimal digit, the number of function evaluations
necessary is 100 times bigger). However the MC method is very
robust because this convergence rate is independent of the co-
dimension of the problem, so its useful to get approximate esti-
mates of very high-dimensional integrals.
Sampling methods with improved convergence rates have been
developed, such as Latin Hypercube sampling and Quasi-MC
methods. However, the improved convergence rate comes at the
expense of several drawbacks, e.g., the convergence of Quasi-
MC methods is dependent of the co-dimension of the problem
and Latin Hypercube cannot be used for incremental sampling.

Cubature rules. The integrals in (4) can also be com-
puted using cubature rules. These rules are based on a polyno-
mial approximation of the target function, i.e. the function de-
scribing the relation between parameters and QoI, so they have
super-linear convergence rate on the set of smooth functions.
Their applicability is however limited to low-co-dimensional
problems because cubature rules based on a tensor grid suffer
the curse of dimensionality, i.e. if m is the number of points used
in the one dimensional rule and d the dimension of the integral,
the number of d points at which to evaluate the function grows as
O(md) . They will however be presented here because they rep-
resent a fundamental tool for the creation of high-dimensional
model representations that will be presented in the next section.
Let Z be a vector of independent random variables (i.e. Z : Ω→
Rd) in the probability space (Ω,F ,µZ), where F is the Borel
set constructed on Ω and µZ is the measure associated to Z.
By the independence of Z, we can write Ω as a product space
Ω = ×d

i=1Ωi, with product measure µZ = ×d
i=1µi. For A ⊆ Rd ,

we call FZ(A) = µZ(Z−1(A)) the distribution of Z.
For each independent dimension of Ω we can construct orthog-
onal polynomials {φn(zi)}Ni

n=1, i = 1, . . . ,d, with respect to the
probability distribution Fi, where FZ = ×d

i=1Fi [8]. The tensor

product of such basis forms a basis for

L2
FZ

=

{
f : I ⊆ Rd → R

∣∣∣∣
∫

I
f 2(z)dFZ(z) = Var[ f (Z)]< ∞

}

(6)
that means that there exists a projection operator PN : L2

FZ
→ PN

such that for any f ∈ L2
FZ

, and with the notation i = (i1, . . . , id) ∈
[0, . . . ,N1]× . . .× [0, . . . ,Nd ],

f ≈ PN f =
N1,...,Nd

∑
i=0

f̂iΦi, f̂i =
( f ,Φi)L2

FZ

‖Φi‖2
L2

FZ

, (7)

where Φi = ∏k∈i φk, ‖ f‖2
L2

FZ
= ( f , f )L2

FZ
and

( f ,g)L2
FZ

=
∫

Rd
f (z)g(z)dFZ(z) (8)

In the following we will be marginally interested in the approx-
imation (7) of the QoI function. However the fast – possibly
spectral – convergence of such approximation is inherently con-
nected with the convergence in the approximation of statistical
moments, because µ f = f̂0 and σ2

f = ∑i f̂ 2
i − f̂ 2

0 [9].
From the orthogonal polynomials used in the construc-
tion of (7), the 1-dimensional Gauss quadrature points
and weights

{
z ji ,w ji

}Ni
ji

can be derived using the Golub-
Welsch algorithm [8]. Gauss quadrature points and weights{

z j1,..., jd ,w j1,..., jd

}N1,...,Nd
j1,..., jd=1 for the tensor product space can be

obtained as tensor product of one dimensional cubature rules (see
fig. 3a), obtaining the following approximations for (4):

µu(t)≈ µ̄u(t) =
N1

∑
j1

· · ·
Nd

∑
jd

u
(
t,z j1,..., jd

)
w j1,..., jd

σ2
u(t)≈ σ̄2

u(t) =
N1

∑
j1

· · ·
Nd

∑
jd

(
u
(
t,z j1,..., jd

)
− µ̄u(t)

)2 w j1,..., jd

(9)

Gauss quadrature rules of order N are accurate for polynomi-
als of order up to degree 2N − 1. This high accuracy comes
at the expense of the curse of dimensionality due to the use of
tensor products in high-dimensional integration. This effect can
be alleviated by the use of Sparse Grid technique proposed by
Smolyak [10] that uses an incomplete but accurate version of
the tensor product. However, in the following section we will
see that we can often avoid working in very high-dimensional
spaces.
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ING FOR 2nd ORDER INTERACTIONS.

High-Dimensional Model Representation (HDMR)
High-dimensional models are very common in practical ap-

plications, where a number of parameters influence the dynam-
ical behavior of a system. These models are very difficult to
handle, in particular if we consider them as black-boxes where
we are only allowed to change parameters. One method to cir-
cumvent these difficulties is the HDMR expansion [11], where
the high-dimensional function f : Ω→ R, Ω⊆ Rd is represented
by a function decomposed with lower order interactions:

f (x)≡ f0 +∑
i

fi(xi)+∑
i< j

fi, j(xi,x j)+ · · ·+ f1,2,...,d(x1, . . . ,xd).

(10)
This expansion is exact and exists for any integrable and mea-
surable function f , but it is not unique. There is a rich variety
of such expansions depending on the projection operator used
to construct them. The most used in statistics is the ANOVA-
HDMR where the low dimensional functions are defined by

f A
0 ≡ PA

0 f (x) =
∫

Ω
f (x)dµ(x),

f A
i (xi)≡ PA

i f (x) =
∫

Ωi

f (x)∏
i6= j

dµ j(x j)−PA
0 f (x),

f A
i1,...,il (xi1 , . . . ,xil )≡ PA

i1,...,il f (x) =
∫

Ωi1,...,il

f (x) ∏
k/∈{i1,...,il}

dµk(xk)−

∑
k1<···<kl−1∈{i1,...,il}

PA
k1,...,kl−1

f (x)−

. . .− ∑
k∈{i1,...,il}

PA
k f (x)−PA

0 f (x),

(11)

where Ωi1,...,il ⊆ Ω is the hypercube excluding indices i1, . . . , il
and µ is the product measure µ(x)=∏d

i=1 µi(xi). This expansion
can be used to express the total variance of f , by noting that

D≡ E
[
( f − f0)

2]= ∑
i

Di +∑
i< j

Di, j + · · ·+D1,2,...,d ,

Di1,...,il =
∫

Ωi1,...,il

(
f A
i1,...,il (xi1)

)2 ∏
k∈{i1,...,il}

dµk(xk),
(12)

where Ωi1,...,il ⊆ Ω is the hypercube including indices i1, . . . , il .
However, the high-dimensional integrals in the ANOVA-HDMR
expansion are computationally expensive to evaluate.
An alternative expansion is the cut-HDMR, that is built by su-
perposition of hyperplanes passing through the cut center y =
(y1, . . . ,yd):

f C
0 ≡ PC

0 f (x) = f (y),

f C
i (xi)≡ PC

i f (x) = f i(xi)−PC
0 f (x),

f C
i1,...,il (xi1 , . . . ,xil )≡ PC

i1,...,il f (x) =

f i1,...,il (xi1 , . . . ,xil )−
∑

k1<···<kl−1∈{i1,...,il}
PC

k1,...,kl−1
f (x)−

. . .− ∑
k∈{i1,...,il}

PC
k f (x)−PC

0 f (x),

(13)

where f i1,...,il (xi1 , . . . ,xil ) is the function f (x) with all the re-
maining variables set to y. This expansion requires the evalu-
ation of the function f on lines, planes and hyperplanes passing
through the cut center (see fig. 3b).
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If cut-HDMR (13) is a good approximation of f at order L , i.e.
considering up to L-terms interactions in (10), such an expansion
can be used for the computation of ANOVA-HDMR in place of
the original function. This reduces the computational cost dra-
matically: let d be the number of parameters and s the number
of samples taken along each direction (being them MC samples
or cubature points), then the cost of constructing cut-HDMR in
terms of function evaluations is

L

∑
i=0

d!
(d− i)!i!

(s−1)i (14)

Total Sensitivity Indices
The main task of Sensitivity Analysis is to quantify the sen-

sitivity of the output with respect to the input. In particular it is
important to know how much of this sensitivity is accountable
to a particular parameter. With the focus on global sensitivity
analysis, the sensitivity of the system to a particular parameter
can be expressed by the variance of the output associated to that
particular input.
One approach to this question is to consider each parameter sep-
arately and to apply one of the UQ techniques introduced. This
approach goes by the name of one-at-a-time analysis. This tech-
nique is useful to get a first overview of the system. However,
this technique lacks an analysis of the interaction between input
parameters, which in many cases is important.
A better analysis can be achieved using the method of Sobol [11].
Here single sensitivity measures are given by

Si1,...,il =
Di1,...,il

D
, for 1≤ i1 < · · ·< il ≤ n, (15)

where D and Di1,...,il are defined according to (12). These express
the amount of total variance that is accountable to a particular
combination i1, . . . , il of parameters. The Total Sensitivity Index
(TSI) is the total contribution of a particular parameter to the total
variance, including interactions with other parameters. It can be
expressed by

T S(i) = 1−S¬i, (16)

where S¬i is the sum of all Si1,...,il that do not involve parameter
i.
These total sensitivity indices can be approximated using sam-
pling based methods in order to evaluate the integrals involved in
(12). Alternatively, [12] suggests to use cut-HDMR and cubature
rules in the following manner:

1. Compute the cut-HDMR expansion on cubature nodes for
the input distributions (see fig. 3b),

2. Derive the approximated ANOVA-HDMR expansion from
the cut-HDMR,

3. Compute the Total Sensitivity Indices from the ANOVA-
HDMR.

This approach gives the freedom of selecting the level of accu-
racy for the HDMR expansion depending on the level of interac-
tion between parameters. The truncation order L of the ANOVA-
HDMR can be selected and the accuracy of such expansion can
be assessed using the concept of “effective dimension” of the
system: for q≤ 1,the effective dimension of the integrand f is an
integer L such that

∑
0<|t|≤L

Dt ≥ qD, (17)

where t is a multi-index i1, . . . , il and |t| is the cardinality of such
multi-index. The parameter q is chosen based on a compromise
between accuracy and computational cost.

SENSITIVITY ANALYSIS
ON RAILWAY VEHICLE DYNAMICS

The sensitivity analysis of a dynamical system with respect
to its parameters is a computationally expensive task and this
cost increases dramatically with the number of parameters. We
will adopt the collocation approach presented earlier, thus we
will need to obtain an ensemble of solutions. This ensemble is
formed by the solutions to the Initial Value Problem IVP (3) for
different realizations of the parameters. Each solution is com-
puted using the program DYnamics Train SImulation (DYTSI)
developed in [1] with the Explicit Runge-Kutta-Fehlberg method
ERKF34 [13]. An explicit solver has been used in light of the
analysis performed in [3], where it was found that the hunting
motion could be missed by implicit solvers, used with relaxed
tolerances, due to numerical damping. In particular implicit
solvers are frequently used for stiff problems, like the one treated
here, because their step-size is bounded by accuracy constraints
instead of stability. However, the detection of the hunting motion
requires the selection of strict tolerances, reducing the allowable
step-sizes and making the implicit methods more expensive than
the explicit ones. Since the collocation approach for UQ involves
the computation of completely independent realizations, this al-
lows for a straightforward parallelization of the computations on
clusters. Thus, 25 nodes of the DTU cluster have been used to
speed up the following analysis.
The first step in the analysis of a stochastic system is the char-
acterization of the probability distribution of the QoI. Since the
complete model has co-dimension 48, a traditional sampling
method is the best suited for the task of approximating the in-
tegrals in eq. (4). In order to speed up the convergence, we used
samples generated with the Latin Hyper Cube method [14]. Fig.
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FIGURE 4: APPLICATION OF THE LATIN HYPER CUBE TO OBTAIN THE TOTAL VARIANCE.

4a shows the histogram of the computed critical speeds with re-
spect to the uncertainty in the suspension components. We can
notice a big clustering of outliers around v ≈ 33m/s. This is an
indicator of a discontinuity in the parameter space. In partic-
ular for such combinations of suspension parameters, the vehi-
cle recovers its stability soon after starting ramping the speed,
indicating the merger of the sub-critical Hopf-bifurcation with
the fold to a super-critical Hopf-bifurcation. The convergence
of the method was checked using a the magnitude of change in
the first two estimated moments as shown in figure 4b. Kernel
smoothing [7] has been used to estimate the density function ac-
cording to this histogram. The estimated mean and variance are
µ̄v = 27.12m/s and σ̄2

v = 3.77m2/s2.

One-at-a-time analysis
When each suspension component is considered indepen-

dently from the others, the estimation problem in (4) is reduced to
the calculation of a 1-dimensional integral. This task can be read-
ily achieved by quadrature rules that have proven to be compu-
tationally more efficient on problems of this dimensionality than
sampling methods [15]. Fourth order quadrature rules have been
used to approximate the variances due to the single components.
For the 48 parameters describing the suspensions, this leads to
the solution of 48×4+1 = 193 Initial Value Problems. The con-
vergence of this method enables a check of accuracy through the
decay of the expansion coefficients of the target function [15].
Figure 5a shows the contribution that each suspension compo-
nent gives to the total variance of the model output. The nomen-
clature of the components is partly explained in the nomen-
clature section at the beginning of the paper: for example,
PSTT RIGHT K2 stands for the right suspension K2 (see fig. 1)
in the primary suspension connecting the trailing wheel set to the
trailing bogie frame. We notice that the analysis doesn’t explain
the whole variance, but only half of it. This means that some of

Suspension
One-at-time ANOVA

σ2
v TSI

PSLT LEFT K2 0.08 0.09

PSLT RIGHT K2 0.08 0.09

PSTT LEFT K2 0.17 0.24

PSTT RIGHT K2 0.17 0.24

SSL LEFT D6 0.59 1.07

SSL RIGHT D6 0.59 1.07

SST LEFT D6 0.04 0.15

SST RIGHT D6 0.04 0.15

TABLE 2: SENSITIVITIES OF THE MOST RELEVANT SUS-
PENSIONS.

the variance must be explained by the combined contribution by
several parameters.
This first analysis is anyway useful to get a first selection of the
most relevant suspensions in the system. Table 2 shows the value
of the variance due to the most relevant components. The re-
maining components contribute less than 0.02m2/s2 each.

Total Sensitivity Analysis
The calculation of the total sensitivity analysis through the

use of the cut-HDMR representation and of high order quadra-
ture rules, allows to take into account the interaction between
parameters and at the same time limits the amount of computa-
tions required exploiting the fast convergence of the quadrature
rules.
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FIGURE 5: APPLICATION OF THE ONE-AT-TIME AND ANOVA ANALYSIS.

The complete sensitivity problem involves 48 parameters. For
the full sensitivity analysis using cut-HDMR truncated at sec-
ond order interaction and with second order quadrature rules, this
would result in 1+2×48+4×

(48
2

)
= 4609 solutions of the de-

terministic problem. Even if this is affordable in approximately
4 days using 25 nodes of the DTU cluster, we decided to use the
fact that the One-at-a-time analysis already provided a good in-
dication of which components would be the most relevant. We
use this information to perform a more accurate Total Sensitivity
Analysis on the eight suspension components identified before.
The remaining suspension coefficients are set to their nominal
values. Of course this refinement is susceptible to errors if the
underlying function is particularly pathological.
The cut-HDMR representation is truncated at second order inter-
actions, with fourth order quadrature rules. The construction of
such surrogate requires the computation of 1+4×8+16×

(8
2

)
=

481 solutions to the deterministic problem (2). Figure 5b and ta-
ble 2 show the Total Sensitivity Indices for the suspension param-
eters. The total variance represented by this analysis is sufficient
to explain all the variance of the model output, indicating that the
effective dimensionality – see (17) – of the model is L = 2. Actu-
ally, the total variance computed using the cut-HDMR represen-
tation exceeds the total variance computed using the Latin Hyper
Cube method. This is due to both the additional computational
noise introduced by the heuristic for the detection of the criti-
cal speed and a discontinuity in the parameter space that makes
the sub-critical Hopf-bifurcation merge with the fold to create
a super-critical Hopf-bifurcation, as shown in the histogram in
figure 4a.

Discussion of the obtained results
The sensitivity analysis of the rail car, running at hunt-

ing speed on a track with a curve radius of 1600m and super-
elevation of 110mm, reveals that the key parameters determining
the critical speed are the yaw dampers in the secondary suspen-
sions and the yaw springs in the trailing primary suspensions in
the leading and trailing bogie frames. These components are ex-
pected to have an important role in the steering of the car in the
curve and the yaw dampers were historically introduced to stabi-
lize the dynamics of rail cars.
However, we remind the reader that these results are strongly
conditioned by the choice of the distributions describing the sus-
pension parameters. If different distributions are used, maybe
based on the observation of the manufacturing uncertainty of the
suspension coefficients, the results could change drastically.

Remarks on uncertainty quantification
and sensitivity analysis

The first question that an engineer performing analysis of
a stochastic model has to wonder about is whether the uncertain
input parameters considered are independent from a probabilistic
point of view (we remind that the events A,B are independent if
P(A∩B) = P(A)P(B)) or at least uncorrelated. In motivating our
example of the uncertainty on the suspension components, we
mentioned that their values are uncertain at the manufacturing
time. This uncertainty is even more relevant after thousands of
running kilometers, due to the wear. However the two cases are
slightly different: in the first case the value of each component
can be considered independent and uncorrelated from the others,
instead in the second case the wear on each of the components
cannot be considered independent from the others, because they
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undergo coupling dynamics! A variety of techniques exist to deal
with this problem, in order to find a map from the high dimen-
sional correlated random variables to a lower dimensional set of
uncorrelated ones. This however goes beyond the scope of this
work. We refer the reader to [9] for a short introduction to the
problem.

CONCLUSIONS
Sensitivity analysis is of critical importance in a wide range

of engineering applications. The traditional approach of local
sensitivity analysis is useful in order to characterize the behav-
ior of a dynamical system in the vicinity of the nominal values
of its parameters, but it fails in describing wider ranges of vari-
ations. The global sensitivity analysis aims at representing these
bigger variations and at the same time it embeds the probability
distributions of the parameters in the analysis. This enables the
engineer to take decisions, such as improving a design, based on
the partial knowledge of the system.
Wrongly approached, a global sensitivity analysis can turn to be a
computationally expensive or even prohibitive task. In this work
a collection of techniques are used in order to accelerate such
analysis for a high-co-dimensional problem. Each of the tech-
niques used allows for a control of the accuracy, e.g., in terms
of convergence rate for the cubature rules and the “effective di-
mension” of the model. This makes the framework flexible and
easily adaptable to problems with more diversified distributions
and target functions.
The analysis performed on the complete car running in the curve
with radius 1600m and super-elevation 110mm showed that the
steering suspension components account for most of the variance
of the system, meaning that their coefficient values must be care-
fully monitored.
It is important to notice that the same settings for global sen-
sitivity analysis can be used for the investigation of different
Quantities of Interests, such as wear in curved tracks, angle of
attack etc., once they have been properly defined. Furthermore,
the “non-intrusive” approach taken allows the engineer to use
closed software for the computations. The machinery for sensi-
tivity analysis needs only to be wrapped around it, without addi-
tional implementation efforts.
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Abstract

The paper contains a report of the experiences with numerical analyses of railway vehicle dynamical systems, which all are
nonlinear, non-smooth and stiff high-dimensional systems. Some results are shown, but the emphasis is on the numerical methods
of solution and lessons learned. But for two examples the dynamical problems are formulated as systems of ordinary differential-
algebraic equations due to the geometric constraints. The non-smoothnesses have been neglected, smoothened or entered into the
dynamical systems as switching boundaries with relations, which govern the continuation of the solutions across these boundaries.
We compare the resulting solutions that are found with the three different strategies of handling the non-smoothnesses. Several
integrators – both explicit and implicit ones – have been tested and their performances are evaluated and compared with respect to
accuracy, and computation time.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Railway vehicle dynamics; Stiff systems; Nonlinear dynamics; Non-smoothness

1.  Introduction

In recent years the world has seen a rapid development of theoretical research in the area of non-smooth dynamical
systems. This development is a natural extension of the mathematical theory of nonlinear dynamical systems that
are assumed ‘sufficiently smooth’, which usually means that all partial derivatives of second order in the dynamical
system must be continuous. The area of mathematical theory of nonlinear sufficiently smooth dynamical systems grew
very fast in the 20th century. In the second half of the century the development was strongly fueled by the growing
application of digital computers and efficient numerical methods that together made it possible to solve nonlinear
dynamical problems that hitherto had not been solvable with the known analytic solution methods.

In real life, however, the dynamical problems often do not satisfy the ‘sufficiently smooth’ criterion, and many of
the mathematical results are not valid any more. Solutions of non-smooth problems were therefore limited in number
but of important examples the theory of the clock and the motion of a body under the action of a Coulomb type friction
force ought to be mentioned. These dynamical systems were simple one degree of freedom systems. As examples of
the breakdown of the mathematical theory for smooth dynamical systems we mention the center manifold theorem
for bifurcations and the necessary condition for existence of a bifurcation, which both do not hold in general for
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non-smooth dynamical systems. Instead numerical continuation routines must be applied to find bifurcation points and
multiple attractors. This fact emphasizes the importance of accurate and reliable numerical methods for the analysis
of theoretical dynamical problems.

Nonlinear dynamical models of mechanical systems with more than two degrees of freedom (DOF) are in general
not solvable by analytic methods, but with the development of the digital computer the impossible became possible,
and a vast amount of dynamical models of mechanical systems of interest for the applications could then be analyzed.
Vehicle system dynamics is one of such mechanical systems.

Complete dynamical models of vehicle systems are nonlinear and non-smooth with degrees of freedom (DOFs)
in the range from about 10 to above 100. It is therefore necessary to find the solutions by numerical methods. In
the beginning of the age of numerical investigations of vehicle system dynamics the numerical routines were rather
crude, mostly explicit formulations with fixed step length and error tolerance. No special attention was given to the
non-smoothnesses in the problem, but they often caused problems of their own. The interest in the numerical methods
was limited to the question: Do I get an answer? If ‘yes’, then fine. An investigation of numerical integration methods
for vehicle dynamical problems is found in chapter 2 in the book by Garg and Dukkipatti [7] from 1984. It describes
the state of the art at that time. The authors mainly compare explicit and implicit solution routines and show the relative
performances of several integration schemes from that time. No attention is paid to the handling of non-smoothnesses
in the system.

Around the same time a production of simulation routines for modeling and analysis of vehicle dynamical systems
started around the world. New integration routines were developed that were especially designed for vehicle dynamical
use. Characteristic for vehicle dynamical systems is the mathematical formulation as a differential-algebraic dynamical
problem, which is very stiff. The routine DASSL deserves to be mentioned in this context. Several of these routines are
commercially available and have been further developed and used successfully in both industry and research institutes.
Some of them participated in a Manchester benchmark test [15] in 1998, where their performances were compared.

In this article we will describe the development of the numerical handling of non-smooth vehicle dynamical systems
at The Technical University of Denmark. On the background of some results with bifurcations of as well periodic, quasi-
periodic as chaotic solutions and the existence of multiple attractors, we discuss the use of various numerical solution
routines. In the long period of applications we have investigated problems with discontinuous second derivatives,
discontinuous first derivatives and discontinuous functions. The size of the dynamical problems varies from low-
dimensional test problems to high-dimensional realistic railway vehicle models. We have solved these problems as
well by ignoring the non-smoothnesses as by smoothing them and by introduction of switching boundaries with event
detection. We have compared the solutions that resulted from the various approaches and tried to select a solution
strategy that would perform in an optimal way for each given problem. We would like to share our experiences
with other members of the scientific and industrial community. In a final section of the article we shall compare the
performance of several of the routines we have used and give recommendations for their applications to non-smooth
dynamical problems on the basis of our experience.

The reader, who wants information about the general problem of nonlinear railway dynamics, may find [34] a useful
reference. An article by Knothe and Böhm [21] describes the history of railway dynamics and both contributions
[34,21] contain many references for further studies. The EUROMECH 500 workshop entitled ‘Non-smooth Problems
in Vehicle Systems Dynamics’ was held in 2008, and the contributions are published in the proceedings [32].

A very informative state-of-the art article on numerical methods in vehicle system dynamics by Arnold et al. [1]
has recently been published. It is a valuable evaluation and a description of the use of the various available integration
routines for vehicle system dynamical problems that exist today.

2. Theoretical  basis  for  railway  vehicle  dynamical  systems

The theoretical model of the dynamics of railway vehicles is usually formulated as a dynamical multibody system
under external forcing. The single bodies are most often assumed rigid. Flexible bodies may appear, but the flexibilities
are then often represented by a Galerkin approximation of their characteristic frequencies of deformation in order to
avoid the modeling of the dynamics of the flexible bodies by partial differential equations. The internal forces between
the bodies can be classified in two main groups: (i) spring and damper forces and (ii) contact forces. The spring and
damper forces are in general nonlinear, and the contact forces, which always are nonlinear, can be divided into rolling
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contact, sliding contact with stick/slip and impacts. All these forces introduce non-smoothnesses in the dynamical
system.

The dynamical system depends on several parameters from which the speed, V, is usually chosen as the control
parameter in a co-dimension 1 problem. In some applications other control parameters may appear, e.g., in curving,
where the radius of the curve and the so-called super elevation, which describes the slope of a cross-section of the
track, are important independent parameters. All other parameters are considered constant.

If N  is the number of degrees of freedom of the multibody problem with time, t, as the independent variable and P
a set of independent parameters, then we obtain the 2N  state variables xi(t  ; P), 1 ≤  i  ≤  2N, and the dynamical system
can be written as a general nonlinear initial value problem on the form

dx
dt

= F(x,  t; P),  t  >  0 (1)

with appropriate initial conditions x(0) where M  is the number of independent parameters. Thus, x(t) ∈  R
2N and

P ∈  RM . The vector function F(x,  t; P) ∈  R
2N is a nonlinear and in general a non-smooth function of its arguments.

In addition there are constraint equations. For each wheel set of K  total sets an equation of the form

dxk

dt
=  fk(x,  t; P),  k  =  1,  2,  . .  . ,  K  (2)

expresses that the two wheels on the axle rotate with the same angular velocity (the axle is assumed rigid) or with
different velocities when an elastic connection between the wheels is assumed. The rolling contact parameters of the
wheel/rail contact surface are calculated on the basis of the geometrical contours of the two bodies, their relative
orientations and the normal load in the contact surface. In real life the relations are non-smooth, and must be evaluated
numerically and tabulated. The condition that the wheels and rails are in contact is expressed by a set of constraint
equations that combine the kinematic contact variables in a nonlinear relation. These relations together with other
possible contact conditions between the bodies in the system constitute a set of constraint equations. These reduce
the number of generalized coordinates in the problem to a value below N. Under the influence of dynamical forces on
the system some of these relations may become time dependent. The sudden changes in the number of generalized
coordinates – for example if a wheel lifts off from the rail – introduces additional non-smoothnesses in the system.

The wheel/rail forces in the rolling contact are explicitly formulated as nonlinear relations between the normal and
tangent forces in the contact surface on one side and the deformation under normal load and the normalized accumulated
tangential strain velocities in the contact surface – the so-called creepage – on the other. The resulting tangent forces –
denoted the creep forces – depend non-linearly on the normal forces, the wheel/rail contact geometry and the creepage.
Since the contact surface kinematic relations depend non-smoothly on the relative orientations of the wheel and the
rail so do the wheel/rail forces. All non-smoothnesses in the dynamical problem including those that represent sliding
contact and impacts should be defined by the switching boundaries hj(x) = 0, where 1 ≤  j ≤  J, and J  is the number of
non-smoothnesses with corresponding relations. More about that in Section 5.2.

In this article we mainly consider equilibrium solutions of the dynamical problems, therefore the dynamical systems
become autonomous.

The dynamics of a complete wagon model running on straight track or in canted curved tracks can be studied using
the Newton–Euler formulation of the dynamical system. Several reference frames are introduced in order to simplify
the description of the system:

• the inertial  reference  frame  I  cannot be used because the model is quickly moving and the dynamics that need to be
observed are in the order of the 10−3–10−6 m.

• a track  following  reference  frame  F  is attached to the centerline of the track, at the level of the height of the rails, and
it moves with the train. This reference frame can be inertial if the track is straight and the train moves at constant
speed. Otherwise the frame is not inertial and fictitious forces need to be added to the system.

• each body has its own reference frame, called the body  following  reference  frame  that is attached to the center of
mass of the body.

•  additional reference frames, called the contact  point  reference  frames, can be used for the modeling of wheel–rail
contact forces.
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For each body in the system the Newton–Euler relations hold:
n∑

i=1

I �Fi =  m�a  (Newton′s law) (3)

m∑

i=1

B �Mi = d

dt
(B[J]B �ω) + B �ω  ×  (B[J]B �ω) (Euler′s law) (4)

where I �Fi and BMi are, respectively, the forces and torques acting on the center of mass, m  and [J] are the mass and the
tensor moment of inertia respectively, �a  and �̇ω are the linear acceleration and the angular acceleration of the bodies.
The left superscripts stand for the inertial or the body reference frame. Fictitious forces and torques are added in order
to be able to write all the equations of motion in the track following reference frame. The simplification of negligible
torque terms leads to the following fictitious forces:

F �Fc =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

m

[
v2

R
cos(φt)

]

m

[
−v

2

R
sin(φt)

]

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5)

where v  is the speed of the train, R  is the radius and φt is the cant of the track in the curve and the superscript F indicates
that the force is written in the track following reference frame. All the bodies will be subject to the gravitational forces
as well:

F �Fg =

⎧
⎪⎨
⎪⎩

0

−mg  sin φt

−mg  cos φt

⎫
⎪⎬
⎪⎭

(6)

The contact forces can be split in guidance forces, determined by the normal load and the positive conicity of the
wheels, and creep forces, due to the shear and sliding of the wheels on the rails. For the modeling of these forces,
several approximations exist, that go from the use of a stiff non-linear spring to the realistic approach to the contact
problem. The notation F �FNl and F �FNr will be used to refer to the guidance forces on the left and the right wheel of a
wheel set. In the same way, the notation F �FCl and F �FCr will be used for the creep forces. The total forces on the left
and the right wheel of a wheel set will be denoted by F �FL and F �FR respectively. The torques due to these forces will
also be considered and will be denoted by B �ML and B �MR.

The last groups of forces that are applied to all the bodies are the suspension forces. Each element of the suspension,
generically called link, will be characterized by a function f  such that

{
F �Fl
F �Tl

}
=  f  (F �bl0 , F �bl, F �vl, F �θl, F �̇θl) (7)

where F �bl0 is the length of the link at rest, F �bl is the deformed length of the link, F �vl is the relative speed of the two

attack points of the link, F �θl is the deformed angle between the bodies connected by the link and F �̇θl is the angular
velocity of the bodies. These quantities can be easily computed using basic geometry, knowing the positions at which
the links are connected and the state of the dynamics. The characteristic function of the link, that is usually non-linear,
will determine the resulting forces and the torques. Each suspension system is a collection of spring and damping
elements. The total resulting forces and torques due to the ith suspension system will be denoted by F �Fis and B �Mi

s.
Substituting the gravitational, the centrifugal and the suspension forces in (3) and (4), the equation of motion (EOM)

of the car body can be obtained.

m�̈x = F �FCg + F �FCc + F �FSSls + F �FSSts (8)

[J] �̇ω = B �MC
g + B �MC

c + B �MSSl
s + B �MSSt

s (9)
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Fig. 1. The Cooperrider bogie model.

where the superscript C  stands for the car body and SSl/t indicates the leading and trailing secondary suspensions.
Similarly, the EOM of the leading bogie frame can be obtained:

m�̈x = F �FBlg + F �FBlc + F �FSSls + F �FPSlls + F �FPSlts (10)

[J] �̇ω = B �MBl
g + B �MBl

c +B �MSSl
s + B �MPSll

s + B �MPSlt
s (11)

where B  stands for the leading bogie frame and PSll/lt indicate, respectively, the leading and trailing primary suspensions.
A similar notation is used for the trailing bogie frame. Since the wheel sets are spinning on the track, the pitch angle
is not relevant. However, the angular velocity is important in the computation of the creepages as it is given by the
nominal spinning speed v

r0
and the speed perturbation β  due to the odd distribution of the forces among the wheels.

The resulting equations of motion for the leading wheel set attached to the leading bogie frame can be written as:

m�̈x = F �FWllg + F �FWllc +F �FWllL + F �FWllR + F �FPSlls (12)

Jφφ̈  =
{
BM

Wll
L

}
φ

+
{
BM

Wll
R

}
φ

+
{
B �MWll

g

}
φ

+ {
B �MWll

c

}
φ

+
{
B �MPSll

s

}
φ

(13)

Jχβ̇ = {
BMWll

L

}
χ

+ {
BMWll

R

}
χ

(14)

Jψψ̈ =
{
BM

Wll
L

}
ψ

+
{
BM

Wll
R

}
ψ

+
{
B �MWll

g

}
ψ

+ {
B �MWll

c

}
ψ

+
{
B �MPSll

s

}
ψ

(15)

where W  stands for wheel set and the resulting forces are given by the sum of gravitational, centrifugal, suspension
and contact forces. The notation {�a}i stands for the ith component of the vector �a. Similar equations can be derived for
the remaining wheel sets of the model.

Depending on the level of accuracy that is wanted, assumptions can be made in order to simplify the model. For
example the car body could be considered fixed if only the dynamics of the wheel sets and the bogie frames need to
be analyzed.

3. Models  with  impact

The dynamics of Cooperrider’s bogie model [4] has been investigated in detail. The model is shown in Fig. 1. A
detailed description of the model is presented by Kaas-Petersen in [17] (notice a printing error on p. 92. G  is correctly
8.08 × 1010 N/m2). The important features of the model are that the vertical motions are assumed to be so small that the
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coupling with the other degrees of freedom can be neglected, and the dynamical system therefore is reduced to a system
of 14 first order differential equations that describe the horizontal motion of the bogie elements. All bodies are rigid,
the wheel/rail kinematics and the spring and damper constitutive relations are linearized, so the only nonlinearities in
the system are the contact forces between the wheels and the rails. There is a u|u| term in the wheel/rail creepage/creep
force relation, where u  denotes the creepage. It means that the second derivative of the relation does not exist in u  = 0.
The action of the wheel flange is modeled by a very stiff linear restoring spring with a dead band δ. With q  denoting
the lateral displacement of a wheel set, this leads to a non-smoothness at q  = ±  δ, where a jump in the first derivative
occurs.

The trivial solution satisfies the system for all values of the speed V, but it loses stability in a subcritical bifurcation
at the speed VH. The u|u| term in the creepage/creep force relation changes the initial growth of the bifurcating periodic
branch from a square root to a linear function (see True [33]), and the restoring spring creates a tangent bifurcation
that stabilizes the oscillation at the lower speed the so-called critical speed VC. At higher speeds of the bogie chaos
develops (see Kaas-Petersen [17], Jensen [16] and Isaksen and True [14]).

The problem is solved numerically. Kaas-Petersen’s continuation routine PATH [18] is used to calculate the bifurca-
tion diagram for the dynamical system. PATH also calculates the eigenvalues of the Jacobian and estimates the Floquet
multipliers of the Poincaré map in order to determine the stability of the various branches. Its most important feature is
that it uses a mixture of time integration and Newton iteration to find the periodic solutions, whereby the computational
work is reduced. A periodic solution is treated as the identity under a Poincaré map. In this way the program determines
the stable and unstable solutions with the same accuracy. The Poincaré section is chosen by PATH in such a way that
it is ‘sufficiently transversal’ to the phase space trajectory. For the numerical integrations the LSODA routine is used,
which automatically switches between stiff and non-stiff solution methods whenever needed (see Petzold [26]). PATH
determines the solutions with a relative error of 10−9.

In the points q = ±  δ  the Jacobian is not defined, and two possible ways to handle the non-smoothness were tried. First
the singularity was smoothed by a hyperbolic cosine function around q  = ±  δ  and second the singularity was neglected
and the integration simply continued across the singularity. Since no difference in the resulting dynamics could be
detected, and the computation time was almost the same, the second way was chosen in the numerical investigation.

Knudsen et al. [22] and Slivsgaard and True [30] investigated the dynamics of a single-axle bogie, which is essentially
only one half of the Cooperrider bogie. Knudsen proved the existence of chaos produced by the singularity in q  = ±  δ.
For the numerical integrations Knudsen used as well the LSODA routine as an eight-stage explicit Runge–Kutta pair
of order five and six. It uses variable time step and error control. To approximate the solution between the integration
steps an interpolant with an asymptotic error of the same order as the global error for the numerical integration was
used. The method was developed by Enright et al. [5]. This solver was chosen because it should be particularly well
suited for the shadowing of a chaotic attractor. Knudsen observed that the flange forces changed continuously across
the singularity in q = ±  δ  and therefore the singularity was ignored in both integration methods.

Slivsgaard and True [30] also used PATH and found that the bifurcation of the periodic solution from the trivial
solution is supercritical, and that the initial growth of the periodic attractor with the speed is linear. When |q| = δ  a grazing
bifurcation takes place and the motion becomes chaotic. It is interesting to compare the result with the bifurcations in
the Cooperrider bogie model [4]. In the Cooperrider model a tangent bifurcation stabilizes the unstable periodic branch
when |q| grows through δ, but in Slivsgaard’s single-axle bogie model the stable periodic motion becomes chaotic in a
grazing bifurcation.

All the dynamical systems described above did not include the constraint of the rigid axle.
The investigation of a complete wagon model has recently been performed by Bigoni in [2]. The model employed

two Cooperrider bogies attached to a car body and four wheel sets with profile S1002. Fig. 2 shows the design of the
model and the location of the suspension elements. The original Cooperrider bogie uses torsional springs and dampers
in the secondary suspension. They have been substituted by yaw springs and dampers. The suspension elements can
be linear or non-linear.

The rail profile UIC60 with cant 1/40 combined with the wheel profile S1002 cause the appearance of multiple
contact points for certain displacements of the wheel sets. These are approximated by a single patch using the method
proposed by Sauvage and Pascal [28]. The static parameters for the computation of the contact forces have been
obtained using the RSGEO [20] routine. The normal load can be found using the Hertz’s contact theory [10] and
adjusting the value with the additional penetration due to the dynamics using Kalker’s work [19]. The creep forces
were found using the Shen, Hedrick and Elkins non-linear theory [29].
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Fig. 2. Design of the Cooperrider bogie attached to a car body.

Using the formulation of the multibody problem introduced in Section 2, a system of 66 coupled first-order differ-
ential equations has been obtained. The system can be simplified using superposition when only suspension elements
with linear characteristic function are used. Also the computation of the Jacobian can be sped up using the analytical
values for the parts that have linear functions and using difference approximation for the wheel sets, where the contact
forces are the only non-linear part of the system. These simplifications cannot be performed if the model employs
non-linear suspension elements.

The dynamical problem was solved numerically using the Explicit Singly Diagonal Implicit Runge–Kutta (ESDIRK)
method with appropriate initial conditions for increasing values of the speed. The ESDIRK method by Nielsen–Thomsen
(ESDIRK34 NT1) [24] is a Runge–Kutta method of order 3 for the solution of stiff systems of ODE’s and index one
DAE’s. The type of method is a 4-stage generalized linear method that is reformulated in a special semi-implicit
Runge–Kutta method. The error estimation is by imbedding a method of order 4 based on the same stages as the
method and the coefficients are selected for ease of the implementation. The method has 4 stages and the stage order
is 2. For purposes of generating a dense output and for initializing the iteration in the internal stages a continuous
extension is derived. The method is A-stable.

4. Models  with  dry  friction  contact

In mechanical systems with dry friction contact, with stick/slip between some bodies in the system, the degrees of
freedom of the system will vary with the changes of the acting dry friction force vector. Such a system is often referred
to as a structure varying system or a structural variant system. In these systems the switching boundaries that were
mentioned in Section 2 must be introduced in the state space in order to define the location of the non-smoothnesses.
At the switching boundaries the switch conditions must be formulated in order to define the initial conditions for the
continuation of the integration of the dynamical system in the appropriate domain of the state space. In this section
only one-dimensional dry friction forces occur.

Our first dynamical model of a railway vehicle with dry friction dampers with stick/slip was set up to investigate the
interaction between the nonlinear dry friction damping and the nonlinear wheel/rail creep forces. Therefore the model
should be so simple that the dynamical features easily can be related to this interaction without interference from other
sources. True and Asmund [35] therefore started the analysis with a model of a modification of half the Cooperrider
bogie. Fig. 3 illustrates the model. The stiff spring model of the action of the wheel flange in the original Cooperrider
bogie was left out, and the linear wheel/rail kinematic relation and the linear characteristic of the spring was kept in
place. This of course might result in unrealistically large amplitudes of the lateral motion of the wheel set.
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Fig. 3. The single-axle bogie with lateral dry friction damper (left) and with lateral and yaw dry friction damper (right).

The modeling of the stick/slip action in the dry friction is crucial. In order to control the jump from stick to slip in
the friction relation a new heuristic smooth transition was developed and tried on some simple test cases. The results
were satisfactory, and the dry friction model was therefore adopted for the vehicle model.

First the bifurcation diagram of the model with linear dampers was calculated. The dampers were laid out in such
a way that the dissipation in one period of the oscillation would be approximately the same as the dissipation of the
dry friction damper. Then the bifurcation diagram for the same model but now with a lateral dry friction damper and
no yaw damper was calculated. The two bifurcation diagrams were plotted for comparison in Fig. 4. It is interesting to
note that with the dry friction damper the bifurcation disappears and a periodic oscillation with a low amplitude exists
down to very low speeds. The amplitude of the oscillation increases fast with the speed near and on the other side of
the bifurcation point. Such a behavior is known from stochastic dynamical systems, and probably reflects the erratic
nature of the stick/slip mechanism in the dry friction damper. We also found that the amplitude of the oscillation at
speeds below the bifurcation point depends on the initial condition of the dynamical problem. At speeds below the
bifurcation point there exists an entire set of equilibrium solutions to the dynamical problem but in Fig. 4 only one
amplitude of one representative periodic motion out of the entire set is shown.

The dynamical system was solved numerically at discrete values of a growing speed with appropriate initial con-
ditions. An explicit Runge–Kutta 5/6th order solver with variable step length and error control was used for the
integrations of the system.

The assumption of no wheel flanges or other motion limiters is of course unrealistic. True and Trepacz [36] therefore
introduced a realistic wheel/rail kinematic relation in the model and repeated the investigations. The kinematic contact

Fig. 4. Bifurcation diagrams for the single-axle bogie with and without lateral dry friction damper.
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Fig. 5. The axle-guidance.

problem was solved by use of ARGE CARE’s RSGEO routine [20], but again only the resultant tangent forces were
taken into account in the model. In order to simplify the dynamics the horizontal component of the normal forces in
the contact surface was kept constant, which of course is an unrealistic assumption.

In a real 2-axle freight wagon the motion of the axle box relative to the car body will be limited by a plate (see
Fig. 5). In the lateral direction the plate acts as a linear spring with a spring constant of 1500 kN/m and a dead band
of 20 mm. In the longitudinal direction the plate acts as an elastic impact with E  = 2.1 × 1011 N/m and a dead band of
22.5 mm. E  is Young’s modulus for steel. This very stiff restoring force makes the dynamical system so stiff that the
computation time becomes unacceptably high. We therefore approximated the impact by an ideally elastic one, where
the yaw speed of the wheel set is the same before and after the impact, but its direction is reversed. We have compared
some computations with either assumption and found that the dynamics remain the same, but the computation time of
course increases strongly, when the impact is computed with E. If we were interested in finding the impact forces, then
it would have been necessary to use the detailed model of the impact.

The limiting plate has almost no influence on the lateral dynamics, but it keeps the wheel set from derailment by
limiting the maximum yaw motion. The motion is chaotic, see Fig. 6, where the maximum amplitudes of the lateral
oscillations of the wheel set are plotted versus the speed of the vehicle.

Fig. 6. Illustration of the chaotic motion of the attractor.
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Fig. 7. A 4-axle Chinese hopper wagon.

The dynamical system was solved numerically, initially with MATLAB’s routine ode45, but then using an explicit
Runge–Kutta/Cash/Karp 5/6th order solver with adaptive step size and error control. The speed of the computations
with the Runge–Kutta method was around 1000 times faster than when MATLAB was used. MATLAB was, however,
used for the post-processing. The time of the impact, when the yaw speed changes direction, was approximated by the
time in the time stepping sequence when the axle box had penetrated the guiding plate. In the case of linear elastic
impact the instants, when the axle box hit the plate and when it left the plate again, were calculated more accurately
by a Newton iteration. In the time interval of the impact the forces on the axle box were supplemented by the elastic
reaction forces of the plate.

5. Realistic  railway  vehicle  models

5.1. The  4-axle  hopper  wagon  on  three-piece  freight  trucks

Xia and True [38,39] investigated the dynamics of a 4-axle empty Chinese hopper wagon on a straight track. The
wagon (see Fig. 7) runs on two ‘three-piece freight trucks’ (bogies) (see Fig. 8) that are the most used bogies worldwide

Fig. 8. Three-piece freight truck (bogie).
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Fig. 9. The contact between the end of a frame and an adapter.

due to their simplicity, robustness and low price. The dynamics, however, leaves something to be desired. The dynamical
model has 81 degrees of freedom (DOF) and is loaded with ‘non-smoothnesses’. First there are the non-smoothnesses in
the wheel/rail kinematic relations that we have seen earlier in this work. In addition – and that is unique for this design
– all the damping is performed by dry friction with stick/slip between plane surfaces under a dynamically varying
normal load. The axle boxes are fit with adapters that carry the bogie frames. The adapters can slide longitudinally
under the bogie frames with dry friction contact between stops that limit their relative horizontal motion (see Fig. 9).
In the only (the secondary) suspension system between the bolster and the car body (see Fig. 10) the vertical as well as
the lateral damping of the relative motion are performed by dry friction with stick/slip between spring loaded wedge
shaped blocks that are called ‘snubbers’. Since the occurrence of stick or slip between the snubbers depends both on the
normal pressure and the resulting shear force between the contacting surfaces the contact forces establish a non-smooth
coupling between the horizontal and vertical components of the forces and thereby also between the horizontal and
vertical dynamics. Under the influence of the dynamic forces the blocks may separate from the bolster or from the
side frame, which is the source of another non-smoothness in the dynamical system. The rolling between the car body
and the bogie frames is limited by bumper stops that are modelled as very stiff vertical springs with a dead band. The
friction forces on the surfaces of the bumper stops are integrated into the non-smooth yaw friction torque on the car
body and bolsters. Xia used the smoothened heuristic dry friction model that was used in the works in [35, Section
4]. He extended the application to two-dimensional dry friction forces on a plane. Xia introduced a friction direction
angle, which replaces the sign function used in the one-dimensional dry friction analysis. The wheel/rail kinematics
was calculated by his own routine WRKIN. For a description of the total model and the detailed formulation of the
dynamical system the interested reader is referred to Xia’s thesis [37].

Xia’s main results were described in the two bifurcation diagrams in Fig. 11. The left diagram was made for growing
speed and the right one for decreasing speed. The hysteresis is clearly visible. Below V  = 16 m/s the equilibrium solutions
found may be a set valued stationary motion or a combination of set valued stationary and periodic motions. A typical
result for such a motion is shown in Fig. 12. At the supercritical bifurcation from the ‘zero’ solution on the left diagram
a stable periodic solution develops. It only exists in a short speed interval after which it changes into a chaotic motion.
For decreasing speed the chaotic attractor is found all the way down to 21 m/s, where it disappears – probably in a
crisis. The maximum speed of the car in normal use is below 30 m/s–108 km/h. In Fig. 13 we show the chaotic lateral
displacements of the four wheel sets at V  = 29 m/s. As far as it is possible the results have been compared with tests of
the dynamics of a real hopper car on a railway line, and the test results agree well with the theoretical values.

Fig. 10. A cross-section of the wedge dampers in the three-piece freight truck.
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Fig. 11. Bifurcation diagrams for the Chinese hopper wagon. Left for increasing speed, right for decreasing speed.

Fig. 12. The motions of the leading wheel set of the leading bogie at speed V = 20 m/s. Top left: the longitudinal displacement, top right: the lateral
displacement, bottom left: the yaw angle and bottom right: the roll angle.

Xia used MATLAB for his calculations. The calculations were therefore very time consuming. The bifurcation
diagram in Fig. 11 needed one week of shared computer time on the cluster of the DTU Informatics department(!)

The entire dynamical system with its constraint equations is a differential-algebraic system with index-3. The
system was, however, transformed into an index-1 system by a differentiation with respect to time of the algebraic
stick-constraint equations in the system. The index-1 system was then integrated in the domains where the state variables
changed continuously by the Runge–Kutta solver ode45  from MATLAB because it is effective. The system is stiff,
and first the ode45  solver was used, and if it failed then an implicit method was used. Due to the discontinuities each
step of the integration of the system proceeded in eight steps with a loop. The details can be seen in Xia [37], where
also the detailed derivation of the switch conditions are found.
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Fig. 13. The lateral displacements of the wheel sets at the speed V = 29 m/s as a function of the distance after the transients are negligible. From top
to bottom: The leading wheel set in the leading bogie, the trailing wheel set in the leading bogie, the leading wheel set in the trailing bogie and the
trailing wheel set in the trailing bogie.

Fig. 14. The Hbbills 311 wagon.

5.2.  The  2-axle  freight  wagon  with  a  standard  UIC-suspension

Mark Hoffmann investigated the dynamics of two-axle European freight wagons with the UIC standard suspension
[11–13]. One wagon is shown in Fig. 14, and its long wheelbase of 10 m distinguishes the wagon from the majority of
two-axle wagons. The construction data were given to us from The German Railways, DB AG, in Minden. The UIC
suspension (see Fig. 15) consists of two double links that connect the car body with a leaf spring that rests on an axle
box. The links act as a pendulum suspension in both the lateral and longitudinal direction with combined rolling and
sliding friction with stick/slip in the bearings. When the lateral displacement of a link becomes large, then the lower
link will hit the bracket and the pendulum length will be halved for the further motion. The leaf spring damps the
vertical motions through dry friction sliding with stick/slip between the steel leafs of the spring, and it also acts with a
restoring force on the vertical motion through bending of the leafs. The mathematical model of the leaf springs that are
used on the wagons was formulated by Fancher et al. [6]. The dissipated work is measured by the areas of the hysteresis
loops created in the dry friction surfaces by the dynamics. Piotrowski [27] formulated the mechanical and mathematical
models for the action of the links (see Fig. 16) on the basis of measurements of the behavior of a real suspension in his
laboratory. They are shown in Fig. 17a and b. Piotrowski also gave values for the parameters in his models. Hoffmann
has demonstrated how accurately the measured hysteresis loop in the laboratory can be approximated by Piotrowski’s
model when the model parameters are chosen appropriately (see Fig. 18). The wheel sets are restrained by a guidance
plate with a dead band of 22.5 mm in the longitudinal and 20 mm in the lateral direction. The action of the guidances
is explained in Section 4 by True and Trzepacz. Hoffmann handles the non-smoothnesses in the dynamic problem
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Fig. 15. The UIC standard suspension.
Reproduced from the book ‘Laufwerke’, Transpress, 1986.

Fig. 16. The links of the UIC standard suspension.

Fig. 17. The link models.
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Fig. 18. A comparison between the mathematical model and the measured hysteresis loop.

through a definition of the switching boundaries and event detection. In Hoffmann’s model the car body and the axles
all have their own degrees of freedom, and the calculation of the instances of events when a trajectory hits a switching
boundary therefore becomes much more elaborate than was the case in our earlier examples.

The non-smoothness is due to the nature of the interacting forces, i.e., stick–slip transitions in the suspension
model, impacts between the axle box and axle guidance and discontinuities in the contact parameters for the wheel–rail
contact. Classical solvers are all based on the existence of the derivatives of the function F  (see Section 2). The non-
smoothnesses tend to have the following effect on the numerical method: (1) the numerical solution is simply inaccurate
because the progress of the solution is based on non-existing derivatives of F. This is a common situation for constant
step size integration schemes. (2) The simulation time is unacceptably high because the step size is forced down near
the non-smooth points in order to satisfy the specified error tolerance. This happens when integration schemes with
variable step size and error control are applied, but it is due to the lack of smoothness of the local error. The interested
reader is referred to Hoffmann’s thesis [11] for a deeper discussion of the solution of this problem.

Hoffmann illustrated the importance of the location of the events. He investigated a model hysteresis loop and
plotted the discrete solution points that were calculated by the ESDIRK34 NT1 solver with step and error control
and event location and compared the result with the discrete solution points that were calculated with the same solver
but without event location (see Fig. 19). The comparison between the figures clearly demonstrates the increase in the

Fig. 19. The time steps on the hysteresis loop.
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number of steps without the event location, which results in a larger computational effort. It should be noted that the
number of distinguishable points in the left hand corner in Fig. 19a, may be misleading, because several points may
be lying so densely that the eye cannot separate them.

It is also evident from Fig. 19a that the computation time would increase enormously if a solver with constant step
size had been applied. Such a solver will namely need a step size that is determined by the density of the points in the
corners in order to satisfy the given error tolerance. Since the step size is constant the solver must use the same step
size also in the integration along the linear sections.

Hoffmann compared the dynamics of the different types of freight wagons with UIC standard suspension. His
results were presented on time series plots and bifurcation diagrams. The dynamics is very complicated with set valued
stationary as well as periodic, multi-periodic and chaotic motions. He found subcritical and supercritical bifurcations
into the various kinds of behavior caused by shear force instabilities and nonlinear resonances as well as symmetry
breaking bifurcations. The interested reader is referred to Refs. [11–13].

The dynamical system is integrated with ESDIRK34 NT1 already mentioned in –Section 3.
The solution to the initial value problem is found by a piecewise integration strategy where each smooth section is

integrated separately. The isolated events are located during the integration and treated independently. It is crucial to
locate the non-smooth events during the integration. The events are determined by root finding of the event functions
that define the switching boundaries between the different states of the model. For the details of the procedure the
interested reader is referred to Hoffmann [11, Section 3.2].

Newton–Raphson’s method needs the Jacobi matrix of the dynamical system. In our case it is a sparse matrix with
68 ×  68 = 4624 elements of which very many are zero. Therefore the dependencies of the function F  are identified before
the integration starts, and only the non-zero elements are computed. The entries in the Jacobi matrix are computed
in a column-wise fashion because the relative kinematics and interacting forces that are computed for the relative
perturbations related to xj can be reused for all non-zero elements in the jth column.

6. Discussion  of  numerical  methods  and  challenges

The formulation of railway vehicle dynamical systems based on the physical principles (3) and (4) can be expressed
in the form of a general initial value problem (1). In general there will be no closed form solution except the trivial
state solution obtained at low speed and the models are typically both nonlinear and are subject to non-smoothness
(for example in wheel–rail contact and suspension forcing). From a practitioners viewpoint, to solve such systems
numerically demands the use of suitable numerical methods for the control of robustness, accuracy and efficiency.
These properties are essential and without them it can be difficult to establish improved insight into the critical model
behavior. A general class of numerical methods for solving (1) that have good support for local error estimation (for
use with step size controllers) and event detection for non-smooth problems is the one-step/multi-stage Runge–Kutta
methods.

The general class of m-stage Runge–Kutta (RK) methods for advancing (1) a single time step 	tn = tn+1 −  tn is
given as

gi =  xn +  	tn

m∑

j=1

aijF(gj, tn +  cj	tn; P)

xn+1 =  xn +  	tn

m∑

j=1

bjF(gj,  tn +  cj	tn; P)

(16)

The coefficients of a convergent numerical scheme are typically given in terms of a Butcher Tableau [3] defined in
terms of A  ∈  R

m×m, b  ∈  R
m and c  ∈  R

m. A Runge–Kutta method is said to be order p  if the local truncation error
behaves asymptotically as O(	tp) for fixed step sizes [23]. For computations one should only use methods which have
order p  > 1 in practice due to accuracy concerns. This rules out Euler’s explicit method. Local errors committed during
one time step using (16) will be O(	tp+1). Such errors can be estimated by comparing the computed approximate
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solution xn+1 to one computed using an embedded Runge–Kutta method. This local error estimate can for efficiency
reasons be based on the same intermediate Runge–Kutta stage values using the following formula

E(m) =  	tn

m∑

j=1

djF(gj, tn +  cj	tn; P) (17)

where d  ∈  R
m. If the local error estimate is used for variable step size control, it is often possible to significantly

improve efficiency over fixed step size time integration by using a variable step size controller that tries to maintain
a constant accuracy level. The use of step size control has the added advantage that at the same time robustness
is improved because thereby exponential growth of errors that may develop due to choices of step size will not be
permitted.

The local error should be compared to user-defined acceptable error tolerances, respectively, absolute εa and relative
εr levels of accuracy. In case of non-smoothness such local error estimates may become unreliable because local
smoothness and asymptotic behavior of the solution is assumed. For this reason, several time steps may be rejected
before the time step sizes have been reduced sufficiently for the error to be acceptable, in which case effort is wasted
but the accuracy is maintained.

Dynamical systems for railway vehicles can exhibit significant stiffness due to the presence of widely different
dynamical time scales in the models. For stiff systems, stability and not accuracy imposes a constraint on valid choices
of the step sizes and may require significant reductions in the step sizes for securing stability. Explicit numerical schemes
have bounded stability regions and therefore they may incur a performance penalty in such cases – in particular when
the step size is governed by stability needs rather than accuracy. For this reason, it is customary to choose implicit
solvers, which formally have large absolute (linear) stability regions. In practice, implicit Runge–Kutta methods require
for each time step finding a sufficiently accurate root of the nonlinear system G(z) = 0  for the vector of unknown

z =
(

gn+1
1 , .  . .  , gn+1

m

)
∈ R

2Nm. For stiff problems this is typically done using Newton–Raphson’s iterative method,

which can be expressed as a two-recurrence in the compact form

zk+1 =  zk +  �k,  �k =  −J−1rk,  k  =  0,  1,  . .  . . (18)

where J  =  ∂G(z)/∂z|z=zk is a Jacobian matrix of the system and rk = G(zk) is the residual of the nonlinear system in
the kth iteration. For non-smooth problems, the Jacobian matrix can be singular or ill-conditioned in a point and this
can be the cause of numerical problems if event detection is not used [11]. Reduction in solution effort per time step of
the Runge–Kutta method is typically achieved by exploiting properties in the coefficients of A  and/or using an inexact
constant approximation to J  in the inner solve step for determining �k ≈  zk −  z. However, this may be at the expense
of slowed down convergence rates and a resulting decrease in algorithmic efficiency which needs to be balanced by
improved numerical efficiency. A class of Runge–Kutta schemes that is subject to the idea of minimizing the work
effort per step and also have good stability properties are the ESDIRK methods. A suitable stopping criterion for the
Newton–Raphson method is based on making sure that a measure of the estimated errors �k in the inner loop of each
Runge–Kutta stage is sufficiently small for the errors committed in one complete Runge–Kutta step to be dominant.

A number of pre-packaged scientific solvers for the solution of systems of ordinary differential equations exist
(e.g., see http://www.netlib.org) but details will not be given. However, they will be referenced in the following where
appropriate.

Performance is another key concern for practical use of solvers. It can be useful to evaluate the performance of a
numerical scheme in terms of algorithmic and numerical efficiencies. The algorithmic efficiency is measured in terms
of iteration counts (successful/failed steps and function evaluations), and the numerical efficiency is a direct measure
of wall clock time. To compare alternative methods the step size history needs to be taken into account and a fair
comparison can be done by using the same step size control for each method together with a specification of the same
acceptable tolerance level. As an example, a recent investigation of the dynamics of the Cooperrider’s bogie model
shown in Fig. 2 has been performed on a straight track at V  = 40 m/s (not hunting) and V  = 120 m/s (hunting) using two
different RK methods with same step size control and different tolerance levels. In Fig. 20 we present computed results
obtained with the package SDIRK [25] which includes a PI step size control strategy (e.g., see [8]). The basic version
of the package contains the ESDIRK34 NT1 method by Nielsen–Thomsen [24] and the code has been extended to
include an Explicit Runge–Kutta–Fehlberg method ERKF34 [9], for use in combination with the existing PI controller
to make comparisons fair. A detailed breakdown of important performance characteristics is given in Table 1. It is
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Fig. 20. Computed results for lateral displacement of leading wheel set of Cooperrider’s bogie model for different user-defined absolute tolerance
levels. Using ESDIRK34 NT1 it is found that (a) the transient behavior is fully damped for εa = 10−4 and (b) periodic oscillations (hunting) are
captured for εa = 10−5. With ERKF34 it is found that (c) periodic oscillations (hunting) are captured already at εa = 10−4.

Table 1
Performances of the RKF34 and ESDIRK34 NT1 for solving a transient analysis of 20 s of a Cooperrider model hunting. The table shows the
absolute tolerance used, the method’s names, the wall clock time, the number of function evaluations, the number of Jacobian evaluations, the
number of accepted steps and the number of rejected steps. ESDIRK34 NT1 with tolerance 10−4 fails in detecting the hunting phenomenon.

εa Solver CPU time # Fun. ev. # Jac. ev. # Acc. # Rej.

10−4
ERKF34 15.34 s 74,505 12,617 6009
ESDIRK34 NT1 1.47 s 1181 112 90 20

10−5
ERKF34 21.25 s 130,389 22,989 9613
ESDIRK34 NT1 467.12 s 428,957 34,911 25,525 9385
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noticeable that the hunting phenomenon can be captured using the explicit ERKF34 but not the implicit ESDIRK34
at a tolerance level εa = 10−4. The reason is that the implicit method exhibits strong numerical damping of these high
frequency modes at this tolerance level. With a reduced tolerance level εa = 10−5 the implicit ESDIRK34 has reduced
numerical damping of the hunting modes and captures the phenomenon. However, it has a wall clock time which is
close to 22 times larger as a result of more work per step compared to the explicit solver for this tolerance level. This
result challenges the wide use of implicit methods instead of explicit methods. It also highlights the importance of
tuning the (usually user-defined) tolerance level to be able to resolve a physical phenomenon of interest. It demonstrates
that explicit solvers from a performance viewpoint can be more attractive for both efficient and accurate analysis than
an alternative implicit method of similar formal accuracy.

7. Lessons  learned

It is highly recommended to employ numerical schemes for dynamic railway vehicle simulations which employ
variable step size control for control of local errors (targets efficiency, robustness and accuracy), introduce the relevant
switching boundaries in the model formulations (targets accuracy and efficiency) and make use of event location for the
numerical solution of non-smooth dynamical problems (targets accuracy and efficiency). Final results should be subject
to convergence tests to rule out the possibility of errors, which may arise from the choice of too relaxed tolerance levels.
For numerical investigation of chaotic dynamics we have experienced that explicit solvers may have an advantage over
implicit solvers, because for accurate results the step size is bound by accuracy rather than stability requirements and
the explicit methods require less work per step for same formal order of accuracy.

The time spent with the formulation of the root finding method for determination of the events and of the laws that
apply in the events is a cheap investment in a numerical routine that then will operate much faster and yield reliable
results. If however the switching boundaries lie very close together in the state space other strategies may apply, see
e.g., Studer and Glocker [31], where a modified scheme is applied.
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1 Introduction

In coastal and offshore engineering it is important to design maritime struc-
tures that can withstand critical failures due to wave-induced loadings. The
most extreme wave induced-loadings can be estimated from direct measure-
ments, laboratory experiments and simulation-based tools which can account
for the wave kinematics sufficiently accurately. It is still common to predict
wave kinematics using numerical tools which have been validated by single or
few deterministic simulations and compared to idealized physical experiments,
e.g., in wave tanks. In an era with fast growing computing power, computa-
tional simulation tools are increasingly being used for engineering studies and
analysis. In particular, this trend is driven by improvements in hardware which
have seen a recent paradigm shift from single to many core computations. Par-
allel to this shift, there is an increased focus on making simulation tools more
reliable by estimation and reduction of uncertainty in results delivered by such
tools. This requires a shift from deterministic approaches to probabilistic ap-
proaches [35]. This is of immense importance for tools that are used for critical
decision support, risk management and risk analysis.

The research field of Uncertainty Quantification deals with mathematical
techniques that can improve engineering analysis in model-based simulation
tools. The goal is to deliver confidence intervals and estimation of probability
distributions of Quantities of Interest (QoIs) to describe the likelihood for the
QoIs to take a given value. The analysis of uncertainty in dynamical systems
can be split in four steps:

(a) Deterministic modeling and identification of Quantities of Interest (QoI)
and sources of uncertainty

(b) Quantification of uncertainty sources by means of probability distributions
(c) Uncertainty propagation through the system
(d) Sensitivity analysis

This work will deal with the first three of these steps, where classical bench-
marks, such as [1,10], will be used as deterministic models and different QoI
will be investigated for the different problems (step a). In coastal and off-
shore engineering, the QoIs are typically local wave statistics for average or
maximum heights, loads, etc. The analysis of such QoIs is useful for risk man-
agement aimed at reducing risk in design and operations. For example, in
structural engineering Ultimate Limits State (ULS) design are today based
on load and resistance factors determined using statistics obtained based on
measured data or experiments.

Due to the lack of data, some assumptions will be made about the proba-
bility distributions of the sources of uncertainty (step b), that in hydrodynam-
ics simulations are commonly inlet/outlet conditions (boundary conditions),
bathymetry data and structural positions (geometry). All these uncertainties
can be classified as epistemic [19], because they can in principle be reduced
either by better measurements and/or, in case of experimental tests, by more
accurate settings. The step (c) will be the main focus of this work, where the
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propagation of the probability distributions through the dynamical system
will be investigated. Traditional sampling techniques, such as Monte Carlo
methods, will be compared to modern techniques based on generalized Poly-
nomial Chaos [36]. Non-intrusive approaches such as Stochastic Collocation
and Sparse Grids will be preferred to intrusive approaches, due to the ability
of the former of re-using existing code, avoiding the need for re-engineering
existing software. The step (d) concerns with the identification of the sources
of uncertainty that give the biggest contribution to the uncertainty of the
QoI. This topic will not be covered here, but its application is based on all the
techniques used in (c).

Uncertainty quantification in coastal and offshore engineering is challenged
by the requirements of computational resources for single deterministic simula-
tions. Recent works [27] have explored the usage of Monte Carlo type methods
for the estimation of extreme responses. However, these methods show a very
slow convergence rate and even with the disruptive introduction of many-core
hardware and parallel simulation tools [13,12,17], they become quickly in-
tractable, because few simulations are affordable in general. Thus, techniques
with fast convergence, such as the Stochastic Collocation Method become very
important in this setting as well as in many other engineering areas dominated
by heavy computational requirements.

1.1 Paper contributions

We propose a stochastic formulation of a fully nonlinear and dispersive po-
tential flow model for efficient uncertainty quantification. We revisit classical
benchmarks and propose to use the stochastic collocation method for ensuring
that the ensemble of solutions can be generated independently using standard
deterministic solvers as black-box methods with tunable parameters. The out-
come is a set of stochastic benchmarks. The analysis reveals opportunities and
challenges in practical uncertainty quantification that needs to be addressed
for computationally intensive computer simulation and engineering analysis.

1.2 Paper organization

The paper will be organized as follows. In Section 2 we introduce the governing
equation for the deterministic description of nonlinear water waves based on
potential theory. In Section 3 we describe how a stochastic model can be for-
mulated, including a description of the Stochastic Collocation Method (SCM)
approach for creating approximate generalized Polynomial Chaos (gPC) surro-
gate models of the solutions. In Section 4, the effect of parametric uncertainty
in bathymetry and wave input are studied and numerical experiments are
compared for traditional sampling and SCM approaches.
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2 Mathematical formulation

We consider unsteady water waves described by a potential model for three-
dimensional fully nonlinear and dispersive free surface flows under the influence
of gravity. The flow is assumed inviscid and irrotational. It can, without sim-
plifications, be used for short and long wave propagation in both shallow and
deep water where viscous and rotational effects are negligible. The sea bed is
assumed variable and impermeable.

We introduce a Cartesian coordinate system (x, y, z) with (x, y) the hori-
zontal and z the vertical dimensions, where the z coordinate points upwards.
The functions h(x, y) and ζ(t, x, y) describe respectively the depth of the sea
bed and the free surface. The still water level is given by z = 0.

2.1 The deterministic model

The evolution of water waves over an arbitrary sea bed are described by the
kinematic and dynamic free surface boundary conditions1

∂tζ(x, t) = −∇ζ ·∇φ̃+ w̃(1 +∇ζ ·∇ζ), (1a)

∂tφ̃(x, t) = −gζ − 1

2

(
∇φ̃ ·∇φ̃− w̃2(1 +∇ζ ·∇ζ)

)
, (1b)

where ∇ = (∂x, ∂y). We will consider waves in a spatial domain D ∈ Rl (fluid
volume), l = 2, 3 and a time domain t ∈ [0, T ] with final time T > 0. For the
fluid volume, a Laplace problem defines the scalar velocity potential

φ = φ̃, z = ζ(x, t), (2a)

∇2φ+ ∂zzφ = 0, −h ≤ z < ζ(x, t), (2b)

∂zφ+∇h ·∇φ = 0, z = −h. (2c)

Using a classical σ-transformation

σ ≡ z + h(x)

d(x, t)
, 0 ≤ σ ≤ 1, (3)

the Laplace problem can be written as

Φ = φ̃, σ = 1, (4a)

∇2Φ+∇2σ(∂σΦ) + 2∇σ ·∇(∂σΦ)+

(∇σ ·∇σ + (∂zσ)
2)∂σσΦ = 0, 0 ≤ σ < 1, (4b)

n · (∇, ∂zσ∂σ)Φ = 0, (x, σ) ∈ ∂Ω, (4c)

1 The gravitational acceleration constant, g, is set to be 9.81 m/s2.
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where

∇σ = 1−σ
d ∇h− σ

d∇ζ, (5a)

∇2σ = 1−σ
d

(∇2h− ∇h·∇h
d

)
− σ

d

(
∇2ζ − ∇ζ·∇ζ

d

)
−

1−2σ
d2 ∇h ·∇ζ − ∇σ

d · (∇h+∇ζ) , (5b)

∂zσ = 1
d . (5c)

The relation between the scalar velocity potential function and velocity field
is

(u, w) = (∇+∇σ∂σ, ∂zσ∂σ)Φ. (6)

The governing equations can be solved in the setting of a numerical wave
tank and is then subject to initial and boundary conditions

ζ(x, t = 0) = φ(x, t = 0) = 0, ∂nζ = ∂nφ = 0, x ∈ ∂D\D̄FS , (7)

where wave generation and absorption is done using a line relaxation method
[21]. A complete derivation of the equations are given in [12]. These model
equations can be solved numerically using flexible-order finite differences [11,
13] and the massively parallel implementation [17] enables fast hydrodynam-
ics computations [12]. A fast solver is a prerequisite for enabling stochastic
analysis with acceptable time frames and can be used to deliver improved
engineering analysis in maritime applications.

2.2 The stochastic model

Following [36], a stochastic formulation is obtained by introducing ω ∈ Ω as
random input of the system defined in the probability space (Ω,F ,P), where
Ω is the sample space, F is a σ-field and P is a probability measure. This makes
the unknown solution a random process ζ(x, t, ω) : D̄FS × [0, T ]×Ω → R and
φ(x, t, ω) : D̄ × [0, T ]× Ω → R. D̄ is the closed spatial domain volume with
FS indicating the restriction to the free surface, D̄ = {x|x ∈ ξ}.

A parametrization of the stochastic model is required in order to solve it
numerically. A set of random variables Z : Ω → Rd, is introduced to charac-
terize random inputs, where d ≥ 1 is the stochastic dimension.

The stochastic reformulation of the deterministic system (1) is

∂tζ(x, t,Z) = −∇ζ ·∇φ̃+ w̃(1 +∇ζ ·∇ζ), (8a)

∂tφ̃(x, t,Z) = −gζ − 1

2

(
∇φ̃ ·∇φ̃− w̃2(1 +∇ζ ·∇ζ)

)
, (8b)

where for any realization of an uncertain sea state, the Laplace problem (2) is
fulfilled to obtain closure.
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Fig. 1: Possible topographies of the bottom floor in the submerged bar exper-
iment. Figures 1a and 1b show two realizations of the KL-expanded random
fields (9) with different correlation lengths a = 1 and a = 0.1 respectively,
where the total variance represented is ≥ 0.95.

2.3 Dimensionality reduction using the Karhunen-Loève Expansion

As an example, in the wave model, the bathymetry function describing still-
water depth can be uncertain and therefore be treated as a random field.
The Karhunen-Loève expansion (KLE) is a useful technique for dimension
reduction that can be used for the parametrization of such random fields [22,
30]. Let h(x, ω) be a spatially varying random field over a spatial domain Ω
with mean µh(x) and covariance function C(x1,x2) = Cov(h(x1, ω), h(x2, ω)).
Then the bathymetry function h(x, ω) can be parametrized as an infinite series

h(x, ω) = µh(x) +

∞∑

i=1

√
λiψi(x)Yi(ω), (9)

where E[Yi(ω)] = 0, Cov[Yi, Yj ] = δij and {λi, ψi}∞i=1 are the solutions of the
generalized eigenvalue problem

∫

Ω

C(x, s)ψi(s)ds = λiψi(x). (10)

If h(x, ω) is a Gaussian random field, then Yi ∼ N (0, 1).
For practical computations (9) is truncated at a desired order N . It is easy

to check how much of the variance of the original random field is retained by
such approximation, using that

Var [hN(x, ω)] = E
[
h2N (x, ω)

]
−E [hN (x, ω)]2

= E




N∑

i,j=1

√
λiλjψi(x)ψj(x)Yi(ω)Yj(ω)


 =

N∑

i=1

λiψ
2
i (x),

where the orthogonality of {Yi}Ni=1 is exploited. There are several options re-
garding the correlation kernel C(x1,x2). All these are problem dependent and
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an appropriate characterization of the random field has to be performed prior
to the construction of the KL-expansion. In this work, we will use the expo-
nential covariance kernel

C(x1,x2) = exp

(
−‖x1 − x2‖

a

)
, (11)

where a is the correlation length. Figure 1 shows realizations of the KL-
expansions of a 1D random field h(x, ω) for the submerged bar experiment
considered in section 4.1 with exponential covariance kernel and zero mean
for different correlation length a. The total variance represented by the KL-
expansions hN(x, ω) is fixed to 0.95 (the total variance of h(x, ω) with exponen-
tial covariance kernel is 1). In Figure 1a and 1b, fields with different correlation
lengths are illustrated. Shorter correlation lengths determine a slower decay
of the expansion coefficients in (9) and thus a longer expansion is required to
express higher local variability.

3 Uncertainty Quantification

In Uncertainty Quantification we are interested in studying the propagation
of uncertainties through the stochastic dynamical system (8). To reduce the
notation used, let u(x, t,Z) = [ζ(x, t,Z), φ̃(x, t,Z)]T . We are interested in
describing the stochastic result in terms of its probability distribution and/or
its first moments, e.g., mean and variance

E[u(x, t, z)] =

∫

Rd

u(x, t, z)dFz(z) =

∫

Rd

u(x, t, z)ρz(z)dz = µu(x, t), (12)

Var[u(x, t, z)] =

∫

Rd

(u(x, t, z)− µu(x, t))
2
ρz(z)dz, (13)

where ρz(z) and Fz(z) are the Probability Density Function (PDF) and the
Cumulative Distribution Function (CDF) of the random vector Z.

In this work we will focus exclusively on non-intrusive methods, which
require a minimal development effort. In particular the existing solvers are
considered as black boxes and the non-intrusive methods need only to be
wrapped around them. On the contrary, intrusive methods require the devel-
opment of new solvers based on mixed discretization of the stochastic and
the spatial models. These methods are usually better in dynamically adapting
to time-dependent problems [7,6,4,32,29] but their implementation is often
very demanding – sometimes prohibitive – for existing customized non-linear
solvers.

3.1 Pseudo-random sampling methods

Among the existent techniques for Uncertainty Quantification, the random
sampling methods are the most widely used. The most notable of these tech-
niques, is the Monte Carlo method, developed in the late 40s. It is based
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on the law of large numbers and it states that given the random vector
u : D̄ × (0, T ]× Rd → Rm and the functional g : Rm → Rm,

1

n

n∑

i=1

g
(
u(x, t, z(i))

)
a.s.−−→ E [g (u(x, t,Z))] =

∫

Rd

g (u(x, t, z)) dFz(z), (14)

for n → ∞. In the definition above
{
z(i)

}n

i=1
is a ensemble of samples drawn

from the probability distribution of Z and a.s. stands for almost surely imply-
ing convergence in probability. The implication of this property is that the real-
izations are always assumed meaningful. For g1 : u 7→ u and g2 : u 7→ (u−µu)

2,

E [u(x, t,Z)] = E [g1 (u(x, t,Z))] ≈
1

n

n∑

i=1

g1

(
u(x, t, z(i))

)
= µ̄u(x, t),

(15)

Var [u(x, t,Z)] = E [g2 (u(x, t,Z))] ≈
1

n

n∑

i=1

g2

(
u(x, t, z(i))

)
= σ̄2

u(x, t).

(16)

The probabilistic error of these approximations is reduced asymptotically as
O (1/

√
n) for number of realizations growing, i.e. n → ∞. In spite of this

slow convergence rate, Monte Carlo methods are widely used [27] due to their
robustness, ease of use and to the fact that they do not suffer the curse of
dimensionality, i.e., their convergence rate is independent from d. Due to all
these properties, MC method is useful to generate reference solutions and for
comparison with other techniques, but not for intractable problems that re-
quire significant effort. Thus, with the present technology, MC method cannot
be used for all problems despite its robustness.

The slow convergence rate means that the ensemble size needed to resem-
ble the target distribution must be large. Improvements of the Monte Carlo
method have been proposed in order to cover more uniformly the stochastic
domain, obtaining improved convergence rates, not always in the worst case
scenarios, but in the average scenarios.

One of these methods is the Latin Hyper Cube method (LHC) [25], where
the stochastic domain is divided in n equiprobable bins along each dimension
and samples are taken such that each bin contains only one sample. This
produces an ensemble that covers more uniformly the stochastic space and
provides a better convergence rate in the average cases, even if the worst case
convergence rate remains O (1/

√
n). A drawback of LHC is that the sample

size need to be known a priori, and thus it is not suitable for incremental
sampling.

An other notable method is the Quasi Monte Carlo (QMC) [26], where
low discrepancy sequences of points are generated such that the domain is
uniformly covered. The convergence rate of QMC is improved to O(ln(n)d/n),
but the stochastic dimensionality of the problem becomes important.
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3.2 Deterministic sampling methods

In the following we will handle functions with finite variance, i.e. belonging to
the weighted L2

ρz
space defined as

L2
ρz

=

{
f : Rd → R

∣∣∣∣
∫

Rd

f2(z)ρzdz = Var[f(Z)] <∞
}
, (17)

with inner product and norm defined as

(f, g)ρz
=

∫

Rd

f(z)g(z)ρzdz , ‖f‖ρz
=

√
(f, f)ρz

. (18)

For many standard distributions with density ρz, we can find {Φi(z)}Ni=0 ⊂ PN

that form a basis for L2
ρz

[38,37]. If the distribution is not standard, but has
a density, then one can still use Gram-Schmidt orthogonalization to create
suitable polynomials (see [16,15]). We can then define a projection operator

PN from L2
ρz

onto span {Φi(z)}Ni=0 as

f(z) ≈ f̃(z) = PNf(z) =

N∑

i=0

f̂iΦi(z), f̂i =
(f, Φi)ρz

‖Φi‖ρz

. (19)

This provides an approximation f̃ of the target function f that is known as
the generalized Polynomial Chaos (gPC) expansion of f . This gPC-expansion
can be thought as a surrogate function of f . The computation of statistics
from such surrogate function can be done easily. For example,

E[f(z)] ≈ E[f̃(z)] = f̂0, (20)

Var[f(z)] ≈ Var[f̃(z)] =
N∑

i=1

f̂2
i ‖Φi‖2ρz

, (21)

where orthogonality of the basis {Φi(z)}Ni=0 is exploited.

The convergence of the polynomial approximation in (19) is spectral (super
linear) if f is a smooth function and otherwise algebraic, cf. [16,5]. In order
to obtain the surrogate model in (19), we are left with the computation of the

coefficients f̂i in (19). These can be obtained by means of two methods: the
Galerkin method, where a reformulation of (8) in terms of stochastic modes

is required, or the Collocation method, where approximations of f̂i’s are ob-
tained by solving (8) on carefully selected points in the stochastic space. The
Galerkin method is intrusive, i.e. the problem needs to be reformulated, thus
it is cumbersome to be carried out for complex systems and will not be covered
in this work (see [37,24] for an introduction to stochastic Galerkin methods).
On the contrary the collocation method is non-intrusive and thus any existing
deterministic solver for (1) can be used without modification.
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3.2.1 Stochastic Collocation Method

The idea of the stochastic collocation method is to produce an ensemble of
solutions u(j), i = 1, ...,M obtained by deterministically solving the gov-
erning equations (8) subject to carefully selected choices of M parameters
SN = {z(j)}Mj=1 in the stochastic domain, in order to enable high accuracy
in the evaluation of the coefficients of the gPC-expansion (19). An alterna-
tive approach is the interpolation method, but this is out of the scope of this
work (see [37,24]). In order to simplify the notation in the following, we start
considering functions of one stochastic parameter in the L2

ρz
space (17), i.e.

d = 1.
A set of orthogonal polynomials {φi(z)}Ni=0 that form a basis for L2

ρz
can

be found as explained in the preceding section. The expansion coefficients in
(19) can then be found approximately as

ûi =
(u, φi)ρz

‖φi‖ρz

=

∫
R u(z)φi(z)ρz(z)dz∫

R φ
2
i (z)ρz(z)dz

≈
∑M

j=0 u
(
z(j)

)
φi

(
z(j)

)
w(j)

∑M
j=0 φ

2
i

(
z(j)

)
w(j)

, (22)

where
{(
z(j), w(j)

)}M

j=0
are Gauss-type quadrature points that can be readily

obtained using the Golub-Welsch method [18]. These rules are exact when the
integrand have a polynomial order up to 2M + 1. The method is thus fully
non-intrusive, since only deterministic solutions at particular points of the
stochastic space are needed. This procedure differs from the classical Monte
Carlo method only by the sampling technique used to select collocation nodes
in the associated stochastic space.

Let now Z : Ω → Rd be a vector of independent random variables Z1, . . . , Zd

with densities ρz1 , . . . , ρzd . It holds that ρz(z) =
∏d

i=1 ρzi(zi), due to the in-
dependence condition. A possible set of basis functions for L2

ρz
is given by

{Φi}max i≤P where i = (i1, . . . , id) is a multi-index and

Φi(z) = φi1 (z1) · . . . · φid(zd). (23)

This construction includes P d basis functions and is more accurate than the
required order P . An alternative set of basis is given by {Φi}P|i|=0, where |i| =
∑d

j=1 ij. For this set of basis

dim
(
span {Φi}P|i|=0

)
=

(
N + d
N

)
, (24)

that is more tractable than P d. The computation of the coefficients in the
multidimensional gPC-expansion is again possible using Gauss-type quadra-
ture rules. Both of these constructions are based on the tensor product of 1-
dimensional rules and thus are computationally expensive: for a 1-dimensional
quadrature rule using M points, the d-dimensional cubature rule uses Md

points. This effect is called curse of dimensionality.
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Fig. 2: A tensor grid and a sparse grid of order l = 5 based on Fejér’s quadra-
ture rule [14,33]. On the right it is illustrated how the number of quadrature
points scale with respect to d for l = 5.

Before addressing the curse of dimensionality, we need first to observe that
quadrature rules based on the zeros of orthogonal polynomials are not nested
in general, meaning that the quadrature points Θl based on the polynomial
of order l are not in Θl′ , with l′ ≥ l. This property is important in practical
calculations in case we would like to increase the accuracy but we don’t want to
waste results already computed. Common choices of nested quadrature rules
are the Clenshaw-Curtis and Fejér’s [8,14,33], that uses the maxima of the
Chebyshev polynomials as quadrature points, and the Kronrod-Patterson rules
[20]. With appropriate scaling, this quadrature rule works on the bounded
interval [0, 1] with a probability density function ρ(z) = 1, corresponding to the
uniform distribution. In general we will have to compute integrals as in (22),
where ρz does not need to be the uniform density function. However, using the
fact that the CDF Fz is bijective, we can use a variable transformation s.t.

∫

R
f(z)ρz(z)dz =

∫ 1

0

g(x)dx, g(x) ≡ f(F−1
z (x)). (25)

Using these nested rules, we can attempt to alleviate the curse of dimen-
sionality. One particularly successful approach is given by Sparse Grids (see
[28,9] for details). The idea is not to take the complete tensor product of the
1-dimensional grids, but only products up to the desired order for each stochas-
tic dimension, very much alike the construction of the set of basis {Φi}P|i|=0.
This procedure assumes a certain level of separability of the function, meaning
that the cross-contribution of the parameters is lower than the contribution of
the parameters considered separately. Figure 2 shows a comparison of tensor
grids and sparse grids. From figure 2c we can see that the gain given by sparse
grids over tensor grids increases with the stochastic dimension d. Using sparse
grids the curse of dimensionality is alleviated, even if good accuracy in high
dimensions is still a demanding task.
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4 Uncertainty Quantification in Nonlinear Water Wave Simulations

We now use the stochastic formulation given in (8) to describe the stochastic
evolution of water waves. We seek the stochastic free surface position ζ(x, t,Z)
and the stochastic velocity potential φ̃(x, t,Z). For both the Monte Carlo
approach and the Stochastic Collocation method, we need to solve (8) at a

set of points
{
z(i)

}N

i=1
, producing the ensemble of solutions

{
ζ
(
x, t, z(i)

)}N

i=1
, and

{
φ̃
(
x, t, z(i)

)}N

i=1
. (26)

The sampling strategy depends on the particular method chosen. Furthermore,
the Stochastic Collocation Method constructs surrogate functions

ζ(x, t,Z) ≈ PNζ(x, t,Z) =
∑

|i|≤N

ζ̂i(x, t)Φi(Z), (27a)

φ̃(x, t,Z) ≈ PN φ̃(x, t,Z) =
∑

|i|≤N

ˆ̃
φi(x, t)Φi(Z), (27b)

that provide an easy way to compute statistics and to reproduce the PDFs of
the solution variables.

In the following, we revisit two classical benchmarks to illustrate how uncer-
tainty quantification can be done efficiently. Even if both Monte Carlo method
and Stochastic Collocation method have been employed, due to space con-
straint, only the figures obtained using SCM will be shown. In all the cases
presented the results agree for the two methods and SCM shows faster con-
vergence and thus requires much fewer realizations, resulting in reduced CPU
time.

4.1 Harmonic generation over a submerged bar

We now consider an experimental setting originally proposed by Beji and Bat-
tjes (1994) [1]. In the experiment a nonlinear wave propagates across a sub-
merged bar. In the process the bound wave harmonics are decomposed into
free harmonics which are released on the lee side of the bar and causes a
transformation of the initial wave profile as described in [2]. It is generally
accepted that the experiment can be reproduced within engineering accuracy
by a verified deterministic wave model such as (1), which describe both the
nonlinear and dispersive effects accurately. However, calibration details and
measurement errors are not included in the public report by Beji and Battjes.
Therefore, in the following, we will assume uncertainties and detail how these
can be accounted for in the stochastic simulations.

To analyze the wave evolution we use the bottom topography of the exper-
iments shown in figure 1. We consider the setup corresponding to Case A in
the original experiments [2], where the input wave signal is defined by a wave
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Fig. 3: Deterministic solution of the submerged bar experiment at eight dif-
ferent gauge locations. The experimental data are due to Luth et al. [23].

period T = 2.02s and a wave height H = 2cm. In the numerical solver the
input waves are generated using Stokes second order theory.

The shape of the bar and the shape of the incoming wave influence the
spectrum of the waves that reach the right end of the domain as analyzed
in [2]. In the following different sources of uncertainties are considered and
the results are compared with deterministic results often presented in existing
literature as well as to the experimental measurements due to Luth et al. [23].

4.1.1 Deterministic results

As a conventional mean for validation of the numerical wave model, we com-
pare with the experimental measurements at eight gauges positioned in the
wave tank. The results of this comparison are presented in Figure 3, where the
bathymetry used is the exact bathymetry illustrated in figure 1. The results
have been computed with the parameters of the experiment given in table 1.
These parameters will be changed in the following to reflect single realiza-
tions of uncertain parameters. Clearly, the computation and the experiments
match qualitatively very well, however there are noticeable discrepancies be-
tween the numerical calculations and the experimental data. For example, the
wave heights and phases are not exactly reproduced at the first and second
measurement stations. Discrepancies in the wave signal are observed at the
high peaks in measurements from stations 5, 7 and 9, and in the low and
intermediate peaks of station 6. The numerical calculations are done using
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Description Variable Value

Bar height from bottom hbar 0.3m
Bottom floor hb −0.4m
Entering wave length T 2.02m
Basin Length 29.0m
Gauges positions {4.0, 10.5, 13.5, 14.5, 15.7, 17.3, 19.0, 21.0}

Table 1: Nominal values and experimental settings used for the deterministic
solution of the water wave problem.

a high-order accurate numerical method [11] with sufficient resolution to ac-
curately resolve the dispersion and nonlinear wave effects, and are therefore
assumed to be converged to a grid-independent solution. The absorption zone
introduced behind the bar has been defined so that minimum wave reflections
occur. However, discrepancies between experiments that are due to uncertain-
ties in the measurement data or experimental setup are not taken into account
in the numerical results. This motivates the studies in the following, where we
will investigate the effects of taking into account the uncertainty in the model
input.

4.1.2 Uncertain still water height

A very difficult parameter to be controlled when experiments in a manufac-
tured basin are performed, is the exact height of the still water. In particular
the accuracy of the measured height is sensitive to fluctuations, evaporation
and spill of water. Here we use the truncated normal distribution

hb ∼ trN (0.3m, 0.01252m2, [0.375m, 0.425m]) (28)

to represent the fact that large defects in the water height can be detected
and corrected.

Figure 4 shows the mean and standard deviation of the solution computed
with SCM with 11 realizations. We can notice that the mean value seem not
to follow the experimental solution on top and downstream of the bar. To
shed more light on the characteristics of the distribution of the solution, we
need to look at its PDF. We can use the surrogate model (19) of the solution,
obtained by the SCM, to evaluate a high number of approximate realizations
of the model with insignificant computational burden. We generate in this way
104 realizations sampled from the distribution (28). The surrogate solutions
are then organized in histograms and which are shown in figure 5. In spite
of being generated by a Gaussian input uncertainty, the distribution of the
solution is not Gaussian and higher statistical moments have developed during
the propagation of such uncertainties. In particular we can see that at certain
times, the distribution is even bimodal due to an uncertain phase shift.

The quality of the surrogate model (19) can be checked inspecting the
decay of the expansion coefficients (19). If the solutions change smoothly in
the parameter space (hb), then the convergence is expected to be very fast,
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Fig. 4: Mean (solid line) and standard deviation (shaded) of the solution of the
submerged bar experiment with hb ∼ trN (0.3m, 0.01252m2, [0.275m, 0.325m])
at the different measurement locations, obtained by the SCM with 11 realiza-
tions. The experimental data (dashed) is also shown.

in the best case spectral [5]. Figure 6 shows the time varying values of the
coefficients in the log10 scale. We can notice a clear periodicity in the values
of the coefficients. This highlights that the expansion order needed to reach a
required accuracy may vary over time and care should be taken to select an
appropriate expansion order for the analysis to be accurate.

The convergence rates of the MC and the SCM methods are shown in
Fig. 7a. Here, for each gauge, the L2 error in the estimated time-varying
mean is computed against an highly accurate reference solution obtained using
SCM with polynomial order 20. The convergence is shown in terms of num-
ber of function evaluations. Assuming that the computational complexity of
the deterministic problem is mildly dependent on the examined parameters,
the number of function evaluations is linear to the CPU time required. We
can recognize the convergences on the first two gauges which are significantly
faster. The MC method shows its characteristic slow convergence, while the
SCM exhibit spectral convergence.

4.1.3 Uncertain input wave length

A parameter which is difficult to reproduce accurately in practical experiments
is the input wave signal. An accurate representation of the wave signal requires
that the wave maker displacement and the wave amplitudes are matched. This
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Fig. 5: Probability distributions of the time-varying solution of the submerged
bar experiment with hb ∼ trN (0.3, 0.01252, [0.275, 0.325]) m at different mea-
surement locations. These results are obtained by the SCM with 11 realiza-
tions. The thick black lines show the experimental results at the different
gauges, while the dashed lines show the 95% confidence intervals.

can be difficult to achieve in practice, especially for nonlinear wave signals, and
may lead to harmonic generation. To illustrate how such uncertainty in the
signal can be accounted for, we use

T ∼ N (2.02s, 0.012s2) (29)

to represent the uncertainty due to the generation of the input waves.
Using the surrogate model provided by (19), we can reproduce the time

dependent probability distribution of the solution shown in figure 8. We can
observe that the uncertainty on the input wave length gives a relatively small
contribution to the uncertainty of the solution. A comparison of the conver-
gence of the MC method and the SCM method is shown in Fig. 7b.

4.1.4 Two dimensional uncertainty on wave length and water height

In many practical cases uncertainty does not enter a dynamical system only
through one coefficient, but as a combination of multiple uncertainties. The
still water height and the input wave length enter the system independently,
however they will have a combined influence on the uncertainty of the solution.
We will use the distributions (28) and (29) as in the previous examples. We
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Fig. 6: Decay of the gPC-expansion coefficients in (19). The time varying
coefficients values are shown in the log10 scale according to the colors in the
color bar.

expect the variance of the solution to increase due to the higher quantity of
uncertainty allowed in the system. Figure 9 shows the time dependent distri-
bution function of the solution. We can observe that the obtained uncertainty
is not merely the superposition of the uncertainties obtained in the one di-
mensional cases (see fig. 5 and fig. 8), but is increased due to the interaction
between the two. This effect will be more evident through the observation of
the coefficients in the gPC expansion (19).

High order cubature rules of order 20 were used in the gPC method. This
expansion order was found sufficient to get enough accuracy in the construction
of the surrogate function (19). Figure 10 shows the decay of the projection
coefficients in relation to both the input uncertainties. A total independence of
the two parameters in the influence of the system would produce an expansion
(19) where all the non-zero coefficients f̂i are the ones with i = (i, 0) or i =
(0, j), i, j = 0, . . . , 20. This corresponds to have decays similar to the one shown
in the first upper-left plot in figure 10. The next plots, however, show that the
two input uncertainties act on the solution in non-trivial ways when combined.
This means that the results of the UQ analysis on the two separate sources,
cannot be trivially superposed, but they need to be considered together in a
unique UQ analysis. Furthermore, the application of Sparse Grids on this case
would suffer from this property which corresponds to the lack of separability
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Fig. 7: Convergence rate of the MC method and the SCM method. The L2

error of the approximation of 10s of simulation is computed against an highly
accurate reference solution of order 20. The different lines belong to different
gauges. The MC method exhibit its slow convergence of O(1/

√
N). The SCM

method shows spectral convergence.

of the function of interest. Methods which allow a sparse sampling in these
situations are still lacking in the scientific literature.

4.1.5 Uncertain bottom topography

The topography of the basin is often precise in experimental settings, but
rarely for real sites. Small discrepancies with respect to the ideal design can
still be present. We will model these discrepancies using a Gaussian random
field added on top of the deterministic basin, as shown in figure 1. In particular
we will consider a Gaussian random field with exponential covariance (11) and
with correlation length a = 1.0. The mean of the field is set to be the nominal
bottom topography and the total variance of the field is set to σ2 = 0.012.
One realization of such random field is shown in figure 1a. With this model
we try to capture small macroscopic errors in the slope of the basin’s bottom.
The random field is expanded using the KL-expansion (9), capturing 95% of
the total variance of the field. This results in a truncated KL-expansion with
3 terms.

The Sparse Grid method introduced in Section 3.2.1 is used here with
order l = 3 to compute mean and variance of the free surface profile at the
eight measuring stations. Figure 11 shows the results obtained using only 19
realizations of the deterministic model. We can see that the uncertain bottom
topography considered plays an important role in the wave transformation
downstream of the bar, even if the random field considered has a relatively
long correlation length and small variance.
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Fig. 8: Probability distributions of the time-varying solution of the submerged
bar experiment with input wave length T ∼ N (2.02s, 0.012s2) at different
measurement locations. The thick black lines show the experimental results at
the different gauges, while the dashed lines show the 95% confidence intervals.

4.2 Harmonic generation over a semi-circular shoal

Extending the analysis to the full three dimensional problem we will proceed
to the experiments of Whalin [34]. The experiments consists of a regular wave
propagating over a semi-circular shoal, see figure 12a. The shoaling process
transfer energy between the bound harmonics but, in contrast to the sub-
merged bar case, the harmonics remain bounded and refraction adds complex-
ity to the solution. The Whalin experiments have become standard bench-
marks for dispersive wave models regardless of a rather substantial scatter
present in the experimental data. We will look into the case of of incoming
waves with height H = 0.015 m and period T = 2 s. For this case most numer-
ical models tend to over predict the amplitude of the second harmonic. As the
present model is able to accurately capture all the major phenomena taking
place in the experiments we are interested to see what level of uncertainty this
corresponds to in the experimental values.

The deterministic numerical solution is computed for t ∈ [0, 50] and then
compared with the experimental measurements of the magnitude of the first
three harmonics at different measurement locations through the center plane.
Figure 12b shows the fitting of the numerical solution to the measurement
data. The aim of the next sections is to study how the uncertainty in some
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Fig. 9: Probability distributions of the time-varying solution of the submerged
bar experiment with with uncertain still water height hb and wave length T , at
different measurement locations. The thick black lines show the experimental
results at the different gauges, while the dashed lines show the 95% confidence
intervals.

experimental parameters can influence the results. Without presumption of
causality, this analysis can highlight parameters that can influence results more
deeply than others. The computational cost of solving the full three dimen-
sional problem calls for efficient UQ methodologies that require the minimum
number of simulations to make analysis practically feasible.

4.2.1 One dimensional uncertainties

Building up on the experience acquired on the two dimensional case and from
experimental knowledge, we will focus our attention to the two parameters that
are most difficult to match, namely the input wave period and height. Due to
the lack of information about how accurate experiments can be, we will assume
that the input parameters are described by a Gaussian distribution and we will
try to evaluate how sensitive the system is to single uncertainties, and, in the
next section, to the combination of the two. We will model the wave height
and the wave period with Gaussian distributions centered on their nominal
values and with 5% standard deviation.

A stochastic collocation approach with estimation of the generalized Poly-
nomial Chaos expansion (19) is adopted, with the order dictated by the accu-
racy required. Figure 13 shows the mean and the 95% confidence interval as
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Fig. 10: Decay of the 2-dimensional gPC-expansion coefficients in (19) for the
last integration time at different measurement locations. The coefficient values
are shown in the log10 scale according to the colors in the color bar.

well as the space-dependent distribution of the harmonics and the fitting with
the experimental data.

4.3 Two dimensional uncertainty

The same problem setting is now investigated with uncertainty on the wave
height and period at the same time. The same distributions used in the one
dimensional setting are used here for the uncertainty sources. The Stochas-
tic Collocation Method of order 5 is used to compute the space dependent
probability distribution of the first three harmonics of the propagated wave.
A total of only 36 deterministic simulations are required to obtain the desired
approximation.

Figures 14 shows the space dependent mean and 95% confidence inter-
val of the first three harmonics, as well as their space dependent probability
distribution. Again we can notice that the resulting uncertainty – measured
in variance of the solution – is not the mere superposition of the variances
obtained with one dimensional uncertainties (see fig. 13). The probability dis-
tribution of the first three harmonics seem now to include the experimental
measurements within some high probability region.
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Fig. 11: Mean (solid line) and standard deviation (shaded) of the solution of
the submerged bar experiment with the bottom topography described by a
Gaussian random field with Ornstein-Uhlenbeck [31] covariance function at
the different measurement locations. The experimental data (dashed line) is
also shown. The results are obtained using the Sparse Grid method with 19
function evaluations.
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Fig. 12: Deterministic solution of the wave propagation in three dimensions.
The first three harmonics of the numerical solution (full lines) for the center-
line are compared with the corresponding experimental measurements at dif-
ferent longitudinal locations in the basin (dots).
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(a) Wave Height
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(b) Wave Period

Fig. 13: Reconstructed space-dependent probability distribution function of
the three harmonics of the solution of the Whalin test with one dimensional
uncertainty. The white line shows the space-dependent mean, while the dashed
lines show the 95% confidence interval around the mean. The scattered dots
show the experimental data results.
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Fig. 14: Space-dependent probability distribution function of the Whalin test
with two-dimensional uncertainty. The white solid line represent the mean
for the three harmonics. The dashed lines show the 95% confidence interval
around the mean. The scattered dots are the experimental measurements.
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5 Conclusions

The Stochastic Collocation method (SCM) for Uncertainty Quantification
(UQ) has been applied to a variety of stochastic wave problems, where the
stochastic parameter space is low-dimensional. Numerical experiments have
been carried out adopting often used standard benchmarks for wave models
to create new stochastic benchmarks. The type of uncertainties accounted are
those that are likely to appear in experimental settings, such as the input
wave characteristics, the water height, and the topography of manufactured
basins. With the aim of constructing stochastic benchmarks, we made reason-
able assumptions regarding the distribution of such uncertainties, that would
otherwise need to be characterized by extensive measurements or by a better
description of the believed distributions. The focus in this work is toward the
approximation of the probability distributions of observable Quantities of In-
terest (QoIs) and the exploration of the available methods able to reach this
goal with the lowest computational burden.

The UQ methods selected here are all designed to tackle types of problems
where obtaining a single deterministic solution is computationally expensive.
The SCM, in its tensor form or in a sparse grid form, allows for high accuracy,
due to the possibility of spectral convergence of the approximation, using a
small number of deterministic solutions of the problem, that are obtained in a
non-intrusive way. This allows the adoption of existing solvers, whose source
code might be complex or not even available. In this work we use a high-order
finite difference method for a fully nonlinear and dispersive medium-scale water
wave model [11]. Thanks to the advent of High Performance Computing [12],
large-scale water wave simulations are becoming more and more efficient and
are subject of ongoing research.

On the downside of the SCM there is the fact that it is only suitable for
problems with a low-dimensional stochastic space. Reminding that each prob-
lem has its own peculiarities (e.g. stochastic dimension, deterministic compu-
tational complexity, etc.), we are aware that as the stochastic dimension in-
creases, the number of required solutions of the deterministic model increases
more than polynomially, getting quickly not feasible. At the current state of
research, these cases must be addressed using pseudo-random sampling tech-
niques, whose convergence is slow but independent from the stochastic dimen-
sionality. It is however important to remind that the latter techniques aim at
the approximation of the output distribution through the approximation of
its moments and this gets increasingly expensive if the target distribution has
many non-zero high moments.

It is also important to observe that not all high-dimensional problems are
really high-dimensional. One case was shown for the uncertain bottom topog-
raphy in the submerged bar experiment, where the random field describing
the perturbation of the topography has some regularity properties and can be
parametrized via the KL-expansion, transforming an ideally infinite dimen-
sional problem to a finite dimensional one.
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The analysis performed on the new stochastic benchmarks show that the
uncertainties on the input wave characteristics and the bottom topography
have indeed a relevant effect on the free surface solutions. These effects are
amplified when these uncertainties are considered simultaneously, leading to
a non trivial transformation of the input probability distribution. The results
of such analysis can be considered when explaining some of the discrepancy
between numerical solutions and experimental results. In ongoing works we
are considering problems with higher stochastic dimensions, resorting to novel
techniques for deterministic sampling, such as Adaptive Sparse Grids [9] and
Spectral Tensor Train decomposition [3].

The frameworks for random sampling2 and for SCM3, as well as the results
obtained in this work4, are made available on-line and are general enough to
be applied on both small-scale and large-scale problems with no additional
implementation burden.
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SPECTRAL TENSOR-TRAIN DECOMPOSITION
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Abstract. The approximation of high-dimensional functions with surrogates is of key importance for the advance
of uncertainty quantification and inference. We propose the construction of surrogate functions using a novel spectral
extension of tensor-train decomposition and we provide error estimates for surrogate functions based on projection
and interpolation. To this end, we define the functional version of the tensor-train decomposition and we use its
properties to prove that the differentiability properties of the target function are preserved by the decomposition. The
linear scalability with respect to the dimension of tensor-train decomposition is coupled with the spectral convergence
rate of polynomial approximation, obtaining a method that is accurate and addresses the curse of dimensionality at
the same time. The tensor-train decomposition of high-dimensional functions is obtained by the sampling algorithm
TT-DMRG-cross, leading to a number of function evaluations that increases linearly with the dimension. To assess the
properties of the method, the spectral tensor-train decomposition is applied on the Genz functions up to dimension
d = 100. A new set of Genz functions is proposed, for which the difficulty of the approximation does not decrease with
the dimension. The new method is additionally tested on an ad-hoc functions with mixed Fourier modes and local
features, in order to highlight strengths and weaknesses. Finally the method is used to construct an approximation
of the elliptic equation with random input data, where the diffusivity is modeled by a log-normal random field. The
software and examples presented in this work are available on-line1.

Key words. Approximation theory, tensor-train decomposition, orthogonal polynomials, uncertainty quantifica-
tion.

AMS subject classifications. 41A10, 41A63, 41A65, 46M05, 65D15

1. Introduction. High-dimensional functions appear frequently in engineering applications,
where quantities of interest (QoIs) may depend in non trivial ways on a large number of variables.
Problems with ten or more variables become quickly intractable with traditional approximation
methods. In this work we will address this problem, by extending the discrete tensor-train format
[31] with the spectral theory for polynomial approximation.

Problems involving the approximation of high-dimensional functions can be found in the field
of Uncertainty Quantification, where parametric stochastic partial differential equations need to be
solved and the number of stochastic parameters can exceed the hundreds or even the thousands. In
particular the usage of approximations is important when the high-dimensional function is compu-
tationally expensive and its evaluation is required at many points in the high-dimensional space.

For a high-dimensional function f : [a, b]d → R, the traditional approximation approach is based
on its projection onto the space spanned by the tensor product of basis functions {φij (xj)}

nj
ij=1 ⊂

L2([a, b]) for j = [1, . . . , d], obtaining:

(1.1) f '
n1∑

i1

· · ·
nd∑

id

ci1,...,id (φi1 ⊗ · · · ⊗ φid) .

This approach quickly becomes impractical as the dimension d increases, due to the exponential
growth in the number of coefficients ci1,...,id and the computational effort (i.e., number of function
evaluations) required to compute them. This effect is known as the curse of dimensionality.

Attempts made in order to tackle the curse of dimensionality are all based on some assumptions
on the separability of the high-dimensional function to effectively reduce the number of unknown
coefficients. For example, one of the most successful methods is the adaptive pseudospectral func-
tion approximation based on Smolyak Sparse Grids [1, 34, 8, 9, 13]: instead of taking the full tensor
product of the basis functions as in (1.1), we consider a subset of admissible indices [8, 9] – where
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‡Massachusetts Institute of Technology, Cambridge, MA 02139 USA
1https://pypi.python.org/pypi/TensorToolbox/
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admissible means that they need to fulfill a mutual condition in order to make the Smolyak con-
struction work – and project the function f onto the space spanned by the corresponding basis. The
list of admissible indices can be increased to meet user defined accuracy requirements.

Other attempts use the concept of multiplicative and additive separability of a function, solving
a minimization problem to find, for example, the approximation

(1.2) f '
r∑

i=1
γi,1 ⊗ · · · ⊗ γi,d,

where γi,1, . . . , γi,d : [a, b]→ R, for i = 1, . . . , r. We will discuss this approach and its drawbacks in
Section 2.1.

In this work we will use and extend the tensor-train decomposition (TT-decomposition) [31]
for the approximation of high-dimensional functionals. Also the TT-decomposition is based on the
concept of separability, but it builds its format in a hierarchical way, solving many of the drawbacks
of other tensor decompositions. We will use classical polynomial approximation theory to extend the
discrete TT-decomposition, in order to construct a low rank approximation of f . To do this, we will
develop the functional counterpart of the tensor-train decomposition and highlight its convergence
properties. In particular we will prove that this approach can be applied to a wide class of functions in
L2 that satisfy a particular regularity condition. For this class of functions the weak differentiability
of the original function is preserved on the decomposed one, allowing us to apply the theory on
polynomial approximation on the latter. This approach will exploit any smoothness property of
the function f in order to improve the accuracy of the approximation and lower the computational
burden to construct its approximation.

Since we are considering a setting where f is computationally expensive to evaluate, only a
limited number of function evaluations is possible in reasonable time and thus we need to resort
to a sampling method. We will construct the tensor-train approximation using the TT-DMRG-cross
technique [35], where the function f is considered as a black-box method and it has to be evaluated
only at relevant points in the parameter space.

The approach will be tested for the construction of surrogate functions of the Genz functions and
ad-hoc functions with different decays of the Fourier coefficients, in order to observe their relation
with the ranks of the decompositions.

The paper is organized as follows. In Section 2 we will review some of the definitions and
the properties of several tensor decomposition formats, focusing in particular on the tensor-train
decomposition. Section 3 is devoted to the review of concepts about the approximation of functions
in Sobolev spaces. In Section 4 the spectral tensor-train decomposition is defined in a constructive
way and the regularity properties of such decomposition are presented. Section 4.3.3 presents the
practical implementation of the algorithm. In Section 5 numerical examples are presented.

2. Tensor decompositions. For the moment let us assume that we can afford the evaluation
of the function f : [a, b]d → R at all points on a tensor grid X = ×dj=1xj , where xj = (xij )

nj
ij=1 for

j = 1, . . . , d. We denote A(i1, . . . , id) = f(xi1 , . . . , xid) and abbreviate the d-dimensional tensor by
A = f(X ).

In the special case of d = 2, A reduces to a matrix A. A decomposition of this matrix can be
obtained through the singular value decomposition (SVD):

(2.1) A = UΣVT .

Such a decomposition always exists and, since A is a real valued matrix, the SVD is unique up to
sign change [42]. The SVD can be used to obtain a low-rank approximation of A by truncation of
the singular values on the diagonal of Σ. Unfortunately the SVD, as it is, can not be generalized
to decompose tensors of dimension d > 2. Several approaches to this problem have been proposed
over the years [26, 4, 18]. Amongst them the most popular are by far the canonical decomposition
(CANDECOMP) [6, 22], the Tucker decomposition [43] and the tensor-train decomposition [31].
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2.1. Classical tensor decompositions. The canonical decomposition aims to obtain an ap-
proximation of A in terms of a sum of outer products:

(2.2) A ' ACD =
r∑

i=1
A(1)
i ◦ · · · ◦A(d)

i ,

where A(k)
i is the i-th column of matrix A(k) ∈ Rnk×r and ◦ denotes the outer product of two vectors.

The upper bound of summation r is called the canonical rank of the tensor ACD. The canonical
decomposition is unique under mild conditions [38]. On the other hand a best rank-r decomposition
– where we truncate the expansion similarly to the SVD case – does not always exist since the
space of rank-r tensors is not closed [29, 39]. The computation of the canonical decomposition
is based on the alternating least squares (ALS) method that, however, is not guaranteed to find a
global minimum of the approximation error and has a number of other drawbacks and corresponding
workarounds [26].

The Tucker decomposition is defined as follows:

(2.3) A '
r1∑

i1=1
· · ·

rd∑

id=1
gi1...id

(
A(1)
i1
◦ · · · ◦A(d)

id

)
,

where the core tensor G, defined by G(i1 . . . id) = gi1...id , accounts for weighting interactions between
different components in different dimensions. This expansion is not unique, due to the possibility
of applying rotations on the core tensor and their inverse on the components A(i). However, the
chances of obtaining an unique decomposition can be improved if sparsity is imposed on the core
tensor (see [26] and the references therein). The Tucker decomposition is stable, but the number
of parameters to be determined grows exponentially with the dimension d of the tensor due to
the presence of the core tensor G. This limits the applicability of Tucker decomposition to “low”
dimensional problems.

2.2. Tensor-train decomposition. The limited applicability of the Tucker decomposition to
low-dimensional problems can be overcome using a hierarchical singular value decomposition, where
the function is not decomposed with a single core G that relates each dimension, but with a hierar-
chical tree of cores – usually binary – that relates a couple of dimensions at a time. This approach
goes under the name of hierarchical Tucker or H-Tucker decomposition [17]. A particular type of H-
Tucker decomposition is the tensor-train decomposition, which retains many of the characteristics of
the H-Tucker decomposition, but with a simplified formulation (see [17, Sec 5.3] for a comparison).
The tensor-train decomposition has the following properties that make it attractive:

• existence of the full-rank approximation [31, Thm 2.1],
• existence of the low-rank best approximation [31, Cor 2.4],
• an algorithm that returns a sub-optimal TT-approximation (see (2.7) and [31, Cor 2.4]),
• memory complexity that scales linearly with the dimension d [31, Sec 3],
• straightforward multi-linear algebra operations,
• a sampling algorithm for the construction of the TT-approximation with a computational

complexity that scales linearly with the dimensionality [35].

Definition 2.1 (Discrete tensor-train approximation). Let A ∈ Rn1×···×nd , with entries
A(i1, . . . , id). The TT-rank r = (r0, . . . , rd) approximation of A is ATT ∈ Rn1×···×nd defined
by:

(2.4)
A(i1, . . . , id) = ATT (i1, . . . , id) + ETT (i1, . . . , id)

=
r∑

α0,...,αd=1
G1(α0, i1, α1) · · ·Gd(αd−1, id, αd) + ETT (i1, . . . , id) ,
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where ETT is the residual term and r0 = rd = 1.
We can see that each of the cores Gi is “connected” to the adjacent cores Gi−1 and Gi+1 by the

indices αi−1 and αi. This property led to the name tensor-train decomposition.
It can be proved [31] that the TT-approximation is exact (ETT = 0) for

(2.5) rk = rank (Ak) , ∀ k ∈ {1, . . . , d} ,

where Ak is the k-th unfolding of A, that corresponds to the MATLAB/NumPy operation:

(2.6) Ak = reshape
(

A,
k∏

s=1
ns,

d∏

s=k+1
ns

)
.

Furthermore if rk ≤ rankAk, the TT-rank r approximation Abest, which is optimal in the Frobenius
norm, always exists and the algorithm TT-SVD [31] produces a quasi-optimal approximation to it.
In particular, if ATT is the numerical approximation of A obtained with TT-SVD, then

(2.7) ‖A−ATT ‖F ≤
√
d− 1‖A−Abest‖F .

Assuming that the TT-ranks are all equal rk = rankAk = r, and that n1 = . . . = nd = n, the
TT-decomposition ATT requires the storage of O

(
dnr2) parameters. Thus the representation (2.4)

scales linearly with the dimension. A further reduction in the required storage can be achieved using
the Quantics TT-format [33, 25], which, for n = 2m, leads to O

(
dmr2).

The computational complexity of the TT-SVD depends on the selected accuracy, but for rk =
rankAk = r and n1 = . . . = nd = n, the number of flops required by the algorithm are O

(
rnd
)
.

We see that the computational complexity grows exponentially with the dimension and thus the
curse of dimensionality is not resolved, except for the memory complexity of the final compressed
representation. At this stage it is important to point out that the simpler formulation of tensor-
train against the more complex H-Tucker decomposition gives away the possibility of implementing
a parallel version of TT-SVD [17] and gaining a factor 1/ log2(d) in the computational complexity.
However, this would not resolve the exponential growth of the computational complexity with respect
to the dimensionality. In any case, TT-SVD is not suitable to be used for high-dimensional problems,
because it first requires the storage of the full tensor. This means that the initial memory requirement
scales exponentially with the dimension of the problem. In the next section we will discuss a method
to construct an approximation to the tensor using a small number of function evaluations.

An open question in tensor-train decomposition regards the ordering of the indices of A. Dif-
ferent orderings of the d indices of A can lead to higher or lower TT-ranks. As a consequence the
memory efficiency changes depending on this ordering. We would like to have the pairs of indices for
which A is high-rank close to each other, so that the rank will be high only for the cores connecting
these pairs. If this doesn’t happen, the non-separability of a pair of dimensions will be carried on
from core to core, making the decomposition more expensive. We will point to several examples
where this problem arises in Section 5.3.

2.3. TT-DMRG-cross. The TT-SVD algorithm is expensive and, more importantly, requires
the evaluation of the function on a full tensor grid. An alternative approach to the TT-SVD is
provided by the TT-DMRG-cross algorithm (see [35] for a detailed description). This method hinges
on the idea of the Density Matrix Renormalization Group [45] (DMRG) and of matrix skeleton
decomposition [16]. For d = 2 and A ∈ Rm×n, the skeleton decomposition is defined by:

(2.8) A ' A(:,J )A(I,J )−1A(I, :) ,

where I = (i1, . . . , ir) and J = (j1, . . . , jr) are subset of the index sets [1, . . . ,m] and [1, . . . , n].
The selection of the indices (I,J ) need to be such that most of the information contained in A is
carried on through the decomposition. It turns out that the optimal submatrix A(I,J ) is the one
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with maximal determinant in modulus among all the r × r submatrices of A [15]. The problem of
finding such a matrix turns out to be NP-hard [7]. An approximation to the solution of this problem
can be found using the maxvol algorithm [15], in an row-column alternating fashion as explained in
[32]. Running maxvol is computationally inexpensive and requires 2c(n− r)r operations, where c is
a usually small constant in many practical applications.

In practice the problem of finding the TT-decomposition ATT , can be shaped as the minimiza-
tion problem:

(2.9) min
G1,...,Gd

‖A−ATT ‖F .

One possible approach for solving this problem is TT-cross [32]. Here the optimization is performed
through left-to-right and right-to-left sweeps of the cores and using the matrix skeleton decomposition
in order to find the most relevant fibers in the d dimensional space. A fiber is, for a d-dimensional
tensor A, the equivalent of what rows and columns are for a matrix. In MATLAB/NumPy notation,
the (i1, . . . , ik−1, ik+1, . . . , id) fiber along the k-th dimension is A(i1, . . . , ik−1, :, ik+1, . . . , id). This
approach provides linear scaling in the number of entries evaluated. On the other hand, it requires
the TT-ranks to be known a priori in order to select the right number of fibers for each dimension.
The underestimation of these ranks leads to a poor (and in some cases erroneous) approximation,
while an overestimation of them leads to an increased computational effort.

A more viable approach is the TT-DMRG-cross [35], where the optimization is done over two
cores Gk, Gk+1 at a time. In practice at step k of the sweeps, the coreWk(ik, ik+1) = Gk(ik)Gk(ik+1)
solving (2.9) is found, and the cores Gk and Gk+1 are recovered through SVD. The identification
of the relevant core Wk is again performed using the maximum volume principle, aiming at the
selection of the most important planes A(i1, . . . , ik−1, :, :, ik+2, . . . , id) in the d-dimensional space.
Differently from TT-cross, this method is rank revealing, meaning that the TT-ranks do not need
to be guessed a priori. This means that the method is able to determine them automatically.

3. Relevant results from approximation theory. The main objective of this work is to
extend the TT-format to be used for the construction of a surrogate function of f . To do this we
need to consider the case where some smoothness can be assumed on f . Here we will review some
concepts from polynomial approximation theory which, in subsequent sections, will be combined
with the tensor-train decomposition. In the following, we will make use of the Sobolev spaces:

(3.1) Hkµ(I) =



f ∈ L

2
µ(I) :

∑

|i|≤k
‖D(i)f‖L2

µ(I) < +∞



 ,

where k ≥ 0, D(i)f is the i-th weak derivative of f , I = I1 × · · · × Id is the product of intervals of R
and µ : B(I)→ R is a σ-finite measure on the Borel σ-algebra defined on I. This space is equipped
with the norm ‖ · ‖2Hkµ(I) defined by

(3.2) ‖f‖2Hkµ(I) =
∑

|i|≤k
‖D(i)f‖2L2

µ(I)

and the semi-norm | · |I,µ,k defined by

(3.3) |f |2I,µ,k =
∑

|i|=k
‖D(i)f‖2L2

µ(I).

3.1. Projection. A function f ∈ L2
µ(I) can be approximated by the expansion based on its

projection onto a set of basis for L2
µ(I). The following results hold both for compact and non-compact

supports I.
Definition 3.1 (Spectral expansion). Let I ⊆ Rd and f ∈ L2

µ(I) be a square integrable function
with respect to the measure µ. Let {Φi}∞|i|=0 be a set of orthonormal polynomials forming a basis
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for L2
µ(I), where Φi(x) = φi1,1(x1) · · ·φid,d(xd) and i = (i1, . . . , id). For N = (N1, . . . , Nd), the

truncated spectral expansion of degrees N of f is defined in terms of the projection operator PN :
L2
µ(I)→ span({Φi}N

i=0) defined by

(3.4) PNf =
∑

0≤i≤N
ciΦi, ci =

∫

I
fΦidµ(x).

where i ≤ N denotes
∧

1≤j≤d (ij ≤ Nj).
For simplicity, in the following we define PN := PN when N1 = . . . = Nd = N . The rate of

convergence of the spectral expansion (3.4) is determined by the smoothness of f .
Proposition 3.2 (Convergence of spectral expansion [23, 5]). For k ≥ 0, let f ∈ Hkµ(I), then

(3.5) ‖f − PNf‖L2
µ(I) ≤ C(k)N−k|f |I,µ,k .

In practice the coefficients ci, see (3.4), are approximated using discrete inner products based
on quadrature rules of sufficient accuracy. We will focus here on the use of high-order accurate
Gauss-type quadrature rules [10], defined by the points and weights (zi, wi)N

i=0, where (zi)N
i=0 ⊂ I =

I1 × · · · × Id. These points and weights can be readily obtained using the Golub-Welsch algorithm
[14]. A d-dimensional integral can then be approximated by:

(3.6)
∫

I
f(x)dµ(x) ≈

N∑

i=0
f(zi)wi =: UN(f) .

Gauss, Gauss-Radau and Gauss-Lobatto quadrature rules can be applied to open intervals, intervals
open on one side and closed intervals respectively, being exact for functions f of polynomial orders
up to 2N + 1, 2N and 2N − 1 respectively. The discrete version of the spectral expansion (3.4) is
then given by the following definition.

Definition 3.3 (Discrete projection). Let (zi, wi)Ni=0 be a set of quadrature points and weights.
The discrete projection of f is defined in terms of the operator P̃N : L2

µ(I)→ span({Φi}N
i=0), defined

by

(3.7) P̃Nf =
N∑

i=0
c̃iΦi, c̃i = UN(fΦi) =

N∑

i=0
f(zi)Φi(zi)wi .

If the quadrature rule is a Gauss quadrature rule, then the discrete projection will be exact for
f ∈ PN, the set of polynomials of degree up to N.

3.2. Interpolation. A function f can also be approximated using interpolation on a set of
nodes and assuming a certain level of smoothness in between them. Here we will consider the
piecewise linear interpolation and polynomial interpolation on closed and bounded domains I =
I1×· · ·×Id. Other interpolation rules could be used inside the same framework for specific problems.

The linear interpolation of function f : [a, b] → R is based on an expansion in terms of basis
functions called hat functions: given a set of distinct ordered nodes {xi}Ni=0 ∈ [a, b] with x0 = a and
xN = b, the hat functions are:

(3.8) ei(x) =





x−xi−1
xi−xi−1

if xi−1 ≤ x ≤ xi ∧ x ≥ a
x−xi+1
xi−xi+1

if xi ≤ x ≤ xi+1 ∧ x ≤ b
0 otherwise

.

When dealing with multiple dimensions several options are available. A very common choice of
basis functions have their support over simplexes around a node. This allows the basis functions
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ei to be still linear. In this work we will instead choose basis functions that have their support on
the hypercubes adjacent to a node. The basis functions ei cannot be linear anymore in order to
attain the linear interpolation property: they need to be bilinear in two dimensions, trilinear in three
dimensions and so on. Letting V be the set of piecewise continuous functions on I, the multi-linear
interpolation IN : V → C0(I) is then defined by

(3.9) INf(x) =
N∑

i=0
ĉiei(x), ĉi = f (xi) ,

where {xi}N
i=0 = {x1

i }N1
i=0 × · · · × {xdi }Ndi=0 is a tensor grid of points. Again we will use the notation

IN := IN when N1 = . . . = Nd = N . Assuming that the grid points are uniformly distributed, the
convergence of the approximation is given by:

Proposition 3.4 (Convergence of linear interpolation [3]). Let f ∈ H2
µ(I), then

(3.10) ‖f − INf‖L2
µ(I) ≤ CN−2|f |I,µ,2 .

The second type of interpolation that we want to discuss within this work is the Lagrange
interpolation. This is based on the Lagrange polynomials {li}Ni=1, defined by

(3.11) li(x) =
∏

0≤m<k
m6=i

x− xm
xi − xm

,

where {xi}ki=1 ∈ [a, b] are non uniformly distributed nodes, such as the Gauss nodes introduced in
section 3.1. This choice is made in order to avoid the Runge phenomenon and assure an accurate
approximation. The polynomial interpolation ΠN : V → span

(
{li}Ni=0

)
is given by

(3.12) ΠNf(x) =
N∑

i=0
ĉili(x), ĉi = f (xi) .

The Lagrange interpolation has many theoretical issues when applied to the interpolation of multi-
variate functions. However, in the scope of this paper, we will only consider tensor grids of nodes,
for which such approximation has no theoretical issue. As we will see in the next sections, such
tensor grids of nodes will be never constructed explicitly thanks to the usage of the tensor-train
decomposition, but the convergence properties of the Lagrange interpolation on tensor grids will be
useful for analysis purposes.

The convergence of the Lagrange interpolation is again dictated by the smoothness of the func-
tional that is approximated.

Proposition 3.5 (Convergence of Lagrange interpolation [2, 5]). For k ≥ 1, let f ∈ Hkµ(I),
then

(3.13) ‖f −ΠNf‖L2
µ(I) ≤ C(k)N−k|f |I,µ,k .

4. Spectral tensor-train decomposition. Now we blend the discrete tensor-train decompo-
sition of Section 2.2 with the polynomial approximations described in Section 3. First, we construct
a continuous version of the tensor-train decomposition, termed the functional tensor-train (FTT)
decomposition. The construction proceeds by recursively decomposing non-symmetric square inte-
grable kernels through auxiliary symmetric square integrable kernels, as in Schmidt [36]. Next, we
prove that the decomposition converges under some regularity conditions and that the cores of the
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FTT-decomposition inherit the regularity properties of the original function, and thus are amenable
to spectral approximation when the original function is smooth. Based on this analysis, we pro-
pose an efficient approach to high-dimensional function approximation that employs one-dimensional
polynomial approximations of the cores of the FTT-decomposition, and we analyze the convergence
of these approximations.

4.1. Functional tensor-train decomposition. Let X × Y ⊂ Rd and let f be a Hilbert-
Schmidt kernel with respect to the finite measure µ : B(X × Y ) → R, i.e. f ∈ L2

µ(X × Y ). We
restrict our attention to product measures, so µ = µx × µy. The operator

(4.1)
T : L2

µy (Y )→ L2
µx(X)

g 7→
∫

Y

f(x, y)g(y)dµy(y)

is linear, bounded and compact [19, Cor. 4.6]. The Hilbert adjoint operator of T is T ∗ : L2
µx(X)→

L2
µy (Y ). Then TT ∗ : L2

µx(X)→ L2
µx(X) is a compact Hermitian operator. By the Spectral Theory

on compact operators the spectrum of TT ∗ is only formed by a countable set of eigenvalues and
the only point of accumulation is zero [28, Thm 8.3-1,8.6-4]. Being self-adjoint, the eigenfunctions
{ψ(x; (i))}∞i=1 ⊂ L2

µx(X) corresponding to the eigenvalues of TT ∗ form an orthonormal basis [19,
Cor. 4.7]. Also T ∗T : L2

µy (Y ) → L2
µy (Y ) is a self-adjoint compact operator with eigenfunctions

{φ(y; (i))}∞i=1 ⊂ L2
µy (Y ). Then we have the following expansion of f .

Definition 4.1 (Functional-SVD). Given the set of eigenvalues {λ(i)}∞i=1 and the set of eigen-
functions {ψ(x; (i))}∞i=1 and {φ(y; (i))}∞i=1, of the integral operators TT ∗ and T ∗T respectively, the
functional-SVD of f is:

(4.2) f =
∞∑

i=1

√
λ(i)ψ( · ; (i))⊗ φ( · ; (i)) .

In the general setting considered the convergence of (4.2) is in L2
µ.

Let now I1 × · · · × Id = I ⊆ Rd and let f be a Hilbert-Schmidt kernel with respect to the finite
measure µ : B(I)→ R, i.e. f ∈ L2

µ(I). We assume µ =
∏d
i=1 µi. Applying the functional-SVD to f

with X = I1 and Y = I2 × . . .× Id, we obtain

(4.3) f(x) =
∞∑

i1=1

√
λ(i1)ψ1 (x1; (i1))φ1 (x2, . . . , xd; (i1)) .

If the functional-SVD is now applied to {φ1(x2, . . . , xd; (i1))}∞i1=1 with X = I2 and Y = I3× . . .×Id,
we get

(4.4) f(x) =
∞∑

i1=1

√
λ(i1)ψ1(x1; (i1))

∞∑

i2=1

√
λ(i1, i2)ψ2(x2; (i1, i2))φ2(x3, . . . , xd; (i1, i2)) .

Proceeding inductively to d− 1, we obtain the separated representation of f :

(4.5) f(x) =
∞∑

i1,...,id−1=1
σ(i1, . . . , id−1)ψ1 (x1; (i1)) · · ·ψd (xd; (i1, . . . , id−1)) .

where σ(i1, . . . , id−1) =
√
λ(i1) · · ·

√
λ(i1, . . . , id−1) are the singular values of the decomposition.

If we define γj ((i0, . . . , ij−1) ;xj ; (i0, . . . , ij)) := ψj (xj ; (i1, . . . , ij)) and let αj be a one long index
for (αj−1, ij), we can rewrite the sums in a convenient compact format: for α0 = αd = 1 and
α = (α0, . . . , αd), we can write:

(4.6) f(x) =
∞∑

α1,...,αd−1=1
σ(α) · γ1(α0, x1, α1) · · · γd(αd−1, xd, αd) .
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We will call this format, the functional tensor-train (FTT) decomposition. Note that in the over-
loading of the notation in (4.6) the ordering of the sums was not changed.

In contrast with the definition of the discrete TT-approximation (see Def. 2.1), here we chose
to carry the singular values in the d-dimensional tensor σ(α) for analysis purposes. We could
have removed them from the final formulation by multiplying the singular values by their singular
functions during the construction of the decomposition.

If we now apply a truncation to such expansion we obtain the functional format of the tensor-
train approximation.

Definition 4.2 (FTT-approximation). Let I1 × · · · × Id = I ⊆ Rd and f ∈ L2
µ(I). For

r = (1, r1, . . . , rd−1, 1), a TT-rank r functional TT-approximation of f is:

(4.7) fTT (x) :=
r∑

α0,...,αd=1
σ(α) · γ1(α0, x1, α1) · · · γd(αd−1, xd, αd) ,

where γi(αi−1, ·, αi) ∈ L2
µi and 〈γk(αk−1, ·, (αk−1, j)), γk(αk−1, ·, (αk−1, l))〉L2

µk

= δjl. The residual
of such approximation will be denoted by RTT := f − fTT .

We will call {γi}di=1 the cores of the approximation in agreement with the notation used for the
discrete tensor-train approximation.

Proposition 4.3. Let the functional tensor-train decomposition (4.6) be truncated retaining
the biggest singular values σ(α), then the approximation (4.7) fulfills the condition:

(4.8) ‖RTT ‖2L2
µ

= min
g∈L2

µ

TT−ranks(g)=r

‖f − g‖2L2
µ

=
∞∑

α1=r1+1
· · ·

∞∑

αd−1=rd−1+1
σ2(α) .

Proof. We first notice that exploiting the orthonormality of the cores, yields

(4.9) ‖RTT ‖2L2
µ

=
∞∑

α1=r1+1
· · ·

∞∑

αd−1=rd−1+1
σ2(α) .

The minimality is due to the construction of fTT by a sequence of orthogonal projections that
minimizes the error in the L2

µ-norm. These projections are onto the subspaces spanned by the
eigenfunctions of the Hermitian operators induced by the tensor f , and are thus optimal [40, 44].

The result given in proposition 4.3 does not directly involve any property of the function f . We
try then to link this estimate with the regularity of f . To do so, we will use the following auxiliary
result, which is a particular case of [37, Prop. 2.21] and the next two lemmas which are proved in
appendix B.

Proposition 4.4. Let I ⊂ Rd be a bounded domain and V ∈ L2
µ⊗µ(I×I) be a symmetric kernel

of the compact non-negative integral operator V : L2
µ(I)→ L2

µ(I). If V is Hkµ(I× I) with k > 0 and
{λm}m≥1 denotes the eigenvalue sequence of V, then
(4.10) λm ≤ |V |I×I,µ,km

−k/d ∀m ≥ 1 .

Lemma 4.5. Let f ∈ Hkµ(I), Ī = I2 × . . . × Id and J(x, x̄) = 〈f(x, y), f(x̄, y)〉L2
µ(Ī). Then,

J ∈ Hkµ(I1 × I1)

(4.11) |J |I1×I1,µ,k ≤ ‖f‖2Hkµ(I) .

Lemma 4.6. Let f ∈ Hkµ(I), Ī = I2 × . . .× Id and

(4.12) fTT (x1, . . . , xd) =
r1∑

i1=1

√
λ(i1)ψ1(x1; i1)φ1(x2, . . . , xd; i1) .
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Then,

(4.13) ‖φ1(i1)‖2Hkµ(Ī) ≤
1

λ(i1)‖f‖
2
Hkµ(I) .

In the sake of simplicity in the following analysis, we will let the ranks be r = (r, . . . , r).
Theorem 4.7 (FTT-approximation convergence). Let f ∈ Hkµ(I), then

(4.14) ‖RTT ‖2L2
µ
≤ ‖f‖2Hkµ(I)ζ(k, r + 1) rd − r

r(r − 1) for r > 1 ,

where ζ is the Hurwitz Zeta function. Furthermore

(4.15) lim
r→∞

‖RTT ‖2L2
µ
≤ ‖f‖2Hkµ(I)

1
(k − 1) for k = d− 1

and
(4.16) lim

r→∞
‖RTT ‖2L2

µ
= 0 for k > d− 1 .

Proof. We start considering the case I = I1×I2×I3 and we define the following approximations
of f , using the functional-SVD (4.2):

fTT,1 =
r1∑

i1=1

√
λ(i1)ψ1(x1; i1)φ1(x2, x3; i1) ,(4.17)

fTT =
r1∑

i1=1

√
λ(i1)ψ1(x1; i1)φTT,1(x2, x3; i1) ,(4.18)

where

(4.19) φTT,1(x2, x3; i1) =
r2∑

i2=1

√
λ(i1, i2)ψ2(x2; i1, i2)φ2(x3; i1, i2) .

It is possible to show that 〈f − fTT,1, fTT,1 − fTT 〉L2
µ(I) = 0 and so

(4.20) ‖RTT ‖2L2
µ(I) = ‖f − fTT ‖2L2

µ(I) = ‖f − fTT,1‖2L2
µ(I) + ‖fTT,1 − fTT ‖2L2

µ(I) .

Exploiting the orthogonality of the singular functions, Proposition 4.4 and Lemma 4.5 we have

(4.21) ‖f − fTT,1‖2L2
µ(I) =

∞∑

i1=r1+1
λ(i1) ≤

∞∑

i1=r1+1
i−k1 |J0|k ≤ ‖f‖2Hkµ(I)ζ(k, r1 + 1) ,

where J0(x1, x̄1) = 〈f(x1, x2, x3), f(x̄1, x2, x3)〉L2
µ(I2×I3). Similarly:

(4.22) ‖φ1(i1)− φTT,1(i1)‖2L2
µ(I2×I3) ≤

∞∑

i2=r2+1
i−k2 |J1(i1)|k ≤ ‖φ1(i1)‖2Hkµ(I)ζ(k, r2 + 1) ,

where J1(x2, x̄2; i1) = 〈φ1(x2, x3; i1), φ1(x̄2, x3; i1)〉L2
µ(I3). With the help of Lemma 4.6, this leads to

(4.23)

‖fTT,1 − fTT ‖2L2
µ(I) =

∫

I

[
r1∑

i1=1

√
λ(i1)ψ1(x1; i1) (φ1(x2, x3; i1)− φTT,1(x2, x3; i1))

]2

dµ(x)

=
r1∑

i1=1
λ(i1)‖ψ1(i1)‖2L2

µ(I1)‖φ1(i1)− φTT,1(i1)‖2L2
µ(I2×I3)

≤
r1∑

i1=1
λ(i1)‖φ1(i1)‖2Hkµ(I)ζ(k, r2 + 1) ≤ r1‖f‖2Hkµ(I)ζ(k, r2 + 1) .
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Thus we obtain the bound

(4.24) ‖RTT ‖2L2
µ(I) ≤ ‖f‖2Hkµ(I) [ζ(k, r1 + 1) + r1ζ(k, r2 + 1)] .

Let now I = I1 × . . .× Id and r = (r, . . . , r), for r ≥ 2, then

(4.25)
‖RTT ‖2L2

µ(I) ≤ ‖f‖2Hkµ(I)

d−1∑

i=1



i−1∏

j=1
rj


 ζ(k, ri + 1)

= ‖f‖2Hkµ(I)ζ(k, r + 1)
d−1∑

i=1
ri−1 = ‖f‖2Hkµ(I)ζ(k, r + 1) rd − r

r(r − 1) .

This proves the first part of the theorem.
Let us now study the asymptotic behavior of ‖RTT ‖2L2

µ
as r → ∞. For k > 1, we can use the

bound:

(4.26) ζ(k, r + 1) =
∞∑

i=r+1
i−k ≤

∫ ∞

r+1
i−kdi = (r + 1)−(k−1)

(k − 1) .

Plugging this into (4.25) and considering its asymptotic behavior as r →∞, we obtain:

(4.27)
‖RTT ‖2L2

µ(I) ≤ ‖f‖2Hkµ(I)
(r + 1)−(k−1)

(k − 1)
rd − r
r(r − 1)

≈ ‖f‖2Hkµ(I)
1

(k − 1)rk−1
rd−1

r
= ‖f‖2Hkµ(I)

rd−1−k

k − 1 .

This leads to the two asymptotic estimates (4.15) and (4.16), completing the proof.
4.2. Regularity of the FTT-decomposition. In order to apply the traditional polynomial

approximation theory to the functional tensor-train decomposition, we need that such decomposition
retains the same regularity of the original function. In particular, in the scope of the polynomial
approximation theory presented in Section 3, we need the boundedness of the weak derivatives
used for the definition of Sobolev spaces (3.1). With this perspective, we will need the absolute
convergence almost everywhere of the FTT-decomposition. Smithies [40, Thm. 14] proved that a
kind of integrated Hölder continuity with exponent α > 1/2 is a sufficient condition for the absolute
convergence almost everywhere (a.e.) of the functional-SVD. The condition required by Smithies is
a generalization of the Hölder continuity a.e. [41], as we show in Appendix A. The Smithies’ result
can be extended by construction to the FTT-decomposition:

Corollary 4.8 (Absolute convergence almost everywhere). Let I1 × · · · × Id = I ⊂ Rd be
closed and bounded, and f ∈ L2

µ(I) be a Hölder continuous function with exponent α > 1/2. Then
the FTT-decomposition (4.6) converges absolutely almost everywhere.

Now we can prove that if f belongs to a certain Sobolev space, then also the cores of the
FTT-decomposition will belong to the same Sobolev space.

Theorem 4.9 (FTT-decomposition and Sobolev spaces). Let I1 × · · · × Id = I ⊂ Rd be closed
and bounded, and f ∈ L2

µ(I) be a Hölder continuous function with exponent α > 1/2 such that
f ∈ Hkµ(I). Then the FTT-decomposition (4.6) is such that γj(αj−1, ·, αj) ∈ Hkµj (Ij) for all j, αj−1
and αj.

Proof. We will first show this property for the functional-SVD (4.2) of the Hölder (α > 1/2)
continuous function f ∈ Hkµ(X × Y ). First we want to show that

(4.28) Dif =
∞∑

j=1

√
λj(Di1ψj ⊗Di2φj) ,
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where i = (i1, i2). Since f is Hölder (α > 1/2) continuous, (4.2) converges absolutely a.e. by
Smithies [40], then we can define

(4.29) ∞ > g :=
∞∑

j=1

∣∣∣
√
λj(ψj ⊗ φj)

∣∣∣ ≥

∣∣∣∣∣∣

∞∑

j=1

√
λj(ψj ⊗ φj)

∣∣∣∣∣∣
,

where the domination holds almost everywhere. The series (4.2) is convergent almost everywhere
by Smithies [40]. By the definition of weak derivative, for all χ ∈ C∞c (X × Y ):

(4.30) (−1)|i|
∫

X×Y
Difχdµ =

∫

X×Y
fχ(i)dµ .

Thus this holds also for any χ = χx ⊗ χy ∈ C∞c (X) ⊗ C∞c (X). Using the dominated convergence
theorem, we obtain:

(−1)|i|
∫

X×Y
Difχdµ =

∫

X×Y
fχ(i)dµ =

∫

X×Y



∞∑

j=1

√
λj(ψj ⊗ φj)


χ(i)dµ

=
∞∑

j=1

√
λj

∫

X×Y
(ψj ⊗ φj)χ(i)dµ =

∞∑

j=1

√
λj

∫

X×Y

(
ψjχ

(i1)
x

)
⊗
(
φjχ

(i2)
y

)
dµ

=
∞∑

j=1

√
λj

(
(−1)i1

∫

X

Di1ψjχxdµx

)(
(−1)i2

∫

Y

Di2φjχydµy

)
.

Thus (4.28) holds. Next we want to show that f ∈ Hkµ(X × Y ) implies ‖Di1ψj‖L2
µ(X) < ∞ and

‖Di2φj‖L2
µ(Y ) < ∞ for i1, i2 ≤ k. Thanks to (4.28) and due to the orthonormality of {φj}∞j=1 we

have that

(4.31) Di1ψj = 1√
λj

〈
D(i1,0)f, φj

〉
L2
µ(Y )

.

Using the Cauchy-Schwarz inequality:

(4.32)

∥∥Di1ψj
∥∥2
L2
µ(X) =

∥∥∥∥∥
1√
λj

〈
D(i1,0)f, φj

〉
L2
µ(Y )

∥∥∥∥∥

2

L2
µ(X)

≤
∣∣∣∣

1
λj

∣∣∣∣ ‖φj‖
2
L2
µ(Y )

∥∥∥D(i1,0)f
∥∥∥

2

L2
µ(X×Y )

<∞ ,

where the last bound is due to the fact that {φj}∞j=1 ⊂ L2
µ(Y ) – see Eqs. (4.1) and (4.3) – and

D(i1,0)f ∈ L2
µ(X × Y ) because i1 ≤ k and f ∈ Hkµ(X × Y ). In the same way

∥∥Di2φj
∥∥
L2
µ(Y ) < ∞

for all i2 ≤ k. It follows that {ψj}∞j=1 ⊂ Hkµ(X) and {φj}∞j=1 ⊂ Hkµ(Y ). The extension to the
FTT-decomposition (4.6) follows by its construction in terms of repeated functional-SVDs.

Remark 1. The results above have the limitation of holding for functions defined on closed
and bounded domains. In many practical cases, however, functions are defined on the real line,
equipped with a finite measure. To the author’s knowledge, the corresponding result for such cases
has not been proved in literature. The result by Smithies [40, Thm. 14] hinges on a result by Hardy
and Littlewood [21, Thm. 10] on the convergence of Fourier series, and this is the only passage in
the proof where the closedness and boundedness of the domain is explicitly used. A similar result
for an orthogonal system in L2

µ(−∞,∞), where µ is a finite measure, would be sufficient to extend
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Smithies’ result to the real line. For one of the numerical examples presented in the following (Sec.
5.5), we will assume that this result holds.

Other regularity properties can be proved, given different kinds of continuity of the function f .
These properties are not strictly necessary in the scope of polynomial approximation theory, so we
will state them without proof. The first regards the continuity of the cores of the FTT-decomposition
and follows directly from Mercer’s theorem [24].

Proposition 4.10 (Continuity). Let I1 × · · · × Id = I ⊂ Rd, and f ∈ L2
µ(I) be a continuous

function with FTT-decomposition (4.6). Then γi(αi−1, ·, αi) are continuous for every i and αi.
The second property regards the strong derivatives of the cores of the FTT-decomposition. It

requires the Lipschitz continuity of the function and then follows from a result on the uniform
convergence of the functional-SVD by Hammerstein [20, 41].

Theorem 4.11 (Differentiability). Let I1 × · · · × Id = I ⊂ Rd be closed and bounded, and let
f ∈ L2

µ(I) be a Lipschitz continuous function such that ∂βf

∂x
β1
1 ···∂x

βd
d

exists and is continuous on I for

β =
∑d
i=1 βi. Then the FTT-decomposition (4.6) is such that γk(αk−1, ·, αk) ∈ Cβk(Ik) for all k,

αk−1 and αk.

4.3. Polynomial approximation of the FTT-decomposition. All the theory is now in
place in order to blend the FTT-decomposition with the polynomial approximations described in
Section 3. We will consider the projection and the interpolation approach separately.

4.3.1. Functional tensor-train projection. We can now deal with the spectral approxima-
tion of the functional version of the tensor-train decomposition. Let f ∈ Hkµ(I) and fTT be its
FTT-approximation. If the projector (3.4) is applied to the FTT-approximation of f we obtain:

(4.33)

PNfTT =
N∑

i=0
c̃iΦi ,

c̃i =
∫

I
fTTΦidµ(x) =

r∑

α0,...,αd=1
σ(α)β1(α0, i1, α1) · · ·βd(αd−1, id, αd) ,

βn(αn−1, in, αn) =
∫

In

γn(αn−1, xn, αn)φin(xn)dµn(xn) .

Thus, the spectral expansion of the function can be obtained as a projection of its cores onto one di-
mensional basis functions. Furthermore the tensor-train representation of the expansion coefficients
C := [ci]Ni=0 can be obtained as a projection of the cores onto the one-dimensional basis functions.

The projector PN is replaced by the discrete projector P̃N (see (3.7)) and the the cores {βi}di=1
can be approximated by

(4.34) βn(αn−1, in, αn) ≈ β̂n(αn−1, in, αn) =
Nn∑

j=0
γn(αn−1, x

(j)
n , αn)φin(x(j)

n )w(j)
n ,

where {x(j)
n , w

(j)
n }Nnj=0 are properly selected quadrature nodes and weights, e.g. Gauss-type, for the n-

th dimension. In practice γn(αn−1, x
(j)
n , αn) are the cores of the FTT-approximation of f evaluated

at properly selected quadrature points. Thus, they can be obtained directly from the discrete TT-
approximation of f evaluated on the grid formed by those points. This approximation is obtained
by the TT-DMRG-cross algorithm, leading to substantial computational savings. The algorithm for
computing the tensor-train decomposition CTT of C is detailed in Algorithm 1.

Once the FTT-projection-construction step is done, the approximation can be evaluated on
an arbitrary point y = {y1, . . . , yd} ∈ I. This is described in Algorithm 2.
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Algorithm 1 FTT-projection-construction

Require: The function f : I→ R, the measure µ =
∏d
n=1 µn, the integers N = {Nn}dn=1 denoting

the polynomial orders of approximation.
Ensure: CTT (i1, . . . , id) =

∑r
α0,...,αd=1 β̂1(α0, i1, α1) · · · β̂d(αd−1, id, αd), the TT-decomposition of

the tensor of expansion coefficients.
Construct the set of basis functions

{
{φin,n}Nnin=0

}d
n=1

with respect to µ

Determine the Gauss-type points and weights {(xn,wn)}dn=1, xn = {x(i)
n }Nni=0, wn = {w(i)

n }Nni=0
Construct the discrete TT-decomposition ATT of f

(
×dj=1xj

)
through TT-DMRG-cross

for n := 1 to d do
for all (αn−1, αn) ∈ [0, rn−1]× [0, rn] do
β̂n(αn−1, in, αn) =

∑Nn
j=0Gn(αn−1, j, αn)φin,n(x(j)

n )w(j)
n

end for
end for
return

{
β̂n(αn−1, in, αn)

}d
n=1

Algorithm 2 FTT-projection-evaluation

Require: The set of cores
{
β̂n(αn−1, in, αn)

}d
n=1

obtained through FTT-projection-construc-
tion and a set of Ny points Y = {y1, . . . ,yd} ⊂ I.

Ensure: The polynomial approximation PNfTT (y) of f(y)
for n := 1 to d do
for all (αn−1, αn) ∈ [0, rn−1]× [0, rn] do
Ĝn(αn−1, ·, αn) =

∑Nn
j=0 β̂n(αn−1, j, αn)φj,n(yn)

end for
end for
BTT (i1, . . . , id) =

∑r
α0,...,αd=1 Ĝ1(α0, i1, α1) · · · Ĝd(αd−1, id, αd)

return PNfTT (Y) := {BTT (i, . . . , i)}Nyi=1

By theorems 4.7 and 4.9, the convergence of the spectral expansion depends on the regularity
of f . For k > d− 1, let f ∈ Hkµ(I), then:

(4.35)

‖f−PNfTT ‖L2
µ(I) ≤ ‖f − fTT ‖L2

µ(I) + ‖fTT − PNfTT ‖L2
µ(I)

≤ ‖f‖Hkµ(I)

√
(r + 1)−(k−1)

k − 1
rd−1 − 1
r − 1 + C(k)N−k|fTT |I,µ,k .

This result shows that the convergence is driven by the selection of the rank r and the polynomial
order N , and that it improves for functions with increasing regularity. Thus we can save computa-
tional time in the estimation of the expansion coefficients C by (4.34) and obtain an approximation
PNfTT which converges spectrally.

4.3.2. Functional Tensor-train interpolation. Function interpolation can be extended to
tensors easily, and the tensor-train format can be exploited in order to save computational time. We
will first consider the linear interpolation, see Section 3.2. Let X = ×dj=1xj be a N

(1)
x ×· · ·×N (d)

x grid
of distinct candidate nodes where the function f can be evaluated and let Y = ×dj=1yj be a

∏d
j=1Ny

grid of points constructed using the coordinates of a set of Ny points Y = {y(j)
1 , . . . ,y(j)

d }
Ny
j=1. The

interpolating values f(Y) can be computed using the interpolation operator (3.9) from the grid X
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Algorithm 3 FTT-interpolation-evaluation
Require: The discrete TT-decomposition ATT of f(X ) – possibly obtained by TT-DMRG-cross –

where X = ×dj=1xj is a grid of points constructed from
{
{x(i)

n }N
(i)
x

n=1

}d
i=1

, and a set of Ny points
Y = {y1, . . . ,yd} ⊂ I

Ensure: The interpolated approximation INfTT (Y) or ΠNfTT (Y) of f(Y)
Construct list

{
L(i)}d

i=1 of Ny ×N (i)
x (linear or Lagrange) interpolation matrices from xi to yi

for n := 1 to d do
for all (αn−1, αn) ∈ [0, rn−1]× [0, rn] do
Ĝn(αn−1, ·, αn) = L(n)Gn(αn−1, ·, αn)

end for
end for
BTT (i1, . . . , id) =

∑r
α0,...,αd=1 Ĝ1(α0, i1, α1) · · · Ĝd(αd−1, id, αd)

return INfTT (Y) := {BTT (i, . . . , i)}Nyi=1

to the grid Y

(4.36) f(Y) ' (INf) (Y) = Ef(X ), E = E(1) ⊗ · · · ⊗ E(d),

where E(k) is a Ny ×N (k)
x matrix defined by E(k)(i, j) = e

(k)
j (y(i)

k ) as in (3.8), and then extracting
the values in its diagonal f(Y) ' {(INf) (Y)i,...,i}Nyi=1. This leads to the multi-linear interpolation
on hyper-cubic elements. If we instead use the FTT-approximation fTT in (4.36), we obtain

(4.37)

(INfTT ) (Y) = EfTT (X ) = E
r∑

α=0,...,αd=1
σ(α)γ1(α0,x1, α1) · · · γd(αd−1,xd, αd)

=
r∑

α=0,...,αd=1
σ(α)β1(α0,y1, α1) · · ·βd(αd−1,yd, αd) ,

βn(αn−1,yn, αn) = E(n)γn(αn−1,xn, αn) ,

where instead of working with the tensor-matrix E, we can work with the more manageable matrices
{E(i)}di=1 (see Alg. 3). The construction of the approximation in this case corresponds exactly to the
application of the TT-DMRG-cross algorithm to f(X ) to obtain ATT . The listing of FTT-interpo-
lation-construction is thus omitted. The basis functions (3.8) determine a quadratic convergence
of the interpolant to the target function. Thus, for k > d− 1 and f ∈ Hkµ(I):

(4.38) ‖f−INfTT ‖L2
µ(I) ≤ ‖f‖Hkµ(I)

√
(r + 1)−(k−1)

k − 1
rd−1 − 1
r − 1 + CN−2|fTT |I,µ,2 .

Additionally these basis functions have local support (as opposed to the global support of the
polynomials used for the projection) and this prevents the propagation over all the space of errors
due to singularities of f .

The same approach can be taken for the interpolation with Lagrange polynomials. The inter-
polating values can be obtained extracting the diagonal f(Y) ' {(ΠNfTT ) (Y)i,...,i}Nyi=1 of

(4.39) f(Y) ' (ΠNf) (Y) = Lf(X ), L = L(1) ⊗ · · · ⊗ L(d),

where L(k) is the Ny × N (k)
x Lagrange interpolation matrix [27]. This interpolation is not carried

out directly in high dimension, but we only need to perform one-dimensional interpolations of the
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cores (see Alg. 3):

(4.40)
(ΠNfTT ) (Y) = LfTT (X ) =

r∑

α0,...,αd=1
σ(α)β1(α0,y1, α1) · · ·βd(αd−1,yd, αd) ,

βn(αn−1,yn, αn) = L(n)γn(αn−1,xn, αn) .

The convergence is again dictated by the regularity of the function f . For k > d− 1 and f ∈ Hkµ(I):

(4.41) ‖f−ΠNfTT ‖L2
µ(I) ≤ ‖f‖Hkµ(I)

√
(r + 1)−(k−1)

k − 1
rd−1 − 1
r − 1 + C(k)N−k|fTT |I,µ,k .

4.3.3. The algorithm. Suppose we have a function f : I→ R where I = ×di=1Ii and Ii ⊆ R, for
i = 1, . . . , d. We would like to construct an approximation of f and to evaluate this approximation
on an independent set of points Y. The algorithm for constructing and evaluating the spectral
tensor-train approximation of f proceeds as follows:

1. select a suitable set of candidate nodes X = ×dn=1xn according to the type of approximation
to be constructed

2. construct the approximation using Algorithm 1 for the projection approach or directly using
TT-DMRG-cross [35] on f(X ) for the interpolation approach

3. evaluate the the spectral tensor-train approximation on Y by Algorithm 2 for the projection
approach or by Algorithm 3 for the interpolation approach.

In the following we will refer to the FTT-projection and the FTT-interpolation algorithms
as the combination of the two corresponding steps of construction and evaluation.

The practical implementation uses data structures to cache computed values and to store par-
tially computed decompositions. It also fully supports the usage of the Message Passing Interface
(MPI) protocol for the parallel evaluation of f during the execution of TT-DMRG-cross.

5. Numerical examples. The Spectral tensor-train decomposition is now applied to several
high dimensional functions, with the aim of obtaining a surrogate model of it. The quality of such
surrogate models will be evaluated using the relative L2 error2:

(5.1)
‖f − LfTT ‖L2

µ(I)

‖f‖L2
µ(I)

=

√∫
I(f − LfTT )2dµ∫

I f
2dµ

,

where L is one of the projection (PN ) or interpolation (IN , ΠN ) operators. This high dimensional
integral is estimated using the Monte Carlo estimator, with the number of samples driven by the
target relative tolerance of 10−2.

2In Sec. 5.1.2 ‖f − LfT T ‖L2
µ(I) was used in place of (5.1) for consistency with the results obtained in [8].
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f1 f2 f3 f4 f5 f6
bj 284.6 725.0 185.0 70.3 2040.0 430.0
ej 1.5 2.0 2.0 1.0 2.0 2.0
aj 1.5 5.0 1.85 7.03 20.4 4.3
Table 5.1: Normalization parameters for the Genz functions.

5.1. Genz functions. The Genz functions [11, 12] are a set of functions, defined on [0, 1]d,
frequently used to estimate the properties of approximation schemes. They are defined as follows:

(5.2)

oscillatory : f1(x) = cos
(

2πw1 +
d∑

i=1
cixi

)

product peak : f2(x) =
d∏

i=1

(
c−2
i + (xi + wi)2)−1

corner peak : f3(x) =
(

1 +
d∑

i=1
cixi

)−(d+1)

Gaussian : f4(x) = exp
(
−

d∑

i=1
c2i (xi − wi)2

)

continuous : f5(x) = exp
(
−

d∑

i=1
c2i |xi − wi|

)

discontinuous : f6(x) =
{

0 if any xi > wi

exp
(∑d

i=1 cixi

)
otherwise

Except for the “discontinuous” function, the parameters w are drawn uniformly from [0, 1].
These parameters act as a shift for the function. For the “discontinuous” function w determines the
position of the hyperplane defining a discontinuity of the function. If w was drawn uniformly also in
this case, the probability of being in the non-zero region of the function would decrease exponentially
with the dimension. This would make it very hard to obtain an error estimate for our approximation
with Monte Carlo method. Then we impose that for x ∼ U([0, 1]d), P [x > w] = 1/2. This was
achieved selecting w ∼ Beta(α, β), where β = 1 and α = exp

(
log(1/2)

d

)
/
(

1− exp
(

log(1/2)
d

))
.

The parameters c are drawn uniformly from [0, 1] and then normalized to dej‖c‖1 = bj , for j
indexing the six Genz functions. The “difficulty” of the function increases monotonically with bj and
ej is a scaling constant used for different dimensions. The parameters ej are defined as suggested
in [11, 12], while bj are selected in order to obtain the same test functions used for d = 10 in [1].
These are listed in table 5.1.

In order to compare the results obtained by functional tensor-train projection with the Smolyak
pseudospectral sparse grid approximation [8], we also consider the normalization ‖c‖1 = aj for d = 5
with values listed in table 5.1.

The experiments will be performed picking 30 different sets of parameters w and c for each Genz
function and looking at the L2 error (5.1) with respect to the number of function evaluations needed
to construct an approximation based on the functional tensor-train projection or interpolation, with
a desired order or a desired refinement respectively. Both the error estimate and the number of
function evaluations can vary depending on the particular function at hand. In particular the
number of function evaluations is driven by the procedure for obtaining a pointwise tensor-train
approximation on the tensor grid using the TT-DMRG-cross algorithm (see sec. 2.3).
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Fig. 5.1: Functional tensor-train projection approximation of the Genz functions. For exponentially increas-
ing polynomial order ( 2i − 1 for i = 1, . . . , 4 ) and for different dimensions, 30 Genz functions
have been constructed and approximated using the FTT-projection algorithm. The scattered
dots show the L2 error and the number of function evaluations needed for each of these realiza-
tions. The circled dots represent the mean L2 error and mean number of function evaluations for
increasing polynomial order.
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Fig. 5.2: FTT-projection approximation of the Genz functions. For exponentially increasing polynomial
order ( 2i − 1 for i = 1, . . . , 4 ) and for different dimensions, 30 Genz functions have been
constructed and approximated using the FTT-projection algorithm. The dots show the number
of function evaluations with respect to the polynomial order selected.
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The target accuracy of the TT-DMRG-cross approximation in terms of Frobenious norm is set
to εrnd = 10−10 to be conservative.

5.1.1. Functional tensor-train projection on the Genz functions. In the next tests
different dimensions will be considered ranging between 10 and 100. The “corner peak” function
was tested up to d = 15 due to the higher computational effort required to build the approximation.
The decay of the singular values of this function is very slow, leading to an increased sampling. For
the “product peak” function we could not run the tests for d > 20 because f2 → 0 as d increases,
leading to a loss of machine precision.

Figure 5.1 shows the convergence rate of the FTT-projection approximation on the six Genz
functions for exponentially increasing polynomial order ( 2i − 1 for i = 1, . . . , 4 ). The quadrature
points used are Gauss points. Due to the interchangeability of the dimensions in the Genz functions,
the single realizations are more scattered for the low-dimensional functions, being these defined by
a smaller number of random parameters.

As expected we obtain the spectral convergence rate on the smooth functions 1-4. On the “con-
tinuous” Genz function the convergence is only quadratic, due to the first order discontinuity in its
definition. The approximation to the “discontinuous” function shows no substantial convergence,
due to the use of global basis in the approximation of a function with discontinuities. The con-
struction of the approximation of the “corner peak” function requires more function evaluations
compared to the other functions: the reason lays in the fact that all the other functions have an
exact low rank representation, meaning that the singular values rapidly become zero, leading to no
information loss when the truncation is performed in order to select the TT-ranks. The “corner
peak” function, instead, couples all the variables with the outer exponentiation, leading to a slower
decay of the singular values σ(α) and to the necessity of increasing the TT-ranks in order to meet
the accuracy requirements. The relation between number of function evaluations and the order of
the polynomial basis used is shown in figure 5.2. Again, the effect of not being of low-rank, penalizes
the performances on the “corner peak” function.

5.1.2. Comparison with sparse grid pseudospectral approximation. The goal of this
numerical example is to compare our results to the fully adaptive Smolyak sparse grid pseudospectral
approximation [8], where the number of function evaluations is increased by increasing the available
computational time. For this test we will consider only the first four smooth Genz functions with
d = 5 as done in [8]. Figure 5.3 shows that the functional tensor-train projection outperforms
the pseudospectral approximation in all the tests where an exact low-rank decomposition of the
function exists. The “corner peak” function doesn’t have an exact low-rank decomposition and
spectral-tensor train is outperformed by the pseudospectral approximation in this case. It is fair to
notice however that the fully adaptive pseudospectral approximation performs an anisotropic order
adaptation with respect to the dimensions, i.e. it can use different orders on different dimensions.
This is a feature that is not yet available in our implementation of spectral tensor-train, thus the
increase of order is isotropic, leading to an excessive refinement in certain directions, leaving room
for future improvements.

5.2. Modified Genz functions. It is noticeable, from figure 5.1, that the approximations
tend to get easier as the dimension is increased. This is due to the fact that the Genz functions were
not designed to be used for very high dimensions. As an example, consider the “Gaussian” function
f4. It has the rank one representation:

(5.3) f4(x) = exp
(
−

d∑

i=1
c2i (xi − wi)2

)
=

d∏

i=1
exp

(
−c2i (xi − wi)2) .

The c vector is normalized so that ‖c‖1 = bj
dej

. Then, for d → ∞ and for the values of ej and bj
listed in table 5.1, ci → 0 and f4 → 1. This means that the higher is the dimension, the closer the
function is to be a constant and thus easier to be approximated.
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Fig. 5.3: Functional tensor-train projection approximation and Smolyak sparse grid pseudospectral approx-
imation of the Genz functions. For increasing accuracy 30 Genz functions have been constructed
and approximated by the two methods. The scattered dots show the L2 error and the number of
function evaluations needed for each of these realizations. The circled/square dots represent the
mean L2 error and mean number of function evaluations for increasing accuracy levels.
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Fig. 5.4: Functional tensor-train projection approximation of the modified Genz functions. For exponentially
increasing polynomial order ( 2i − 1 for i = 1, . . . , 4 ) and for different dimensions, 30 modified
Genz functions have been constructed and approximated using the FTT-projection algorithm.
The scattered dots show the L2 error and the number of function evaluations needed for each of
these realizations. The circled dots represent the mean L2 error and mean number of function
evaluations for increasing polynomial order.
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Fig. 5.5: Functional tensor-train linear interpolation of the “continuous” and “discontinuous” modified
Genz functions. For exponentially increasing number – from 21 to 27 – of uniformly distributed
interpolating points and for different dimensions, 30 Genz functions have been constructed and
approximated by the tensor-train linear interpolation. The scattered dots show the L2 error and
the number of function evaluations needed for each of these realizations. The circled dots represent
the mean L2 error and mean number of function evaluations for increasing grid refinements.

We would instead like to test the performance of the spectral tensor-train approximation on a
more realistic set of example functions, whose “difficulty” grows with the dimension. To this end,
we use the definition (5.2) of the Genz functions, but we refrain from normalizing the coefficients
c ∼ U([0, 1]). This leads to functions that don’t degenerate to constants in high dimensions, and
thus can be used for testing purposes at higher dimensions than the original Genz functions.

5.2.1. Functional tensor-train projection on the modified Genz functions. As a mean
of comparison with the original Genz functions, we consider the performances of the functional
tensor-train projection on their modified version. Figure 5.4 shows the convergence rate of the
surrogate function with respect to the number of function evaluation, for increasing polynomial
order. A comparison with figure 5.1 shows that the tests on the Modified Genz functions are more
informative about the method with respect to the original functions, because they don’t become
easier with the increase of dimensions. Again the spectral convergence is obtained on the smooth
functions. The higher scattering of the points in the approximation of the “corner peak” function is
due to the absence of an analytic low-rank representation for such function, and thus the introduction
of truncation in the tensor-train decomposition.

5.2.2. Functional tensor-train interpolation on the modified Genz functions. The
linear FTT-interpolation has been tested on all the modified Genz functions, with an exponentially
increasing number – from 21 to 27 – of uniformly distributed points. Due to space constraints, figure
5.5 shows the convergence rates only for the “continuous” and “discontinuous” Genz functions. For
the first four smooth functions we experience at least second order convergence rates, as expected
from the choice of linear basis functions. The convergence of the approximation to the “continuous”
function is second order, while the convergence rate on the “discontinuous” function is almost first
order. This type of convergence is obtained thanks to the locality of the selected basis functions which
prevent the error caused by the unresolved discontinuity from globally corrupting the approximation.

The Lagrange FTT-interpolation has also been tested for all the modified Genz functions. We
omit the results here because they are in line with the results obtained with the FTT-projection
showed in Fig. 5.1.
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Fig. 5.6: Magnitude of the Fourier coefficients, in log10 scale, for functions f1 and f2, obtained using the
TT-projection algorithm to a precision of ε = 10−10. The corresponding maximum TT-rank
and the number of function evaluations with respect to the total grid size are listed for several
dimensions.

5.3. FTT-projection and mixed Fourier modes. It is now understood that the approxima-
tion of multidimensional functions with sparse grids is exact when the function’s Fourier coefficients
are non-zero only for the set of admissible multi-indices included in the sparse grid construction
[8, 9]. The convergence of the approximation deteriorates when the decay of the Fourier coefficients
is slow for mixed modes.

We construct two ad-hoc functions to highlight some properties of the FTT-projection, when
approximating functions with different types of decay in their Fourier coefficients. Let us consider
functions defined on I = I1×· · ·×Id where Ii = [−1, 1]. On this hypercube we consider the sub-cube
Ij1 × · · · × Ijc , where J = {ji}ci=1 ⊆ [1, . . . , d]. For every index in J , we select {nji}ci=1 > 0 to be
the maximum order of polynomials included in the functions along the i-th direction. The functions
will then be defined as follows:

(5.4)

f1(x) =
c∏

k=1
φlk(xjk) ,

f2(x) =
nj1∑

ij1 =0
· · ·

njc∑

ijc=0

[
exp

(
−iTΣi

) c∏

k=1
φijk (xjk)

]
,

where Σ is a c× c matrix defining the level of interaction between different dimensions, {φijk }
njk
ijk=1

are chosen to be the normalized Legendre polynomials, i = (ij1 , . . . , ijc)T and the φlk are possibly
high order polynomials. To simplify the notation, we will set njk = n for all jk.

The function f1 is a function with one single high mixed Fourier mode as shown in figure 5.6a.
In spite of the high polynomial order, the rank of the function is correctly estimated to be 1 and
thus very few sampling points are needed in order to recover the required precision. This highlights
that, on the contrary of sparse grids, the spectral tensor-train does not discard basis functions in its
construction, but it uses always a fully tensorized set of basis functions.
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Fig. 5.7: The left figure shows the off-centered local feature of (5.5). The white and black dots show the
candidate points where the function has been evaluated. The black dots show the points that are
used in the final TT-DMRG-cross approximation. TT-DMRG-cross detects the feature and clusters
the nodes around it, in order to obtain maximum accuracy (ε = 10−10). The right figure shows
the same test for d = 3.

The function f2 aims to represent a function with a slow decay of mixed Fourier coefficients in
the J dimensions. The function is constant along the remaining dimensions. For d = 2 we set

Σ =
[

1 −0.9
−0.9 1

]

and J = [0, 1]. The decay of the coefficients, as estimated using the FTT-projection, is shown
in figure 5.6b. The function has an high TT-rank and this leads to the complete sampling of the
space. We can use this function also to experiment on what is called the ordering problem of the
TT-decomposition. We let d = 5 and use different combinations of indices in J . If J contains
two neighboring dimensions, J = [1, 2] in the example, the TT-ranks of the decomposition will be
r = [1, 1, 11, 1, 1, 1], where the maximum is attained between the cores G1 and G2. If we consider
J containing non-neighboring dimensions, J = [0, 4] in the example, we practically obtain the same
function, with reordered dimensions. In this case the TT-ranks will be r = [1, 11, 11, 11, 11, 1]. This
happens due to the hierarchical construction of the TT-decomposition, where information can be
propagated only from one core to the next one. The example shows that the only consequence of
a wrong ordering choice is that it can lead to an increased number of function evaluations, which
grows with r2. This however does not affect the accuracy of the approximation.

5.4. Resolution of local features. It is often the case that the modeled function presents
important local features which need to be resolved accurately. An a priori clustering of nodes is
not possible because the location of such feature is unknown. The TT-DMRG-cross algorithm over-
comes this problem, because it adaptively selects the nodes that are relevant for the approximation,
thus exploring the space with an increasing knowledge about the features of the function. As an
explanatory example, consider

(5.5) f(x) = exp
(
−|x− x0|2

2l2

)
.

Let d = 2, x0 = [0.2, 0.2] and l = 0.05. The function shows an off-centered peak as shown in figure
5.7a. The points used by TT-DMRG-cross (with accuracy ε = 10−10) are shown on the same figure,
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where the white dots are the points used on the way to the final approximation, while the black
dots are the points retained in the final approximation. Figure 5.7b shows the set of points used for
d = 3 and x0 = [0.2, 0.2, 0.2]. The same kind of clustering is observed.

5.5. Elliptic equation with random input data. Here we consider the classical Poisson’s
equation defined on the unit square Γ = [0, 1]× [0, 1]

(5.6)
{
−∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω) in Γ× Ω
u(x, ω) = 0 on ∂Γ× Ω

,

where f(x, ω) = 1 is a deterministic load, and κ is a log-normal random field defined on the proba-
bility space (Ω,Σ, µ) by

(5.7) κ(x, ω) = exp
(
g(x, ω)

10

)
, g(x, ω) ∼ N (0, Cg(x,y)) .

We characterize the normal random field g ∈ L2
µ(Ω;L∞(Γ)) by the squared exponential covariance:

(5.8) Cg(x,y) =
∫

Ω
g(x, ω)g(y, ω)dµ(ω) = exp

(
−‖x− y‖2

2l2

)
,

where l > 0 determines the spatial correlation length of the field. We decompose the random field
through the Karhunen-Loève (KL) expansion [30]

(5.9) g(x, ω) =
∞∑

i=1

√
λiχi(x)Yi(ω) ,

where Yi ∼ N (0, 1) and {λi, χi(x)}∞i=1 are the eigenvalues and eigenfunctions of the eigenvalue
problem

∫
y∈Γ Cg(x,y)χi(y)dy = λiχi(x). The KL-expansion is truncated in order to retain the

95% of the total variance (Var[g(x, ω)] = 1), i.e. we find d ∈ N+ such that
∑d
i=1 λi ≥ 0.95. With

a correlation length of l = 0.25 we use d = 12 terms in the KL-expansion. Figure 5.8a shows one
realisation of the random field (5.7), computed using the selected parameters for the KL-expansion
(5.9). The use of the KL-expansion allows (5.6) to be turned into a parametric problem, where we
seek the solution u ∈ L2(Γ) × L2

dY(Rd). Here we will focus on the construction of a surrogate of
u(x0,Y), for x0 = (0.75, 0.25).

The surrogate is constructed using the FTT-projection with Hermite polynomials as basis
functions. Figure 5.8b shows the convergence, in terms of the L2 error (5.1), for orders 0, 1, 3 and 7
and for different target accuracies. These accuracies are driven by the tolerances that are set in the
TT-DMRG-cross algorithm, and they represent the accuracy with which the discrete tensor of values
is approximated by the TT-decomposition. We can see that the accuracy of the surrogate improves
spectrally until the target accuracy is reached. After this happens, an increase in the order of the
surrogate doesn’t provide any more improvement and the convergence plot flattens at the target
accuracy level.

6. Conclusions. This paper presents a novel and rigorous construction of the Spectral tensor-
train decomposition, that can be used for the approximation of high-dimensional functions. The
method aims at tackling the curse of dimensionality for functions with sufficient regularity, exploiting
the low-rank representation of the approximated function, and at attaining spectral convergence, by
the use of polynomial approximation.

We present an iterative procedure to decompose an arbitrary function f ∈ L2
µ(I), obtaining a

format that we call the functional tensor-train decomposition, to distinguish it from the already
studied discrete tensor-train decomposition. The construction of the surrogate is based on the exis-
tence of the singular value decomposition of Hilbert-Schmidt kernels in L2

µ(I) and on the regularity
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Fig. 5.8: The left figure shows a realization of the random field (5.7), evaluated using the truncated KL-
expansion (5.9). The right figure shows the convergence of the FTT-projection of orders 0, 1,
3 and 7 for different target accuracies selected. The vertical dashed lines show the number of
function evaluations that would be required to attain a full tensor approximation.

properties of the function (c.f. Thm. 4.7). This regularity will be carried on by the singular functions
of the decomposition (c.f. Thm. 4.9 and 4.11), leading to the same convergence rate that would be
obtained if we applied the polynomial approximation to the high-dimensional f .

The tensor-train decomposition [31] obtained through the TT-DMRG-cross algorithm [35] leads to
a memory and computational complexity that scale linearly with the dimensionality of the function.
The theory of polynomial approximation is added on top of the discrete representation obtained
by TT-DMRG-cross, and provides an accurate approximation that converges spectrally on smooth
functions. The user is required to select the polynomial order of the approximation and the overall
accuracy required. The latter tolerance will drive the amount of dimensional interaction described
by the approximation and ultimately the number of function evaluations, which will grow mildly for
functions with a fast decay of their singular values.

Unlike in sparse grid pseudospectral approximation, the method doesn’t make any a priori
assumption in the choice of the basis for the separation of the space L2

µ(I). Instead, it uses the
singular functions of f , which are optimal. The choice of a polynomial basis is made during the
projection of the singular functions γk(αk−1, ·, αk) ∈ L2

µ(Ik) onto the space spanned by such fully
tensorized polynomials. This approach also permits to resolve local features not positioned at the
center of the domain, by clustering the evaluation points close to the feature.

In some cases, the performances of the method are dependent on the ordering of the dimensions.
This results only in a higher number of function evaluations, although still linear in d, but does not
compromises the quality of the approximation. Research in the direction of finding an optimal
ordering a priori is a topic of ongoing work.

The results from this work pave the way to an adaptive spectral tensor-train decomposition: the
smoothness properties of the singular functions can in fact be used as an indicator for the necessity
of increasing the polynomial order on each dimension. This will allow the complete automation of
the construction of spectral tensor-train surrogates.

The results in this work have been obtained using the open-source Python library for Spectral
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tensor-train decomposition that is made available on-line3 – including examples from this paper.
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Appendix A. Hölder continuity and the Smithies’ condition. In Section 4.2 we use a
result by Smithies [40, Thm. 14] to prove the boundedness of the weak derivatives of the cores of
the FTT-decomposition. The condition under which Smithies’ result hold is:

Definition A.1 (Smithies’ integrated Hölder continuity). Let K(s, t) defined for s, t ∈ [a, b].
Without loss of generality, let a = 0 and b = π. For r > 0, let

(A.1) K(i)(s, t) = ∂iK(s, t)
∂si

, 0 < i ≤ r

and let K(1), . . . ,K(r−1) exist and continuous. Let K(r) ∈ Lp(s) a.e. in t and 1 < p ≤ 2. The
integrated Hölder continuity, with either r > 0 and α > 0 or r = 0 and α > 1

p − 1
2 , holds for K if

there exists A > 0 such that:

(A.2)
∫ π

0

{∫ π

0

∣∣∣K(r)(s+ θ, t)−K(r)(s− θ, t)
∣∣∣
p

ds

} 2
p

dt ≤ A|θ|2α .

This definition is of difficult interpretation. Furthermore, in the scope of this work, we are
interested in the case r = 0. A simpler, but not equivalent, definition is the one mentioned in [41]:

Definition A.2 (Hölder continuity almost everywhere). Let K(s, t) defined for s, t ∈ [a, b]. K
is Hölder continuous a.e. with exponent α > 0 if there exists C > 0 such that

(A.3) |K(s+ θ, t)−K(s− θ, t)| ≤ C|θ|α

almost everywhere in t.
For the sake of simplicity, we show that:
Proposition A.3. The Hölder continuity a.e. is a sufficient condition for the Smithies’ inte-

grated Hölder continuity.
Proof. Let K ∈ Lp(s) for almost all t, 1 < p ≤ 2. For α > 1

2 , let K be Hölder continuous a.e. in
t. Then:

(A.4)

∫ π

0

{∫ π

0

∣∣∣K(r)(s+ θ, t)−K(r)(s− θ, t)
∣∣∣
p

ds

} 2
p

dt ≤
∫ π

0

{∫ π

0
Cp |θ|αp ds

} 2
p

dt

= C2π
3
p |θ|2α ≤ C2π3 |θ|2α = A |θ|2α

where we recognize the bound (A.2) of the Smithies’ integrated Hölder continuity.
Appendix B. Proves of auxiliary results for theorem 4.7.
Proof. [Proof of lemma 4.5] By definition of Sobolev norm, seminorm and weak derivative Di:

(B.1)

|J |2I1×I1,µ,k ≤ ‖J‖2Hkµ(I1×I1) =
k∑

|i|=0

‖Di〈f(x, y), f(x̄, y)〉L2
µ(Ī)‖2L2

µ(I1×I1)

=
k∑

|i|=0

‖〈Di1,0f(x, y), Di2,0f(x̄, y)〉L2
µ(Ī)‖2L2

µ(I1×I1) ,

3https://pypi.python.org/pypi/TensorToolbox/
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where i is a two dimensional multi-index. Using the Cauchy-Schwarz inequality, it holds:

(B.2) ‖〈Di1,0f(x, y), Di2,0f(x̄, y)〉L2
µ(Ī)‖2L2

µ(I1×I1) ≤ ‖Di1,0f(x, y)‖2L2
µ(I)‖Di2,0f(x, y)‖2L2

µ(I)

Let now j and l be two d-dimensional multi-indices, then (B.1) can be bounded by

(B.3)

|J |2I1×I1,µ,k ≤ ‖J‖2Hkµ(I1×I1) ≤
k∑

|i|=0

‖Di1,0f(x, y)‖2L2
µ(I)‖Di2,0f(x, y)‖2L2

µ(I)

≤
k∑

|j|=0

k∑

|l|=0

‖Djf(x, y)‖2L2
µ(I)‖Dlf(x, y)‖2L2

µ(I) ≤ ‖f‖4Hkµ(I) .

Since ‖J‖Hkµ(I1×I1) ≤ ‖f‖2Hkµ(I) <∞ by assumption, then J ∈ Hkµ(I1 × I1).
Proof. [Proof of lemma 4.6] Using the definition of Sobolev norm and theorem 4.11,

(B.4)

‖φ1(i1)‖2Hkµ(Ī) =
k∑

|j|=0

‖Djφ1(i1)‖2
L2
µ(Ī) ≤

k∑

|j|=0

1
λ(i1)‖ψ1(i1)‖2L2

µ(I1)‖D0,jf‖2L2
µ(I)

= 1
λ(i1)

k∑

|j|=0

‖D0,jf‖2L2
µ(I) ≤

1
λ(i1)

k∑

|l|=0

‖Dlf‖2L2
µ(I) = 1

λ(i1)‖f‖
2
Hkµ(I) .
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