16,727 research outputs found

    Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology

    Get PDF
    Chitin is a promising soil amendment for improving soil quality, plant growth, and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia colt O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA) analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than 10-fold increase was observed for operational taxonomic units belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves

    Promises and Prospects of Microbiome Studies

    Get PDF
    Since Anthony van Leeuwenhoek, first microscopic observations of the unseen microbiota and the more recent realization that little of the microbes in the biosphere are known, humans have developed a deep curiosity to fully understand the inner workings of the microbial realm. Our ability to characterize the complexity of microbial communities in their natural habitats has dramatically improved over the past decade thanks to advances in high-throughput methodologies. By eliminating the need to isolate and culture individual species, metagenomics approaches have removed many of the obstacles that hindered research in the ecology of mixed microbial consortia, providing valuable information about the diversity, composition, function, and metabolic capability of the community. Microbes are the unseen majority with the capability to colonize every environment, including our bodies. The establishment and composition of a stable human microbiome is determined by the host genetics, immunocompetence, and life-style choices. Our life-style choices determine our exposure to many external and internal environmental factors that permanently or temporarily can influence our microbiome composition. Figure 1 illustrates some of the life-style-related factors that might influence the microbiota of the skin, mouth, and gut. It is not limited to what we carry, touch, breath, and eat. Other dispersal vectors include secretion, excretions, aerosols, air flow, animals, moving surfaces, water, beverages, food, contact, wind, tools, toiletry, and others. These influence the microbiome membership, who are present, and they have the ability to participate in the microbiome dynamic within an environment. The establishment of a microbial community is dependent on many environmental factors, including pH, temperature, altitude, weather, soil type, nutrient availability, relative humidity, air quality, pollutants, microbial competitors, and others. In other words, we are superorganisms interconnected with other living forms on this Earth

    Genome comparison and physiological characterization of eight Streptococcus thermophilus strains isolated from Italian dairy products

    Get PDF
    Eight Streptococcus thermophilus strains of dairy origin isolated in Italy were chosen to investigate autochthonous bacterial diversity in this important technological species. In the present study a comparative analysis of all the 17 S. thermophilus genomes publicly available was performed to identify the core and the variable genes, which vary among strains from 196 to 265. Additionally, correlation between the isolation site and the genetic distance was investigated at genomic level. Results highlight that the phylogenetic reconstruction differs from the geographical strain distribution. Moreover, strain M17PTZA496 has a genome of 2.15 Mbp, notably larger than that of the others, determined by lateral gene transfer (including phage-mediated incorporation) and duplication events. Important technological characters, such as growth kinetics, bacteriocin production, acidification kinetics and surface adhesion capability were studied in all the Italian strains. Results indicate a wide range of variability in adhesion properties that significantly clustered strains into four groups. Genomic differences among strains in relation to these characters were identified but a clear correlation between genotype and phenotype was not always found since most of the genomic modifications arise from single nucleotide polymorphisms. This research represents a step forward in the identification of strains-specific functions in Streptococcus thermophilus and it has also the potential to provide valuable information to predict strain specific behaviors in industrial processes

    Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics.

    Get PDF
    UnlabelledRegionally distinct wine characteristics (terroir) are an important aspect of wine production and consumer appreciation. Microbial activity is an integral part of wine production, and grape and wine microbiota present regionally defined patterns associated with vineyard and climatic conditions, but the degree to which these microbial patterns associate with the chemical composition of wine is unclear. Through a longitudinal survey of over 200 commercial wine fermentations, we demonstrate that both grape microbiota and wine metabolite profiles distinguish viticultural area designations and individual vineyards within Napa and Sonoma Counties, California. Associations among wine microbiota and fermentation characteristics suggest new links between microbiota, fermentation performance, and wine properties. The bacterial and fungal consortia of wine fermentations, composed from vineyard and winery sources, correlate with the chemical composition of the finished wines and predict metabolite abundances in finished wines using machine learning models. The use of postharvest microbiota as an early predictor of wine chemical composition is unprecedented and potentially poses a new paradigm for quality control of agricultural products. These findings add further evidence that microbial activity is associated with wine terroirImportanceWine production is a multi-billion-dollar global industry for which microbial control and wine chemical composition are crucial aspects of quality. Terroir is an important feature of consumer appreciation and wine culture, but the many factors that contribute to terroir are nebulous. We show that grape and wine microbiota exhibit regional patterns that correlate with wine chemical composition, suggesting that the grape microbiome may influence terroir In addition to enriching our understanding of how growing region and wine properties interact, this may provide further economic incentive for agricultural and enological practices that maintain regional microbial biodiversity

    High-throughput DNA sequencing to survey bacterial histidine and tyrosine decarboxylases in raw milk cheeses

    Get PDF
    peer-reviewedBackground The aim of this study was to employ high-throughput DNA sequencing to assess the incidence of bacteria with biogenic amine (BA; histamine and tyramine) producing potential from among 10 different cheeses varieties. To facilitate this, a diagnostic approach using degenerate PCR primer pairs that were previously designed to amplify segments of the histidine (hdc) and tyrosine (tdc) decarboxylase gene clusters were employed. In contrast to previous studies in which the decarboxylase genes of specific isolates were studied, in this instance amplifications were performed using total metagenomic DNA extracts. Results Amplicons were initially cloned to facilitate Sanger sequencing of individual gene fragments to ensure that a variety of hdc and tdc genes were present. Once this was established, high throughput DNA sequencing of these amplicons was performed to provide a more in-depth analysis of the histamine- and tyramine-producing bacteria present in the cheeses. High-throughput sequencing resulted in generation of a total of 1,563,764 sequencing reads and revealed that Lactobacillus curvatus, Enterococcus faecium and E. faecalis were the dominant species with tyramine producing potential, while Lb. buchneri was found to be the dominant species harbouring histaminogenic potential. Commonly used cheese starter bacteria, including Streptococcus thermophilus and Lb. delbreueckii, were also identified as having biogenic amine producing potential in the cheese studied. Molecular analysis of bacterial communities was then further complemented with HPLC quantification of histamine and tyramine in the sampled cheeses. Conclusions In this study, high-throughput DNA sequencing successfully identified populations capable of amine production in a variety of cheeses. This approach also gave an insight into the broader hdc and tdc complement within the various cheeses. This approach can be used to detect amine producing communities not only in food matrices but also in the production environment itself.This work was funded by the Department of Agriculture, Food and the Marine under the Food Institutional Research Measure through the ‘Cheeseboard 2015’ project. Daniel J. O’Sullivan is in receipt of a Teagasc Walsh Fellowship, Grant Number: 2012205

    Multivariate statistical analysis for the identification of potential seafood spoilage indicators

    Get PDF
    Volatile organic compounds (VOCs) characterize the spoilage of seafood packaged under modified atmospheres (MAs) and could thus be used for quality monitoring. However, the VOC profile typically contains numerous multicollinear compounds and depends on the product and storage conditions. Identification of potential spoilage indicators thus calls for multivariate statistics. The aim of the present study was to define suitable statistical methods for this purpose (exploratory analysis) and to consequently characterize the spoilage of brown shrimp (Crangon crangon) and Atlantic cod (Gadus morhua) stored under different conditions (selective analysis). Hierarchical cluster analysis (HCA), principal components analysis (PCA) and partial least squares regression analysis (PLS) were applied as exploratory techniques (brown shrimp, 4 °C, 50%CO2/50%N2) and PLS was further selected for spoilage marker identification. Evolution of acetic acid, 2,3-butanediol, isobutyl alcohol, 3-methyl-1-butanol, dimethyl sulfide, ethyl acetate and trimethylamine was frequently in correspondence with changes in the microbiological quality or sensory rejection. Analysis of these VOCs could thus enhance the detection of seafood spoilage and the development of intelligent packaging technologies.acceptedVersionPeer reviewe

    Safety assessment of biotechnology used in animal production, including genetically modified (GM) feed and GM animals - a review

    Get PDF
    Since the beginning of the large-scale commercial cultivation of genetically modified (GM) crops in the mid-nineties, it has continuously increased. This has occurred in particular in non-European countries from which these crops may be exported as commodities to Europe and other markets. Before genetically modified organisms (GMO) are allowed onto the market as animal feed and/or food, they have to undergo a regulatory safety assessment as required by the law in many nations, including that of European Union (EU) nations under EU regulations. This safety assessment is based on an internationally harmonized approach of comparative safety assessment, in which the differences identified during the extensive comparison between a GMO and a conventional counterpart serve as basis for a further safety assessment. The GMOs that have been notified for regulatory approval and assessed for their safety as feed and food in the EU have so far been derived from crops and microorganisms. It is expected that in the near future, also several genetically modified (GM) animals may initially reach the market outside the EU. International activities to harmonize the safety assessment of GM animals have already started and have resulted in the issuance of specific guidelines by Codex alimentarius. Moreover, PEGASUS, an EU-funded project, will consider the perceptions, advantages and disadvantages of GM animals, including perspectives from the social-and life-sciences
    • 

    corecore