722 research outputs found

    Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping

    Get PDF
    The continuously increasing demand of accurate quantitative high quality information on land surface properties will be faced by a new generation of environmental Earth observation (EO) missions. One current example, associated with a high potential to contribute to those demands, is the multi-spectral ESA Sentinel-2 (S2) system. The present study focuses on the evaluation of spectral information content needed for crop leaf area index (LAI) mapping in view of the future sensors. Data from a field campaign were used to determine the optimal spectral sampling from available S2 bands applying inversion of a radiative transfer model (PROSAIL) with look-up table (LUT) and artificial neural network (ANN) approaches. Overall LAI estimation performance of the proposed LUT approach (LUTN₅₀) was comparable in terms of retrieval performances with a tested and approved ANN method. Employing seven- and eight-band combinations, the LUTN₅₀ approach obtained LAI RMSE of 0.53 and normalized LAI RMSE of 0.12, which was comparable to the results of the ANN. However, the LUTN50 method showed a higher robustness and insensitivity to different band settings. Most frequently selected wavebands were located in near infrared and red edge spectral regions. In conclusion, our results emphasize the potential benefits of the Sentinel-2 mission for agricultural applications

    Synergetic Exploitation of the Sentinel-2 Missions for Validating the Sentinel-3 Ocean and Land Color Instrument Terrestrial Chlorophyll Index Over a Vineyard Dominated Mediterranean Environment

    Full text link
    [EN] Continuity to the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) will be provided by the Ocean and Land Color Instrument (OLCI) on-board the Sentinel-3 missions. To ensure its utility in a wide range of scientific and operational applications, validation efforts are required. In the past, direct validation has been constrained by the need for costly airborne hyperspectral data acquisitions, due to the lack of freely available high spatial resolution imagery incorporating appropriate spectral bands. The Multispectral Instrument (MSI) on-board the Sentinel-2 missions now offers a promising alternative. We explored the synergetic use of MSI data for validation of the OLCI Terrestrial Chlorophyll Index (OTCI) over the Valencia Anchor Station, a large agricultural site in the Valencian Community, Spain. Using empirical and machine learning techniques applied to MSI data, in situ measurements were upscaled to the moderate spatial resolution of the OTCI. An RMSECV of 0.09 g.m(-2) (NRMSECV = 20.93%) was achieved, highlighting the valuable information MSI data can provide when used in synergy with OLCI data for land product validation. Good agreement between the OTCI and upscaled in situ measurements was observed (r = 0.77, p < 0.01), providing increased confidence to users of the product over vineyard dominated Mediterranean environments.This work was supported in part by the European Space Agency and European Commission through the Sentinel-3 Mission Performance Centre.Brown, LA.; Dash, J.; Lidón, A.; Lopez-Baeza, E.; Dransfeld, S. (2019). Synergetic Exploitation of the Sentinel-2 Missions for Validating the Sentinel-3 Ocean and Land Color Instrument Terrestrial Chlorophyll Index Over a Vineyard Dominated Mediterranean Environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 12(7):2244-2251. https://doi.org/10.1109/JSTARS.2019.28999982244225112

    Remote Sensing of Biophysical Parameters

    Get PDF
    Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security)

    Assessing across-scale optical diversity and productivity relationships in grasslands of the Italian alps

    Get PDF
    The linearity and scale-dependency of ecosystem biodiversity and productivity relationships (BPRs) have been under intense debate. In a changing climate, monitoring BPRs within and across different ecosystem types is crucial, and novel remote sensing tools such as the Sentinel-2 (S2) may be adopted to retrieve ecosystem diversity information and to investigate optical diversity and productivity patterns. But are the S2 spectral and spatial resolutions suitable to detect relationships between optical diversity and productivity? In this study, we implemented an integrated analysis of spatial patterns of grassland productivity and optical diversity using optical remote sensing and Eddy Covariance data. Across-scale optical diversity and ecosystem productivity patterns were analyzed for different grassland associations with a wide range of productivity. Using airborne optical data to simulate S2, we provided empirical evidence that the best optical proxies of ecosystem productivity were linearly correlated with optical diversity. Correlation analysis at increasing pixel sizes proved an evident scale-dependency of the relationships between optical diversity and productivity. The results indicate the strong potential of S2 for future large-scale assessment of across-ecosystem dynamics at upper levels of observation

    Retrieval of evapotranspiration from sentinel-2: Comparison of vegetation indices, semi-empirical models and SNAP biophysical processor approach

    Get PDF
    Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential biophysical parameters for crop evapotranspiration monitoring. Using Sentinel-2 (S2) spectral information, this studyperformeda comparative analysis of empirical (vegetation indices), semi-empirical (CLAIR model with fixed and calibrated extinction coefficient) and artificial neural network S2 products derived from the Sentinel Application Platform Software (SNAP) biophysical processor (ANN S2 products) approaches for the estimation of LAI and CCC. Four independent in situ collected datasets of LAI and CCC, obtained with standard instruments (LAI-2000, SPAD) and a smartphone application (PocketLAI), were used. The ANN S2 products present good statistics for LAI (R2 > 0.70, root mean square error (RMSE) 0.75, RMSE < 0.68 g/m2) retrievals. The normalized Sentinel-2 LAI index (SeLI) is the index that presents good statistics in each dataset (R2 > 0.71, RMSE < 0.78) and for the CCC, the ratio red-edge chlorophyll index (CIred-edge) (R2 > 0.67, RMSE < 0.62 g/m2). Both indices use bands located in the red-edge zone, highlighting the importance of this region. The LAI CLAIR model with a fixed extinction coefficient value produces a R2 > 0.63 and a RMSE < 1.47 and calibrating this coefficient for each study area only improves the statistics in two areas (RMSE 0.70). Finally, this study analyzed the influence of the LAI parameter estimated with the different methodologies in the calculation of crop potential evapotranspiration (ETc) with the adapted Penman–Monteith (FAO-56 PM), using a multi-temporal dataset. The results were compared with ETc estimated as the product of the reference evapotranspiration (ETo) and on the crop coefficient (Kc) derived fromFAO table values. In the absence of independent reference ET data, the estimated ETc with the LAI in situ values were considered as the proxy of the ground-truth. ETc estimated with the ANN S2 LAI product is the closest to the ETc values calculated with the LAI in situ (R2 > 0.90, RMSE < 0.41 mm/d). Our findings indicate the good validation of ANN S2 LAI and CCC products and their further suitability for the implementation in evapotranspiration retrieval of agricultural areas

    Observations and Recommendations for the Calibration of Landsat 8 OLI and Sentinel 2 MSI for Improved Data Interoperability

    Get PDF
    Combining data from multiple sensors into a single seamless time series, also known as data interoperability, has the potential for unlocking new understanding of how the Earth functions as a system. However, our ability to produce these advanced data sets is hampered by the differences in design and function of the various optical remote-sensing satellite systems. A key factor is the impact that calibration of these instruments has on data interoperability. To address this issue, a workshop with a panel of experts was convened in conjunction with the Pecora 20 conference to focus on data interoperability between Landsat and the Sentinel 2 sensors. Four major areas of recommendation were the outcome of the workshop. The first was to improve communications between satellite agencies and the remote-sensing community. The second was to adopt a collections-based approach to processing the data. As expected, a third recommendation was to improve calibration methodologies in several specific areas. Lastly, and the most ambitious of the four, was to develop a comprehensive process for validating surface reflectance products produced from the data sets. Collectively, these recommendations have significant potential for improving satellite sensor calibration in a focused manner that can directly catalyze efforts to develop data that are closer to being seamlessly interoperable

    Systematic Orbital Geometry-Dependent Variations in Satellite Solar-Induced Fluorescence (SIF) Retrievals

    Get PDF
    While solar-induced fluorescence (SIF) shows promise as a remotely-sensed measurement directly related to photosynthesis, interpretation and validation of satellite-based SIF retrievals remains a challenge. SIF is influenced by the fraction of absorbed photosynthetically-active radiation at the canopy level that depends upon illumination geometry as well as the escape of SIF through the canopy that depends upon the viewing geometry. Several approaches to estimate the effects of sun-sensor geometry on satellite-based SIF have been proposed, and some have been implemented, most relying upon satellite reflectance measurements and/or other ancillary data sets. These approaches, designed to ultimately estimate intrinsic or physiological components of SIF related to photosynthesis, have not generally been applied globally to satellite measurements. Here, we examine in detail how SIF and related reflectance-based indices from wide swath polar orbiting satellites in low Earth orbit vary systematically due to the host satellite orbital characteristics. We compare SIF and reflectance-based parameters from the Global Ozone Mapping Experiment 2 (GOME-2) on the MetOp-B platform and from the TROPOspheric Monitoring Instrument (TROPOMI) on the Sentinel 5 Precursor satellite with a focus on high northern latitudes in summer where observations at similar geometries and local times occur. We show that GOME-2 and TROPOMI SIF observations agree nearly to within estimated uncertainties when they are compared at similar observing geometries. We show that the cross-track dependence of SIF normalized by PAR and related reflectance-based indices are highly correlated for dense canopies, but diverge substantially as the vegetation within a field-of-view becomes more sparse. This has implications for approaches that utilize reflectance measurements to help account for SIF geometrical dependences in satellite measurements. To further help interpret the GOME-2 and TROPOMI SIF observations, we simulated cross-track dependences of PAR normalized SIF and reflectance-based indices with the one dimensional Soil-Canopy Observation Photosynthesis and Energy fluxes (SCOPE) canopy radiative transfer model at sun–satellite geometries that occur across the wide swaths of these instruments and examine the geometrical dependencies of the various components (e.g., fraction of absorbed PAR, SIF yield, and escape of SIF from the canopy) of the observed SIF signal. The simulations show that most of the cross-track variations in SIF result from the escape of SIF through the scattering canopy and not the illumination

    Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits

    Get PDF
    The most recent efforts to provide remote sensing (RS) estimates of plant function rely on the combination of Radiative Transfer Models (RTM) and Soil-Vegetation-Atmosphere Transfer (SVAT) models, such as the Soil-Canopy Observation Photosynthesis and Energy fluxes (SCOPE) model. In this work we used ground spectroradiometric and chamber-based CO2 flux measurements in a nutrient manipulated Mediterranean grassland in order to: 1) develop a multiple-constraint inversion approach of SCOPE able to retrieve vegetation biochemical, structural as well as key functional traits, such as chlorophyll concentration (Cab), leaf area index (LAI), maximum carboxylation rate (Vcmax) and the Ball-Berry sensitivity parameter (m); and 2) compare the potential of the of gross primary production (GPP) and sun-induced fluorescence (SIF), together with up-welling Thermal Infrared (TIR) radiance and optical reflectance factors (RF), to estimate such parameters. The performance of the proposed inversion method as well as of the different sets of constraints was assessed with contemporary measurements of water and heat fluxes and leaf nitrogen content, using pattern-oriented model evaluation. The multiple-constraint inversion approach proposed together with the combination of optical RF and diel GPP and TIR data provided reliable estimates of parameters, and improved predicted water and heat fluxes. The addition of SIF to this scheme slightly improved the estimation of m. Parameter estimates were coherent with the variability imposed by the fertilization and the seasonality of the grassland. Results revealed that fertilization had an impact on Vcmax, while no significant differences were found for m. The combination of RF, SIF and diel TIR data weakly constrained functional traits. Approaches not including GPP failed to estimate LAI; however GPP overestimated Cab in the dry period. These problems might be related to the presence of high fractions of senescent leaves in the grassland. The proposed inversion approach together with pattern-oriented model evaluation open new perspectives for the retrieval of plant functional traits relevant for land surface models, and can be utilized at various research sites where hyperspectral remote sensing imagery and eddy covariance flux measurements are simultaneously taken

    Understanding the land carbon cycle with space data: current status and prospects

    Get PDF
    Our understanding of the terrestrial carbon cycle has been greatly enhanced since satellite observations of the land surface started. The advantage of remote sensing is that it provides wall-to-wall observations including in regions where in situ monitoring is challenging. This paper reviews how satellite observations of the biosphere have helped improve our understanding of the terrestrial carbon cycle. First, it details how remotely sensed information of the land surface has provided new means to monitor vegetation dynamics and estimate carbon fluxes and stocks. Second, we present examples of studies which have used satellite products to evaluate and improve simulations from global vegetation models. Third, we focus on model data integration approaches ranging from bottom-up extrapolation of single variables to carbon cycle data assimilation system able to ingest multiple types of observations. Finally, we present an overview of upcoming satellite missions which are likely to further improve our understanding of the terrestrial carbon cycle and its response to climate change and extremes
    corecore