Synergetic Exploitation of the Sentinel-2 Missions for Validating the Sentinel-3 Ocean and Land Color Instrument Terrestrial Chlorophyll Index Over a Vineyard Dominated Mediterranean Environment

Abstract

[EN] Continuity to the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) will be provided by the Ocean and Land Color Instrument (OLCI) on-board the Sentinel-3 missions. To ensure its utility in a wide range of scientific and operational applications, validation efforts are required. In the past, direct validation has been constrained by the need for costly airborne hyperspectral data acquisitions, due to the lack of freely available high spatial resolution imagery incorporating appropriate spectral bands. The Multispectral Instrument (MSI) on-board the Sentinel-2 missions now offers a promising alternative. We explored the synergetic use of MSI data for validation of the OLCI Terrestrial Chlorophyll Index (OTCI) over the Valencia Anchor Station, a large agricultural site in the Valencian Community, Spain. Using empirical and machine learning techniques applied to MSI data, in situ measurements were upscaled to the moderate spatial resolution of the OTCI. An RMSECV of 0.09 g.m(-2) (NRMSECV = 20.93%) was achieved, highlighting the valuable information MSI data can provide when used in synergy with OLCI data for land product validation. Good agreement between the OTCI and upscaled in situ measurements was observed (r = 0.77, p < 0.01), providing increased confidence to users of the product over vineyard dominated Mediterranean environments.This work was supported in part by the European Space Agency and European Commission through the Sentinel-3 Mission Performance Centre.Brown, LA.; Dash, J.; Lidón, A.; Lopez-Baeza, E.; Dransfeld, S. (2019). Synergetic Exploitation of the Sentinel-2 Missions for Validating the Sentinel-3 Ocean and Land Color Instrument Terrestrial Chlorophyll Index Over a Vineyard Dominated Mediterranean Environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 12(7):2244-2251. https://doi.org/10.1109/JSTARS.2019.28999982244225112

    Similar works

    Full text

    thumbnail-image

    Available Versions