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Abstract 25 

Our understanding of the terrestrial carbon cycle has been greatly enhanced since satellite 26 

observations of the land surface started. The advantage of remote-sensing is that it provides 27 

wall-to-wall observations including in regions where in situ monitoring is challenging. This 28 

paper reviews how satellite observations of the biosphere have helped improve our 29 

understanding of the terrestrial carbon cycle. First, it details how remotely-sensed 30 

information of the land surface has provided new means to monitor vegetation dynamics, 31 

estimate carbon fluxes and stocks. Second, we present examples of studies which have used 32 

satellite products to evaluate and improve simulations from global vegetation models. Third, 33 

we focus on model-data integration approaches ranging from bottom-up extrapolation of 34 

single variables to carbon cycle data assimilation system able to ingest multiple types of 35 

observations. Finally, we present an overview of upcoming satellite missions which are likely 36 

to further improve our understanding of the terrestrial carbon cycle and its response to 37 

climate change and extremes. 38 

 39 

  40 



1. Introduction 41 

Terrestrial ecosystems help offset climate change by absorbing 25–30% of anthropogenic 42 

emissions of carbon dioxide (CO2) each year (Canadell et al., 2007; Le Quéré et al., 2018). 43 

The global land carbon sink is calculated as the residual between reported fossil-fuel 44 

emissions, measurements of the atmospheric CO2 growth and constrained estimates of ocean 45 

carbon uptake (see e.g. Le Quéré et al. 2018 for more details). The spatiotemporal 46 

distribution of the land carbon sink is estimated using an ensemble of process-based 47 

terrestrial ecosystem models (TEMs; Sitch et al. 2015). However, these largely unconstrained 48 

models exhibit significant differences in the location, magnitude and sign of the land carbon 49 

balance. This lack of agreement leads to large uncertainties in Earth system models’ 50 

projections of the response of terrestrial ecosystems to future climate change (Friedlingstein 51 

et al. 2006, Arora et al. 2013). This is further complicated by the interplay of vegetation CO2 52 

uptake and emissions from land use and land cover change (Arneth et al. 2017) such as 53 

deforestation (van der Werf et al. 2009). 54 

A key issue for TEMs has been the challenge of integrating global observations to calibrate 55 

process parameters. Model spread seems to emerge from the lack of understanding of 56 

processes that control carbon allocation, turnover and mortality (Friend et al. 2014). Although 57 

networks of eddy-covariance towers (e.g. FLUXNET, Baldocchi et al. 2001) provide useful 58 

information to improve models (Williams et al. 2009, Kuppel et al. 2014), their distribution is 59 

highly skewed toward temperate regions of the northern hemisphere which challenges their 60 

applicability to other ecosystems. However, in recent years the multiplication of continuous 61 

Earth Observation (EO) has allowed the production of observational datasets relevant to the 62 

biosphere. While satellites do not measure carbon stocks and fluxes directly, they provide 63 

covariates for the extrapolation of in situ data to global gridded products related to ecosystem 64 

carbon fluxes (e.g. Jung et al. 2009) and biomass stocks (e.g. Saatchi et al. 2011; Baccini et 65 



al. 2012; Avitabile et al. 2016) through machine-learning. Integrating EO to constrain 66 

process-based models has led to breakthrough in our understanding of the terrestrial carbon 67 

cycle, allowing a robust attribution of the increasing atmospheric CO2 amplitude to the 68 

response of high latitude productivity (Forkel et al. 2016). 69 

In this paper we review studies in which satellite-driven datasets have been used to improve 70 

our understanding of the terrestrial carbon cycle. We first focus on studies in which EO 71 

products have been used to monitor vegetation dynamics, carbon fluxes and stocks. Then, we 72 

illustrate how EO products can be used to evaluate TEMs, understand their biases and 73 

improve projections of the carbon cycle. Third, we present model-data integration approaches 74 

in which EO products are used to constrain TEMs using automated model-data fusion 75 

approaches. Finally, we review the foreseeable improvements future satellite missions are 76 

likely to generate. 77 

 78 

2. Earth Observation to monitor vegetation dynamics, carbon fluxes and stocks 79 

Satellite observations of the land surface allow a continuous monitoring of vegetation 80 

dynamics through the calculation of spectral indices (Myneni et al. 1995). One of the most 81 

common metrics is the Normalized Difference Vegetation Index (NDVI). It is calculated such 82 

as NDVI = (NIR+RED)/(NIR-RED) where RED and NIR are the spectral reflectance in the 83 

visible red and near-infrared region of the photosynthetically active radiation spectrum, 84 

respectively. Because chlorophyll strongly absorbs visible light during photosynthesis, active 85 

canopies have higher NDVI values.  86 

NDVI has been used in numerous studies to characterize the response of plant phenology and 87 

productivity to climate trends and interannual variability. Bimonthly NDVI from the 88 

Advanced Very High Resolution Radiometer (AVHRR) spans the period since July 1981 89 

until present. This long-term dataset has allowed describing a lengthening of the growing 90 



season in temperate regions of the Northern Hemisphere due to an earlier disappearance of 91 

snow in warming conditions (Myneni et al. 1997). Using the third generation of the AVHHR-92 

based Global Inventory Modelling and Mapping System (GIMMS) NDVI dataset (Pinzon 93 

and Tucker, 2014), Buitenwerf et al. (2015) detected significant changes in phenological 94 

cycles for more than half of the land surface between 1981 and 2012. This long-term dataset 95 

has also been used to identify dominant climate modes driving the inter-annual variability in 96 

the start of growing season across North America (Dannenberg et al. 2018).  97 

Higher resolution NDVI data from the Moderate resolution Imaging Spectroradiometer 98 

(MODIS) sensor (Huete et al. 2002) have been provided by the National Aeronautics and 99 

Space Administration (NASA) since the year 2000. These data have been used to attribute the 100 

anomalous greening of the Northern Hemisphere land surface in 2015 to a strong state of the 101 

Pacific Decadal Oscillation (Bastos et al. 2017). The MODIS archive also includes an 102 

Enhanced Vegetation Index (EVI) which performs well better in high biomass regions (Huete 103 

et al. 2002). It has been used to describe leaf growth across the Amazon basin during the dry 104 

season, which promotes primary productivity in sunnier conditions (Huete et al. 2006). EVI 105 

has also been used to describe the phenological response of Australian ecosystems to climate 106 

IAV (Broich et al. 2014), in particular the continental greening that followed the extremely 107 

wet 2010/11 La Niña episode (Fasullo et al. 2013). 108 

NDVI and EVI are useful proxies for vegetation activity but they are not biophysical 109 

variables directly relatable to TEMs. However, two key state variables for these models can 110 

also be derived from EO: the Fraction of Absorbed Photosynthetically Active Radiation 111 

(FAPAR) and Leaf Area Index (LAI), the one-sided area of leaves per units of ground. 112 

FAPAR and LAI are related to NDVI (Zhu et al. 2013) but can also be retrieved using 113 

physically-based (Knyazhikin et al. 1998) or machine-learning (Baret et al. 2013) methods. 114 



FAPAR is a key driver for light use efficiency models of primary productivity (e.g. Potter et 115 

al. 1993; Field et al. 1995; Prince and Goward 1995; Knorr 2000). Global MODIS-based 116 

FAPAR (Myneni et al. 2002) is used to produce high resolution (~ 1km) estimates of gross 117 

and net primary productivity across the global land surface (Running et al. 2004). This 118 

dataset has provided insights in a possible reduction of global net primary productivity 119 

because of a drying in the Southern Hemisphere (Zhao and Running 2010). It helped 120 

characterized the influence of the El Niño – Southern Oscillation on regional and global NPP 121 

(Bastos et al. 2013) and the impact of recent European heatwaves on productivity (Bastos et 122 

al. 2014).  123 

LAI represents the physiologically active part of the vegetation which interacts with the 124 

atmosphere and is a key state variable for land surface and ecosystem models (Kala et al. 125 

2014). Figure 1 presents mean annual LAI for the year 2015 derived from the European 126 

Space Agency (ESA)’s Proba-V satellite (Baret et al. 2013) as part of the European Union’s 127 

Copernicus programme and from NASA’s MODIS sensor. There is a good agreement in the 128 

spatial distribution of LAI between these datasets but the MODIS products reports higher 129 

LAI values for tropical which may lead to non-negligible differences in the calculation of 130 

energy, water and carbon fluxes (Kala et al. 2014). MODIS LAI data has been helpful to 131 

understand the seasonality of the Amazon (Myneni et al. 2007). Zhu et al. (2013) used the 132 

relationship between AVHHR NDVI and MODIS FAPAR and LAI products to create the 133 

GIMMS FAPAR3g and LAI3g dataset extending back to the 1980s. This long-term dataset 134 

exhibits a greening trend, i.e. an increase in LAI during the growing season (Zhu et al. 2016).  135 

A recent advance in remote sensing has been the production of Solar-Induced Fluorescence 136 

(SIF) retrievals (Frankenberg et al. 2011). SIF is directly related to plant photosynthetic 137 

activity; therefore, SIF data provide a more direct measure of gross C uptake than 138 

reflectance-based indicators like NDVI or FAPAR (Porcar-Castell et al. 2014). There has 139 



been an increase in the availability of global SIF products derived from space-borne 140 

instruments like GOSAT (Frankenberg et al. 2011; Guanter et al. 2012), GOME-2 (Joiner et 141 

al. 2013; Köhler et al., 2015), SCIAMACHY (Joiner et al. 2016) and OCO-2 (Sun et al., 142 

2018). More details about SIF is provided in section 3.2.3 of the review by Scholze et al. 143 

(2017). 144 

Additionally to plant productivity, satellite datasets have been used for over three decades to 145 

monitor fire, a fundamental component of the terrestrial carbon cycle which accounts for a 146 

large degree of the inter-annual variability of the terrestrial land sink (van der Werf et al., 147 

2010; Le Quéré et al., 2018). Observations of decadal trends in burned area (Flannigan et al., 148 

1986; Giglio et al., 2013; Andela et al., 2017) have been used to establish the role of fires as a 149 

key component of the long-term C balance evolution (Le Quéré et al., 2018; Arora & Melton, 150 

2018, amongst others). A range of satellite-based observations of fire have also radically 151 

advanced insight into continental-scale fire characteristics and processes, including 152 

understory fires (Morton et al., 2013); fire radiative power (Freeborn et al., 2014), and 153 

interactions between fire and species distribution (Rogers et al., 2015). Archibald et al. 154 

(2013) identified 5 dominant types of fire regimes using remotely-sensed observation of fire 155 

frequency, radiative power and size. Active fire detection also offers a crucial constraint on 156 

land C fire losses, with current observing system such as VIIRS offering new possibilities to 157 

detect boreal fires (Waigl et al. 2017).  158 

Beyond monitoring vegetation dynamics and infering land-atmosphere fluxes, satellite 159 

observations have allowed the creation of high resolution maps of above-ground biomass 160 

(AGB) covering large regions such as the pantropics (e.g. Saatchi et al., 2011; Baccini et al. 161 

2012). Pantropical maps were created using allometric equations (e.g. Chave et al. 2014) 162 

relating tree height measured by NASA’s Geoscience Laser Altimeter System sensor onboard 163 

the Ice, Cloud, and land Elevation Satellite (Zwally et al. 2002) to AGB. These wall-to-wall 164 



maps allow a first-order approximation of remotely-sensed deforestation (e.g. Hansen et al. 165 

2013) on AGB stocks in the tropics (Harris et al., 2012; Baccini et al., 2012). Recently, maps 166 

by Saatchi et al. (2011) and Baccini et al. (2012) have been fused with additional in situ 167 

measurements to create a third map, currently considered as the state-of-the-art (Avitabile et 168 

al. 2016). 169 

Thurner et al. (2014) created a map for the northern boreal and temperate forests paper using 170 

retrievals of Growing Stock Volume from Envisat Advanced Synthetic Aperture Radar 171 

(Santoro et al. 2011, 2015), databased information about wood density (Chave et al. 2009) 172 

and allometric equations. Thurner et al. (2016) used this map in combination with MODIS 173 

NPP to evaluate gradients in turnover dynamics across these regions. 174 

While these previous studies relied on a single AGB map to produce estimates of gross 175 

emissions from deforestation, more recent studies have produced annually-resolved AGB 176 

maps which allow tracking the counteracting impact of regrowth and derive net changes of 177 

biomass globally. For example, Liu et al. (2015) used the correlation between Vegetation 178 

Optical Depth and AGB from Saatchi et al. (2011) to produce annual biomass maps for 179 

1993–2012 at a 0.25° spatial resolution. They concluded to a loss of global AGB driven by a 180 

loss of tropical forests partially compensated by gains over boreal, temperate and savannah 181 

regions. More recently, Brandt et al. (2018) used a similar approach to describe a net carbon 182 

loss across sub-Saharan Africa for the period 2010–2016. Baccini et al. (2017) also 183 

concluded that the tropics are a net source of atmospheric CO2 based on annual maps they 184 

constructed from 2003–2014. 185 

EO is useful to identify land cover change (e.g. Hansen et al. 2013) and, by extension, intact 186 

forest landscapes (Potapov et al., 2008). Potential AGB maps, representative of the 187 

hypothetical undisturbed landscape, can be reconstructed using the relationship between 188 

AGB (Saatchi et al. 2011; Baccini et al. 2012; Liu et al. 2015) and climate (New et al. 2002) 189 



in these intact regions. This approach attributes ~1.5% of the recent increase in atmospheric 190 

CO2 to the Amazonian deforestation (Exbrayat and Williams 2015) while climate change has 191 

reduced the capacity of these forests to recover (Exbrayat et al. 2017). 192 

International policy efforts such as the Paris agreement on climate change and the Bonn 193 

challenge for forest restoration have raised the interest of countries to produce country-scale 194 

maps for monitoring and reporting. For example Rodríguez-Veida et al. (2016) used local 195 

information from the Mexican forestry. Similarly, Xu et al. (2017) produced a biomass map 196 

for the Democratic Republic of Congo using additional data which were not available to 197 

pantropical maps. Both studies presented measurable increase in mapping quality and 198 

uncertainty quantification. 199 

 200 

3. Evaluating terrestrial ecosystem models 201 

Land surface models are key components of Earth system models that simulate energy and 202 

mass transfers between the land and the atmosphere, hence, these are key components in the 203 

prediction of climate variations from short to long time scales (Pitman 2003). EO of the 204 

biosphere provides unprecedented means to evaluate vegetation dynamics, carbon fluxes and 205 

biomass stocks simulated by land surface models in a temporally and spatially-explicit 206 

manner. The evaluation strategies have been largely focusing on aspects related to: the timing 207 

of seasonal vegetation development, and long term trends in vegetation greenness; the 208 

seasonal and spatial variations in photosynthesis patterns; the spatial variations in plant 209 

carbon stocks; and EO-derived estimates of carbon turnover times on land. 210 

The representation of phenology in land surface models is a major source of uncertainty for 211 

the calculation of energy, water and carbon fluxes (Kala et al. 2014). Many studies have 212 

focused on in-situ evaluation of modelled LAI (e.g. Richardson et al. 2012; Migliavacca et al. 213 

2012) but long-term EO-derived products have also been used. Zhu et al. (2013) described a 214 



systematic overestimation of LAI by 18 Earth system models compared to the GIMMS 215 

LAI3g dataset. This was accompanied by a shift toward earlier peak in LAI in boreal regions. 216 

Similarly, Anav et al. (2013) evaluated models participating in the fifth phase of the Coupled 217 

Model Intercomparison Project (CMIP5; Taylor et al. 2012) which underpinned the fifth 218 

Assessment Report of the Intergovernmental Panel on Climate Change. They described a 219 

tendency for CMIP5 models to overestimate LAI, although most models captured LAI trends. 220 

The poor performance of models to represent phenology has led several intercomparison 221 

projects to impose EO-derived LAI dataset to all participating models (Huntzinger et al. 222 

2013; Haarsma et al. 2016). 223 

EO-derived products have also been used to assess vegetation productivity simulated by 224 

ecosystem models. Kolby-Smith et al. (2015) created a long-term NPP dataset based on 225 

MODIS NPP algorithm (Running et al. 2004; Zhao and Running 2010) driven by long-term 226 

GIMMS FAPAR3g (Zhu et al. 2013). They compared this new dataset with five CMIP5 227 

models which exhibited a much stronger trend of increasing NPP than the EO-based product. 228 

They concluded that models’ sensitivity to increasing atmospheric CO2 was too high, 229 

probably owing to the lack of representation of nutrient limitation on productivity. Ito et al. 230 

(2017) showed that spatial and seasonal variations of GPP simulated by eight ecosystem 231 

models were in agreement with the MODIS GPP product. However, they also showed that 232 

models failed to simulate GPP anomalies in response to extreme events such as the 1997–233 

1998 El Niño or the eruption of Mount Pinatubo in 1991. Slevin et al. (2017) identified an 234 

underestimation of GPP in the tropics when comparing the Joint UK Land Environment 235 

Simulator (JULES; Clark et al. 2011) with EO-derived GPP products.  236 

EO-derived products of GPP and NPP now allow skill-based ensemble averaging studies to 237 

be applied to ecosystem models. These post-processing procedures have been used in 238 

atmospheric sciences for many decades (e.g. Krishnamurti et al. 1999) and can be applied to 239 



ecosystem models in a spatially-explicit way. Schwalm et al. (2015) applied the Reliability 240 

Ensemble Averaging method (Giorgi and Mearns 2012) constrained by FLUXNET MTE-241 

GPP and biomass estimates to ten ecosystem models participating to the MsTMIP 242 

(Huntzinger et al. 2013). Exbrayat et al. (2018) used a similar method to constrain projections 243 

of 21st century change in NPP predicted by 30 simulations from the ISIMIP ensemble (Friend 244 

et al. 2014; Warszawski et al. 2014). They showed that the uncertainty in global change in 245 

NPP could be reduced by two-third using a skill-based ensemble averaging whilst gaining 246 

confidence on the sign of the change for more than 80% of the global land surface. 247 

A recent emphasis has been put on the need to move beyond the separate evaluation of pools 248 

and fluxes by terrestrial land models. For many years, global models have been initialized 249 

using a spin-up procedure from which biomass stocks would emerge as a result of input 250 

fluxes and turnover times at steady-state (Exbrayat et al. 2014). However, models perform 251 

poorly to simulate vegetation carbon stocks in agreement with observation-based products. 252 

For example, Figure 2 presents a comparison of the recent pantropical biomass map from 253 

Avitabile et al. (2016) with models from the ISIMIP ensemble (Friend et al. 2014; 254 

Warszawski et al. 2014). There is a large uncertainty represented by the inter-model spread 255 

while they tend to overestimate biomass stocks in regions of the Americas and Africa located 256 

north of 10°N and south 15°S. Friend et al. (2014) clearly demonstrated that the highest 257 

disagreement between models resides in the internally modelled residence times of carbon 258 

which can be inferred from the ratio between observable fluxes and stocks (Friend et al. 259 

2014; Sierra et al. 2017). Under the same future changes in environmental and climate 260 

conditions models alternatively predict longer or shorter turnover times of carbon in 261 

vegetation. This mismatch reflects a disagreement in the sign of the terrestrial carbon cycle 262 

feedback on future changes in climate and atmospheric CO2. Current EO-based estimates 263 

suggest a pervasive control of hydrology on whole ecosystem apparent turnover times of 264 



carbon, which are not captured by current Earth system models (Carvalhais et al. 2014). In 265 

particular, the spatial patterns of vegetation C turnover times in forests suggest strong 266 

climatic controls in mortality patterns associated to drought and heat, but also extreme winter 267 

cold temperatures which could expand plant mortality, or reduce it, via reductions in 268 

herbivore activity (Thurner et al. 2016). An across model comparison also revealed that most 269 

state of the art global vegetation models do not reflect the direct effects of climate induced 270 

mortality (Thurner et al. 2017), emphasizing the present challenge of understanding mortality 271 

induced by climate extreme (Hartmann et al. 2015). Furthermore, recent results have also 272 

emphasize the role of land use, in addition to land cover, as a substantial factor for an overall 273 

reduction in carbon residence times in terrestrial vegetation (Erb et al. 2016).  274 

In general, all of these works have been emphasizing the mismatch between model and 275 

observation-derived ecosystem dynamics, and hypothesizing on the missing, or 276 

misrepresented, underlying mechanisms that drive carbon dynamics. Downstream, a full 277 

body of research has also been focusing on formally integrating these observations into 278 

model-data-assimilation frameworks to maximize information transfer from observation to 279 

models.  280 

 281 

4. Model-data integration 282 

While EO can be used to benchmark models, they do not measure all aspects of the terrestrial 283 

carbon cycle. Therefore, models are needed to fill gaps but benchmarking studies reviewed in 284 

section 3 have generally pointed to poor performances and systematic biases in forward 285 

models. Model-data integration aims to synergize data and models through an interactive 286 

process. There exists multiple forms of model-data integration in which EO has been used to 287 

provide global covariates for the extrapolation of in situ data (e.g. Jung et al. 2011), retrieve 288 

state variables such as LAI from reflectance through a complex radiative transfer scheme 289 



(Lewis et al. 2012), constrain productivity and phenology model parameters in terrestrial 290 

Carbon Cycle Data Assimilation Systems (CCDAS; e.g. Knorr et al. 2010) or even provide 291 

initial conditions to detailed forest models (e.g. Rödig et al. 2017, 2018). 292 

The global coverage of EO has allowed the development of a range of “bottom-up” 293 

approaches to upscale data-driven in situ models to spatially explicit gridded estimates. One 294 

major development in this area has relied on training machine-learning algorithm to 295 

reproduce local ecosystem fluxes as a function of climate and vegetation properties available 296 

from EO (e.g. NDVI, FAPAR). The first example of this approach was reported by Papale 297 

and Valentini (2003) who used and Artificial Neural Network trained at 16 European sites to 298 

generate continental maps of forest productivity using information about land cover, seasonal 299 

temperatures and maximum NDVI from AVHRR. Jung et al. (2009) developed the Model 300 

Tree Ensemble (MTE) algorithm to create gridded products of GPP and latent heat fluxes. 301 

They first demonstrated the potential for their approach in a synthetic example using LPJmL 302 

simulations as training data. Using this method driven by fluxes measured at several 303 

FLUXNET site has allowed the first data-driven description of the distribution of global GPP 304 

between biomes and an attribution of dominant regional climate drivers for the period 1998-305 

2005 (Beer et al. 2010). Building on this approach, monthly gridded estimates of GPP 306 

extending back to 1982 have been created using GIMMS FAPAR data (Jung et al. 2011). 307 

They identified semiarid and sub-humid as experiencing a high inter-annual variability in 308 

productivity due to rainfall variations. These data, used in combination with process-based 309 

models, further helped identify the response of savannahs ecosystems to ENSO as the 310 

dominant driver of the variability in the land carbon sink (Poulter et al. 2014). Multiple 311 

machine-learning approaches, relying on various algorithms, have been compared by 312 

Tramontana et al. (2016). The evaluation of different approaches was performed as part of 313 

the FLUXCOM initiative (http://www.fluxcom.org). The conclusion of this comparison was 314 



that machine-learning approaches were skilled at reproducing heat and productivity fluxes 315 

but may be biased to predict net ecosystem carbon fluxes due to the lack of feedback 316 

representation and knowledge of historical disturbance regimes. Nevertheless, bottom-up and 317 

top-down approaches estimates of GPP are in good agreement. Figure 3 presents mean 318 

annual GPP estimated by FLUXCOM during 2000-2013 and compares it to the MODIS GPP 319 

product. Both approaches are partly driven by the same estimates of MODIS FAPAR which 320 

yields a high spatial correlation (r = 0.80; p << 0.001). FLUXCOM indicates a mean annual 321 

GPP of 124.7 Pg C y-1 while MODIS estimates a 136.4 Pg C y-1, a 9% relative difference.  322 

Beyond empirical approaches, the increasing availability of EO has played a key role in the 323 

development of more “top-down” terrestrial Carbon Cycle Data Assimilation Systems 324 

(CCDAS). Unlike “bottom-up” approaches which consist in extrapolating in situ models, 325 

“top-down” CCDAS are centred around using EO, including non-carbon variables (Scholze 326 

et al. 2017), to constrain process-based models in a spatially explicit way. One of the first 327 

CCDAS was based on the Bethy ecosystem model (Knorr 2000). It has been incrementally 328 

improved with additional processes such as dynamic phenology (Knorr et al. 2010). An 329 

interesting aspect of CCDAS studies has been to focus on the development and comparison 330 

of inversion strategies (e.g. Ziehn et al. 2012) to reduce the computational cost of the 331 

assimilation. We refer the reader to a detailed review of the evolution of CCDAS by 332 

Kaminski et al. (2013) for more information about this particular framework. One strategy 333 

introduced by Peylin et al. (2016) has also been to use a stepwise approach to first constrain 334 

parameters related to phenology in the ORCHIDEE model before assimilating fluxes in a 335 

subsequent step. 336 

We focus the following paragraphs on example of new knowledge derived from CCDAS 337 

applications, and point the readers to the recent review of Scholze et al. (2017) for more 338 

technical information about the type of assimilation techniques and EO used. The advantage 339 



of EO is that model-data integration is performed globally and CCDAS framework such as 340 

CARDAMOM (Bloom et al. 2016) and CASA-GFED (van der Werf et al. 2010) provide 341 

compelling methodologies for reconciling land-surface and atmospheric constraints on the 342 

terrestrial C balance, through which major uncertainties in process representation such as 343 

phenology (e.g. Stöckli et al. 2011, Forkel et al. 2014), allocation (Bloom et al. 2016), 344 

combustion and emission dynamics (Bloom et al., 2015; Worden et al., 2017) can be 345 

explicitly constrained. 346 

Phenology is a poorly represented process and assimilating reflectance-based EO of NDVI, 347 

FAPAR and LAI has allowed m development and validation of new global models. For 348 

example, Knorr et al. (2010) assimilated daily FAPAR at seven sites in a generic 349 

phenological model. Quaife et al. (2008) demonstrated that assimilating reflectance from the 350 

MODIS sensor in the Data-Assimilation Linked Ecosystem Carbon model (DALEC; 351 

Williams et al. 2005) led to an improvement of simulated carbon fluxes at a coniferous forest 352 

site in Oregon, US. Stöckli et al. (2011) assimilated 10 years of MODIS LAI and FAPAR 353 

data in a phenological model based on the Growing Season Index concept (GSI; Jolly et al. 354 

2005). They identified used the constrained model to produce a 50-year re-analysis of LAI 355 

and FAPAR. Forkel et al. (2014) implemented a modified version of the GSI model in the 356 

LPJmL dynamic global vegetation model. They retrieved dominant controls of phenology by 357 

assimilating 30 years of GIMMS FAPAR, highlighting the codominant role of moisture stress 358 

on the variability in phenology (Forkel et al. 2015) which contrasts with classical 359 

temperature-based parameterizations. The importance of moisture availability was also found 360 

by MacBean et al. (2015) based on the biases in the temperature-driven phenology of the 361 

ORCHIDEE model. While these previous studies have relied on plant functional types, 362 

Caldararu et al. (2014) successfully fitted a phenological model to pixel-wise MODIS LAI 363 



data. Their approach based on carbon optimality concluded that leaf age was also a limiting 364 

factor for phenology in evergreen tropical regions.  365 

EO of fire has also been used to constrain emission estimates. Top-down estimates of surface 366 

CO emissions amount to a robust constraint on continental-scale fire C emissions: 367 

measurements of atmospheric CO – including those from ESA’s IASI instrument, NASA’s 368 

MOPITT, TES and AIRS instruments – have been used to constrain atmospheric chemistry 369 

and transport models in data assimilation frameworks (Jiang et al., 2015; Gonzi et al., 2011; 370 

Krol et al., 2013; Kopacz et al., 2010, amongst many others). Subsequently, estimates of fire 371 

CO:CO2 ratio (Andreae & Merlet, 2001; Akagi et al., 2011) have been used to quantify 372 

continental-scale fire C fluxes (Gatti et al., 2014; Bowman et al., 2017). However, CO:CO2 373 

have been identified as a potential source of error in extreme fire events (Krol et al., 2013; 374 

Bloom et al., 2015), where CO:CO2 values and their uncertainty characteristics are poorly 375 

known. Overall, estimates of fire emissions derived from an array of bottom-up and top-down 376 

constraints are invaluable for obtaining a spatially-explicit estimates of fire C fluxes 377 

(Bowman et al., 2017; Liu et al., 2017). Ultimately, satellite-based estimation of fire C 378 

emissions, characteristics, and trends are key to advance process-level understanding of fires 379 

as a dynamic component of the Earth System. 380 

Although a number of satellite-derived products (NDVI, LAI, FAPAR, biomass and XCO2) 381 

have been used to constrain both modelled leaf phenology, biomass, and net CO2 fluxes 382 

(Kaminski et al., 2013; Forkel et al., 2015; MacBean et al., 2015; Peylin et al., 2016; Bloom 383 

et al., 2016), these data only provide indirect information on gross C uptake. For some 384 

vegetation types, even ground-based net CO2 fluxes derived from eddy covariance towers 385 

only provide limited capacity in constraining the gross C fluxes (Kuppel et al., 2014). 386 

Consequently, SIF products have been used in a variety of ways to assess and improve land 387 

surface model (LSM) simulations: i) to benchmark GPP and SIF temporal dynamics 388 



simulated for a range of sites (Lee et al., 2015; Thum et al., 2017); ii) to optimize global-scale 389 

GPP estimates from a LSM inter-comparison a posteriori (Parazoo et al., 2014); and to 390 

optimize parameters of both fluorescence and photosynthesis models at local to global scales 391 

(Zhang et al., 2014; MacBean et al., 2018; Norton et al., 2018; Norton et al., in review). The 392 

latter studies have demonstrated considerable potential for SIF to constrain both in situ and 393 

global scale GPP simulations. MacBean et al. (2018) and Norton et al. (in review) show 394 

strong reductions in both the spatio-temporal misfit (increased correlation and decreased bias) 395 

across vegetation types between modelled and observed GPP and SIF, and in the simulated 396 

global-scale GPP uncertainty. The reduction in GPP uncertainty is a result of constraining 397 

both fluorescence, photosynthesis, and phenology-related parameters. In many of the 398 

abovementioned modelling studies, an explicit formulation of the relationship between 399 

photosynthesis and fluorescence has been developed – largely based on the SCOPE (Soil 400 

Canopy Observation Photochemistry and Energy Fluxes) model (van der Tol et al., 2009) – 401 

and implemented within each respective LSM (Lee et al., 2014; Thum et al., 2017; Norton et 402 

al., 2018; Norton et al., in review). However, SIF has been shown to be linearly correlated 403 

with GPP at a range of spatial and temporal scales (Frankenberg et al., 2011; Guanter et al., 404 

2012; Joiner et al., 2014; Yang et al., 2015; Zhang et al., 2016; Wood et al., 2017; Yang et 405 

al., 2017). This assumed linear relationship also allows a relatively simple and 406 

straightforward means by which modelled GPP and SIF can be compared with, and 407 

constrained by, remote sensing SIF estimates at large spatial scales (MacBean et al., 2018).  408 

Continental-scale temporal variability of the terrestrial land sink can be robustly observed 409 

through atmospheric CO2 measurements from satellites - most notably from SCIAMACHY 410 

instrument onboard ENVISAT, JAXA’s GOSAT and the NASA OCO-2 missions (Buchwitz 411 

& Burrows, 2004; Yokota et al., 2009; Eldering et al., 2017). Terrestrial CO2 fluxes can be 412 

quantitatively retrieved through assimilation of these observations into inverse modeling 413 



frameworks (Houweling et al., 2015; Deng et al., 2016), although we note that absolute CO2 414 

flux estimates are susceptible to a number of model and observation biases (Feng et al., 2016; 415 

Miller et al., 2017; Worden et al., 2017b, Basu et al., 2018). Notable insights into terrestrial C 416 

cycle processes from satellite-constrained estimates of land C fluxes include multi-year 417 

constraints on the Australian C balance (Detmers et al., 2015) regional constraints on the 418 

seasonal and inter-annual Amazon C fluxes (Parazoo et al., 2013; Bowman et al., 2017) and 419 

Indonesia fire C emissions during the 2015 ENSO (Heymann et al., 2017). Pan-tropical 420 

continental-scale estimates of inter-annual CO2 flux variations by Liu et al., (2017) 421 

demonstrated the synergistic capacity of GOSAT and OCO-2 CO2 measurements – along 422 

with ancillary constraints from solar-induced fluorescence – to disentangle the processes 423 

regulating the temporal variability of the terrestrial C sink.  424 

While previous studies have focused on fluxes, reconciling stocks is key as these are 425 

responsible for uncertainty in residence times (Carvalhais et al., Friend et al. 2014). Bloom et 426 

al. (2016) have used pantropical biomass estimates from Saatchi et al. (2011) to constrain 427 

global retrievals of carbon allocation and residence times in the CARDAMOM framework. 428 

Figure 4 shows an updated version of these data based on the assimilation of biomass 429 

estimates from Avitabile et al. (2016) and MODIS LAI for the period 2000-2015. These 430 

simulations, limited to the area covered by Avitabile et al. (2016), provide EO constrained 431 

estimated of NPP (43.3 Pg C y-1), Rh (40.2 Pg C y-1), fire emissions (1.2 Pg C y-1) and Net 432 

Biome Exchange (-1.7 Pg C y-1, corresponding to a sink). 433 

Furthermore, an accurate representation of stocks in ecosystem models is required to robustly 434 

estimate emissions related to land use change. Li et al. (2017) used estimates of current 435 

biomass compiled by Carvalhais et al. (2014) to constrain centennial emissions from land use 436 

change in an ensemble of nine models. While global numbers of cumulative emissions from 437 

land use change were similar between the unconstrained and constrained models, regional 438 



differences appeared. For example, the data-constrained estimates yielded larger emissions 439 

from land use change in the tropics, and smaller in temperate regions, compared to the 440 

unconstrained estimates. In a more recent study Lienert and Joos (2018) also used biomass 441 

data from Carvalhais et al. (2014) to constrain emissions from land use change using 442 

alternative representation of emissions due to net and/or gross land use transitions.  443 

Studies presented in previous paragraphs have focused on using EO data to constrain fluxes 444 

and state variables in conceptual models. However, remotely-sensed information of 445 

vegetation structure can be connected to highly detailed forest models to provide mechanistic 446 

estimates of forest biomass and productivity (Shugart et al. 2015, Knapp et al. 2018a, Knapp 447 

et al. 2018b). Forest structure is indeed an important element to describe the state of forests. 448 

Precise estimates of forest structure need to consider small-scale variations resulting from 449 

local disturbances, on the one hand, and require large-scale information on the state of the 450 

forest that can be detected by remote sensing, on the other hand (Rödig et al. 2017). Local 451 

forest models can simulate and analyse different kinds of local disturbances and thus small-452 

scale changes in forest structures more accurately than global ecosystem models. Remote 453 

sensing has the potential to provide global high-resolution measurements of the structure of a 454 

forest (e.g. forest height by Lidar or interferometric Radar measurements).  455 

As an example, Rödig et al. (2017) used remote sensing data with a resolution of 1km² (i.e. 456 

canopy height map derived from ICESat) to establish large-scale applications of a local forest 457 

gap model (i.e. FORMIND, Fischer et al. 2016). Forest gap models (Shugart et al. 2018) 458 

simulate forest succession at the individual tree level. The advantage of using a local forest 459 

model at the large scale is that it brings along information on many different forest attributes 460 

(e.g. productivity, carbon sequestration, water fluxes) in a very fine resolution. In 461 

combination with remote sensing, this enables the derivation of high-resolution maps of 462 

carbon stocks and fluxes – which was conducted for the whole Amazon (Rödig et al. 2017, 463 



Rödig et al. 2018). By this approach, it was possible to simulate each tree in the Amazon. 464 

Finally growth of more than 410 billion trees was analysed. According to this study, forests 465 

in the Amazon store high amounts of aboveground biomass (76 Gt of carbon) and are an 466 

important sink of 0.56 Gt C a-1 under current conditions (Rödig et al. 2018).  467 

 468 

5. Outlook 469 

EO has made an essential contribution to our understanding of the terrestrial carbon cycle 470 

since the 1980s. It ranges from the continuous monitoring of vegetation activity through 471 

NDVI, FAPAR and LAI to providing wall-to-wall constraints for model-based estimates of 472 

land-atmosphere carbon fluxes. Nowadays, multiple dedicated missions and services, such as 473 

the Sentinel satellites of the European Union’s Copernicus programme, provide almost real-474 

time observations with a high level of quality. For example, the ESA TROPOMI instrument 475 

of Sentinel-5P provides CO measurements with an unprecedented spatiotemporal coverage 476 

(Bordsorff et al., 2018). In the next few years, multiple sensors will be launched to 477 

complement the existing constellation of Sentinels and provide coincident observations of 478 

several aspects of the biosphere (Stavros et al. 2017).  479 

NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission, a LIDAR system on-480 

board the International Space Station (ISS), will provide a global coverage of canopy height 481 

and foliage vertical profiles. It will provide updated and more detailed structural information 482 

for integration with forest models (e.g. Rödig et al. 2017, 2018). ESA’s 7th Earth Explorer 483 

BIOMASS (Le Toan et al. 2011) will provide repeated measurements of tropical biomass 484 

with a P-band synthetic aperture radar. In contrast with currently available biomass maps, 485 

temporally-resolved information losses from deforestation and gain from regrowth will be 486 

especially useful to reduce the uncertainty and correct bias in CCDAS framework (Smallman 487 

et al. 2017).  488 



Recent studies have demonstrated the potential for satellite CO2 observations to constrain 489 

land-atmosphere exchange (Liu et al. 2017). NASA’s upcoming OCO-3 will replace OCO-2 490 

on-board the ISS, while the geostationary GeoCARB will focus on the Americas. Both 491 

systems, and the dedicated ESA’s Fluorescence Explorer (FLEX) mission, will provide 492 

measurements of SIF which has a great potential to constrain models of ecosystem 493 

productivity (MacBean et al. 2018), especially following the implementation of mechanistic 494 

representation of leaf physiology in CCDAS (Norton et al. 2018).  495 

Finally, the carbon cycle is tightly linked to the energy and water cycles semi-arid areas in 496 

particular have been pointed as key ecosystems to understand the global land carbon sink 497 

(Poulter et al. 2014). Therefore, the development of new non-carbon EO and their 498 

assimilation in CCDAS frameworks plays a major role in simulating the carbon cycle 499 

(Scholze et al. 2017). NASA’s ECOSTRESS will measure evapotranspiration (Stavros et al. 500 

2017) which will be used to obtain estimates of water-use efficiency, the ratio of productivity 501 

to evapotranspiration, which will be useful to drive process-based models of the biosphere.  502 

Overall, the next few years will see an increase in the amount of observing systems with a 503 

ever-increasing spatial resolution and higher frequency. One of the key challenges for the 504 

modelling community is to build systems able to ingest all this information in an efficient 505 

way to provide high confidence retrievals of the terrestrial carbon cycle. 506 

 507 

  508 
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 993 

Figure 1. Mean LAI in 2015 according to a) Copernicus and b) NASA’s MODIS. Datasets 994 

were resampled at 0.25° spatial resolution for plotting purpose. 995 
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 997 

 998 

Figure 2. Biomass density from Avitabile (top) and comparison of zonal means simulations 999 

(bottom, as indicated) from 6 ISIMIP ecosystem models. Results indicate an 1000 

overestimation of stocks by models in the Americas and Africa. 1001 
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 1004 

Figure 3. Mean annual GPP during 2000-2013 as reported by a) the FLUXCOM product and 1005 

b) MODIS MOD17 GPP product. FLUXCOM corresponds to eddy-covariance data 1006 

upscaled at 0.5° using machine-learning. MODIS product is based on a light use 1007 

efficiency model and was regridded from 30” (~1km) to 0.5°. 1008 
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 1011 

Figure 4. CARDAMOM retrievals of land-atmosphere C fluxes, averaged over 2000-2015. 1012 

All fluxes are in g C m-2. In d) NBE is calculated as NBE = -NPP + Rh + fire, hence <0 1013 

values correspond to a sink (in blue) and >0 correspond to a source of carbon (in red). 1014 


