4,815 research outputs found

    Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.

    Get PDF
    Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression

    High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers

    Get PDF
    Many genome-wide assays involve the generation of a subset (or representation) of the genome following restriction enzyme digestion. The use of enzymes sensitive to cytosine methylation allows high-throughput analysis of this epigenetic regulatory process. We show that the use of a dual-adapter approach allows us to generate genomic representations that includes fragments of <200 bp in size, previously not possible when using the standard approach of using a single adapter. By expanding the representation to smaller fragments using HpaII or MspI, we increase the representation by these isoschizomers to more than 1.32 million loci in the human genome, representing 98.5% of CpG islands and 91.1% of refSeq promoters. This advance allows the development of a new, high-resolution version of our HpaII-tiny fragment Enrichment by Ligation-mediated PCR (HELP) assay to study cytosine methylation. We also show that the MspI representation generates information about copy-number variation, that the assay can be used on as little as 10 ng of DNA and that massively parallel sequencing can be used as an alternative to microarrays to read the output of the assay, making this a powerful discovery platform for studies of genomic and epigenomic abnormalities

    DNA copy number variation associated with anti-tumour necrosis factor drug response and paradoxical psoriasiform reactions in patients with moderate-to-severe psoriasis

    Full text link
    Biological drugs targeting tumour necrosis factor are effective for psoriasis. However, 30–50% of patients do not respond to these drugs and may even develop paradoxical psoriasiform reactions. This study search-ed for DNA copy number variations that could predict anti-tumour necrotic factor drug response or the ap-pearance of anti-tumour necrotic factor induced pso-riasiform reactions. Peripheral blood samples were collected from 70 patients with anti-tumour necrotic factor drug-treated moderate-to-severe plaque pso-riasis. Samples were analysed with an Illumina 450K methylation microarray. Copy number variations were obtained from raw methylation data using conumee and Chip Analysis Methylation Pipeline (ChAMP) R packa-ges. One copy number variation was found, harbouring one gene (CPM) that was significantly associated with adalimumab response (Bonferroni-adjusted p-value < 0.05). Moreover, one copy number variation was identified harbouring 3 genes (ARNT2, LOC101929586 and MIR5572) related to the development of paradoxical psoriasiform reactions. In conclusion, this study has identified DNA copy number variations that could be good candidate markers to predict response to ada-limumab and the development of anti-tumour necrotic factor paradoxical psoriasiform reactions.This study was supported by Instituto de Salud Carlos III PI 13/01598 and the Ministry of Science and Innovation and the European Regional Development’s funds (FEDER). Conflicts of interest. FA-S has been a consultant or investigator in clinical trials sponsored by the following pharmaceutical companies: Abbott, Alter, Chemo, Farmalíder, Ferrer, GlaxoSmithKline, Gilead, Janssen-Cilag, Kern, Normon, Novartis, Servier, Teva, and Zambon. ED has potential conflicts of interest (advisory board member, consultant, grants, research support, participation in clinical trials, honoraria for speaking, and research support) with the following pharmaceutical companies: AbbVie (Abbott), Amgen, Janssen-Cilag, Leo Pharma, Novartis, Pfizer, MSD, Lilly and Celgene. ML-V has potential conflicts of interest as she has participated in clinical trials or as consultant with Abbvie (Abbott), Galderma, Janssen-Cilag, Leo Pharma, Pfizer, Novarties, Lilly, Almirall and Celgene. MCO-B has potential conflicts of interest (honoraria for speaking and research support) with Janssen-Cilag and Leo Pharma. The other authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. AS-T has served as a consultant and/or paid speaker for and/or participated in clinical trials sponsored by companies that manufacture drugs used for the treatment of psoriasis, including AbbVie, Celgene, Janssen-Cilag, LEO Pharma, Lilly, Novartis and Pfizer. RB-E has served as a consultant and/or paid speaker for and/or participated in clinical trials sponsored by companies that manufacture drugs used for the treatment of psoriasis, including AbbVie, Celgene, Janssen-Cilag, LEO Pharma, Lilly, Novartis and Pfizer

    Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas

    Get PDF
    Integrative genomic and gene-expression analyses have identified amplified oncogenes in B-cell non-Hodgkin lymphoma (B-NHL), but the capability of such technologies to localize tumor suppressor genes within homozygous deletions remains unexplored. Array-based comparative genomic hybridization (CGH) and gene-expression microarray analysis of 48 cell lines derived from patients with different B-NHLs delineated 20 homozygous deletions at 7 chromosome areas, all of which contained tumor suppressor gene targets. Further investigation revealed that only a fraction of primary biopsies presented inactivation of these genes by point mutation or intragenic deletion, but instead some of them were frequently silenced by epigenetic mechanisms. Notably, the pattern of genetic and epigenetic inactivation differed among B-NHL subtypes. Thus, the P53-inducible PIG7/LITAF was silenced by homozygous deletion in primary mediastinal B-cell lymphoma and by promoter hypermethylation in germinal center lymphoma, the proapoptotic BIM gene presented homozygous deletion in mantle cell lymphoma and promoter hypermethylation in Burkitt lymphoma, the proapoptotic BH3-only NOXA was mutated and preferentially silenced in diffuse large B-cell lymphoma, and INK4c/P18 was silenced by biallelic mutation in mantle-cell lymphoma. Our microarray strategy has identified novel candidate tumor suppressor genes inactivated by genetic and epigenetic mechanisms that substantially vary among the B-NHL subtypes

    Reproducibility of the Infinium methylationEPIC BeadChip assay using low DNA amounts

    Get PDF
    The Infinium MethylationEPIC BeadChip (EPIC) is a reliable method for measuring the DNA methylation of more than 850,000 CpG positions. In clinical and forensic settings, it is critical to be able to work with low DNA amounts without risking reduced reproducibility. We evaluated the EPIC for a range of DNA amounts using two-fold serial dilutions investigated on two different days. While the β-value distributions were generally unaffected by decreasing DNA amounts, the median squared Pearson’s correlation coefficient (R(2)) of between-days β-value comparisons decreased from 0.994 (500 ng DNA) to 0.957 (16 ng DNA). The median standard deviation of the β-values was 0.005 and up to 0.017 (median of medians: 0.014) for β-values around 0.6–0.7. With decreasing amounts of DNA from 500 ng to 16 ng, the percentage of probes with standard deviations ≤ 0.1 decreased from 99.9% to 99.4%. This study showed that high reproducibility results are obtained with DNA amounts in the range 125–500 ng DNA, while DNA amounts equal to 63 ng or below gave less reproducible results

    A User's Guide to the Encyclopedia of DNA Elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome

    A User's Guide to the Encyclopedia of DNA Elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome.National Human Genome Research Institute (U.S.)National Institutes of Health (U.S.

    A User\u27s Guide to the Encyclopedia of DNA Elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome
    corecore