5,500 research outputs found

    High-resolution ab initio three-dimensional X-ray diffraction microscopy

    Full text link
    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte

    Time domain synthesis of pulsed arrays

    Get PDF
    Pulsed arrays are becoming popular in new ultrawideband applications to enhance the robustness of transmitted and received signals in complex environments and to identify the angle of arrival of multiple echoes. A global synthesis technique is here proposed to shape the array field in accordance to given angle-time constraints. The synthesis problem is cast as the inverse Radon transform of a desired array mask, applying the alternate projections method to include constraints over the input signals' waveform and to improve the synthesis robustness. The unknown array currents are generated as linear combinations of Hermite-Rodriguez functions in order to achieve a simple and realizable beamforming network. The effectiveness of the method is demonstrated by many examples

    Experimental Synthetic Aperture Radar with Dynamic Metasurfaces

    Full text link
    We investigate the use of a dynamic metasurface as the transmitting antenna for a synthetic aperture radar (SAR) imaging system. The dynamic metasurface consists of a one-dimensional microstrip waveguide with complementary electric resonator (cELC) elements patterned into the upper conductor. Integrated into each of the cELCs are two diodes that can be used to shift each cELC resonance out of band with an applied voltage. The aperture is designed to operate at K band frequencies (17.5 to 20.3 GHz), with a bandwidth of 2.8 GHz. We experimentally demonstrate imaging with a fabricated metasurface aperture using existing SAR modalities, showing image quality comparable to traditional antennas. The agility of this aperture allows it to operate in spotlight and stripmap SAR modes, as well as in a third modality inspired by computational imaging strategies. We describe its operation in detail, demonstrate high-quality imaging in both 2D and 3D, and examine various trade-offs governing the integration of dynamic metasurfaces in future SAR imaging platforms

    Ant Colony Based Hybrid Approach for Optimal Compromise Sum-Difference Patterns Synthesis

    Get PDF
    Dealing with the synthesis of monopulse array antennas, many stochastic optimization algorithms have been used for the solution of the so-called optimal compromise problem between sum and difference patterns when sub-arrayed feed networks are considered. More recently, hybrid approaches, exploiting the convexity of the functional with respect to a sub-set of the unknowns (i.e., the sub-array excitation coefficients) have demonstrated their effectiveness. In this letter, an hybrid approach based on the Ant Colony Optimization (ACO) is proposed. At the first step, the ACO is used to define the sub-array membership of the array elements, while, at the second step, the sub-array weights are computed by solving a convex programming problem. The definitive version is available at www3.interscience.wiley.co

    HoloTrap: Interactive hologram design for multiple dynamic optical trapping

    Get PDF
    This work presents an application that generates real-time holograms to be displayed on a holographic optical tweezers setup; a technique that allows the manipulation of particles in the range from micrometres to nanometres. The software is written in Java, and uses random binary masks to generate the holograms. It allows customization of several parameters that are dependent on the experimental setup, such as the specific characteristics of the device displaying the hologram, or the presence of aberrations. We evaluate the software's performance and conclude that real-time interaction is achieved. We give our experimental results from manipulating 5 micron-diametre microspheres using the program.Comment: 17 pages, 6 figure
    • …
    corecore