856 research outputs found

    Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images

    Get PDF
    We have developed a simple photogrammetric method to identify heterogeneous areas of irrigated olive groves and vineyard crops using a commercial multispectral camera mounted on an unmanned aerial vehicle (UAV). By comparing NDVI, GNDVI, SAVI, and NDRE vegetation indices, we find that the latter shows irrigation irregularities in an olive grove not discernible with the other indices. This may render the NDRE as particularly useful to identify growth inhomogeneities in crops. Given the fact that few satellite detectors are sensible in the red-edge (RE) band and none with the spatial resolution offered by UAVs, this finding has the potential of turning UAVs into a local farmer’s favourite aid tool.Peer ReviewedPostprint (published version

    Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery

    Get PDF
    Background: Automated phenotyping technologies are continually advancing the breeding process. However, collecting various secondary traits throughout the growing season and processing massive amounts of data still take great efforts and time. Selecting a minimum number of secondary traits that have the maximum predictive power has the potential to reduce phenotyping efforts. The objective of this study was to select principal features extracted from UAV imagery and critical growth stages that contributed the most in explaining winter wheat grain yield. Five dates of multispectral images and seven dates of RGB images were collected by a UAV system during the spring growing season in 2018. Two classes of features (variables), totaling to 172 variables, were extracted for each plot from the vegetation index and plant height maps, including pixel statistics and dynamic growth rates. A parametric algorithm, LASSO regression (the least angle and shrinkage selection operator), and a non-parametric algorithm, random forest, were applied for variable selection. The regression coefficients estimated by LASSO and the permutation importance scores provided by random forest were used to determine the ten most important variables influencing grain yield from each algorithm. Results: Both selection algorithms assigned the highest importance score to the variables related with plant height around the grain filling stage. Some vegetation indices related variables were also selected by the algorithms mainly at earlier to mid growth stages and during the senescence. Compared with the yield prediction using all 172 variables derived from measured phenotypes, using the selected variables performed comparable or even better. We also noticed that the prediction accuracy on the adapted NE lines (r = 0.58–0.81) was higher than the other lines (r = 0.21–0.59) included in this study with different genetic backgrounds. Conclusions: With the ultra-high resolution plot imagery obtained by the UAS-based phenotyping we are now able to derive more features, such as the variation of plant height or vegetation indices within a plot other than just an averaged number, that are potentially very useful for the breeding purpose. However, too many features or variables can be derived in this way. The promising results from this study suggests that the selected set from those variables can have comparable prediction accuracies on the grain yield prediction than the full set of them but possibly resulting in a better allocation of efforts and resources on phenotypic data collection and processing

    Towards synthesis for nitrogen fertilisation using a decision support system

    Get PDF
    Nitrogen (N) fertilisation in crops can be made more efficient by moving from uniform application to meeting variable crop requirements within fields. Within field variable rate N fertilisation of winter wheat (Triticum aestivum L.) is practically feasible using information from web-based decision support systems (DSS). Data from different source platforms, such as satellite, unmanned aerial vehicle (UAV) or weather stations can be used for fertilisation planning. System output offers information that can be used  to instruct variable rate fertilizer spreaders to increase or decrease fertilizer application rate on-the-go. In Sweden, satellite-based variable rate N fertilisation was available for winter wheat via a DSS, however, the existing module could be improved in different ways. In this thesis work, a new N-uptake model was estimated and opportunities using UAV-based modelling of grain quality were tested. Transferability of UAV-based models to a satellite data scale improved understanding of the complexity of data transfer from UAV-scale to a satellite scale for use in a DSS. Furthermore, it was possible to model crop phenology from historical data, which can improve accuracy of current implemented models, by taking timing of field operations in to account

    High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms

    Get PDF
    Crop yields need to be improved in a sustainable manner to meet the expected worldwide increase in population over the coming decades as well as the effects of anticipated climate change. Recently, genomics-assisted breeding has become a popular approach to food security; in this regard, the crop breeding community must better link the relationships between the phenotype and the genotype. While high-throughput genotyping is feasible at a low cost, highthroughput crop phenotyping methods and data analytical capacities need to be improved. High-throughput phenotyping offers a powerful way to assess particular phenotypes in large-scale experiments, using high-tech sensors, advanced robotics, and imageprocessing systems to monitor and quantify plants in breeding nurseries and field experiments at multiple scales. In addition, new bioinformatics platforms are able to embrace large-scale, multidimensional phenotypic datasets. Through the combined analysis of phenotyping and genotyping data, environmental responses and gene functions can now be dissected at unprecedented resolution. This will aid in finding solutions to currently limited and incremental improvements in crop yields

    Robots in Agriculture: State of Art and Practical Experiences

    Get PDF
    The presence of robots in agriculture has grown significantly in recent years, overcoming some of the challenges and complications of this field. This chapter aims to collect a complete and recent state of the art about the application of robots in agriculture. The work addresses this topic from two perspectives. On the one hand, it involves the disciplines that lead the automation of agriculture, such as precision agriculture and greenhouse farming, and collects the proposals for automatizing tasks like planting and harvesting, environmental monitoring and crop inspection and treatment. On the other hand, it compiles and analyses the robots that are proposed to accomplish these tasks: e.g. manipulators, ground vehicles and aerial robots. Additionally, the chapter reports with more detail some practical experiences about the application of robot teams to crop inspection and treatment in outdoor agriculture, as well as to environmental monitoring in greenhouse farming

    Use of remote sensing techniques to analyse lodging level in cereal crops

    Get PDF
    openNowadays, there is high attention to sustainability in all areas of human activities. But what does sustainability mean? As the World Commission on Environment and Development says, sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs”. Definitively, it is possible to affirm that sustainability is based on three main pillars: the social one, the economic one and the environment. If all those pillars will be met, sustainability can be reached. What about agriculture? There are several definitions for Sustainable Agriculture, one says that Sustainable Agriculture is the efficient production of safe, high quality agricultural products, in a way that protects and improves the natural environment, the social and economic conditions of farmers, their employees and local communities, and safeguards the health and welfare of all farmed species (Sustainable Agriculture Initiative Platform). The aim of this dissertation is to illustrate how Precision Agriculture can help not only farmers, but also agriculture business operators to process the right decision in order to satisfy sustainable principles. New technologies are useful to manage resources employed in agricultural processes such as soil, water, fertilizers or pesticide, but also to reduce wastage maximizing yields and, consequently farm profit. In particular, the dissertation is going to illustrate how monitoring technologies implementation is useful to manage soil, crop and weather with proximal and remote sensing. Those collected data can be processed, corrected and interpreted by operators in order to generate Decision Support System which is useful to improve company’s decision-making capability. The study focuses on one of the main extensive crops, barley, in particular on its lodging. Different barley varieties were tested on 195 plots located in Idice, province of Bologna, North-East Italy to asses which one can better resist to lodge and to demonstrate how Unmanned Aerial Vehicle can be useful to monitor crop evolution. In fact, UAV was employed to collect data and, to validate them, crop smart scouting was necessary. After data collection and correction, a Digital Elevation Model has been created in order to evaluate three classes: laid crop, partial laid crop, no laid crop. The study evidences how remote sensing, in particular UAV’s, can help to process data otherwise hard to collect, giving useful information to farmers and business operators to make the right decision with high accuracy in short time.Nowadays, there is high attention to sustainability in all areas of human activities. But what does sustainability mean? As the World Commission on Environment and Development says, sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs”. Definitively, it is possible to affirm that sustainability is based on three main pillars: the social one, the economic one and the environment. If all those pillars will be met, sustainability can be reached. What about agriculture? There are several definitions for Sustainable Agriculture, one says that Sustainable Agriculture is the efficient production of safe, high quality agricultural products, in a way that protects and improves the natural environment, the social and economic conditions of farmers, their employees and local communities, and safeguards the health and welfare of all farmed species (Sustainable Agriculture Initiative Platform). The aim of this dissertation is to illustrate how Precision Agriculture can help not only farmers, but also agriculture business operators to process the right decision in order to satisfy sustainable principles. New technologies are useful to manage resources employed in agricultural processes such as soil, water, fertilizers or pesticide, but also to reduce wastage maximizing yields and, consequently farm profit. In particular, the dissertation is going to illustrate how monitoring technologies implementation is useful to manage soil, crop and weather with proximal and remote sensing. Those collected data can be processed, corrected and interpreted by operators in order to generate Decision Support System which is useful to improve company’s decision-making capability. The study focuses on one of the main extensive crops, barley, in particular on its lodging. Different barley varieties were tested on 195 plots located in Idice, province of Bologna, North-East Italy to asses which one can better resist to lodge and to demonstrate how Unmanned Aerial Vehicle can be useful to monitor crop evolution. In fact, UAV was employed to collect data and, to validate them, crop smart scouting was necessary. After data collection and correction, a Digital Elevation Model has been created in order to evaluate three classes: laid crop, partial laid crop, no laid crop. The study evidences how remote sensing, in particular UAV’s, can help to process data otherwise hard to collect, giving useful information to farmers and business operators to make the right decision with high accuracy in short time

    Multi-temporal analysis of forestry and coastal environments using UASs

    Get PDF
    Due to strong improvements and developments achieved in the last decade, it is clear that applied research using remote sensing technology such as unmanned aerial vehicles (UAVs) can provide a flexible, efficient, non-destructive, and non-invasive means of acquiring geoscientific data, especially aerial imagery. Simultaneously, there has been an exponential increase in the development of sensors and instruments that can be installed in UAV platforms. By combining the aforementioned factors, unmanned aerial system (UAS) setups composed of UAVs, sensors, and ground control stations, have been increasingly used for remote sensing applications, with growing potential and abilities. This paper's overall goal is to identify advantages and challenges related to the use of UAVs for aerial imagery acquisition in forestry and coastal environments for preservation/prevention contexts. Moreover, the importance of monitoring these environments over time will be demonstrated. To achieve these goals, two case studies using UASs were conducted. The first focuses on phytosanitary problem detection and monitoring of chestnut tree health (Padrela region, Valpaços, Portugal). The acquired high-resolution imagery allowed for the identification of tree canopy cover decline by means of multi-temporal analysis. The second case study enabled the rigorous and non-evasive registry process of topographic changes that occurred in the sandspit of Cabedelo (Douro estuary, Porto, Portugal) in different time periods. The obtained results allow us to conclude that the UAS constitutes a low-cost, rigorous, and fairly autonomous form of remote sensing technology, capable of covering large geographical areas and acquiring high precision data to aid decision support systems in forestry preservation and coastal monitoring applications. Its swift evolution makes it a potential big player in remote sensing technologies today and in the near future.info:eu-repo/semantics/publishedVersio

    Using UAV to Identify the Optimal Vegetation Index for Yield Prediction of Oil Seed Rape (Brassica napus L.) at the Flowering Stage

    Get PDF
    Suitability of the vegetation indices of normalized difference vegetation index (NDVI), blue normalized difference vegetation index (BNDVI), and normalized difference yellowness index (NDYI) obtained by means of UAV at the flowering stage of oil seed rape for the prediction of seed yield and usability of these vegetation indices in the identification of anomalies in the condition of the flowering growth were verified based on the regression analysis. Correlation analysis was performed to find the degree of yield dependence on the values of NDVI, BNDVI, and NDYI indices, which revealed a strong, significant linear positive dependence of seed yield on BNDVI (R = 0.98) and NDYI (R = 0.95). The level of correlation between the NDVI index and the seed yield was weaker (R = 0.70) than the others. Regression analysis was performed for a closer determination of the functional dependence of NDVI, BNDVI, and NDYI indices and the yield of seeds. Coefficients of determination in the linear regression model of NDVI, BNDVI, and NDYI indices reached the following values: R2 = 0.48 (NDVI), R2 = 0.95 (BNDVI), and R2 = 0.90 (NDYI). Thus, it was shown that increased density of yellow flowers decreased the relationship between NDVI and crop yield. The NDVI index is not appropriate for assessing growth conditions and prediction of yields at the flowering stage of oil seed rape. High accuracy of yield prediction was achieved with the use of BNDVI and NDYI. The performed analysis of NDVI, BNDVI, and NDYI demonstrated that particularly the BNDVI and NDYI indices can be used to identify problems in the development of oil seed rape growth at the stage of flowering, for their precise localization, and hence to targeted and effective remedial measures in line with the principles of precision agriculture.O

    Uumanned Aerial Vehicle Data Analysis For High-throughput Plant Phenotyping

    Get PDF
    The continuing population is placing unprecedented demands on worldwide crop yield production and quality. Improving genomic selection for breeding process is one essential aspect for solving this dilemma. Benefitted from the advances in high-throughput genotyping, researchers already gained better understanding of genetic traits. However, given the comparatively lower efficiency in current phenotyping technique, the significance of phenotypic traits has still not fully exploited in genomic selection. Therefore, improving HTPP efficiency has become an urgent task for researchers. As one of the platforms utilized for collecting HTPP data, unmanned aerial vehicle (UAV) allows high quality data to be collected within short time and by less labor. There are currently many options for customized UAV system on market; however, data analysis efficiency is still one limitation for the fully implementation of HTPP. To this end, the focus of this program was data analysis of UAV acquired data. The specific objectives were two-fold, one was to investigate statistical correlations between UAV derived phenotypic traits and manually measured sorghum biomass, nitrogen and chlorophyll content. Another was to conduct variable selection on the phenotypic parameters calculated from UAV derived vegetation index (VI) and plant height maps, aiming to find out the principal parameters that contribute most in explaining winter wheat grain yield. Corresponding, two studies were carried out. Good correlations between UAV-derived VI/plant height and sorghum biomass/nitrogen/chlorophyll in the first study suggested that UAV-based HTPP has great potential in facilitating genetic improvement. For the second study, variable selection results from the single-year data showed that plant height related parameters, especially from later season, contributed more in explaining grain yield. Advisor: Yeyin Sh

    Unmanned aerial vehicles (UAVs) for multi-temporal crop surface modelling. A new method for plant height and biomass estimation based on RGB-imaging

    Get PDF
    Data collection with unmanned aerial vehicles (UAVs) fills a gap on the observational scale in re-mote sensing by delivering high spatial and temporal resolution data that is required in crop growth monitoring. The latter is part of precision agriculture that facilitates detection and quan-tification of within-field variability to support agricultural management decisions such as effective fertilizer application. Biophysical parameters such as plant height and biomass are monitored to describe crop growth and serve as an indicator for the final crop yield. Multi-temporal crop surface models (CSMs) provide spatial information on plant height and plant growth. This study aims to examine whether (1) UAV-based CSMs are suitable for plant height modelling, (2) the derived plant height can be used for biomass estimation, and (3) the combination of plant height and vegetation indices has an added value for biomass estimation. To achieve these objectives, UAV-flight campaigns were carried out with a red-green-blue (RGB) camera over controlled field experiments on three study sites, two for summer barley in Western Germany and one for rice in Northeast China. High-resolution, multi-temporal CSMs were derived from the images by using computer vision software following the structure from motion (SfM) approach. The results show that plant height and plant growth can be accurately modelled with UAV-based CSMs from RGB imaging. To maximise the CSMs’ quality, accurate flight planning and well-considered data collection is necessary. Furthermore, biomass is successfully estimated from the derived plant height, with the restriction that results are based on a single-year dataset and thus require further validation. Nevertheless, plant height shows robust estimates in comparison with various vegetation indices. As for biomass estimation in early growth stages additional po-tential is found in exploiting visible band vegetation indices from UAV-based red-green-blue (RGB) imaging. However, the results are limited due to the use of uncalibrated images. Combining visible band vegetation indices and plant height does not significantly improve the performance of the biomass models. This study demonstrates that UAV-based RGB imaging delivers valuable data for productive crop monitoring. The demonstrated results for plant height and biomass estimation open new possi-bilities in precision agriculture by capturing in-field variability
    • 

    corecore