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ABSTRACT

We have developed a simple photogrammetric method to identify heterogeneous areas of
irrigated olive groves and vineyard crops using a commercial multispectral camera mounted
on an unmanned aerial vehicle (UAV). By comparing NDVI, GNDVI, SAVI, and NDRE vegetation
indices, we find that the latter shows irrigation irregularities in an olive grove not discernible
with the other indices. This may render the NDRE as particularly useful to identify growth
inhomogeneities in crops. Given the fact that few satellite detectors are sensible in the red-
edge (RE) band and none with the spatial resolution offered by UAVs, this finding has the
potential of turning UAVs into a local farmer’s favourite aid tool.

Introduction
Remote sensing uses of UAV

Overhead remote sensing data provide complementary
input to field inspection and allow for better land surface
modelling. In agriculture, most remote-sensing indica-
tors come from photometric indices built using broad-
band passbands known as vegetation indices (VI).
Although a conventional photographic RGB camera
can be used to generate topographic surveys and orthoi-
mages, it takes a multispectral camera covering the visible
and IR bands to make differentiating analyses of the
landcover using standardised methods of image proces-
sing with a prior knowledge of the corresponding spec-
tral signatures. Hence, the combination of modern high
spatial resolution and multispectral band sensors offers
the possibility to study crops for precision agriculture
(Guo, Kujirai, & Watanabe, 2012; Primicerio et al., 2012).

Orbiting satellites and manned aircraft have been
the traditional platforms to obtain surface photome-
try. However, they present some limitations in terms
of spatial, temporal, and/or spectral resolutions
(Nebiker, Annen, Scherrer, & Oesch, 2008).
Nowadays, these shortcomings can be overcome
using low-cost and flexible unmanned platforms as
a good alternative to traditional remote sensing plat-
forms for different applications (Colomina & Molina,
2014; Muchiri & Kimathi, 2016; Nex & Remondino,
2014; Padua et al., 2017; Pajares, 2015). For instance,
Matese et al. (2015) concluded that rotor-based
UAVs proved to be the most cost-effective solution
for monitoring small fields (<5 ha). They also recom-
mended using fixed-wing small UAVs for fields of up
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to 1 km? with a ground sample distance (GSD) of up
to 5 cm pixel ', and for fields of up to 4 km? area
with a GSD greater than 10 cm pixel '. Table 1
summarises typical spatial resolutions and fields of
view for different platforms. It hints that the spatial
resolution gap between 1 and 20 cm can be filled by
miniature UAVs.

UAV platforms (fixed-wing and rotor-based) can
be coupled with a multitude of sensor options for
remote sensing including (1) visual RGB camera
(applications in: photogrammetry, aerial mapping,
DSM, surveying); (2) multispectral camera (precision
agriculture, water quality, vegetation indices, envir-
onmental studies); (3) LiDAR (DEM, DSM, 3D sur-
face modelling, object identification, utilities
management); (4) thermal IR camera (search and
rescue, power line inspection, security, precision agri-
culture, cell tower inspection, emergency response);
(5) hyperspectral camera (environmental monitoring,
pipeline inspection, mining and mineral exploration,
remote sensing and analysis).

Hence, all information obtained from UAV sur-
veys helps farmers with small fields in decision-
making processes, improving agricultural production,
and optimising the resource utilisation. With regular
flights, producers can make reliable decisions, thereby
saving time and money versus using commercial
satellite data. For example, UAVs could be used to
study the reaction of some crops to new pesticides, as
the high-definition data can be easily and quickly
examined in a quantitative way. This process can
reliably describe the ground situation and overcome
the costs of ground inspections (Nebiker et al., 2008).

CONTACT J. Jorge @ joan.jorge@upc.edu @ EPSEM-UPC, Av. Bases de Manresa, 61-73, Manresa 08242, Spain

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://orcid.org/0000-0002-6652-1971
http://orcid.org/0000-0002-7518-8971
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/22797254.2019.1572459&domain=pdf

170 J. JORGE ET AL.

Table 1. Comparison of UAV with other manned airborne and satellite platforms adapted from Candiago,

Remondino, De Giglio, Dubbini, and Gatelli (2015).

Spatial Resolution Field of View Cost for Data Acquisition
Satellite 2-15m 10-50 km Very high, for high-res imagery
Aircraft (piloted) 0.2-2 m 2-5 km High
Miniature UAV 1-20 cm 50-500 m Very low
Ground-based <1 cm <2m Low

Related works

Usha and Singh (2013) concluded in a review of potential
applications of remote sensing (RS) in horticulture that
RS is advancing quickly and showed potential for appli-
cations in crop biomass detection, soil properties, soil
moisture and nutrient content, green fruit counts, crop
yield estimation, damage by biotic and a biotic stress, etc.
Mathews and Jensen (2013) estimated the canopy leaf
area index (LAI) of a vineyard with a digital camera
mounted on a micro-UAV; Matese et al. (2013) mapped
the wine vigour of a vineyard and extracted the NDVI
index from a high-resolution multispectral camera
mounted on an eight-rotor platform; Agiiera, Carvajal,
and Pérez (2011) measured sunflower nitrogen status
with a microdrone and compared those measurements
with data collected from a ground-based platform. More
complex analyses have been performed using hyperspec-
tral sensors, with an increasing number of spectral bands
observed, allowing the estimation of biomass and nitro-
gen content (Honkavaara et al., 2012; Polonen, Saari,
Kaivosoja, Honkavaara, & Pesonen, 2013). Zarco-
Tejada, Gonzélez-Dugo, and Berni et al. (2012) focused
on the calculation of fluorescence, temperature, and nar-
row band indices and applied these observations to the
water stress detection; they also used data from
a hyperspectral sensor to calculate relationships between
photosynthesis and chlorophyll fluorescence (Zarco-
Tejada, Catalina, Gonzdlez, & Martin, 2013). Lukas
et al. (2016) compared the basic growth parameters
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obtained from a fixed-wing UAV equipped with a NIR
camera versus data from Landsat 8. Both platforms
showed a high correlation with ground measurements
of biomass and nitrogen content but the satellite data had
a coarser resolution.

Vegetation indices from remote sensing imagery

Researchers exploit the fact that vegetation reflectance
changes significantly in different passbands to obtain
underlying information. As Figure 1 shows, vegetation
reflectance is low in both the blue and red regions of the
visible spectrum, it peaks locally in the green region, and
it is highest in the near infrared (NIR) range.
VIs obtained by algebraically combining these bands
allow researchers to enhance different spectral signatures
for different vegetation properties concerning size, vig-
our, shape, and colour of leaves (Salami, Barrado, and
Pastor, 2014). Many such VIs have been tried (see review
by Xue & Su, 2017) but the most widely used are NDVI,
GNDVI, and SAVL

The normalised difference vegetation index (NDVI),
calculated from the reflectance in the NIR and red bands,
has been the reference to discuss the state of vegetation
since Rouse, Haas., Schell, and Deering (1973). Many
studies using it have been published and, for instance,
correlations have been found with biomass (Bendig et al.,
2015), and canopy structure, LAI (Candiago et al. 2015).

The green normalised difference vegetation index
(GNDVI) has the same form as the NDVI where the

Red Edge NIR
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Figure 1. Spectral reflectance curve for different land covers, with spectral band intervals overplotted.



red band is substituted by the green band (Gitelson,
Kaufman, & Merzlyak, 1996). Hunt, Hively, Daugtry,
and McCarty (2008) have shown that it tracks the
ratio of photosynthetically absorbed radiation and is
correlated with biomass and LAIL This makes the
GNDVI more sensitive to chlorophyll content than
NDVI (Candiago et al. 2015).

Following the lead of Huete (1988) and others,
we calculate the soil-adjusted vegetation index
(SAVI) to eliminate the effect of soil in areas
with poor vegetative cover and where the soil sur-
face is exposed.

Red edge advantage

Despite its many advantages, the NDVTI is not always
the most accurate index to detect anomalies in crops,
particularly if detailed data between the red and NIR
bands are available. As shown in Figure 1, there is an
abrupt change between the red and NIR reflectance of
vegetation, in what is known as the red edge band
(RE). This zone marks the limit between absorption
by chlorophyll in the red band, and scattering due to
leaf internal structure in the NIR band. Being
a transition region, the red edge position is very
sensitive to changes in the vegetation properties,
which can easily be exploited by researchers. For
instance, the RE has been used to estimate the chlor-
ophyll content not only of leaves (Filella & Pefiuelas,
1994; Pinar & Curran, 1996) but also on the surface
of waters of a reservoir (Schalles, Gitelson, Yacobi, &
Kroenke, 1998). These works led to the formulation
of a new vegetation index related to the red edge
reflectance, the normalised difference red edge
(NDRE), which has been proved more advantageous
than the NDVI to optimise harvest times based on
transitions of photosynthesis activity (Maccioni,
Agati, & Mazzinghi, 2001). Table 2 shows the formula
of the four vegetation indices compared in our work.

Unfortunately, few remote-sensing satellites carry
sensors capable of detecting radiation in the red-NIR
transition zone, or RE band. As of today, these include
WorldView-3 (not the WorldView-4) with a multi-
band spatial resolution of 1.4 m; RapidEye, with 5 m
for ground sampling distance; Sentinel-2 satellite, with
a spatial resolution of 20 m. Luckily, most commercial
multispectral cameras that are installed in UAVs detect
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RE radiation, and this opens a niche for these smaller
platforms. For instance, there are 400 7-cm spatial
resolution pixels for each 1.4-m resolution pixel of
the red-edge band of WorldView-3. This makes
a significant difference for precision agriculture since
it can unmask relevant details.

This paper reports a study done on 13 ha of farm
land using a multiband (visible and NIR) camera and
a photometer onboard a UAV. Several different vege-
tation indices have been applied to an area where
vegetation is represented by fields of olive groves
and vineyards, with the aim of discerning how the
red-edge band might improve our agricultural knowl-
edge on small fields. Hence, we compare the vegeta-
tion indices, notably the NDRE index against the
other usual VI.

Materials and methods
Overview

This study evaluates the results and potential of green
versus red versus red edge versus NIR images to
obtain maps of vegetation indices to detect inhomo-
geneities in irrigated crops. In particular, our work
comprises the following:

¢ The photogrammetric planning and processing of
multispectral datasets acquired with a commercial
camera mounted on a UAV platform.

e The creation of high-resolution orthophotos
from multispectral images over two different
cultivation areas (vineyard, olive grove).

e The generation and evaluation of different VI
maps.

e Statistical analysis of the VIs crossing their
values for two types of crops.

These steps were performed with a critical
approach to understanding the easiest and most effi-
cient way to deliver geo-referenced information at
small spatial scales useful for precision farming. Our
final aim was to discriminate vegetation of the same
crop with different response to the aforementioned
vegetation indices without any ground radiometric
measure. Careful descriptions of the agricultural
characteristics provided by local farmers who manage
the different crops sites were used to validate the
findings.

Table 2. The computed vegetation indices. ps, pr Prs and pyir represent the reflectance in the
green, red, red edge, and near infrared band, respectively; L is a constant empirical value related
to the vegetation density on the ground (see for example a review by Xue & Su, 2017).

Index

Computation

NDVI (normalised difference vegetation index)

GNDVI (green normalised difference vegetation index)
SAVI (soil adjusted vegetation index)

NDRE (normalised difference red-edge)

NDVI = Pxm—Pr
PNirtPR
GNDV] = Pvr—Pa
PrirtPG

)
SAVI = (jLucti) (14 1)

NDRE = Pnir—Pre
PNIRHPRE
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Study area

The study area corresponds to a rural property located
near Manresa (Barcelona, Spain), called “Celler el Moli”
(http://www.cellerelmoli.com), coordinates 41°44'14.36"
N, 1°46'47.94"E (UTM 46213331.284, 398545.852),
datum WGS84, with altitudes between 298 and 344 m
above sea level with no or just a slight slope. The area
enjoys a Mediterranean continental climate with
a notable thermal oscillation. The lands are mainly
loamy soils.

The study site has an area of approximately 13 ha and
includes the housing of the farmers and the winery. In
this location, there are invariant places, such as buildings,
parking lots, and roads, whose coordinates could be
registered to assess the quality of the orthomosaicked
image (Figure 2). There are different plots with two
typical Mediterranean crops. The farm land is divided
into olive groves and vineyards. The dominant crop is
organic vineyard, with four grape varieties: Cabernet,
Macabeu (native from Catalonia), Merlot, and Picapoll
(native from Catalonia). Some vineyard plots are drip
irrigated while other plots are not irrigated (see Table 3
and Figure 6), even if they are of the same grape variety.
The wine that is produced with these grapes has the
denomination of origin Pla de Bages (http://www.dopla
debages.com/). The dominant olive variety is Arbequina

15N 1y, FRANCE
NINR ik
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Mediterranean
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(native from Catalonia). The crop is a super high-density
plantation, with a linear structure with virtually no dis-
tance between trees and a narrow corridor between rows,
and the land covered by legumes to avoid erosion and
also to enrich the soil, thus favouring the biological cycles
(legumes fix nitrogen which will be exploited by olive
trees). The olive grove is subject to a drip irrigation
system by micro irrigation pipes.

Data collection and preprocessing

The employed UAV platform was a quadcopter
Phantom 4 Pro, designed and produced by DJI and
provided with a commercial multispectral camera. For
this work, a Parrot Sequoia 4.0 camera was used. This
camera is a powerful multispectral sensor in a pocket-
sized package, has a weight of 90 g, it spans 75 mm x
59 mm x 33 mm, integrates a GPS/light sensor, and the
camera’s sensor acquires images 5,472 x 3,648 pixels in
four narrowband imagers. The spectral ranges of the
four bands are Green (530-570 nm), Red (640-680 nm),
Red Edge (730-740 nm), and NIR (770-810 nm). The
camera is complemented by a sunshine sensor and
a reflectance calibration plate for each of the multi-
spectral bands, so that the data provided by the set are
essentially reflectance values instead of just grey level.

Figure 2. Location of the study site, 60 km west of Barcelona (red dot on the maps on the left-hand side). The right figure

shows an aerial view of the site.

Table 3. Extension (in ha) of the different masks built (O: Arbequina; C: Cabernet; Me: Merlot; Ma: Macabeu; P: Picapoll; R:

irrigation; S: no irrigation).

Olive
Plot 01 02 03 04 Total
ha 0.62 0.47 0.22 0.40 1.71
Vineyard
Plot Vi al Vi V2 V3 V4 V5 V6 V7 V7 V8 V9 Total
C Me1 Me2 C C Me C P Ma1 Ma2 C Ma
R R R S S S R S R R S S
ha 0.25 0.23 0.29 0.45 0.40 0.52 0.54 0.33 0.12 0.21 0.26 0.14 3.72
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To cover the entire study area, 276 images were
captured for each of the four spectral bands in a first
flight (GSD of 6.8 cm pixel '). An RGB camera
mounted in the UAV in a second flight allowed us to
capture 239 images in the visible spectrum (24,144 x
23,700 pixels, and 0.017 m of GSD) with some overlap,
which allowed us to elaborate a mosaic of orthorectified
images resulting from the preprocessing operations
(involving homographic corrections and stitching)
upon the acquired images. The photogrammetric pro-
cessing was performed using proprietary Pix4D soft-
ware (Pix4D SA, Lausanne, Switzerland). The process
follows three steps: (1) aerial triangulation; (2) digital
surface model generation, and (3) orthomosaicking.
The resulting orthomosaicked images have high resolu-
tions and are accurate throughout consecutive images.
Thus, they guarantee optimal performance of the sub-
sequent classification analysis. After that, the data from
the two flights were joined to manage, transform, and
export the images (four different images, one for each
channel) to a TIFF format. 239 images were calibrated
and geolocated using 27,657 matches per calibrated
image. In this way, the quality of the image content
was evaluated to test its influence on the outcomes of
the photogrammetric processing and vegetation indices.

Figure 3 shows the orthorectified image mosaic
without a georeferenced legend and with the flight
line and point cloud superimposed. Figure 4 shows
the sparse digital surface model (DSM) before densi-
fication obtained in the previous process.

It should be indicated that in absence of ground
measurements with spectro-radiometers, the computa-
tions of raw indices might be based on digital numbers
(DN), or grey levels. Although the raw indices give
a good description of the vegetation conditions, it is

Figure 3. Preprocessing steps with Pix4D software for 239
RGB images: orthorectified image mosaic, with the flight line
and point cloud superimposed.

EUROPEAN JOURNAL OF REMOTE SENSING . 173

Figure 4. Sparse digital surface model (DSM) before densifi-
cation obtained in the preprocessing process. Redder colours
correspond to greater heights.

possible that the traditional scale ranges of the vegeta-
tion indices used are affected somewhat.

Image classification

Before building the vegetation indices, an unsuper-
vised classification of the images was done in order to
have a proto image of homogeneity in the crops.
Figure 5 shows the resulting classification map after
having visited the farm and verified the ground truth
personally in situ, reducing the number of classes by
merging them and deleting noisy pixels. Only four
surface classes are differentiated: the blue colour is

[ Olive and forest
[l Coarse bare soil
[ Smooth bare soil
[ Vine and legumes

Figure 5. Unsupervised classification of the farm into four
classes.
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[ vineyard
B olive

Figure 6. Masks of olive and vines crops applied on maps of
vegetation indices.

associated to bare soil with a small roughness (roads
and vines just planted); the shade of lighter green
corresponds to the legumes that are between the
rows of olive trees; the darkest green corresponds to
the rougher bare soil between the vines; and the
orange colour corresponds to the productive olive
trees and the vines.

Vegetation indices results

The vegetation indices used to create vigour maps
and to verify uniform growth of the crops were cal-
culated using the raster calculator tool of QGIS,
which was also used to build the maps. The VI
calculation was done by applying the standard for-
mulations (Table 2) within the limited geographical
extent where the four spectral bands (G, R, RE, and
NIR) were recorded. The reflectance images were
obtained from their respective band indices which
were procured from the preprocessing (orthorectifi-
cation) performed with the Pix4D software, as men-
tioned before. Each resulting image has a spatial
resolution of 0.06839 m and shows pixels with reflec-
tance value and other pixels with no data.

We have differentiated four plots for olive crops
(always Arbequina cultivar) and nine for vineyards,
which have been used to mask the vegetation indices
and to make statistics based on the data for each of
them. Figure 6 shows the masks of olive and vine
crops that have been applied on maps of vegetation
indices. Table 3 summarises the extension of each of
the masks: 1.71 ha of olive trees and 3.72 ha of
vineyard (C: Cavernet, Me: Merlot, Ma: Macabeu, P:
Picapoll, R: irrigation, S: no irrigation). For each
crop, we have divided the study in different plots
identified with a correlative number.

The olive crops

The NDVI, GNDVI, SAVI (L = 0.2, 0.5, 0.9), and
NDRE indices maps for olive crops were extracted
from the processed orthoimage. After comparing the
minimum, maximum, mean, and standard deviation
values of the Vs for the selected plots, we discarded to
continue working with the values of SAVI (L = 0.2)
and SAVI (L = 0.9), and concentrated only on the
SAVI (L = 0.5) because all of them showed similar
correlations to the rest of VIs. In the literature on
remote sensing, vegetation indices, and agriculture, it
is customary to use this index only with the soil para-
meter L = 0.5. Figure 7 shows the map values of the
estimated Vs for the olive areas. The different values
of the legend of each of the maps can be observed.

After differentiating the plots of olive trees and
applying their mask to the maps obtained for each
of the VI, we proceeded to analyse the linear correla-
tion that may exist between the different VI consider-
ing the whole set of pixels, regardless of the class of
cover they represented. Table 4 shows the R-squared
values obtained when correlating the different VIs
with the NDVI and with the NDRE for each plot of
olive grove.

The vineyard crops

For the vineyard crops we have proceeded in the
same way as for olive crops. The NDVI, GNDVI,
SAVI (L = 0.2, 0.5, 0.9), and NDRE indices maps
for vine crops were extracted from the processed
orthoimage. After comparing the minimum, maxi-
mum, mean, and standard deviation values of the
VIs for the selected plots, we decided to work with
SAVI (L = 0.5) and not with SAVI (L = 0.2) and
SAVI (L = 0.9) for the same reasons mentioned
before. Figure 7 shows the map values of the esti-
mated VIs for the vine crops.

After differentiating the plots of vineyard and
applying their mask to the maps obtained for each
of the VI, we proceeded to analyse the linear corre-
lations that may exist between the different VI con-
sidering the whole set of pixels, regardless of the
class of cover they represented. Table 5 shows the
R-squared values obtained when correlating the dif-
ferent VI with the NDVI and with the NDRE for
each plot of vineyard.

Discussion

The results shown in the previous section reveal the
convenience to work with several vegetation indices
to detect irregularities in the crops. In the case of
olives, the traditional NDVI shows a fairly elongated
homogeneity compared to the other indices we have
applied. NDRE is especially useful to detect small
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(b)

(d)

Figure 7. Images of the various vegetation indices for the olive (continuous line) and vineyard plots (dashed line): (a) GNDVI, (b)
NDRE, (c) NDVI, (d) SAVI (L = 0.5).

Table 4. R-squared values obtained when correlating the different Vis with the NDVI and with the NDRE for the plots of olive
grove.

01 02 03 04 Total
R? correlation with NDVI (olive)
GNDVI 0.79 0.86 0.93 0.71 0.83
NDRE 0.41 043 0.53 0.27 037
SAVI (L = 0.5) 0.44 0.36 0.51 0.36 0.37
R? correlation with NDRE (olive)
GNDVI 0.41 0.49 0.60 0.42 0.43
NDVI 0.41 043 0.53 0.27 037
SAVI (L = 0.5) 0.29 0.06 0.18 0.14 0.18

Table 5. R-squared values obtained when correlating the different Vis with the NDVI and with the NDRE for the plots of olive
grove (C: Cabernet; Me: Merlot; Ma: Macabeu; P: Picapoll; R: irrigation; S: no irrigation).

NDVI V1_CR V5_CR V2_C.S V3_C.S V8_C_S V6_P_S Total

R? correlation with NDVI (vineyard)

GNDVI 0.89 0.83 0.92 0.85 0.72 0.61 0.87

NDRE 047 0.28 032 0.18 0.12 0.23 0.40

SAVI (L = 0.5) 0.98 0.94 0.96 0.95 0.97 0.97 0.96

R? correlation with NDRE (vineyard)

GNDVI 0.50 0.28 0.40 0.30 0.09 0.14 0.41

NDRE 047 0.28 032 0.18 0.12 0.23 0.40

SAVI (L = 0.5) 0.43 0.19 0.29 0.03 0.08 0.14 0.33
areas with different textures within the cultivated In our case, we observe an inhomogeneity in the

plots. In these areas, the farmer may wish to collect  centre of the plot Ol which is most conspicuous in
information in situ. the NDRE. On site inspection confirmed that this
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inhomogeneity is due to less vigorous vegetation. At
first, this seemed odd since every tree received the
same amount of water and at the same time (the same
overall treatment, in fact), so these variables do not
play a role in the irregularity detected. However,
during the inspection, the farmers noted that there
used to be a stream running through the centre of the
plot, which they covered with new soil to flatten the
land just before planting the olive trees a few years
ago. This explains why in this area the vegetation is
less vigorous, given that there is likely less water
retained in the first shallow inches of subsoil (where
the roots of the young olive trees have access) due to
percolation through the new added soil — which is
less compacted and hence more porous than conso-
lidated soil.

The differences between NDVI, GNDVI, and
NDRE should not be surprising when we take into
account the spectral signature of the vegetation
shown in Figure 1. Despite the difference in absolute
values, there is an excellent correspondence between
the NDVI and GNDVI indices (R* = 0.83 for olive;
R* = 0.87 for vineyard). In the case of NDRE, the
correlation is quite poor with NDVI (R*> = 0.37 for
olive; R? = 0.40 vineyard), similar with GNDVI and
worse with SAVI. This is likely due to the bigger
dispersion of reflectance values in the RE than in
the R band when water and nitrogen content change
(Mutanga & Skidmore, 2007). The correlation data
between the different VIs are exceptionally high for
NDVI and SAVI in the case of vines (R* = 0.96) and
low for olive (R* = 0.37). This difference is due to the
difference in percentage of vegetation cover (being
the vines very young and the bare soil dominates
the image). The worst correlation is obtained between
NDRE and SAVT for olive crop (R*=0.17); it may be
due to the sensitivity of the SAVI to a variety of soil
textures not covered by vegetation.

Conclusions

In this paper, we report a study involving the use of
UAVs in precision agriculture based on the compar-
ison of vegetation indices calculated from multispec-
tral images (G, R, RE, NIR) of high spatial resolution
(6.8 cm pixelfl). These high resolution data allow for
a fairly detailed characterisation of the biophysical
variables of the crops. After comparing vegetation
index maps incorporating the red edge band, the
use of NDRE instead of the traditional NDVI can
be recommended to identify possible heterogeneities
in the vegetation cover, even when the vegetation
does not fully cover the ground and patches of bare
soil with varying degrees of roughness are the norm.
To our knowledge, this is the first time that the
NDRE has been used to trace irrigation irregularities
in olive crops. This has important consequences for

local farmers who now have affordable UAVs to per-
form live assessments of their crops. It would be very
useful to precision agriculture if more RE detectors
were put onboard satellites.
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