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The continuing population is placing unprecedented demands on worldwide crop yield 

production and quality. Improving genomic selection for breeding process is one essential 

aspect for solving this dilemma. Benefitted from the advances in high-throughput 

genotyping, researchers already gained better understanding of genetic traits. However, 

given the comparatively lower efficiency in current phenotyping technique, the 

significance of phenotypic traits has still not fully exploited in genomic selection. 

Therefore, improving HTPP efficiency has become an urgent task for researchers. As one 

of the platforms utilized for collecting HTPP data, unmanned aerial vehicle (UAV) 

allows high quality data to be collected within short time and by less labor. There are 

currently many options for customized UAV system on market; however, data analysis 

efficiency is still one limitation for the fully implementation of HTPP. To this end, the 

focus of this program was data analysis of UAV acquired data. The specific objectives 

were two-fold, one was to investigate statistical correlations between UAV derived 

phenotypic traits and manually measured sorghum biomass, nitrogen and chlorophyll 

content. Another was to conduct variable selection on the phenotypic parameters 

calculated from UAV derived vegetation index (VI) and plant height maps, aiming to find 



out the principal parameters that contribute most in explaining winter wheat grain yield. 

Corresponding, two studies were carried out. Good correlations between UAV-derived 

VI/plant height and sorghum biomass/nitrogen/chlorophyll in the first study suggested 

that UAV-based HTPP has great potential in facilitating genetic improvement. For the 

second study, variable selection results from the single-year data showed that plant height 

related parameters, especially from later season, contributed more in explaining grain 

yield.  
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CHAPTER 1 INTRODUCTION 

Doubling crop production by 2050 is urgent in order to meet the increasing demands 

from rising human population as well as the increase in biofuel consumptions. However, 

study showed that current increasing rate of crop yield has not met the required rate per 

year (2.4%) (Araus & Cairns, 2014; Ray, Mueller, West, & Foley, 2013). It still remains 

as a major task for breeders to enhance crop production efficiency. Genomic selection is 

one of the solutions that researchers have been working on, which requires breeders to 

identify the best genotype with highest production rate and good resistance under given 

environmental conditions. Since phenotypic traits represent the interaction between 

genetic traits and environmental stress, it is reasonable to involve phenotypic data in 

genomic selection and to investigate phenotypic traits’ predictive or analytic power for 

manually measured agronomic or physiological traits, such as biomass and grain yield. 

Recently, most of the phenotypic traits are derived from a procedure called high-

throughput plant phenotyping (HTPP).  

HTPP has increasingly been considered as a key component in crop breeding, which 

adopted non-destructive and non-invasive sensors to screen large amounts of crop lines 

with less time and efforts. The phenotypic traits derived from HTPP data are good 

quantitative measurements of the genotypic responses to environments (Araus, Kefauver, 

Zaman-Allah, Olsen, & Cairns, 2018). Nowadays, multiple remote sensing based 

platforms have been designed for HTPP data collections, such as ground-based platforms 

(Andrade-Sanchez et al., 2014; Ge, Bai, Stoerger, & Schnable, 2016; White et al., 2012) 

and aerial-based platforms (Chapman et al., 2014; Eitel, Long, Gessler, & Hunt, 2008; 
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Geipel, Link, Wirwahn, & Claupein, 2016; Kefauver et al., 2017a). Sensors attached to 

these platforms include, but not limited to, spectrometer, thermal sensor, and digital 

imager. These sensors can provide various phenotypic traits (e.g. canopy spectra, 

temperature, and plant height), which could help to explain genetic traits and have the 

potential to facilitate crop breeding process. Compare to ground-based platform, aerial-

based platform, especially recently advanced unmanned aircraft vehicle (UAV), has the 

advantages of screening large-scale field within short time and less labor, acquiring high-

quality imagery, as well as owning higher maneuverability to work on different locations 

(Sankaran et al., 2015; Yang et al., 2017).  

Unmanned aircraft vehicle (UAV), defined as the vehicle that can fly without pilot 

onboard, normally includes fix-wing and multi-rotor types for agricultural applications. It 

usually integrates with different sensors, such as digital RGB camera, multispectral 

camera, infrared thermal camera, and hyperspectral camera (Hunt & Daughtry, 2018; 

Sankaran et al., 2015). By deploying these different types of sensors, as well as flying at 

low altitude, it can obtain high quality data (aerial imagery) with high spatial resolution 

and flexible spectral or temporal resolution. Furthermore, since the size of UAV system 

is usually small, it is easier to operate than field-based platforms. Therefore, the UAV-

based HTPP is gaining increasing research focus for breeding and other agricultural 

purpose. 

Existing applications of UAV in breeding could be found in a wide range of crops 

including sorghum, wheat, barley, corn, soybean, and tomato (M. Zhang et al., 2018). 

Depending on research objectives and available sensors, various crop phenotypic traits 
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were extracted. For instance, plant height derived from UAV acquired imagery was found 

to highly correlate with dry biomass in barley (Bendig et al., 2014, 2015). Plant height is 

one of the most frequently studied trait in UAV-based studies, and it usually combined 

with other UAV-derived traits to estimate agronomic or physiological traits, such as 

cotton yield (Chu et al., 2016). In the study of Chu (2016), the combined features tend to 

outperform single trait on explaining cotton yield. Another commonly measured 

phenotypic trait is spectral index (vegetation index, VI). Duan, Chapman, Guo and Zheng 

(2017) deployed UAV with multispectral camera to derive normalized difference 

vegetation index (NDVI). The derived NDVI had strong correlation with hand-held 

sensor measurement, and was also useful in estimating final wheat yield (T. Duan, 

Chapman, Guo, & Zheng, 2017a). Researchers also interested in investigating the usage 

of multi-temporal UAV data. As the study in bread wheat illustrated (Hassan, Yang, 

Rasheed, Jin, et al., 2018), the senescence rate could be derived using multi-temporal 

spectral index from UAV imagery, such as green normalized difference vegetation index 

and normalized difference red-edge index.  Results from this study and other related 

studies revealed great potential of applying multi-temporal UAV imagery on monitoring 

crop seasonal growth. 

Even though UAV technique has already been widely applied in agricultural field and 

allowed easier access to HTPP, there are still remaining limitations which hold back the 

fully implementation of this technique. One of the problem is associated with handling 

the large size of UAV data, either in terms of establishing well-performed estimation 
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models or in terms of selecting superior variables for explaining targeted agronomic 

traits. 

Therefore, in this study, two studies were carried out with the aim of searching solutions 

for the aforementioned problem. One was to build statistical models that can connect 

UAV phenotypic traits with manually measured genetic traits (sorghum biomass, 

chlorophyll and nitrogen). Another was to apply variable selection on UAV-derived 

phenotypic traits, in the aim of finding primary variables that contribute most in winter 

wheat grain yield estimation. Phenotypic traits in both tasks were derived from imagery 

acquired by a multi-rotor UAV, carrying a RGB camera and a five-band multispectral 

camera. Two specific objectives were as follows: 

1. To investigate the potential of using UAV-derived multispectral and 

morphological traits for sorghum biomass, nitrogen and chlorophyll content 

estimates. 

2. To conduct variable selection on UAV-derived phenotypic traits, to find out the 

principal parameters that contribute most in explaining wheat final grain yield. 
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CHAPTER 2 ELUCIDATING SORGHUM BIOMASS, 

NITROGEN AND CHLOROPHYLL CONTENTS WITH 

SPECTRAL AND MORPHOLOGICAL TRAITS DERIVED 

FROM UNMANNED AIRCRAFT SYSTEM 

Jiating Li1, Yeyin Shi1*, Arun-Narenthiran Veeranampalayam-Sivakumar1, Daniel P. 

Schachtman2 

1Department of Biological Systems Engineering, University of Nebraska-Lincoln, 
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* Correspondence: 

Name: Yeyin Shi 

Email: yshi18@unl.edu 

Keywords: UAV, phenotyping, multispectral, nitrogen stress, biomass, chlorophyll, plant 

height, canopy cover 

 

ABSTRACT 

Unmanned aircraft systems (UAS) provide an efficient way to phenotype crop 

morphology with spectral traits such as plant height, canopy cover and various vegetation 

indices (VIs) providing information to elucidate genotypic responses to the environment. 

In this study, we investigated the potential use of UAS-derived traits to elucidate 

biomass, nitrogen and chlorophyll content in sorghum under nitrogen stress treatments. A 

nitrogen stress trial located in Nebraska, USA, contained 24 different sorghum lines, 2 

nitrogen treatments and 8 replications, for a total of 384 plots. Morphological and 

spectral traits including plant height, canopy cover and various VIs were derived from 

UAS flights with a true-color RGB camera and a 5-band multispectral camera at early, 

mid and late growth stages across the sorghum growing season in 2017. Simple and 
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multiple regression models were investigated for sorghum biomass, nitrogen and 

chlorophyll content estimations using the derived morphological and spectral traits along 

with manual ground truthed measurements. Results showed that, the UAS-derived plant 

height was strongly correlated with manually measured plant height (r = 0.85); and the 

UAS-derived biomass using plant height, canopy cover and VIs had strong exponential 

correlations with the sampled biomass of fresh stalks and leaves (maximum r = 0.85) and 

the biomass of dry stalks and leaves (maximum r = 0.88). The UAS-derived VIs were 

moderately correlated with the laboratory measured leaf nitrogen content (r = 0.52) and 

the measured leaf chlorophyll content (r = 0.69) in each plot. The methods developed in 

this study will facilitate genetic improvement and agronomic studies that require 

assessment of stress responses in large-scale field trials.  

 

2.1 INTRODUCTION 

Following rice, wheat, corn, and barley, sorghum is the fifth most important cereal crop 

worldwide (Ramatoulaye et al., 2016). It is widely used in human consumption, animal 

feed, and biofuel production (Stanton et al., 2017). As reported, in 2016, the sorghum 

production in the U.S. was about 12.2 million tonnes which is approximately 20% of the 

world sorghum production (63.93 million tonnes) (FAOSTAT, 2017). Serving as the 

biomass crop for biofuel production, sorghum has the advantages of an annual growth 

cycle, high caloric value, and low management cost (Fernandes et al., 2018). An efficient 

and timely method for the prediction of sorghum biomass will help to speed the 

development of higher biomass varieties. The benefits of sorghum as a biomass crop 
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could be further enhanced if genotypes with high tolerance to stresses such as reduced 

nitrogen or water deficit can be more easily identified, which will be facilitated by 

integrating sorghum genotyping and phenotyping technologies. 

In the past decade, gene sequencing technology has advanced, allowing the crop genomic 

information to be collected much easier and more cheaply (Furbank & Tester, 2011). 

However, genomic selection is still hampered by the speed and ease of obtaining large 

amounts of phenotypic information. Traditionally, in-field phenotyping has been 

conducted manually, which consumes a great deal of labor and time. High-throughput 

phenotyping technology developed in recent years opens opportunities to automate and 

speed up breeding pipelines. Depending on the traits of interest and growth stages, high-

throughput phenotyping can be conducted either in the lab or in the field. For the field-

based phenotyping, the ground-based systems and the aerial-based systems usually work 

as complementary platforms to achieve the final goal of rapid and accurate trait 

collection. Ground-based systems such as the gantry systems (Virlet et al., 2017), cable-

suspended systems (Kirchgessner et al., 2017) and mobile cart or robotic systems 

(Svensgaard et al., 2014) conduct proximal sensing over or under the plant canopy with 

little limitation on sensor weight or size. The aerial high-throughput phenotyping usually 

implemented with unmanned aircraft systems (UAS) operated at low altitudes which 

have limited sensor payloads or weight and can only detect traits remotely over the 

canopy. However, they are capable of covering a larger area in a shorter period of time 

which minimizes the measurement error caused by changes in environmental factors, and 

are independent of the soil condition which may hamper movement of ground based 
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systems. Typical types of UAS are fixed-wing, rotary-wing, and hybrid systems. A 

rotary-wing platform was selected in this study to conduct slow speed, low altitude and 

more stable phenotypic data collection for sorghum.  

UAS technology has been widely used to study various traits in different crops including 

sorghum. Morphological traits are often measured from natural color images, i.e. RGB 

images, or estimated from spectral images. Sorghum and corn plant height is a trait that 

has been investigated in several studies using the structure from motion technique and 

RGB images (Hu et al., 2018; Malambo et al., 2018; Shi et al., 2016; Pugh et al., 2018; 

Watanabe et al., 2017)(Shi et al., 2016). Sorghum ground cover (Tao Duan et al., 2017; 

Potgieter et al., 2017; Shafian et al., 2018) and leaf area index (Potgieter et al., 2017; 

Shafian et al., 2018) were directly calculated from the RGB images or estimated using 

spectral information from multispectral camera. Visible morphological traits are easier to 

measure than physiological traits, such as chlorophyll content, nitrogen concentration, 

and water content. The physiological traits are often hard to be assessed by the human 

eye but can be detected in the infrared spectra and the variations in those important traits 

become more obvious if they are depicted using vegetation indices (VIs). For example, 

normalized difference red edge (NDRE) was used to differentiate stay-green and 

senescent lines in sorghum breeding (Potgieter et al., 2017). Sorghum grain yield was 

well correlated with the normalized difference vegetation index (NDVI) derived from a 

modified three-band camera (green, red, and NIR) (Stanton et al., 2017) and a 

multispectral camera (Shafian et al., 2018). Sorghum panicle volume was estimated from 
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RGB orthomosaic, DSM and point cloud (Chang, Jung, Yeom, Maeda, & Landivar, 

2017).  

Biomass and nitrogen status of sorghum is particularly important for the development of 

new higher yielding nitrogen use efficiency energy sorghum varieties for lignocellulose 

production. While grain sorghum is easy to harvest, energy sorghum is not because of its 

very large size. The main interest of growing energy sorghum is in the biomass which 

may be used to produce cellulosic ethanol.  The crop is over 3.5 to 4.5 m high and 

specialized equipment which is not usually readily available is required for harvest.  

Therefore, the use of UAS to estimate biomass and nitrogen status of sorghum provides a 

highly efficiency way for breeders to improve the crop. Most of the UAS related studies 

on sorghum were focused on plant height, ground cover, leaf area index and grain yield 

estimation so far. The only study we found for sorghum biomass estimation was using a 

UAS based hyperspectral and RGB system and machine learning modeling (Zhang et al., 

2017). The results were promising which inspired us to move forward to investigate 

alternative low-cost method based on multispectral and RGB cameras for sorghum 

biomass, nitrogen and chlorophyll content estimation. As for sorghum nitrogen and 

chlorophyll estimation, most of the previous studies focused on qualitative differentiation 

between treatments such as high and low nitrogen treatment or stay-green and senescent 

lines; while no study was found that investigated the quantitative relationship between 

sorghum nitrogen or chlorophyll content and UAS-derived traits.  
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The objective of this study was to investigate the potential of using UAS-derived 

multispectral and morphological traits for sorghum biomass, nitrogen and chlorophyll 

content estimates. Three specific objectives were:  

(1) Obtain sorghum spectral and morphological traits from UAS based remote sensing, 

including various vegetation indices, plant height and canopy cover; 

(2) Establish predictive models for sorghum biomass, nitrogen and chlorophyll contents 

using the obtained morphological and spectral traits; and  

(3) Evaluate how predictions compared with ground truth measurements.  

 

2.2 MATERIALS and METHODS 

A flowchart has been provided in Figure 2.1, summarizing the main steps of this study: 

image data collection, image pre-processing, morphological and spectral trait extraction, 

and statistical analysis.  
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Figure 2.1. Flowchart of main processing steps in this study. 

2.2.1 Field Experimental Design  

Field location and plot design - The field experiment was conducted over a 1.38 ha 

sorghum nitrogen stress trial located in Central City, Nebraska, US (41°12’3.0’’ N, 

97°56’40.56’’ W), in the growing season of 2017. The field was planted on May 26, 2017 

with 24 sorghum lines (see Supplemental data table 1) in two nitrogen treatments (for the 
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low nitrogen treatment no nitrogen was applied and for the high treatment 85 pounds of 

nitrogen per acre were added) and eight replications in a randomized complete block 

design (Figure 2.2). Each plot was 3 m by 3 m containing four rows with 0.10 m within-

row spacing and 0.76 m row spacing delineated by a rectangular in Figure 2. This field 

trail was located on a commercial farm with center pivot irrigation. Nine inches of 

irrigation was added contain 0.9 ppm nitrate. 

 

Figure 2.2.  True-color orthomosaic showing field design. Images collected on September 

11, 2017. 

 

Collection of hyperspectral radiometer data - The most recently fully expanded leaf was 

taken from two random plants within a plot. The ASD FieldSpec 4 Standard Res 

(Analytical Spectral Devices, Colorado) was then used to measure hyperspectral 

reflectance readings in the 350 to 2500 nm wavelength range of the leaf. The methods 

used here for the ASD readings are described in Yendrek et al. (2017). Both ends of the 
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leaf were removed leaving roughly six to eight inches of the mid-section of the leaf. The 

leaf tissue on both sides of the midrib were removed from the midrib. One side was put 

into a paper envelope and dried at 50°C for nitrogen analysis and the other was placed 

into an aluminum foil packet which was then put on dry ice and subsequently stored at -

80°C.  

Laboratory analysis of leaf tissue - Frozen leaf issue was removed from -80°C and placed 

on dry ice. In a darkened room leaf discs (6 mm diameter) were punched from frozen 

leaves in the weigh boat, on dry ice until there was approximately 90 mg of leaf tissue 

which was about 18 to 27 discs. Prior to extraction 2.5 mL of 100% methanol was added 

to 15mL tubes. Three replicates containing 30mg or six to nine discs were taken and 

submerged in the methanol. The tubes were then placed in a rack in the dark and placed 

on a rotary shaker at 250 RPM for 24 hours. After 24 hours 200 mL of each sample was 

used to fill a 96 well black sided plate (Corning™ Costar) with a clear flat bottom, with 

one of the wells being filled with 200 µL of 100% methanol to be used as the blank. The 

top of the plate is secured with sealing film to prevent methanol evaporation. The plate 

was then read three times at 666 nm for chlorophyll A, 653 nm for chlorophyll B, 470 nm 

for carotenoids using a BioTek Synergy H1 Hybrid Reader. The chlorophyll/methanol 

equation (Lichtenthaler & Wellburn, 1983)(Lichtenthaler & Wellburn, 1983) was then 

used in to calculate chlorophyll A, chlorophyll B, and carotenoids of the extracts. The 

average of the three replicates was calculated for each sample. For nitrogen analysis the 

leaves were roughly chopped with a stainless-steel scissors in the envelopes and then sent 

to Ward Labs (Kearney, NE) for analysis of total nitrogen.  
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Field ground truth measurements - Plant height was measured on September 7, 2017 and 

October 9, 2017 from all eight replicates for each treatment. Plant heights were measured 

as the average height of plants in one of the center rows of the 4-row plot. It was 

measured on plants in the middle of the 3-meter row with a telescoping measuring stick 

which allows you to look up to align the top of the stick with top of the plants then record 

the height at eye level. Total above ground biomass was harvested on October 9, 2017 at 

which time fresh and dry above ground biomass (leaf and stem) were sampled in 363 

plots.  Eight replicates from each treatment were measured.   A 0.91 m section of row in 

the middle of the plots was identified and plants were cut down at the bottom of the stem 

at soil level. Stalks with leaves and panicles were weighed and recorded separately on 

scales in the field but only the weight of stalks with leaves were used as the fresh biomass 

in this study. Subsamples of three stalks with leaves were reweighed to get the fresh 

weight and then bagged, oven dried and used to calculate the dry to fresh weight ratios 

which was then used to calculate the dry weights of the plots.  

2.2.2 UAS, Sensors and Flights 

The system used for image capture was a Matrice 600 Pro multi-rotor UAS platform 

(DJI, Shenzhen, China), equipped with a Zenmuse X3 RGB camera (DJI, Shenzhen, 

China) and a multispectral camera RedEdge (MicaSense, Seattle, UAS). The RGB 

camera has 4000 by 2250 effective pixels. The multispectral camera system has five 

spectral bands blue, green, red, red edge and near infrared (Table 2.1), each with 1280 by 

960 effective pixels, and a downwelling light sensor system installed horizontally on top 

of the UAS used to measure the environmental irradiance and post-calibrate reflectance 

file:///C:/Users/yshi18/AppData/Local/Box/Box%20Edit/Documents/t4BsUNd3Ik2nXbqezsyNmw==/4096
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readings. As another source of radiometric calibration data, a standard calibration panel 

came with the multispectral camera was imaged on the ground before or after each flight.  

Three flights were conducted on July 17, August 19, and September 11 in 2017. Flights 

were auto-piloted using DJI GO and DJI GS Pro applications with 92% forward and side 

overlap between images at 30 m above ground level. The resulting ground sampling 

distance (GSD) was 1.3 cm/pixel for RGB image and 2.0 cm/pixel for the multispectral 

image.  The flight altitude and image acquisition parameters were tested and determined 

to optimize the flight duration and the quality of mosaicked maps. Eleven ground control 

points (GCPs) were distributed along the edges and inside the field each time before the 

flight for geometric calibration in image processing. Their geo-coordinates were 

accurately measured by a survey-grade RTK-GPS with less than 3 cm level accuracy. 

Table 2.1. Center wavelength and full width at half maximum (FWHM) bandwidth of 

each spectral band of the RedEdge multispectral camera. 

Spectral Band Center Wavelength (nm) Bandwidth FWHM (nm) 

Blue 475 20 

Green 560 20 

Red 668 10 

Red Edge 717 10 

Near Infrared 840 40 

 

2.2.3 Image Pre-processing 

Two main tasks were completed in the pre-processing stage: the orthomosaic map and 

digital surface model (DSM) generation with proper geometric and radiometric 

calibrations; and the plot delineation to prepare for later processing. 
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RGB images were mosaicked by Pix4Dmapper software (Pix4D, Lausanne, Switzerland). 

Basically, there were three steps in Pix4Dmapper: Initial Processing; Point Cloud and 

Mesh; DSM, Orthomosaic and Index. In the initial processing, RGB raw images were 

imported into to extract and match key-points among neighboring images to form a rough 

mosaic. Geo-coordinates of the centers of GCPs were imported for geometric calibration 

and improving the initial mosaicking to form 3D point cloud and mesh. The final outputs 

were the 2D orthomosaic and DSM.  

Multispectral images were mosaicked by Atlas Cloud service (MicaSense, Seattle, USA). 

Radiometric calibration was automatically addressed during this process using the 

irradiance measured in the field from the standard calibration panel and downwelling 

light sensor. The five-layer, 16-bit GeoTIFF output from Atlas was converted to five-

layer reflectance GeoTIFF following the sensor instruction with a pixel value of 32768 

equal to 100% reflectance. The multi-layer reflectance orthomosaic generated from the 

multispectral images were used later to estimate canopy cover and calculated various 

vegetation indices.  

In order to conduct plot-based analysis, each plot boundary was delineated in the 

multispectral orthomosaic and DSM maps with unique plot ID as shapefiles in ArcGIS 

(Figure 2.2). The shapefiles, DSMs and multispectral orthomosaics were exported to R 

software for further data analysis. 

Shaded area would affect the reflectance recorded by camera, which was more 

pronounced when the plant was bigger. For the data set collected on the last date when 

sorghum plants were at their maximum height, more shadows were cast over neighboring 
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shorter vegetation rows and soil. This was noticed in the multispectral images where 

shadowed vegetation and soil pixels had abnormally higher VI values than the sunlit 

vegetation pixels (Figure 2.3(b)) which was also observed in previous studies 

(Woebbecke et al., 1995). Those pixels with abnormal VI values were filtered out in this 

study and only sunlit vegetation pixels were used for VI calculation in each plot. To 

eliminate the shadow interference on plant VI calculation, the ExG index (Table 2.2) 

map, which was applied in other studies in distinguishing vegetative areas from soil or 

residue background (D. M. Woebbecke et al., 1995), was calculated. In this study, both 

the soil and shaded vegetation pixels in the ExG index map had lower values than the 

sunlit vegetation pixels (Figure 2.3(c)) so that they were filtered out and only the sunlit 

vegetation pixels were retained for VI calculation. A threshold of 0.046 was determined 

by trial and error and used to segment the vegetation pixels from the soil pixels in the 

ExG map (Figure 2.3(d)). The segmented vegetation pixels formed a mask which was 

applied in the further processing for ground cover estimate and VI calculations. 

Table 2.2. Formulas of vegetation indices used in this study. 

VIs Formula Feature / application 

ExG 2 × 𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑅𝑒𝑑 − 𝜌𝐵𝑙𝑢𝑒  Distinguishes vegetation from soil 

background 

NDVI (𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)/(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑 ) Correlates with green biomass, chlorophyll 

RDVI (𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)/√(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑) Less sensitive to the interfering effects of 

soil 

GNDVI (𝜌𝑁𝐼𝑅 − 𝜌𝐺𝑟𝑒𝑒𝑛)/(𝜌𝑁𝐼𝑅 + 𝜌𝐺𝑟𝑒𝑒𝑛) Correlates with Chlorophyll-a 

CIGreen (𝜌𝑁𝐼𝑅/𝜌𝐺𝑟𝑒𝑒𝑛) − 1 Correlates with chlorophyll and nitrogen 

CIRedEdge (𝜌𝑁𝐼𝑅/𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒) − 1 Correlates with chlorophyll and nitrogen  

NDRE (𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒)/(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒) Correlates with chlorophyll or nitrogen 

RGBVI (𝜌𝐺𝑟𝑒𝑒𝑛
2 − 𝜌𝐵𝑙𝑢𝑒 × 𝜌𝑅𝑒𝑑)

/(𝜌𝐺𝑟𝑒𝑒𝑛
2 + 𝜌𝐵𝑙𝑢𝑒

× 𝜌𝑅𝑒𝑑) 

Estimates biomass 

* ρ means spectral reflectance.  
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Figure 2.3. Shadow removal and vegetation segmentation from soil background using an 

example plot. (A) the RGB composite of the multispectral mosaic, (B) NDVI map 

showing the shaded area had higher NDVI values than canopy pixels, (C) excess green 

(ExG) image in which both the soil and shaded pixels have lower values than the sunlit 

vegetation pixels, and (D) mask for vegetation pixels (white pixels are soil and shaded 

pixels). 

 

2.2.4 Morphological and Spectral Traits Extraction 

Morphological and spectral plant traits were extracted from the pre-processed data to 

estimate sorghum biomass and nitrogen and chlorophyll contents, including plant height, 

canopy cover, and various VIs at the individual plot level.  

Plant height was derived by subtracting the digital terrain model (DTM) from the digital 

surface model (DSM). The DSM was generated along with the orthomosaic from 

mosaicking the RGB images in Pix4D, and was geometrically calibrated with the GCP’s 

coordinates surveyed by the RTK-GPS during field data collections. The DTM was 

generated by linearly interpolating the soil surface on east and west side of the field, 
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assuming little elevation changes within this 1.38 ha field. The derived plant height map 

had the same spatial resolution of 1.3 cm as the RGB orthomosaic. The 90th, 93rd, 95th, 

and 98th percentiles of all pixels falling into a plot boundary were calculated and 

compared with the manually sampled plant height in the same plot to find the one with 

highest correlation. After shadow removal, canopy cover was calculated as the ratio of 

the number of segmented sunlit vegetation pixels to the total number of pixels in a plot 

(Lee & Lee, 2011).  

Calibrated reflectance in each multispectral band was extracted, and various VIs were 

calculated for each plot by averaging the VI values of all pixels of interest within the plot 

boundary. These VIs included normalized difference vegetation index (NDVI), 

renormalized difference vegetation index (RDVI) (Roujean & Breon, 1995), green 

normalized difference vegetation index (GNDVI) (Gitelson et al., 1996), green 

chlorophyll index (CIGreen) and red edge chlorophyll index (CIRedEdge) (Schlemmera et al., 

2013), normalized difference red edge index (NDRE) (Fitzgerald et al., 2006), and RGB 

vegetation index (RGBVI) (Bendig et al., 2015) (Table 2.2). NDVI is one of the most 

commonly used indices for estimating crop physiological traits such as chlorophyll. 

RDVI uses the same spectral bands as NDVI; however, RDVI is less sensitive to the 

variation of soil background. Given the saturation problem of NDVI after canopy closure, 

RDVI may be considered superior (Fu et al., 2013). GNDVI was found to have wider 

dynamic range than NDVI and is more sensitive to chlorophyll-a concentration (Gitelson 

et al., 1996). Similar to NDVI, NDRE is a good indicator of chlorophyll or nitrogen 

status (Fitzgerald et al., 2006); however, the replacement of red band with the red edge 
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band makes NDRE more sensitive to the biomass change than NDVI after canopy 

closure. Using bands in the visible spectra, RGBVI can be used to estimate biomass 

(Bendig et al., 2015). 

2.2.5 Statistical Modeling for Biomass, Nitrogen and Chlorophyll Contents 

Since the biomass was sampled late in the season close to the last flight date, only the 

UAS data collected on September 11, 2017 was used for the biomass analysis. To 

estimate the fresh and dry biomass using remotely sensed plant traits, simple exponential 

regression (SER) models were first built using univariate morphological or spectral trait. 

Given that the biomass is intuitively related to multiple traits such as plant height, and 

stalk diameter, it is also worth investigating the integration of more than one trait using 

multiple exponential regression (MER) models to see if the estimation of biomass can be 

improved. To select predictors for the MER models, a correlation matrix was first 

calculated to avoid including predictors that were highly correlated (Table 2.3). In this 

study, Pearson’s correlation coefficient r was used and the strength of the correlation was 

determined as summarized by Asuero, Sayago, and González (2006): r ranging from 0 to 

0.29 was interpreted as little if any correlation, r ranging from 0.30 to 0.49 was regarded 

as low correlation, and r ranging from 0.50 to 0.69 was moderate correlation, while r 

greater than 0.69 was high to very high correlation. In this study, paired predictors with r 

lower than 0.69 were selected to be included in the regression models. Based on that, the 

following ten combinations of predictors were investigated: plant height and canopy 

cover, NDVI and RGBVI, NDRE and RGBVI, RDVI and RGBVI, plant height and 
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NDRE, plant height and RGBVI, canopy cover and NDVI, canopy cover and NDRE, 

canopy cover and RDVI, plant height and canopy cover and NDRE. 

Table 2.3. Correlation matrix of candidate predictors in biomass prediction. r ranging 

from 0 to 0.29 was interpreted as little if any correlation (highlighted in blue), r ranging 

from 0.30 to 0.49 was regarded as low correlation, and r ranging from 0.50 to 0.69 was 

moderate correlation (highlighted in yellow), and r greater than 0.69 was high to very 

high correlation. 

 Plant height Canopy cover NDVI NDRE RDVI RGBVI 

Plant height 1      

Canopy cover 0.61 1     

NDVI 0.74 0.54 1    

NDRE 0.68 0.25 0.90 1   

RDVI 0.80 0.57 0.96 0.89 1  

RGBVI 0.54 0.75 0.64 0.26 0.59 1 

 

363 samples from the September 11 flight were divided into training set (290 samples) 

and testing set (73 samples) in a ratio of 4:1. The training set was used to build regression 

models which were validated using 10-fold cross validation. The validation results were 

reported using averaged root mean square error (RMSE) of the 10 folds (Eq. 1) and 

standard deviation (STD) (Eq. 2) of 10 RMSE values derived from the 10-fold cross 

validation. The established regression models were further tested using the testing set, 

and were evaluated using the Pearson correlation coefficients (r) (Eq. 3) and RMSE. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑀𝑖)2𝑛

𝑖=1         (1) 

𝑆𝑇𝐷 = √
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

𝑛−1
         (2) 

𝑟 =
∑ (𝑀𝑖−𝑀̅)(𝑃𝑖−𝑃̅)𝑛

𝑖

√∑ (𝑀𝑖−𝑀̅)2𝑛
𝑖 √∑ (𝑃𝑖−𝑃̅)2𝑛

𝑖

        (3) 
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where n is the number of samples, Pi stands for predicted value, Mi stands for manually 

measured value, 𝑃̅ is the mean of predicted values, 𝑀̅ is the mean of manually measured 

values. xi is the observed values, and 𝑥̅ is the mean value of these observations. 

In order to examine the effect of nitrogen treatments, t-tests were conducted using three 

VIs (CIGreen, CIRedEdge, and NDRE) calculated from the last flight (September 11, 2017) 

between high nitrogen (192 plots) and low nitrogen (192 plots) treatments.  

Furthermore, to evaluate the relationship between various VIs and sorghum chlorophyll 

and nitrogen contents, r was calculated between the various VIs and the manually 

measured leaf chlorophyll and nitrogen contents for sampled sorghum plants from each 

plot. For chlorophyll, 70 plots in July, 68 plots in August, and 112 plots in September had 

valid samples (250 samples in total); for nitrogen, 50 plots in July, 50 plots in August, 

and 69 plots in September had valid samples (169 samples in total). 

 

2. 3 RESULTS 

2.3.1 Plant Height Estimation 

Compared to other percentile values, a stronger linear correlation was obtained (r = 0.85) 

between the 90th percentile of estimated plant height from the RGB orthomosaic and the 

manually sampled plant height in 363 plots in September 2017 (Figure 2.4). The RMSE 

was 49.8 cm and the r was 0.85 between UAS derived plant height and manually 

measured plant height. The coefficient of variation (CV) for aerial data estimated plant 

height was 32.11% and for manually measured plant height was 27.92%.  
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Figure 2.4. Correlation between UAS estimated plant height and manually measured 

plant height over 363 plots on September 11, 2017. 

 

2.3.2 Fresh and Dry Biomass Estimation   

The correlations between a single UAS-derived morphological or spectral trait and the 

manually sampled fresh or dry biomass tended to be exponential rather than linear in this 

study (Figure 2.5).  

For the simple exponential model of fresh biomass (Table 2.4), plant height gave higher 

correlation than canopy cover (r = 0.81), whereas RDVI and NDVI provided better 

results than the other VIs (r = 0.83 for RDVI, and r = 0.80 for NDVI).  

Slightly better correlations were obtained when multiple traits were combined into the 

fresh biomass regression model, with the outcome being that r was greater than 0.80 for 

all combinations. Interestingly, when used individually in the simple exponential models, 

either NDRE or RGBVI resulted in lower correlations (r = 0.66 for NDRE, r = 0.57 for 

RGBVI); however, the combination of them using the multiple exponential model largely 

improved the correlation with fresh biomass (r = 0.82). Similar results were found in 
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prediction of dry biomass. The morphological trait plant height (r = 0.87), spectral traits 

RDVI (r = 0.78) and NDVI (r = 0.78) individually exhibited better correlations with the 

dry biomass using simple exponential models; while the combination of them with other 

traits did not significantly improve the results in this case (Table 2.5). 

 

Figure 2.5. Exponential correlations between some UAS-derived traits and the manually 

sampled biomass of stalks and leaves (fresh or dry), over 363 plots: (A) RDVI and fresh 

biomass, (B) plant height and fresh biomass, (C) RDVI and dry biomass, (D) plant height 

and dry biomass. 
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Table 2.4. Fresh biomass estimation results in 10-fold cross validation as well as in the testing set, based on simple exponential 

regression (SER) and multiple exponential regression (MER) models.  

Model Predictors 

Training set: average of 

10-fold cross validation  
Formula* Testing set 

RMSE (kg) STD (kg)  RMSE (kg) r 

SER 

Plant height 23.78 4.06 𝑌 = 21.22 × 𝑒(0.005×𝑃𝐻) 26.25 0.81 

Canopy cover 32.30 5.16 𝑌 = 22.47 × 𝑒(1.618×𝐶𝐶) 35.78 0.62 

NDVI 23.67 3.11 𝑌 = 0.31 × 𝑒(7.03×𝑁𝐷𝑉𝐼) 25.89 0.80 

NDRE 28.19 3.40 𝑌 = 14.02 × 𝑒(3.813×𝑁𝐷𝑅𝐸) 31.88 0.66 

RDVI 18.10 3.60 𝑌 = 2.04 × 𝑒(6.973×𝑅𝐷𝑉𝐼) 24.26 0.83 

RGBVI 32.73 4.69 𝑌 = 6.41 × 𝑒(3.68×𝑅𝐺𝐵𝑉𝐼) 36.79 0.57 

MER 

Plant height and canopy 

cover 
23.73 4.10 𝑌 = 18.70 × 𝑒(0.004×𝑃𝐻+0.246×𝐶𝐶) 25.98 0.81 

NDVI and RGBVI 23.69 3.11 𝑌 = 0.26 × 𝑒(6.637×𝑁𝐷𝑉𝐼+0.706×𝑅𝐺𝐵𝑉𝐼) 25.62 0.80 

NDRE and RGBVI 23.89 3.57 𝑌 = 1.36 × 𝑒(3.605×𝑁𝐷𝑅𝐸+3.571×𝑅𝐺𝐵𝑉𝐼) 24.92 0.82 

RDVI and RGBVI 23.25 3.54 𝑌 = 1.32 × 𝑒(6.41×𝑅𝐷𝑉𝐼+1.069×𝑅𝐺𝐵𝑉𝐼) 23.70 0.84 

Plant height and NDRE 23.32 3.81 𝑌 = 16.54 × 𝑒(0.004×𝑃𝐻+1.166×𝑁𝐷𝑅𝐸) 25.54 0.81 

Plant height and RGBVI 23.31 3.92 𝑌 = 9.37 × 𝑒(0.004×𝑃𝐻+1.370×𝑅𝐺𝐵𝑉𝐼) 25.14 0.83 

Canopy cover and NDVI 23.01 3.28 𝑌 = 0.31 × 𝑒(0.584×𝐶𝐶+6.447×𝑁𝐷𝑉𝐼) 24.81 0.82 

Canopy cover and NDRE 24.35 3.89 𝑌 = 5.86 × 𝑒(1.336×𝐶𝐶+3.486×𝑁𝐷𝑅𝐸) 25.76 0.80 

Canopy cover and RDVI 23.10 3.81 𝑌 = 1.96 × 𝑒(0.434×𝐶𝐶+6.412×𝑅𝐷𝑉𝐼) 23.81 0.83 

Plant height, canopy cover, 

and NDRE 
22.82 3.89 𝑌 = 10.63 × 𝑒(0.003×𝑃𝐻+0.6×𝐶𝐶+1.728×𝑁𝐷𝑅𝐸) 24.47 0.83 

* STD is standard deviation of 10 RMSE values of the total plot weight from the 10-fold cross validation; Y is the predicted fresh biomass (kg/plot); PH is the 

plant height; CC is the canopy cover; NDVI is the normalized difference vegetation index, NDRE is the normalized difference red edge index, RDVI is the 

renormalized vegetation index, and RGBVI is the RGB vegetation index. 
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Table 2.5. Dry biomass estimation results in 10-fold cross validation as well as in the testing set, based on simple exponential 

regression (SER) and multiple exponential regression (MER) model. 

Model Predictor(s) 

Training set: average of 

10-fold cross validation 
Formula* Testing set 

RMSE (kg) STD (kg)  RMSE (kg) r 

SER 

Plant height 4.83 0.70 𝑌 = 5.63 × 𝑒(0.004×𝑃𝐻) 4.89 0.87 

Canopy cover 7.20 0.93 𝑌 = 6.50 × 𝑒(1.42×𝐶𝐶) 7.89 0.59 

NDVI 5.73 0.67 𝑌 = 0.22 × 𝑒(5.679×𝑁𝐷𝑉𝐼) 5.92 0.78 

NDRE 6.34 0.78 𝑌 = 4.46 × 𝑒(3.272×𝑁𝐷𝑅𝐸) 6.70 0.70 

RDVI 5.58 0.69 𝑌 = 0.91 × 𝑒(5.869×𝑅𝐷𝑉𝐼) 5.83 0.78 

RGBVI 7.51 0.74 𝑌 = 3.04 × 𝑒(2.726×𝑅𝐺𝐵𝑉𝐼) 8.41 0.48 

MER 

Plant height and canopy 

cover 
4.82 0.70 𝑌 = 5.15 × 𝑒(0.004×𝑃𝐻+0.169×𝐶𝐶) 4.88 0.87 

NDVI and RGBVI 5.74 0.67 𝑌 = 0.22 × 𝑒(5.607×𝑁𝐷𝑉𝐼+0.130×𝑅𝐺𝐵𝑉𝐼) 5.92 0.78 

NDRE and RGBVI 5.75 0.73 𝑌 = 0.86 × 𝑒(3.125×𝑁𝐷𝑅𝐸+2.522×𝑅𝐺𝐵𝑉𝐼) 5.74 0.79 

RDVI and RGBVI 5.58 0.69 𝑌 = 0.77 × 𝑒(5.664×𝑅𝐷𝑉𝐼+0.392×𝑅𝐺𝐵𝑉𝐼) 5.82 0.78 

Plant height and NDRE 4.81 0.68 𝑌 = 5.03 × 𝑒(0.004×𝑃𝐻+0.545×𝑁𝐷𝑅𝐸) 4.78 0.87 

Plant height and RGBVI 4.82 0.68 𝑌 = 4.47 × 𝑒(0.004×𝑃𝐻+0.384×𝑅𝐺𝐵𝑉𝐼) 4.87 0.87 

Canopy cover and NDVI 5.59 0.53 𝑌 = 0.22 × 𝑒(0.61×𝐶𝐶+5.085×𝑁𝐷𝑉𝐼) 5.71 0.79 

Canopy and NDRE 5.52 0.56 𝑌 = 1.94 × 𝑒(1.222×𝐶𝐶+3.041×𝑁𝐷𝑅𝐸) 5.40 0.82 

Canopy cover and RDVI 5.49 0.69 𝑌 = 0.86 × 𝑒(0.472×𝐶𝐶+5.278×𝑅𝐷𝑉𝐼) 5.74 0.78 

Plant height, canopy cover, 

and NDRE 
4.76 0.67 𝑌 = 3.90 × 𝑒(0.003×𝑃𝐻+0.345×𝐶𝐶+0.87×𝑁𝐷𝑅𝐸) 4.68 0.88 

* STD is standard deviation of 10 RMSE values of the total plot weight from the 10-fold cross validation; Y is the predicted dry biomass (kg/plot); PH is the plant 

height; CC is the canopy cover; NDVI is the normalized difference vegetation index, NDRE is the normalized difference red edge index, RDVI is the 

renormalized vegetation index, and RGBVI is the RGB vegetation index.
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As shown in Table 2.6, significant differences were found in the remotely sensed three 

VIs between high and low nitrogen treatments (p < 0.0001). It is shown in Figure 2.6 that 

the nitrogen effect can be clearly distinguished with the three selected VIs - CIGreen, 

CIRedEdge, and NDRE - derived from the late season UAS data.  

Table 2.6. Student’s t-test results showing significant differences of remotely sensed VIs 

between low (192 plots) and high (192 plots) nitrogen treatments. 

VI t p-value 

CIGreen 9.8025 < 2.2e-16 

CIRedEdge 9.5994 < 2.2e-16 

NDRE 9.1623 < 2.2e-16 

 

 

Figure 2.6. Boxplot of three VIs (CIGreen, CIRedEdge, and NDRE) derived from the late 

season multispectral images of the low and high nitrogen treatments. 

 

2.3.4 Chlorophyll and Nitrogen Content Estimation 

Moderate to strong correlations (r > 0.5) were found between the chlorophyll content of 

leaf samples and the corresponding VIs, except NDVI, of same plots calculated from 

multispectral aerial data over July, August, and September in 2017 (Table 2.7). Similar 
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results were found for the nitrogen content (Table 2.7). These VIs included CIGreen, 

CIRedEdge, GNDVI, and NDRE. VIs were also calculated from the leaf-level hyperspectral 

measurements sampled in the same plots. Similar correlations (r > 0.4) were found when 

the specific spectral bands were taken from the hyperspectral radiometer data as those 

calculated from the multispectral aerial data (Table 2.7). Although correlation using 

NDVI improved with the hyperspectral radiometer, the NDVI index had lower 

correlations with chlorophyll and nitrogen contents than other VIs, while NDRE 

remained the VI with highest correlation with nitrogen and chlorophyll in this case. 

Table 2.7. Pearson correlation coefficients between the chlorophyll and nitrogen contents 

of leaf samples, and the corresponding VIs of same plots calculated from multispectral 

aerial data and leaf-level hyperspectral measurements, using data set collected over three 

flights in 2017.  

Sensor Traits 
Chlorophyll  Nitrogen % 

r p-value  r p-value 

MicaSense RedEdge® 

multispectral camera (on 

UAS) 

CIgreen 0.53*** <2.2e-16  0.55*** 6.65e-15 

CIRedEdge 0.53*** <2.2e-16  0.58*** <2.2e-16 

GNDVI 0.55*** <2.2e-16  0.58*** 2.588e-16 

NDVI 0.17** 0.0088  0.31*** 3.736e-5 

NDRE 0.55*** <2.2e-16  0.61*** <2.2e-16 

ASD FieldSpec® 

hyperspectral sensor with 

leaf clip (only the same 

spectral bands as RedEdge® 

were used ) 

CIgreen 0.42*** 6.733e-12  0.55*** 6.899e-15 

CIredEdge 0.50*** <2.2e-16  0.60*** <2.2e-16 

GNDVI 0.44*** 3.247e-13  0.58*** <2.2e-16 

NDVI 0.27*** 1.731e-5  0.42*** 1.014e-8 

NDRE 0.51*** <2.2e-16  0.62*** <2.2e-16 
*** Correlation is significant at the 0.001 level  

** Correlation is significant at the 0.01 level 

 

2.4 DISCUSSION 

The moderate to strong correlations (r varied from 0.55 to 0.88) found between the UAS-

derived plant morphological and spectral traits and the sorghum late-season biomass, 

nitrogen and chlorophyll contents in this study indicates that UAS should be useful for 



29 
 

 
This chapter was published on Frontiers in Plant Science: doi: 10.3389/fpls.2018.01406 

phenotyping. Compared with the hyperspectral reflectance that was manually sampled at 

the leaf level using hyperspectral radiometer with a leaf clip, the UAS-derived VIs using 

the five-band multispectral camera resulted in similar correlations with nitrogen and 

chlorophyll contents when the same VIs were calculated from the measured hyperspectral 

reflectance (Table 2.7). This not only demonstrates the fidelity of the UAS-based remote 

spectral sensing, but also indicates the potential for scaling up the high-throughput 

phenotyping from ground-based leaf level to UAS-based canopy level assessment.    

When a single trait was used for prediction with simple exponential regression models, 

estimated plant height, RDVI and NDVI indices individually had the strongest 

correlations with both fresh and dry sorghum biomass among the various remotely sensed 

traits. The high and robust correlation derived from plant height was also found in a 

previous study in barley (Bendig et al., 2015). Interestingly, the NDRE index showed a 

little lower correlation to fresh and dry biomass (r within 0.66 and 0.70) than NDVI and 

NDRE but significantly outperformed NDVI in chlorophyll and nitrogen content 

estimations (Table 2.7) which showed NDRE’s known advantage over NDVI after 

canopy closure due to the saturation in the red spectral band at the mid to late growth 

stages (Mutanga & Skidmore, 2004). Late season canopy cover had moderate 

correlations with biomass (r within 0.59 and 0.62) but was not shown to be superior to 

vegetation indices in our study. The inferior correlation of RGBVI index with biomass 

compared with other traits was also reported in barley (Tilly et al., 2015). However, it is 

noteworthy that, if no near-infrared spectral data and only the RGB information was 
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available, the UAS-derived RGBVI index alone still provided low to moderate 

correlations with fresh and dry biomass (r within 0.48 and 0.57).  

When several traits with multiple exponential regression models were used, similar 

correlations were achieved for fresh and dry biomass prediction as compared to the 

results derived from single traits in this study. The correlation using several traits was 

best when using the traits that had the strongest correlations individually, i.e. the plant 

height and RDVI indices in this case. Similar data fusion models that were investigated in 

previous studies varied in the ability to predict biomass over the single metric predictions 

and this depended on the traits that were added at different growth stages and the 

correlations between the traits. The integration of RGBVI and plant height resulted in 

small improvement in the biomass prediction in barley (r from 0.89 to 0.92) but no 

improvement in the biomass prediction was found with the integration of plant height and 

other VIs derived from visible and near-infrared spectra (Bendig et al., 2015). This can 

probably be explained by the moderate to high correlations between the plant height and 

various VIs found in this study (Table 2.3).  

Further work will be needed to improve biomass prediction through the inclusion of 

additional morphological traits such as stalk diameter and additional or customized 

spectral bands. Some other traits that were not included in this study also showed ability 

to increase the estimation accuracy when combined with some of the UAS-derived traits 

in this study. When adding manually measured stem diameter on the UAS-derived plant 

height, the biomass prediction using a volumetric cylinder equation in corn was 

significantly improved (r from 0.56 to 0.93) (Varela et al., 2017). However, automating 
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stem diameter measurements is challenging and may not be useful in many energy 

sorghum varieties that do not flower in North America (SD Kresovich, personal 

communication). Another case would be the combination of hyperspectral canopy 

reflectance and plant height which improved the accuracy of estimating winter wheat 

biomass (r from 0.73 to 0.91) (Yue et al., 2017). In addition, customization of spectral 

bands of the UAS-based multispectral sensor based on the feature spectral bands derived 

from the leaf-level or ground-based hyperspectral sensing (Yendrek et al., 2017) for 

specific applications can scale up the throughput of phenotyping capabilities in the field 

while reducing the sensor instrument cost. 

Improvement can also be achieved by including temporal data during the growing season 

and using more sophisticated statistical models. The late-season biomass predicted by 

single or multiple UAS-derived traits had strong exponential correlations with the 

sampled fresh biomass (maximum r = 0.84) and dry biomass (maximum r = 0.88); 

however, no significant improvement was found if multiple traits collected on the same 

date were used to build models (Table 2.4 and 2.5). Similar results were reported in study 

on sorghum biomass prediction (Z. Zhang, Masjedi, Zhao, & Crawford, 2017) showing 

that more data on additional traits measured on the same day provided no significant 

improvement for biomass prediction.  However, significant improvements were found 

when measurements from multiple time points with either a single trait or multiple traits 

were used (Zhang et al., 2017). Also, the exponential relationships found between UAS-

derived traits and biomass in this study were similar to a previous finding in barley 

(Bendig et al., 2014). 
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We recommend segmenting vegetation pixels and shaded soil pixels for some VI 

calculations to avoid the interference of shaded soil pixels in the calculations. Shadows 

that were cast on the canopy and soil were identified in this study to have much higher 

NDVI values than the sunlit vegetation pixels (Figure 2.3). If an averaged VI value was 

calculated for all pixels encompassed within a plot boundary, plots with more shaded 

vegetation and soil areas may result with higher VI values than those without much 

shaded areas even though the NDVI of the actual leaves may be lower. Shading may not 

be a problem for production agricultural applications when the whole field was planted 

with same variety and population; however, in the application of phenotyping when many 

small plots that contained different varieties or uneven stands this cause substantial errors 

in estimating the true canopy VIs. Accurate segmentation of sunlit vegetation and shaded 

vegetation and soil pixels in the image processing is important to ensure the reliability of 

VI values. In this study, we used the ExG index map for segmentation which was 

effective but still resulted with some mis-classification of shaded vegetation and shaded 

soil pixels. This also resulted in a lower estimation of canopy cover especially for those 

plots with significant shadows. Future research will be needed to investigate the 

hyperspectral reflectance patterns of the sunlit and shaded vegetation and soil pixels and 

corresponding classification algorithms with proper band selection techniques (Sun, 

Zhang, Du, Li, & Mark Lai, 2015) to customize multispectral cameras for high-

throughput applications.  

The results obtained using UAS-derived DSM to estimate plant height are very promising 

(r = 0.85) and are similar to other studies (Chang et al., 2017; Geipel et al., 2014; Hu et 
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al., 2018; Malambo et al., 2018; Pugh et al., 2018; Watanabe et al., 2017). Considering 

the strong correlation between the late-season plant height and the sampled fresh and dry 

biomass (r >= 0.81), this method can be used to quickly estimate plant biomass. The 

UAS-derived plant height in this study was only investigated using the data collected on a 

single date late in the season since the main purpose was end-of-season biomass 

prediction. The accuracy of the height estimation achieved in this study (RMSE = 49.8 

cm) needs to be improved in order to be applied to plant height estimation in earlier 

growth stages when plants are smaller. Ideally, the structure from motion (SfM) 

algorithm used behind this technology to generate the point clouds or the structure of a 

targeted object can achieve reprojection error at only about one pixel (Snavely et al., 

2008) which in our case would be about 1.3 cm accuracy. However, in real world 

agricultural applications, errors are induced due to the movement of the plant canopy by 

the wind (Chang, Jung, Maeda, et al., 2017). During our data collections, the wind speed 

was 5 m/s (10 mph) which caused the top canopy to sway at decimeter level. This 

rendered the SfM algorithm difficult to use because matched keypoints among images 

taken from different angles were hard to find and therefore errors were generated. 

Moreover, variation in leaf angle, canopy structure and presence or absence of panicles 

among genotypes caused the discrepancy between manually sampled plant height and 

plant height estimated from the UAS-derived point clouds data. In addition, the accuracy 

of UAS-derived plant height also depends on the accuracy of the derived digital terrain 

model (DTM) or the elevation of the field (Malambo et al., 2018). In this study, we 

assumed a constant elevation change of the field since the field was flat and relatively 
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small (1.38 ha); however, ignoring the within-field unevenness may induce a small 

amount of error. A pre-planting elevation mapping can largely reduce such errors.  

Improving prediction accuracy to develop a more generally applicable model for energy 

sorghum will be a future goal. The models developed in this study were based on a single 

season and so they may be further improved through the incorporation of multi-season 

and multi environment data. Incorporating additional data sets such as growing degree 

days, precipitation, soil physicochemical properties, planting dates and other agronomic 

practices may all allow for the further improvement of predictive models using data from 

UAS.  
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ABSTRACT 

Automated phenotyping technologies are constantly advancing. However, collecting 

diverse phenotypic traits throughout the growing season and processing massive amounts 

of data still take lots of efforts and time nowadays. Selecting minimum number of 

phenotypic traits that have the maximum predictive power has the potential to largely 

reduce the phenotyping efforts. The objective of this study was to select principal UAV-

derived phenotypic traits (vegetation index and plant height) on winter wheat along the 

growing season that contribute most in explaining grain yield. The experiment field 

located in Lincoln of Nebraska, USA, where ten winter wheat check lines with 17 

replicated plots per line were randomly distributed over the field as part of a larger 

augmented design for yield trail. Five times of multispectral imagery and seven times of 

mailto:yshi18@unl.edu
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RGB imagery were collected by an UAV system during the spring growing season in 

2018. Grain yield was sampled at the end of season (early July). From multi-temporal 

UAV-derived vegetation index (VI) and plant height maps, a total of 172 parameters was 

calculated for each plot including statistical descriptions of the pixel values and the 

dynamic growth rate. These variables were considered as candidates in two variable 

selection algorithms: LASSO regression (the least angle and shrinkage selection operator) 

and random forest. The regression coefficients estimated by LASSO or the permutation 

importance from random forest of each variable was used as importance score for 

variable selection. And 10 variables with highest averaged importance scores were 

selected by each algorithm, respectively. Results showed that most of the selected 

variables were derived from plant height map, especially related with the plant height 

measured in the last two data collections in the growing season (grain filling and maturity 

stages).  The capability of using the selected principal variables on yield prediction was 

also investigated with the ridge regression and support vector machine (SVM) models. 

The selected principal variables exhibited similar predictive power on grain yield 

compared with the prediction result using all 172 variables on the testing data set. The 

methods provided in this study can be applied to larger data set collected from multiple 

years and locations to narrow down the important phenotypic traits and growth stages to 

be focused on in the data collection and processing to streamline the breeding process. 

Key words: unmanned aerial vehicle, phenotyping, yield prediction, lasso, random 

forest, ridge regression, SVM 
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3.1 INTRODUCTION 

As one of the main source for overall food production, wheat has the highest hectarage 

over the world (Belamkar et al., 2018; Makino, 2010). Boosting grain yield to feed the 

ever growing world population is one of the major focuses in wheat breeding (Foley et 

al., 2011; Godfray et al., 2010; Ray, Mueller, West, & Foley, 2013). This requires 

evaluating and screening large number of genotypes in field under various environments 

(Araus & Cairns, 2014).  Recently developed high-throughput field-based plant 

phenotyping (HTPP) technology provides rapid and efficient screening on large amounts 

of crop lines (Araus et al., 2018). 

Various sensing technologies are available nowadays for HTPP and massive amount of 

data can be generated throughout the growing season.  Handheld sensors are not typically 

considered as high-throughput method but are widely used in breeding programs 

(Aparicio, Villegas, Casadesus, Araus, & Royo, 1999; Bandyopadhyay et al., 2014; Das, 

Mishra, & Kalra, 1993; Ferrio et al., 2005; Prasad et al., 2007; Serrano, Filella, & 

Penuelas, 2000). A handheld spectroradiometer that measures leaf or crop canopy 

reflectance with a few wide spectral bands or hundreds of narrow spectral bands can 

generate kilobytes to megabytes of point measurement data in a field. Recently advances 

in ground-based and aerial-based mobile platforms provide large sensor payloads and 

throughputs both spatially and temporally; thus, generating significantly more volume of 

data. For example, a multi-sensor cart was developed for soybean and wheat breeding 

(Bai, Ge, Hussain, Baenziger, & Graef, 2016), mounted with ultrasonic sensor, NDVI 

sensor, thermal infrared radiometer, spectrometer, RGB sensor, as well as other ancillary 
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sensors. Similar platforms include ‘phenocart’ (Crain, Reynolds, & Poland, 2017), 

mobile ‘PhenoTrac’ (Kipp, Mistele, & Schmidhalter, 2014; Rischbeck et al., 2016), and 

tractor-based semi-automatic system (Comar et al., 2012). As for the aerial-based 

platforms, the unmanned aerial vehicle (UAV) is nowadays gaining increased interests 

due to the easiness to operate, high spatial resolution, and quick coverage (Benincasa et 

al., 2018; Geipel et al., 2016; Guan et al., 2019; Haghighattalab et al., 2017). Typical 

sensors equipped by UAVs in agricultural applications are RGB cameras (Du & Noguchi, 

2017), multispectral cameras (T. Duan et al., 2017a), thermal camera (Kefauver et al., 

2017b), and hyperspectral camera (Kanning et al., 2018). Multiple phenotypic traits are 

available from these sensors, including spectral traits such as vegetation indices and 

canopy temperature, morphological traits such as plant height, stand count and canopy 

ground cover, as well as the dynamic change indicating the growth or senescence rate. 

The raw data collected by the UAVs are usually in the image format in large data size. 

Take this study as an example, an approximate storage of 30-gigabyte data (around 9000 

multispectral images and 1000 RGB images) was collected in one-time flight over the 3-

acre research field. Such flights can be conducted in a weekly basis throughout the 

growing season.  

In terms of grain yield modeling, a general idea is to extract vegetation indices (T. Duan 

et al., 2017a; Hassan, Yang, Rasheed, Yang, et al., 2018; Kyratzis, Skarlatos, Menexes, 

Vamvakousis, & Katsiotis, 2017)or morphological traits as predictors (Moravec et al., 

2017). For example, normalized difference vegetation index (NDVI) derived from UAV 

imagery on each growth stage correlated well with wheat grain yield, with the highest 



39 
 

 
This chapter was prepared for journal submission 

correlation appeared around flowering time (r = 0.91) (T. Duan et al., 2017a). In addition 

to using single-stage derived phenotypic traits, researchers also attempted to exploit extra 

predictive power by integrating phenotypic traits from multiple growth stages. In the 

study of Du & Noguchi (Du & Noguchi, 2017), five accumulative RGB indices over 

eight flights were used as variables in stepwise regression models, resulting in a best 

model with four indices selected (r = 0.69 on validation set). Additionally, 

Haghighattalab et al. (Haghighattalab et al., 2017) input multi-temporal phenotypic traits 

into principal component regression and geographically weighted (GW) model to 

estimate wheat yield. The GW model considered spatial relationship in acquired images, 

resulting in better predictive performance on grain yield (r = 0.74/0.46 for 

drought/irrigated environments).  

Studies found that using multiple-stage phenotypic traits together had the tendency to 

outperform using single-stage data in grain yield prediction (Montesinos-López et al., 

2017; Laigang Wang, Tian, Yao, Zhu, & Cao, 2014). It is a positive finding in terms of 

enhancing grain yield predictive power. However, when the objective is to obtain better 

interpretation between individual phenotypic trait and grain yield, the predictive model 

using all phenotypic traits might be too complicated. In order to derive better 

understanding of individual phenotypic trait’s contribution, in the meantime, retaining the 

advantage of using multiple-stage phenotypic traits, a prospective method is to add 

variable selection procedure into modeling. This methodology has already been adopted 

by Du & Noguchi (Du & Noguchi, 2017), as mentioned above, the stepwise regression 

acted as both predictive model and variable selection algorithm. 
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Variable selection is a process of selecting variables based on individual variable’s 

predictive power for responsive variable (Degenhardt, Seifert, & Szymczak, 2017). It has 

the potential to reduce computational complexity and improve data analysis efficiency by 

providing more effective variables and better data understanding (Andersen & Bro, 2010; 

Guyon & Elisseeff, 2011). In this study, two common selection methods were adopted: 

LASSO regression and random forest. LASSO was firstly proposed by Tibshirani in 1996 

(Tibshirani, 1996). It puts penalty on variables so that some of the near-zero regression 

coefficients will be estimated exactly as zero, thus removing them out from the selection 

result. It is feasible when the number of variables larger than the number of observations 

(Leng, Lin, & Wahba, 2006; C. H. Zhang & Huang, 2008). Random forest (Breiman, 

2001) aggregates hundreds of individual decision trees to achieve better trade-off 

between bias and variance (Genuer, Poggi, & Tuleau-Malot, 2010; Gregorutti, Michel, & 

Saint-Pierre, 2017). It is a ranking based nonparametric selection algorithm (Archer & 

Kimes, 2008; Genuer et al., 2010), providing importance measurement of individual 

variable. Similar to LASSO, random forest is also applicable when the number of 

variables is greater than the number of observations (Grömping, 2009), and it is not 

sensitive to the multi-collinearity issue (Li’ai Wang, Zhou, Zhu, Dong, & Guo, 2016). 

To the best knowledge of the authors, only few studies conducted variable selection on 

UAV-derived phenotypic traits for wheat grain yield (Du & Noguchi, 2017; 

Haghighattalab et al., 2017). Furthermore, in these studies, only statistical descriptions of 

the phenotypic trait (e.g. vegetation index) map were extracted as candidates in variable 

selection. Considering the multi-temporal property of UAV acquired imagery, it is 
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meaningful to examine the predictive power of other type of variables, such as growth 

rate. To this end, the objective of this study was to select principal phenotypic variables 

that contribute most in explaining the grain yield in winter wheat, to potentially reduce 

the efforts in field phenotyping data collection and following data processing. Two 

specific objectives were: 

1) To extract two types of variables from UAV-derived VI and plant height maps 

including statistical descriptions from map on single growth stage, and dynamic 

growth rate from maps on two continuous growth stages.  

2) To perform principal variable selection from extracted variables, and evaluate 

prediction power on grain yield using the selected principal variables.  

 

3.2 MATERIALS and METHODS 

3.2.1 Field Layout  

The studied field was located in Lincoln, Nebraska, USA (N 40.8581, W 96.6157), where 

winter wheat were grown in the growing season from the end of October, 2017, to the 

early July, 2018. As part of a larger augmented design for yield trail, 10 check lines 

(TAM304, TAM114, TAM113, Freeman, Ruth, Robidoux, WB Cedar, WB Grainfield, 

SY Wolf, and Gallagher) with 17 replications, in total 170 plots, were used in this study 

(Figure 3.1). The rest plots in this trail were reserved proprietary lines at the time of this 

study. Grain yield of the 170 plots was manually measured after harvest in early July.  
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Figure 3.1. Field location and target experimental plots. Field map was collected on May 

7th 2018. 

 

3.2.2 UAV System and Flight Missions 

The UAV system used in this study consists of a DJI Matrice 600 Pro multi-rotor 

platform (DJI, Shenzhen, China), a Zenmuse X5R RGB camera (DJI, Shenzhen, China), 

and a five-band multispectral camera RedEdge (Micasense, Seattle, UAS). Each 

individual RGB image has an effective pixel size of 4608 by 3456, and each individual 

multispectral band has an effective pixel size of 1280 by 960. The multispectral camera 

also comes with a standard calibration panel, which was imaged on ground right before 

or after each flight for radiometric calibration during image stitching stage. 
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Seven RGB image sets and five multispectral image sets were acquired from mid-April to 

mid-June in 2018, the corresponding growth stages and other details as shown in Table 

3.1. Test flights were conducted before data collection, aiming at finding an appropriate 

flight height that can result in clearly recognizable plants in image as well as enough 

overlaps for image stitching. Afterwards, the flight altitude was set as 20 meters above 

ground level, and the forward and sideward overlaps were both set as 88%.  The 

corresponding ground sampling distance (GSD) were around 0.5 cm/pixel for RGB 

stitched image and 1.35 cm/pixel for multispectral stitched image. Before each flight 

mission, 21 ground control points (GCP) using black and white cross-centered wooden 

boards were randomly distributed in the field. GPS information of these GCPs that used 

in geometric calibration were measured by a survey grade GNSS RTK GPS receiver 

(Topcon Positioning Systems, Inc., Tokyo, Japan), with sub-centimeter accuracy in X and 

Y directions, and centimeter accuracy in Z direction. 

Table 3.1. Flight missions and corresponding growth stages. 

Flight time Acquired image type Day of year Growth stage 

April 22nd RGB 111 Tillering stage: Feekes 3 

April 27th RGB and Multispectral 116 Green-up stage: Feekes 5 

May 7th RGB and Multispectral 126 Jointing stage: Feekes 6 

May 15th RGB 134 Flag leaf stage: Feekes 8 

May 21st RGB and Multispectral 140 Boot stage: Feekes 9 

June 1st RGB and Multispectral 151 Grain filling: Feekes 10.5.3  

June 18th RGB and Multispectral 168 Physiological maturity: Feekes 11 

 

3.2.3 Generate Vegetation Index and Plant Height Maps 

The vegetation index (VI) and plant height maps were generated from stitched 

multispectral and RGB images. The image stitching was done in Pix4Dmapper (Pix4D, 

Lausanne, Switzerland). Other than stitched RGB or multispectral image, a digital surface 
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model (DSM) map were also exported along with RGB stitched map. DSM was later 

used to generate plant height map. More details regarding the stitching procedure can be 

found in Li, Shi, Veeranampalayam-Sivakumar, & Schachtman (2018).  

Before generating plant height map, one necessary step was to derive digital terrain 

model (DTM). DTM map represents the elevation of soil surface. In this study, the DTM 

was created by interpolation among soil points that were sampled after soil segmentation. 

Specifically, RGB stitched image from the earliest flight (it had largest area of bare soil 

surface) was transferred into (CIE) L*a*b* color space (MATLAB R2018b, the 

MathWorks, Inc. USA), among which the distribution of a* channel is generally 

considered as a Gaussian-mixture model of vegetation pixels and soil pixels (L. Li et al., 

2018). According to the threshold calculation method described in Y. Liu, Mu, Wang, & 

Yan (2012), a raster with only soil pixels was created by setting vegetation pixels (pixel 

value smaller than threshold value) as null value. From this raster, thousands of soil 

points were randomly sampled using Fishnet tool, and were then used to create DTM by 

Kriging interpolation tool in ArcMap 10.5.1 (Esri Inc. CA, USA). Thereafter, the plant 

height map was calculated by subtracting the elevation in DTM map from the elevation in 

DSM map.  

VI (NDVI, GNDVI, and NDRE) maps were obtained using the stitched 5-band spectral 

images in RStudio 1.0.153 (RStudio, Inc. Boston, USA), according to the following 

equations (1-3). NDVI (normalized difference vegetation index) is the most frequently 

used index in UAV-based wheat yield monitoring (T. Duan, Chapman, Guo, & Zheng, 

2017b; Guan et al., 2019; Hassan, Yang, Rasheed, Yang, et al., 2018). Other than NDVI, 
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green NDVI (GNDVI) was found to be the most correlated VI with grain yield among the 

other investigated indices (Kyratzis et al., 2017). Normalized difference red edge 

(NDRE), as a good estimator for leaf chlorophyll, was found to be efficient in explaining 

the variance of leaf area dynamics or senescence patterns of ten sorghum genotypes 

(Potgieter et al., 2017). 

𝑁𝐷𝑉𝐼 = (𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑)/(𝑅𝑁𝐼𝑅 + 𝑅𝑅𝑒𝑑) (1) 

𝐺𝑁𝐷𝑉𝐼 = (𝑅𝑁𝐼𝑅 − 𝑅𝐺𝑟𝑒𝑒𝑛)/(𝑅𝑁𝐼𝑅 + 𝑅𝐺𝑟𝑒𝑒𝑛) (2) 

𝑁𝐷𝑅𝐸 =  (𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑−𝑒𝑑𝑔𝑒)/(𝑅𝑁𝐼𝑅 + 𝑅𝑅𝑒𝑑−𝑒𝑑𝑔𝑒 ) (3) 

where R stands for the reflectance value for each spectral band, the spectral band was 

indicated in the subscript. 

In order to conduct parameter extraction on the level of experimental plot, a prerequisite 

step was to delineate plot boundaries (ArcMap). Experimental plots were equally 

delineated by a rectangular boundary (Figure 1) and was assigned with a specific ID. The 

created shape file was then used as shape mask for calculating different parameters from 

VI or plant height map. 

3.2.4 Description of Variables Extracted from VI and Plant Height Maps 

To extract representative variables directly from UAV phenotypic trait map, a common 

and timely efficient way was to calculate individual variable for each experimental plot. 

Such as maximum or mean of VI (Hunt et al., 2010; Schirrmann et al., 2016; Shafian et 

al., 2018), mean or percentiles of plant height (Bendig et al., 2014; Chu et al., 2016; 

Holman et al., 2016; Iqbal, Lucieer, Barry, & Wells, 2017; Schirrmann et al., 2016). 

However, given the spatial property of imagery, representing the whole plot using single 
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variable tends to be biased. Other potential useful information might be ignored in this 

situation.  

To this concern, the first type of variables was statistical descriptions for the pixel values 

in each VI or plant height map. Based on original map, trimmed mean (mean value after 

trimming top and bottom 10% values), median (equals to 50th percentile), mode, and 

standard deviation were derived for plot in VI maps; similarly, trimmed mean, median, 

95th percentile, and standard deviation were derived for plot in plant height maps. By 

transferring each original map into a gray-level co-occurrence matrix (GLCM), another 

four statistical variables were calculated to describe map texture. The GLCM is a feature 

extraction method, from which the second-order statistical texture parameters could be 

derived (Mohanaiah, Sathyanarayana, & Gurukumar, 2013). The second-order means that 

GLCM only considers the relationship between two pixels. The four second-order 

statistical variables derived from GLCM were contrast, correlation, energy, and 

homogeneity. Contrast represents the local gray level variations in an image; high 

contrast indicates any exist of edges, noise, or winkled texture. Correlation measures the 

linear dependency of specified pixel pairs. Energy, also known as angular second 

moment, sums up the squared elements in GLCM; image with higher energy has better 

homogeneity. As for homogeneity, it is also called inverse difference moment and stands 

for the local homogeneity; high value represents uniform local gray level. 

The second type of variables was dynamic growth rate, representing winter wheat 

seasonal growth by using multi-temporal data. Although many UAV studies on winter 

wheat conducted multiple UAV flights over season, few of them considered the 
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correlation between dynamic growth rate and grain yield. Instead, the common method 

was to correlate spectral data with grain yield at single growth stage. To the knowledge of 

the authors, among UAV studies on winter wheat, only Du & Noguchi (2017) 

accumulated CVI over time (Du & Noguchi, 2017) and Haghighattalab et al. (2017) 

gathered multiple-time VIs together for the wheat grain yield estimation (Haghighattalab 

et al., 2017). Different from these two studies where phenotypic traits were combined 

together, this study subtracted information between two continuous data collections to 

derive growth rate. Taking NDVI dynamic curve as an example (Figure 3.2), the growth 

rate was defined as the slope between continuous NDVI values (trimmed mean). Since 

NDVI dynamic curve connected five time points, four growth rates were calculated. 

Correspondingly, with seven time points in plant height dynamic curve (Figure 3.5(B)), 

six growth rates were calculated for plant height. 

Among the first type of variables, trimmed mean was found to highly correlate with 

median value. Therefore, the trimmed mean value was only used to calculate dynamic 

growth rate, but was not counted as candidates in variable selection. Summing up all 

different types of parameters, there were finally 172 variables for each experimental plot, 

which were summarized in Table 3.2. 
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Figure 3.2. Define growth rate calculated from dynamic VI or plant height curve. 

Table 3.2. Summary of the 172 variables extracted from VI and plant height maps. 

Phenotypic 

trait map 

Times of data 

collections 

Number of  variables 

Statistical descriptions Dynamic growth rate 

Plant height Seven 49 6 

NDVI Five 35 4 

NDRE Five 35 4 

GNDVI Five 35 4 

Total number of parameters 172 

 

3.2.5 Principal Variable Selection for Grain Yield Estimation 

The 172 variables mentioned above were treated as candidates in variable selection for 

explaining grain yield variations. These variables were normalized before selection by 

LASSO and random forest.  

The main parameter tuned in LASSO was lambda, a shrinkage penalty term. It was tuned 

through 10-fold cross validation, with mean squared error (MSE) as loss function. 

Lambda shrank some variable coefficients to zero, allowing non-zero variables selected. 

Other than selection, LASSO also estimated the regression coefficients for selected 

variables. Since all variables were normalized beforehand, variable with higher absolute 
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coefficient could be considered to contribute more for grain yield. Therefore, the absolute 

regression coefficient was used as importance score for the variable selected by LASSO.  

Random forest considers the ranking of permutation importance of variables. Generally, 

if a variable X is importance for the dependent variable Y, permuting the order of X will 

break the correlation link between X and Y, thus increasing prediction error (MSE) 

(Gregorutti et al., 2017). That is, the higher increase in MSE of a variable X is, the more 

important that variable is. Therefore, the increase in MSE (%IncMSE) was considered as 

importance score in random forest selection. Parameter tuned for random forest in this 

study was the number of trees to grow and number of variables randomly sampled as 

candidates at each split, which were optimized by grid search as 1500 and 2 separately.  

Considering the instable results from most variable selection methods (Gregorutti et al., 

2017), each algorithm was set to ran 30 times with different random seeds. Afterwards, 

each variable would have two lists of importance scores, with the length of 30, from 

LASSO and random forest. To finally determine the most important variables, the top 10 

variables with the highest averaged importance scores were chose for LASSO and 

random forest separately. 

To evaluate selected variable set on explaining the variations in grain yield, ridge 

regression and support vector machine (SVM, non-parametric) with Gaussian kernel 

were applied. Ridge regression is a parametric algorithm for prediction. It has the ability 

of addressing the collinearity issue that was not handled by multiple linear regression (de 

Vlaming & Groenen, 2015; McDonald, 2009; Orhan, Eyduran, Tatliyer, & Saygici, 

2016). SVM is based on statistical learning theory, and is known with good performance 
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on handling highly non-linear data (Hultquist, Chen, & Zhao, 2014). The version of SVM 

used in regression problem was introduced by Vapnik in 1997 (Vapnik, Golowich, & 

Alex, 1997). 170 observations were split into 80% as training data and 20% as testing 

data for ridge regression and SVM model. Comparisons were made based on 

performances on testing data: between LASSO selected 10 variables and all 172 

variables, as well as between random forest selected 10 variables and all 172 variables. 

Correlation coefficient (r) and root mean squared error (RMSE) were the evaluative 

parameters. 

 

3.3 RESULTS 

3.3.1 Growth Dynamic in terms of VI and Plant Height  

Multi-temporal maps of plant height, NDVI, NDRE, and GNDVI were presented in 

Figure 3.3. In VI maps, greener pixel indicated higher wheat crop vigor; in plant height 

maps, the greener means higher wheat plant. It is observable that, the plant height maps 

showed an increasing trend over growth stages. While all three VI maps indicated that the 

wheat had the highest vigor on the 140 DOY (the 140th days of year, corresponding to the 

middle of data collections), and a significant drop appeared after the 151 DOY. The fact 

that most of the wheat plots turned yellow around the 168 DOY could explain the 

significant low value in VI maps.  

A quantitative way to describe growth dynamics was showed in VI or plant height 

dynamic curves (Figure 3.4). The dynamic curve values were trimmed mean for VI and 
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the 95th percentile for plant height. As illustrated in Figure 3.4 (A), NDVI, GNDVI and 

NDRE followed similar growth trend that reached peak at the middle time point, with a 

significant drop after the 151 DOY. It also exhibited the different growth rates over 

season. For example, NDVI had almost equal growth rates between the 116 and 140 

DOYs, whereas NDRE and GNDVI had slight increase between the 116 and 126 DOYs 

but significant increase between the 126 and 140 DOYs. In Figure 3.4 (B), the plant 

height dynamic showed an increasing trend along seven data collections, with slight 

increase between last two dates. Both trends were similar to those illustrated in Figure 

3.3. 
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Figure 3.3. Processed VI and plant height maps, over multiple collection dates. DOY 

represents ‘day of year’ for each date, corresponding to x axis in Figure 5. 

 

Figure 3.4. Growth dynamic in terms of UAV-derived VIs and plant height over the days 

in 2018. Bars on each date show the standard deviation of the 170 plots. 

 

3.3.2 Variable Selection by LASSO and Random Forest 

After 30 random runs, the top 10 variables with highest averaged importance scores were 

determined for LASSO and random forest separately (Figure 3.5). Naming of variable in 

Figure 3.5 explained the information on types of phenotypic traits and times of data 

collection. In LASSO selected variable set, the parameter extracted from plant height 

map on seventh data collection (e.g. PH.Day7.Para1) had the highest averaged 

importance score. Furthermore, eight out of the 10 variables related to plant height. As 

for the random forest selected variable set, the parameter extracted from plant height map 

on sixth data collection (e.g. PH.Day6.Para1) showed the highest averaged importance 

score. Seven out of 10 variables were extracted from plant height maps. 
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Figure 3.5. Top 10 variables with highest averaged importance score, from LASSO and 

random forest respectively.  

* Examples on reading variable names: PH.Day7.Para1, meaning one parameter from plant height map on 

the seventh data collection. PH.Day7.Para2 means another parameter from plant height map on the seventh 

data collection. GNDVI.Day3-Day2, indicating the dynamic growth rate calculated between Day2 and 

Day3 data collections. 

 

3.3.3 Explain Grain Yield using Selected Variable Sets 

Using the two variable sets determined above, the grain yield was explained in both ridge 

regression and Gaussian kernel based SVM model. Performances on testing data (20%, 

34 plots) were reported in Table 3.3. With ridge regression, LASSO selected variable set 

had relatively higher performance (r = 0.41±0.12, RMSE = 302±31) than using all 172 

variables (r = 0.37±0.11, RMSE = 306±33), whereas variables determined from random 

forest resulted in similar performance (r = 0.36±0.10, RMSE = 308±34) with using all 

variables. As for the SVM model, performance of variable set from either LASSO (r = 
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0.29±0.16, RMSE = 334±30) or random forest (r = 0.39±0.11, RMSE = 311±36) was 

slightly lower than that using all available variables (r = 0.41±0.13, RMSE = 302±29). 

To better depict the relationship between measured grain yield and estimated grain yield, 

scatter plots with results from testing data were provided in Figure 3.6. The first row of 

sub-figures (Figure 3.6 (A-C)) corresponded to using ridge regression as predictive 

model, and the second row (Figure 3.6 (D-F)) related to SVM predictive model. Each 

column represented one type of variable set: LASSO selected variable set, random forest 

selected variable set, and all 172 variable set (from left to right). It observable that the 

predicted grain yield by ridge regression was less scattered than that by SVM model. 

Table 3.3. Performance on explaining grain yield variations in testing data, using variable 

sets determined from LASSO and random forest, as well as all available variables. 

Variable Ridge regression SVM with Gaussian kernel 

r RMSE (g/plot) r RMSE (g/plot) 

10 variables selected by LASSO *0.41±0.12 302±31 0.29±0.16 334±30 

10 variables selected by random forest 0.36±0.10 308±34 0.39±0.11 311±36 

All 172 variables 0.37±0.11 306±33 0.41±0.13 302±29 
* mean ± standard deviation 
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Figure 3.6. Relationship between measured and estimated grain yield from different 

predictive models (ridge regression and SVM) and different variable sets (LASSO 

selected, random forest selected, and all 172 variables). 

 

3.4 DISCUSSIONS 

The processed VI and plant height maps (Figure 3.3) showed similar growth trends with 

those in corresponding dynamic curves (Figure 3.4): VI reached peak value around May 

21 (boot stage) and plant height kept increasing until June 18 (physiological maturity). 

The seasonal changes of three VIs were similar to each other, which were typical and 

have already been found in relative studies (Comar et al., 2012; Kalubarme, Potdar, 

Manjunath, Mahey, & Siddhu, 2003). The growth trend of plant height was also typical, 

similar to the trend of sigmoid curve (Chang, Jung, Maeda, et al., 2017; Chu et al., 2016). 

These could be positive evidences for the feasibility of applying UAV on wheat growth 
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monitoring. It was also noticeable that VI curves started to drop around May 21, whereas 

the growth rate of plant height decreased significantly after June 1. Considering the 

flowering date that was manually recorded (from end-May to early-June), it is possible 

that these symptoms, e.g. vigor starting to drop and height growth rate starting to 

decrease, were correlated with flowering.  

Looking at the selection results by LASSO and random forest (Figure 3.5), the results in 

random forest were more consistent than that in LASSO. This was most likely caused by 

multi-collinearity issue among variables. For example, some variables might come from 

the same day, or calculated from the same phenotypic trait maps. The collinearity issue 

affected more on LASSO than on random forest, since there were larger deviations for 

each variable’s importance scores in LASSO (Figure 3.5). When there are correlated 

variables, LASSO would arbitrarily select only one from the correlated variable group, 

thus resulting in inconsistent selections (Lu & Petkova, 2014). To alleviate the effect, the 

solution adopted in this study was to randomly run the algorithm for 30 times, and to 

summarize from 30 sets of selection results. Another possible solution that could be 

considered as future work is, to cluster correlated variables into group first and do 

selection on representative variables later (Bondell & Reich, 2008; Bühlmann, Rütimann, 

van de Geer, & Zhang, 2013). This alternative solution would not only provide better 

understandings of the underlying relationship among variables, but also allow us to know 

which group of variables are more important.  

Although the selection results in LASSO and random forest were not exactly the same, 

both algorithms agreed on two findings. Firstly, both the top two variables were related to 
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plant height from last two collection dates (grain filling and physiological maturity 

stages). Compare to earlier data collections, the last two collection dates were more close 

to final grain yield sampling date (early July). This could be a possible reason for the 

higher importance of later season plant height. Grain filling stage has already proved to 

be critical for assessing wheat grain yield in other related research (Bowman et al., 2015; 

Hassan, Yang, Rasheed, Jin, et al., 2018; Laigang Wang et al., 2014). If the importance of 

later season plant height were further confirmed, it would be much helpful for decision 

making on final grain yield harvesting, especially when there were limited time or cost 

for harvesting. 

Furthermore, both LASSO and random forest selection results agreed that most of the 

selected variables were derived from plant height maps. It probably indicated that, 

compare to spectral index, plant height might be more essential in explaining the 

variations in wheat grain yield. In fact, the relationship between plant height and wheat 

yield has always been an interesting topic for breeders. Early back in 1978, Law (Law, 

Snape, & Worland, 1978) found a positive relationship between plant height and wheat 

yield. Further, with wheat plant height measured over multiple growth stages, strong 

positive correlations were found between plant height and final grain yield (Girma et al., 

2006). However, the correlation was not always positive. In the study of Khan (2010) 

(Khan, Azam, & Ali, 2010), plant height was negatively correlated with grain yield. A 

reasonable explanation for the negative correlation in this study was lodging of high 

plants. Although the correlations were not consistently positive or negative, the existence 

of correlation between plant height and wheat grain yield was still conformed. This 
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conclusion would have great significance in the case when only plant height 

measurement was available for wheat grain yield estimation. 

When using selected top ten-variable sets to estimation grain yield, comparable 

performances were obtained with using all 172 variables, either by ridge regression or by 

SVM model. It is reasonable to state that, in this study, using more variables does not 

necessary significantly improve the estimation performances on grain yield. Rather, 

reduced number of variables could achieve comparable performances. However, given 

the limited number of wheat lines studied, this statement might not be true in other cases. 

It needs further investigation by using more wheat lines under varied environmental 

conditions. 

 

3.5 CONCLUSIONS 

By extracting three types of features (statistical, texture, dynamic) from UAV-derived 

VIs and plant height maps, this study applied two variable selection methods (LASSO, 

random forest) to select principal variables for winter wheat final grain yield estimation. 

Both LASSO and random forest selection results showed that plant height, especially 

during later growth stages (grain filling and maturity), had relatively higher importance 

score for explaining grain yield. Furthermore, selected variable sets resulted in 

satisfactory performance on estimating grain yield, with r ranging from 0.13 to 0.53 in 

ridge regression or SVM model.  
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Given the results from this single-year data with limited wheat lines, the proposed 

variable selection procedure could possibly be adopted in further studies with more wheat 

lines and varied environmental conditions or locations. This allows more confidence to 

draw conclusions, and thus providing potentials for saving efforts on either phenotyping 

data collection or data processing. 
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CHAPTER 4 CONCLUSIONS AND FUTURE WORK 

Benefit from the advancing UAV technique, it is getting easier and more efficient to 

screen high-throughput phenotypic data. In this study, crop phenotypic traits were 

derived from UAV-collected RGB imagery and five-band multispectral imagery. These 

traits consisted of morphological feature (e.g. canopy cover and plant height) and spectral 

feature (e.g. vegetation index). The goal was to exploit the potential of using UAV-

obtained phenotyping information on evaluating agronomic or physiological traits (e.g. 

biomass, yield) in sorghum and winter wheat. 

Simple and multiple exponential regression models were established for sorghum 

biomass estimation using the derived morphological and spectral traits. Results showed 

that, the UAV-derived plant height was strongly correlated with manually measured plant 

height (r = 0.85); and the estimated biomass using plant height, canopy cover and VIs had 

strong correlations with the sampled biomass of fresh stalks and leaves (maximum r = 

0.85) and the biomass of dry stalks and leaves (maximum r = 0.88). This turned out to be 

a promising result for further improvement of utilizing high-throughput phenotypic data 

in sorghum breeding program, as well as accelerating the breeding process. 

In the case of analyzing winter wheat final grain yield, three types of feature were 

calculated from UAV-derived VI and plant height maps: statistical feature (e.g. median), 

texture feature (e.g. homogeneity calculated from gray-level co-occurrence matrix, 

GLCM), and growth dynamic feature (growth rate). Including all parameters associated 

with these types of features, two variable selection methods were adopted to select 

principal parameters that contribute most to final grain yield. This work could serve as a 
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reference study for data process and analysis in grain yield estimation, especially in the 

case when large number of parameters are available but without knowing which variable 

sets are most critical. 

Future work and improvements are needed to allow UAV-based high-throughput 

phenotyping technique fully utilized and more user friendly. For example, most of the 

phenotypic traits in current studies were calculated from stitched image that had lower 

spatial resolution than un-stitched images. It is possible to acquire phenotypic traits with 

higher accuracy if they were directly calculated using un-stitched images. Utilizing un-

stitched images will also decrease the requirement on overlaps between images, thus 

increasing the potential area covered by one flight. With the recent advances in statistical 

and machine learning algorithms, it is prospective to mining deeper into UAV aerial 

imagery to acquire better use of it. In other words, another further work can focus on 

mining extra information from the aerial imagery, or exploiting the significance of multi-

temporal data, using machine-learning technique.     
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