17,838 research outputs found

    Multi-Entity Dependence Learning with Rich Context via Conditional Variational Auto-encoder

    Full text link
    Multi-Entity Dependence Learning (MEDL) explores conditional correlations among multiple entities. The availability of rich contextual information requires a nimble learning scheme that tightly integrates with deep neural networks and has the ability to capture correlation structures among exponentially many outcomes. We propose MEDL_CVAE, which encodes a conditional multivariate distribution as a generating process. As a result, the variational lower bound of the joint likelihood can be optimized via a conditional variational auto-encoder and trained end-to-end on GPUs. Our MEDL_CVAE was motivated by two real-world applications in computational sustainability: one studies the spatial correlation among multiple bird species using the eBird data and the other models multi-dimensional landscape composition and human footprint in the Amazon rainforest with satellite images. We show that MEDL_CVAE captures rich dependency structures, scales better than previous methods, and further improves on the joint likelihood taking advantage of very large datasets that are beyond the capacity of previous methods.Comment: The first two authors contribute equall

    A Comparison of Machine-Learning Methods to Select Socioeconomic Indicators in Cultural Landscapes

    Get PDF
    Cultural landscapes are regarded to be complex socioecological systems that originated as a result of the interaction between humanity and nature across time. Cultural landscapes present complex-system properties, including nonlinear dynamics among their components. There is a close relationship between socioeconomy and landscape in cultural landscapes, so that changes in the socioeconomic dynamic have an effect on the structure and functionality of the landscape. Several numerical analyses have been carried out to study this relationship, with linear regression models being widely used. However, cultural landscapes comprise a considerable amount of elements and processes, whose interactions might not be properly captured by a linear model. In recent years, machine-learning techniques have increasingly been applied to the field of ecology to solve regression tasks. These techniques provide sound methods and algorithms for dealing with complex systems under uncertainty. The term ‘machine learning’ includes a wide variety of methods to learn models from data. In this paper, we study the relationship between socioeconomy and cultural landscape (in Andalusia, Spain) at two different spatial scales aiming at comparing different regression models from a predictive-accuracy point of view, including model trees and neural or Bayesian networks

    Psychopower and Ordinary Madness: Reticulated Dividuals in Cognitive Capitalism

    Get PDF
    Despite the seemingly neutral vantage of using nature for widely-distributed computational purposes, neither post-biological nor post-humanist teleology simply concludes with the real "end of nature" as entailed in the loss of the specific ontological status embedded in the identifier "natural." As evinced by the ecological crises of the Anthropocene—of which the 2019 Brazil Amazon rainforest fires are only the most recent—our epoch has transfixed the “natural order" and imposed entropic artificial integration, producing living species that become “anoetic,” made to serve as automated exosomatic residues, or digital flecks. I further develop Gilles Deleuze’s description of control societies to upturn Foucauldian biopower, replacing its spacio-temporal bounds with the exographic excesses in psycho-power; culling and further detailing Bernard Stiegler’s framework of transindividuation and hyper-control, I examine how becoming-subject is predictively facilitated within cognitive capitalism and what Alexander Galloway terms “deep digitality.” Despite the loss of material vestiges qua virtualization—which I seek to trace in an historical review of industrialization to postindustrialization—the drive-based and reticulated "internet of things" facilitates a closed loop from within the brain to the outside environment, such that the aperture of thought is mediated and compressed. The human brain, understood through its material constitution, is susceptible to total datafication’s laminated process of “becoming-mnemotechnical,” and, as neuroplasticity is now a valid description for deep-learning and neural nets, we are privy to the rebirth of the once-discounted metaphor of the “cybernetic brain.” Probing algorithmic governmentality while posing noetic dreaming as both technical and pharmacological, I seek to analyze how spirit is blithely confounded with machine-thinking’s gelatinous cognition, as prosthetic organ-adaptation becomes probabilistically molded, networked, and agentially inflected (rather than simply externalized)
    • …
    corecore