98,460 research outputs found

    Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Get PDF
    The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin\u27s history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics

    Integrating Ecological and Engineering Concepts of Resilience in Microbial Communities

    Get PDF
    Many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. We argue that the disconnect largely results from the wide variance in microbial community complexity, which range from compositionally simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems that undergo both recoverable and unrecoverable transitions, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community\u27s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities and suggest that state changes in response to environmental variation may be a key mechanism driving functional resilience in microbial communities

    Environmental shaping of codon usage and functional adaptation across microbial communities.

    Get PDF
    Microbial communities represent the largest portion of the Earth's biomass. Metagenomics projects use high-throughput sequencing to survey these communities and shed light on genetic capabilities that enable microbes to inhabit every corner of the biosphere. Metagenome studies are generally based on (i) classifying and ranking functions of identified genes; and (ii) estimating the phyletic distribution of constituent microbial species. To understand microbial communities at the systems level, it is necessary to extend these studies beyond the species' boundaries and capture higher levels of metabolic complexity. We evaluated 11 metagenome samples and demonstrated that microbes inhabiting the same ecological niche share common preferences for synonymous codons, regardless of their phylogeny. By exploring concepts of translational optimization through codon usage adaptation, we demonstrated that community-wide bias in codon usage can be used as a prediction tool for lifestyle-specific genes across the entire microbial community, effectively considering microbial communities as meta-genomes. These findings set up a 'functional metagenomics' platform for the identification of genes relevant for adaptations of entire microbial communities to environments. Our results provide valuable arguments in defining the concept of microbial species through the context of their interactions within the community

    Microbial Communities of the Providence River

    Get PDF
    The Providence River has been industrialized for over one-hundred years. Industries such as oil storage and metal recycling facilities have left high levels of pollutant metals, including lead (Pb), in the soil and water. The elevated Pb concentrations in these environments influence the selection of Pb resistance mechanisms in the bacterial community1. One mechanism of heavy metal resistance is the Pb efflux pump, consisting of proteins in the cell membrane that aid in the transport of Pb out of the cell2. In this study we investigated the co-occurrence of Pb efflux pumps and antibiotic efflux pumps in bacteria from Pb contaminated sediments. By using PCR techniques to identify Pb-resistant genes and sequencing bacteria to identify specific species with these genes, we are attempting to identify the types of bacterial species present and whether the same mechanism (encoded by similar genes) are responsible for both antibiotic and trace metal resistance. This helps us establish a genetic link between Pb resistance and antibiotic resistance

    Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers.

    Get PDF
    As two central issues of global climate change, the continuous increase of both atmospheric CO2 concentrations and global temperature has profound effects on various terrestrial ecosystems. Microbial communities play pivotal roles in these ecosystems by responding to environmental changes through regulation of soil biogeochemical processes. However, little is known about the effect of elevated CO2 (eCO2) and global warming on soil microbial communities, especially in semiarid zones. We used a functional gene array (GeoChip 3.0) to measure the functional gene composition, structure, and metabolic potential of soil microbial communities under warming, eCO2, and eCO2 + warming conditions in a semiarid grassland. The results showed that the composition and structure of microbial communities was dramatically altered by multiple climate factors, including elevated CO2 and increased temperature. Key functional genes, those involved in carbon (C) degradation and fixation, methane metabolism, nitrogen (N) fixation, denitrification and N mineralization, were all stimulated under eCO2, while those genes involved in denitrification and ammonification were inhibited under warming alone. The interaction effects of eCO2 and warming on soil functional processes were similar to eCO2 alone, whereas some genes involved in recalcitrant C degradation showed no significant changes. In addition, canonical correspondence analysis and Mantel test results suggested that NO3-N and moisture significantly correlated with variations in microbial functional genes. Overall, this study revealed the possible feedback of soil microbial communities to multiple climate change factors by the suppression of N cycling under warming, and enhancement of C and N cycling processes under either eCO2 alone or in interaction with warming. These findings may enhance our understanding of semiarid grassland ecosystem responses to integrated factors of global climate change

    Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities

    Get PDF
    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments

    From microbial communities to cells

    Get PDF
    The eukraotic cell, the unit of structure of protoctists, plants, fungi, and animals, is not at all homologous to prokaryotic cells. Instead the eukaryotic cell is homologous to communities of microorganisms such as those of the sulfuretum. This research is based on the hypothesis that at least four different interacting community members entered the original associations that, when stabilized, led to the emergence of eukaryotic cells. These are: (1) host nucleocytoplasm (thermoplasma like archaebacteria); (2) mitochrondria (paracoccus or bdellovibryo like respiring bacteria; and (3) plastids (cyanobacteria) and undulipodia. Tubulin like protein was found in the free living spirochete Spirochaeta bajacaliforniensis and in several other spirochetes. The amino acid sequence was to see if the spirochete protein is homologous to the tubulin of undulipodial and mitotic spindle microtubules
    corecore