17 research outputs found

    Joint smoothed l0-norm DOA estimation algorithm for multiple measurement vectors in MIMO radar

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l0-norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l0-norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l1-norm minimization based methods, such as l1-SVD (singular value decomposition), RV (real-valued) l1-SVD and RV l1-SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance

    Reduced-Dimension Noncircular-Capon Algorithm for DOA Estimation of Noncircular Signals

    Get PDF
    The problem of the direction of arrival (DOA) estimation for the noncircular (NC) signals, which have been widely used in communications, is investigated. A reduced-dimension NC-Capon algorithm is proposed hereby for the DOA estimation of noncircular signals. The proposed algorithm, which only requires one-dimensional search, can avoid the high computational cost within the two-dimensional NC-Capon algorithm. The angle estimation performance of the proposed algorithm is much better than that of the conventional Capon algorithm and very close to that of the two-dimensional NC-Capon algorithm, which has a much higher complexity than the proposed algorithm. Furthermore, the proposed algorithm can be applied to arbitrary arrays and works well without estimating the noncircular phases. The simulation results verify the effectiveness and improvement of the proposed algorithm

    Two-dimensional angular parameter estimation for noncircular incoherently distributed sources based on an L-shaped array

    Get PDF
    In this paper, a two-stage reduced-rank estimator is proposed for two-dimensional (2D) direction estimation of incoherently distributed (ID) noncircular sources, including their center directions of arrival (DOAs) and angular spreads, based on an L-shaped array. Firstly, based on the first-order Taylor series approximation, a noncircularity-based extended generalized array manifold (GAM) model is established. Then, the 2D center DOAs of incident ID signals are obtained separately with the noncircularity-based generalized shift-invariance property of the array manifold and the reduced-rank principle. The pairing of the two center DOAs is completed by searching for the minimum value of a cost function. Secondly, the 2D angular spreads can be obtained in closed-form solution from the central moments of the angular distribution. The proposed estimator achieves higher accuracy in angle estimation that manages more sources and shows promising results in the general scenario, where different sources possess different angular distributions. Furthermore, the approximate noncircular stochastic Cramer-Rao bound (CRB) of the concerned problem is derived as a benchmark. Numerical analysis proves that the proposed algorithm achieves better estimation performance in both 2D center DOAs and 2D angular spreads than an existing estimator

    Spatial Parameter Identification for MIMO Systems in the Presence of Non-Gaussian Interference

    Get PDF
    Reliable identification of spatial parameters for multiple-input multiple-output (MIMO) systems, such as the number of transmit antennas (NTA) and the direction of arrival (DOA), is a prerequisite for MIMO signal separation and detection. Most existing parameter estimation methods for MIMO systems only consider a single parameter in Gaussian noise. This paper develops a reliable identification scheme based on generalized multi-antenna time-frequency distribution (GMTFD) for MIMO systems with non-Gaussian interference and Gaussian noise. First, a new generalized correlation matrix is introduced to construct a generalized MTFD matrix. Then, the covariance matrix based on time-frequency distribution (CM-TF) is characterized by using the diagonal entries from the auto-source signal components and the non-diagonal entries from the cross-source signal components in the generalized MTFD matrix. Finally, by making use of the CM-TF, the Gerschgorin disk criterion is modified to estimate NTA, and the multiple signal classification (MUSIC) is exploited to estimate DOA for MIMO system. Simulation results indicate that the proposed scheme based on GMTFD has good robustness to non-Gaussian interference without prior information and that it can achieve high estimation accuracy and resolution at low and medium signal-to-noise ratios (SNRs)

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Beamforming and Direction of Arrival Estimation Based on Vector Sensor Arrays

    Get PDF
    Array signal processing is a technique linked closely to radar and sonar systems. In communication, the antenna array in these systems is applied to cancel the interference, suppress the background noise and track the target sources based on signals'parameters. Most of existing work ignores the polarisation status of the impinging signals and is mainly focused on their direction parameters. To have a better performance in array processing, polarized signals can be considered in array signal processing and their property can be exploited by employing various electromagnetic vector sensor arrays. In this thesis, firstly, a full quaternion-valued model for polarized array processing is proposed based on the Capon beamformer. This new beamformer uses crossed-dipole array and considers the desired signal as quaternion-valued. Two scenarios are dealt with, where the beamformer works at a normal environment without data model errors or with model errors under the worst-case constraint. After that, an algorithm to solve the joint DOA and polarisation estimation problem is proposed. The algorithm applies the rank reduction method to use two 2-D searches instead of a 4-D search to estimate the joint parameters. Moreover, an analysis is given to introduce the difference using crossed-dipole sensor array and tripole sensor array, which indicates that linear crossed-dipole sensor array has an ambiguity problem in the estimation work and the linear tripole sensor array avoid this problem effectively. At last, we study the problem of DOA estimation for a mixture of single signal transmission (SST) signals and duel signal transmission (DST) signals. Two solutions are proposed: the first is a two-step method to estimate the parameters of SST and DST signals separately; the second one is a unified one-step method to estimate SST and DST signals together, without treating them separately in the estimation process

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

    Get PDF
    ï»żUnsere moderne Gesellschaft ist Zeuge eines fundamentalen Wandels in der Art und Weise wie wir mit Technologie interagieren. GerĂ€te werden zunehmend intelligenter - sie verfĂŒgen ĂŒber mehr und mehr Rechenleistung und hĂ€ufiger ĂŒber eigene Kommunikationsschnittstellen. Das beginnt bei einfachen HaushaltsgerĂ€ten und reicht ĂŒber Transportmittel bis zu großen ĂŒberregionalen Systemen wie etwa dem Stromnetz. Die Erfassung, die Verarbeitung und der Austausch digitaler Informationen gewinnt daher immer mehr an Bedeutung. Die Tatsache, dass ein wachsender Anteil der GerĂ€te heutzutage mobil und deshalb batteriebetrieben ist, begrĂŒndet den Anspruch, digitale Signalverarbeitungsalgorithmen besonders effizient zu gestalten. Dies kommt auch dem Wunsch nach einer Echtzeitverarbeitung der großen anfallenden Datenmengen zugute. Die vorliegende Arbeit demonstriert Methoden zum Finden effizienter algebraischer Lösungen fĂŒr eine Vielzahl von Anwendungen mehrkanaliger digitaler Signalverarbeitung. Solche AnsĂ€tze liefern nicht immer unbedingt die bestmögliche Lösung, kommen dieser jedoch hĂ€ufig recht nahe und sind gleichzeitig bedeutend einfacher zu beschreiben und umzusetzen. Die einfache Beschreibungsform ermöglicht eine tiefgehende Analyse ihrer LeistungsfĂ€higkeit, was fĂŒr den Entwurf eines robusten und zuverlĂ€ssigen Systems unabdingbar ist. Die Tatsache, dass sie nur gebrĂ€uchliche algebraische Hilfsmittel benötigen, erlaubt ihre direkte und zĂŒgige Umsetzung und den Test unter realen Bedingungen. Diese Grundidee wird anhand von drei verschiedenen Anwendungsgebieten demonstriert. ZunĂ€chst wird ein semi-algebraisches Framework zur Berechnung der kanonisch polyadischen (CP) Zerlegung mehrdimensionaler Signale vorgestellt. Dabei handelt es sich um ein sehr grundlegendes Werkzeug der multilinearen Algebra mit einem breiten Anwendungsspektrum von Mobilkommunikation ĂŒber Chemie bis zur Bildverarbeitung. Verglichen mit existierenden iterativen Lösungsverfahren bietet das neue Framework die Möglichkeit, den Rechenaufwand und damit die GĂŒte der erzielten Lösung zu steuern. Es ist außerdem weniger anfĂ€llig gegen eine schlechte Konditionierung der Ausgangsdaten. Das zweite Gebiet, das in der Arbeit besprochen wird, ist die unterraumbasierte hochauflösende ParameterschĂ€tzung fĂŒr mehrdimensionale Signale, mit Anwendungsgebieten im RADAR, der Modellierung von Wellenausbreitung, oder bildgebenden Verfahren in der Medizin. Es wird gezeigt, dass sich derartige mehrdimensionale Signale mit Tensoren darstellen lassen. Dies erlaubt eine natĂŒrlichere Beschreibung und eine bessere Ausnutzung ihrer Struktur als das mit Matrizen möglich ist. Basierend auf dieser Idee entwickeln wir eine tensor-basierte SchĂ€tzung des Signalraums, welche genutzt werden kann um beliebige existierende Matrix-basierte Verfahren zu verbessern. Dies wird im Anschluss exemplarisch am Beispiel der ESPRIT-artigen Verfahren gezeigt, fĂŒr die verbesserte Versionen vorgeschlagen werden, die die mehrdimensionale Struktur der Daten (Tensor-ESPRIT), nichzirkulĂ€re Quellsymbole (NC ESPRIT), sowie beides gleichzeitig (NC Tensor-ESPRIT) ausnutzen. Um die endgĂŒltige SchĂ€tzgenauigkeit objektiv einschĂ€tzen zu können wird dann ein Framework fĂŒr die analytische Beschreibung der LeistungsfĂ€higkeit beliebiger ESPRIT-artiger Algorithmen diskutiert. Verglichen mit existierenden analytischen AusdrĂŒcken ist unser Ansatz allgemeiner, da keine Annahmen ĂŒber die statistische Verteilung von Nutzsignal und Rauschen benötigt werden und die Anzahl der zur VerfĂŒgung stehenden SchnappschĂŒsse beliebig klein sein kann. Dies fĂŒhrt auf vereinfachte AusdrĂŒcke fĂŒr den mittleren quadratischen SchĂ€tzfehler, die Schlussfolgerungen ĂŒber die Effizienz der Verfahren unter verschiedenen Bedingungen zulassen. Das dritte Anwendungsgebiet ist der bidirektionale Datenaustausch mit Hilfe von Relay-Stationen. Insbesondere liegt hier der Fokus auf Zwei-Wege-Relaying mit Hilfe von Amplify-and-Forward-Relays mit mehreren Antennen, da dieser Ansatz ein besonders gutes Kosten-Nutzen-VerhĂ€ltnis verspricht. Es wird gezeigt, dass sich die nötige Kanalkenntnis mit einem einfachen algebraischen Tensor-basierten SchĂ€tzverfahren gewinnen lĂ€sst. Außerdem werden Verfahren zum Finden einer gĂŒnstigen Relay-VerstĂ€rkungs-Strategie diskutiert. Bestehende AnsĂ€tze basieren entweder auf komplexen numerischen Optimierungsverfahren oder auf Ad-Hoc-AnsĂ€tzen die keine zufriedenstellende Bitfehlerrate oder Summenrate liefern. Deshalb schlagen wir algebraische AnsĂ€tze zum Finden der RelayverstĂ€rkungsmatrix vor, die von relevanten Systemmetriken inspiriert sind und doch einfach zu berechnen sind. Wir zeigen das algebraische ANOMAX-Verfahren zum Erreichen einer niedrigen Bitfehlerrate und seine Modifikation RR-ANOMAX zum Erreichen einer hohen Summenrate. FĂŒr den Spezialfall, in dem die EndgerĂ€te nur eine Antenne verwenden, leiten wir eine semi-algebraische Lösung zum Finden der Summenraten-optimalen Strategie (RAGES) her. Anhand von numerischen Simulationen wird die LeistungsfĂ€higkeit dieser Verfahren bezĂŒglich Bitfehlerrate und erreichbarer Datenrate bewertet und ihre EffektivitĂ€t gezeigt.Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable systems. The fact that they rely on standard algebraic methods only allows their rapid implementation and test under real-world conditions. We demonstrate this concept in three different application areas. First, we present a semi-algebraic framework to compute the Canonical Polyadic (CP) decompositions of multidimensional signals, a very fundamental tool in multilinear algebra with applications ranging from chemistry over communications to image compression. Compared to state-of-the art iterative solutions, our framework offers a flexible control of the complexity-accuracy trade-off and is less sensitive to badly conditioned data. The second application area is multidimensional subspace-based high-resolution parameter estimation with applications in RADAR, wave propagation modeling, or biomedical imaging. We demonstrate that multidimensional signals can be represented by tensors, providing a convenient description and allowing to exploit the multidimensional structure in a better way than using matrices only. Based on this idea, we introduce the tensor-based subspace estimate which can be applied to enhance existing matrix-based parameter estimation schemes significantly. We demonstrate the enhancements by choosing the family of ESPRIT-type algorithms as an example and introducing enhanced versions that exploit the multidimensional structure (Tensor-ESPRIT), non-circular source amplitudes (NC ESPRIT), and both jointly (NC Tensor-ESPRIT). To objectively judge the resulting estimation accuracy, we derive a framework for the analytical performance assessment of arbitrary ESPRIT-type algorithms by virtue of an asymptotical first order perturbation expansion. Our results are more general than existing analytical results since we do not need any assumptions about the distribution of the desired signal and the noise and we do not require the number of samples to be large. At the end, we obtain simplified expressions for the mean square estimation error that provide insights into efficiency of the methods under various conditions. The third application area is bidirectional relay-assisted communications. Due to its particularly low complexity and its efficient use of the radio resources we choose two-way relaying with a MIMO amplify and forward relay. We demonstrate that the required channel knowledge can be obtained by a simple algebraic tensor-based channel estimation scheme. We also discuss the design of the relay amplification matrix in such a setting. Existing approaches are either based on complicated numerical optimization procedures or on ad-hoc solutions that to not perform well in terms of the bit error rate or the sum-rate. Therefore, we propose algebraic solutions that are inspired by these performance metrics and therefore perform well while being easy to compute. For the MIMO case, we introduce the algebraic norm maximizing (ANOMAX) scheme, which achieves a very low bit error rate, and its extension Rank-Restored ANOMAX (RR-ANOMAX) that achieves a sum-rate close to an upper bound. Moreover, for the special case of single antenna terminals we derive the semi-algebraic RAGES scheme which finds the sum-rate optimal relay amplification matrix based on generalized eigenvectors. Numerical simulations evaluate the resulting system performance in terms of bit error rate and system sum rate which demonstrates the effectiveness of the proposed algebraic solutions
    corecore