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Abstract: Reliable identification of spatial parameters for multiple-input multiple-output (MIMO)
systems, such as the number of transmit antennas (NTA) and the direction of arrival (DOA), is a
prerequisite for MIMO signal separation and detection. Most existing parameter estimation methods
for MIMO systems only consider a single parameter in Gaussian noise. This paper develops a reliable
identification scheme based on generalized multi-antenna time-frequency distribution (GMTFD)
for MIMO systems with non-Gaussian interference and Gaussian noise. First, a new generalized
correlation matrix is introduced to construct a generalized MTFD matrix. Then, the covariance matrix
based on time-frequency distribution (CM-TF) is characterized by using the diagonal entries from the
auto-source signal components and the non-diagonal entries from the cross-source signal components
in the generalized MTFD matrix. Finally, by making use of the CM-TF, the Gerschgorin disk criterion
is modified to estimate NTA, and the multiple signal classification (MUSIC) is exploited to estimate
DOA for MIMO system. Simulation results indicate that the proposed scheme based on GMTFD has
good robustness to non-Gaussian interference without prior information and that it can achieve high
estimation accuracy and resolution at low and medium signal-to-noise ratios (SNRs).

Keywords: direction of arrival; generalized multi-antenna time-frequency distribution; multiple-
input multiple-output systems; number of transmit antennas

1. Introduction

The increasing number of wireless devices, together with the requirements for ef-
fectiveness and reliability of information transmission, have led to the development of
various new communication technologies for addressing unprecedented challenges [1–4].
Among them, the multiple-input multiple-output (MIMO) technology with sensing ca-
pability has been a research hotspot [5]. The self-learning and adaptive abilities of the
MIMO system are mainly manifested in the ability to adaptively select the best transmis-
sion parameters and modes according to the surrounding communication environment.
Nevertheless, the adaptive transmission at the transmitter results in strong randomness of
the received signal, which puts forward higher requirements on the signal processing at
the receiver [6,7]. Therefore, MIMO signal processing without prior information has great
potential. In blind MIMO signal processing, accurate antenna number estimation is the key
to blind channel estimation, blind coding recognition, and blind signal demodulation [8].
By estimating the number of transmit antennas (NTA), the exact number of desired users
can be obtained, and the users can be effectively regulated to alleviate the interference
between them. Direction-of-arrival (DOA) estimation is used to determine the angle and
position of the signal from the array of received data [9]. The effective information of the
user’s location obtained by DOA estimation is crucial for distinguishing the target user
from the interfering users and obtaining accurate and reliable transmission of information.
Through the joint estimation of the NTA and the DOA, the desired user information can
be accurately distinguished from the background noise/interference by exploiting the
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different characteristics of spatial information carried by each path, thereby improving the
performance of MIMO systems.

To obtain target location through DOA estimation, many algorithms have been pro-
posed, including the beamforming algorithm, maximum likelihood algorithm, multiple
signal classification (MUSIC) algorithm, rotation-invariant subspace (ESPRIT) algorithm,
and subspace fitting algorithm. By leveraging the characteristics and properties of sig-
nal, noise, array structure, etc., these methods greatly enhance the estimation accuracy.
In MIMO systems, early DOA estimation can be achieved by beamforming techniques,
such as the Capon algorithm [10]. Although this method is simple and feasible, it cannot
achieve high-resolution angle estimation. To solve this problem, a series of subspace-based
DOA estimation algorithms have been proposed. The classical subspace-based methods
include the MUSIC algorithm and ESPRIT algorithm. The improved algorithms based on
these two methods have been extensively studied. In [11], Meng et al. combined MUSIC
with the quantum algorithm to obtain signal subspace and noise subspace with lower
computational complexity. In [12], Karthikeyan et al. investigated one-dimensional ESPRIT,
Unitary ESPRIT, and Multidimensional ESPRIT algorithms, and then the simulation results
were verified using the universal software radio peripheral network series (USRP-N210).
By employing beamforming technology to calculate the phase difference of the received
signal as a reference, Kumar et al. presented an improved algorithm that can increase the
system capacity and extend ESPRIT to non-orthogonal multiple access MIMO systems [13].
However, all these improvements involve eigenvalue decomposition (EVD) or inversion
of the covariance matrix, so they are computationally complex. The propagator method
can avoid such operations and improve the estimation performance [14]. In recent years,
DOA estimation has also made breakthroughs in many fields. DOA estimation using radar
systems equipped with uniform rectangular arrays provides the basis for future urban
unmanned aerial vehicle development [15]. Zhang et al. realized super-resolution angle
estimation under arbitrary geometric MIMO-EMVS arrays, bringing a new perspective
to signal processing [16]. In [17], Liang et al. proposed a novel deep neural network to
explore the problem of DOA estimation under strong noise. Zhang et al. also investigated a
feasible DOA estimation method in the presence of strong noise interference [18]. In [19],
Wen et al. estimated the DOA of a source oriented toward non-line-of-sight propagation in
an intelligent reflecting surface-aided wireless communication scenario, which became a
major breakthrough in wireless communication.

Most studies on DOA estimation are based on the assumption of Gaussian background
interference. However, due to various artificial and physical interference, the actual com-
munication environment may contain complex noise/interference. In the case of colored
noise/interference, Cong et al. eliminated the influence of colored noise through general-
ized noise reconstruction [20]. Chen et al. employed an optimization method similar to
minimum variance distortionless response and got a DOA estimation expression based on
the mapping between eigenvalues [21]. After eliminating noise, Du et al. derived Bayesian
tensor factorization, a fitted real-valued model, and approximate factor matrices, which
led to higher estimation accuracy [22]. For impulsive noise/interference, DOA tracking
algorithms based on the equivalent covariance matrices constructed by phased fractional
moments were proposed in [23,24]. Based on the filtering theory, An et al. proposed an effec-
tive pretreatment filtering technology to cut out the impulse mixed in the received data [25].
Su et al. employed a diagonal beam spectrum feature to suppress non-Gaussian noise
and enhance array gain [26]. In [27], Gong et al. adopted the infinite norm normalization
preprocessing method to alleviate the impact of pulse noise/interference, thus ensuring the
performance of the DOA estimation algorithm. Additionally, Dong et al. extended the DOA
estimation under impulsive interference to non-circular signal environments [28]. To han-
dle the non-uniform noise/interference, a sparse reconstruction DOA estimation method
combining vectorized and reduced signal covariance matrices was proposed in [29]. In [30],
Zuo et al. eliminated non-uniform interference by constructing two Toeplitz correlation
matrices and achieved higher estimation accuracy.
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The aforementioned works relate to DOA estimation. On the other hand, the existing
estimation methods for the NTA of MIMO can be mainly divided into two categories: infor-
mation theoretic criterion (ITC)-based methods [31–33] and feature-based methods [34–39].
Based on ITC, the problem of estimating the number of transmit antennas is transformed
into a model selection problem. Such methods determine the number of transmitting
antennas by selecting the minimum Kullback–Leibler length for each candidate model.
Somekh et al. determined the number of transmitting antennas in MIMO systems by us-
ing the minimum description length and Akaike information criterion [31]. This method
does not require setting a threshold subjectively and has low algorithm complexity. Shi
et al. developed a method that can adaptively estimate the number of transmit antennas
in MIMO systems based on the Schur complementarity test [32]. This method has low
computational complexity and does not depend on the number of receive antennas in the
MIMO system. Hassan et al. designed two ITC-based algorithms that are insensitive to
the spatial correlation of the MIMO channel and can effectively estimate the number of
transmit antennas [33]. Feature-based estimation methods use the features extracted from
MIMO signals to transform the problem of estimating the number of transmit antennas
into a multivariate hypothesis testing problem. Such methods are easier to implement
than the methods based on information theory. In [34], a method was proposed to identify
the number of base station antennas by using the orthogonality of pilot signals. Since
this method needs to estimate the channel parameters and noise power, it has high com-
putational complexity. Mohammadkarim et al. developed a method for estimating the
number of transmitting antennas based on high-order statistics [35]. This method has high
robustness to frequency offset but requires prior information on noise variance. In [36],
two methods were proposed to estimate the number of transmitting antennas based on
a covariance matrix. The two methods do not require prior information such as training
sequence and noise power. In [37], the eigenvalue of high-order moments was exploited to
design an estimation method based on hypothesis testing. In [38], the random matrix theory
was used to simultaneously detect the number of antennas and AoAs when a transmitter
with multiple antennas is present. Ref. [39] designed a hypothesis-testing algorithm based
on stochastic matrix theory for MIMO-OFDM systems. In order to effectively estimate
the number of signals within a specific range, the Akaike information criterion and the
minimum description length algorithm based on beam space were proposed [40]. Zhao
et al. designed a convolutional neural network model based on the mapping relationship
between signal covariance matrix and source number and realized the joint estimation
of source number and DOA [41]. In a non-Gaussian interference environment, Zhang
et al. adopted a clustering algorithm based on a generalized correlation matrix to detect the
number of transmitted antennas in MIMO systems, avoiding the need for prior information
on transmitted signals [42]. Yan et al. established a multi-target off-grid model, which can
automatically identify the number of source signals and perform DOA estimation [43].

In most existing works, the NTA and DOA are estimated under the Gaussian noise/
interference. However, non-Gaussian noise/interference is also very prevalent in the actual
communication scenario, such as atmospheric noise, urban noise, and environmental noise
in shallow sea acoustic communication. These noises have serious trailing characteristics
in their probability distribution, so they do not completely obey the Gaussian distribu-
tion [44]. The existing works suffer from degraded performance or even become invalid
in non-Gaussian noise/interference. Therefore, non-Gaussian noise/interference poses a
great challenge to the estimation of the NTA and DOA. Consequently, this paper investi-
gates the joint estimation of the NTA and DOA for a MIMO system with non-Gaussian
noise/interference.

To realize a joint estimation of the NTA and DOA in Gaussian noise and non-Gaussian
interference, a reliable estimation method is presented using the generalized multi-antenna
time-frequency distribution (GMTFD) matrix. The GMTFD matrix is constructed based
on the analysis of the generalized correlation matrix, and the joint estimation method
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is designed by using the quasi-covariance matrix from the GMTFD matrix. The main
contributions of the proposed method are as follows:

1. The proposed method introduces a new generalized correlation matrix, constructs
a GMTFD matrix, analyzes the characteristics of the GMTFD matrix, character-
izes the covariance matrix, and establishes a quasi-covariance matrix by using the
GMTFD matrix.

2. The similarity transformation of the quasi-covariance matrix is conducted based on
the Gerschgorin disk criterion, and the objective function is constructed based on the
radius and eigenvalues of the Gerschgorin disk to determine the number of transmit
antennas in the MIMO system.

3. Signal subspace and noise subspace are obtained by EVD of the quasi-covariance
matrix, and the DOA estimation is carried out using the subspace method.

4. The proposed method does not require prior information, such as channel coeffi-
cient, noise power, interference power, etc., and it can realize the joint estimation
of the NTA and DOA for a MIMO system in the presence of Gaussian noise and
non-Gaussian interference.

2. System Model

Consider a MIMO system equipped with Mt antennas at the transmitting terminal
and Mr antennas at the receiving terminal (Mr > Mt). Assume that there are Mt far-field,
narrow-band, incoherent signals. The baseband modulation is M-PSK (phase shift keying)
or M-QAM (quadrature amplitude modulation) (M ≥ 4). Let the signal wavelength be λ
and the speed of light be c. Then, the time delay ∆t between adjacent receive antennas can
be expressed as

∆t =
d cos θmt

c
, (1)

where d represents the distance between any two adjacent antennas, θmt denotes the
nominal azimuth DOA for the mt-th signal, and θmt ∈ (0, π), mt = 1, 2, . . . , Mt. Taking the
origin of the receive antennas as the reference point, the time delay ∆t between each receive
antenna and the reference point is defined as

∆t =
[

0,
d cos θmt

c
,

2d cos θmt

c
, · · · ,

(Mr − 1)d cos θmt

c

]
. (2)

The time delay ∆t of these adjacent receive antennas can be converted into the phase shift as

e−jω∆t = e−j2π( d
λ ) cos θmt . (3)

Then, the phase shift between each receive antenna and the reference point is expressed as

∆φ =

[
0, e−j2π( d

λ ) cos θmt , e−j2π( 2d
λ ) cos θmt , · · · , e−j2π

(
(Mr−1)d

λ

)
cos θmt

]
. (4)

Moreover, the signal of the m-th receive antenna at time instant t can be represented as

ym(t) =
Mt

∑
k=1

hksk(t)e
−j2π

(
(m−1)d

λ

)
cos(θk) + Zm(t) + wm(t), (5)

where sk(t), Zm(t), and wm(t) denote the signal transmitted, the non-Gaussian interference,
and the additive Gaussian white noise (AWGN), respectively, and hk is the propagation
attenuation coefficient of the k-th transmit signal. Therefore, the array output observed at
time instant t can be represented as

y(t) =
Mt

∑
k=1

hksk(t)a(θk) + Z(t) + w(t)

= As̃(t) + Z(t) + w(t),

(6)
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where s̃(t) = [h1s1(t), h2s2(t), . . . , hMt sMt(t)]
T denotes the source matrix, (·)T denotes the

matrix transpose, h1, h2, ..., hMt is the signal propagation attenuation coefficient, and Z(t) is
the Mr × 1 non-Gaussian interference vector. The alpha-stable distribution is employed to
model non-Gaussian interference, w(t) is the Mr × 1 additive Gaussian noise vector, and A
is the array steering vector as follows:

A = [a(θ1), a(θ2), . . . , a(θMt)]

=


1 · · · 1

e(−j2πd/λ) cos θ1 · · · e(−j2πd/λ) cos θMt

...
...

...
e(−j2πd/λ)(Mr−1) cos θ1 · · · e(−j2πd/λ)(Mr−1) cos θMt

.
(7)

3. Generalized MTFD Matrix Construction

Most of the existing NTA and DOA estimation methods rely on the second-order
statistical characteristics of the received signal, such as the covariance matrix and the time-
frequency distribution matrix. However, in non-Gaussian interference, a large amount of
impulsive interference makes the variance of the received signal go to infinity, especially
the impulsive interference characterized by α-stable distribution [45]. This interference
does not have a finite second-order moment, and its covariance matrix is unbounded,
which degrades the performance of the methods using the covariance or time-frequency
distribution. To solve the above problems, a generalized MTFD matrix is introduced to
characterize the spatial feature information of the received signal under non-Gaussian
interference, so as to realize the effective estimation of NTA and DOA.

Generalized MTFD is a 3D array containing time, frequency, and space, which uses
the (t, f ) information between antennas at different spatial positions to characterize a set
of communication signals and their interrelations under non-Gaussian interference [46].
Given that the generalized MTFD is an extension of the generalized TFD in the spatial
domain, we first define the generalized TFD here. For the received signal yi(t) on the
i-th antenna, the Wigner–Ville distribution (WVD) is the Fourier transform (FT) of its
instantaneous generalized autocorrelation function Kyi (t, τ),

Wyi (t, f ) = F
τ→ f

{
Kyi (t, τ)

}
=
∫
R

Kyi (t, τ)e−j2π f τdτ, (8)

where Kyi (t, τ) is defined as

Kyi (t, τ) = E
{

ψ
[
yi

(
t +

τ

2

)]
ψ
[
y†

i

(
t− τ

2

)]}
, (9)

and where ψ[yi(t)] = exp
(
|yi(t)|p

J

)
(1 ≤ p ≤ 2) is a nonlinear transformation, (·)∗ repre-

sents the conjugation operation, and J is the compression factor.
However, the WVD uses bilinear transformation instead of linear transformation,

which will generate serious cross-terms when processing multi-component signals. These
undesirable cross-terms can be minimized by convolving WVD with the associated 2D-TF
kernel [47], which can be expressed as

ρyi (t, f ) = Wyi (t, f ) ∗∗
t f

γ(t, f ), (10)

where ρyi (t, f ) represents quadratic generalized TFD, ∗∗t f denotes double convolution, and
γ(t, f ) is a 2D smooth kernel of t and f used to reduce cross-terms generated during WVD
processing. After replacing a convolution with a signal delay, one has

ρyi (t, f ) = F
τ→ f

{
R(t, τ) ∗

t
Kyi (t, τ)

}
, (11)

where R(t, τ) is the delay kernel function of generalized TFD and is defined as the inverse
FT of γ(t, f ). It is expressed as follows:
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R(t, τ) = F
f→τ

−1{γ(t, f )} =
∫
R

γ(t, f )ej2πτ f d f . (12)

It can be seen from the above analysis that generalized TFD is obtained by the FT
of convolution of the delay kernel function and the generalized autocorrelation function,
which is similar to traditional TFD. As mentioned before, generalized MTFD is an extension
of generalized TFD, which means it can be defined by the delay kernel function and the gen-
eralized time-dependent correlation matrix. The generalized time-dependent correlation
matrix can be represented as

Gyy(t, τ) = E
{←→y (t +

τ

2

)←→y †
(

t− τ

2

)}
≃ AΣG(t, τ)A† + ϖ2

Gδ(t)I,
(13)

where ΣG(t, τ) is the generalized signal correlation matrix, and ϖ2
GI is the generalized

interference correlation matrix.
We note that only when Gyy(t, τ) is bounded can the generalized MTFD effectively

suppress non-Gaussian interference. Therefore, we give the proof of the boundedness of
Gyy(t, τ).

Theorem 1. If the generalized time-dependent correlation matrix Gyy(t, τ) is bounded, the (i, m)-
th element of Gyy(t, τ) is bounded, which can be represented as

−∞ < Gim = E
{

yi(t + τ
2 )y
∗
m(t− τ

2 )

ψ[yi(t + τ
2 )]ψ[ym(t− τ

2 )]

}
< ∞. (14)

Proof. See Appendix A.

Given that Gyy(t, τ) is bounded, based on the extended Wiener–Khintchine theorem,
the generalized MTFD of the received signal can be estimated as the FT of the time-varying
generalized correlation matrix, which can be expressed as

ρyy(t, f ) = F
τ→ f

{
R(t, τ) ∗

t
Gyy(t, τ)

}
= F

τ→ f

{
R(t, τ) ∗

t

(
AΣG(t, τ)A† + ϖ2

Gδ(τ)I
)}

.
(15)

Based on the linear property and the convolution operation of FT, the generalized MTFD of
the received signal can be expressed as

ρyy(t, f ) = A F
τ→ f

{
R(t, τ) ∗

t
ΣG(t, τ)

}
A† + ϖ2

G I F
τ→ f

{
R(t, τ) ∗

t
δ(τ)

}
. (16)

The expansion form of the generalized MTFD of the received signal can be expressed as

ρyy(t, f ) = F
τ→ f

{
R(t, τ) ∗

t
Gyy(t, τ)

}

=


ρy1,y1(t, f ) ρy1,y2(t, f ) · · · ρy1,yMr

(t, f )
ρy2,y1(t, f ) ρy2,y2(t, f ) · · · ρy2,yMr

(t, f )
...

...
...

...
ρyMr ,y1

(t, f ) ρyMr ,y2(t, f ) · · · ρyMr ,yMr
(t, f )

.
(17)

In the generalized MTFD matrix, the diagonal terms are the generalized auto-TFD terms of
the signal, which are defined as

ρyi ,yi (t, f ) =
∫ ∞

−∞

∫ ∞

−∞
R(t− ξ, τ)←→y i

(
ξ +

τ

2

)←→y ∗i (ξ − τ

2

)
e−j2πτ f dξdt. (18)
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The non-diagonal terms are the generalized cross-TFD terms of the signal and are defined as

ρyi ,yj(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
R(t− ξ, τ)←→y i

(
ξ +

τ

2

)←→y ∗j (ξ − τ

2

)
e−j2πτ f dξdt. (19)

Therefore, the diagonal and off-diagonal entries of the signal-generalized MTFD matrix
play the roles of autocorrelation and cross-correlation, respectively.

The generalized MTFD extends the noise power in the (t, f ) while focusing on the
source signal power within the instantaneous bandwidth. By replacing the generalized
correlation matrix of the signal with Gyy(t, τ) and by defining ρyy(t, f ), the generalized
MTFD matrix can be employed to characterize the signal covariance matrix to make it
adapt to many traditional second-order-based array processing methods [48].

To reduce the computational complexity, only the effective information of the general-
ized MTFD matrix is used to extract the transmitted signal information. Specifically, the TF
points (ts, fs) with sufficient energy are selected through threshold processing, and the
points with negligible energy are eliminated [46]. This process can be expressed as

Keep(ts, fs) i f
∥∥∥ρyy(ts, fs)

∥∥∥ > ε, (20)

where ε denotes the selection threshold, typically, ε = 5% of the points with maximum
energy [49]. It is defined as a parameter related to the generalized auto-TFD terms of
the signal

ε ≥ 0.05×max
(
ρavg

)
, (21)

where ρavg is the average of the generalized auto-TFD terms of the signal, and it is ex-
pressed as

ρavg (t, f ) =
1

Mr

Mr

∑
i=1

ρyiyi (t, f ). (22)

Based on the effective TF points of the generalized MTFD matrix selected by Equation (20),
the quasi-covariance matrix of the signal is constructed as

ρ̂yy(t, f ) =
1
n

n

∑
i=1

ρyy(ti, fi), (23)

where n represents the number of selected TF points.
Compared with the traditional signal covariance matrix, the quasi-covariance matrix

reduces interference and improves the algorithm’s performance by selecting the high-
energy TF points.

4. Joint Estimation Based on the Generalized MTFD Matrix
4.1. Estimation of the Number of Transmit Antennas

In this paper, the number of antennas is estimated using the radius of the Gerschgorin
disk. Firstly, similarity transformation is performed on the quasi-covariance matrix ρ̂yy(t, f )
to obtain the radius of the Gerschgorin disk of ρ̂yy(t, f ). Then, the number of transmit
antennas is estimated by constructing the objective function based on the radius of the
Gerschgorin disk. As previously mentioned, the expansion of the quasi-covariance matrix
can be expressed as

ρ̂yy(t, f ) =


ρ̂y1,y1(t, f ) ρ̂y1,y2(t, f ) · · · ρ̂y1,yMr

(t, f )
ρ̂y2,y1(t, f ) ρ̂y2,y2(t, f ) · · · ρ̂y2,yMr

(t, f )
...

...
...

...
ρ̂yMr ,y1

(t, f ) ρ̂yMr ,y2(t, f ) · · · ρ̂yMr ,yMr
(t, f )

. (24)

Firstly, the quasi-covariance matrix is divided into blocks to obtain
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ρ̂yy(t, f ) =


ρ̂y1,y1(t, f ) ρ̂y1,y2(t, f ) · · · ρ̂y1,yMr

(t, f )
ρ̂y2,y1(t, f ) ρ̂y2,y2(t, f ) · · · ρ̂y2,yMr

(t, f )
...

...
...

...
ρ̂yMr ,y1

(t, f ) ρ̂yMr ,y2(t, f ) · · · ρ̂yMr ,yMr
(t, f )


=

[
ρ̂1(t, f ) ρ̂

ρ̂† ρ̂Mr Mr
(t, f )

]
,

(25)

where ρ̂ is a vector formed by the first Mr − 1 elements of the Mr-th column of the quasi-
covariance matrix ρ̂yy(t, f ), and ρ̂1(t, f ) is a square matrix consisting of the first Mr − 1
rows and the first Mr − 1 columns of the matrix ρ̂yy(t, f ). This implies that ρ̂1(t, f ) is the
sequential principal minor of ρ̂yy(t, f ). The matrix ρ̂1(t, f ) can be further expressed as

ρ̂1(t, f ) = U1Λ1U†
1, (26)

where Λ1 is a diagonal matrix composed of eigenvalues

Λ1 = diag(µ1, µ2, µ3, · · · , µMr−1), (27)

and where U1 is a unitary matrix composed of eigenvectors of ρ̂1(t, f )

U1 = [u1, u2, u3, · · · , uMr−1]. (28)

The eigenvalues of the quasi-covariance matrix ρ̂yy(t, f ) and its block matrix ρ̂1(t, f ) satisfy
the relationship

ℓ1 ≥ µ1 ≥ ℓ2 ≥ µ2 ≥ · · · ≥ ℓMr−1 ≥ µMr−1 · · · ≥ ℓMr , (29)

where ℓ1 ≥ ℓ2 · · · ≥ ℓMr represent the eigenvalues of the matrix ρ̂yy(t, f ). Then, the matrix

U2 =

[
U1 0
0 1

]
is constructed, and a similar transformation is performed on the quasi-

covariance matrix ρ̂yy(t, f ) as follows:

ρ̂2(t, f ) = U†
2ρ̂yy(t, f )U2

=

[
Λ1 U†

1 ρ̂

ρ̂†U1 ρ̂Mr Mr
(t, f )

]

=


µ1 0 · · · 0 ρ1
0 µ2 · · · 0 ρ2
...

...
. . .

...
...

0 0 · · · µMr−1 ρMr−1
ρ∗1 ρ∗2 · · · ρ∗Mr−1 ρ̂yMr ,yMr

(t, f )

.

(30)

According to the Gerschgorin disk principle, the radius of the i-th Gerschgorin disk
can be written as

ri = |ρi|. (31)

To scale the radius of the Gerschgorin disk, a diagonal matrix P is constructed as

P = diag(b1, b2, · · · , bMr−1, bMr ), (32)

where bi = |ℓi − ℓi+1|, (i = 1, · · · , Mr − 1), and bMr =
1

Mr−1 ∑Mr−1
i=1 bi. Using P to perform

a similar transformation on ρ̂2(t, f ) yields
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ρ̂3(t, f ) = Pρ̂2(t, f )P−1

=



µ1 0 · · · 0 b1
bMr

ρ1

0 µ2 · · · 0 b2
bMr

ρ2
...

...
. . .

...
...

0 0 · · · µMr−1
bMr−1

bMr
ρMr−1

bMr
b1

ρ∗1
bMr
b2

ρ∗2 · · · bMr
bMr−1

ρ∗Mr−1 ρ̂yMr ,yMr
(t, f )


.

(33)

Based on matrix theory, ρ̂3(t, f ) is obtained by performing a similar transformation on
ρ̂2(t, f ) so that it has the same eigenvalues as ρ̂2(t, f ), and the center of the Gerschgorin
disk remains unchanged. However, the radius of the Gerschgorin disk is compressed
by a factor of bi/bMr , which can increase the distance between the noise radius and the
signal radius.

According to the above analysis, the objective function based on the Gerschgorin disk
criterion is modified as

G(k) =
1

1
Mr−1 ∑Mr−1

i=1 bi

(
bkrk −

Dn

Mr − 1

Mr−1

∑
i=1

biri

)
, (34)

where Dn = tD/ ln(N/Mr). The value of G(k) starts with k = 1, and the iteration stops
when it takes a non-negative value for the first time. The estimation of the number of
antennas is obtained as M̂t = k− 1.

The method of estimation of the number of transmit antennas is summarized in
Algorithm 1.

Algorithm 1: Estimation of the NTA via the GMTFD matrix

Input: The GMTFD matrix ρyy(t, f )
1. The effective TF points of the GMTFD matrix are selected by Equation (20).
2. The quasi-covariance matrix ρ̂yy(t, f ) is constructed according to Equation (23).
3. Perform a similar transformation on the matrix ρ̂yy(t, f ) using Equation (30).
4. Estimate the radius of the Gerschgorin disk according to Equation (31).
5. Use the center of the Gerschgorin disk to compress the radius of the Gerschgorin disk.
Start iteration
6. Construct the objective function based on the Gerschgorin disk criterion according to Equation (34).
7. Update the objective function for k = k + 1.
8. Until the objective function takes a non-negative value for the first time.
Terminate iteration
Output: M̂t = k− 1

4.2. DOA Estimation

In this paper, a subspace algorithm is employed to estimate the DOA of the MIMO
signal. Assume that Mt source signals of the system are incoherent, and Mt vectors in the
matrix A of the received signal are linear and non-uniform. The DOA estimation of the
signal is determined by the characteristic structure of the matrix, so the implementation of
DOA estimation requires the EVD of the quasi-covariance matrix.

Let the eigenvalues of matrix ρ̂yy(t, f ) be ℓ1 ≥ ℓ2 · · · ≥ ℓMr and the eigenvalues of

matrix A F
τ→ f

{
R(t, τ) ∗

t
ΣG(t, τ)

}
A† be λ1 ≥ λ2 · · · ≥ λMr . Then, the relationship between

ℓ and λ can be expressed as ℓi = λi + ϖ2
G F

τ→ f
{R(t, τ) ∗

t
δ(τ)}, i = 1, 2, . . . , Mr. Since A has

full rank, the Mr−Mt smallest eigenvalues of ρ̂yy(t, f ) are equal to ϖ2
G F

τ→ f
{R(t, τ) ∗

t
δ(τ)} , i.e.,

ℓi =


λi + ϖ2

G F
τ→ f
{R(t, τ) ∗

t
δ(τ)} i = 1, 2, . . . , Mt

ϖ2
G F

τ→ f
{R(t, τ) ∗

t
δ(τ)} i = Mt + 1, Mt + 2, . . . , Mr

. (35)
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The EVD of ρ̂yy(t, f ) can be simplified as

ρ̂yy(t, f ) =
Mt

∑
i=1

(
λi + ϖ2

GI F
τ→ f
{R(t, τ) ∗

t
δ(τ)}

)
vivH

i

+
Mr

∑
i=Mt+1

(
ϖ2

GI F
τ→ f
{R(t, τ) ∗

t
δ(τ)}

)
vivH

i ,

(36)

where vH
i vj = δi,j is the orthogonal eigenvector of ρ̂yy(t, f ). Then, we have

ρ̂yy(t, f )vi = ϖ2
GI F

τ→ f
{R(t, τ) ∗

t
δ(τ)}vi, i = 1, 2, . . . , Mr, (37)

which means (p̂yy(t, f )− ϖ2
GI F

τ→ f
{R(t, τ) ∗

t
δ(τ)})vi = 0, i = Mt + 1, Mt + 2, . . . , Mr. The

quasi-covariance matrix of the received signal satisfies

p̂yy(t, f )−ϖ2
GI F

τ→ f
{R(t, τ) ∗

t
δ(τ)} = A F

τ→ f

{
R(t, τ) ∗

t
ΣG(t, τ)

}
A† (38)

and
A F

τ→ f

{
R(t, τ) ∗

t
ΣG(t, τ)

}
A† vi = 0, i = Mt + 1, Mt + 2, . . . , Mr. (39)

We can obtain
A†vi = 0, i = Mt + 1, Mt + 2, . . . , Mr. (40)

This suggests that the subspace spanned by the eigenvectors vMt+1, vMt+2, . . . , vMr is or-
thogonal to the complement subspace spanned by the steering vectors in A.

Therefore, based on the eigenvectors of ρ̂yy(t, f ), the steering vectors orthogonal to
the noise subspace can be used to estimate the DOA of the signal [46].

4.2.1. MUSIC Algorithm

The MUSIC algorithm exploits the orthogonality of the signal subspace and the noise
subspace to find the corresponding signal azimuth angle by constructing an objective
function and searching its minimum value. The problem of searching the minimum value
is usually transformed into a problem of searching the maximum value by taking the
reciprocal form, and the objective function becomes

PMUSIC (θ) =
1

∑Mr
i=Mt+1|a(θ)v̂i|2

. (41)

In the MUSIC algorithm, θ is traversed. Then, the value corresponding to each spectral
peak in the MUSIC space spectrum corresponds to the azimuth of a real signal.

The method of DOA estimation based on MUSIC is summarized in Algorithm 2.

Algorithm 2: DOA estimation based on the GMTFD-MUSIC

Input: The GMTFD matrix ρyy(t, f )
1. The effective TF points of the GMTFD matrix are selected by Equation (20).
2. The quasi-covariance matrix ρ̂yy(t, f ) is constructed according to Equation (23).
3. Do the EVD of ρ̂yy(t, f ) according to Equation (36).
4. Obtain the signal subspace and noise subspace according to the descending arrangement of the
eigenvalues.
Start iteration
5. The signal direction θ is substituted into the spatial spectrum of the original data in turn.
6. Search the spectrum peak to obtain the maximum matching angle as the DOA using Equation (41).
Terminate iteration
Output: θ



Remote Sens. 2024, 16, 1243 11 of 22

4.2.2. ESPRIT Algorithm

For a uniform MIMO antenna array, the adjacent sub-antennas in this array have
fixed spacing, which reflects the fixed relationship between the adjacent sub-antennas and
represents the rotation invariance between the sub-antennas. The ESPRIT algorithm exploits
the rotation invariance between sub-antennas to estimate the DOA of a MIMO system.

The ESPRIT algorithm assumes that there are two identical sub-antenna arrays and
that the spacing between them is known. Also, it is assumed that the received signal of the
first Mr − 1 elements in the MIMO array constitutes subarray 1, and the received signal
of the next Mr − 1 elements constitutes subarray 2. Then, the steering vectors of the two
sub-antenna arrays satisfy the relationship

A2 = A1ϕ, (42)

where ϕ is determined by the DOA information of the signals and the relative positions of
the two subarrays. EVD is carried out on the signal model of subarray 1 and subarray 2 to
obtain the signal subspaces of the two subarrays, respectively. Combined with the rotation
invariant relation between two subarrays, we have

Us2 = Us1ψ. (43)

After the eigenvalues {ψ1, ψ2, . . . , ψMt} are determined by performing the EVD of ψ, the az-
imuth of the transmit signals can be obtained, which can be expressed as

θk = arccos
jλ log ψk

2πd
. (44)

The method of DOA estimation based on ESPRIT is summarized in Algorithm 3.

Algorithm 3: DOA estimation based on the GMTFD-ESPRIT

Input: The GMTFD matrix ρyy(t, f )
1. The effective TF points of the GMTFD matrix are selected by Equation (20).
2. The quasi-covariance matrix ρ̂yy(t, f ) is constructed according to Equation (23).
3. Perform the EVD of ρ̂yy(t, f ) according to Equation (36).
4. Obtain the eigenvector vs corresponding to the signal subspace.
5. Take the first Mt − 1 rows and the last Mt − 1 rows of vs to form the matrices Us1 and Us2,
respectively.
6. Use the least squares method to obtain the transformation matrix ψ.
Start iteration
7. Determine the eigenvalue ψi of ψ.
8. Update the estimation of DOA according to Equation (44).
Terminate iteration
Output: θ

4.3. Computational Complexity Analysis

In order to evaluate the efficiency of the proposed algorithm, we analyze its complexity
in this subsection. The complexity analysis is shown as:

(1) The computation complexity of the GMTFD is O(M2
r (4L× logL + L(N − 1) + L2 ×

logL) + Mr + M2
r ), where L is the number of samples.

(2) The MUSIC computation complexity is O(M3
r + M2

r + Mr + Nθ × Mr + M2
t + Mt),

where Nθ denotes the DOA search scope.
(3) The ESPRIT computation complexity is O(M3

r + Mr ×M2
t + M3

t + Mr).
(4) The NTA estimation computation complexity based on the Gerschgorin disk principle

is O(M2
r + Mr ×M2

t ).

From the above analysis, it can be proved that the complexity of the proposed NTA
estimation algorithm is O(M2

r (4L× logL+ L(N− 1)+ L2× logL)+ Mr + 2M2
r + Mr×M2

t ),
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the complexity of the MUSIC based on the GMTFD is O(M2
r (4L× logL + L(N − 1) + L2 ×

logL) + 2Mr + 2M2
r + M3

r + Nθ ×Mr + M2
t + Mt), and the complexity of the ESPRIT based

on the GMTFD is O(M2
r (4L × logL + L(N − 1) + L2 × logL) + 2Mr + M2

r + M3
r + Mr ×

M2
t + M3

t + Mr). Numerical analyses show that the proposed NTA and DOA estimation
algorithm suffers from high computational complexity after employing GMTFD. However,
its performance is significantly enhanced in the presence of non-Gaussian interference.

5. Simulations
5.1. Parameter Settings

This section presents numerical results to analyze the effectiveness and reliability of
the proposed estimation method for MIMO systems under different situations. Assume
that there are three equal power uncorrelated sources at θ1 = 20◦, θ2 = 40◦, and θ3 = 60◦,
respectively. The settings of other simulation parameters are as follows: the modulation
mode is QPSK, the signal length is N = 800, the number of receive antennas is Mr = 8,
the distance between adjacent receive antennas is d = 0.5λ, the wavelength of the MIMO
antennas is λ = 10 m, the signal-to-interference ratio (SIR) is 16, the received interference is
a mixture of AWGN and non-Gaussian interference, the characteristic index of alpha-stable
noise is α = 1.8, the number of Monte Carlo experiments is denoted by T, and T = 800.
For the performance of NTA identification, the probability of detection Pd is employed as a
performance measure, which is defined as

Pd = Pr
[
Mt = M̂t

]
, (45)

where M̂t is the estimate of Mt. The performance of the DOA estimation is evaluated by
the root-mean-square error (RMSE), which is expressed as

RMSE =

√√√√ 1
TMt

T

∑
i=1

Mt

∑
k=1
|θ̂i(k)− θk|

2
, (46)

where θ̂i(k) represents the k-th target angle measured at time i.

5.2. Simulation Results
5.2.1. Performance for NTA Estimations

Figure 1 shows the estimation accuracy of the NTA of the proposed method under
different settings of the alpha-stable noise interference characteristic index α. In the simula-
tion experiment, N = 800, Mr = 8, SIR = 16, the modulation mode is QPSK, and α = 1.8,
α = 1.7, α = 1.6, and α = 1.5 are set sequentially. It can be found from Figure 1 that the
estimation performance of the proposed method is continuously improved as the value of
α increases. When α = 1.5 and SNR = 6 dB, the average estimation accuracy of the NTA is
about 80%. When the value of α increases to α = 1.8, the average estimation accuracy of
the NTA is more than 90%.

Figure 2 presents the influence of signal length on the estimation accuracy of the NTA
when α = 1.8, Mr = 8, SIR = 16, and the modulation mode is QPSK. Different signal
lengths N = 500, N = 600, N = 700, and N = 800 are considered. As shown in Figure 2,
the estimation performance of the proposed method increases with the signal length N.
When N = 500 and SNR = 6 dB, the average estimation accuracy of the NTA is about 75%.
When the value of N increases to N = 800, the average estimation accuracy of the NTA is
more than 90%.
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Figure 1. Correct estimation probability curves of the NTA under different interference characteris-
tic indices.
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Figure 2. Correct estimation probability curves of the NTA under different signal lengths.

Figure 3 shows the estimation accuracy of the NTA under different modulation modes
when α = 1.8, Mr = 8, SIR = 16, and N = 800. It can be observed from Figure 3 that the
change in modulation mode does not affect the average estimation accuracy of the proposed
method. This is because the proposed method uses the characteristics of a GMTFD matrix
to construct detection statistics and thresholds, and the modulation mode does not affect
the detection statistics and thresholds. Thus, it does not affect the estimation performance
of the proposed method.

Figure 4 presents the performance comparison between the GMTFD-based algorithm
proposed in this paper and the WME, SM-PET, and HOM-HT algorithms for the estimation
of the NTA under different SNR and SIR, when α = 1.5, Mr = 8, N = 800, and the
modulation mode is QPSK. As illustrated in Figure 4, the performance of the WME, SM-
PET, and HOM-HT algorithms degrades seriously in non-Gaussian interference, while the
GMTFD-based method can effectively estimate the number of antennas, which validates
the effectiveness of the proposed algorithm.
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Figure 3. Correct estimation probability curves of the NTA under different modulation modes.
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Figure 4. Correct estimation probability curves of the NTA under different algorithms.

5.2.2. Performance for DOA Estimations

Figure 5 shows the RMSE of the DOA estimation of the proposed method under differ-
ent settings of the alpha-stable noise interference characteristic index α. In the simulation
experiment, N = 800, Mr = 8, SIR = 16, the modulation mode is QPSK, and α = 1.8,
α = 1.7, α = 1.6, and α = 1.5 are set sequentially. It can be found from Figure 5 that the
estimation performance of the proposed method is continuously improved as the value
of α increases. When α = 1.5 and SNR = 7 dB, the RMSE of the DOA estimation is about
−36 dB. When the value of α increases to α = 1.8, the RMSE of the DOA estimation is close
to −40 dB. This is because, as the value of α becomes larger, the amount of peak pulse
interference in the received signal will decrease, which will improve the correlation of the
signal, thus affecting the estimation performance.

Figure 6 illustrates the influence of the number of receive antennas on the estimation
accuracy of the DOA when N = 800, α = 1.8, SIR = 16, and the modulation mode is
QPSK. Different numbers of receive antennas Mr = 5, Mr = 6, Mr = 7, and Mr = 8 are
considered. As shown in Figure 6, the estimation performance of the proposed method
increases with the number of receive antennas Mr. When Mr = 5 and SNR = 7 dB,
the RMSE of DOA estimation is about −7 dB. When the value of Mr increases to Mr = 8,
the RMSE of DOA estimation is about −40 dB. As the number of receive antennas Mr
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increases, the number of generalized correlation matrix elements of the received signal
increases, making the statistics closer to the theoretical distribution, thus leading to higher
recognition performance.
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Figure 5. Normalized RMSE of the DOA estimation under different interference characteristic indices.
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Figure 6. Normalized RMSE of the DOA estimation under different numbers of receive antennas.

Figure 7 presents the influence of signal length on the accuracy of DOA estimation
when α = 1.8, Mr = 8, SIR = 16, and the modulation mode is QPSK. Different signal
lengths N = 500, N = 600, N = 700, and N = 800 are considered. As shown in Figure 7,
the estimation performance of the proposed method increases with the signal length N.
When N = 500 and SNR = 7 dB, the RMSE of the DOA estimation is about −35 dB. When
the value of N increases to N = 800, the RMSE of the DOA estimation reduces to −40 dB.
Similar to the change in the number of receive antennas, as the signal length N increases,
the number of generalized correlation matrix elements of the received signal increases,
making the statistics closer to the theoretical distribution, thus improving the method’s
recognition performance.

Figure 8 shows the estimation accuracy of the DOA under different modulation modes
when α = 1.8, Mr = 8, SIR = 16, and N = 800. It can be observed from Figure 8 that the
change in modulation mode does not affect the average estimation accuracy of the proposed
method. This is because the proposed method uses the characteristics of a GMTFD matrix
to construct detection statistics and thresholds, and the modulation mode does not affect
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the detection statistics and thresholds. Thus, it does not affect the estimation performance
of the proposed method.
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Figure 7. Normalized RMSE of the DOA estimation under different signal lengths.
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Figure 8. Normalized RMSE of the DOA estimation under different modulation modes.

Figure 9 presents the performance comparison between the GMTFD-based algorithms
proposed in this paper and the traditional MTFD-based algorithms in DOA estimation,
when α = 1.8, Mr = 8, SIR = 16, N = 800, and the modulation mode is QPSK. As illus-
trated in Figure 9, against the background of non-Gaussian interference, the estimation
performance of the Generalized-TF-MUSIC and Generalized-TF-ESPRIT algorithms is
better than the TF-MUSIC and TF-ESPRIT algorithms.

We adopted several DOA estimation methods that can deal with non-Gaussian inter-
ference to compare with the proposed Generalized-TF-MUSIC in the simulation setup of
the DOA estimation. Examples are the generalized propagator algorithm (GPM), general-
ized beamforming algorithm (GMVDR), MUSIC based on correlation entropy (JE-MUSIC),
fractional low order MUSIC (FLOS-MUSIC), MUSIC based on soft decision/hard decision
(SD-FEC-MUSIC/HD-FEC-MUSIC), and TF-MUSIC. Figure 10 shows the performance
comparison between the GMTFD-based algorithms proposed in this paper and other iden-
tification methods in the DOA estimation, when α = 1.5, Mr = 8, SIR = 16, N = 800,
and the modulation mode is QPSK. It is clear from Figure 10 that the DOA estimation
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performance of the proposed Generalized-TF-MUSIC algorithm is better than the other
seven algorithms, which verifies the effectiveness of the proposed algorithm.
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Figure 9. Normalized RMSE of the DOA estimation using Generalized-TF-MUSIC, Generalized-TF-
ESPRIT, TF-MUSIC, and TF-ESPRIT.
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Figure 10. Normalized RMSE of the DOA estimation under different algorithms.

6. Discussion

The introduction of a generalized MTFD matrix can improve the adaptability of MIMO
communication systems to non-Gaussian interference. This paper presents a method of
spatial parameter estimation using a GMTFD matrix against non-Gaussian interference
and Gaussian noise. The model considers the effects of various communication system pa-
rameters and has universal applicability. Based on the complexity analysis and simulation
results, the proposed method is compared and verified in detail.

As shown in Figures 1 and 5, the proposed method has good adaptability to non-
Gaussian interference. This is mainly because the generalized MTFD compresses the strong
pulse amplitude of non-Gaussian interference by introducing nonlinear transformation
and extracts the subspace information according to the quasi-covariance matrix constructed
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by the generalized MTFD, so as to effectively extract the information of NTA and DOA.
As shown in Figures 2 and 7, with the increase in signal length, the performance of the
proposed method becomes better. This is because the quasi-covariance matrix is closer
to the theoretical value. As shown in Figures 3 and 8, the modulation type of the MIMO
system does not affect the performance of this method because it does not contribute to
the construction of generalized MTFD. As shown in Figures 4 and 9, the proposed method
achieves better resolution performance than traditional methods. This is because the
generalized MTFD matrix adopted in this paper can suppress the non-Gaussian interference
while concentrating the signal energy around the instantaneous frequency, which improves
the effective SNR of the signal. However, although the proposed method has the above
advantages, it also has some limitations.

Although it can effectively suppress non-Gaussian interference, the computational
complexity of this method is very high. The computational complexity mainly comes from
the calculation of the MTFD matrix. In future work, we will further improve the calculation
of the MTFD of the proposed method.

7. Conclusions

This paper proposed a reliable scheme to identify the NTA and DOA of MIMO systems
in complex environments. The generalized covariance matrix was introduced to construct
the GMTFD matrix with strong adaptability to non-Gaussian interference. By making
use of the GMTFD matrix, the spatial parameters are estimated for MIMO systems in the
presence of non-Gaussian interference and Gaussian noise. The proposed scheme exhibits
superior stability and robustness compared to existing methods, even in the absence of a
priori information about the communication system, such as modulation types and channel
coefficients. The results indicated the effectiveness and practicability of the proposed
method, which has high estimation accuracy and resolution under low SNR conditions at
the expense of high computational complexity.
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Appendix A

To illustrate that Gyy(t, τ) can adapt to non-Gaussian interference, supplementary
proof materials are listed below.

The (i, m)-th element of Gyy(t, τ) can be given by

Gim = E
{

yi(t + τ
2 )y
∗
m(t− τ

2 )

ψ[yi(t + τ
2 )]ψ[ym(t− τ

2 )]

}
(A1)

if Gim is a complex number, which can be expressed as
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Gim = Re{Gim}+ j Im{Gim}

= Re

{
E
{

yi(t + τ
2 )y
∗
m(t− τ

2 )

ψ
[
yi(t + τ

2 )
]
ψ
[
ym(t− τ

2 )
]}}

+ Im

{
E
{

yi(t + τ
2 )y
∗
m(t− τ

2 )

ψ
[
yi(t + τ

2 )
]
ψ
[
ym(t− τ

2 )
]}}.

(A2)

To show that Gim is bounded, it is necessary to prove that its real and imaginary parts are
bounded. Let us first prove that the real part is bounded. For any complex random variable
Y = Y1 + jY2, the following equation holds:

Re{Y} ≜ Re{Y1 + jY2} = Y1 ≤ |Y1| ≤
√

Y2
1 + Y2

2 = |Y|, (A3)

Re{E{Y}} = Re{E{Y1 + jY2}} = E{Y1} = E{Re{Y}}, (A4)

which means Re{Gim} can be expressed as

Re{Gim} = Re

{
E
{

yi(t + τ
2 )y
∗
m(t− τ

2 )

ψ
[
yi(t + τ

2 )
]
ψ
[
ym(t− τ

2 )
]}}

= E
{

Re

{
yi(t + τ

2 )y
∗
m(t− τ

2 )

ψ
[
yi(t + τ

2 )
]
ψ
[
ym(t− τ

2 )
]}}

≤ E
{∣∣∣∣∣ yi(t + τ

2 )y
∗
m(t− τ

2 )

ψ
[
yi(t + τ

2 )
]
ψ
[
ym(t− τ

2 )
] ∣∣∣∣∣
}

= E
{ ∣∣yi(t + τ

2 )
∣∣∣∣y∗m(t− τ

2 )
∣∣∣∣ψ[yi(t + τ

2 )
]∣∣∣∣ψ[ym(t− τ

2 )
]∣∣
}

= E


∣∣yi(t + τ

2 )
∣∣∣∣y∗m(t− τ

2 )
∣∣∣∣∣∣exp

(
|yi(t+ τ

2 )|
p

J

)∣∣∣∣∣∣∣∣exp
(
|ym(t− τ

2 )|
p

J

)∣∣∣∣
.

(A5)

Let f (x) = |x|
exp

(
|x|p

J

) . The function f (x) is continuous in its domain, and its limit

lim
x→∞

f (x) exists. Therefore, f (x) is bounded in the domain. Similarly, it can be obtained as∣∣yi(t + τ
2 )
∣∣∣∣y∗m(t− τ

2 )
∣∣∣∣∣∣exp

(
|yi(t+ τ

2 )|
p

J

)∣∣∣∣∣∣∣∣exp
(
|ym(t− τ

2 )|
p

J

)∣∣∣∣ < ∞. (A6)

According to Equations (A5) and (A6), we have

E


∣∣yi(t + τ

2 )
∣∣∣∣y∗m(t− τ

2 )
∣∣∣∣∣∣exp

(
|yi(t+ τ

2 )|
p

J

)∣∣∣∣∣∣∣∣exp
(
|ym(t− τ

2 )|
p

J

)∣∣∣∣
 < ∞, (A7)

in which E
{ |yi(t+ τ

2 )||y
∗
m(t− τ

2 )|
|ψ[yi(t+ τ

2 )]||ψ[ym(t− τ
2 )]|

}
is bounded and can be represented as

Re{Gim} ≤ E
{∣∣∣∣∣ yi(t + τ

2 )y
∗
m(t− τ

2 )

ψ
[
yi(t + τ

2 )
]
ψ
[
ym(t− τ

2 )
] ∣∣∣∣∣
}

< ∞. (A8)
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In addition, for a complex random variable Y = Y1 + jY2, one obtains

Re{Y} ≜ Re{Y1 + jY2} = Y1 ≥ −|Y|, (A9)

which means Re{Gim} is bounded, i.e.,

Re{Gim} ≥ −E
{∣∣∣∣∣ yi(t + τ

2 )y
∗
m(t− τ

2 )

ψ
[
yi(t + τ

2 )
]
ψ
[
ym(t− τ

2 )
] ∣∣∣∣∣
}

> −∞. (A10)

To sum up, Re{Gim} has both upper and lower bounds, i.e.,

−∞ < Re{Gim} < ∞. (A11)

Similar to the above proof procedure, the imaginary part of Gim can be proven to be
bounded, i.e.,

−∞ < Im{Gim} < ∞. (A12)

Thus, the generalized correlation matrix Gyy(t, τ) is bounded in the non-Gaussian
interference, and its element Gim is finite, indicating that Gyy(t, τ) can adapt to non-
Gaussian interference.
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