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Abstract 

    Array signal processing has a rich history that dates back to a century ago. Despite its long-standing 

existence, the demand for its study has only increased due to the need for continuous development in 

multiple fields. The objective of this work is to enhance the existing subspace method in array signal 

processing to tackle two significant problems. Firstly, compensating for the arrival time and phase errors. 

Secondly, reducing complexity for certain subspace techniques. These issues pose a challenge for accurate 

signal processing and require novel solutions to achieve optimal results. Therefore, the proposed 

improvements to the subspace method will contribute to the advancement of array signal processing and its 

applications in various domains.    

   To solve the first problem, this work uses an enumeration to process all possible combinations of the 

arrival time from each channel. Then, near field MUltiple SIgnal Classification (MUSIC) algorithms are 

used to generate super-resolution spectra, where the data with fewer phase errors will have much more 

focused results than others. This method has obvious advantages and disadvantages; the advantage is that 

the hidden information can be revealed, and the accuracy of the proposed method is much higher than the 

conventional method. However, because all the stationary points are considered to be related to the possible 

arrival time, the computation complexity is extremely high. Thus, the second problem appears. To tackle 

this problem, optimization techniques are applied to replace the two-dimensional scan process in the near 

field MUSIC into gradient based optimization.  

    Besides, the work discussed advanced matrix decomposition Generalized Singular Value Decomposition 

(GSVD),and Generalized EigenValue Decomposition(GEVD) as possible alternative approaches for the 

first problem. In addition, the resolution of the near field MUSIC is discussed. The calculation shows that  , 

under the assumptions this work made, the resolution has no upper limit if the arrival time information is 

precisely evaluated. Thus, it has great potential that super-resolution imaging can be achieved by using 

relatively weaker hardware platform, as proof, we bring an SDR array experiment to verify the idea, which 

shows the feasibility of the study. 

    This work also introduced a modified near field Estimation of Signal Parameters via Rotational Invariant 

Technique (ESPRIT), unlike previous studies, the work focuses on the Least Square (LS) method, and 

reconstruct the problem from the non-constrained optimizations to the constrained ones. The Lagrange 

multiplier is introduced to solve the Total Least Square(TLS) based ESPRIT for the special linear system 

caused by the error in the covariance matrix. A classical sphere reflector experiment is conducted and the 

results show that the proposed method is more efficient and accurate than SAR imaging in terms of 

localization purposes. 

    In the last part, this work continues the constrained optimization techniques mentioned previously, 

presenting subspace tracking techniques. This work introduces a recent trending technique, low-rank matrix 

recovery to solve the conventional subspace tracking problem for the DOA estimation. Because the kernel 

iterations of the ALM based low rank matrix recovery process is similar to the subspace tracking. Numerical 

simulations are carried out, and they show the potential of the ALM-based algorithm. Besides, as a bonus 

work, we use edge detection techniques to reduce the rank of the GPR profile, and it allows the 

implementation of the proposed method not only for the array signal processing but for more universal uses. 

Keywords: Direction Of Arrival (DOA), Multiple Signal Classification (MUSIC), Estimation of Signal 

Parameters via Rotational Invariant Technique (ESPRIT), Subspace tracking, GPR, RF localization, low-

rank matrix recovery, Optimization. 
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Chapter 1 Introduction 
 

1.1 Research background 
 

    A linear array radar system is a type of radar system that uses a linear array of antenna elements to 

transmit and receive electromagnetic signals. These systems are used in various applications, including 

infrastructure engineering, archaeology science, and military surveillance [1~5].  

    In a linear array radar system, the antenna elements are arranged in a straight line. Initially, the design 

aims to transmit a focused signal beam that could be directed in a specific direction. Many may think linear 

array radar systems have the capability of high resolution and accuracy, making them well-suited for 

various applications [6][7]. However, the systems can only partially determine the resolution and accuracy 

capability; the algorithm is also a significant part that contributes to the results. In speaking of the algorithm, 

this work emphasizes the Direction Of Arrival (DOA) estimation. DOA estimation is a technique used to 

determine the direction from which a signal arrives at a sensor or array of sensors, which is used in many 

kinds of fields, including radar, sonar, wireless communication, and speech processing [7~12]. 

   There are three main approaches to estimating the DOA of a signal, including beamforming, Multiple 

Signal Classification (MUSIC), Estimation of Signal Parameters via Rotational Invariance Techniques 

(ESPRIT), and others. These methods originally and typically involve linear array systems to achieve better 

performance by utilizing all elements of the systems rather than one. In the next few sections, a short history 

of these methods is briefly reviewed. 

 

1.2 History of beamforming 
 

    Beamforming is a classical approach to solving DOA problems. It is a technique used to steer a beam of 

electromagnetic waves in a specific direction. It has a long history dating back to the early days of radar 

and radio communications. One of the earliest forms of beamforming was using mechanically steerable 

antenna arrays, which used motors or other mechanical devices to move the antenna elements to steer the 

beam physically. This type of beamforming was used extensively during World War II in radar systems to 

detect enemy aircraft. 

    In the 1950s and 60s, electronic beamforming techniques began to be developed, which used electronic 

circuitry to adjust the phase of the signals transmitted by each antenna element to steer the beam. These 

techniques allowed for much more agile and precise beam steering and are still widely used today [13][14]. 

More recently, advances in digital signal processing have led to the development of digital beamforming 

techniques, which use software algorithms to adjust the phase and amplitude of the transmitted signals to 

steer the beam. These techniques are widely used in modern radar and communication systems. The 

resolution of the conventional beamforming technique is not satisfactory in some cases; thus, many 

developments have been made to it. Nowadays, modern beamforming techniques are not a bad option for 

some DOA purposes that require high resolution and some times better approach among all 

solutions[16~18].  
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1.3 History of subspace methods 
 

    The Subspace method basically contains three parts. The first one is MUSIC and its variant. The studies 

have been made since 1975. Schmidt, Van Loan and Speiser raised and gave many modifications to the 

original MUSIC [19~21]. Mathematically, the MUSIC algorithm works by calculating the eigenvectors of 

the covariance matrix of the received signals at the antenna array. These eigenvectors correspond to the 

signal subspaces of the received signals, and particular operations can estimate the DOA of the signals. One 

of the key advantages of the MUSIC algorithm is that it can provide very high-resolution DOA estimates, 

even in the presence of noise and interference. It is also relatively simple to implement, contributing to its 

widespread use in many fields. 

    The second part is about ESPRIT methods; different from the MUSIC, ESPRIT methods directly use the 

Eigen Value Decomposition (EVD), Singular Value Decomposition (SVD) or Generalized Value 

Decomposition (GSVD) to present solutions to the unknown parameters in the rotation matrix. ESPRIT is 

around 40 years old. It was developed in the 1980s and is a widely used method for DOA estimation [22,23]. 

Mathematically, the ESPRIT algorithm works by diagonalizing the results from the covariance matrices of 

the subarrays of the system.   

    The third one is called subspace tracking. The idea is to use some matrix operations, especially 

decomposition techniques, to renew the subspaces iteratively. One of the earliest subspace tracking 

algorithms was developed by E. Oja in the 1980s [23]. The method is developed in the 1980s and 1990s, 

building on earlier work in the field of subspace methods for signal processing[24,25]. Several different 

subspace tracking algorithms have been developed over the years, including the R-Method, the Adaptive 

Space-Time Processing (STAP) algorithm, the Projection-Approximation Subspace Tracking (PAST) 

algorithm, and others[24,26]. The idea is to use some matrix operations, especially decomposition 

techniques, to renew the subspaces iteratively. 

 

1.4 Motivations and novelties 
 

    Significant progress has been made in linear array signal processing, especially, for DOA purposes, an 

increasing number and complexity of research have been conducted in recent years.  However, there are 

still questions and challenges that need to be addressed. In particular, applying these subtle algorithms to 

some hardware with limitations has attracted attention. Because most of the algorithms are too abstract and 

can hardly be implemented in accessible systems.  However, current approaches to studying [specific topic] 

have several limitations that prevent further advancement. 

    This dissertation address some of these limitations and tries to contribute to the field by using some 

mathematical technologies. The research is motivated by the belief that advanced linear algebra techniques 

such as matrix decomposition, and linear optimization can handle the input data with noise and be applied 

to the hardware platform under certain conditions that can be relatively easily achieved practically. 



3 
 

    In addition to its practical significance, this work is also motivated by the theoretical importance 

following the previous study on the far field of DOA. By summarizing and extracting the current literature, 

this dissertation attempts to rephrase the theoretical understanding of DOA algorithms to the near field form.  

    The novelty of this dissertation can be considered as the following two aspects: first, it provides a novel 

approach to solving the problem of near field localization problem by using technologies with less 

computational complexity.  

    Second, In this work, proposed algorithms have been tested on a wide range of data sets; some have 

consistently outperformed existing methods in accuracy and efficiency. However, some other algorithms 

are theoretically proven accurate but need to be adjusted accordingly to achieve the full implementation in 

the experimental condition. We can shed light on the underlying factors contributing to the algorithm’s 

effectiveness and provide insights into how it can be further improved. 

    Overall, this dissertation contributes to developing the near field DOA estimation by providing some 

solutions to the existing problems and trying to involve multiple kinds of factors that influence the 

performance of this solution. 

1.5 Structure of thesis 
 

    This work is organized as follows: 

    Chapter 2 introduces the basic mathematical knowledge required for the later chapters. In addition, many 

assumptions are made to ensure the proposed algorithm is self-consistent. This chapter gives a brief 

introduction to the phase error problem that we will encounter in the next few chapters. 

    

Chapter 3 is a brief introduction to modern beamforming. The chapter describes some advanced 

beamforming techniques, revealing that the border between the beamforming and subspace methods has 

been blurred in the last half-century. Using such approaches as covariance matrices, optimization and 

eigenvalue decompositions are no more uniquely used in the subspace methods.  Thus, the chapter is 

presented, even though this work is not emphasizing the beamforming problems. 

    

Chapter 4 studies the near field of MUSIC and its variants. As we know some of the universal approaches 

to solve the DOA problems in the last chapter in the far field, this chapter transforms the far field problem 

into a near field one, and then tries to reduce the computational load by using music algorithm and its 

variants.  Computation acceleration is so emphasized because we are using local maxima as a judgment for 

computers. Almost all of the combinations of different maxima of different channels will be the input for 

the enumeration which generates a tremendous amount of loops in code, where near field MUSIC itself is 

an O(2) complexity algorithm. Besides, avoiding manual arrival time selection is essential in this study, as 

the experiments show that under the high attenuation condition, the arrival time decided by the bare eye 

and the global maxima judgment is no longer reliable. 

    

Chapter 5 can be considered as an extensional study of Chapter 4; though we name the method ESPRIT the 

kernel step is still as same as the MUSIC. However, this chapter introduces the least square problem for 
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solving the linear system; the constrained optimization problem is introduced in this chapter. and we also 

move our focus from the GPR cases to a classical and experimental MIMO system localization. 

Chapter 6 is a fundamental study of the subspace tracking method for linear array DOA estimation. 

However, the conventional method could be better-suited to our cases, thus, low-ranked matrix-related 

algorithms are applied. This kind of algorithm was trending around 15 years ago and achieved significant 

success in the imaging process research; however, it is not heavily used in GPR signal processing for many 

reasons. Moreover, as an extension, this chapter also offers an idea for handling GPR profiles (might not 

be array signals) by using the proposed techniques. 
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Chapter 2 Basic Knowledge and Assumptions About Signal Mode 

and Linear Algebra 
 

    In this chapter, some basic terminologies and linear algebra knowledge will be introduced. 

Especially some theorems of covariance matrix decomposition will be given. Signal mode is 

another issue, and some assumptions are made to simplify the mathematic procedure in the later 

chapters. 

2.1 Covariance matrix 
 

    The original representation of the covariance matrix is defined as  

*( ( ) ( ( )))( ( ) ( ( )))R E X t E x t X t E x t = − −   .                                   (2.1.1) 

The noise term should follow the Gaussian process, which means the expect value of noise is 0 , 

the noise has no correlation and the power of noise  2  follows 

* 2[ ( ) ( )]E N t N t I= .                                                    (2.2.2) 

In this case, the covariance matrix can be represented by using a steering matrix and a reference 

channel 

* 2( ) ( )R AE x t x t A I = +  .                                                (2.2.3) 

or  

2

xR AR A I= +                                                          (2.2.4) 

However, because of the limited length of the acquired data, we can only calculate an 

approximation of the signal covariance matrix , which is marked as R̂  

*1ˆ ( ) ( )R X t X t
L

= .                                                     (2.2.5) 

The covariance matrices in the later chapters are all actually R̂  unless it is specifically noted. 

 

2.2 Toeplitz and Hermitian 
 

    There are two types of  matrices that will be often used later: the Toeplitz matrix and the 

Hermitian matrix. If a matrix A  is Toeplitz, it can be written as 



8 
 

0 1 2 1

1 0

2 0 2

1 1

1 2 1 0

n

n

a a a a

a a

A a a a

a a

a a a a

−

−

−

−

− − −

 
 
 
 =
 
 
 
 

.                                                    (2.2.1) 

It means that the elements are systematical along the main diagonal and the elements parrel along the main 

diagonal are equal.  The information of the matrix are determined by the first row and the first column, 

totally 2n-1 elements[1]. Another one is the Hermitian matrix. The feature of a Hermitian matrix is HA A= . 

 

2.3 Matrix Decompositions 
 

    Matrix decompositions are fundamental analysis methods for revealing further information from the data 

matrix[2,4,5]. Primarily, modern DOA estimation methods heavily rely on the subspace generated by the 

decompositions. In this case, typical decompositions are introduced in this section to have a regulated 

mathematical form for the later chapters. 

 

2.3.1 Eigenvalue decomposition 

    Let N NA C   and 1Nx C  , the EigenValue Decomposition(EVD) can be defined as  

Ax x=                                                                 (2.3.1) 

where   is a scalar named eigenvalue and x is its corresponding Eigenvector. Note that the eigen value can 

be zero but eigenvectors are always non-zero[3]. 

2.3.2 Singular value decomposition 

    Unlike EVD, Singular Value Decomposition (SVD)does not need to be performed in a square matrix. 

Let , the SVD of A can be written as 

HA U V=                                                                (2.3.2) 

where M MU C   and N NV C  are unitary. And the singular value matrix M NC   is the singular value 

which has a form  

0

0

i

r





 
 
 
 
  =
 
 
 
 
 

                                                  (2.3.3) 

where r is arbitrary[3]. 
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2.4 Subspaces 
 

    Covariance matrix  R can be described as a summation of signal covariance matrix S and noise 

covariance matrix N: 

R S N= +                                                                   (2.4.1) 

where  

1

d
H

k k k

k

S A s s
=

=                                                               (2.4.2)                                                     

and 

2N I=                                                                  (2.4.3)                                                           

where R, S and N are all square matrices of size N×N. Note that rank(S) = d if N> d, this situation is very 

typical in radar signal processing, because the number of sinusoidal waves is not as many as the length of 

the signal. In this case, N is a full rank matrix, rank(N)=M. Now, perform EVD on S in a vector form 

1

d
H

k i i

k

S v v
=

= .                                                           (2.4.4) 

Because rank(S) =d, the amount of none-zero eigenvalues of S is M – d. Thus above can be written as  

1

d
H

i i i

i

S v v
=

= .                                                               (2.4.5) 

Eigenvalues λ1,…, λd are defined as principal eigenvalues, correspondingly, v1,…, vd are called principal 

eigenvectors. Because vi is the an eigen vector of S, then 

i i iSv v=                                                                  (2.4.6) 

substituting S in (2.8.9) by (2.8.5a) 

1

d
H

k k k i i i

k

A s s v v
=

=  .                                                        (2.4.7) 

The above equation means that for any vi, it can be expressed as a linear combination of signal vectors, sk. 

A more important equation can be drawn by using the orthogonality of vi 

1

M
H

i i

i

I v v
=

=   .                                                         (2.4.8) 

Then R can be rewritten by  
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2

1 1

d M
H H

i i i i i

i i

R v v v v 
= =

= +                                                        (2.4.9) 

Note that M > d, (2.4.9) can be written by changing the index of summation. 

2 2

1 1

( )
d M

H H

i i i i i

i i d

R v v v v  
= = +

= + +  .                                              (2.4.10) 

From this equation, two important features can be drawn. The first one is related to the smallest Eigen 

value of R, the inequation shown below describes 

2

1 2 1d d M     +    = =  .                                             (2.4.11) 

Secondly, column vector of R is orthogonal to Eigen vectors of smallest Eigenvalues [4][5] 

1 1{ , , } { , , }d d Ms s v v+⊥ .                                                     (2.4.12) 

As principal Eigen values and Eigen vectors are defined, here, correspondingly, λd+1,…, λM and v1,…, vd 

are defined as secondary Eigen values and Eigen vectors. In the field of signal processing, (λi , vi) , 

i=1,…,d are called signal characteristic pair (signal characteristic values and signal characteristic vectors). 

Also, (λi , vi) , i=d+1,…,M are called noise characteristic pair (noise characteristic values and noise 

characteristic vectors). 

Above concepts are basis of subspace analysis, signal subspace can be defined as  

1[ ,... ]S dV v v=  .                                                           (2.4.13) 

And noise subspace  can be defined as 

1[ ,... ]N d MV v v+=                                                         (2.4.14) 

Or 

  1span [ ,... ]N d MV v v+= .                                                 (2.4.15) 

 

2.5 Signal mode 
  

   Practically, the propagation of electromagnetic waves is usually complicated and cannot be explicitly 

described. It is necessary to have an abstract and simplified form of the signal mode for convenience. The 

following assumptions are made to all algorithms introduced and discussed in this dissertation. 

• The antenna elements (transmitters and receivers) are all omnidirectional.; 

• The transmission medium is isotropy and homogenous. 
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• The EM wave propagates in a straight line. 

• There is only one signal source/ target. 

• The target and the system are located on the same plane (2D processing only) 

• Only time delay can cause the signal phase shift. 

• The target is ideal. 

    Unlike many related studies[7~9], the last assumption is not equivalent to the assumption that all signals 

are narrowband. Under a common narrowband assumption, the frequency bandwidth B is much larger than 

the center frequency cf , which is described as  

1

10c

B

f
  .                                                                   (2.5.1) 

However, we use wideband SFCW systems in the following chapters to conduct the experiments and 

simulations. It relates to a fundamental problem: what is used to determine the signal delay? 

If we are using the SFCW system, the time domain signal can be written explicitly as: 

( )

sin( ( ))
2( ) 2

( )
cj t

B
t

s t e
t

 





−

−

=
−

                                                        (2.5.2) 

where c  is center angular frequency and   is the arrival time or delay.  It apparently shows the feasibility 

of directly assuming the global maximum of the time domain signal indicates the arrival time, though the 

system is wideband. 

    A simulated example is shown below by using an SFCW signal source B=1.5GHz and cf =0.75Ghz with 

a delay of 3.4ns. It is seen that both maxima of real part and the absolute value of the signal are located at 

the delay time/ 

 

Fig.2.5.1.Simulation of a trace of SFCW signal in time domain 

    In this dissertation, assumptions are made to have a very extreme condition, while the mathematic form 

of the array received signal ( ) M LS t C   still follows  
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( ) ( )S t Ax t=                                                                 (2.5.3) 

where 1MA C   is the steering matrix and 1( ) Lx t C   is the signal of the reference channel, and it has a 

pure phase representation. 

( )( ) i tx t e  − −=  .                                                             (2.5.4) 

Note that the noise term and the amplitude information are not added because we assume that we can 

directly acquire the delay information of each channel in the received signal. In other words, we assume 

that the information given by the global or local maxima has no error. The example of SFCW in Fig2.5.1 

proves this assumption's mathematical correctness if there is only a signal source.  And an example is given 

below to demonstrate how to transform the signal to a phase-only mode. 

 

Fig.2.5.2. Simulation of time domain SFCW signal received by a 4 element array. 

    If an SFCW signal is received as in Fig.2.5.2., we can directly acquire the arrival time information from 

the global maximum. And for the first channel, the phase signal should be 1( )

1( )
i t

x t e
 − −

=  , and these signals 

only have phase difference with the same waveform. 

 

Fig.2.5.3. phase mode of the simulation. 
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    Along with the signal mode, the antenna configuration is also a factor influencing the received signal. 

The configuration of the Uniform Linear Array (ULA) is plotted. 

 

Fig.2.5.4. Far field ULA configuration. 

    We use the elements on the very right to be our signal if there is no notation in the following chapters. 

But practically, the error occurred while we selected the arrival time manually or automatically because 

there is not possible to have such a precise signal as shown previously.  What we can do is to have some 

close estimations of the delay times for each signal and perform a series of processing to compare their 

results. The detailed content of  arrival or delay time selection will be discussed in the later chapters. 

 

2.6 Summary 
    In this chapter, the use of mathematical operations and the signal mode have been introduced for further 

purposes. The signal mode has been emphasized because of the extreme conditions that were assumed. It 

should be noted that transforming the received signal into a pure phase mode is not unique to this work. In 

fact, many algorithms employ such a process to ensure that the input to the kernel processor is suitable for 

processing. However, in practice, even the input signal is mathematically correct, it is not always possible 

to achieve this due to floating-point errors in computer calculations and other issues. In such cases, works 

that are based on these assumptions are meaningful mathematically. 
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Chapter 3 Modern Beamforming 
 

    As mentioned, beamforming techniques has the longest history in all DOA methods, it is still a popular 

topic in the various field.  In last 5 years, the beamforming technology are developed for multiple kinds of 

hardware platform; however, the technology itself is improved slightly for purposes. For example, Capon 

beamformer will suffer from performance degradation due to the steering vector error dominated by large 

DOA mismatch. To solve this, a new robust Capon beamforming approach is proposed by Hao et. al., 

2019[1]. A low-complexity yet effective DOA estimation algorithm and the corresponding hardware 

accelerator chip design are presented by Chen et. al. [2]. Zhu et. al., presents a novel Hybird Beamforming 

(HB) algorithm based on the spatial covariance matrix (SCM) knowledge of all UEs ,which is proposed for 

a large scale MIMO-OFDM system to support multiple groups of single user equipment[3]. Xiao et. Al., 

combined UAV and beamforming for the positioning and communication applications [4].In addition, Zhao 

et. al., proposed a novel and related DOA estimation algorithm to predict angle variations during the 

intervals, which achieves high precision even when UAVs are at high mobility [5]. 

 

3.1 Definition of beamforming 
 

    The beamforming problem can be described in such a way: adjusting the weights on received signal of 

channels to have a maximum array output. Mathematically, under the assumption of the far field and narrow 

band signal, the array output follows  

( ) ( ) ( )X t W X t=                                                              (3.1.1) 

where ( )W   is the weight function, under an extreme condition as assumed: there is only one source, 

( )W   is equivalent to matrix . In this case the expected output power is  

2 *

CBF ( ) [ ( ) ] ( ) ( )xP E X t A R A  = =                                                   (3.1.2) 

    In the case CBF ( )P   is so-called a spatial spectrum function. Because this kind of spectra will be closely 

related to the rest part of the work, an example is given to introduce rule that the work will follow to plot 

the related spatial spectra. 

    According to Fig.3.1.1, The horizontal axis is the arrival angle, and we always use the degree as unit. 

There is two different range of horizontal axis, one is as shown from -90° to 90° and another one is from 0° 

to180 °, which is typically used in the near field spatial spectrum cases. The vertical axis is the amplitude, 

the unit may vary according to the output power. Because in the later chapters, there are many level of 

peaks on the spectra are not dB scale higher than the background noise level, thus the vertical axis will be 

in a normalized scale or just the calculated result of the spectrum function unless notation presented. 

    Apparently, the output power is only related to the signal DOA . So, it is also considered as a filter in 

the spatial domain; meanwhile the method is different from the conventional time domain filters. It mainly 

uses the phase difference generated by the antenna configurations rather than the amplitude information of 

the envelope of the signal in the time domain.  

https://www.paperdigest.org/paper/?paper_id=doi.org_10.3390_jmse7030080
https://www.paperdigest.org/paper/?paper_id=doi.org_10.3390_jmse7030080
https://www.paperdigest.org/paper/?paper_id=doi.org_10.3390_electronics9040641
https://www.paperdigest.org/paper/?paper_id=doi.org_10.3390_app10134420
https://www.paperdigest.org/paper/?paper_id=doi.org_10.3390_app10134420
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Fig.3.1.1 An example of showing the DOA estimation by using CBF 

 

3.2 Standards and cost functions of beamforming 
 

    The method introduced in the above section is not often used in modern beamforming because of its 

precision. In recent decades, the design of the cost functions because the signal processing techniques of 

beamforming is a popular topic. In this work, we introduce two fundamental standards and cost functions 

to demonstrate its related beamforming method and reveal the uses of the subspaces. 

    As previously mentioned, CBF ( )P   is the expected output power, we may want to adjust the steering 

matrix in (3.1.1) to have a cost function that has the Minimum Mean Square Error(MMSE), and the cost 

function can be written as 

2
( ) ( ) ( )J w E wx t X t = −

 
                                                            (3.2.1) 

where w is the weight vector containing DOA information. MMSE is achieved when the estimated DOA 

is equal to the ground truth. Consequently, this method is called MMSE beamforming[7,8]. The solution 

to the cost function is straightforward. Firstly, we assume that there is only one signal source, as we did 

previously.  Then the partial derivative of the weight function can be written as 

* *( )
2 [ ( ) ( )] 2 [( ( ) ( ))]

J w
E x t x t w E x t X t

w


= −


.                                          (3.2.2) 

    Let the self-correlation matrix of x(t) be xR , and let cross-correlation matrix of the reference signal and 

received signal X(t) be xr . Then the equation above can be simplified as 

( )
2 2x x

J w
R w r

w


= −


                                                         (3.2.3) 
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when the derivative is zero, the stationary point appears which means the MMSE is achieved and the 

weight vector or the steering vector is  

1

x xw R r−= .                                                             (3.2.4). 

    It is resulted to the ideal form of the Wiener filter, and it is also called the Wiener-hopf equation [6]. This 

method. In previous chapter, we mentioned subspaces, and we notice that the relationship among the 

eigenvalue, subspaces, and the signal covariance matrices. Under such circumstances, it is very natural to 

have a standard or to establish a cost function to evaluate the DOA. Typical Minimum SNR (MSNR) cost 

function can be written as 

( ) s

N

wR w
J w

wR w
=                                                              (3.2.5) 

where sR  is the covariance matrix of the signal subspace and NR  is the covariance matrix of the noise 

subspace [8].  The two methods introduced above has their own advantages and disadvantages, and they 

are both widely used for the various purposes.  Based on these two methods, modern beamforming 

techniques have been developed for decades. 

 

3.3 Subspace and optimization techniques in beamforming 
 

    Optimization and subspace techniques are very often used in modern beamforming techniques because 

the weight vector must  be adjusted accordingly. For example, in self adaptive weight vector beamforming, 

Gradient Descent (GD) method will be used to update the weight vector.  In this section, the cost function 

is modified to conduct the summation on the array received signal in each snapshot. In gradient based 

optimization numerical methods, a typical iteration can be written as 

( 1) ( )d k d k u+ = −                                                          (3.3.1) 

where d is an arbitrary vector and u is a scalar that controls the search speed. In our particular cases, the 

gradient is apparently partial derivative of weight vector.  Note that in the beamforming problem, the 

iterations are performing along the snapshot. In other words, the weight vector will be adjusted according 

to the weight vector in the previous snapshot. So, the above equation can be reformulated into 

( ) ( )[ ( ) ( ) ( )]x xR w t r x t w t x t X t = −  − .                                             (3.3.2) 

 Note that the ( )x t , ( )w t  and ( )X t  are all instantaneous. Sometimes, we let the term [ ( ) ( ) ( )] ( )w t x t X t e t− =  

are written as a noise term, and the iteration can be modified to  

( 1) ( ) ( ) ( )w t w t ux t e t+ = − .                                                    (3.3.3) 

The above procedure is called the self-adaptive weight vector updating. A significant advantage of this 

method is the computation speed, if the signal is stationary, the converge speed will be extremely fast, while 

the accuracy will not be sacrificed. Here, we use a same narrow band signal emitted at 0°to demonstrate the 

performance of the method above. The figure shown below are the comparison between the CBF and the 

self-adaptive method. 
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Fig.3.3.1.The comparison between simulation result of the CBF and the self-adaptive beamforming 

 

Fig.3.3.2. Convergence of the algorithm 

    The self-adaptive method is converged within 10 iteration and the accuracy of the estimation is the 

almost same, but the computational speed is much faster. A very intuitive explanation can be given, as 

some of the signature of the signal can be captured within a few snapshots, the processing can be done by 

only using this instantaneous information rather than the whole time series. Consequently, the large size 

matrix and vector multiplication can be avoided which leads to the improvement of the computational 

speed. These beamforming techniques are introduced in purpose because in the next section, the method 

is in serious demand of reducing the computational complexity. 

 

3.6 Summary 
 

    In this chapter, mathematical operation and the signal mode are introduced for the further purposes.  The 

signal mode is emphasized in this chapter because the extreme condition we assumed. Note that 
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transforming the receive signal in a pure phase mode is not only existing in this work, in fact, many 

algorithms has such an process to make sure that the input to the kernel processor is processable enough; 

however,  sometimes, this cannot be done practically due to the floating calculation of the computer and 

other issues. In this case, the work based on such assumptions are meaningful mathematically.  
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Chapter 4 Multiple Signal Classifications 
 

    MUSIC algorithm is widely used in array signal processing mainly because of its resolution capability 

compared to conventional beamforming techniques. [1] By using the orthogonality of the signal subspace 

and noise subspace, the signal source can be magnificently emphasized from the background. [2] 

     In recent years, Li et. al., proposed unitary root MUSIC by using a modified array system[3]. Using the 

noiseless cross-covariance matrix which is obtained by utilizing the spatial cross-correlation technique., F. 

Wen presented a method  for DOAs estimation via reduced-dimension multiple signal classification (RD-

MUSIC)[4].Huang et. al., considered an extreme condition that covariance matrix is “one-bit” 

quantized[5].Zheng et. al uses subarrays to perform both near field and far field localization by using spatial 

smoothing MUSIC and its modified algorithms[6].Osman et. al., introduce a new two-dimensional direction 

of arrival (DOA) elevation and azimuth angles estimation technique for global positioning system (GPS) 

jamming signals in challenging environments based on the fast orthogonal search (FOS) method[7]. 

    Nonetheless, original MUSIC algorithm only fits the condition where the signal sources located in the 

far field, so that the phase differences of the array receiving signal can be expressed by using only one angle 

parameter. In practical, such a condition can be hardly suited while the signal source is not located very 

distant from the receiver. It is due to the geometry of the signal source and the array elements, for example, 

uniform linear array always requires both range and angle parameters to set a completed phase expression 

for each array element. Adding a new parameters range is so called 2D MUSIC; however, it also has one 

more enumeration process along the range dimension, which is time-consuming. 

 

4.1 The original MUSIC and its near field form 
 

    The original MUISC algorithm is designed for the far field condition, in this case ,we can directly use 

(2.2.3),(2.2.5) and (2.31) to have the following equation 

2 * 2( )i s iv AR A I v = +                                                     (4.1.1) 

where a is a steering matrix, in the case of this work, a steering vector that has the following formulation 

according to Fig.2.5.4. 

sin / ( 1) sin /[1, ..., ]j d c j M d cA e e   −= .                                               (4.1.2)                                                                     

Knowing that sAR A  and sR  are positive defined, we can have the orthogonality established as below 

0iAv = .                                                                    (4.1.3) 

Following the previous section if the target is located in the near field, the received signal  can be rewritten 

as  

 

( ) ( , ) ( )X t A r x t N= +                                                       (4.1.4) 
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where X(t) is the received signal of the reference element in time domain, steering matrix A(θ,r) contains 

two unknown range r and angle θ, and can be explicitly written. X(t) is the received signal matrix for all 

channels and, N is a noise matrix.   

 

Fig.4.1.1 Antenna configuration in the near field  

    A spectrum or sometimes named as spatial spectrum P contains both range and angle parameters are 

given to estimate the signal source location following the same procedure in section 4.1.1. 

 

     
* *

1
( , )

( , ) ( , )N N

P r
A r E E A r


 

=                                                  (4.1.5) 

 

4.2 The arrival time selection 
 

    MUSIC algorithm is unstable, in other words, the algorithm is sensitive in term of the arrival 

time inputs. But due to many reasons, it is impossible to pick an arrival time vector manually. The 

most common way is to pick the maxima of the received signal from the different channel and 

considered they are the first arrival times. This approximation is not always correct because of the 

signal deformation, the global maxima are not always indicating the arrival times and the local 

maxima are too many.Fig.4.2.1 are acquired data from the SFCW system, we can see that the 

arrival time can be merely determined especially in the GPR cases. 

If we pick arrival time input without any error, the covariance matrix can be expressed as  
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.                                               (4.2.1). 

But as mentioned the arrival time selection inevitably contains phase errors, which makes the covariance 

matrix of the received signal matrix as shown in (4.2.2). The goal of the thesis is to handle such a problem: 
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performing DOA estimations with the covariance matrix that has non-additive phase noise, or in other 

words, recovery (4.2.1) from (4.2.2) 

 

 

(a) SFCW signal in SAR measurement (b) SFCW signal in GPR measurement 

Fig.4.2.1 Real SFCW signal (a) in SAR measurement (signal transmitted in the air)(b) in GPR 

measurement (signal transmitted in the subsurface) 

Note that even as mentioned, MUSIC algorithms are sensitive to the inputs, it does not mean that the 

algorithm cannot function if there are errors, we are still going to use MUSIC algorithms in the next sections 

without any modification of the covariance matrix unless noted. 
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.                            (4.2.2) 

A direct way to handle this issue is to all the combinations of the arrival times. Then run trough 

the enumeration to find the best result. The best result may vary due to the cost function may set 

case to case. Another way is to add compensation term in the steering matrix, however, it is not 

always functioning well, because the compensation term should be following some certain 

structures, but the time delay error of manual picked arrival time is not. 

 

4.3 Peak search and enumeration-based MUSIC 
 

For a time-domain signal, the most common way to determine the arrival time is to select the maximum 

amplitude position; however, for GPR signals, due to the strong attenuation, this method may cause errors. 

Besides, considering the multi-layer cases, if one layer has a close relative permittivity to its adjacent layers, 

the reflection will be weak and easily filtered out by the maximum amplitude judgment.  

The proposed MUSIC algorithm contains a self-adaptive peak search method to avoid the loss of possible 

peaks. Instead of choosing the position with the largest amplitude, the process selects local maxima and 
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marks them as possible arrival times for each trace of the time-domain signal. The likely arrival time 

information will be stored in an arrival time matrix ,L MJ R L M  . The procedure can be simply 

described as shown in Fig. 4 with M = 4 and L = 15. 

 

 

Fig.4.3.1. Selecting first L local maxima in all channels and recording their positions in an arrival time 

matrix. 

 The elements in J are enumerated to generate an array of arrival times T for use in the MUSIC algorithm,  

1, 2, ,[ , .... ]i j M kT J J J=                                                                  (4.3.1) 

where , ,..., , , ,...,i j k N i j k L +  . Note that L should be set appropriately; a large L will make the 

computation time- consuming, whereas a small L may miss certain combinations of arrival times. It is better 

to reduce the number of desired peaks during the calculation. The procedure leads to two different way of 

utilizing the arrival time inputs one is to use entire T input and another is to use T use segment by segment. 

These two approaches will be discussed in the experiment section at the end of the chapter. 

A simulation is carried out here to offer a general view of the algorithm. The simulation uses 4 antenna 

pairs transmitting and receiving the signal in 65 MHz to 1.5 GHz SFCW mode. The subsurface layer 1 is 

set to a 0.1 m depth and the signal transmission velocity is 0.15 m/ns. The subsurface layer 2 is set to a 0.2 

m depth, and the signal transmission velocity is 0.08 m/ns. The system is in direct contact with the ground. 

There is no mutual coupling, and the SNR is set to 10 dB. The real part of the time domain signal is shown 

in Fig. 4.3.2. 
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Fig. 4.3.2.CMP time-domain signal profile for the simulation. 

    Assuming no prior knowledge exists, we intentionally made the imaging area of the spectrum large, 

where the vertical and horizontal axes are set to 0~1m and 0.5~2m/ns. To detect the first layer, MUSIC 

must run the entire T with L = 20. Then a strong peak appears at 0.095m , thus, it is taken as the first layer, 

in this case, (3) and (4) can be solved  by using the information from the first layer, then the second layer 

from 0.095m to 1m can be plotted. 

Since spectrums for both layers are acquired, for comparing them with the conventional method, we 

combine these two spectrums by normalizing and using a threshold of 80% maximum amplitude. The 

results are shown in Fig.4.3.3. According to the results, the resolution of the proposed method is much 

higher than that of the standard method. Moreover, the second layer on the spectrum generated by the 

traditional method is weak and incorrectly located due to the negligence of the refraction. 

  
(a)  Spectrum generated by The proposed method(b) Spectrum generated by The conventional method 

Fig.4.3.3.  Comparison between the velocity-depth spectra generated by(a) the proposed method. (b) the 

conventional method. 

 

4.4 Optimization based MUSIC 
 

This rewritten form will focus on the minimum value instead of the maximum in (4.1.5), explicitly, it 

follows the form as following. 
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                                      (4.4.1) 

In a polynomial form, it donates 

 

2

11 12( ) ( ) ... ( )M Mj j j

MMF r a a conj e a e conj e
   − − −

= + + +                             (4.4.2) 

 

where M is the number of antenna elements, and τi can be expressed as  

 

2 2 2( 1) 2 ( 1) cos
i

r i d r i d r

c




+ − − − −
=   .                                     (4.4.3) 

Note that EN is only related to the receiving signal because it is acquired from the eigenvalue decomposition 

of the array signal autocorrelation matrix and steering matrix has no more unknowns except r and θ after 

the array system is set, the exponential terms in (4.4.2) can be pre –calculated by enumeration all possible 

combinations of r and θ.  

 

Fig.4.4.1 An example of 2D MUSIC result 

 

The reason why the pre-calculation is necessary is because it saves the computational time and reveals the 

near field and far field condition for the system. Basing on (4.4.2), those exponential terms can be 

considered as 2D surfaces as same as F itself as shown in Fig.4.4.1. 
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It is clear that a ridge appears to be gradually vertical to the angle axis, which means the geometry 

arrangement between the system and the signal source are increasingly fitting the perfect far field condition. 

The fact is that there are totally M(M-1)/2 surfaces to be concerned, they have different shapes because of 

the geometry arrangement of the antenna elements and  can all be plotted before the MUSIC processing. 

As previously mentioned, pre-calculation might cost time if the system contains a large number of elements, 

but it is just one time work. According to the surface shape in Fig.1, a simplified MUSIC can be raised, the 

calculation will be separate into two parts, far field part and near field part. In the far field part, the algorithm 

directly calculates the in a far field MUSIC case; meanwhile, in the near field part the algorithm also 

calculates in the near field case. In both step F are calculated and the smallest F corresponds the location 

of the target. 

Note that the definition of far field and near field depends on the system itself, such as number of elements, 

aperture size and transmitting frequency, it should be discussed case by case. For the 2D MUSIC calculation 

in near field, due to the explicit form (4.4.4) is known and it is a real function because of the symmetrical 

feature of the Toeplitz matrix, this paper uses quasi-Newton method to solve an optimization problem 

instead of looping over range and angle combinations for the near field. The advantage if applying 

optimization techniques is that the far field information offers very rational initial guess. Mathematically. 

Eq.5 has a far field formulation when r ≥ rfar-field. 

cos ( 1) cos ( 1) cos

11 12( ) ( ) ... ( )
d M d M d

j j j
c c c

MMF a a conj e a e conj e
     


− −

= + + +                    (4.4.4) 

So the initial guess is (rfar-field , θfar-failed) where  

min( ( ))far field F − = .                                                         (4.4.5) 

 The simulations are all carried out by using one single 2GHz CW signal source regardless to amplitude, 

the SNR is set to 10dB. The system is a 4 elements uniform linear array and the distance between two 

adjacent elements are 0.0375m. Note that the following result of the proposed method shows the 1/F so that 

the visualization follows the conventional way. For a 4 elements system, it has 6 exponential term to 

generate the surface plots. They are listed below.  

 



28 
 

 

Fig.4.4.2 Surfaces generated by the exponential in (4.42). 

The rfar-field can be set to 0.6m, which is much further than the Fraunhofer distance 2D2/λ. The target is 

located in (0.3m, 60°), the conventional 2D MUSIC result is plotted with the proposed method, where green 

dots are iterations under the far field condition and red dots are iterations under the near field condition. It 

only takes 210 iterations to have a close result to the conventional MUSIC, but the computational time is 

almost negligible comparing to the conventional one. 

To verify the accuracy of the proposed method, 1000 simulations with random source locations in the near 

field are made to exam the differences between the ground truth and the proposed method. The results are 

shown in Fig.4.4.4, all simulations are under 3cm Euclidean distance error. 
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Fig.4.4.3 The simulation result. 

 

Fig.4.4.4 distance between the ground truth and the target position evaluated by the proposed methods 

4.5 Resolution of MUSIC 
 

    This section aims to analyze the resolution of the fundamental MUSIC algorithm. Assuming that a 

peak in the MUSIC spectrum can be defined as a combination of two peaks 

peak 1 2( ( ) ( ))P P P = + .                                                             (4.5.1) 

In the case of MUSIC,  let  m   be the mean of  1  and 2 , then the scalar R can be written in the 

following form to describe the resolution 

        ( ) peak ( )mR P P  = −                                                                (4.5.2) 

where 1 2  = − . When ( ) 0R   , ( )R   can be distinguished and the azimuth resolution is  . When 

  is small, the spectral resolution can be explicitly written as  

2
2

( ) 1
1 ( )

F

R
F

 
 
 

 = −
+ 

                                                               (4.5.3) 

where  

1

1
( )

M
jF e

M

− =  .                                                           (4.5.4) 
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Knowing that   is the phase difference term, we can use 
sind

c


 to substitute the parameters of MUSIC 

into (4.5.4).  

Thus, in the case of the far field MUSIC algorithm, the series can be easily calculated as azimuth angle is 

the only independent parameter. 

4 720Md   .                                                          (4.5.5) 

In the near field case, there are two independent variables, which makes F impossible to be simplified as 

it is in the far field case. Fig.4.5.1 shows the ( )F   of 8 uniform linear elements array system with an 

element difference of 0.3m and a center frequency 1.5GHz. 

 

 

Fig. 4.5.1. simulation of ( )F  in 3D view 

 

    The following figures demonstration the resolution of MUSIC algorithm resulted from the simulation 

with different system parameters. 
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                                (a)  0.8GHz 8elemetns                                      (b) 0.8GHz 4 elements 

Fig. 4.5.2. simulation of ( )F  in 3D view for 0.8GHz 

The results indicate that there might be no approach to have a simplified form to describe resolution of the 

near field MUSIC. It also shows that the resolution of the near field MUISC are impacted by the target 

location when the system is fixed. In this case, like what we did to distinguish the near field and far field, 

we must calculate the required parameters before the system is fully assembled to ensure that the 

resolution fits the requirement of uses.  

In the later section, Yakumo will be introduced, it is an SFCW system that has a 1GHz center frequency.  

The resolution of the system can be calculated by using the above procedure, but due to the antenna 

configuration,    must be modified. 

  
 

                                (a)  0.4GHz 8elemetns                                      (b) 0.4GHz 4 elements 

Fig. 4.5.3.simulation of ( )F  in 3D view for 0.4GHz 
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    Though the transmitter and receiver elements are designed and assembled as a ULA, the elements are 

utilized in the following way to be  MIMO . 

 

Fig. 4.5.4. Antenna configuration of Yakumo. 

In this case, still following the law of cosine, we can rewrite   in ( )F   as below 

2 2 2 cosi ir x rx r = + − −                                                      (4.5.6) 

where 
ix  is the offset length of ith channel. Thus, by using the offset length of the above configuration, we 

may have the ( )F   of Yakumo system in Fig. 4.5.5. 

 
 

 

Fig. 4.5.5. ( )F  of Yakumo. 

    Note that we have assumed   is small, so only a small range of ( )F   needs to be concerned, the figures 

below shows the behavior of ( )F   within 1°. 
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Fig. 4.5.6. ( )F  of Yakumo within a small angle. 

By observation, we know that the  ( )F   is not only related to the range parameters in a small value. 

However, no matter where the target is, the ( )R   is always larger than 0, it means the resolution can be 

infinitely high(infinitely small angle),and  it applies same to the range parameters. 

The conclusion may be very anti-intuitive, however, the resolution of MUSIC estimator is directly linked 

with the approximation form of our covariance matrix, which means it can generate 0 error estimation 

because of the assumptions given. 

Resolution discussion above is mainly based on the method given by the hypothesis of two closely located 

target. To achieve a more convincible proof, we will need Cramer-Rao Lower Bound (CRLB) to acquire a  

lower bound in terms of statistics to be our practical resolution for DOA estimation.[ref] gives a detailed 

math procedure of calculating the MUSIC algorithm's resolution in the far field.  

    Under the assumptions we stated in Chapter2, the CRB of   and r  are given by 

1

* * *
CRB( )= Re ( ) [ ] ( )
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                               (4.5.7) 

 and  

2

var( )=
mN


                                                                (4.5.8) 

where D is a partial derivative matrix versus   and r 
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A r
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Under the far field assumptions r will be eliminated, thus the lower bound can be written as 

  6
CRB

( 1)
F

M M SNR−
.                                                    (4.5.11) 

In this case, knowing that our assumptions contains 0 error in imaginary conditions. The CRB is infinitely 

high in the far field. And it applies to the near field cases as well.  

 

4.6 Generalized EVD and Generalized SVD MUSIC 
 

    Using the same signal model, as mentioned, we can rewrite covariance matrix of X 

1 2

HS AQA S= +                                                                (4.6.1) 

 

where 
1S  is the covariance matrix of the received signal and 

2S is the sum of all expected values related to 

N. According to conventional MUSIC, we first apply GEVD  

1 2S z S z=  .                                                            (4.6.2) 

where  and z are the GE value and GE vector of matrix pencil 1 2,S S , respectively. Then (4.6.1) can be 

rewritten as  

 

1 2( )HS z AQA S z= +                                                            (4.6.3) 

which yields 

 

2(1 ) HS z AQA z− = .                                                          (4.6.4) 

One important thing to note is the estimation of the covariance matrices
1S  and

2S . In  the practice, the 

estimation is evaluated by
1 HXX
L

, where X = X(t) and L is the snapshot length.  However, it inevitably causes 

errors since the signal length is finite. According to Golub and Van Loan [15] ,one possible solution is to 

transform (4.6.3) into a GSVD-related subspace, which results in 

 

   1 minspan , , | H H

d Mk k k XX k NN k+ = = .                                      (4.6.5) 

 

Note that 
min  is also the square of the minimum singular value 

min  of matrices pencil ,X N .  Speiser 

and Van Loan also present an essential theorem, which allows the GSVD, in this case, to be expressed as 
       

1( ) ( ,..., )H H

MK X X K diag  =  

and 

 
1( ) ( ,..., )H H

MK N N K diag  = .                                                (4.4.6) 

where the ith column vector of K is the GS vector matrix for the GS value i

i

i





= , i=1,…M.  Then the 

corresponding relations among generalized eigenvalue, generalized singular value, and generalized singular 

vector are established, and (13) can be approximated as 

 

(1 ) ( ) ( , )i i iNk s t A d v k− = .                                                  (4.6.7) 
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However, to generate the velocity-depth spectrum, we must formulate a spectrum function such as (8), 

which requires the orthogonality of A and k. Clearly,  =1 can cause orthogonality, but it is trivial according 

to the feature of GSVD; in this case, one approach is to create an orthogonal basis from K.  For example, 

Speiser and Van Loan propose an improved GSVD method that can reform K to an orthogonal basis. 

Compared to the traditional 2-step GSVD decomposition with QR and CS decomposition, it has another 

QR decomposition at the end. 

 

  According to (4.6.7), the mentioned procedure can be simplified by finding a nontrivial GSVD value 

close to 1 as an indicator of orthogonality. Mathematically, the spectrum function can be 

 

1
( , )

min 1 i

P d v


=
−

                                                       (4.6.8) 

 

    where 
i , 1i   and i = 1,2…M, is the ith Generalized Singular Value resulting from a GSVD 

operation for each iteration of d and v. 

 

Finally, because the processing is based solely on phase information, selecting the arrival time is 

important. As mentioned, GPR profiles are usually cluttered and full of background noises. As a result, it 

is challenging to precisely select the first arrival time from the time-domain signal; thus, the arrival time 

can only be determined roughly, which requires the MUSIC algorithm to work in a high SNR condition 

with all kinds of noise concerned. It is for this reason that GSVD is proposed for use with the MUSIC 

method, as it avoids the evaluation of covariance matrices. 

 However, if we use the signal mode mentioned, the above algorithms may not work well, simply because 

of the ill-posed structure that our covariance matrix has. A solution of the covariance matrix that solely has 

the phase noise is to construct a identical matrix in a GEVD. Because in (4.5.2) when S2=I, the GEVD will 

turn to be EVD that has an orthogonality as it is in conventional music. 

 Assume that matrix element-wise division can sperate the phase error as shown in (4.6.8)._ 
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The phase noise in the exponential term should be relatively smaller than the diagonal element 1. In this 

case, if the input covariance matrix and the ground truth are close to each other. We can perform a operation 

in (4.6.9) to approximately generate an identical matrix for GEVD without loss of the information of the 

phase error terms. 
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where   is a scalar that has to be manually adjusted. 

 

    To demonstrate the procedure, a simulation is carried out to show that the different scalar  will give 

different results. Only under a correct estimation, the orthogonality will appear.Assuming  that we have a 

ground truth input array [3.578 4.68 6.33 8.21] ns which corresponds to a target in [0.15,0.1125x109] on 

MUSIC spectrum. Our observation data and input array will be [3.51,4.63,5.98,8.21] ns, and the goal of the 

processing is to have a same spectrum which has a target at [0.15,0.1125x109]. 

     In this case, we will use the first input 3.51 as the reference phase to start the iteration. And the scalar 

in(4.69) will be set to 109 and 108 

      The results are shown in Fig.4.6.1 and Fig.4.6.2. And according to the amplitude the orthogonality 

only appears on the ground truth associated position on the spectrum. Though there is a ghost target. 

 

 
Fig.4.6.1 MUSIC spectrum generated by GEVD with a scalar 910 = . 
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Fig.4.6.2 MUSIC spectrum generated by GEVD with a scalar 810 = . 

 

 

 

4.7 Experiments 
 

    Common MidPoint (CMP) method has been applied to Ground Penetrating Radar (GPR) surveys for 

decades, and it has proven to be successful in many fields, such as geoscience and civil engineering [8~10]. 

Specifically, GPR CMP surveys are efficient for subsurface layer detection since multi-static data can be 

used for further research, such as velocity-depth analysis[11,12]. The investigation reveals two essential 

parameters of a horizontal homogenous subsurface layer: layer depth and EM wave propagation speed. 

Conventionally, velocity-depth analysis is performed using Synthetic Aperture Radar (SAR)-based 

processing; however, it has many limitations due to its one-layer scenario and the correlation calculation 

that entirely relies on the amplitude. As a result, the accuracy of the estimation is insufficient. Therefore, 

various efforts have been made to introduce super-resolution techniques, for example, the MUSIC 

algorithm, to achieve better imaging quality for the CMP profile[13,14]. Nonetheless, the MUSIC algorithm 

requires arrival time information prior to processing, which means the arrival time must be manually 

determined. Consequently, it leads to two issues: the first is an error in arrival time determination, and the 

second is that reflection responses are hard to distinguish from one another. we applied near-field MUSIC 

combing with a self-adaptive peak detection introduced in the previous sections. Because the receivers are 

not receiving signal parallel, the far field condition cannot be fitted, in this case, there is one more parameter 

other than an arrival angle to be evaluated. A simulation of the two-layer structure and an on-site road 

pavement detection experiment are conducted. The results show that MUSIC-based approaches can 

generate a velocity-depth spectrum with higher resolution compared to conventional amplitude-based 

processing. Furthermore, the suggested method can reveal a layer that the traditional method cannot identify, 

by employing weak reflection from the time-domain signal.  

Assuming there is only one homogenous subsurface layer, the propagation path of the EM wave can be 

simplified, as shown in Fig. 1. 

 
Fig.4.7.1. Schema of the layer and array configuration. 

 

Here xi is the offset of the ith antenna pairs, d is the layer depth, 
i  is the two-way arrival time of received 

signal for each antenna pair and v is the signal transmission velocity in the subsurface in the expression  
2

22
4

i

i

x
d

v


+

=                                                                (4.7.1). 

Regarding multi-layer cases, for example, two-layer subsurfaces, a schema can be considered as in Fig. 2.  
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Fig4.7.2. Schema of the two-layer case. 

 

In general, assuming there are Z layers, 
ix can be sperated to sections, which donates 

,i qx , where 

1, ,i M= and 1, ,q Z= . In this two-layer situation, there will be two arrival times for each channel 

concerned: one from the direct reflection from layer 1 and another from layer 2. The two-way arrival time 

of reflection from layer 2, 'i , can be expressed as  

2 2 2 2

,1 1 ,2 2

1 2

2 2
'

i i

i

x d x d

v v


+ +
= +                                                   (4.7.2) 

where 
,1ix  and 

,2ix  numerically follows (4.7.3) and (4.7.4) 

,1 ,2' '
2

i
i i

x
x x+ =                                                                (4.7.3) 

and 

 

1 2 1

2 1 2

sin

sin

v

v

 

 
= = .                                                           (4.7.4) 

 

The expression follows the same approach when there are two or more layers.  

 

4.7.1 Conventional CMP velocity-depth estimation 

 

    Conventional CMP velocity-depth estimation can be considered as taking correlations between the 

theoretical calculated arrival time and the measurement data arrival The technique is shown in Fig. 3. By 

iterating v and d, a 2D representation can be plotted, the so-called velocity-depth spectrum. 
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Fig.4.7.3. CMP profile in Wiggle plot and the process of transforming time-domain received data into a 

velocity-depth spectrum 

 

    Mathematically, the spectrum is a function of two variables v and d, which gives, 
 

 
1

( , ) ( ( , ))
M

i i

i

P v d s v d
=

=                                                              (4.7.5) 

 

where M is the number of antenna pairs, 
is  is the time-domain signal of the ith channel and 

i has an explicit 

form as shown in (4.7.1). 

    There are two main advantages of conventional velocity-depth estimation. The first is that it requires 

only amplitude information. Another benefit is that the processing can be applied to complex or real signals, 

allowing it to operate on various commercial systems. However, as mentioned, this method has low 

resolution; moreover, the process does not account for the refraction from EM wave propagation. As a 

result, the estimation for the multi-layer subsurface contains errors.  

 

4.7.2 MUSIC for CMP 

 

    We assume that the time domain signal for each channel has the following form 

   ( )
( ) ij t

s t De
 −

=                                                                  (4.7.6) 

where D is the amplitude and is the working frequency. It can be reformulated as a reference channel 

by multiplying with a phase difference term 

1 ( )( )
( ) ijj t

s t De e
   − −

=                                                                   (4.7.8) 

where 

22
2 21

1 12( )
4 4

i

i

xx
d d

v


+ − +

 =                                                     (4.7.8).                                                               

If we only consider the first layer. According to the above equations, regardless of the amplitude, the 

received signal X(t) can be written by using a reference signal s(t) and the steering matrix A 
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( ) ( , ) ( )X t A d v s t N= + .                                                         (4.7.9) 

 

Using (4.1.5), the MUSIC algorithm can be applied, by calculating the covariance matrix of X(t), and 

(4.1.4)can be formulated as follows 

 

 2( , ) ( , )H

xxR A d v QA d v I= +                                                  (4.7.10) 

 

where Rxx is the covariance matrix of the received signal, Q is the covariance matrix of the reference signal. 

Then the velocity-depth spectrum F can be expressed by  

  1
( , )

( , )
MUSIC

n

P d v
A d v E

=                                                    (4.7.11) 

where nE  is the associated noise subspace eigenvectors [9]. A can be explicitly written as 

 
2 2 2 2

2 22 1 2 2 1
1 1 1 1

2

2( ) 2( )
4 4 4 4

[1, ..., ]

M
x x x x

d d d d

j j
v vA e e

 

+ − + + − +

= .                                 (4.7.12) 

 

For the multi-layer cases, for example, the two-layer structure. steering matrix A must be remodified, v1 

and d1 must be determined before the iteration of v2 and d2 to solve 
,1ix and

,2ix , which gives 

 
2 2 2 2 2 2 2 2

,1 1 ,2 2 1,1 1 1,2 2

1 2 1 2

2( )
' [1,..., ]

i ix d x d x d x d
j

v v v v
A e


+ + + +

+ − −

=                             (4.7.13) 

 

where 
'A is the modified steering matrix designated for the second layer arrival time. Thus, the 

visualization must be completed layer by layer. There are many ways to achieve layer-by-layer 

visualization. One approach is to select the first few peaks located in the shallowest position on the velocity-

depth spectrum and mark them as layer 1, then replot the spectrum using the information given by layer 1. 

Another way is to use prior knowledge to provide a rough estimation of the depth of the subsurface layer 

structure, which avoids the redundant judgment for identifying the peaks used in the previous method. 

 

    As mentioned, in the section 4.2 the imaging process must be done layer by layer; consequently, it is 

better to utilize T part by part to avoid miscalculating the multi-layer structure. However, if there is no 

approximate prior knowledge of the subsurface structure, performing the MUSIC algorithm with the 

complete enumeration of T is necessary to locate the first layer. In addition, compared to the original 

MUSIC, the proposed method includes an equation-solving procedure for 
,i qx  for each iteration of vi and di. 

The mentioned procedures apply the same to the third and fourth layers, and so on. In practice, it is 

preferable to integrate layers with close relative permittivity to avoid a significant computational load. The 

flowchart of the proposed method is shown in Fig. 5. 
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Fig.4.7.5. Flowchart of the proposed method. 

This experiment employs an array GPR system for road pavement inspection. Fig. 4.7.6 shows the 

experiment setup. Fig.4.7.8 illustrates the array configuration. The array GPR system Yakumo is an SFCW 

system, operating from 65 MHz to 1.5 GHz. There are 8 antenna pairs, but because of the attenuation, we 

only use the 4 closest antenna pairs for processing. The arrival time is determined by the peaks of the real 

part of the signal and L = 12. To avoid as much noise and clutters as possible, 10 adjacent CMP profiles are 

added to the selected CMP profile before taking the average. 

 

Fig.4.7.6. Road pavement inspection using Yakumo. 
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Fig. 4.7.7. Road pavement construction print. 

 

Fig. 4.7.8. Antenna configuration of Yakumo. 

 

In this case, there are 3 asphalt layers on top of the base layer as drawn in Fig.4.7.6 and Fig.4.7.7; to 

avoid redundant calculation, we assume that the asphalt layers from 0m to 0.15m have a very close relative 

permittivity and can be merged into a single layer. The spectrum generated by the conventional method is 

shown in Fig. 10. 

 

Fig.4.7.9. The Velocity-depth spectrum generated by the conventional method. 

In contrast to the procedure presented in the simulation part, the subsurface structure is only 

approximately known here. Thus, the layer-by-layer imaging is set to be 0.2 m by 0.2 m. The first layer 

search can be done directly using the first few peaks because peaks located after a specific time are not 

possibly generated by the asphalt layer with a thickness of around 0.15 m. Therefore, the first 4 row vectors 
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of J are more than enough for this stage of the first layer detection. Then, by following the same procedure, 

the spectrums of the asphalt layer, the base layer and a combined spectrum can be plotted as shown in Fig. 

10.Compared to the available information, the proposed method has an error of 10 % in thickness estimation. 

It may be caused by integrating the first 3 layers or the pavement construction itself. When compared to the 

conventional method, it produces a better result that clearly reveals 2 layers and provides useful velocity-

depth information.  

 

(a) 

 

(b) 



44 
 

 

(c) 

Fig.4.7.10. (a)The velocity-depth spectrum of the base layer. (b) The velocity-depth spectrum of the 

asphalt layer. (c) The combined velocity-depth spectrum of the pavement. 

  
Fig.4.7.11. EM velocity and relative permittivity distribution of the first layer along the survey line 
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Fig.4.7.12. EM velocity and relative permittivity distribution of the second layer along the survey line 

  

Fig.4.7.13.Thickness of the first layer and second along the survey line 

 

    In the previous section, the refraction is considered to achieve the arrival time selection as precise as 

possible. However, the calculation process is extremely complicated and time consuming. As previous 

mentioned, GEVD is another approach to solve the problem. In this section, different from the previous 

one, the first layer is our only target. The selected arrival time is [4.47 5.85 7.92 10.26] ns, and they are all 

located at the stationary points on each trace of signal.  
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Fig.4.7.14. Time domain signal of the CMP Profile. 

 
 

 
 

(a) Velocity depth spectrum when 83 10 =          (b) Velocity depth spectrum when 910 =  

Fig.4.7.15. The proposed method while the scalar is (a)3x108 (b)109. 

The results show that the proposed method is more robust compared to the original MUSIC. However, it is 

hard to judge which result is more correct in this experiment. Because the ground truth of the electric 

permittivity can hardly be stated, a conclusion can be drawn indicating that no matter what approach we 

use, the error of thickness of the first layer is around less than 10% and the relative permittivity is in a range 

between 5~10. 
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Fig.4.7.16 The result of the original MUSIC. 

The main idea of this method is to solve the following problem 

2 1 21 1 1 2 1 1

1 2 21 1 2

,

1 1 1

1 1

1 1
arg min

1 1

n n n

v d

n n n

         

    

    

 − +  − +  − −    
    

− −  −    − 
    
    − −  −    

.(4.7.14) 

Yet the problem may not have a clear answer, or in other words, there might be multiple stationary points.  

4.7.3 Localization by using Software defined radio 

 

    In recent years, Software Defined Radio (SDR) attracted plenty of focus due to its compatibility that can 

be used for multiple purposes[18,19].The picture below is a typical commercial SDR RTL-SDR designed 

for receiving TV signal 

 

Fig.4.7.17 An example of commercial SDR.  

In this experiment, we want to achieve subspace DOA estimation by assembling a ULA system using such 

commercial equipment .The design of the system contains only two parts: LASDR (Linear Array Software 

Defined Radio) with an external clock for time synchronization and computer for data processing and 

visualization. Fig.4.7.18 is the experiment setup. Fig. 4.7.19 shows the schematic diagram of the system 

setup 
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Fig.4.7.18. ULA SDR experiment setup. 

 

    For the target that is located within near field the reference SDR antenna, it will return a result with the 

range r and the angle θ of the target, and for the target located in the far field 2 wavelengths from the 

reference channel, the algorithm will return a result only containing the direction θ.  

 

 

Fig.4.7.19 ULA SDR System setup. 

we conducted laboratory experiment to verify the stability of the proposed method for measured data. All 

measurements use Vivaldi antenna for transmitter and receiver elements and all measurements are using a 

4 elements ULA and an oscilloscope for data acquisition instead of using SDR units. The reference antenna 

is set to be the very left one. Fig.4.7.20.(a)shows the result of a single target measurement where the target 

is locating at r=0.23m, θ= 50°. Another experiment is carried out to verify the performance of algorithm 

for signal sources located in the far field wavelengths from the reference antenna. Fig.3.(b) shows the result 

when the target is at r=0.9m, θ= 60°. Both 2D MUSIC and optimized 2D MUSIC are applied and their 

performance are close. 2D MUSIC  focuses the target along angle around 60°and the optimized MUSIC 

stop iteration at θ= 60° due to the divergence of the function value .  
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Fig.4.7.20. Experiment result for signal source in the near field and in the far field 

    These results prove the feasibility of the proposed algorithm. In addition, we also carried out the 
experiment with the SDR inbuilt clock and computer inbuilt clock, unfortunately, the acquired data is unable 
to be post-processed because the precision of the clocks are not suitable for the proposed algorithm. In the 
demonstration, the clocks on SDR will be removed and replaced with external clock for time 
synchronization for each SDR unit.   

4.8 Summary 
 

    In this chapter, near field MUSIC is introduced. in addition, some improvements are made to solve two 

problems. The arrival time error caused by the manual selection. One possible way to tackle this problem 

is to take all the stationary points on all channel into consideration. The advantage is that some hidden 

information can be revealed; however, the disadvantage is obvious, the scale of computation is too large. 

Thus, it leads to the second problem, how to reduce the redundancy of the calculation? For the peak search 

process, we can reduce the selected points by following some certain rules, but it is somehow trivial, in this 

work, the novelty is that the proposed optimization methods can have the same result without performing 

a O(N2) scan process. Besides, this work also introduces some classical work based on the advanced matrix 

theory to solve the arrival time error problem by directly using the matrix decompositions. However, these 

methods are not as stable as they are when being applied under the designed conditions. We carried out 

both experiments and simulations to verify the feasibility of the proposed method, results show that the 

MUSIC based methods can be applied to the various fields by modifications. 

In term of the theoretical finding, we exam the near field resolution of the MUSIC under the assumptions 

made in  the previous chapters, the result proves that there is no explicit formulation to conclude the 

resolution of the MUSIC in a simplified form. Also, Section 4.3 indicates that the near field and far field 

has no clear borderline, or in other words, numerically, the far field is not located further than Fraunhofer 

distance. 
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Chapter 5. Estimation of Signal Parameters via Rotational 

Invariance Techniques 
 

    ESPRIT-like methods have garnered significant attention and have found widespread practical 

applications as one of the most significant approaches for DOA estimation. In recent years, ESPRIT are 

widely used in the field of MIMO processing at. el., proposed near field DOA estimation method by 

partially utilizing the ESPRIT method[1]. Except the amplitude and phase information, the polarization 

information is also significantly important, thus, Li et. al., proposed an improved technique for processing 

the polarization data with much lower complexity[2].Pan et. al., proposed an enhanced spatial smoothing 

(ESS) technique to make the full use of both the covariance matrices of individual subarrays and the cross-

covariance matrices of different subarrays for solving the coherency[3].  In term of modifying the 

covariance matrices, Zhang et. al.,  modified the conventional estimation of the covariance metrics based 

on Forward and Backward Partial Toeplitz Matrices Reconstruction (FB-PTMR) to fully exploits half rows 

of the sample covariance matrix (SCM) to reconstruct the data matrix to overcome this weakness[4]. 

    In this chapter, solving the DOA by using least square based techniques are more essential than the 

ESPRIT itself, because the near field ESPRIT problem is well-solved by Yuen and Friedlander with fourth-

order cumulant matrix [5,6]. The reason why the chapter is distinguished from the previous one is because 

we try to transform the problem to a  Least Square (LS) problem and we are trying to solve the DOA 

problem with the phase error.  It is similar to the method that presented in section 4.6 where GSVD and 

GEVD are used to give an estimation base on the input with phase errors. While in this chapter, we want to 

solve the same problem with different approaches by constructing over-determined systems for the DOA 

estimations. 

5.1 Original ESPRIT 
 

    Under the circumstanced described in Fig.2.5.4. The core of this method is to find a rotational 

parameter   ,which makes 

2 1( ) ( )X t X t=                                                                      (5.1.1) 

where  
1( )X t  and 

2 ( )X t are received signal matrix from subarray 1 and 2. Subarrays are selected 

combinations of channels from the received data ( )X t of the entire array. 

 

Fig.5.1.1. ULA subarray configuration. 

    In this configuration, (5.1.1) can be explicitly written as a diagonal matrix  
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The equation also can be transformed into multiplications between reference signal and steering 

matrix with the phase difference term sincj d
e

  , which yields 

sin

2 1( ) ( ) ( )
  = cj d

X t e A x t                                                             (5.1.3) 

and  

1 1( ) ( ) ( )X t A x t= .                                                                   (5.1.4) 

Consequently,  it leads back to (5.1.1), and the next step is to calculate the rotational term.  Assuming that 

there is a kind of matrix decomposition sin
( )

  = cj d
e CA C , we may involve the covariance matrix 

1XXR  

and 
2XXR  of 

2 ( )X t  and 
1( )X t  ,  

2

1
sin1

1
cj d

XX XXR C e C R
  −

−   =                                                        (5.1.5) 

The commonest approach is to use the matrix Least Square(LS) method directly between signal subspaces 

of 
1XXR  and 

2XXR  . Then because of the matrix similarity, the eigen value of the solution is the rotational 

term under the assumption made for the signal mode. The ESPRIT method has no spectrum function 

because the DOA parameters are directly solved, and it is one of its advantages over MUSIC; however, the 

spectrum of ESPRIT in the following sections are particularly designed to achieved the comparison to the 

MUSIC. Many works indicate that the ESPRIT has lower resolution compared to that of the MUSIC in the 

far-field case.   

5.2 Near field Esprit 
 

    Considering Fig.5.2.1 , we know that there will be no rotational invariance term to “shift” the subarrays 

 

Fig.5.2.1. Near field configuration 
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As the subarray  A1 and A2
 have following expressions 

2 2 22 2 ( 2) 2 ( 2)cos2 cos

1 [1 ... ]
r M d rd M rr d rd rA e e

 + − − − −+ − −=                                    (5.2.1) 

and 

2 2 22 2 2 2 ( 1) 2 ( 1)cos2 cos 4 4 cos

2 [ ... ]
r M d rd M rr d Rd R r d rd RA e e e

  + − − − −+ − − + − −=                           (5.2.2). 

In this case, the received signal of subarrays can be shifted by a diagonal matrix that has different diagonal 

elements. 
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(5.2.3) 

Unlike the approaches that use the matrix decomposition to reveal the rotational invariance term, we may 

transform the problem in to another one: solving a linear problem. 

1 21 2 0Rxx RxxN N = =                                                       (5.2.4) 

where N is the noise subspace vector of subarrays. Apparently, the equation system is formed by the 

important conclusion given in the last chapter. Thus, the near field ESPRIT can be considered as a kind of 

MUSIC algorithm which uses the segments of the input data in a way that is introduced in last chapter 

section. 

    A numerical example of a 4 elements ULA system is given to prove the feasibility of the system solving. 
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and  

1

2

,

,

i j Rxx

i j Rxx

a N

b N




.                                                                  (5.2.6) 

We do not have to solve   and r explicitly trough the exponential term since they are constrained to a 

Known structure. We may simplify the above system to the one below with a vector 1 4k C  . 
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Then the vector k represents the estimate result of ( )A  . To solve the explicit   and r, we might have 

various approaches. Enumeration is used in this example because of the visualization purpose. In practical 

uses, solving the problem may include the methods given in the previous chapter to accelerate the 

computation 

    To visualize the result, we use the following function to generate a spectrum 

2

1
( , )

( , )
P r

k A r



=

−
.                                                      (5.2.8) 

Note that the method has higher sidelobe value and lower resolution compared to the near field MUSIC. A 

numerical simulation is given in Fig.5.2.2. to compare their performance under the same conditions in terms 

of target location, signal mode and antenna configuration. 

 

Fig.5.2.2. simulation result of near field MUSIC. 
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Fig.5.2.3.Simulation result of near field ESPRIT. 

     It is fundamentally using the core property of the MUSIC. The only difference is that introducing the 

subarrays will causes the system to be over-determined. Now, because the signal mode used in this section 

is a pure phase mode, the associated covariance matrix of x or in other words, approximated covariance 

matrix can be written as 
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    This matrix contains information about the difference of arrival times we selected. And with certain 

subspace methods, we can accurately achieve DOA estimation. Under this specific condition, there is 

only one non-zero eigen value that equals to M. 

Thus, the noise subspace can be considered as a spaced generated by solutions of the following linear 

system. 
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.                                  (5.2.10) 

    However, as previous mentioned the problem is that the arrival times cannot be selected precisely with 

no error. Thus, the matrix will still be Toeplitz, but the elements inside may be impacted by the errors. In 

this case, we want to have an estimated covariance matrix to evaluate the DOA parameters and to make 
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the result as close as possible to the DOA parameters resulted from the covariance matrix of the ground 

truth. 

5.3 TLS- ESPRIT. 
 

    The previous chapters explain how the phase error is generated and how it impacts the 

accuracy of the estimation. Along with the content that has been introduced in this chapter, we 

might have a mathematical expression of our linear system problem or least square problem in 

the previous section, where 

(A A)x b+ b+  =                                                                (5.3.1) 

Where A M N  , A M N  , 1b M  and 1b M   . This problem is called Total Least Square (TLS) 

problem Compared to the original least square problem, the expression has two more terms A and b  , 

according to the work done by ref, they are data error matrix and data error vector[7~9]. In our case, we 

consider error occurs on both sides of the linear system, in other words. we take the phase error into the 

concern to conduct biased estimation.  

    To solve the problem, we can establish a constrained optimization problem in such a way that 

2 2

2ΔA,Δb,x
min ΔA Δb

. . (A ΔA)x b+Δb

F

s t

+

+ =

.                                                       (5.3.2) 

Then, the Lagrange function of the problem can be written as 

( )
2 2

2
(ΔA,Δb, ) ΔA Δb 2 (A ΔA)x-b-Δb

F
L  = + + + .                             (5.3.3) 

Thus, applying the Karush–Kuhn–Tucker( KKT) condition, we can have  

2

Ax-b
Δb

x +1
= .                                                                  (5.3.4) 

By substituting (5.3.1), we have 

2

(Ax-b)x
ΔA

x +1

T

= .                                                                    (5.3.5) 

Consequently, the problem can be transformed to  

2

2ΔA,Δb,x

(Ax-b)
min

x +1
 .                                                                   (5.3.6) 

By homogenizing the problem, we can have the following equivalent problem 

2

2ΔA,Δb,x

(AX- b)
min : 1

x +t

t
t

  
= 

  

 .                                                     (5.3.7) 
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Then we define [x, ]Tz t=  

1 12

B
min :

M N

T

n
z

z z
f z

z
 + =



  
=  

  

                                                              (5.3.8) 

where B is 

2

A A -A b

-b A b

T T

T
B

 
 =
 
 

 .                                                                  (5.39) 

Thus, to solve the TLS problem is to construct B from the data and to iterate the vector z. 

Fortunately, many works have proven the relationship between the smallest eigenvalue associated 

eigenvector and z in this problem. Or in other words, the iteration can be done by using the noise 

subspace. More detailly, there are two kind of solutions for the TLS problem can, least norm 

solution and optimized approximated solution [10,11]. 

 

5.4. Experiments 
 

     In this section we still use Yakumo to conduct the experiment, but the purpose is no more for 

GPR uses. Rather, we use Yakumo to achieve imaging to locate a metal sphere. The experiment 

schematic setup is as shown below. 

 

Fig. 5.4.1 Yakumo sphere reflector experimental setup. 
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Fig5.4.2.  Yakumo sphere reflector schematic setup. 

 

    The Yakumo is intentionally put upside down to and we use the combination of Tx1 and all Rx to conduct 

the SAR processing and the proposed ESPRIT processing. To visualize the result, we use the following 

function to generate a spectrum 

2

1
(x, y)

(x, y)
P

k A
=

−
                                                        (5.4.1) 

where steering vector (x,y)A can be explicitly written as 

1 2
*

(x, y,z) , ,c c c ni i i
A e e e

     −  −  −  =    .                                           (5.4.2) 

Instead, the phase difference can be written by using the Cartesian coordinate of the target (x,y, z)  , ith 

transmitter element  (Tx ,Ty , Tz )i i i
 and jth receiver element (Rx ,Ry , Rz )j j j . As mentioned in this 

experiment, we use Tx1 and Rx1~Rx4, thus the phase difference has a specific expression 

 

2 2 2 2 2 2 2 2

1 1 1 1 1 1

1

(Tx x) (Ty y) (Rx x) (Ry y) (Tx x) (Ty y) (Rx x) (Ry y)
0, ,
 − + − + − + − − + − + − + −
  = −
  

n n

c c

.          (5.4.3) 

To reduce the uncertainty of the experiment, we internally hang the sphere right above the origin of the yz 

plane, or in other words, we assume that x=0 for target coordinates. 

    From the result, both subspace methods have higher resolution. In speaking of the SAR processing, 

though the focus can be enhanced by using more inputs data, the resolution is still outmatched. The fact 

also proves the conclusion drawn from the last chapter, there is no lower limited for the subspace method 

regardless of the phase errors. Another important fact is that the ESPRIT method has multiple sidelobes 

and the peak is not as sharp as the MUSIC algorithm though their localization result is the same. 
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Fig.5.4.3.  Metal sphere localization by using SAR processing. 

  
Fig. 5.4.4.  Metal sphere localization by using near field MUSIC. 

  

Fig.5.4.5.  Metal sphere localization by using near field ESPRIT. 
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Fig.5.4.6 . Metal sphere localization by using near field ESPRIT. 

 

Different from GPR uses, it seems that the signal is no longer suffering from the high attenuation in the 

subsurface medium. Thus, it is possible to process the data with the amplitude information by using the 

time domain signal form presented in (2.5.2). Knowing that the amplitude term cannot be shifted by just 

using feature of exponential multiplication, we might directly carry out element-wise division to the 

received signal, which yields 

normilized

normilized

sin( ( (x,y,z)))
2( ) ( ) . / 2

( (x,y,z))

B
t

X t S t
t





  
−   

=   
−  

   

  .                             (5.4.4) 

where ( )S t  is the received time domain signal matrix and ( )X t  is a pure phase representation of the signal . 

Thus, under ideal condition, the element-wise division should be done inside the enumeration process. 

Besides, {.}normilized  stands for the normalization process. 

Table5.4.1. Subspace method with amplitude information in ideal conditions 

Input: Time domain received data matrix  ( )S t  

1: for spectrum horizontal vector 

2:     for spectrum vertical vector  

3:             calculate (x,y,z)  by current elements in axis vectors 

4:             do (5.4.4) to remove the amplitude information 

5:           do either  MUSIC or ESPRIT 

9:    end  

10: end 

Plot 2D spectrum 

Output 2D Spectrum P 

 

Note that the attenuation does exist in this condition, considering the distance from the system to the target. 

However, the time domain signal is not ideal as presented in the signal mode section, the following figure 

shows two traces of acquired data in the experiment. 



61 
 

  
Fig.5.4.7. Examples of range profiles. 

    It apparently has the unwanted phase shift in all the received signal, or at least the correspondence 

between the global maxima of the envelope and the global maxima of the real and imaginary part is reversed. 

All these problems are caused by the property of the wideband signal. In this case, a classical solution, 

Incoherent Signal Subspace Method/MUISC (ISSM) is applied here to solve the problems. 

    The ISSM algorithm decomposes the wideband signal into narrowband components, and carries 

out the computation in each narrowband [11,12]. As the experiment is conducted by using SFCW 

system, for each frequency point acquired, we can still use arrival time difference to accomplish 

the description of different array, because the signal mode follows 

 0( ) exp( 2 )exp 2 ( 1)qs f i f i q f   = − − −                                          (5.4.5) 

where ( )qs f  is the receive signal in the frequency domain at qth frequency point, 0f  is the starting 

frequency , f   is the frequency step and is the arrival time[13]. Consequently, we must run q times near 

field ESPRIT to evaluated the spectra on all frequency points and then perform the arithmetic mean value 

of the spectra. In this case, the acquisition in frequency domain has 256 points, which means 256 times 

proposed MUSIC has to be done. In each iteration MUSIC, the covariance matrix ,i j  is  written as 

, 1 1[ ( ) ( ) ] [ ( ) ( ) ]
H

i j q i m q q ms f s f s f s f =
                                (5.4.6) 

where  m is the length of the subarray chosen. Thus, the construction of the covariance is different from the 

that of the time domain MUSIC. However, after the evaluation of the covariance matrix, the procedure 

introduced in  the previous section can be applied to this case. 

The spectra of different channels are shown in Fig.5.4.8. The difference on each frequency point may be 

caused by the delay times and the reflection coefficient. Note that the metal sphere is not small enough to 

considered as a point target compared to its position an size to the aperture , though in the calculation, we 

see it as a point target.  As a result, the inevitable error appears in our equation solving process and it is 

why TLS method is introduced to combine with ISSM algorithm 

    To have a TLS solution, we have to have identify by what judgement the solution is an optimized solution 

for the system as mentioned. Here we follow a classical work [14], and the only difference is that we are 
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trying to estimate the position of  target instead of the frequency. Now, get to back to the TLS method itself 

and consider the complex signal in our case,  we are given  

* 2 1 *

TLS 2x (A A ) A bI −= − .                                                          (5.4.6) 

where the structures of A and b are introduced in the previous section. The experiment result is shown in 

Fig.5.4.9. Compared to the proposed method given earlier, the performance is almost same though some 

artifacts appears along the vertical direction. They are mainly caused by the bad performance of some 

frequency points. 

 

Fig.5.4.8 Frequency spectra difference between different channels (absolute value). 

 

Fig.5.4.9. The result of near field ESPRIT based on ISSM method. 
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5.5 Summary 
 

    In these chapter, near field Esprit is presented by a simplified form based on the orthogonality of the 

MUSIC algorithm. While the focus is moved from the matrix operations to the classical linear system 

solving. As mentioned in the previous chapter, the phase error caused by the peak selection can be involved 

into the calculation while the traditional LS method does not compensate the error in it. Thus, TLS method 

is introduced to solve the problem by solving the constrained optimization problem. We conducted the 

experiment by using the wideband system to exam our proposed method. In addition, frequency domain 

signal processing is conducted for using frequency point to construct the covariance matrices, which is so-

called ISSM, a classical method to transform wideband signal processing to narrow band signal processing. 

Two approaches are provided here, one uses the amplitude information, and one does not. From the results 

we can see that imaging performance is almost same.  
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Chapter 6 Subspace Tracking and Updating 
 

    Subspace tracking and subspace updating has limited differences and can be considered as a category of 

DOA estimation approaches. The original subspace tracking is based on the QR decomposition [1]. 

Compared to the MUSIC and the esprit, this method does not require any complicated decomposition such 

as EVD and SVD. The main idea is to use a permutation matrix to have some operations with the signal 

covariance matrix, then after QR decomposition, the noise subspace can be approximately acquired, then 

the parameter can be solved. The algorithm is designed to compensate the capability of computer 

computation in earlier years. 

    As personal computers vastly gain the capability of large scale computation. Many improved studies 

have been made without the limitation of large-scale matrix operation. While in recent years, most of the 

research is still focused on complexity reduction[2,3]. Valizadeh at. el., present a new subspace tracking 

algorithm with less computational cost based on constrained optimization[4].  Lassami at. el., proposed a 

low-complexity subspace tracking algorithm specifically for a sparsity constraint [5].  

 

6.1 Conventional subspace tracking 
 

    Power method is the simplest form of subspace tracking. Originally, the power method is used for solving 

the maximum or minimum eigenvalue of a Hermitian matrix A. Given an initial vector 
0x , we can have an 

iteration process by using a linear system 

1

k

k H

k k

Ax
x

Ax Ax
+ =  .                                                             (6.1.1)                                     

The iteration ends when 
kx converges; meanwhile, the largest eigenvalue is the H

k kAx Ax .  A numerical 

example of 4 4A C   is given, as most of the related research use only real numbers for the demonstration 

Numerical example is given to show the iterative calculation of the subspace tracking. we are using 

[1,0,0,0]T as a initial guess for the eigenvectors. 

17 15 9 2 9 14 29
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i i i

i i i
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− − − − − 
 

+ − −
 =
 − + + −
 
− + + + 

                                         (6.1.2)                          

    In this example, the eigenvalue and eigenvectors are gradually converging to the part of result of the 

EVD. In many cases, for example the MUSIC and the ESPRIT method mentioned in the last two chapters, 

calculation of a full EVD or SVD is not necessary; sometimes, only few vectors are needed regarding to 

the limited number of channels we use for the simulation and experimentations. 

    Thus, it is very intuitive to have a method that can partially compute the components from the matrix 

decomposition. And during the process, we hope that some interested parameters of the signal can be 

evaluated. It leads to a category of modern DOA analysis, which is called subspace updating or subspace 
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tracking. Back to the iteration itself, it can also be categorized as a linear system optimization problem. 

Thus, this subspace updating problem is mainly focusing on how to modify the optimization in a more 

efficient to achieve the accurate result of the unknown parameters. 

Table.6.1.1. Iteration results of the power method. 

Iteration 

number 

Dominant 

eigenvalue 

Eigenvector Error 

1 17.4929 [0.9718 + 0.0000i   0.8575 + 0.5145i   

-0.1143 + 0.5145i  -0.8003 + 0.5145i] T 

16.4929 

2     112.5108 [0.4862 - 0.0000i   0.4344 + 0.4314i  

 -0.1433 + 0.2891i  -0.7184 + 0.6956i ] T 

95.0180 

3 94.7070 [0.3999 + 0.0000i   0.4021 + 0.4233i   

-0.1446 + 0.2716i  -0.7091 + 0.7051i] T 

17.8038 

4 92.1732 [0.3867 - 0.0000i   0.3948 + 0.4215i   

-0.1450 + 0.2676i  -0.7070 + 0.7073i] T 

2.5338 

5 91.7009 [0.3844 - 0.0000i   0.3937 + 0.4212i   

-0.1450 + 0.2670i  -0.7066 + 0.7076i] T 

0.4722 

6 91.6237 [0.3840 + 0.0000i   0.3934 + 0.4212i   

-0.1450 + 0.2669i  -0.7066 + 0.7076i] T 

0.0772 

 

    In this example, the eigenvalue and eigenvectors are gradually converging to the part of the result of the 

EVD. In many cases, for example the MUSIC and the ESPRIT method mentioned in the last two chapters, 

calculation of a full EVD or SVD is not necessary; sometimes, only few vectors are needed regarding to 

the limited number of channels we use for the simulation and experimentations 

    Thus, it is very intuitive to have a method that can partially compute the components from the matrix 

decomposition. And during the process, we hope that some interested parameters of the signal can be 

evaluated. It leads to a category of modern DOA analysis, which is called subspace updating or subspace 

tracking. Back to the iteration itself, it can also be categorized as a linear system optimization problem. 

Thus, this subspace updating problem is mainly focusing on how to modify the optimization in a more 

efficient to achieve the accurate result of the unknown parameters. 

    As the most fundamental way of subspace tracking, the power method has many aspects to be improved.  

One of the most common aspects is the search direction. Having an appropriate step size and direction in 

each iteration can vastly reduce the computation and can avoid failures caused by the oversized or wrong 

directional step.  However, following the simulation mode introduced in the last two chapters, we might 

have a specific problem because the largest eigenvalue is too dominant. Under this condition, the power 

method has only two iterations to give the correct result of the largest eigenvalue and its associated 

eigenvectors. Still, for the rest of the components, the method cannot converges. To tackle this problem, 

this work introduces a classical image-processing technique modified for DOA case and it is still under the 

structure of the subspace tracking algorithm 

6.2 low rank-based subspace tracking 
 

As mentioned, the acquired data by using the peak selection method will have a form with phase noise 



67 
 

2 1 1

1 2 2,1

1 ,1

( ) ( )

( )

( )

1

1

1

c c n

c

c n n

j j

j t

j t t

e e

e
R

e

     

  

 

− −

− −

− −

 
 
 

=  
 
  

  .                                           (6.2.1) 

The goal is to find an approach to recovery the above matrix to the ground truth covariance matrix as given 

in the assumptions. 
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.                                                 (6.2.2) 

Before getting into the method, we should introduce the Augmented Lagrange Multiplier (ALM) method[6]. 

Unlike the optimization method introduced in the previous chapters for the non-constrained optimization, 

the method is widely used for solving constrained optimization problem that has a form. 

min ( )

. . ( ) 0

f X

s t h X =
 .                                                                (6.2.3) 

To solve the above optimization problem, we first established the ALM function of the problem 

2
( , , ) ( ) , ( ) ( )

2 F
L X Y f X Y h x h x


 = + +                                      (6.2.4) 

where u is a positive scalar and Y is the Lagrange multiplier. The solving procedure can be considered as 

the gradient based method as previous introduced. Many developments have been made to this method and 

they generally try to modify the search step u and attempt to modified Y during the iteration for faster 

convergence and better precision. In a more general cases, the constrains are more than one, and the problem 

turns to 

min ( )

. . ( ) 0 , ( ) 0i j

f X

s t h X g X= 
                                              (6.2.5) 

where I=1, 2,…m and j=1,2,….n,and m and n are arbitrary positive number . Thus the ALM function is  

2 2
( , , ) ( ) , ( ) , ( ) ( ) ( )

2 2F F
L X Y f X Y h x Y g x h x g x

 
 = + + + +   .             (6.2.5) 

Then the duality is another issue needs to be discussed, because the duality can be used to avoid complicated 

iteration for the algorithm.  In other words, we sometimes transform the optimization problem(primal 

problem) to its dual problem, then the result of the dual problem is the result that we want from the primal 

problem. 

Originally, a dual function : m nD  →  can be defined as 
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 .                (6.2.6) 

Reference work gives specific dual approach for solving the problem. It vastly improves the calculation 

speed of the algorithm as we do not have to update noise subspace in each iteration. Rather, only signal 

subspace is required to generate multiplier  

max tr( )

. ( ) 1

T

Y
D B

s t J Y 
                                                                (6.2.7) 

where in the covariance matrix assumed 

1

2
( ) max( , )J Y Y −= .                                                      (6.2.8) 

Note that ˆRank( ) Rank( ) 2R R= = . Under such circumstances, we use the a method called matrix 

completion to recovery R̂  to R  with the low rank structure of both covariance matrices kept. 

Mathematically, the problem can be written as  

*
min

. .

A
A

s t A E D+ =
                                                          (6.2.9) 

where 
*

.  is the nuclear norm. A is a low rank matrix  and E is a sparse matrix. Under the assumptions of 

this work, we may turn the problem into the following one 

 ˆ

ˆ

ˆ ˆ

min

ˆ. . ,

R

R RE

R R R R

E E

s t A E R A E R

−

+ = + =

.                                (6.2.10) 

To sperate the covariance matrices, the referred works provide many approaches. Considering the 

computation speed, inexact augment Lagrange multiplier method is used. It is mainly because of 

the dual  problem in the iteration 

* * *

1 1
,

( , ) argmin ( , , , )k k k k
A E

A E L A E Y u+ + = .                                   (6.2.11) 

Because in the original RPCA problem, A and E are designed to be updated in A* and E* to improve the 

convergence rate. However, due to the convergences rate is 1

1( )kO u−

− , the algorithm converges slower if the 

multiplier is large. 

    Yet, to solve the optimization, all approach follows the same Lagrange function 

2

* 1
ˆ ˆ( , , , ) ,

2 F
L A E Y A E Y R A E R A E


 = + + − − + − − .              (6.2.12) 

The pseudo algorithm is described in table 6.2.1. 
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Table. 6.2.1 Algorithm: Inexact ALM method. 

Input: covariance matrix M MS R  , vectors of parameters 

1: 0 / ( )Y D J D= , 0 0E = , 0 0u  , 0  , 0k   

2: while not converge do 

4: 1( , , ) svd( );k k kU S V D E u Y−= − +  

5: 1 ( )
k

T

k u
A U S V−=   

6: 1

1

1 1[ ]
k

k k ku
E D A u Y

 −

−

+ +=  − +  

7: 1 1 1( )k k k k kY Y u D A E+ + += + − −  

8: 1 1k ku u+ +=  

9: end while 

Out put kA  1kE +  

 

Fig.6.2.1 Convergency of the proposed method. 

Simulations is conducted by using a Yakumo alike system. The only difference is antenna configuration. 

In the simulation, ULA is used with 0.133m element distance. Fig.6.2.1 shows the convergence of  the 

second row in Fig.6.2.2. 
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Fig.6.2.2 Simulation results of 8elements array under different phase error. 

Fig.6.2.2 are resulted from the simulation by using 8 channel input data. We intentionally add phase shift 

to the selected arrival time in the time domain signal. And the behavior of the sparse matrices is changing 

due to the phase shift. Clearly, when phase shift of each channel gets  larger, the difference gets larger.   
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Fig.6.2.3 Simulation results of 4 elements array under different phase error. 

The method is doubtful useful when number of channels is limited. In this 4-channel array case, we can 

clearly observe the difference of performance due to the arrival time shifted. However, the differenceS in 

the sparse matrices are not as obvious as they are in the previous example 

    A spatial spectrum generated by the above data is  given as well. The goal is still to have the velocity 

depth estimation and the spectrum function is set to be 

2

1
( , )

( , )
P r

E E r



=

−
                                                           (6.2.13) 
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where ( , )E r  is equal to E  , and E  is the sparse matrix generated by the acquired arrival time 

information. In this simulation .   

 

 

Fig.6.2.4.  Velocity-depth spectrum generated by subspace tracking by using 8 channel input data. 

 

Fig. 6.2.5.   Velocity-depth spectrum generated by subspace tracking by using 4 channel input data. 

 

The above results assumes the phase shift on each channel has same value. However, random phase shifts 

on each channel could also appears. Instead of simulation of the velocity-depth analysis, we simulated an 

SFCW signal source located at [0.15m, 0.1m]. The simulated system has 8 channels and a working 
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frequency from 0.65mHz to 1.5GHz.To generate errors for the arrival time, additive gaussian white noise 

is directly added to the arrival time array.  

 

Fig.6.2.6. Simulation results of 8 elements array under different phase error for localization. 
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The results show that the more when the SNR rate is higher, or in other words selected arrival times are 

closer to the ground truth arrival time, and the low rank and sparse components are closer to the ground 

truth. The scale of the similarity can be calculated by using the norms following (6.2.13). Thus, the spatial 

spectrum can be plotted to localize the signal source after the nested loop of the testing vector. In this 

simulation, considering the computational speed, we lower the resolution of the spectrum to 0.1m and 

decrease the imaging range to 0~0.3 in both x and y directions. The result is shown in Fig.6.2.7.Compared 

to the spectrum generated by the conventional time domain MUSIC in Fig.6.2.8 , the proposed algorithm 

is more stable. Note the proposed method can achieve higher resolution spectrum but it is time-consuming 

because of the multiple nested loops. 

 

 

Fig.6.2.7. The spatial spectrum of low rank separation based DOA. 

 

Fig.6.2.8. the spatial spectrum of original MUSIC. 
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6.3 Edge detection based subspace tracking related to GPR profile in a more general case 
 

    From the previous section, we noticed that the algorithm can be used even if the received signal is 

received by an array as the algorithms are originally introduced for the imaging processing. In other words, 

as long as the received data are acquired by a span of vectors in time-series, we may have chance to perform 

such kind of techniques. Thus, GPR B-scan is a perfect example for this method to be applied[7~9].While 

the main problem encountered in the topic is that the GPR data is initially high rank due to the attenuation 

and noise compared to the photo-graphic data. In this section, Sobel edge detection technique is introduced 

to perform the rank deduction first, which makes the subspace tracking algorithm much more easier to be 

performed. 

    Different from the conventional pick search method in time domain, the edge detection may use all 

surrounding elements for the detection[10].  Here a general explanation of edge detection by using the Sobel 

operator is written as  

1 0 1

2 0 2 *

1 0 1

1 2 1

0 0 0 *

1 2 1

x

y

G A

G A

− 
 

= −
 
 − 

 
 

=
 
 − − − 

                                                      (6.3.1) 

For each 3x3 segment  A, the gradient Gxy  then can be written as 

2 2

xy x yG G G= + .                                                               (6.3.2) 

   The final step is to compare the calculated gradient with a threshold manually set prior to the processing. 

It means that judging if an element is on edge in the GPR profile requires not only the adjacent elements 

on the same trace but also the adjacent elements from the adjacent trace of the time domain signal. However, 

in practical uses, GPR A-scan traces may not have such a strong relationship as adjacent elements from the 

photographic image do due to the sampling division. And it is the reason why the method is not a very hot 

topic in the field of GPR imaging processing. An experiment result is given here to demonstrate the process 

of the algorithm  

   First ,edge detection with the Sobel operator is applied to a GPR B-scan data as shown in Fig.6.3.1, and 

the target is kept. The process eliminates some weak targets from the original profile, which is the main 

advantage of edge detection.  
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Fig.6.3.1.GPR B-scan data for pipe detection. 

Then, subspace tracking algorithm presented in the last chapter is carried out. The only difference in this 

case is that we use B-scan data instead of the covariance matrix generated by the array signal. The result is 

shown in Fig,6.3.2. The result shows that the target response is clearly distinguished from the low rank 

components while it cannot be done by directly using the low rank separation procedure. 

 

(a)  Low rank components                                                         (b) Sparse components 

Fig.6.3.2.GPR B-scan data for pipe detection(a)Low rank components of the GPR B-scan (b) Sparse 

components of the GPR B-scan. 

 

6.4 Summary 
 

    In this section, we present a new subspace tracking technique that utilizes the popular constrained 

optimization technique ALM, which has been widely studied in the field of imaging processing as a means 
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of low rank matrix recovery. While the research fields may differ, the fundamental ideas behind these 

approaches are quite similar, as they both involve iterative decomposition of matrix components. Unlike 

the methods discussed in previous chapters, subspace tracking methods require larger input sizes, as smaller 

matrices may not adequately reveal the signature of the sparse component. Furthermore, the ALM-based 

techniques proposed here are well-suited for processing regular GPR profiles through a series of rank 

reduction steps, using a Sobel operator-based edge detection approach in this chapter. Experimental results 

demonstrate the significant potential of subspace tracking techniques for various applications.  
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Chapter 7. Conclusions 
This work focuses on the near field modified subspace methods following two problems: 

• Compensation for the arrival time /phase errors. 

• Complexity deduction. 

In Chapter 4, this work uses the stationary points search method to run through all possible combinations 

of the arrival time from each channel. In other words, the proposed method fully relies on the steering 

matrix of the MUSIC algorithm and assumed that only certain combinations could generate the 

orthogonality, which is our target on the spectrum. This method has obvious advantages and disadvantages; 

the advantage is shown in the road pavement experiment, where the hidden layer can be revealed and the 

accuracy of the proposed method is much higher than the conventional method. However, because all the 

stationary points are considered to be related to the possible arrival time, the computation complexity is 

extremely high, which leads to the second problem as mentioned. To tackle this problem, optimization 

techniques are applied to avoid the two-dimensional scan process in the near field MUSIC. However, an 

initial guess is required for the optimization techniques, to solve this problem, we utilize the boundary 

between the near field and far field as a rational range to generate the initial guess to allow the optimization-

based MUSIC to be executed automatically.  

    Besides, GSVD and GEVD based MUSIC are discussed in this work as they are classical approaches for 

handling the abnormal covariance matrix with phase errors as we assumed. In this work, some modifications 

are made to simplify the process of using these advanced and time-consuming matrix decompositions. In 

addition, the resolution of the near field MUSIC is discussed. However, due to the special assumptions we 

made, the resolution has no upper limit if the arrival time information is precisely evaluated. Thus, it can 

be considered in such a way that super-resolution imaging can be achieved by using relatively weaker 

hardware platform, as proof, we bring an SDR array experiment to verify the idea, which shows the 

feasibility of the study. 

    In Chapter 5, near field ESPRIT method is introduced as an opening to the LS method.  

The problems are transformed from the non-constrained optimizations to the constrained ones, and the 

Lagrange multiplier is first introduced in this chapter. Unlike the approaches we used in the previous chapter, 

the TLS based ESPRIT mathematically considers the error in the covariance matrix and tries to obtain an 

approximation solution to the ground truth. A classical sphere reflector experiment is performed and both 

the near-field MUSIC and TLS near field MUSIC are tested. Note that, we applied conventional ISSM 

MUSIC approaches for the wideband signal, and the results show that both algorithms outperform 

conventional SAR imaging in terms of the localization purpose. 

    In Chapter 6, following the constrained optimization techniques mentioned previously, subspace tracking 

or updating techniques are introduced. With the concern of the novelty, this work introduces a recent 

trending imaging processing technique low-rank matrix recovery to solve the conventional subspace 

tracking problem for the DOA estimation. Because, fundamentally, the kernel iterations of the ALM based 

low rank matrix recovery process is highly like subspace tracking. Numerical simulations are carried out, 

and they show the versatility of the ALM based algorithm. Moreover, as a bonus work, we use edge 

detection techniques to reduce the rank of the GPR profile, and it allows the implementation of the proposed 

method not only for the array signal processing but for more universal uses. 

    In conclusion, two important points can be made. Firstly, to compensate for the phase errors caused by 

signal arrival, techniques based on TLS method are preferable. This is because they have a mathematical 

proof for handling contaminated elements in the matrix A when solving the system Ax=b. Secondly, 

optimization techniques are a more efficient approach compared to the conventional, time-consuming 

spectra plotting for DOA purposes. However, it is worth noting that this study focuses specifically on the 

near field case. It is important to consider that the some techniques used in this work may be outdated 

compared to the latest theories and practices in the optimization field. 
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