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The problem of the direction of arrival (DOA) estimation for the noncircular (NC) signals, which have been widely used in
communications, is investigated. A reduced-dimension NC-Capon algorithm is proposed hereby for the DOA estimation of
noncircular signals. The proposed algorithm, which only requires one-dimensional search, can avoid the high computational cost
within the two-dimensional NC-Capon algorithm. The angle estimation performance of the proposed algorithm is much better
than that of the conventional Capon algorithm and very close to that of the two-dimensional NC-Capon algorithm, which has
a much higher complexity than the proposed algorithm. Furthermore, the proposed algorithm can be applied to arbitrary arrays
and works well without estimating the noncircular phases. The simulation results verify the effectiveness and improvement of the
proposed algorithm.

1. Introduction

Direction of arrival (DOA) estimation is a hot topic in
the array signal processing field and has been widely used
in communication, radar, sonar, and medical image [1–4].
Classical DOA estimation algorithms include multiple signal
classification (MUSIC) [5], estimation of signal parameters
via rotational invariance technique (ESPRIT) [6–8], propa-
gator method [9], and the Capon [10]. Besides, compressive
sensing (CS) [11] and Bayesian compressive sensing (BCS)
[12] have recently been used to solve the problem of DOA
estimation, and they have an advantage of not requiring
knowledge of the number of impinging signals.

To improve the DOA estimation performance, the non-
circular property of incoming signals has been considered in
[13–22]. In wireless communications, the noncircular signals
have been extensively used, for example, the binary phase
shift keying, amplitude modulation, and unbalanced quadra-
ture phase shift keying [22]. If 𝐸{𝑏(𝑡)} = 0, 𝐸{𝑏(𝑡)𝑏𝐻(𝑡)} ̸= 0,
and 𝐸{𝑏(𝑡)𝑏𝑇(𝑡)} ̸= 0, then 𝑏(𝑡) is a noncircular signal [13–
15]. This statistics redundancy can be properly exploited to

enhance theDOAestimation performance. In general, we use
the array output and its conjugation to extend the data model
and array aperture. A noncircular MUSIC (NC-MUSIC)
algorithm was proposed in [14] for the DOA estimation of
the noncircular signals. In order to avoid the peak search in
NC-MUSIC, a polynomial rooting NC-MUSIC (NC-Root-
MUSIC) was presented in [15]. NC-ESPRIT algorithms were
proposed in [16, 17] for DOA estimation without spectrum
search. Real-valued implementation of unitary ESPRIT (NC-
Unitary-ESPRIT) for noncircular sources was presented in
[18], and it has a low complexity. Besides, a noncircular
propagator method (NC-PM) for direction estimation of
noncircular signals was proposed in [19], which has better
angle estimation performance than PM in [9]. Based on
the parallel factor (PARAFAC) technique, a noncircular
PARAFAC (NC-PARAFAC) algorithm was proposed in [20]
to obtain the two-dimensional (2D) DOA estimation of the
noncircular signals for arbitrarily spaced acoustic vector-
sensor array. Moreover, a two-dimensional direction-finding
for noncircular signals using two parallel linear arrays via the
extended rank reduction algorithm was presented in [21].
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Many DOA estimation algorithms mentioned above
require the prior knowledge of the number of sources or
need to estimate the number of sources by information theory
algorithm, matrix decomposition algorithm, smoothed rank
algorithm, or Gerschgorin disks algorithm [23–26]. Notably,
the Capon method can work well without information of the
number of sources [10]. CS method and BCS method work
well without estimating the number of the sources, but the
noncircular property is not considered. By combining the
Capon method and the noncircular property, a noncircular
Capon (NC-Capon) algorithm was proposed in [27] for
the DOA estimation of noncircular signals, but it needs an
exhaustive two-dimensional (2D) search over the regions of
both DOA and noncircular phase.

In this work, we will propose a reduced-dimension NC-
Capon (RD-NC-Capon) algorithm for the DOA estima-
tion of noncircular signals. The proposed algorithm, which
only requires one-dimensional search, can avoid the high
computational cost within the two-dimensional NC-Capon
(2D-NC-Capon) algorithm [27]. The angle estimation per-
formance of the proposed algorithm is much better than
that of the conventional Capon algorithm and very close to
that of the two-dimensionalNC-Capon algorithm.Moreover,
the proposed algorithm can be applied to arbitrary arrays
and works well without estimating the noncircular phases.
Numerical simulations verify the improvement and effective-
ness of the proposed algorithm.

The remainder of this paper is structured as follows.
Section 2 introduces the data model. Section 3 proposes the
RD-NC-Capon algorithm. Section 4 gives the performance
analysis. In Section 5, simulation results are provided to
show the effectiveness, while the conclusions are drawn in
Section 6.

Notations. Lowercase (capital) bold symbols denote vector
(matrix). (⋅)∗, (⋅)𝑇, (⋅)𝐻, (⋅)−1, and (⋅)

+ denote complex
conjugation, transpose, conjugate-transpose, inverse, and
pseudoinverse operations, respectively. diag{k} stands for a
diagonal matrix whose diagonal is a vector k. Re(⋅) is to
get the real part of the complex. 𝐸{⋅} presents the statistical
expectation. [P]

𝑖,𝑗
denotes the (𝑖, 𝑗) element of thematrixP. ⊕

is Hadamard product. I
𝑀
stands for an𝑀×𝑀 identitymatrix

and 0
𝑀×𝑁

is a zero matrix with𝑀×𝑁.

2. Data Model

As shown in Figure 1, we consider a linear array consisting of
𝑀 omnidirectional sensors and select the first sensor as the
referenced one. The vector d = [𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑀
] denotes the

displacement between the sensor and the referenced one, and
𝑑
1
= 0. We assume that there are 𝐾 far-field, narrow-band

signals impinging on the linear array from different angles
𝜃
𝑘
(𝑘 = 1, 2, . . . , 𝐾). The received signal of the array can be

expressed by vector x(𝑡) [28]:

x (𝑡) = As (𝑡) + n (𝑡) , (1)

where A = [a(𝜃
1
), . . . , a(𝜃

𝐾
)] ∈ C𝑀×𝐾 with a(𝜃

𝑘
) =

[1, 𝑒
−𝑗2𝜋𝑑

2
sin𝜃
𝑘
/𝜆
, . . . , 𝑒

−𝑗2𝜋𝑑
𝑀
sin𝜃
𝑘
/𝜆
]
𝑇

∈ C𝑀×1 and 𝜆 being
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Figure 1: Array geometry.

the wavelength. s(𝑡) ∈ C𝐾×1 is the narrow-band noncircular
signal vector and n(𝑡) denotes the additive white Gaussian
noise.

As for the definition of noncircular signal, we consider
that if𝐸{s(𝑡)} = 0

𝐾×1
,𝐸{s(𝑡)s𝐻(𝑡)} ̸= 0

𝐾×𝐾
, and𝐸{s(𝑡)s𝑇(𝑡)} =

0
𝐾×𝐾

, then s(𝑡) is a circular signal vector. Otherwise, if
𝐸{s(𝑡)} = 0

𝐾×1
, 𝐸{s(𝑡)s𝐻(𝑡)} ̸= 0

𝐾×𝐾
, and 𝐸{s(𝑡)s𝑇(𝑡)} ̸=

0
𝐾×𝐾

, then s(𝑡) is a noncircular signal vector [13–19]. Addi-
tionally, the vector of strictly second-order noncircular sig-
nals can be expressed as [13–16]

s (𝑡) = Ψs0 (𝑡) , (2)

where s
0
(𝑡) ∈ R𝐾×1 andΨ = diag{𝑒−𝑗𝜙1 , 𝑒−𝑗𝜙2 , . . . , 𝑒−𝑗𝜙𝐾} with

𝜙
𝑘
being the noncircular phase of the 𝑘th signal. According

to (2), we rewrite (1) as

x (𝑡) = AΨs
0 (𝑡) + n (𝑡) . (3)

3. DOA Estimation Algorithm

In this section, we will propose the RD-NC-Capon algorithm
for the DOA estimation of noncircular signals. In order to
double the array aperture, we will first give the extended
data model by exploiting the noncircular property, which is
a common method of expansion for noncircular signals and
has been widely used in many noncircular DOA estimation
algorithms [13–22]. Then we will talk about the conventional
2D-NC-Capon algorithm in Section 3.2, whereas the RD-
NC-Capon algorithm will be proposed in Section 3.3.

3.1. Data Construction. When the noncircular signals im-
pinge on the array, we use the array output and its conjugation
to extend the data model [13–15]:

y (𝑡) = [
x (𝑡)
x∗ (𝑡)

] = [

AΨ
A∗Ψ∗

] s
0 (𝑡) + [

n (𝑡)
n∗ (𝑡)

]

= Bs
0 (𝑡) + n

0 (𝑡) ,

(4)
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where n
0
(𝑡) = [

n(𝑡)
n∗(𝑡) ] ∈ C2𝑀×1. Consider B = [

AΨ
A∗Ψ∗ ] ∈

C2𝑀×𝐾, and it can be written as

B
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(5)

The covariance matrix of the extended data model can be
expressed as R = 𝐸[y(𝑡)y𝐻(𝑡)].

3.2. 2D-NC-Capon Algorithm. The following 2D-NC-Capon
function can be utilized to estimate the DOAs of the noncir-
cular signals [27, 28]

𝑃2D-NC-Capon (𝜃, 𝜙) =
1

b𝐻 (𝜃, 𝜙)R−1b (𝜃, 𝜙)
, (6)

where

b (𝜃, 𝜙) =

[
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[
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. (7)

The 2D-NC-Capon algorithm can obtain 𝐾 local peak
values of (6) by 2D search of 𝜃 and𝜙. Since the 2D-NC-Capon
algorithm requires an exhaustive 2D search, this approach
is normally inefficient due to its high computational cost.
A reduced-dimension (RD) Capon algorithm was proposed
in [29] for the angle estimation of bistatic multiple-input
multiple-output radar. In the following subsections, we make
reference to the RD idea from [29] and present a RD-NC-
Capon algorithm for the DOA estimation of noncircular
signals just through one-dimensional (1D) search.

There are some differences between the work in [29]
and our work. Firstly, [29] used the RD-Capon method for
angle estimation in bistatic multiple-input multiple-output
radar, while our work is to extend the RD-Capon idea and
propose RD-NC-Capon for angle estimation of noncircular
signals. Secondly, the noncircular property is not considered
in [29], and we use the noncircular property of the sources to
double the array aperture and enhance the angle estimation

performance.Thirdly, the modeling in each work is different.
The received signal in [26] can be used directly for RD
processing, while a data model extension is required in our
work.

3.3. The Proposed RD-NC-Capon Algorithm. Equation (7)
can be denoted by

b (𝜃, 𝜙) = [
a (𝜃) 𝑒−𝑗𝜙

a∗ (𝜃) 𝑒𝑗𝜙
] = [

a (𝜃) 0
𝑀×1

0
𝑀×1

a∗ (𝜃)
] [

𝑒
−𝑗𝜙

𝑒
𝑗𝜙
]

= P (𝜃) e0 (𝑓) ,

(8)

where 0
𝑀×1

is an𝑀× 1 zero matrix. Consider

a (𝜃) = [1, 𝑒−𝑗2𝜋𝑑2sin𝜃/𝜆, . . . , 𝑒−𝑗2𝜋𝑑𝑀sin𝜃/𝜆]
𝑇

,

P (𝜃) = [
a (𝜃) 0

𝑀×1

0
𝑀×1

a∗ (𝜃)
] ,

e
0
(𝜙) = [

𝑒
−𝑗𝜙

𝑒
𝑗𝜙
] .

(9)

Then we construct the following function:

𝑉 (𝜃, 𝜙) =
1

𝑃2D-NC-Capon (𝜃, 𝜙)
. (10)

According to (6)–(10), we know that

𝑉 (𝜃, 𝜙) = e𝐻
0
(𝜙)P𝐻 (𝜃)R−1P (𝜃) e0 (𝜙) . (11)

Obviously, 𝑉(𝜃, 𝜙) can be expressed as

𝑉 (𝜃, 𝜙) = 𝑒
−𝑗𝜙
𝑒
𝑗𝜙e𝐻
0
(𝜙)P𝐻 (𝜃)R−1P (𝜃) e0 (𝜙) . (12)

Equation (12) can be denoted by

𝑉 (𝜃, 𝜙) = 𝑒
−𝑗𝜙e𝐻
0
(𝜙)P𝐻 (𝜃) e0 (𝜙) 𝑒

𝑗𝜙
. (13)

We define q(𝜙) = e0(𝜙)𝑒𝑗𝜙 = [
1

𝑒
𝑗2𝜙 ] and Q(𝜃) =

P𝐻(𝜃)R−1P(𝜃). Equation (13) can be rewritten as

𝑉 (𝜃, 𝜙) = q𝐻 (𝜙)Q (𝜃) q (𝜙) . (14)

As (14) is a quadratic optimization, we consider eliminating
trivial solution q(𝜙) = 0

2×1
and add a constraint of e𝐻q(𝜙) =

1, where e = [1, 0]𝑇. Then the optimization problem in (14) is
reconstructed as follows:

min
𝜃,𝜙

q𝐻 (𝜙)Q (𝜃) q (𝜙)

s.t. e𝐻q (𝜙) = 1.
(15)

We construct the following cost function using Lagrange
multiplier:

𝐿 (𝜃, 𝜙) = q𝐻 (𝜙)Q (𝜃) q (𝜙) − 𝜌 [e𝐻q (𝜙) − 1] , (16)
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where 𝜌 is a constant. If the derivative of (16) is set to zero,
that is,

𝜕

𝜕q (𝜙)
𝐿 (𝜃, 𝜙) = 2Q (𝜃) q (𝜙) + 𝜌e = 0, (17)

then q(𝜙) = −0.5𝜌Q−1(𝜃)e. We define 𝜇 = −0.5𝜌; then we get

q̂ (𝜙) = 𝜇Q (𝜃)
−1 e. (18)

As e𝐻q(𝜙) = 1 and 𝜇 = 1/e𝐻Q(𝜃)−1e, we have

q̂ (𝜙) = Q−1 (𝜃) e
e𝐻Q−1 (𝜃) e

. (19)

From (14) and (19), we have

𝜃 = argmin 1

e𝐻Q−1 (𝜃) e
= argmax e𝐻Q−1 (𝜃) e. (20)

As Q(𝜃) = P(𝜃)𝐻R−1P(𝜃), a new 1D search cost function is
used for DOA estimation:

𝑓NC-RD-Capon (𝜃) = e𝐻 (P (𝜃)𝐻R−1P (𝜃))
−1

e. (21)

In the finite sample case, the covariance matrix can be
estimated as

R̂ =
1

𝐿

𝐿

∑

𝑙=1

y (𝑡
𝑙
) y𝐻 (𝑡

𝑙
) , (22)

where 𝐿 denotes the number of snapshots. Then, the DOAs
𝜃
𝑘
(𝑘 = 1, 2, . . . , 𝐾) can be obtained through the following

search:

𝑓RD-NC-Capon (𝜃) = e𝐻 (P (𝜃)𝐻 R̂−1P (𝜃))
−1

e. (23)

2D-NC-Capon algorithm obtains DOA estimation by 2D
search of 𝜃 and 𝜙, whereas the proposed algorithm gets
DOA estimation via 1D search according to the function in
(23). The proposed RD-NC-Capon algorithm can work well
without estimation of noncircular phases.

Themain steps of RD-NC-Capon algorithm are shown as
follows.

Step 1. Construct the extended data model from the array
output via (4).

Step 2. Compute the covariance matrix R̂ of the extended
data model via (22).

Step 3. Use the 1D spectrum search function to estimate
DOAs via (23).

4. Performance Analysis

In this section, we first analyze the computational complexity
of the proposed algorithm and then derive the Cramér-Rao
bound (CRB) of DOA estimation.

4.1. Complexity Analysis. For the proposed algorithm, com-
puting the covariance matrix requires 𝑂(4𝑀2𝐿), inversion
operation of the covariance matrix needs 𝑂(8𝑀3), and a
spectrum searchingwants𝑂(8(𝑀2+𝑀)).Themain computa-
tional complexity of the proposed RD-NC-Capon algorithm
is 𝑂(4𝑀2𝐿 + 8𝑀3 + 8(𝑀2 + 𝑀)𝑛), where 𝑛 is the number
of searches, whereas the 2D-NC-Capon algorithm needs
𝑂(4𝑀

2
𝐿 + 8𝑀

3
+ (4𝑀

2
+ 2𝑀)𝑛

2
). Thus, the RD-NC-Capon

algorithm has a much lower computational complexity than
the 2D-NC-Capon algorithm. Figure 2 shows the complexity
comparison versus the snapshots 𝐿, where 𝐾 = 3, 𝑛 = 6000,
and 𝑀 = 8 are considered. Figure 3 presents the running
time comparison, where we compare the proposed algorithm
against the 2D-NC-Capon algorithm. From Figures 2 and
3, we find that the proposed algorithm has a much lower
complexity than the 2D-NC-Capon algorithm.

4.2. Cramér-Rao Bound. In the finite sample case, the data
model can be rewritten as

Y = BS
0
+ N
0
, (24)

where Y = [y(𝑡
1
), . . . , y(𝑡

𝐿
)] and S

0
= [s
0
(𝑡
1
), . . . , s

0
(𝑡
𝐿
)]. B ∈

C2𝑀×𝐾 is the same as that shown in (5).
We assume that the signal is deterministic, and then the

estimation parameter vector is expressed as

𝜁 = [𝜃
1
, . . . , 𝜃

𝐾
, 𝜙
1
, . . . , 𝜙

𝐾
, s𝑇
0
(𝑡
1
) , . . . , s𝑇

0
(𝑡
𝐿
) , 𝜎
2
]
𝑇

, (25)

where s𝑇
0
(𝑡
𝑙
) is the 𝑙th column of S

0
. 𝜎2 is the noise power.

According to (24), we have

y = vec (Y) = vec (BS
0
) + vec (N

0
) , (26)

where vec(⋅) is to convert a matrix into a vector.
The expected value 𝜇 and the covariance matrix Γ of y are

𝜇 =

[
[
[
[

[

Bs (𝑡
1
)

.

.

.

Bs (𝑡
𝐿
)

]
]
]
]

]

= GS,

Γ =
[
[
[

[

𝜎
2I
2𝑀

0
d

0 𝜎
2I
2𝑀

]
]
]

]

,

(27)

where

G =
[
[

[

B 0
d

0 B

]
]

]

,

S =
[
[
[
[

[

s
0
(𝑡
1
)

.

.

.

s
0
(𝑡
𝐿
)

]
]
]
]

]

.

(28)
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According to [22, 30, 31], we know that the (𝑖, 𝑗) element
of the CRB matrix (Pcr) can be expressed as

[P−1cr ]𝑖𝑗 = tr [Γ−1Γ
𝑖
Γ
−1
Γ


𝑗
] + 2Re [𝜇𝐻

𝑖
Γ
−1
𝜇


𝑗
] , (29)

where Γ
𝑖
, Γ
𝑗
and 𝜇

𝑖
, 𝜇
𝑗
are the derivatives of Γ and 𝜇 on the

𝑖th or 𝑗th element of 𝜁, respectively. tr[⋅] is to obtain the trace
of a matrix. Since the covariance matrix is just related to 𝜎2,
the first part of (29) is zero. Then

[P−1cr ]𝑖𝑗 = 2Re [𝜇
𝐻

𝑖
Γ
−1
𝜇


𝑗
] . (30)

We have

𝜕𝜇
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𝑘

=

[
[
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[
[
[
[
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)

.

.

.
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𝐿
)

]
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]

]

=
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𝐿
)

]
]
]
]

]

,

𝑘 = 1, . . . , 𝐾,

𝜕𝜇

𝜕𝜙
𝑘

=

[
[
[
[
[
[
[
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.

.
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𝐿
)

]
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]

]

=

[
[
[
[

[

d
𝑘𝜙
𝑠
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(𝑡
1
)

.

.

.
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𝑠
0𝑘
(𝑡
𝐿
)

]
]
]
]

]

,

𝑘 = 1, . . . , 𝐾,

(31)

where 𝑠
0𝑘
(𝑡) is the 𝑘th element of s

0
(𝑡), d
𝑘𝜃
= 𝜕b
𝑘
/𝜕𝜃
𝑘
, and

d
𝑘𝜙
= 𝜕b
𝑘
/𝜕𝜙
𝑘
with b

𝑘
being the 𝑘th column of B.

We define
Δ

=

[
[
[
[

[

d
1𝜃
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(32)

As 𝜇 = GS,

𝜕𝜇

𝜕S𝑇
= G. (33)

Now we have
𝜕𝜇

𝜕𝜁
𝑇
= [Δ,G, 0

2𝑀𝐿×1
] . (34)

According to (34),

2Re{
𝜕𝜇
𝐻

𝜕𝜁
Γ
−1 𝜕𝜇

𝜕𝜁
𝑇
} = [

J 0
(𝐾𝐿+2𝐾)×1

0
1×(𝐾𝐿+2𝐾)

0
] , (35)

where J = (2/𝜎2)Re {[ Δ𝐻G𝐻 ] [Δ G]}.
Define

Q = (G𝐻G)
−1

G𝐻Δ,

F = [
I
2𝐾

0
2𝐾×𝐾𝐿

−Q I
𝐾𝐿

] ,

(36)

where Q
𝑅
and Q

𝐼
are the real and imaginary parts of Q,

respectively.
It can be demonstrated that

[Δ G] F = [(Δ − GQ) G] = [Π⊥GΔ G] , (37)

whereΠ⊥G = I−G(G𝐻G)−1G𝐻 andG𝐻Π⊥G = 0. Then we have

F𝑇JF = 2

𝜎2
Re{F𝐻 [

Δ
𝐻

G𝐻
] [Δ G] F} . (38)
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According to (37), we know that

F𝐻 [
Δ
𝐻

G𝐻
] [Δ G] F = [

Δ
𝐻
Π
⊥

G

G𝐻
] [Π
⊥

GΔ G]

= [

Δ
𝐻
Π
⊥

GΔ 0
2𝐾×𝐾𝐿

0
𝐾𝐿×2𝐾

G𝐻G
] .

(39)

Hence, combining (37)-(38), F𝑇JF can be rewritten as

F𝑇JF = 2

𝜎2
Re{[
Δ
𝐻
Π
⊥

GΔ 0
2𝐾×𝐾𝐿

0
𝐾𝐿×2𝐾

G𝐻G
]} . (40)

It is obvious that J−1 = F(F𝑇JF)−1F𝑇. Then J−1 is written as

J−1 = 𝜎
2

2
[

I
2𝐾

0
2𝐾×𝐾𝐿

−Q I
𝐾𝐿

][

Re (Δ𝐻Π⊥GΔ) 0
2𝐾×𝐾𝐿

0
𝐾𝐿×2𝐾

G𝐻G
]

−1

⋅ [
I
2𝐾

−Q𝑇

0
2𝐾×𝐾𝐿

I
𝐾𝐿

] .

(41)

Furthermore,

J−1 = [
[

𝜎
2

2
[Re (Δ𝐻Π⊥GΔ)]

−1

𝜅

𝜅 𝜅

]

]

, (42)

where 𝜅 denotes the part we are not concerned about.
Till now, we can give the CRB matrix [30, 31]:

CRB = 𝜎
2

2
[Re (Δ𝐻Π⊥GΔ)]

−1

. (43)

After further simplification, we rewrite the CRB matrix as

CRB = 𝜎
2

2𝐿
{Re [D𝐻Π⊥BD ⊕ R̂

𝑠
]}
−1

, (44)

where 𝜎2 is noise power, R̂
𝑠
= (1/𝐿)∑

𝐿

𝑙=1
s
0
(𝑡
𝑙
)s
0

𝐻
(𝑡
𝑙
), and

Π
⊥

B = I
2𝑀

− B(B𝐻B)−1B𝐻. Consider D = [d
1𝜃
, d
2𝜃
, . . . , d

𝐾𝜃
,

d
1𝜙
, d
2𝜙
, . . . , d

𝐾𝜙
], d
𝑘𝜃
= 𝜕b
𝑘
/𝜕𝜃
𝑘
, and d

𝑘𝜙
= 𝜕b
𝑘
/𝜕𝜙
𝑘
with b

𝑘

being the 𝑘th column of B.

4.3. Discussions

Remark 1. The strictly second-order noncircular signals are
considered in the paper. The proposed algorithm works well
for the general noncircular signals. When we consider the
general noncircular signals, the source vector can be denoted
by

s (𝑡) = diag (𝜌
1
𝑒
−𝑗𝜙
1 , 𝜌
2
𝑒
−𝑗𝜙
2 , . . . , 𝜌

𝐾
𝑒
−𝑗𝜙
𝐾) s
0 (𝑡)

= Ψ𝜌s
0 (𝑡) ,

(45)

where s
0
(𝑡) ∈ R𝐾×1,Ψ = diag{𝑒−𝑗𝜙1 , 𝑒−𝑗𝜙2 , . . . , 𝑒−𝑗𝜙𝐾}, and 𝜌 =

diag(𝜌
1
, 𝜌
2
, . . . , 𝜌

𝐾
) ∈ R𝐾×𝐾 with 𝜌

𝑘
being the noncircularity

coefficient of the 𝑘th source. The extended signal is

y (𝑡) = [
x (𝑡)
x∗ (𝑡)

] = B𝜌s
0 (𝑡) + n

0 (𝑡) . (46)

We also estimate DOAs of the general noncircular signals in
a similar way.

Remark 2. The proposed algorithm works well for the uni-
form circular array (UCA).We assume a(𝜃, 𝜑) is the direction
vector of the UCA with DOA being (𝜃, 𝜑). 3D-NC-Capon
function can be utilized to estimate the 2D-DOA of the
noncircular signals for UCA. 2D-DOA estimation function
of the proposed algorithm is

𝑓NC-RD-Capon (𝜃, 𝜑) = e𝐻 (P (𝜃, 𝜑)𝐻 R̂−1P (𝜃, 𝜑))
−1

e, (47)

where

P (𝜃, 𝜑) = [
a (𝜃, 𝜑) 0

𝑀×1

0
𝑀×1

a∗ (𝜃, 𝜑)
] . (48)

5. Simulation Results

This section uses Monte Carlo simulations to assess the
DOA estimation performance of the proposed algorithm.We
define the root mean square error (RMSE) of DOA as

RMSE = 1

𝐾

𝐾

∑

𝑘=1

√
1

1000

1000

∑

𝑛=1

[𝜃
𝑘,𝑛
− 𝜃
𝑘
]
2 (49)

with 𝜃
𝑘
being the accurate angle of the 𝑘th signal and 𝜃

𝑘,𝑛

being the estimate of 𝜃
𝑘
of the 𝑛th Monte Carlo trial. For

Figures 4 and 6–9, we assume that there are 3 (𝐾 = 3)
noncircular signals impinging on the array with angles being
[10
∘
, 20
∘
, 30
∘
] and the noncircular phases being [10∘, 30∘, 50∘].

Figure 4 shows the spectrum search result of the pro-
posed algorithm for the nonuniform linear array with d =

[0, 0.45𝜆, 0.9𝜆, 1.3𝜆, 1.78𝜆, 2.2𝜆, 2.64𝜆, 3.1𝜆], where 𝜆 is the
wavelength. In this simulation, signal-to-noise ratio (SNR) =
20 dB,𝑀 = 8, and 𝐿 = 200 are considered. From Figure 4, we
find that the proposed algorithm can work well.

Figure 5 presents the spectrum search result of the
proposed algorithm for the nonuniform linear array with
d = [0, 0.45𝜆, 0.9𝜆, 1.3𝜆, 1.78𝜆, 2.2𝜆, 2.64𝜆, 3.1𝜆]. There are
9 (𝐾 = 9) noncircular signals impinging on array with
angles being [−40∘, −30∘, −20∘, −10∘, 0∘, 10∘, 20∘, 30∘, 40∘] and
the noncircular phases being [−40∘, −30∘, −20∘, −10∘, 0∘, 10∘,
20
∘
, 30
∘
, 40
∘
]. SNR = 20 dB,𝑀 = 8, and 𝐿 = 200 are adopted

for the simulation. From Figure 5, we find that proposed
algorithm works well even when there are more sources than
sensors, while the conventional Capon algorithm fails towork
in this condition.The Capon algorithm with𝑀 elements can
identify 𝑀 − 1 impinging signals. The proposed algorithm
uses the noncircular property to double the number of
resolvable sources.

We compare the proposed algorithm against other DOA
estimation algorithms. Figure 6 indicates the DOA estima-
tion performance comparison among the Capon algorithm,
the 2D-NC-Capon algorithm, and the proposed algorithm
with d = [0, 0.45𝜆, 0.9𝜆, 1.3𝜆, 1.78𝜆, 2.2𝜆, 2.64𝜆, 3.1𝜆], 𝑀 =

8, 𝐿 = 200, and 𝐾 = 3. ESPRIT and NC-ESPRIT can-
not work for nonuniform linear array, because they require



International Journal of Antennas and Propagation 7

−60

−50

−40

−30

−20

−10

0

M
ag

ni
tu

de
 (d

B)

0 30 7020 60 8010 40 50 90

−
20

−
40

−
50

−
80

−
10

−
90

−
60

−
70

−
30

Angle (deg.)

Figure 4: The spectrum search results of RD-NC-Capon algorithm
(SNR = 20 dB,𝑀 = 8, 𝐿 = 200, and 𝐾 = 3).
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Figure 5: The spectrum search results of RD-NC-Capon algorithm
(SNR = 20 dB,𝑀 = 8, 𝐿 = 200, and 𝐾 = 9).

the invariance shift property. Therefore, ESPRIT and NC-
ESPRIT are not considered in Figure 6. Figure 7 shows
the DOA estimation performance comparison among the
ESPRIT algorithm, the NC-ESPRIT algorithm, the Capon
algorithm, the 2D-NC-Capon algorithm, and the pro-
posed algorithm for a uniform linear array with d =

[0, 0.5𝜆, 1.0𝜆, 1.5𝜆, 2.0𝜆, 2.5𝜆, 3.0𝜆, 3.5𝜆]. FromFigures 6 and
7, we find that the 2D-NC-Capon algorithmand the proposed
algorithm have better angle estimation performance than
the Capon algorithm. The reason is that the two NC-
Capon algorithms make full use of the noncircular property
of the signals, and the array aperture is extended twice
consequently. The proposed algorithm has very close DOA

DOA estimation
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Figure 6: The DOA estimation performance comparison for non-
uniform linear array (𝑀 = 8, 𝐿 = 200, and 𝐾 = 3).
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Figure 7: The DOA estimation performance comparison for uni-
form linear array (𝑀 = 8, 𝐿 = 200, and 𝐾 = 3).

estimation performance to the 2D-NC-Capon algorithm,
which has a much higher complexity.

Figure 8 illustrates the DOA estimation performance of
the proposed algorithm with different number of antennas
(𝑀). It is clearly shown that the angle estimation performance
of the proposed algorithm is gradually improved with the
number of antennas increasing. Multiple antennas improve
the DOA estimation performance because of antenna diver-
sity gain.
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Figure 8:TheDOA estimation performance with different numbers
of antennas (𝐿 = 200 and 𝐾 = 3).

Figure 9 presents the DOA estimation performance of
the proposed algorithm with different snapshots. In this
simulation, 𝑀 = 8, 𝐾 = 3, and d = [0, 0.45𝜆, 0.9𝜆, 1.3𝜆,
1.78𝜆, 2.2𝜆, 2.64𝜆, 3.1𝜆] are considered. From Figure 9, it is
indicated that the DOA estimation performance becomes
better with the snapshot increasing. The reason is that
increasing the amount of sampled data makes the covariance
matrix more accurate.

Figure 10 shows the spectrum search result of the pro-
posed algorithm for UCA with SNR = 20 dB, 𝑀 = 8,
and 𝐿 = 200. The radii of the UCA are 0.7𝜆, and there are
3 noncircular signals impinging on UCA with angles being
(10
∘
, 25
∘
), (20∘, 15∘), and (30∘, 35∘). From Figure 10, we find

that the proposed algorithm works well.

6. Conclusion

In this paper, we have proposed theRD-NC-Capon algorithm
for the DOA estimation of noncircular signals. Compared
to the conventional Capon algorithm, the proposed RD-NC-
Capon algorithm has better estimation performance and can
detect more sources by exploiting the noncircular property.
Different from the 2D-NC-Capon algorithm, the proposed
algorithm achieves DOA estimation with only a 1D search.
It not only has much lower computational complexity but
also has an angle estimation performance close to that of
the 2D-NC-Capon algorithm, which has a much higher
complexity than the proposed algorithm. Moreover, the
proposed algorithm can be applied to arbitrary arrays and
works well without estimating noncircular phases. Numerical
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Figure 9: The DOA estimation performance with different number
of snapshots (𝑀 = 8 and 𝐾 = 3).
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Figure 10:The spectrum search result of the proposed algorithm for
the UCA.

simulation results verify the effectiveness and improvement
of the proposed algorithm.
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