8,238 research outputs found

    An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics

    Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery

    Get PDF
    Copyright @ 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.National Institute for Health Researc

    Consensus clustering and functional interpretation of gene-expression data

    Get PDF
    Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFκB and the unfolded protein response in certain B-cell lymphomas

    Profile Likelihood Biclustering

    Full text link
    Biclustering, the process of simultaneously clustering the rows and columns of a data matrix, is a popular and effective tool for finding structure in a high-dimensional dataset. Many biclustering procedures appear to work well in practice, but most do not have associated consistency guarantees. To address this shortcoming, we propose a new biclustering procedure based on profile likelihood. The procedure applies to a broad range of data modalities, including binary, count, and continuous observations. We prove that the procedure recovers the true row and column classes when the dimensions of the data matrix tend to infinity, even if the functional form of the data distribution is misspecified. The procedure requires computing a combinatorial search, which can be expensive in practice. Rather than performing this search directly, we propose a new heuristic optimization procedure based on the Kernighan-Lin heuristic, which has nice computational properties and performs well in simulations. We demonstrate our procedure with applications to congressional voting records, and microarray analysis.Comment: 40 pages, 11 figures; R package in development at https://github.com/patperry/biclustp

    Gene expression data analysis using novel methods: Predicting time delayed correlations and evolutionarily conserved functional modules

    Get PDF
    Microarray technology enables the study of gene expression on a large scale. One of the main challenges has been to devise methods to cluster genes that share similar expression profiles. In gene expression time courses, a particular gene may encode transcription factor and thus controlling several genes downstream; in this case, the gene expression profiles may be staggered, indicating a time-delayed response in transcription of the later genes. The standard clustering algorithms consider gene expression profiles in a global way, thus often ignoring such local time-delayed correlations. We have developed novel methods to capture time-delayed correlations between expression profiles: (1) A method using dynamic programming and (2) CLARITY, an algorithm that uses a local shape based similarity measure to predict time-delayed correlations and local correlations. We used CLARITY on a dataset describing the change in gene expression during the mitotic cell cycle in Saccharomyces cerevisiae. The obtained clusters were significantly enriched with genes that share similar functions, reflecting the fact that genes with a similar function are often co-regulated and thus co-expressed. Time-shifted as well as local correlations could also be predicted using CLARITY. In datasets, where the expression profiles of independent experiments are compared, the standard clustering algorithms often cluster according to all conditions, considering all genes. This increases the background noise and can lead to the missing of genes that change the expression only under particular conditions. We have employed a genetic algorithm based module predictor that is capable to identify group of genes that change their expression only in a subset of conditions. With the aim of supplementing the Ustilago maydis genome annotation, we have used the module prediction algorithm on various independent datasets from Ustilago maydis. The predicted modules were cross-referenced in various Saccharomyces cerevisiae datasets to check its evolutionarily conservation between these two organisms. The key contributions of this thesis are novel methods that explore biological information from DNA microarray data

    An Evolutionary Method for Combining Different Feature Selection Criteria in Microarray Data Classification

    Get PDF
    The classification of cancers from gene expression profiles is a challenging research area in bioinformatics since the high dimensionality of microarray data results in irrelevant and redundant information that affects the performance of classification. This paper proposes using an evolutionary algorithm to select relevant gene subsets in order to further use them for the classification task. This is achieved by combining valuable results from different feature ranking methods into feature pools whose dimensionality is reduced by a wrapper approach involving a genetic algorithm and SVM classifier. Specifically, the GA explores the space defined by each feature pool looking for solutions that balance the size of the feature subsets and their classification accuracy. Experiments demonstrate that the proposed method provide good results in comparison to different state of art methods for the classification of microarray data

    Gene expression data analysis using novel methods: Predicting time delayed correlations and evolutionarily conserved functional modules

    Get PDF
    Microarray technology enables the study of gene expression on a large scale. One of the main challenges has been to devise methods to cluster genes that share similar expression profiles. In gene expression time courses, a particular gene may encode transcription factor and thus controlling several genes downstream; in this case, the gene expression profiles may be staggered, indicating a time-delayed response in transcription of the later genes. The standard clustering algorithms consider gene expression profiles in a global way, thus often ignoring such local time-delayed correlations. We have developed novel methods to capture time-delayed correlations between expression profiles: (1) A method using dynamic programming and (2) CLARITY, an algorithm that uses a local shape based similarity measure to predict time-delayed correlations and local correlations. We used CLARITY on a dataset describing the change in gene expression during the mitotic cell cycle in Saccharomyces cerevisiae. The obtained clusters were significantly enriched with genes that share similar functions, reflecting the fact that genes with a similar function are often co-regulated and thus co-expressed. Time-shifted as well as local correlations could also be predicted using CLARITY. In datasets, where the expression profiles of independent experiments are compared, the standard clustering algorithms often cluster according to all conditions, considering all genes. This increases the background noise and can lead to the missing of genes that change the expression only under particular conditions. We have employed a genetic algorithm based module predictor that is capable to identify group of genes that change their expression only in a subset of conditions. With the aim of supplementing the Ustilago maydis genome annotation, we have used the module prediction algorithm on various independent datasets from Ustilago maydis. The predicted modules were cross-referenced in various Saccharomyces cerevisiae datasets to check its evolutionarily conservation between these two organisms. The key contributions of this thesis are novel methods that explore biological information from DNA microarray data
    corecore