Biclustering, the process of simultaneously clustering the rows and columns
of a data matrix, is a popular and effective tool for finding structure in a
high-dimensional dataset. Many biclustering procedures appear to work well in
practice, but most do not have associated consistency guarantees. To address
this shortcoming, we propose a new biclustering procedure based on profile
likelihood. The procedure applies to a broad range of data modalities,
including binary, count, and continuous observations. We prove that the
procedure recovers the true row and column classes when the dimensions of the
data matrix tend to infinity, even if the functional form of the data
distribution is misspecified. The procedure requires computing a combinatorial
search, which can be expensive in practice. Rather than performing this search
directly, we propose a new heuristic optimization procedure based on the
Kernighan-Lin heuristic, which has nice computational properties and performs
well in simulations. We demonstrate our procedure with applications to
congressional voting records, and microarray analysis.Comment: 40 pages, 11 figures; R package in development at
https://github.com/patperry/biclustp