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Abstract

Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy
clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a
cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple
clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and
contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three
eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not
assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of
tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy
consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as
Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a
set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and
complementary clusters that can meet requirements of different gene discovery studies.
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Introduction

The main aim of conventional clustering is to group data points

in a given dataset into clusters such that points belonging to one

cluster are similar to each other while dissimilar to the points

belonging to the other clusters according to some criterion [1].

Many methods have been introduced in the literature to tackle

this problem such as self-organising maps (SOMs) [2,3,4], k-means

[5], hierarchical clustering [6], self-organising oscillator networks

(SOONs) [7,8], fuzzy clustering [9], information-based clustering

[10], and others. Each of these methods makes implicit

assumptions about the nature of clusters and different clustering

techniques give different results with the same dataset. Further-

more, the same method with different parameters or even the

same parameters over different runs give different results and none

of the methods gives the best results for all types of datasets.

One way to enhance the robustness of clustering is to combine

results from many clustering experiments in clustering ensembles.

Although classifier ensembles have been successful for supervised

classifiers, combining results from different clustering experiments

has been difficult as unsupervised clustering, where there are no

identifying labels for the clusters, has no straightforward mapping

between any specific cluster from one clustering experiment and its

corresponding cluster from another experiment. Moreover,

different clustering results might give different numbers of clusters

while the correct number of clusters is unknown [11].

The main steps for most of ensemble clustering approaches are

the ‘‘generation step’’ and the ‘‘consensus function step’’ [11]. In

the generation step, different partitions (clustering results) are

generated by using different clustering methods, initialisation

parameters, subsets of the dataset or representations of data points

in the dataset. Once the partitions are generated, they are fed to

the consensus function which assigns data points in a consensus

(final) partition.

Consensus functions can be generally classified into two main

classes; data points co-occurrence and median partitions. Data

points co-occurrence depends on the frequency of the appearance

of a data point in a certain cluster or with another data point to

build the final consensus partition. Some of the methods that

belong to this class are relabeling and voting [12,13,14], co-

association matrix [15], graph-based and hypergraph-based

methods [16,17,18], and weighted kernel consensus functions

[19,20,21]. Median partition methods formulate the problem as an

optimisation problem. For R partitions {P1 … PR}, the optimal

consensus partition P* is the one which is the most similar to all of

them. This can be written mathematically as in equation (eq. 1):
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P �~ arg max
VP

XR

j~1

C(P,Pj) ðeq:1Þ

where C(.,.) measures the similarity between any two partitions.

This optimisation problem has been noted as an NP-complete

problem [22], and some of the approaches in the literature that

aim at solving it are non-negative matrix factorisation [23,24],

kernel-based methods [11], genetic algorithms [11], simulated

annealing [22], and greedy algorithms [22].

In these methods, the final consensus partition assignment of

data points is exclusive, i.e., no points are unassigned and no

points are assigned to multiple clusters. This is a severe drawback,

as in some cases, one gene product may participate in many

processes and needs to be mapped to different functional clusters

simultaneously [25]. It is also relevant that microarray datasets

usually include the expressions of tens of thousands of genes while

the relevant genes to the target problem are significantly smaller,

usually of the order of hundreds or so [26].

Many gene discovery methods require zero false-positive

assignments so that gene studies are focused. On the other hand,

some studies might look for all of the genes that might belong to a

certain cluster. This requires zero false-negative assignments even

if few irrelevant genes are contained in the way.

One more issue, neglected in the literature, is to combine the

clustering results of different clustering methods as well as to

combine the results of clustering the expression profiles of the same

set of genes from different microarray datasets. Obtaining a set of

genes that are consistently co-expressed in different microarray

datasets and when viewed by different clustering methods rather

than being co-expressed in some of them and differently expressed

in others is expected to benefit gene discovery research.

In this paper, we propose a novel ensemble clustering method,

Binarization of Consensus Partition Matrices or Bi-CoPaM, which

combines the results of clustering a set of genes by using different

clustering methods and/or different microarray datasets into a

single consensus result. We also demonstrate this tunable

clustering method can solve the problem of different clustering

or assignment requirements for different purposes. The main steps

of the proposed algorithm include partitions generation, relabel-

ling, fuzzy consensus partition matrix (CoPaM) generation, and its

binarization. The new method exploits the information originated

from different clustering results by generating a fuzzy CoPaM

which characterises the membership (confidence level) of each

data point in all the clusters. Crucially, the proposed binarization

step can tune the generated clusters’ tightness to obtain tight

clusters while leaving many genes un-assigned or to obtain wide

clusters which overlap, or to obtain complementary clusters which

assign each gene once and only once.

Methods

This section describes the principles of the proposed method Bi-

CoPaM [27,28]. The problem is to group M data objects into K

clusters. In the context of gene clustering, genes represent objects

which are clustered based on their expression profiles. Clustering is

carried out over R different experiments which generate R

different partitions {P1, … , PR}. The goal is to find the final

consensus partition P* which relaxes the conventional partitioning

constraints by allowing some points to be assigned to multiple

clusters at the same time or to be not assigned at all in a way which

best reflects the information provided by the partitions.

The four main steps of the algorithm are:

a) Partition generation: R different clustering experiments are

carried out to generate R partitions. Each resulting partition

Pj, for j = 1 … R, is presented in the form of a partition

matrix U
j
K|M . The properties of this matrix and the details

of partitions generation are detailed later on in a separate

subsection.

b) Relabelling: The clusters in the generated partitions are

relabelled such that corresponding clusters from different

partitions are aligned.

c) Fuzzy consensus partition matrix generation: Relabelled

partition matrices are averaged to generate the CoPaM.

d) Binarization: This is the primary novelty of the proposed

method. The final partition (which allows for every data

point, to belong to a single cluster or to multiple clusters or to

no cluster at all) is obtained from the CoPaM.

Partition Generation
To group M data points into K clusters, R clustering

experiments are carried out to generate R partitions. These

experiments can use different clustering methods on the same

data, or same clustering method with different parameters on the

same data, or different clustering methods on different data, and

many combinations thereof. Each clustering partition can be

presented in the form of a fuzzy partition matrix. The matrix

UK|M is a 2D matrix with K rows representing the clusters and M

columns representing the data points. Each element of the matrix

ui,j[½0,1� represents the membership value of the jth point in the ith

cluster. A value of zero means that this point does not belong to

this cluster at all, and a value of one means that it fully belongs to

it.

In crisp clustering, where each point belongs exclusively to one

cluster, the values of the elements are strictly either zero or one. In

the general case of fuzzy clustering, the elements can have any

value between zero and one inclusively. The following conditions

must be satisfied by the fuzzy partition matrix [29]:

a) ui,j[½0,1�, 1ƒiƒK , 1ƒjƒM

b)
PK
i~1

ui,j~1, 1ƒjƒM

c) 0v

PM
j~1

ui,jvM, 1ƒiƒK

In [12,16], they use the transpose of this definition.

Relabelling
The partitions of different clustering experiments over the same

dataset are not guaranteed to be aligned, i.e. for a K-cluster

problem, the ith cluster of one of the partitions might correspond to

any of the {1 … K} clusters in another partition. This is a labelling

correspondence problem [11] which is an NP-complete combina-

torial problem [14]. Relabelling reorders the clusters in each of the

partitions such that they are all aligned.

Relabelling a partition matrix U to be aligned with a reference

partition matrix Uref aims at finding a matrix ÛU which represents

one of the permutations of the rows of U such that its similarity to

Uref is maximised, which can be expressed as
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ÛU~ arg max
Vperm(U)

C(Uref ,perm(U)) ðeq:2Þ

Where perm(U) is a permutation of the rows of U, and C(.,.) is the

similarity measure.

The size of the search space is K!, which makes brute force

search impractical for not so large values of K, the case in which

different heuristic approaches can be used such as the maximum

greedy (MG), the mean enhanced greedy (MEG), and the single

mean enhanced greedy (SMEG) algorithms [30]. In this paper we

follow the same logic of the MEG and the SMEG algorithms. We

follow a min-max approach as detailed below:

a) A dissimilarity matrix SK|K is constructed with pairwise

Euclidian distances between the rows (clusters) of the matrix

U and the rows of the reference matrix Uref .

b) The minimum value in each of the columns is found.

c) The maximum value of these minima is identified, then the

rows (clusters) from U and Uref which correspond to this

dissimilarity value are mapped.

d) A sample of relabelling is shown in Figure 1. The result of

this step is the assignment of the clusters that correspond to

the 2nd row and the 3rd column.

e) The row and the column which show the aforementioned

value are deleted from the similarity matrix.

f) If all of the K rows from U and Uref are mapped, the

algorithm terminates, otherwise it goes back to step (b) with

the reduced similarity matrix.

CoPaM Generation
Formally, there are R partitions generated by R different

clustering experiments. All of these experiments group the same

set of M data points into K clusters. Let the rth partition be

generally represented by the fuzzy partition matrix Ur which has

K6M elements fur
i,jg. The aim is to reorder the rows (clusters) of

all of the partition matrices to be aligned, then to find the element

by element mean of all of them to generate the CoPaM U�.
One method considers the first partition as the reference and

relabels the others to generate the CoPaM. Another method

suggests that an intermediate fuzzy CoPaM U int(k) is initialised

with the values of the first partition U1, and then the other

partitions are relabelled and fused with this intermediate matrix

one by one while considering it as the reference at each step [12].

The later suggestion is considered in this paper.

Let ÛUr be the relabelled partition matrix of the partition Ur,

and U int(k) be the intermediate CoPaM after the kth stage, i.e. after

relabelling and fusing the partitions fU1 � � �Ukg. Let the function

Relabel(U ,Uref ) denote relabelling the partition matrix U by

considering Uref as the reference partition. Equation (eq. 3) shows

how the intermediate partition matrix can be calculated by the

normal approach and the recursive approach:

U int(k)~
1

k

Xk

r~1

ÛUr~
1

k
ÛUkz

k{1

k
U int(k{1) ðeq:3Þ

Generating the fuzzy consensus partition matrix (CoPaM) is

achieved by following the algorithm shown in the following steps:

a) U int(1)~U1

b) for k = 2 to R

a:Ûk~Relabel(Ûk,Ûint(k{1))

b:Ûint(k)~ 1
k

Ûkz k{1
k

Uint(k{1)

c) U�~U int(R)

Binarization
The conventional exclusive assignment in clustering is relaxed

in order to generate a consensus binary partition B� from the final

CoPaM U�. The relaxed consensus binary partition B� is a

pseudo-partition matrix with K rows for the clusters and M

columns for the data points. Each element b�i,j represents the

membership of the jth point in the ith cluster and satisfies the

following conditions:

a) b�i,j[f0,1g, 1ƒiƒK , 1ƒjƒM

b) 0ƒ

PK
i~1

b�i,jƒK , 1ƒjƒM

c) 0ƒ

PM
j~1

b�i,jƒM, 1ƒiƒK

The first condition guarantees that the matrix is binary. The

second and the third conditions formulate the relaxed nature of

this matrix. From the second condition, a certain data point may

not be assigned at all (the summation is zero) or assigned to one

and only one cluster (the summation is one) or assigned to more

than one cluster at the same time up to K (the summation is greater

than one). From the third condition, any cluster is allowed to be

empty or to include all the data points (in this case, other clusters

are not necessarily empty because multiple assignments are

allowed).

Different binarization techniques are proposed to allow for

different eventualities. Two measurements are monitored for each

of the techniques - 1) Mmulti (the number of points assigned to

more than one cluster), and 2) Mun (the number of points not

assigned to any of the clusters).

Figure 1. Sample pairwise similarity matrix for fuzzy partition
matrices’ rows relabeling. Each element in this sample pairwise
matrix measures the similarity between a cluster from one clustering
result and a cluster from another clustering result. In the min-max
relabelling approach, the minimum value of each column is calculated,
as shown in the row below the matrix, and then the maximum of these
minima is considered. The maximum of the minima is shaded in dark
gray and the clusters corresponding to the row and the column
containing this value are matched. This row and this column are then
removed and the process is repeated until each cluster in the first result
is matched with a cluster from the second result.
doi:10.1371/journal.pone.0056432.g001
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Six binarization techniques, namely Intersection Binarization,

Union Binarization, Maximum Value Binarization, Value Thresh-

olding Binarization (a-cut), Top Binarization, and Difference

Thresholding Binarization, are given below.

Intersection Binarization (IB). This is the strictest binar-

ization technique where a data point is assigned to a cluster if all of

the partitions map this data point to that cluster. This is

formulated as

b�i,j~
1, u�i,j~1

0,otherwise

�
ðeq:4Þ

This technique results in Mmulti~0 and Mun
§0.

Union Binarization (UB). This is the loosest binarization

technique where a data point is assigned to all the clusters to which

at least one partition assigned it. It is defined as

b�i,j~
1, u�i,jw0

0,otherwise

�
ðeq:5Þ

This technique results in Mmulti
§0 and Mun~0.

Maximum Value Binarization (MVB). Each data point is

assigned to the cluster to which its maximum membership value

points. If more than one cluster share the same maximum value, it

is assigned to all of them. It is formulated as

b�i,j~
1, u�i,j~ max

1ƒkƒK
u�k,j

0,otherwise

(
ðeq:6Þ

This technique results in Mmulti
§0 and Mun~0. The value of

Mmulti is usually very small and is likely to reach 0.

Value Threshold Binarization (a-cut) (VTB). Each data

point is assigned to all of the clusters in which its membership

values are not less than a threshold (a), i.e.

b�i,j~
1, u�i,j§a

0,otherwise

�
ðeq:7Þ

This technique results in Mmulti~0 for a§0:5 and Mmulti
§0

for aƒ0:5. In general, Mun
§0 and it increases as a increases.

Top Binarization (TB). This is a relaxed version of the

MVB technique such that each data point is assigned to the

maximum membership value cluster and to all of the clusters in

which its membership values are within a certain difference (d)

bellow the maximum, i.e.

b�i,j~
1, u�i,j{u�k,j§{d,1ƒkƒK,k=i

0,otherwise

�
ðeq:8Þ

This technique results in Mmulti
§0 and Mun~0. The value of

Mmulti is larger than that of the MVB technique and increases as

the value of d increases.

Difference Threshold Binarization (DTB). This is a

stricter version of the MVB technique in that each data point is

assigned to the maximum membership value cluster only if the

value of the closest competitor cluster is at least as far from the

maximum as a predefined difference (d) i.e.

b�i,j~
1, u�i,j{u�k,j§d,1ƒkƒK ,k=i

0,otherwise

�
ðeq:9Þ

For dw0, this technique results in Mmulti~0 and Mun
§0. The

value Mun increases as the value of d increases.

Binarization-Related Issues
Binarization Tracks. Careful scrutiny of the way in which

the six binarization techniques control the tightness and wideness

of the clusters leads to classifying them into two classes of

techniques. We refer to these two classes as binarization tracks.

Each of the two tracks starts with very wide clusters and then

tightens them gradually to reach very tight clusters.

The first track consists of the TB, MVB and DTB techniques.

The MVB technique generates complementary clusters where

each data point is assigned exclusively to one and only one cluster.

The very rare exception is when more than one cluster share

exactly the same maximum fuzzy membership value. In this case,

the point is assigned to these clusters simultaneously. MVB is

equivalent to both TB with d= 0 and DTB with d= 0. Increasing

the parameter of the TB or the DTB technique moves the clusters

away from this central MVB case towards wider or tighter cases,

respectively. The widest case is at TB with d= 1, and the tightest

case is at DTB with d= 0. We refer to this track as the TB-MVB-

DTB track of binarization.

The second track consists of the other three techniques, UB,

VTB and IB. It generates its widest clusters by the UB technique;

this is equivalent to using VTB with a= e, where e is a very small

positive real number just bigger than zero. Increasing the value of

this parameter tightens the clusters gradually until they reach their

tightest possible case at a= 1, which is equivalent to the IB

technique. Note that this track has no case equivalent to the MVB

technique of the first track which generates complementary

clusters. We refer to this track as the UB-VTB-IB track of

binarization.

The main philosophical difference between the two tracks is in

the bases upon which they judge the assignments of data points to

the clusters. The UB-VTB-IB track merely considers the absolute

fuzzy membership value of the data point in the corresponding

cluster. For example, if a data point belongs to a certain cluster

with a membership of 0.4 and the VTB parameter a was chosen to

be 0.4 (or less), then this data point is assigned to this cluster

regardless of its membership in the other clusters.

On the other hand, the TB-MVB-DTB track considers the

competitiveness of the clusters on that single data point. The TB

technique assigns that data point to that cluster as long as it is not

lower than the maximum membership by more than the

parameter d, MVB assigns it to that cluster if it has the maximum

membership in it, and DTB assigns it to that cluster as long as

there is no competing cluster with a membership value closer than

the parameter d. That is how the TB, MVB and DTB techniques

respectively generate wide, complementary and tight clusters while

considering the competitiveness of the clusters over the same data

point.

Tunable Binarization. The different nature of the param-

eters of the VTB, TB and DTB techniques imposes different ways

of using them. Although in principle the three parameters can be

spanned from zero to one, some cases are unreasonable and

should not be considered in practice. For example, the case of

VTB with a= 0 results in the trivial case where each single data
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point is assigned to all of the K clusters. Thus, practical a values

would be from any positive real number larger than zero to one.

The TB parameter d needs careful attention, as high d values

result in the assignment of many data points to some clusters

although their membership values in them are zero. The extremest

case is at TB with d= 1 where each data point is assigned to all of

the clusters. So, the TB’s d value should be spanned from zero to a

modest value between zero and one depending on how fast clusters

grow corresponding to d’s increase. The DTB’s parameter d can

be spanned from zero to one without, in general, resulting in

unreasonable results.

That being said, different binarization combinations (techniques

and parameters) might suit different applications and/or might

reveal different information from the data. For example, using the

IB, the DTB or the VTB with high values of a can find the tightest

clusters, identifying the data points that are relatively clearly

assigned to a cluster. Using the UB, the VTB with small values of a
or the TB with high values of d might result in wide clusters,

containing points that are likely to belong. This can be useful in

identifying the data points that have multiple roles, and different

applications might find different meanings for this, e.g. in gene

clustering, these genes (data points) perhaps participate in different

biological functional groups (clusters).

MVB and TB with small values of d are well adapted in finding

complementary clusters with few multi assignments, which is closer

to crisp clustering. The value of d can be tuned for the most

suitable results for a particular problem.

Synthetic Datasets Analysis and Results

This section describes the synthesis of a set of 60 synthetic cyclic

gene-expression microarray datasets, the Bi-CoPaM experiments

carried out over them, and their results.

Datasets Synthesis
Sixty synthetic microarray datasets with varying levels of noise

were generated to test and validate the Bi-CoPaM method. Each

dataset consists of the expression of 450 genes over 24 time points

and were synthesised to show cyclic sinusoidal patterns that cover

two complete cycles over the given time points. The 450 genes, as

synthesised, belong to five different groups that are characterised

by their patterns’ phase shift values.

The method of the synthesis was proposed in [31,32] and the

specific synthesis equation used in this research is:

xij~rz½azbr�(rz½azbr�W(i,j)) ðeq:10Þ

W(i,j)~ sin (
2p:j

15
{vkzcr) ðeq:11Þ

Where xij is the expression value of the ith gene at the jth time

point, each instant of r in (eq. 10) and (eq. 11) is an independent

random number from the standard normal distribution N(0,1), a

controls the magnitude of the sinusoid and it is fixed to 3.0 here, b

controls the random component added to the magnitude, c

controls the random component added to the phase, and vk is the

phase shift of the kth cluster, i.e. the cluster to which the ith gene

belongs.

The parameters b and c were varied to generate 60 datasets with

varying levels of noise. The used values for these parameters were:

b[f0,0:1,0:4,0:5,0:7,0:9,1:0,1:1,1:3,1:5g

c[f0,0:05,0:1,0:15,0:2,0:25g

.

The goal of varying b and c is merely to vary the noise level, and

it is more intuitive to view the resulting datasets by using a

common metric such as the signal-to-noise ratio (SNR). Thus the

60 datasets were mapped from the (b – c) 2D space to the

corresponding SNR.

SNR measures the ratio of the power in the pure signal to that

in the noise. The pure signal in this case is generated by using the

equation (eq. 10) with the random components set equal to zero.

The noise is calculated by subtracting the pure signal from the

noisy one. If xij and x�ij are the actual and pure expression values

of the ith gene (out of M genes) at the jth time point (out of N time

points) respectively, then the average SNR value for this dataset is

calculated by the equation:

SNRdB~10log10

1

M

XM
i~1

PN
j~1 (x�ij)

2PN
j~1 (xij{x�ij)

2
ðeq:12Þ

The lowest and the highest SNR values are 2.96 dB and

7.31 dB, which are pretty challenging. SNR values have stronger

dependence on b (affecting amplitude) and weaker dependence on

c (affecting phase). Hereinafter, the SNR values will be used to

identify the corresponding dataset, without reference to b and c.

Experimental Clustering Procedure
Four clustering methods with different configurations were

applied over the datasets to generate sets of clustering partitions.

The resulting CoPaM matrix was binarized using different

techniques with different parameters to generate the final

partitions. Table 1 lists the details of the clustering experiments.

These same experiments were applied over the real yeast datasets

whose details are provided in another section later on in this

paper. The tenth experiment, SOON clustering, used customised

parameters for different datasets.

These clustering methods were chosen as they explore the data

points differently; SOMs exploit the topological distribution while

SOON focuses on intensity levels; HC is greedier, SOON does not

require prior knowledge of the number of clusters, and k-means

gives reasonable spherical clusters, and so on. This is expected to

increase diversity which is important for binarization.

The partitions’ generated by these different clustering methods

for each of the 60 synthetic datasets were combined in a single

CoPaM. Then, each of the 60 produced CoPaMs was binarized

using the six binarization techniques IB, UB, MVB, DTB, VTB

and TB with different parameters’ values.

Results
With respect to these datasets, four different objectives are

addressed by Bi-CoPaM – 1) obtain clusters with maximum

correct assignments, 2) obtain tight clusters with minimum false-

positives, 3) obtain wide clusters with minimum false-negatives,

and 4) roughly detect the level of noise.

False-positives are the genes that are assigned incorrectly to

clusters. If a gene is assigned to multiple clusters where all of them

are wrong, this gene adds the value of one to false-positives’ count.

Paradigm of Tunable Clustering Using (Bi-CoPaM)
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If a gene is assigned to multiple clusters and some of them are

correct, this gene adds the value of (Number of wrong assignments) /

(Number of all assignments) to the false-positives’ count. This

guarantees the same weight of contribution from each gene in

calculations.

Maximisation of Correct Assignments. We assessed the

performance of different binarization techniques in forming

clusters which maximised the number of correct assignments,

while minimising the number of false-assignments. Three repre-

sentative sets out of the 60 available ones were picked; the best

(SNR = 7.31 dB), the worst (SNR = 2.96 dB), and the median (the

31st best one, SNR = 5.19 dB). The number of correctly assigned

genes versus each of the 16 binarization configurations for these

datasets is plotted in Figure 2.

The number of correctly assigned genes in datasets with higher

SNR values is clearly higher, as expected. Indeed, at the maximum

SNR, all 450 genes were correctly assigned at ten of the 16

binarization configurations.

The second observation is that the best binarization configu-

rations for this purpose are those that are closer to crisp clustering,

i.e. the ones that result in the minimum amount of multi-assigned

and un-assigned genes. This is expected theoretically because un-

assignments in this case will always result in false-negatives, and

multi-assignments will always result in false-positives. The closest

binarization technique to crisp clustering is the MVB as it results

in no un-assignments and minimum multi-assignments, which

reaches absolute zero in most of the times. TB with d= 0.05, VTB

with a= 0.5, and DTB with d= 0.1 are the next closest

binarization configurations to crisp clustering as they allow for

no more than a few un-assigned or multi-assigned genes.

Minimisation of False-Positives. The minimisation of the

number of false-positive genes is obtained by using the binarization

configurations which tighten the clusters and throw the uncertain

genes out of all clusters. The MVB lies between the techniques that

result in multi-assigned genes and un-assigned genes. VTB and

DTB tighten the clusters more as their parameters a and d are

increased respectively. IB is the strictest binarization technique

Table 1. Clustering experiments.

No. Method Parameters

1 k-means Empty clusters were dropped and Kaufman deterministic initialisation [5] was used.

2 SOMs Batch mode learning, 2D hexagonal grids and bubble neighbourhood (Repeated 20 times then combined)

3 SOMs Batch mode learning, 2D hexagonal grids and Gaussian neighbourhood. (Repeated 20 times then combined)

4 HC Single linkage

5 HC Complete linkage

6 HC Average linkage

7 HC Centroid linkage

8 HC Ward linkage

9 HC Median linkage

10 SOON For synthetic dataset*,#; bM{0.1, 0.5, 1, 10, 20, 40, 60, 80, 100, 120}; CEM{0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.3, 0.4}; d0M[3.6:0.2:6.0]

11 SOON For yeast datasets*,#; bM{0.1,1,50,100}; CEM{0.1:0.02:0.2}; d0 (cdc28)M[4.5:0.05:5.0]; d0 (cdc15)M[6.25:0.05:6.75]; d0

(alpha)M[5.3:0.02:5.5]; d0 (alpha30)M[6.3:0.05:6.8]; d0 (alpha38)M[6.1:0.05:6.6]

*b is the constant which controls the concavity of the mapping function, CE is the constant of excitation, and d0 is the radius of the clusters [8].
#For each of the two cases; the synthetic and the yeast ones, The results of using all of the possible parameters’ combinations were combined into one partition.
doi:10.1371/journal.pone.0056432.t001

Figure 2. Correctly assigned genes. The number of correctly assigned genes at the y-axis is plotted versus the 16 binarization configurations at
the x-axis for three representative synthetic datasets out of 60. It should be noted that the binarization configurations are not entirely ordered
according to their tightness.
doi:10.1371/journal.pone.0056432.g002
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and it is equivalent to VTB with a= 1.0, and to DTB with d= 1.0,

so this technique results in the absolute possible minimum false-

positives for any dataset.

We propose an index to calculate the ratio of the false-positives

to the number of assigned genes. Equation (eq. 13) formulates the

false-positives index (FPI), which needs to be minimised.

FPI~A|
FPze

number of assigned genes
ðeq:13Þ

The addition of a small positive number e to the number of false

positives (FP) ensures that 0/450 is better than 0/400, because

obtaining false-positive-free results while assigning more genes to

the clusters is better. The factor A provides a convenient scaling.

Figure 3 plots the FPI for three representative datasets, same as

in Figure 2, at different binarization configurations with e= 0.1

and A = 100. Configurations which result in many multi-assigned

genes show large numbers of false-positives, thus they are not

included in this plot. Note that the very strict IB can result in

totally empty clusters with 450 unassigned genes, resulting in

division by zero in FPI values, and are shown in the Figure as

missing values.

As shown, tightening the clusters by increasing the binarization

parameters’ values decreases FPI, but after a certain point,

although lower numbers of false-positives are obtained, a lot of

genes are lost from the clusters with a resulting increase of FPI

values.

For example, the dataset with (SNR = 5.19 dB), reaches its

minimum FPI at the threshold a= 0.7 of the VTB technique. If

the threshold is increased to 0.8 or 0.9, more genes are lost from

the clusters with no false-positives reduction, hence, higher FPI. In

general, noisier datasets tend to need tighter configurations in

order to reach their minimum values of FPI.

Calculating FPI is feasible here because of the existence of the

ground truth, and it is used here to validate the usage of the Bi-

CoPaM method. In real applications, the biologist might prefer to

get very tight clusters even if most of the genes are unassigned at all

or less tight clusters. This choice depends on the application, and

this experiment provides the proof of principle for this flexibility.

Minimisation of False-Negatives. The third objective of

using Bi-CoPaM is to obtain wide clusters which minimise the

number of false-negative genes. To get an optimum result, the

minimum number of false-negatives should be obtained while

minimising the number of multi-assigned genes. For this purpose,

a false-negatives index (FNI), which should be minimised, is

introduced here (eq. 14):

FNI~B|(FNze1)(Mmulti�ze2)c, ðeq:14Þ

Where FN is the number of false-negative genes. Mmulti� is the

number multi-assignments such that if a gene is assigned to two

clusters simultaneously it is counted once, if it is assigned to three

clusters it is counted twice, and if it is only assigned to one cluster

or to no clusters, it is not counted at all. B, e1, and e2 are used for

the same reasons for which A and e are used in the FPI index

above. The parameter c, which controls the relative influence of

the number of multi-assigned genes to the FNI value compared

with the influence of the number of false-negatives, can be chosen

according to the researcher’s needs.

Figure 4 plots the FNI profiles of three representative synthetic

datasets over six binarization configurations which result in multi-

assigned genes, with B = 1, e1~e2~0:1, and c = 0.5. Recall that as

the value of d for TB technique increases, looser clusters are

generated. The loosest technique is UB, which is equivalent to TB

with d just less than one, and it gives the maximum Mmulti.

Figure 3. False-positives index (FPI). False-positives index (FPI) is plotted in log scale versus a subset of binarization configurations for three
representative synthetic datasets out of 60. It should be noted that the binarization configurations are not entirely ordered according to their
tightness.
doi:10.1371/journal.pone.0056432.g003

Figure 4. False-negatives index (FNI). False-negatives index (FNI) is
plotted in log scale versus a subset of binarization configurations for
three representative synthetic datasets out of 60. It should be noted
that the binarization configurations are not entirely ordered according
to their tightness.
doi:10.1371/journal.pone.0056432.g004
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Noisier datasets tend to provide wider clusters when minimising

the FNI value, as wider clusters are likely to include all genes that

belong to them giving rise to low false-negatives. The FPI and FNI

analyses using synthetic datasets aim at validating the Bi-CoPaM

method and are not provided as validation tools for real datasets.

Noise Level Effect and Estimation. The fourth possible

objective of the Bi-CoPaM method is rough noise level detection.

This can be achieved by monitoring the rate of increase in the

number of un-assigned and / or multi-assigned genes while

tightening and / or widening the clusters, respectively.

Figure 5(a) shows the numbers of multi-assigned genes (Mmulti )

while adopting TB with d= 0.05, 0.1, 0.2, and 0.4 over the 60

synthetic datasets ordered by their SNR values. It can be noticed

for a particular dataset, i.e. a particular SNR value in this plot, the

rate of increase in Mmulti while increasing d is usually higher for

noisier ones. Also, while comparing different datasets with each

other, the values of Mmulti tend to decrease for purer datasets, i.e.

for higher SNR datasets.

Figure 5(b) shows the numbers of unassigned genes (Mun) while

adopting DTB with d= 0.1, 0.3, 0.6, and 0.8 over the 60 synthetic

datasets. The same observation seen in the behaviour of Mmulti

while widening the clusters can be seen for Mun while tightening

the clusters. Thus, either approach can be used to estimate the

approximate, though not the definitive, level of noise in a datasets,

or to compare noise levels in two datasets.

This analysis is correct when Figure 5 is examined globally. If

we zoom into a local neighbourhood of close SNR values, we

would observe some fluctuation in the levels of multi-assigned and

unassigned genes. Careful investigation of this observation shows

that, in many cases, it is caused by the differences in the effects of

varying the noise imposed on the amplitude and the noise imposed

on the phase. Recall from the model in equation (eq. 10) that the

two parameters b and c were used to vary the noise in the

amplitude and the phase, respectively. The SNR values summarise

the overall noise level globally, but the effects of varying the phase

noise seem to be more severe than when varying the amplitude

noise, even when the resulting SNR values are close.

For example, the three consecutive datasets represented by the

SNR values 4.44, 4.48, and 4.57 dB, when clustered and binarized

by TB with d= 0.4, showed 21, 55 and 12 multiply-assigned genes,

respectively. This is seen as an obvious peak in Figure 5(a) around

those SNR values. The (b, c) pairs which were used to synthesise

these three datasets are (1.1, 0), (1, 0.2) and (1.1, 0.05). Although

their SNR values are very close, the (c) value which was used to

generate the second dataset of them is significantly higher than in

the other two, i.e. 0.2 versus 0 and 0.05. This indicates that some

small variations in the phase can affect the purity of the clusters

more than what is reflected by the corresponding variations in

SNR values. Thus, the relation between the results and the noise

level should be considered globally not locally.

Estimation an approximate noise level of a dataset might help to

optimise the tightening and / or widening levels for a certain

application. This claim can be justified by the FPI and FNI analysis

above, and opens the possibility to design validation indices which

apply this approximation of noise level to tune the binarization

techniques based on the needs of the application.

Random Periods Model (RPM) Synthetic Data Analysis
Liu and colleagues criticised the cell-cycle regulated genes’

models that do not consider the attenuation of cyclic expressions

with time [33], such as the model which we have based our

analysis on. They showed that the asynchrony which occurs

between the cells in the culture results in an attenuation in the

resultant expression profile. They then proposed a random-periods

model (RPM) for cell-cycle regulated genes [33].

Thus, we provide an additional section of analysis in which we

generate a more realistic synthetic dataset by the RPM model over

which we apply the Bi-CoPaM method. The details of the RPM

model, the generation of the synthetic dataset, the experimental

procedure, and the results are included in the section ‘‘Random

Periods Model (RPM) Synthetic Data Analysis’’ of File S1.

Real Yeast Datasets Analysis and Results

This section discusses the analysis of five real yeast cell-cycle

datasets. First, the five datasets are introduced. Then the

experimental procedure is detailed, and finally the results are

shown.

Real Yeast Cell-Cycle Datasets
In [31], 384 yeast genes were identified as cell-cycle regulated

genes whose expression profiles show periodic patterns over the

cell cycle, which includes five main stages - early gap 1 (early G1)

corresponding to the beginning of interphase, late gap 1 (late G1),

synthesis (S), prometaphase (G2), and metaphase (M)

[31,34,35,36]. These 384 genes are expected to form five clusters

Figure 5. SNR effect over the number of multiply assigned and
unassigned genes. (a) The number of multi-assigned genes is plotted
over the 60 SNR values in four cases of wide clusters generated by using
the TB technique. (b) The number of unassigned genes is plotted over
the 60 SNR values in four cases of tight clusters generated by using the
DTB technique. Note that there are no multi-assigned genes in tight
clusters as there are no unassigned genes in wide clusters.
doi:10.1371/journal.pone.0056432.g005
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depending on the stage in which their periodic patterns show peak

values [31,37].

Five budding yeast cell-cycle microarray datasets are considered

in this study. Each dataset has gene expression values of more than

6000 genes that almost cover the entire yeast genome over two

complete cell cycles. Differences among these five experiments are

in the microarray technology and the biological preprocessing

carried out over the yeast cells as well as the cell synchronisation

method. Also, they differ in the number of time points at which the

samples were taken as well as the time between them.

Table 2 lists five datasets and some of their parameters. The

first column shows the synchronisation method by which we

uniquely refer to each of these datasets, the second column shows

the year in which each of these datasets was made public, the third

and the forth columns show the number of time points (samples)

and the time between two consecutive time points respectively, the

fifth column shows the maximum number of allowed missing

values in a gene’s expression, and the sixth column shows the

references.

While dealing with multiple datasets, it is important to consider

some tolerance in dealing with missing values so that fewer genes

are filtered out of the analysis. In this study, we tolerate different

numbers of missing values from different datasets depending on

the total number of time points and on the quality of the dataset

(newer are usually better). The upper limits for the number of

allowed missing values in a gene’s expression to be considered in

the analysis are included in the fifth column of Table 2.

Some 340 genes out of the original 384 genes were considered

for clustering as their expression profiles do not exceed the upper

limit of allowed missing values in any of the five datasets. The

remaining missing values were replaced by ‘spline’ interpolation

[38]; then the expression profiles were normalised by subtracting

the mean and dividing by the standard deviation.

Experimental Clustering Procedure
The 340 genes were clustered from each of the five datasets into

five clusters by using the same setup that was used for the synthetic

datasets. As can be seen in Table 1, the only difference is in the

parameters of the SOON clustering method; this is due to the

differences in the distribution between these different datasets.

For these real datasets, all of the yeast genes’ partitions

generated by applying those different clustering methods to the

five yeast datasets were combined into a single CoPaM (not five

CoPaMs) which was binarized by using the six binarization

techniques IB, UB, MVB, DTB, VTB and TB with different

parameters’ values.

Results
Table 3 summarises the results of the comprehensive Bi-

CoPaM clustering analysis over the 340 considered genes from the

five datasets listed in Table 2. The genes were clustered in five

clusters by the methods listed in Table 1, then combined and

binarized by different configurations of binarization (techniques

and parameters). The results in this table are grouped into two

groups which show the gradual tightening of clusters from the very

wide case towards the very tight case based on the two different

tracks of binarization – the TB-MVB-DTB track and the UB-

VTB-IB track.

The Five Resulting Clusters. The five resulting clusters are

labelled by C1, C2, C3, C4, and C5 in Table 3. By analysing the

patterns of the genes assigned to each of these five clusters and

matching them with the five yeast cell-cycle stages, it is observed

that C1 corresponds to the early-G1 stage, C2 to late-G1, C3 to S/

G2, C4 to M, and C5 does not show consistent patterns and is not

mapped to any of the stages.

Tightening / Widening Effects and Analysis. From the

variations in the numbers of genes included in the five clusters at

different levels of widening and tightening, the cluster C5 is found

to be the noisiest as it loses its genes very quickly; only one gene

exceeds the membership value of 0.6 in it (Table 3). This

observation is consistent with remarks in the previous subsection.

On the other hand, the clusters C1, C2, and C3 preserve a fair

number of their genes up to some of the tightest cases, i.e. DTB

with d= 0.8 and VTB with a= 0.9. This indicates that these are

purer clusters whose genes have more consistency in different

datasets as well as when clustered by different clustering methods.

No genes survived in the extreme case of IB in any of the five

clusters. This is because using more clustering methods with many

different sets of parameters over many datasets makes it very hard

for any gene to be consensually assigned to the same cluster.

Phase Angles Analysis
Given that these 340 genes are considered cell-cycle regulated,

the random-periods model (RPM) can be used to estimate their

phase angles within the cell-cycle [33]. We provide an additional

analysis of the results of the Bi-CoPaM method over the 340 genes

by considering the distribution of their estimated phase-angles

from the alpha-30 dataset. This additional analysis is detailed in

the section ‘‘Phase Analysis of the Real Yeast Cell-Cycle Datasets’’

in File S1.

Discussion

The Bi-CoPaM method allows one to obtain tunable clusters of

different degrees of tightness. This is achieved by relaxing the

conventional constraints at the clusters’ level and the genes’ level.

Genes are allowed to be assigned to multiple clusters simulta-

neously, to be unassigned to any of the clusters, or to be assigned

to one and only one cluster. Clusters are allowed to be tighter with

fewer genes, or to be wider so they can overlap.

Table 2. Budding yeast cell-cycle microarray datasets.

Synch. method Year Time points Spacing (min) Allowed missing values Ref.

Cdc28 1998 17 10 3/17 [34]

Cdc15 1998 24 10* 6/24 [35]

Alpha 1998 18 7 5/18 [35]

Alpha-30 2006 25 5 1/25 [36]

Alpha-38 2006 25 5 1/25 [36]

*Five of the time spaces between these samples are 20 minutes instead of 10.
doi:10.1371/journal.pone.0056432.t002
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Table 4 shows an overview of the Bi-CoPaM method and many

existing clustering methods, including the most commonly used

ones. Each row of the Table represents one clustering method and

each column represents one capability type. Each cell of the Table

is filled with ‘YES’ or ‘NO’ to indicate if the corresponding

clustering method has the corresponding capability or not.

The description of the eight capabilities included in this Table is

as follows: crisp clustering is the basic clustering in which each

gene is assigned exclusively to one and only one cluster in a binary

manner. Fuzzy clustering is assigning each gene to all of the

clusters with fuzzy membership values whose total is unity.

Exclusive assignments, un-assignments and multiple assignments

are the three eventualities of a gene being exclusively assigned to

one cluster, unassigned from all clusters, or assigned to multiple

clusters simultaneously. Consensus clustering is the combination of

various clustering results generated by various clustering methods

into a single clustering result; some of the methods which fall in

this class were mentioned in the introduction. Tunable tightness is

the ability to provide clusters with different tightness levels; some

examples are shown in Table 3. Multiple datasets capability is the

capability of clustering the same set of genes from different

microarray datasets and then combining them into a single

consensus partition. Although we state in this Table the ensemble

clustering in general has this capability, i.e. multiple datasets, this

is because many ensemble clustering methods can do so

theoretically. Yet to the authors’ knowledge, this has never been

considered practically in the way in which the Bi-CoPaM does.

It can be seen in Table 4 that only the Bi-CoPaM method

possesses all of these capabilities. These capabilities of Bi-CoPaM

arise from its diversity and flexibility. Diversity is achieved by its

ability to provide clustering in consensus by using many different

clustering methods and / or datasets. Flexibility is achieved by its

ability to provide clustering in a variety of levels of tightness which

is a key point in our proposed Bi-CoPaM. Binarization of the

results of any simple fuzzy clustering method lacks diversity, while

simple binarization of ensemble clustering results through the

previously known techniques lacks flexibility. Most of the previous

clustering methods, especially the ensemble ones, are considered as

special cases in the new proposed paradigm. This means that the

new paradigm generalises conventional clustering.

Partition Generation
One way to generate partitions is to apply different methods

with different parameters over the given dataset. Multiple runs can

also be carried out if the methods are stochastic. This technique of

partitions generation was used in most of the previous studies

[39,40] as well as in ours. In addition to that, we add another level

of diversity by the usage of multiple microarray datasets to

enhance diversity not only from the computational point of view

(i.e. different clustering methods), but also from the biological

point of view (i.e. different microarray datasets from different

experiments). Amongst the other methods for partition generation

found in the literature, subspaces of microarray datasets were

generated by random sampling to enhance the diversity and the

generation of the partitions [18,41,42].

Relabelling
In many studies, the relabelling step has been investigated either

as an independent step or fused with the consensus fuzzy partition

generation step. In [42], the Hungarian method, whose complex-

ity is O(n3), was used to solve the relabelling problem for ensemble

clustering. This method was proposed originally by Kuhn to solve

general assignment problems [43] and was applied in many

different areas [30,42]. A simpler method was used in [39] which is

a greedy algorithm that constructs a pairwise similarity confusion

matrix, finds the best matching column for each row, and then

maps the two clusters that give the absolute best value to each

other. The corresponding column and row for this value are

removed from the matrix and the process is repeated until all

clusters are mapped. This greedy behaviour can lead to a local

optimum.

This method was called maximum greedy (MG) in [30], which

proposed two methods - mean enhanced greedy (MEG) and single

mean enhanced greedy (SMEG). These try to avoid local optima

by giving poorly matched clusters the chance to be mapped first

because the well matched clusters will still get good mapping later.

Our min-max algorithm is like the first half of the MG algorithm

used in [39] by finding the best matching column for each row, but

then follows the approach of MEG (28) by matching the row and

the column which make up the poorest match of these best

matches.

Table 3. Assignment of genes from five real yeast datasets by Bi-CoPaM.

Genes in clusters Genes in clusters

Tech. Param. C1 C2 C3 C4 C5 Tech. Param. C1 C2 C3 C4 C5

Wide TB 0.8 260 316 264 248 258 UB - 328 340 320 296 329

TB 0.4 129 198 122 100 109 VTB 0.1 139 194 127 92 205

TB 0.2 92 149 82 52 65 VTB 0.2 97 161 96 62 98

TB 0.1 82 139 72 47 48 VTB 0.4 68 130 57 39 26

Complementary MVB - 73 135 57 41 34 VTB 0.5 60 123 48 35 5

DTB 0.1 62 128 55 36 15 VTB 0.6 43 109 39 25 1

DTB 0.2 60 120 49 33 5 VTB 0.8 14 65 17 8 0

DTB 0.4 38 102 38 24 1 VTB 0.9 8 49 7 0 0

Tight DTB 0.8 11 49 10 0 0 IB - 0 0 0 0 0

Track 1 (TB-MVB-DTB) Track 2 (UB-VTB-IB)

doi:10.1371/journal.pone.0056432.t003
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Number of Clusters
Many ensemble clustering methods aim at identifying the

optimal number of clusters (K) inherently within the course of

fusing different partitions with variable number of clusters such as

in the weighted-association based method [21]. In [18,42], their

ensemble clustering methods do not support variable K values;

they rather repeat the experiment with different K values then

compare the results using a validation index to identify the optimal

K value. Many other studies concentrate on developing other parts

of ensemble clustering while using constant K values [39,41].

In the Bi-CoPaM method, a constant number of clusters is used.

This is to focus on the novelty proposed at the binarization step

without distraction. To focus on the binarization part, we used

synthetic datasets whose K values are predetermined and real yeast

cell-cycle microarray datasets whose K values are suggested by the

underlying biology [34]. Nonetheless, future work must be

undertaken to design relevant validation techniques which can

be used in validating the Bi-CoPaM’s results as well as in

determining the optimum number of clusters.

Binarization
Although the fuzzy consensus partition matrix (CoPaM) may

serve as the output of ensemble clustering [39], in most cases the

final output needs to be a binary CoPaM. The most widely used

method for binarization is to assign each gene to the cluster in

which it has the maximum membership value [25,39,41], which is

equivalent to our proposed MVB. Other methods for binarization

are like the efficient O(n) agglomerative algorithm based on the

information bottleneck method which aims at finding the ‘most

compressed summary’ binary partition matrix from the CoPaM,

i.e. the binary partition matrix which preserves the maximum

amount of information included in the CoPaM [14,25].

In this paper, we have developed a complete framework for a

novel paradigm at the binarization step in a modular way to be

interfaced with any valid combination of the previous steps’

variants. We generalise the concept of clustering to allow any gene

to be exclusively assigned to one cluster, simultaneously assigned to

multiple clusters or unassigned from all of the clusters. Thus we

not only propose advancing the way in which ensemble clustering

is performed, but also propose enhancing the format of its ultimate

results. It redefines the problem of clustering in general and the

problem of binarization in specific. Moving to this new paradigm

does not exclude the conventional one; it rather relaxes its

constraints to make it more general while considering conventional

clustering as a special case.

Usefulness of Bi-CoPaM in Gene Discovery Research
The Bi-CoPaM paradigm does not treat all genes equally as

happens in conventional binarization equivalent to MVB. Tuning

the proposed binarization techniques to move far from MVB leads

to more discerning treatments, i.e. the gene which was assigned to

the same cluster by all of the clustering methods is treated

significantly differently to the gene which was assigned to the same

cluster by a majority, say 55%, of the methods. A researcher can

tune this method to obtain tighter and purer clusters’ cores with

low false-positive assignments so these genes can be considered for

further biological experiments. A researcher can also tune

binarization to obtain wider clusters which include all of the

genes that might belong to them, i.e. low false-negatives. This

might be needed in the studies in which the clusters’ cores are

known and an extended view of the clusters with more potentially

relevant genes is required.

The potentially interesting outcomes of Bi-CoPaM go beyond

the genes contained in the resulting clusters themselves. Focusing

on the subset of genes which is not assigned to any of the clusters

or which is multiply-assigned to more than one cluster simulta-

neously can be of research importance and have biological

meaning.

Multiple-Datasets vs. Single-Dataset
From the biological literature, it can be found that the yeast

gene YAL040C / CLN3 is a cyclin, i.e. a gene which shows

cyclical accumulation during particular phases of the cell-cycle,

which is involved in the G1 phase cell-cycle progression operations

such as the regulation of many other G1 cyclins like CLN1 and

CLN2 [44].

Figure 6 shows the normalised gene expression profiles of this

gene from the five yeast datasets considered in this study. The

Figure 6. YAL040C / CLN3 gene expression profiles in the five
microarray datasets. Genetic expression profiles for the cyclin CLN3
from the five datasets cdc28, cdc15, alpha, alpha-30 and alpha-38 are
plotted. Although the gene’ is known to be expressed periodically,
different levels of periodicity for its profiles can be seen for different
datasets clearly.
doi:10.1371/journal.pone.0056432.g006

Table 5. Fuzzy membership values for the CLN3 gene.

Cluster C1 C2 C3 C4 C5

Fuzzy membership 0.63 0.02 0.02 0.16 0.17

doi:10.1371/journal.pone.0056432.t005
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profiles in the datasets cdc15, alpha and alpha-30 are just as

expected, in that each of them shows two high-expression regions

at the G1 stage from the two cell-cycles. The expression profile in

cdc28 is fine in that it shows a very obvious peak at the G1 stage

from the second cycle. The profile in alpha-38 is far from what is

expected because the expression at the second time point (at 5

minutes) has, for some reason, a large positive impulse which

flattens the normalised expression profile at other time points.

If the genes were clustered only according to their profiles in the

dataset alpha-38, the gene CLN3 will not be clustered with the G1

phase genes. On the other hand, the fuzzy membership values of

this gene in the five clusters (C1) to (C5), which are shown in

Table 5, clearly show the power of applying the Bi-CoPaM

method over multiple, relatively noisy, datasets. The gene is

assigned to the cluster (C1), which represents the early G1 phase,

with a membership value of 0.63, while the closest competitor is

(C5) with the membership of 0.17. Thus, despite having poor

expression profiles in some datasets, this gene is included in the

correct biological cluster (C1) in most of the binarization

configurations. Here CLN3 has been used as an example; though,

many other examples are found within these 340 genes that have

relatively poorer profiles in one or more of the five datasets.

Summary and Future Work
We propose a new gene clustering paradigm which allows each

gene to be assigned exclusively to one cluster, assigned simulta-

neously to multiple clusters, or assigned to no clusters. Although

this four-step paradigm differs significantly from the conventional

ones, in this study we adopted some published techniques for the

first three steps to help us elucidate and evaluate the novel and

important fourth step of binarization techniques.

The modularity of the proposed binarization step makes it a

straightforward task to develop research in many directions. For

example, more sophisticated variants of the techniques used in the

first three steps to tackle different issues such as the diversity of the

generated individual partitions, the optimal number of generated

clusters, and the optimal relabelling solution can be simply

incorporated. More importantly, novel techniques can easily

replace the binarization module and preserve the paradigm.

Future work will address the problem of validation by designing

novel validation indices or techniques so that Bi-CoPaM can be

compared with its future variants. Moreover, Bi-CoPaM can

comprehensively analyse the same set of genes from different

microarray datasets. Such analysis has been carried out in some

studies [36,45] without a clustering approach and its importance

has been demonstrated in this study through the analysis of a set of

yeast genes from five different microarray datasets. This suggests

that future gene discovery studies can benefit from using Bi-

CoPaM to cluster the profiles of the same set of genes from

different datasets.

Supporting Information

File S1 Additional analysis for synthetic as well as real
yeast cyclic datasets by the random periods model
(RPM). This Supplementary File consists of two main sections.

The first section provides the details of the experimental design as

well as the results of a fairly comprehensive additional Bi-CoPaM

experiment over a different synthetic dataset generated based on

the RPM model. Separately, the second section shows an

application of the RPM model to the results of our analysis of

real yeast cell-cycle datasets in the main text; this provides

additional validation to them, and therefore demonstrates the

usefulness of the Bi-CoPaM method in such cases.

(PDF)

Author Contributions

Conceived and designed the experiments: BAJ RF AKN. Performed the

experiments: BAJ RF AKN. Analyzed the data: BAJ RF AKN. Wrote the

paper: BAJ RF DJR AKN.

References

1. Gibbons FD, Roth FP (2002) Judging the quality of gene expression-based

clustering methods using gene annotation. Genome Research 12:1574–1581.

2. Haykin S (1999) Neural Networks – A Comprehensive Foundation, 3rd edition.

Singapore: Pearson, Prentice Hall.

3. Xiao X, Dow ER, Eberhart R, Miled ZB, Oppelt RJ (2003) Gene clustering

using self-organizing maps and particle swarm optimization. In IEEE Parallel

and Distributed Processing Symposium Proceedings; Indianapolis. 154–163.

4. Kohonen TE (1997) Self-Organizing Maps. New York: Springer-Verlag.

5. Pena JM, Lozano JA, Larranaga P (1999) An empirical comparison of four

initialization methods for the K-Means algorithm. Pattern Recognition Letters

20:1027–1040.

6. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and

display of genome-wide expression patterns. In Proc. Natl. Acad. Sci. 14863–

14868.

7. Rhouma MBH, Frigui H (2001) Self-organization of pulse-coupled oscillators

with application to clustering. IEEE Trans. Pattern Anal. Mach. Intell. 23:1–16.

8. Salem SA, Jack LB, Nandi AK (2008) Investigation of self-organizing oscillator

networks for use in clustering microarray data. IEEE Trans. Nanobioscience

7:65–79.

9. Baumgartner R, Windischberger C, Moser E (1998) Quantification in functional

magnetic resonance imaging: fuzzy clustering vs. correlation analysis. Magnetic

Resonance Imaging 16:115–125.

10. Slonim N, Atwal GS, Tkacik G, Bialek W (2005) Information-based clustering.

Proc Natl Acad Sci USA 102:18297–18302.

11. Vega-Pons S, Ruiz-Shulcloper J (2011a) A survey of clustering ensemble

algorithms. International Journal of Pattern Recognition and Artifcial

Intelligence 25:337–372.

12. Weingessel A, Dimitriadou E, Hornik K (2003) An ensemble method for

clustering. In Distributed Statistical Computing Working Papers; Vienna.

13. Tumer K, Agogino AK (2008) Ensemble clustering with voting active clusters.

Pattern Recognition Letters 29:1947–1953.

14. Ayad HG, Kamel MS (2010) On voting-based consensus of cluster ensembles.

Pattern Recognition 43:1943–1953.

15. Fred A, Jain AK (2002) Data clustering using evidence accumulation. In

Proceedings of the Sixteenth International Conference on Pattern Recognition

(ICPR). 276–280.

16. Strehl A, Ghosh J (2002) Cluster ensembles – A knowledge reuse framework for

combining multiple partitions. Journal of Machine Learning Research 3:583–

617.

17. Fern XZ, Brodley CE (2004) Solving cluster ensemble problems by bipartite

graph partitioning. In Proceedings of the Twenty-first International Conference

on Machine Learning; New York, NY.

18. Yu Z, Wong HS, Wang H (2007) Graph-based consensus clustering for class

discovery from gene expression data. Bioinformatics 23:2888–2896.

19. Vega-Pons S, Correa-Morris J, Ruiz-Shulcloper J (2008) Weighted cluster

ensemble using a kernel consensus function. In Lecture Notes in Computer

Science. 5197. Heidelberg: Springer p. 195–202.

20. Vega-Pons S, Ruiz-Shulcloper J (2009) Clustering ensemble method for

heterogeneous partitions. In CIARP ’09 Proceedings of the 14th Iberoamerican

Conference on Pattern Recognition: Progress in Pattern Recognition, Image

Analysis, Computer Vision, and Applications. 481–488.

21. Vega-Pons S, Ruiz-Shulcloper J, Guerra-Gandón A (2011b) Weighted

association based methods for the combination of heterogeneous partitions.

Pattern Recognition Letters 32:2163–2170.

22. Filkov V, Skiena S (2003) Integrating microarray data by consensus clustering.

In Proc. of International Conference on Tools with Artificial Intelligence; Davis,

CA. 418–426.

23. Wang W (2010) An improved non-negative matrix factorization algorithm for

combining multiple clusterings. In 2010 International Conference on Machine

Vision and Human-machine Interface; Kaifeng, China. 604–607.

24. Greene D, Cagney G, Krogan N, Cunningham P (2008) Ensemble non-negative

matrix factorization methods for clustering protein–protein interactions.

Bioinformatics 24:1722–1728.

25. Avogadri R, Valentini G (2008) Ensemble clustering with a fuzzy approach. In

Supervised and Unsupervised Ensemble Methods and their Applications Studies

in Computational Intelligence. 126. Edited by Okun, O. Berlin: Springer-

Verlag.

Paradigm of Tunable Clustering Using (Bi-CoPaM)

PLOS ONE | www.plosone.org 13 February 2013 | Volume 8 | Issue 2 | e56432



26. Zhou X, Mao KZ (2005) LS bound based gene selection for DNA microarray

data. Bioinformatics 21:1559–1564.
27. Abu-Jamous B, Fa R, Nandi AK, Roberts DJ (2012) Binarization of consensus

partition matrix for ensemble clustering. In Proceedings of the 20th European

Signal Processing Conference (EUSIPCO-2012); Bucharest. 2193–2197.
28. Abu-Jamous B, Fa R, Roberts DJ, Nandi AK (2012) Comprehensive analysis of

multiple microarray datasets by binarization of consensus partition matrix. In
2012 IEEE International Workshop on Machine Learning for Signal Processing

(MLSP 2012); Santander, Spain.
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