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The classification of cancers from gene expression profiles is a challenging research area in bioinformatics since the high
dimensionality of microarray data results in irrelevant and redundant information that affects the performance of classification.
This paper proposes using an evolutionary algorithm to select relevant gene subsets in order to further use them for the
classification task. This is achieved by combining valuable results from different feature ranking methods into feature pools whose
dimensionality is reduced by a wrapper approach involving a genetic algorithm and SVM classifier. Specifically, the GA explores the
space defined by each feature pool looking for solutions that balance the size of the feature subsets and their classification accuracy.
Experiments demonstrate that the proposed method provide good results in comparison to different state of art methods for the
classification of microarray data.
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1. Introduction

Microarray technologies provide an unprecedented oppor-
tunity for uncovering the molecular basis of cancer and
other pathologies. Any microarray experiment assays the
expression levels of a large number of genes in a biological
sample. These assays provide the input to a wide variety
of computational efforts aiming at defining global gene
expression profiles of pathological tissues and comparing
them with corresponding normal tissues. Generally, this
process is carried on by selecting a small informative set
of genes that can distinguish among the various classes of
pathology, by choosing an appropriate mathematical model
(i.e., a classifier), by estimating the parameters of the model
based on a training set of samples whose classification is
known in advance.

A relevant problem in microarray data classification, and
in machine learning in general, is the risk of “overfitting”
that arises when the number of training samples is small
and the number of attributes or features (i.e., the genes)
is comparatively large. In such a situation, we can easily
learn a classifier that correctly describes the training data but
performs poorly on an independent set of data. In order to
improve the performance of learning algorithms [1–3], it is

of paramount importance to reduce the dimensionality of
the data by deleting unsuitable features [4].

Indeed, the selection of an optimal subset of features
by exhaustive search is impractical and computationally
intensive when the number of attributes is high, as it is for
microarray data, and a proper learning strategy must thus be
devised. The relevance of good feature selection methods has
been discussed by [5], but the recommendations in literature
do not give evidence for a single best method for either the
feature selection or the classification of microarray data [6].

Recent studies on evolutionary algorithms (EAs) have
revealed their success on microarray classification. Partic-
ularly, these methods not only converge to high quality
solutions, but also search for the optimal set of features on
complex and large spaces of possible genes [7, 8]. One of the
most influential factors in the quality of the solutions found
by an evolutionary algorithm is a suitable definition of the
search space of the potential solutions.

This paper proposes an evolutionary approach that com-
bines results from different ranking methods to assess the
merits of the individual features by evaluating their strength
of class predictability. This gives us the ability to find feature
subsets with small size and high classification performance
that we call feature pools (FPs). Each FP is assumed as an
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initial set of informative genes and is further refined by a
wrapper approach involving a genetic algorithm (GA) and
SVM classifier. Specifically, the GA explores the space defined
by each FP looking for solutions that balance the size of the
feature subsets and their classification accuracy.

Our extensive experiments on a public microarray data-
set, namely the Leukemia dataset (Available at http://www
.broad.mit.edu/cgi-bin/cancer/publications/.), demonstrate
that the proposed approach is highly effective in select-
ing features and outperforms some proposed methods in
literature.

The rest of the paper is organized as follows. In Section 2,
we provide background information on microarray data
analysis and discuss some related works. Section 3 illustrates
the rationale for the proposed approach and describes the
adopted evolutionary algorithm. We provide our extensive
results and their interpretations in Section 4. Section 5
contains a detailed discussion as well a comparison with the
results of different state-of-art methods from the literature.
Finally, in Section 6 we conclude with some final remarks and
suggest future research directions.

2. Background and Related Work

The “curse of dataset sparsity” [9, 10] is a major concern
in microarray analysis, since microarray data include a large
number of gene expression values per experiment (several
thousands of features), and a relatively small number of
samples (a few dozen of patients). Giving a large number of
features to learning algorithms can make them very ineffi-
cient for computational reasons. In addition, irrelevant data
may confuse algorithms making them to build inefficient
classifiers while correlation between feature sets causes the
redundancy of information and may result in the counter
effect of overfitting [5]. Therefore, it is more important
to explore data and utilize independent features to train
classifiers, rather than increase the number of features we
use.

The problem of feature selection has received a thorough
treatment in machine learning and pattern recognition. Most
of the feature selection algorithms approach the task as a
search problem, where each state in the search specifies
a distinct subset of the possible features [11]. The search
problem is combined with a criterion in order to evaluate
the merit of each candidate subset of features. There are a lot
of possible combinations between each search procedure and
each feature evaluation measure [12].

Based on the evaluation measure, feature selection algo-
rithms can broadly fall into the filter model and the wrapper
model [13]. The filter model relies on general characteristics
of the training data to select predictive features (i.e., features
highly correlated to the target class) without involving any
mining algorithm. Conversely, the wrapper model uses the
predictive accuracy of a predetermined mining algorithm
to give the quality of a selected feature subset, generally
producing features better suited to the classification task at
hand. However, it is computationally expensive for high-
dimensional data [11, 13]. As a consequence, the filter model

is often preferred in gene selection due to its computational
efficiency.

Hybrid and more sophisticated feature selection tech-
niques have been explored in recent microarray research
efforts [14]. Among the most promising approaches, evolu-
tionary algorithms have been applied to microarray analysis
in order to look for the optimal or near optimal set of
predictive genes on complex and large search spaces [15].
For example, references [16–18] address the problem of
gene selection using a standard genetic algorithm which
evolves populations of possible solutions, the quality of
each solution being evaluated by an SVM classifier. Genetic
algorithms have been employed in conjunction with different
classifiers, such as k-Nearest Neighbor in [19] and Neural
Networks in [20]. Moreover, evolutionary approaches enable
the selection problem to be treated as a multiobjective
optimization problem, minimizing simultaneously the num-
ber of genes and the number of misclassified examples
[18, 21].

3. The Evolutionary Method

Most of the evolutionary algorithms approach the task of
microarray classification as a search problem where each
state in the search specifies a distinct subset of the possible
relevant features. If the search space is too large, it is possible
that the evolutionary algorithm cannot discover the most
selective genes within the search space. Moreover, having too
many redundant or irrelevant genes increases computational
complexity and cost and degrades estimation in classification
error. On the other hand, if the initial gene space is too small,
it is possible that some predictive genes are not included in
the search space.

Feature ranking (FR) is a traditional evaluation criterion
that is used by most popular search methods for assessing
individual features and assigning them weights according
to their relevance to the target class. Often the top-ranked
genes are selected and evaluated by search algorithms in
order to find the best feature subset. Although several
search strategies exist, most of them cannot be applied
to microarray datasets due to the large number of genes.
Furthermore FR algorithms cannot discover redundancy and
correlation among genes.

These limitations suggest us to pursue a hybrid method
that attempts to take advantage from the combination of
FR and evolutionary algorithms by exploiting their best
performance in two steps. First, different FR methods are
used for ranking genes. Since it is unfeasible to search for
every possible subset of genes through the search space, only
the top ranked genes are considered; they provide distinct
lists of ordered genes that are combined in subsets, namely
feature pools, of potentially “good” features. Second, each
feature pool is further reduced by a genetic algorithm (GA)
that tries to discover gene subsets having smaller size and/or
better classification performance.

The use of different ranking methods promotes the selec-
tion of important subsets without losing informative genes
while reducing the search space for the genetic algorithm.
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INPUT: D—Dataset ofN features
M—Number of ranking methods to be considered
Met—Ranking method
T—Threshold

OUTPUT: FeaturePools—A list ofMsets of features
———————————————————–
(1) list RankedSets = { }
(2) AllFeatures = { }
(3) for k = 1 to M
(4) Setk = {}
(5) for each feature fi ε D
(6) score = rank( fi, Metk , D)
(7) append fi to Setk according to score
(8) end for
(9) Setk = top (Setk , T)
(10) AllFeatures = AllFeatures ∪ Setk
(11) append Setk to RankedSets
(12) end for

(13) list FeaturePools = { }
(14) FP0 = {}
(15) list Combinations = { }
(16) for k =M to 2
(17) Combinations = Combine(M, k)
(18) shared = CommonFeatures(RankedSets,

Combinations)
(19) FPM+1−k = shared∪ FPM−k
(20) append FPM+1−k to FeaturePools
(21) end for
(22) FPM = AllFeatures
(23) append FPM to FeaturePools

Algorithm 1: Pseudocode describing the first step of the proposed
evolutionary method.

Being hard to apply evolutionary methods directly to high-
dimensional datasets [22], reduced feature pools provide
the possibility of putting into practice genetic algorithms,
usually effective for small or middle scale datasets, for micro-
array data classification. In the rest of this section, we give a
description of these steps.

3.1. First Step: Ranking Genes and Building Feature Pools.
Algorithm 1 describes the first step that aims to reduce the
dimensionality of the initial problem by identifying pools of
candidate genes to be further selected by the GA.

Firstly, the genes are ranked using M ranked methods
(lines 1–8). Ranking is carried out separately by each method
and results in M ranked sets of genes each of ones contains all
the genes in descending order of relevance. Then, we reduce
the dimensionality by considering only the T top-ranked
genes from each set (line 9), where T is a fixed threshold.
This process results in a list of M ranked sets (line 11).

The basic idea of our approach is to absorb useful
knowledge from these M sets and to fuse their information
by considering the features they share (lines 13–23). In
more detail, given a positive integer k (2 ≤ k ≤ M), we
build a list of all possible k-combinations of the first M

integers starting from 1 (line 17). For example, if M =
4 and k = 2, the list of combinations is as follows:
{(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)}. Each integer indexes a
ranked set and we use these combinations (line 18) for
determining the features shared by M, M − 1, . . . , 2 of the
M sets, respectively.

Next (lines 19–23), the shared features are employed for
building a list of nested feature pools FP1 ⊆ FP2 · · · ⊆ FPM ,
where FP1 contains the features shared by all the M sets, FP2

the features shared by at least M − 1 of the M sets, FP3 the
features shared by at least M − 2 of the M sets, . . ., FPM−1

the features shared by at least 2 of the M sets. Finally, FPM

contains all the features belonging to the M sets.

3.2. Second Step: Gene Selection by GA/SVM. In the second
step, we implement a wrapper model that combines GA
and SVM. The latter is a popular classification technique,
however other classifiers could be incorporated in our
approach. To sum up, the GA selects some features as an
individual and SVM evaluates them by classification, and the
result is used for estimating the fitness of the individual. The
possible choices of feature pools FPi define the evolutionary
search space.

Figure 1 shows the whole structure of this second step.
This is carried out separately on each FPi. At the start of
the search, a population of individuals (i.e., feature subsets)
is randomly initialized from the feature pool FPi. Each
individual of the current population is evaluated according
to a fitness function. Each time the fitness is evaluated, an
SVM classifier is built and tested on the feature subset under
investigation. Then, a new population is generated by apply-
ing genetic operations (selection, crossover and mutation)
and the fitness is again evaluated until a prespecified number
of generations G is reached. This evolution process results in
a best individual that we try to further refine by initializing
from it a new population that is used as a starting point of a
new evolution process. The refinement is iterated until a pre-
specified stopping criterion is met. When the entire round of
search is completed, the final feature subset is returned.

The basic components of our GA are as follows.

3.2.1. Representation of Individuals. Generally, a genetic
algorithm represents the individual as a string or a binary
array. Considering the large number of genes, if we represent
all the genes as a binary vector, this results in a very
long chromosome. Since the pre-processing step reduces the
dimensionality of initial gene set, we limit the maximum
size of each individual, that is, the length of chromosome,
to a predetermined parameter size M ∗ T that denotes the
maximum cardinality of a feature pool. The individuals are
encoded by n-bit binary vectors. If a bit is “1” it means that
the corresponding feature is included in the gene subset,
while the bits with value 0 mean the opposite.

3.2.2. Fitness Function. The fitness function is a key factor
which affects the performance of GAs. Our aim is to define
a function to scale the merit of a feature subset in terms
of both classification accuracy and degree of dimensionality
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Figure 1: The architecture of the GA/SVM algorithm.

in order to see how good your approach is in situations
where there is a large number of genes. The main idea is to
achieve a tradeoff between the accuracy and the size of the
obtained feature subsets. As a compromise between these two
evaluation criteria, the fitness is defined as follows:

F = w · C(x) +
1−w

S(x)
, (1)

where w is a parameter between 0 and 1, x is a feature vector
representing an individual, C(x) is the classification accuracy
of a classifier built on x, and S(x) is the x size, that is, the
number of genes included into x.

Here, the first term measures the weighted classification
accuracy from a classifier and the second one evaluates the
weighted size of the feature subset x. The parameter w is a
fitness scaling mechanism for assessing the relevance of each
term. Increasing the value of w will give more relevance to
accuracy and reducing it will set more penalties on the size.

This multiobjective fitness makes it possible to obtain
diverse solutions of high accuracy, while conventional
approaches tend to be converged to a local optimum. We will
analyze systematically the usefulness of the adopted function
in our experiments.

3.2.3. Genetic Operators

Selection. Roulette wheel selection is used to probabilistically
select individuals from a population for later breeding. The
probability P(hi) of selecting the individual hi is proportional
to its own fitness F(hi) and inversely proportional to
the fitness of other competing hypotheses in the current
population. It is defined as follows:

P(hi) = F(hi)∑
iF(hi)

. (2)

Crossover. We use the single point crossover, which is
enough for our application. One crossover point i is chosen
at random so that the first i bits are contributed by one parent
and the remaining bits by the second parent.

Mutation. Each individual has a probability pm to mutate.
We randomly choose a number of n bits to be flipped in every
mutation stage.

3.2.4. Stopping Criteria. A single evolution process is ter-
minated when a predefined number of generations G is
reached or an individual of maximum accuracy (100%)
and minimum size (1) is obtained. The best individual
produced by the evolution is iteratively refined by starting
a new evolution process (Figure 1) until the fitness cannot
be further improved (or a predefined number of iterations I
is reached): the results show the possibility of improvement
even if in few cases.

P trails of search are carried out using the GA/SVM
approach previously described. The resulting gene subsets,
as well as the partial results of the refinement process in
each trail of search, are recorded in an archive for further
analysis. All recorded gene subsets will be used in further
evaluation and compared with respect to dimensionality
and classification accuracy. This allows the identification of
optimal subsets along with summary information such as
the average classification accuracy and the average size of the
gene subsets selected in different rounds of search.

4. Experimental Results

We verify the proposed method with Leukaemia [2] which
is a popular public microarray dataset. Leukemia contains
72 samples among which 25 samples are collected from
acute myeloid leukaemia (AML) patients and 47 samples are
from acute lymphoblastic leukaemia (ALL) patients. Gene
expression levels of 7129 genes are reported.

4.1. Methods and Parameters Settings. In the first step (see
Section 3.1) we used the following ranking methods:

(i) information Gain (IG),

(ii) chi-squared (CHI),

(iii) symmetrical Uncert (SU),

(iv) one Rule (OR).

CHI measures the degree of independence between the
feature and the target class. Inspired by information theory,
IG evaluates the reduction of uncertainty (entropy) in
classification prediction when knowing the feature. SU
allows the discriminatory power of each feature to be found
and OR operates by using a one rule classifier to evaluate each
feature.

For genetic operations (see Section 3.2) the parameters
were set as follows:

(i) population size: 25,

(ii) number of generations: G = 10, G = 20, G = 30,
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(iii) probability of crossover: 1,

(iv) probability of mutation : 0.001,

(v) number of refinement iterations: I = 10.

SVM error estimation was by using leave-one-out cross
validation (LOOCV). That is, one of the samples was left
out to be a pseudotest data and the classifier was built
based on all but the left out sample. This evaluation was
repeated for each sample, and the estimated accuracy is a
mean over all considered samples. We notice that LOOCV
is a straightforward technique for estimating error rates and
it is also an almost unbiased estimator.

The ranking methods and the SVM classifier were
provided by the Weka library [4]. In particular, we must take
account that in the Weka library SVM is trained using the
SMO algorithm [23].

The evolutionary algorithm is run using GALib [24],
a C++ library of genetic algorithm objects. The library
includes tools for using genetic algorithms to do optimiza-
tion in any C++ program using any representation and any
genetic operators.

4.2. First Step. As already mentioned, the first step is done
over ranking genes and, in the experiments, four (M =
4) ranking methods (IG, CHI, SU, OR) were used for it.
First, each ranking method was applied to Leukemia and
four ranked lists were generated. Then, we carried through
preliminary experiments to compare the effectiveness of the
considered methods.

Specifically, we ordered features according to their pre-
dictive power within each list and studied the behavior of
SVM classifier on nested subsets of top-ranked features (i.e.,
top-2, top-4, top-8, etc.) from each list. Table 1 shows the
LOOCV accuracy of SVM, respectively, by each nested subset
and each ranking method. We note the similarity between
results obtained with the four methods. The maximum
accuracy (i.e., 98,6%) was reached by running SVM on
1024 features, except for CHI method where a peak was
achieved on 32 features. We observe that when the number
of selected features further increases, the accuracy does not
improve, due to the inclusion of uninformative or redundant
genes.

Results in Table 1 seem to suggest that no single feature
selection criterion is optimal in identifying a small subset
of highly discriminative features. This may be caused by the
complex interactions, correlations, and redundancy between
features and the biases embedded in the feature ranking
criteria. On this premise, our experimental study aims to
explore the effectiveness of combining useful outcomes from
different methods, according to the methodology presented
in Section 3.

As a first step, we cut off the T = 20 top ranked genes
from each list, where the threshold of 20 is chosen based
on a common practice in microarray studies. Table 2 shows
the index of the 20 top-ranked genes (i.e., features) ordered
by the relevance that each gene is assigned by each single
ranking method. As we can see, some genes are shared by

Table 1: LOOCV accuracy (%) of different groups of top ranked
features.

Top-ranked features IG CHI SU OR

2 93.1 93.1 93.1 91.7

4 93.1 93.1 93.1 88.9

8 93.1 93.1 93.1 94.4

10 94.4 93.1 93.1 93.1

16 94.4 94.4 94.4 95.8

20 94.4 94.4 95.8 97.2

25 95.8 97.2 97.2 95.8

32 97.2 98.6 97.2 97.2

64 95.8 97.2 97.2 97.2

128 94.4 97.2 97.2 97.2

256 97.2 97.2 97.2 97.2

512 97.2 97.2 97.2 97.2

1024 98.6 98.6 98.6 98.6

2048 98.6 98.6 98.6 98.6

4096 98.6 98.6 98.6 98.6

7129 98.6 98.6 98.6 98.6

Table 2: The 20 top-ranked genes from each ranking method.

Top-20 IG Top-20 CHI Top-20 SU Top-20 OR

1 3252 1834 1834 4847

2 4847 4847 4847 760

3 1834 1882 1882 6041

4 1882 3252 3252 1882

5 6041 6855 760 1685

6 2288 2288 2288 6376

7 760 760 6041 6855

8 6855 6041 6855 2288

9 1685 1685 1685 3252

10 1779 6376 6376 1834

11 2128 4373 2354 1779

12 6376 2128 4373 4366

13 2354 4377 4377 4328

14 4366 2354 4366 2402

15 4377 1779 2402 4196

16 4373 2402 758 1745

17 4328 1144 4328 1144

18 758 4366 1144 2020

19 1144 6281 3320 1928

20 2642 2121 2642 6347

two or more ranking methods while some genes are specific
to a single method.

Table 3 shows the composition of the feature pools FPi

(i = 1, . . . , 4) as well as the LOOCV accuracy of the SVM
classifier trained on each FPi (baseline model). The letter
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Table 3: FPi composition and accuracy of the corresponding
baseline model.

FP1 FP2 FP3 FP4

1 3252r 3252r 3252r 3252r

2 4847r 4847r 4847r 4847r

3 1834r 1834r 1834r 1834r

4 1882r 1882r 1882r 1882r

5 6041r 6041r 6041r 6041r

6 2288r 2288r 2288r 2288r

7 760r 760r 760r 760r

8 6855r 6855r 6855r 6855r

9 1685r 1685r 1685r 1685r

10 6376r 6376r 6376r 6376r

11 4366r 4366r 4366r 4366r

12 1144r 1144r 1144r 1144r

13 1779b 1779b 1779b

14 2354b 2354b 2354b

15 4377b 4377b 4377b

16 4373b 4373b 4373b

17 4328b 4328b 4328b

18 2402b 2402b 2402b

19 2128g 2128g

20 758g 758g

21 2642g 2642g

22 6281y

23 2121y

24 3320y

25 4196y

26 1745y

27 2020y

28 1928y

29 6347y

Accuracy 94.4% 94.4% 94.4% 98.6%

following each feature denotes the corresponding feature
colour defined as follows:

(i) r marks the red features, that is, genes selected by all
methods;

(ii) b marks the blue features, that is, genes selected by
three methods;

(iii) g marks the green features, that is, genes selected by
two methods;

(iv) y marks the yellow features, that is, genes selected by
just one method.

The choice of different colours is a useful heuristic we
adopted for revealing the features shared by different ranking
methods.

4.3. Second Step. Starting from the different feature pools
obtained in the previous step, we performed a further gene
selection according to the evolutionary approach described
in Section 3.2. Specifically, we studied the behavior of

Table 4: Performance of GA on the feature pool FP1.

w
Number of
generations

Average
accuracy

(%)

Maximum
accuracy

(%)

Average
size

Minimum
size

0.70
10 94.2 95.8 4 3

20 94.2 95.8 4 3

30 93.3 95.8 3 2

0.75
10 94.4 97.2 4 3

20 94.4 97.2 3 2

30 93.9 97.2 3 2

0.80
10 96.4 98.6 5 4

20 95.5 97.7 4 4

30 95.0 97.2 4 2

0.85
10 95.0 97.2 4 3

20 96.7 98.6 4 4

30 95.8 98.6 4 2

0.90
10 96.9 98.6 4 3

20 96.4 97.2 6 3

30 96.9 98.6 5 3

0.95
10 95.8 97.2 4 3

20 96.9 98.6 4 2

30 97.2 98.6 4 3

Table 5: Performance of GA on the feature pool FP2.

w
Number of
generations

Average
accuracy

(%)

Maximum
accuracy

(%)

Average
size

Minimum
size

0.70
10 95.3 97.2 6 5

20 98.1 100 6 4

30 97.5 98.6 5 4

0.75
10 97.2 98.6 7 5

20 97.2 98.6 7 6

30 96.9 97.2 5 3

0.80
10 95.8 97.2 6 4

20 96.1 97.2 5 3

30 96.9 98.6 6 3

0.85
10 97.2 98.6 6 3

20 97.8 98.6 5 3

30 98.1 98.6 6 3

0.90
10 98.3 100 4 3

20 97.5 98.6 4 3

30 97.2 100 4 3

0.95
10 97.8 98.6 4 3

20 97.5 98.6 4 3

30 98.1 98.6 4 3

the proposed algorithm in four ways: with respect to the
parameter w (ranging from 0.70 to 0.95), with respect to
the number of generations (G = 10,G = 20,G = 30), with
respect to the classification accuracy, and with respect to the
dimensionality of the feature subset.
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Table 6: Performance of GA on the feature pool FP3.

w
Number of
generations

Average
accuracy

(%)

Maximum
accuracy

(%)

Average
size

Minimum
size

0.70
10 96.7 98.6 6 3

20 96.4 97.2 6 3

30 97.8 100 7 5

0.75
10 96.7 98.6 8 7

20 97.8 100 8 4

30 97.8 100 10 5

0.80
10 96.9 98.6 7 3

20 98.9 100 5 3

30 98.1 98.6 10 5

0.85
10 97.8 100 5 3

20 98.3 100 5 3

30 98.9 100 6 4

0.90
10 98.6 100 6 3

20 98.6 100 4 3

30 98.9 100 4 3

0.95
10 99.4 100 5 3

20 98.3 100 4 3

30 98.6 100 4 3

Table 7: Performance of GA on the feature pool FP4.

w
Number of
generations

Average
accuracy

(%)

Maximum
accuracy

(%)

Average
size

Minimum
size

0.70
10 98.6 98.6 12 11

20 98.3 98.6 12 6

30 98.3 98.6 9 4

0.75
10 98.6 100 10 6

20 98.9 100 9 6

30 98.6 98.6 11 10

0.80
10 98.6 98.6 12 7

20 98.6 98.6 9 3

30 98.6 98.6 8 5

0.85
10 98.6 98.6 7 5

20 98.6 98.6 9 3

30 98.6 98.6 9 6

0.90
10 98.9 100 5 5

20 99.2 100 9 4

30 98.9 100 6 3

0.95
10 98.3 98.6 10 7

20 98.6 98.6 5 4

30 98.9 100 6 3

Since the evolutionary algorithm performs a stochastic
search, we consider the average accuracy and the average
dimensionality of the selected subsets over a number P = 5

Table 8: The proposed method versus seven state-of-art methods.

The proposed method 100 (3)

[25] 94.10 (-)

[27] 100 (8)

[16] 100 (6)

[26] 95.0 (-)

[21] 100 (4)

[3] 100 (2)

[17] 100 (25)

of trials. Within each FPi (i = 1, . . . , 4), Tables 4, 5, 6, and 7
report the accuracy (average and maximum) and the number
of selected genes (average and minimum), respectively, by
each value of w and the number of generations.

Compared with the baseline model of FP1 (red features
in Table 3), whose accuracy is 94,4% on 12 features, we can
see from Table 4 that the proposed evolutionary approach
results in gene subsets of smaller size for each combination of
w and number of generations. As well, the average accuracy
outperforms the baseline model only if w ≥ 0.80, meaning
that we should give more priority on the classification
accuracy over the size when evaluating the fitness of each
feature subset. Moreover, the number of generations seems
to not significantly affect the performance of the algorithm,
suggesting that few generations are sufficient for GA to
converge on the best individual.

Compared with the baseline model (accuracy: 94,4%,
size: 18) of FP2 (red and blue features in Table 3), Table 5
shows a clear improvement in terms of both classification
accuracy and dimensionality for each combination of w and
number of generations. Interestingly enough, increasing w
(that means the fitness is evaluated giving more priority on
the accuracy over the size) does not significantly increase the
accuracy of the selected subset, while the size of the selected
subset tends to decrease as w increases. This seems to suggest
that the optimization of the accuracy (first term in the fitness
function) implies optimizing the dimensionality too. As in
the case of FP1, the performance does not improve when
increasing the number of generations.

Our GA achieves the best results on the feature pool
FP3 (red, blue, and green features in Table 3), as we can see
in Table 6. Indeed, the comparison with the baseline model
(accuracy: 94,4%, size: 21) shows an improved performance
for each combination of w and number of generations.
Moreover, for 13 different settings of parameters, a classifier
with 100% accuracy is identified by the algorithm. Higher
values of w, in particular w ≥ 0.85, lead to the best
performance not only in terms of accuracy but also in terms
of dimensionality, confirming that optimizing the accuracy
means automatically reducing the size of the selected subset.
Again, the number of generations seems to be not important,
especially for higher values of w.

Finally, in the case of FP4 (red, blue, green, and yellow
features in Table 3), each combination of parameters results
in the selection of gene subsets whose classification accuracy
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Table 9: Features belonging to the perfect predictors in Table 10.

FP Selected feature Frequency

FP2

1144r 3 (3)

6855r 2 (3)

1834r 1 (3)

6376r 1 (3)

2354b 3 (3)

4377b 2 (3)

4373b 1 (3)

FP3

1144r 15 (18)

1834r 10 (18)

6855r 5 (18)

1685r 4 (18)

760r 3 (18)

1882r 1 (18)

2288r 1 (18)

6376r 1 (18)

2354b 12 (18)

4377b 9 (18)

4373b 7 (18)

2402b 1 (18)

4328b 1 (18)

2642g 8 (18)

758g 7 (18)

FP4

1685r 3 (7)

6855r 3 (7)

1144r 2 (7)

1834r 2 (7)

4366r 2 (7)

1882r 1 (7)

2288r 1 (7)

6041r 1 (7)

2354b 6 (7)

4377b 3 (7)

2402b 2 (7)

4373b 1 (7)

2642g 4 (7)

758g 2 (7)

2128g 1 (7)

2020y 5 (7)

6281y 5 (7)

6347y 5 (7)

1928y 4 (7)

2121y 1 (7)

4196y 1 (7)

is, on average, the same as the baseline model (98,6%) and
no further improvement was achieved by the evolutionary
algorithm in terms of accuracy. On the other hand, the
dimensionality of the selected subsets is much lower than the
initial number of features (29), which reveals a high degree
of correlation and redundancy between the genes belonging
to FP4.

5. Discussion

A basic question is to discuss the change in accuracy
when varying the number of selected features and their
combinations. In general, we believe that there is not a
rule to determine an optimal number of features to get
the best accuracy even for a specific classifier since that
number may change from data to data and also may vary
from different feature selection methods as our experiments
demonstrate.

The threshold of 20 used to cut off top-ranked features is
an arbitrary number, though it is based on our experience as
we consider that biologists like a small number of features
to separate two classes of cells and building a classifier
would need a long time if many discriminatory features are
selected.

However, this arbitrary choice does not pay when we
simply consider use SVM on the 20 top-ranked features
(baseline model) or on nested subsets of top-ranked features
(i.e., top-2, top-4, top-8, etc.): accuracy is poor but this
is not surprising and means that many features interact
closely.

Our method demonstrated its efficiency in discovering
the size of optimal subsets selected on the subsets of common
features. Results show that the SVM classifier performs better
on these optimal subsets. However, features common to all
ranking methods (i.e., the red features belonging to FP1)
define a search space that is too small and the performance
of the classifier did not increase when the search was refined
by an additional number of generations. When this search
space was enlarged by adding blue, green, and yellow features
our approach shows an excellent performance, not only at
providing a very good average accuracy, but also with respect
to the number of selected features and the computational
cost. Resulting from the union of red, blue, and green features,
the pool FP3 seems to define the most effective search space
for the GA.

Table 8 summarizes our results with the results of seven
state-of-art methods from the literature. The conventional
criteria are used to compare the results, the classification
accuracy in terms of the rate of correct classification (first
number) and the number of used genes (the number in
parenthesis, “-” indicating that the number of genes is
not available). For our approach, the classification rate we
presented is the maximum accuracy obtained on FP3 and the
corresponding number of genes (see Table 6 for details). As it
can be observed, we obtain a maximum classification rate of
100% using 3 genes (the corresponding average accuracy was
99,4%) which is much better than that reported in [25, 26].
This same performance is achieved by [3, 16, 17, 21, 27].
However, the number of genes selected by [16, 17, 21, 27]
is greater than the one obtained by our method whose
number of selected genes is greater than the one reported in
[3].

We also observe that increasing the number of gen-
erations does not greatly affect the performance of the
algorithm. This may be because the size of the initial gene
pool FP3 gives search space enough to the evolutionary
algorithm. As well, the performance increases within high
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Table 10: Perfect predictors identified by the proposed approach.

FP Size Features

FP2

4 1144r 2354b 4373b 4377b

4 1144r 1834r 6855r 2354b

5 1144r 6855r 6376r 2354b 4377b

FP3

3 1144r 1834r 2642g (4times)

4 1144r 2354b 4373b 4377b (3times)

4 1144r 1834r 2354b 758g (2times)

4 1834r 2354b 4328b 2642g

4 1834r 1685r 2354b 2642g

5 1144r 1834r 1685r 4373b 758g

5 1144r 1834r 2354b 4377b 758g

6 2288r 6855r 2354b 4377b 758g 2642g

6 1144r 1685r 6855r 2354b 4373b 4377b

7 760r 1144r 6376r 6855r 2354b 4373b 4377b

8 760r 1144r 1685r 1882r 6855r 4373b 4377b 758g

8 760r 1144r 6855r 2354b 2402b 4377b 758g 2642g

FP4

5 2354b 4377b 2020y 6281y 6347y

5 2354b 2642g 2020y 6281y 6347y

5 1685r 2354b 1928y 2020y 6347y

6 2354b 2128g 2642g 2020y 6281y 6347y

6 6855r 2354b 2402b 4377b 2642g 1928y

14 1144r 1834r 1882r 1685r 4366r 6855r 2354b 2402b 4373b 758g 2642g 1928y 2121y 6281y

14 1144r 1685r 1834r 2288r 4366r 6041r 6855r 4377b 758g 1928y 2020y 4196y 6281y 6347y

values of the parameter w. This means that the tradeoff
between the two objectives of the fitness function is best
represented when we give more importance to the accuracy
since a high level of accuracy was automatically reached with
a low number of features.

Another topic to address is the number of features subsets
that reach the 100% accuracy (perfect predictors) and the
frequency of selection of the genes that are member of
the best predictors. Table 10 shows the perfect predictors
discovered by the proposed approach. Interesting, no perfect
predictor was discovered on the search space defined by
FP1. It seems to confirm that this space is not large enough
and contains groups of correlated features. Blue and green
features mitigate the presence of this correlation by enlarging
the search space. As well, the presence of yellow features in
FP4 seems to influence the size of the optimal predictors
since there is a notable difference when we consider the
size of optimal predictors originated by FP2 and FP3. We
observe that all features belonging to a perfect predictor are
multicoloured, that is, they denote top-ranked genes shared
by different groups of ranking methods. This indicates that
combinations of features are beneficial.

Table 9 shows the frequency of the genes belonging to
the optimal predictors (the number in parenthesis indicates
the total number of perfect predictor within each feature
pool). These results can be used by biologists for further
evaluation.

6. Conclusions

We presented a new evolutionary approach to select relevant
features subsets in order to use them for the classification
task. With respect to speeding-up the EA evaluation, we
worked in proposing the combination of different ranking
methods with two goals: to incorporate information to the
GA to be used by genetic operators, and to reduce the
computational time of the classification process by means
of a pre-processing step from the data. The EA incorporates
information in the early stage, when different ranking meth-
ods are applied before running the classification process,
by organizing the top-ranked features into different feature
pools. The main concern is the formulation of the feature
selection issue as an optimization problem so that the pre-
dictors with maximum accuracy and minimum size can be
found. We demonstrated that the proposed approach solves
this optimization problem in efficient way and experimental
results show that our method outperforms different state-
of-art methods for the classification of microarray data. As
future work, we will apply the proposed method to a variety
of datasets and study the feature overlapping.
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