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 I    

Synopsis 
Microarray technology enables the study of gene expression on a large scale. One 

of the main challenges has been to devise methods to cluster genes that share similar 

expression profiles. In gene expression time courses, a particular gene may encode 

transcription factor and thus controlling several genes downstream; in this case, the gene 

expression profiles may be staggered, indicating a time-delayed response in transcription 

of the later genes. The standard clustering algorithms consider gene expression profiles in 

a global way, thus often ignoring such local time-delayed correlations. We have 

developed novel methods to capture time-delayed correlations between expression 

profiles: (1) A method using dynamic programming and (2) CLARITY, an algorithm that 

uses a local shape based similarity measure to predict time-delayed correlations and local 

correlations. We used CLARITY on a dataset describing the change in gene expression 

during the mitotic cell cycle in Saccharomyces cerevisiae. The obtained clusters were 

significantly enriched with genes that share similar functions, reflecting the fact that 

genes with a similar function are often co-regulated and thus co-expressed. Time-shifted 

as well as local correlations could also be predicted using CLARITY.   

In datasets, where the expression profiles of independent experiments are 

compared, the standard clustering algorithms often cluster according to all conditions, 

considering all genes. This increases the background noise and can lead to the missing of 

genes that change the expression only under particular conditions. We have employed a 

genetic algorithm based module predictor that is capable to identify group of genes that 

change their expression only in a subset of conditions.  With the aim of supplementing 

the Ustilago maydis genome annotation, we have used the module prediction algorithm 

on various independent datasets from Ustilago maydis. The predicted modules were 

cross-referenced in various Saccharomyces cerevisiae datasets to check its evolutionarily 

conservation between these two organisms. The key contributions of this thesis are novel 

methods that explore biological information from DNA microarray data. 
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Zusammenfassung 
 

Die Mikroarray-Technologie ermöglicht es, die Expression von Genen im großen 
Maßstab zu analysieren. Einer der größten Anreize bei der Daten-Analyse besteht darin, 
Methoden zu entwickeln, um Gene mit einem ähnlichen Expressionsprofil in 
gemeinsamen Clustern zu gruppieren.  

Bei Experimenten, in denen die Veränderung der Gen-Expression zeitabhängig 
verfolgt wird, ist es möglich, dass ein bestimmtes Gen für einen Transkriptionsfaktor die 
Expression weiterer Gene kontrolliert. Dadurch bedingt können die Profile einzelner 
Gene zueinander verschoben sein. Die Standard-Cluster-Algorithmen betrachten Gen-
Expressionsprofile oftmals global, womit solche zeitversetzten Zusammenhänge in vielen 
Fällen ignoriert werden.  

Wir haben neuartige Methoden entwickelt, um zeitversetzte Zusammenhänge 
zwischen Expressionsprofilen zu detektieren: (1) Eine Methode, die dynamische 
Programmierung verwendet und (2) CLARITY; ein Algorithmus, der über den Vergleich 
lokaler Ähnlichkeiten im der Kurvenform sowohl zeitversetzte als auch lokale 
Ähnlichkeiten entdecken kann. Wir haben CLARITY verwendet, um einen Datensatz, der 
die Veränderungen der Gen-Expression währen des Zellzyklus von Saccharomyces 
cerevisiae beschreibt, zu analysieren. Die erhaltenen Cluster zeigen eine signifikante 
Anreicherung mit Genen bestimmter Funktionen, was deutlich macht, dass Gene mit 
einer ähnlichen Funktion oft  auch co-reguliert und damit co-exprimiert sind. Durch 
CLARITY wurden sowohl zeitversetzte als auch lokale Korrelationen entdeckt.  

In Datensätzen, die verschiedene voneinander unabhängige Experimente 
miteinander kombinieren, versuchen Standard-Algorithmen oftmals, Cluster zu bilden, 
indem sie alle Bedingungen und alle Gene berücksichtigen. Diese Vorgehensweise erhöht 
den Hintergrund (Rauschen), was dazu führen kann, dass bestimmte Gene, die ihre 
Expression nur unter bestimmten, aber nicht allen Bedingungen ändern, nicht erfasst 
werden. Wir haben ein Programm zur Modul-Vorhersage entwickelt, das auf der 
Anwendung genetischer Algorithmen beruht, und das Gruppen von Genen identifizieren 
kann, die nur in einer Untergruppe der Bedingungen ihre Expression verändern. Mit dem 
Ziel, die funktionelle Annotierung des Ustilago maydis Genoms zu unterstützen, haben 
wir das Modul-Vorhersage Programm für die Analyse verschiedener unabhängiger 
Expressions- Datensätze von U. maydis verwendet. Die vorhergesagten Module wurden 
auf verschiedene Expressions-Datensätze von S. cerevisiae übertragen, um die 
evolutionäre Konservierung zwischen den beiden Organismen zu untersuchen.  

Der Hauptbeitrag dieser Arbeit liegt in der Entwicklung neuartiger Methoden, die 
es ermöglichen, biologische Informationen in Mikroarray-Datensätzen zu untersuchen.  
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Summary of Terms 
BLAST Basic Local Alignment Search Tool 

cDNA Complementary DNA; complementary single stranded DNA copy of a 
messenger RNA, produced by reverse transcription  

cRNA Synthetic RNA produced by transcription from a specific DNA single 
stranded template  

CLARITY Clustering with Local shApe based similaRITY 

CYGD Comprehensive Yeast Genome Database 

DNA Deoxy riboNucleicAcid; carrier of the genetic information in organisms 

EGAD Expressed Gene Anatomy Database 

EST Expressed Sequence Tags; a small part of the active part of a gene made 
from cDNA which can be used to fish the rest of the gene out of the 
chromosome by matching base pairs with part of the gene 

GA Genetic Algorithm 

GenProtEC  Genome and Proteome Database of E. coli 

GEMS Gene Expression Module Sampler 

GO Gene Ontology; a controlled vocabulary of terms relating to molecular 
function, biological process, or cellular components developed by the 
Gene Ontology Consortium 

KEGG Kyoto Encyclopedia of Genes and Genomes 

MIPS Munich Information Center for Protein Sequences 

Min (X, Y) Minimum between X and Y 

mRNA          Messenger RNA; a complementary copy of a stretch of DNA encoding a 
gene 

OPSM Order Preserving Sub-Matrix 

OP-cluster Order Preserving Cluster 

ORF Open Reading Frame 
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P value Probability value; The probability value (p-value) of a statistical 
hypothesis test is the probability of getting a value of the test statistic as 
extreme as or more extreme than that observed by chance alone, if the null 
hypothesis H0, is true 

PCR Polymerase Chain Reaction; a method for amplifying a specific DNA 
sequence using DNA polymerase 

PIR Protein Information Resource 

RNA RiboNucleic Acid 

rRNA Ribosomal RNA 

RT-PCR Reverse Transcriptase Polymerase Chain Reaction 

SAMBA Statistical Algorithmic Method for Bicluster Analysis 

SIM (X, Y) Similarity between expression profiles X and Y 

SOM Self Organizing map 

SRC Spearman Rank Correlation 

TM Transcription Module 

tRNA transfer RNA  
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Chapter 1 

Introduction 
Recent developments in the biological sciences refreshed exploration in biological 

research. The genome sequencing projects of many organisms including human 

represents one of the largest scientific endeavors in the history of mankind. In 1995, 

Haemophilus influenzae, a gram negative human parasitic bacterium was the first free-

living organism to have its entire chromosome sequenced. In eukaryotes, Sacchromyces 

cerevisiae, the brewers yeast was the first one to have its genome fully sequenced in 1996 

(Goffeau et al., 1996). Recently in October 2004, the complete sequence of the human 

genome confronted us with the fact that the human genome contains approximately 

20,000 to 25,000 genes, which was about 10,000 less than that indicated in the draft 

(International human genome sequencing consortium, 2004). The completion of the 

genomic sequences of ‘model’ organisms such as Sacchromyces cerevisiae and 

Caenorbabditis elegans provides us an idea about the genome, the complete blue print of 

the organism. Once whole genome sequencing information is available for an organism, 

the task turns to understanding the ‘biological function’ of genes. Although many genome 

sequencing projects have been completed, the biological function is not known for 

roughly half of the genes in every genome that has been sequenced to date (Stuart et al., 

2003). Elucidating ‘function’ for these large fractions of genes referred to as ‘functional 

genomics’ poses the next major challenge in the post genomic era.   

In terms of understanding the function of genes, knowing when, where and to what 

extent a gene is expressed is central to understanding the activity and biological roles of 

its encoded protein.  The collection of genes that are expressed or transcribed from 

genomic DNA, referred to as an expression profile or the ‘transcriptome’, is a major 

determinant of cellular phenotype and function.  The transcription of genomic DNA to 

produce mRNA is the first step in the process of protein synthesis, and differences in 

gene expression are responsible for both morphological and phenotypic differences as 

well as indicative of cellular response to environment stimuli and perturbations. 
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Traditional molecular biology followed the reductionist approach mostly 

concentrating on ‘one gene at a time’.  In order to take full advantage of the large and 

rapidly increasing body of sequence information, new technologies are required. Among 

the most powerful and versatile tools for functional genomics are high-density arrays of 

oligonucleotides or complementary DNAs.  One of the most important applications for 

arrays so far is simultaneous measurement of gene expression (mRNA abundance) of 

thousands of genes in a genome during important biological processes.  

Elucidating the patterns hidden in gene expression data offers a tremendous 

opportunity for an enhanced understanding of functional genomics. The data generated 

from microarray experiments often consists of millions of gene expression measurements 

that raise the complexity of comprehending and interpreting the massive information. 

Although many algorithms (reviewed in Jiang et al., 2004) have been developed to 

analyze the massive data generated from microarrays, interpreting this vast amount of 

data often presents a challenge to those interested in studying the relationships among 

genes in a genome. 

A major drawback of available data analysis algorithms is that they ignore 

additional information that could give improved understanding of transcriptional control 

(i.e., the controls that act on gene expression or transcription) within a genome.   

Further, these standard algorithms often consider all conditions (or samples) that 

measure the gene expression of a large number of genes, perhaps all genes of an 

organism during different biological processes. Since the data come from diverse 

experiments, considering all conditions could simply add noise to the data.  

This thesis presents new methods to overcome the problems stated above with the 

aim to increase the biological information obtained from gene expression data. 

In this chapter, section 1.1 presents a brief description of gene expression and 

microarrays, section 1.2 and section 1.3 describes cDNA arrays and Affymetrix Genechip 

technology, respectively, and section 1.4 explains the topic of Microarray data analysis 

and provides the motivation for this dissertation.  
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1.1 Gene expression and microarrays 
The foundation of genetic and molecular biological lies in the central dogma 

enunciated by Francis Crick in 1958 which states that genetic information from double 

stranded DNA is transformed to RNA through transcription, which in turn is used as a 

matrix to synthesize specific proteins via the translation machinery.  

The process of making a particular type of a protein from a continuous stretch of 

genomic DNA, referred to as a gene, is called protein synthesis and has three essential 

stages: (1) transcription, (2) splicing and (3) translation. 

(1) In the transcription phase one strand of DNA molecule is copied into a 

complementary pre-mRNA* by the protein complex RNA polymerase II. 

(2) In eukaryotes, the pre-mRNA is trimmed by a process called splicing. Splicing 

removes stretches of the pre mRNA, called introns, while the remaining sections called 

exons are then joined together. Prokaryote genes do not have introns and the splicing step 

is not present. The result of splicing is mRNA. Many eukaryote genes are known to have 

different alternative splice variants, i.e. the same pre-mRNA producing different mRNAs, 

known as alternative splicing. 

(3) Translation is the process of making proteins by joining together amino acids in 

the order encoded by the mRNA. The order of the amino acids is determined by 3 

adjacent nucleotides (triplets) in the DNA. This is known as the genetic code. Each triplet 

is called a codon and codes for one amino acid. As there are 64 codons and only 20 

amino acids the code is redundant, for example both CAT and CAC encode the amino 

acid histidine.  In the cytoplasm the mRNA forms a complex with ribosomes, which are 

large complexes of proteins and RNA molecules. The precise interactions and functions 

of all proteins in ribosomes are not yet fully understood. 

Proteins, the final product of translation machinery, can be post-translationaly 

modified e.g., by addition of sugars or cleavage that might affect their location and 

function. 

Due to alternative splicing and post-translational modifications, the paradigm of 

‘one gene – one protein’ has changed; one gene can produce a variety of proteins. 

 
*pre stands for preliminary and m for messenger 
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For a particular organism, the DNA content of most of the cells is the same. 

However, the amount of mRNA and the proteins vary between cells and also varies 

within a cell under different conditions. By systematically observing the changes in 

mRNA expression levels of all the genes in a genome under different experimental 

conditions, one can add to the knowledge of how these genes affect the function of the 

cells.  

Traditionally, gene expression studies were done one gene at a time using Northern 

blots that compared the mRNA abundance between mRNA samples cross linked on a 

single membrane and hybridized with a labeled probe. In vitro transcribed RNA and 

oligonucleotides are normally used as hybridization probes in Northern blots.  

Another sensitive technique called RT-PCR (Reverse Transcriptase Polymerase 

Chain Reaction) uses PCR amplified reverse-transcribed mRNA to measure very low 

mRNA levels from samples. 

However, with the advent of genomics, more sophisticated methods are needed to 

understand the genetic and functional relationship among the genes. Concurrent 

measurement of mRNA expression levels of thousands of genes can help to make sense 

of the cell's response to a specific condition. The advent of microarrays helps to study the 

entire genome of an organism on a chip with the size of a microscope slide.  

Microarrays exploit the preferential binding of complementary single-stranded 

nucleic acid sequences. “Probe” DNA strands are spotted onto the chip. The “Target” 

DNA mixture is then hybridized onto the chip to allow base pairing under conditions 

such that only highly complementary sequences will remain bound to their specific 

partners.  

Several technologies have been developed for the simultaneous measurement of 

gene expression, most notably spotted microarrays and oligonucleotide arrays from 

Affymetrix* (Affymetrix Genechip arrays). These technologies mainly differ in two 

ways, (1) how probes are deposited on the chip and (2) the length of DNA sequences that 

are deposited. The next sections give a brief overview of these two technologies. 

 
 

*Affymetrix, Inc, Santa Clara, CA, USA 
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1.2 cDNA Microarray technology 
1.2.1 Principle of spotted DNA microarrays 

The spotted DNA microarrays are a conceptually simple and cost effective method 

for monitoring the relative levels of expression of thousands of genes simultaneously 

(Schena et al., 1995). In an array experiment, probes (PCR-amplified cDNA or genomic 

fragments or specific oligonucleotides) are individually printed on glass microscope 

slides using a robotic arrayer.  To compare the relative abundance of each of these 

molecules in DNA or RNA samples of two different populations, the two samples are 

first labeled using different fluorescent dyes, for example Cy3 and Cy5. The two samples 

are then mixed and hybridized with the arrayed DNA spots. Laser excitation of the 

incorporated targets yields an emission with a characteristic spectrum, which is measured 

using a scanning device. Monochrome images from the scanner are imported into 

software in which the images are pseudo-colored and merged. Data from a single 

hybridization experiment are viewed as a normalized ratio in which significant deviation 

from 1 (no change) are indicative of increased (>1) or decreased (<1) levels of gene 

expression relative to the reference sample. These measurements are used to determine 

the ratio, and in turn the relative abundance, of specific molecules in the two mRNA or 

DNA samples (Fig. 1.1).         

 

1.2.2 Probe selection  
Production of arrays begins with the choice of DNA fragments (probes) to be 

printed on the microarray. Probes are often chosen from databases like GenBank, dbEST 

and UniGene. Before the availability of complete or near-complete eukaryotic genome 

sequences, genes expressed in cells, tissues or organs were identified through sequence 

analysis of cDNA data banks. cDNA clones from the cDNA data banks of Arabidopsis 

thaliana and human peripheral blood lymphocytes were used in the construction of the 

first cDNA microarrays (Schena et al., 1995; Schena et al., 1996). Expressed sequence 

tags (ESTs) of an organism are also used as sources for arraying.  
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Fig. 1.1. cDNA Microarray Schema (Adapted from Duggan et al., 1999) 

 

Ideally, every cDNA (or the sequenced part of the cDNA termed EST) should represent a 

unique gene or alternate splice variant. With the completion of whole genome sequences, 

new sets of probes are being assembled that include genomic clones representing 

predicted genes for which no EST has yet been identified.  If a gene is abundantly 

transcribed in the cells, it will be represented often in the cDNA library producing 

redundant clones. Normalization procedures are used to reduce the frequent 

representation of highly expressed genes. Arrays for higher eukaryotes are typically 

based on ESTs, whereas for yeast and prokaryotes, probes are usually generated by 

amplifying genomic DNA with gene specific primers (Duggan et al., 1999). Spotted long 

oligonucleotide arrays were introduced as an alternative to spotted cDNA arrays and in 

situ synthesized oligonucleotide arrays (Kane et al., 2000). Spotted oligonucleotide arrays 

are produced by deposition (or spotting) of solution containing synthetic 

oligonucleotides, typically 40-90 bases long, on a solid substrate.  
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1.2.3 Amplification and printing 
Probes are usually amplified by the use of Polymerase chain reaction (PCR), and 

spotted onto a coated glass microscope slide or a nitrocellulose or nylon membrane. 

Membranes are most suited to applications where radioactivity is used to label the 

respective target sample, while glass slides are used in florescence-based detection. 

Robots (arrayers) are required to place a large number of probes onto the slides. One 

platform used for printing microarrays is the common microscope slide, with dimensions 

of 25 mm x 75 mm. The latest robotic printers can easily fit 50,000 spots or elements 

onto one slide if the spots are 100 µm in diameter and spaced 50 µm apart (Barrett and 

Kawasaki, 2003) 

 
 

Fig. 1.2.  Microarray printing robot from DeRisi microarrayer version II 

with 16 tip printing head. The microarray core from DeRisi Lab has 

recently assembled microarrayer version II. DeRisi’s version II is capable 

of printing two batches per week, each batch containing 250 slides, with 

each slide containing a 40,000 spot array. (Adapted from DeRisi lab 

website http://derisilab.ucsf.edu/cshl/) 

 

1.2.4 Target labeling, hybridization and image processing 
The cellular mRNA is extracted from samples of interest. Target cDNA is prepared 

from extracted mRNA samples by reverse transcription. Typically reverse transcription 

from an oligo-dT primer is used for this purpose. Fluorescent dyes such as Cy3 and Cy5 



          Introduction 

                                                                                                                                    8 

are commonly used for labeling the cDNAs. These dyes are chemically coupled to the 

poly-dT oligonucleotide that is used to prime the polymerization. If a radioactive label is 

used, it is incorporated directly on one of the nucleotides.  During the hybridization step, 

the DNA probes on the glass slides and the labeled cDNA target form hetroduplexes. As 

array technology has advanced, more sensitive and quantitative methods for target 

preparation are now available. Modern microarrays have been reported to detect the 

presence of even one mRNA per cell, that is, a concentration of one mRNA per ≥ 

100,000 molecules (Barrett and Kawasaki, 2003). 

 

 
 

Fig. 1.3. A segment of cDNA microarray (Adapted from Duggan et al., 

1999) to which targets from  irradiated human leukemia-derived ML1 cells 

(red) and untreated ML1 cells (green) were hybridized. Highly differential 

hybridization is visible at the detectors for CDKN1A and MYC genes 

(boxed) 

 

The final step is to produce an image of the surface of the hybridized array.  When 

exposed to a light of appropriate wavelength the dyes used in the target probes are excited 

to a higher energy level by producing fluorescence. The florescence intensity produced 

by the dyes is captured by scanning the microarray slide. 
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In a single experiment, labeled cDNA samples derived from test and from 

reference cells are hybridized to the same microarray.  This enables the determination of 

the relative amount of transcript present in test cells as compared to reference cells by the 

type of fluorescent signal generated. The expression level of any gene can be directly 

correlated by the log ratio of the measured fluorescent intensity of test versus reference 

cells as shown in equation 1.1. 

 

E=log (Cy5/Cy3)   (1.1) 

 

Higher fluorescence intensity for one spot on the array does not necessarily mean 

that the respective gene is expressed at a higher level than genes that produce weaker 

fluorescence signals. This is because the fluorescence intensity depends on many factors, 

including the length of the probe, the amount of label incorporated into the target sample 

during reverse transcription, and the efficiency of hybridization. Due to the above 

mentioned theoretical and experimental reasons, ratios are preferred as the standard for 

comparison of gene expression (Eisen et al., 1998).  Further, competitive hybridization 

removes variation among arrays from the analysis. 

 

1.3 Affymetrix Genechip arrays 
1.3.1 Technology 

The basic idea of the Affymetrix oligonucleotide arrays (or DNA chips) is similar 

to that of spotted DNA arrays. However, the oligonucleotides of length 25 bases are not 

spotted, but are synthesized on the chip using photolithographic techniques. Agilent*, 

another company producing arrays with 65 nucleotides, employs a technology that uses 

the inkjet printing technique to create microarrays. In Affymetrix arrays, each gene is 

represented by between 10 to 20 different oligonucleotides to control for variation in 

hybridization efficiency due to factors such as GC content. Since the oligonucleotides are 

shorter, these chips are usually denser. For instance, a chip with a dimension of 1cm2 can 

easily contain 1 million oligonucleotides probes.  
 

*Agilent Technologies, Inc. Palo Alto, CA 94306, USA 
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In order to control the cross-hybridization with similar short sequences in transcripts, a 

mismatch control that has a single base change at the 13th base position, labeled mismatch 

(MM) probe, is included adjacent to each probe called perfect match (PM). Under high 

stringency conditions this control should not hybridize. RNA from cells or tissues is 

extracted and the corresponding complementary DNA (cDNA) is generated using reverse 

transcription. cDNAs are transcribed in vitro by means of the T7 RNA- Polymerase and 

are labeled with biotin further to produce complementary RNA (cRNA) from the cDNA 

template.  

     

 

Fig. 1.4. A probe set of 20 PM (Perfect match), MM (Mismatch) pairs. 

(Adapted from Lipshutz et al., 1999). Oligonucleotide probes are chosen 

based on uniqueness criteria and composition design rules. For eukaryotic 

organisms, probes are chosen typically from the 3´ end of the gene or 

transcript (nearer to the poly (A) tail) to reduce problems that may arise 

from the use of partially degraded mRNA. The use of the PM minus MM 

differences averaged across a set of probes greatly reduces the contribution 

of background and cross–hybridization and increases the quantitative 

accuracy and reproducibility of the measurements. 
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Labeled cRNA targets are hybridized to probes attached to the solid support. The 

hybridized samples are visualized after excited by the laser and the fluorescence intensity 

signal is measured for each hybridized probe. Difference between the perfect match and 

mismatch signal of the probes termed difference scores is calculated (PM – MM= 

difference score per probe set).  Significant difference scores are used to calculate an 

“average difference” that directly correlate to the mRNA abundance of the gene. 

1.3.2 Manufacturing and using oligonucleotide arrays 

The high density arrays are produced, using photolithography and combinatorial 

chemistry. Oligonucleotides are built base by base on the surface of the array.  

 
Fig. 1.5. Manufacturing of Affymetrix oligonucleotides arrays adapted 

from Lipshutz et al., (1999). (a) Light directed oligonucleotide synthesis. A 

solid support is derivatized with a covalent linker molecule terminated with 

a photolabile protecting group. Light is directed through a mask to 

deprotect and activate selected sites, and protected nucleotides couple to the 

activated sites. The process is repeated, activating different sets of sites and 

coupling different bases allowing arbitrary DNA probes to be constructed at 

each site. (b) Schematic representation of the lamp, mask and array. 
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This takes place by the covalent reaction between the 5’ hydroxyl group of the sugar of 

one nucleotide to be attached and the phosphate group of the adjacent nucleotide. Each 

nucleotide added to the oligonucletide on the glass has a protective group on its 5’ 

position to prevent the addition of more than one base during each round of synthesis. In 

each cycle, a localized flash of light “deprotects” the growing nucleotide chain just on 

that position where the next nucleotide should be added. By inserting a mask between the 

light and the chip, the localization of the light is achieved. The process is repeated until 

the probes reach their full length, usually 25 nucleotides.   Several hundred thousands of 

oligonucleotides with their mismatch controls can be rapidly synthesized on thousands of 

identical chips. 

 

1.4 Microarray Data Mining 
Microarray experiments are providing unprecedented quantities of genome-wide 

data on gene expression patterns. The real power of microarrays is in their ability to study 

the relationship between genes or samples that behave in a similar or coordinated manner. 

Starting from microarray data, the first major computational task is to cluster genes into 

biologically meaningful groups according to their pattern of expression (Quackenbush, 

2001). Those genes that share similar expression patterns could imply that they are co-

regulated, which in turn may imply that these genes are involved in a similar biological 

function.  

The results of DNA chip experiments are usually organized together in a gene 

expression matrix, with rows corresponding to genes and columns corresponding to 

conditions. Since each row is corresponding to a single gene measured over different 

conditions, generally each row is called as an expression profile and mathematically it 

represents a row or (gene) vector. There are two issues that we will be interested in while 

doing the gene expression data analysis: either we are interested in those genes that share 

similar expression profiles under a set of given conditions, or we are looking for those 

conditions that trigger the co-expression of a given group of genes. Expression data 

analysis can be loosely divided into 1) Internal analysis and 2) External analysis (Gerstein 

and Jansen, 2000). In the internal analysis, the numerical structure of the data is analyzed 
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by doing clustering. In the external analysis, the expression measurements are related to 

other biological information like protein function, structure, and regulation and so on. 

Many standard algorithms have been proposed to perform internal analysis. This section 

gives a brief overview of the standard clustering algorithms but is not meant as a review. 

For detailed information refer to the review by Moreau et al., (2002). 

1.4.1 Internal analysis 

 Internal analysis of gene expression data mainly involves normalization of the 

data, calculating a similarity measure and clustering or partitioning the data. The starting 

point of internal analysis is to normalize the data and then to define a measure of the 

similarity, for example, by means of a correlation coefficient between expression profiles.  

1.4.2 Data normalization  

Before calculating the similarity measure, it is common to center gene expression 

profiles to ensure that they have a mean equal to 0 and a standard deviation equal to 1. 

For an expression profile x having N measurements, the normalized profile X can be 

computed as a Z-score from the measured expression profile x through the relation 

 

where xavg denotes the average and σx denotes the standard deviation of values in x, and 

X (k) and x (k) are the kth components of their respective profiles. 

 

 

 

              x(k)-xavg 
X(k) =      
                    σx 

(1.2) 
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1.4.3 Correlation coefficient 

A first step in calculating the similarity measure is to define a correlation 

coefficient between two expression profiles. The correlation should be a high value for 

co-expressed genes and low for genes with unrelated expression patterns. 

The correlation coefficient takes a value between -1 and +1. A value of –1, 

representing a strong negative correlation between the two profiles, suggests that if one 

profile is expressed high the other will be expressed low. A value of +1, representing a 

strong positive correlation suggests that both profiles are going high or low 

simultaneously. A value of 0 represents no correlation between two profiles. 

On the other way, it is common to describe the similarity between two profiles in 

terms of the distance ddis between them in the high-dimensional space of gene expression 

or sample measurements. Distance ddis is given by 

                 ddis =1 – r     

where r represents the similarity measure between two profiles.  

Commonly used similarity measures include Euclidean distance, Pearson 

correlation, Jackknife correlation and rank correlation. 

1. Euclidean distance 

Euclidean distance is the simplest measure of similarity between two expression 

profiles. It calculates the straight line distance between two profiles by mapping 

them as vectors into n dimensional space called Euclidean space. The distance 

between profiles x and y in a Euclidean space is given by 

 

 

 

i=1

n 
                        

d =| x – y | =√  Σ  |xi-yi|2   
                      

(1.3) 

(1.4) 
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2. Pearson correlation coefficient 

In many cases, the Pearson correlation coefficient is used as a similarity measure. 

For two normalized expression ratio profiles Xi and Xj, each with an average of 0 

and a standard deviation of 1, the Pearson correlation coefficient rij is given by the 

dot product of two respective profiles. 

  

Given a group of G genes, we can compute the correlation coefficient matrix r, 

where each element (rij) of the matrix denotes the Pearson correlation coefficient 

between genes i and j.   

3. Jackknife Coefficient 

Jackknife coefficient is normally used in specific signal outlier cases. If the 

expression levels of two ORFs are completely unrelated at all but one condition, and 

both ORFs have a high peak or valley at the remaining conditions, then the 

correlation coefficient will be very high. An outlier of this type can occur because of 

an experimental error. For an expression profiles pair i, j, let ij denote the correlation 

of the pair i, j; also, let (l)
ij denote the correlation of the pair i, j computed with the lth 

observation deleted. For a data set with t observations, the Jackknife correlation is 

defined as Jij and given by 

 Jij = min { (1)
ij... (2)

ij, ... 
(t)

ij, ... ij} 

4. Rank correlation 

Spearman rank correlation rs is a non-parametric correlation that calculates a 

measure of the strength of the association between two variables. The first step in 

finding rs is to rank the values of each of the variables separately; ties are treated by 

(1.5) 

(1.6) 
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averaging the tied ranks. Then, rs is computed in exactly the same way as the simple 

correlation coefficient. The only difference is that the values of x and y that appear 

in the formula for rs denote the ranks of the raw data rather than the raw data 

themselves. The Spearman rank correlation coefficient is defined as   

      

where 

 

when there are no ties, the formula for rs, reduces to 

 

where d is the difference between the values of x and y corresponding to a pair of 

observations. This simple formula will provide a good approximation to rs when the 

number of ties in the ranks is small.  

Because it uses ranks, the Spearman rank correlation is much easier to compute. 

Spearman rank correlation is a measure of association that is used when the 

distribution of the data makes Pearson correlation coefficient undesirable or 

misleading. Hence this measure is the method of choice in our study. 

1.4.4 Cluster Analysis 

Cluster analysis aims at identifying subgroups or clusters of co-expressed genes in 

a collection of gene expression profiles.  The most obvious use of grouping the genes into 

clusters is to get an improved understanding of transcription regulatory networks within 

genomes. Genes with similar profiles are most likely to be subject to the same or related 

transcriptional control. Co-expression of genes can be an important observation to infer 

the biological role of the genes. For example, co-expression of a gene of unknown 

biological function within a cluster of genes with known function indicates that the 

(1.7) 

(1.8) 
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unknown functional gene might also function the same as that of the genes in the cluster 

(Bilu and Linial, 2002). The standard algorithms for grouping genes with related profiles 

include hierarchical clustering, K-means clustering and self-organizing maps (Moreau et 

al., 2002).  

1. Hierarchical clustering 

Hierarchical clustering is a widely used method for clustering gene expression data. 

Given the gene expression profile of N genes, these algorithms produce a hierarchy  

(dendogram) in which each node represents a gene to which the most similar genes 

are connected according to the correlation among them.  

  

 

 

 

 

 

  (a)       (b)     

Fig. 1.6. Bottom-up agglomerative clustering. (a) Expression profiles are 

grouped according to similarity or distance between them. 3 groups of 

clusters each corresponding expression profiles of genes {2, 4, 5}, {9,6,8} 

and {7,3} are shown. (b) The genes with smaller distance are mapped as a 

leaves in a tree, for example the distance between 4 and 5 is smaller than 

that of any other pair, so 4 and 5 are put together and others are added 

iteratively.  
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Each level of the tree represents a partition of the input data into several nested 

clusters or groups. The advantage of hierarchical clustering is that the number of 

clusters does not to be specified beforehand. There are two styles of hierarchical 

clustering algorithms to build a tree from the input set of expression profiles: (a) 

Bottom-up approach (agglomerative clustering) and (b) Top-down approach (divisive 

clustering).   

a) Bottom-up approach 

In this approach, every gene expression profile is initially assigned to a single 

cluster. The similarity or distance between any couple clusters is calculated using 

any similarity measure discussed in section (1.4.3). 

Clusters with the most similar expression profiles (or closest in distance) are merged 

first, and those with more diverse profiles are merged iteratively.  This process gives 

rise to a tree structure (Fig. 1.6), where the height of the branch is proportional to the 

pair-wise similarity (or distance) between the clusters. The root of this tree 

corresponds to the whole input of gene expression profiles and each leaf corresponds 

to a single gene expression profile. Clusters are formed by cutting the tree at a 

certain level or height. Agglomerative clustering is the most commonly used 

hierarchical clustering method. 

b) Top-down approach 

Divisive clustering is the example of top-down hierarchical clustering. It clusters in 

the opposite way to that of agglomerative clustering. The entire input set of gene 

expression profiles are first considered to be one cluster and then they are broken 

down into smaller and smaller subsets until each subset consists of only a single 

entity (gene profile). Hierarchical clustering was the first method applied to gene 

expression data by Eisen et al., (1998). Serum cluster resulting from hierarchical 

clustering of human fibroblasts dataset from Eisen et al. is shown in Fig. 1.7.   
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Fig. 1.7. Hierarchical clustering of serum cluster from Human fibroblasts 

microarray data adapted from Eisen et al., (1998). Clustered display of data 

from time course of serum stimulation of primary human fibroblasts is 

shown. Five separate clusters are indicated by colored bars and by identical 

coloring of the corresponding region of the dendrogram. These clusters 

contain multiple genes involved in (A) cholesterol biosynthesis, (B) the cell 

cycle, (C) the immediate-early response, (D) signaling and angiogenesis, 

and (E) wound healing and tissue remodeling. These clusters also contain 

named genes not involved in these processes and numerous uncharacterized 

genes. 
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2. K-means clustering 

K-means clustering is a non-hierarchical approach for forming good 

clusters. It partitions the data into a predefined number of partitions or 

clusters. K-means clustering starts with a number of randomly divided K 

initial clusters from the gene expression profiles. The cluster center is 

calculated iteratively by taking the average of all the expression profiles in 

each cluster, followed by a reassignment of the gene expression vectors to 

the cluster with the closest cluster center  (Fig. 1.8).   

 

   

Fig. 1.8. K-means clustering example: The whole dataset is divided into 

defined number of 4 clusters. The center of the each cluster is calculated 

and each gene is assigned to its nearby cluster center. 

Convergence is reached when the cluster center remains unchanged. In practice, the 

arbitrary definition of cluster number predefinition makes it necessary to use a trial 

and error approach.  

1

2

3 4
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3. Self organizing maps (SOMs) (Tamayo et al., 1999) 

Self-organizing maps (Tamayo et al., 1999) are a data visualization technique that 

reduces the dimension of data through the use of self-organizing neural networks. In 

the first step of constructing SOMs, the geometry of the nodes is chosen. A SOM 

has a set of nodes with a simple topology (e.g., two-dimensional grid) and a distance 

function d (N1, N2) on the nodes. The nodes are mapped into k-dimensional gene 

expression space (in which the ith coordinate represents the expression level in the ith 

sample). In each iteration, the weight vector associated with a node G is randomly 

selected and nodes are moved towards G.  The closest node NG is moved the most, 

whereas other nodes are moved by smaller amounts depending on their distance 

from NG in the initial geometry.  

                                      

Fig. 1.9. Principle of SOMs (Adapted from Tamayo et al., 1999). 

Initial geometry of nodes in 3 × 2 rectangular grid is indicated by solid 

lines connecting the nodes. Hypothetical trajectories of nodes as they 

migrate to fit data during successive iterations of SOM algorithm are 

shown. Data points are represented by black dots, six nodes of SOM 

by large circles, and trajectories by arrows. 
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1.4.5 External Analysis 

External analysis of gene expression data involves applying expert biological 

knowledge to interpret the clusters resulting from internal analysis. It is often done by 

explicitly integrating information like functional classification or transcriptional factor 

binding site information, directly into the data analysis to give more insight regarding the 

functional role of the genes in the clusters. 

1.4.6 Functional classification 

An immense amount of research has been reported on functional classification 

suggesting the ability of expression data to predict function, interaction or localization 

(Hughes et al., 2000; Bussemaker et al., 2001; Jansen et al., 2001; Brown et al., 2000; 

Altman and Raychaudhuri, 2001; Gerstein and Jansen, 2000). Similar expression profiles 

of genes might indicate similar functional and cellular roles.  

There are a number of schemes for classifying protein function. The functional 

annotation information first appeared in databases of gene products such as SWISS-

PROT or PIR.  In these databases, protein entries were accompanied by careful human 

generated annotations of their empirically determined or predicted role (Bairoch and 

Apweiler, 1999; Barker et al., 1999). Many efforts have been made to classify such 

databases on the basis of their annotation (Tamames et al., 1998; Eisenhaber and Bork, 

1999; Licciulli et al., 1999). Most of these classification schemes concentrate on a single 

organism, for example MIPS for S. cerevisiae (Mewes et al., 2002), GenProtEC for E. 

coli (Serres et al., 2004), FlyBase for Drosophila melanogaster (Drysdale et al., 2005) 

and EGAD for human ESTs (www.tigr.org/tdb/egad/egad.shtml).   

There are other schemes available in the literature that classify a subsets of 

functions across many organisms, for example, ENZYME for enzyme function (Bairoch, 

2000), Ecocyc for encyclopedia of Escherichia coli K12 genes and metabolism (Keseler 

et al., 2005), and KEGG for pathways (Kanehisa and Goto, 2000).  The Gene Ontology 

project (GeneOntologyConsortium, 2000) is the new effort that focuses on merging the 
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functional classifications for different organisms into one common source. The GO 

project produces a controlled vocabulary that can be applied to all organisms, even 

though knowledge of gene and protein roles in cells are accumulating and changing. 

1.4.7 Transcriptional factor binding site information 

In any organism, the gene expression is regulated by complex mechanisms that 

involve many transcription factors. These controls are much more complex in eukaryotes 

than in prokaryotes. Transcription factors bind to particular DNA sequences, called 

transcription factor binding sites. These sites are believed to occur within several hundred 

base pairs upstream of the respective ORFs, but may even bind to sites greater than 1Mb 

downstream of its target gene (Nobrega et al., 2003). The transcription factor binding 

sites are assumed to be of 5 – 25 base pairs long. The regulation of gene expression in 

eukaryotes often occurs through the coordinated action of multiple transcription factors. 

Combinatorial regulation of transcription has several advantages, including the control of 

gene expression in response to a variety of signals from the environment and the use of a 

limited number of regulators whose activities are modulated by a diverse set of 

conditions. Many studies showed combinatorial transcriptional control in several 

organisms (Kel et al., 1995; Quandt et al., 1996; Yuh et al., 1998; Wang et al., 1999; 

Halfon et al., 2000; Fickett and Wasserman, 2000). It is commonly believed that, those 

genes that share similar expression profiles probably have the same upstream element. 

This fact has been exploited by Roth et al., (1998), J. van Helden et al., (1998), Brazma et 

al., (1998) and Tavazoie et al., (1999) to search for new transcriptional factor binding site 

sequences. 

1.5 Drawbacks of standard clustering methods 
1.5.1 Dataset 

In any typical array experiment, many genes of an organism are assayed under 

multiple conditions. These conditions may be of two types 



          Introduction 

                                                                                                                                    24 

 1) Different time points during a biological process, such as the yeast cell cycle (Cho et 

al., 1998; Spellman et al., 1998), yeast sporulation (Chu et al., 1998) or Drosophila 

melanogaster development (White et al., 1999). The data produced from these types of 

microarray experiments are called ‘time series’ data. 

 2) There can be different tissue samples that are independent measures of gene 

expression with some common phenotype, such as tissue type or malignancy. The data 

produced from these experiments are called ‘independent’ condition data.  

1.5.2 Drawbacks of clustering methods on time series data 

A major drawback of the standard clustering methods is that they ignore many 

additional relationships inherent to time series data, for example the time delayed 

relationship between a transcription factor and the gene that is activated by transcription 

factor. For example, in yeast, the expression profiles of Arc35 and Arp2/3 genes show a 

time-delayed response with the expression of Arc35 being 20 minutes delayed compared 

to Arp3 that corresponds to one time point in the yeast cell cycle time course. Arp2 and 

Arp3 are highly conserved actin-related proteins, and are localized to the actin 

cytoskeleton. This complex is involved in endocytosis and actin cytoskeleton 

organization, and binds actin and profilin. Arc35 is one of the subunits of the Arp2/3 

complex. Arc35 has been implicated as a regulator of calmodulin localization. 

Calmodulin is a calcium sensor in yeast localization. The results from Schaerer-Brodbeck 

and Reizeman, (2000) suggest that the calmodulin-dependent function of the Arp2/3 

complex is mediated by the Arc35 subunit, although other subunits could be required as 

well. Arc35 works through two genetically separatable calmodulin functions to regulate 

the actin and tubulin cytoskeletons. 

The standard clustering methods focus on global correlation over whole time 

series, by identifying clusters of genes whose expression changes simultaneously. 

However, they are prone to miss the local time-delayed relationships. Further, the 

standard similarity measures do not depend on the ordering of the measurements, i.e., 

they do not exploit this additional information. 
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1.5.3 Drawbacks of clustering methods on independent condition data 

One of the important drawbacks of standard clustering methods on independent 

condition data is, clustering according to all experimental conditions. However, few 

conditions could trigger important processes in an organism. For example, in clinical 

studies gene expression measurements are often done on tissues taken from patients with 

a medical condition.  Using assays, biologists have identified molecular fingerprints that 

can help in the classification and diagnosis of the patient status and guide treatment 

protocols (Alizadeh et al., 2000; Ramaswamy et al., 2001). In these studies, the focus is 

primarily on identifying profiles of expression over a subset of the genes that can be 

associated with clinical conditions and treatment outcomes, where the set of samples is 

equal in all stage of the disease. Application of standard clustering algorithms in a clinical 

dataset results in clusters that incorporate all clinical conditions. Clustering data over 

diverse conditions often miss those subset conditions that affect a subset of genes of 

clinical interest.  

In order to overcome the problems stated above, sophisticated algorithms that 

increase the biological knowledge of gene expression data are needed.  
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Chapter 2  

Predicting time delayed and local correlations 
 
2.1 Method using dynamic programming 
 

The first method we developed to address the drawbacks mentioned in the section 

1.5.2 was a method using dynamic programming algorithm. A typical gene expression 

time course data consists of gene expression measurements of many genes under many 

time points.  

Consider the data from the microarray time course experiments as a gene 

expression matrix A. The matrix element aij denotes the normalized expression change of 

a gene i ∈ m, at time point j ∈ n, where m represents number of genes taken for analysis 

and n represents the number of time points.  

 

 

 

 

A  =       

 

By using vector notation, the expression matrix X can be viewed as a collection of row 

vectors. 
 

                 r1 

                    r2 

                 . 

                 A    =       . 

                       . 

                 rm 

 

where any row vector ri = (ai1, ai2, …ain) represents the gene expression profile for gene  

a11 a12     . a1n 

a21 a22     . a2n 

  .   .    . 

am1 am2     . amn 
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i ∈ m. Thus, gene expression profiles can be viewed as m vectors of n dimensions. Here, 

m represents the number of genes and n represents the total number of time points. 

Given the vector notation for gene expression profiles, a sub vector can be 

considered as a locally similar segment in n dimensional space between two row vectors.  

Optimal sub vector represents the best locally matching segment between two row 

vectors.  

 

2.1.1 Method 
In order to find the optimal sub vector between two expression profiles, the 

modified version of the dynamic programming algorithm, more specifically the Smith-

Waterman algorithm (Smith and Waterman, 1981) without gaps for locally similar 

matches was adopted in our approach. The Smith-Waterman algorithm implements a 

dynamic programming technique that takes alignments of any length, at any location, in 

any sequence, and determines whether an optimal alignment can be found.  In order to get 

a score for an optimal alignment, the following simple scoring scheme was used. 

 

Si, j = axi * ayj ,                                                                    

 

where x, y ∈ m for any i, j ∈ n. 

 

2.1.2 Dynamic programming algorithm 
The dynamic programming algorithm takes three steps to compute an optimal 

alignment, 

1. Initialization  

2. Scoring  

3. Trace back  

1. Initialization step 

In the first step, a matrix with i +1 columns and j+ 1 rows is created, where  

(2.1) 
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i, j ∈ T, corresponds to the length of two profiles (row vectors). The first row and 

first column of the matrix is filled initially with 0.  

Consider two profiles a1 = (1, 0.5, 2, -1, 0.6) and a2 = (0.9, 0.6, 1.5, -1, 0.7) each 

of length 5. The application of dynamic programming algorithm steps on this data 

would produce results like shown below. 

 

Table 2.1. Dynamic programming initialization step. 

 

2. Scoring step 

In the second step, the matrix is filled by calculating the positive score Pi, j defined 

by the equations 2.2 below.  

Pi, j  = Maximum  {[Pi-1, j-1 + Si, j], 0}      

Here, Si, j represents the scoring scheme defined in equation 2.1. The scoring step 

for the two profiles from Table 2.1 is explained in Table 2.2. Starting from the 

upper left hand corner the matrix is filled for each position in the matrix until all 

the cells are filled. 

 

 

  1 0.5 2 -1 0.6 

 0 0 0 0 0 0 

0.9 0      

0.6 0      

1.5 0      

-1 0      

0.7 0      

(2.2) 
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Table 2.2. Dynamic programming positive scoring steps.  The value at 

each cell is calculated as the score Pi, j = Maximum {[Si, j + P(i-1, j-1)], 0}.   

 

 

 

 

 

 

 

3. Trace back step 

After the matrix fill step, the trace back step determines the actual segment(s) that 

result in the maximum score. Note that using the scoring scheme defined in 

equation 2.1, it is likely that there are multiple maximal segments. The one with 

the maximum score of all is considered as the optimal alignment and hence could 

represent the optimal sub vector. The trace back step begins in the x, y position of 

the matrix, i.e. the position that leads to the maximal score and traces back until 

the starting point.  

 

 

 

 

 

 

  

 

1 0.5 2 -1 0.6 

 0 0 0 0 0 0 

0.9 0 0+0.9 0+0.45 0+1.8 0 0+0.54 

0.6 0 0+0.6 0.9+0.3 

=1.2 

   

1.5 0 0+1.5     

-1 0 0     

0.7 0 0+0.7     
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Table 2.3. Dynamic programming trace back step.  From the example the 

maximum value occurs at diagonal element P5, 5 indicating a global correlation 

between the two profiles.   

 

 

 

 

 

 

 

 

For two simple profiles with time shifted local correlations a1 = (1, 2, 3, 0, -1) and  

a2 = (-2, -1, 1, 2, 3) each of length 5. The application of dynamic programming algorithm 

steps on this data would produce results like shown below in Table 2.4. 

 

Table 2.4. Dynamic programming steps for the time-delayed profiles.  From the 

example the maximum value occurs not at the diagonal element indicating a local 

time delayed correlation between the two profiles.   

 

 

 

 

 

 
    

 

 

  1 0.5 2 -1 0.6 

 0 0 0 0 0 0 

0.9 0 0.9 0.45 1.8 0 0.54 

0.6 0 0.6 1.2 0.75 0.15 0.36 

1.5 0 1.5 1.35 4.2 0 2.4 

-1 0 0  1 0 5.2 0 

0.7 0 0.7 0.35 2.4 0 5.62 

  1 2 3 0 -1 

 0 0 0 0 0 0 

-2 0 0 0 0 0 0 

-1 0 0 0 0 0 1 

1 0 1 2 3 4 5 

2 0 2 5 8 0 0 

3 0 3 8 14 0 0 
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Fig. 2.1. Pseudo code of the method using dynamic programming 

 

2.1.3 Application of the method on the real datasets 
In order to test the method, DNA microarray experiments from the two different 

time series array experiments summarized in Table 2.5 was used. The method was 

applied on these datasets, and the statistical significance of the output subvectors were 

tested by calculating the P value corresponding to alignment score. 

 
2.1.4 Datasets 
 

1) The dataset, that measured the gene expression change during yeast cell cycle 

from Spellman et al., (1998), was considered for analysis. In this experiment, the cell 

cycle of yeast cells was arrested by addition of the α factor. After 120 minutes the α 

factor was removed and the gene expression with the synchronized cell culture was 

arrayed every 7 minutes until 140 minutes.  

 2) The dataset from Gasch et al., (2000), that measured the gene expression change 

in yeast during various heat shock conditions was also considered for analysis. In this 

experiment yeast cells grown at various temperatures were given heat shock by shifting 

Algorithm: Method using dynamic programming 
 
Input: Gene expression time course data matrix A with G genes measured over T 

time points. 

Output: List of optimal sub vectors with their corresponding alignment scores 

consists of both direct and time delayed correlations. 

Init: Scan the input expression matrix and store number of time-points and row 

vectors. 

Iteration: 

Select any two row vectors ri = (ai1, ai2, …aiT) and rj = (aj1, aj2, …ajT), i, j ∈ G. 

Start dynamic programming initialization step 

  Calculate the positive score and negative score for each alignment 

Check for the maximum score and thus the optimal sub vector alignment  

Perform the trace back step.
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the temperature from 25° C to 37° C, heat shock from various temperatures to 37° C and 

temperature shifts from 37° C to 25° C. Gene expression time course experiments were 

conducted for each experiment at different time points.   

 

                          Table 2.5. Dataset taken for analysis 

 

2.1.5 Statistical significance 
As in sequence and structural alignments (Altschul et al., 1997; Pearson, 1998; 

Gerstein and Levitt, 1998) the statistical significance of optimal subvectors were given by 

P values from the distribution of alignment scores D. In order to estimate the P values for 

a given alignment score, random expression profiles were generated by shuffling the 

normalized expression values from gene expression matrix A at different time points, for 

example interchanging the expression level at time point 4 to time point 7, a4 and a7. The 

resulting randomly shuffled profiles were still normalized values with an average of 0 and 

a standard deviation of 1. The method was applied on these random data, and the 

distribution of the alignment scores d, predicted from optimal subvectors was calculated. 

This distribution was meant to be that of true negatives (true random subvectors). In 

sequence analysis, a random distribution of similarity scores is used to find a significance 

level associated with a computed similarity score. By integrating true random subvector 

distribution with that of original data distribution, the conventional P-value P (d >D) was 

calculated. This probability is defined as the probability of obtaining an alignment score d 

larger than D from the random profiles. The smaller the P value is, the greater is the 

significance of the alignment. The distribution of the match scores in comparisons to 

actual observed P (D) values for each of the datasets mentioned in the previous section 

are shown in Figures 2.2a and 2.2b. 

Experiment Name Time points No of genes taken for analysis 

Cell Cycle Alpha Arrest 18 6075 

Heat shock 29 6153 
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Fig. 2.2a. Relationship between match score D and P-value for the yeast 

cell cycle dataset and a random dataset.  

 

Fig. 2.2b. Relationship between match score D and P-value for the yeast 

heat shock dataset and a random dataset. 
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The number of significant optimal subvectors with rounded down probability (P 

value) ≈ 0* with alignment scores are summarized in Table 2.6.  In the cell cycle dataset, 

10,117 subvectors were predicted to be significant with alignment score of greater than 

15.8. In the heat shock dataset, 254,729 subvectors were predicted to be significant with 

an alignment score greater than 25.2. 

 

Table 2.6. Significant subvectors predicted from the algorithm with 

their corresponding alignment scores. 

 

 

 

 

 

2.1.6 The MIPS functional catalog 
 

In depth analysis is usually done on genes and gene products in order to discover, 

confirm or clarify their function. The concept of ‘function’ is itself rather vague (Gerstein 

and Jansen, 2000). Function may represent the biochemical mechanism; at other times, 

‘function’ means the involvement of the gene product in metabolic pathways or cellular 

processes. The function of a gene product is its raison d’être (Rison et al., 2000) 

understanding it is key to understanding how a limited number of gene products can 

generate life, from simple unicellular organisms to the complex multi-cellular vertebrates. 

Ontology systems that integrate various conceptualizations of function need to be 

established. Ontology systems need to facilitate cross query and annotation transfer as 

well as a variety of projects that entail interoperation of the ever-increasing biological 

databases (Lan et al., 2002).  
 

 
* smaller P value might be due to empirical data distribution 

Experiment Name Number of subvectors 

predicted with 

significant P value 

Alignment score 

Cell Cycle Alpha Arrest 10,117 15.8 

Heat shock 254,729 25.2 
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The Munich Information Center for Protein Sequences (MIPS) developed a 

hierarchical representation of protein function for Saccharomyces cerevisiae, the first 

eukaryotic genome sequenced (Goffeau et al., 1996).  Protein functions have been 

assigned by integrating the available information from significant homologues to 

functionally characterized proteins as well as data from the literature derived from 

biochemical, genetic, cellular and phenotypic experiments. MIPS Comprehensive Yeast 

Genome Database (CYGD) presents comprehensive information about all protein coding 

regions, as well as RNA-genes.  Gene products are assigned to more than one functional 

category to account for multi functional proteins having more than one function. 

Biomipsmax funcat version 06.12.2001 had 29 main categories, each containing 3 to 5 

levels of subcategories. In total, the catalog had more than 400 functional categories.   

 

Fig. 2.3. An excerpt of MIPS functional catalog 

Category code Category name 
01 METABOLISM 
01.01 
01.01.01 

Amino acid metabolism 
Amino acid biosynthesis 

01.05.01 C-compound and carbohydrate utilization 
01.05.04 Regulation of C-compound and carbohydrate utilization 
02 ENERGY 
02.01 Glycolysis and gluconeogenesis 
02.07  
02.13 

Pentose-phosphate pathway 
Respiration 

02.19 Metabolism of energy reserves (glycogen, trehalose) 
03 CELL CYCLE AND DNA PROCESSING 
03.01 
03.01.03  
03.01.05  
03.03 
03.03.01.01  
03.03.02 

DNA Processing 
DNA synthesis and replication 
DNA recombination and DNA repair 
Cell cycle 
Mitotic cell cycle 
Meiosis  

04 TRANSCRIPTION 
04.01.04 rRNA processing  
04.03.03 tRNA processing 
04.05.01.04 Transcriptional control 
04.05.05 mRNA processing (5’ – 3’- end processing, mRNA degradation) 
04.05.05.01 
04.05.05.09  
04.05.99 

Splicing 
mRNA editing 
Other mRNA-transcription activities 

04.07 RNA transport 
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In the version used for analysis, 3932 genes out of 6331 yeast genes had at least 

one function assigned, the remaining genes were assigned to the category unclassified 

proteins.  An excerpt of the MIPS functional catalog is shown in Fig. 2.3. The Updated 

version of the functional catalog is currently available for downloading at the MIPS ftp 

site (ftp://ftpmips.gsf.de/yeast/catalogues/funcat/).  

2.1.7 Network Topology and Clustering 

The resulting subvectors from the algorithm with significant scores from each 

dataset were clustered using hierarchical clustering algorithm from Pajek (Batagelj and 

Mrvar, 2003). Pajek* is a program package for large network analysis. The resulting 

clusters were mapped to more than 400 yeast MIPS functional categories described in the 

previous section.   
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Fig. 2.4a. Functional distribution of selected clusters from cell cycle data 

set, showing Cluster 3 and Cluster 8 having significant number of genes 

from the functional categories ‘Cell cycle and DNA processing’ and 

‘Transcription’ respectively. 

 

 
 

* http://vlado.fmf.uni-lj.si/pub/networks/pajek/  
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Fig. 2.4a depicts the functional distribution of all genes from selected clusters.  Some of 

the resulting clusters were supplemented with genes of similar functions, although each 

cluster had a significant number of proteins from the ‘Unclassified protein’ functional 

category.  

 

Cell cycle specific cluster 3 

Metabolsim

Cell cycle and DNA 
processing

Transcription

Cell fate

Unclassified proteins

 
 

Fig. 2.4b. Functional distribution of genes in cluster 3 from cell cycle 

dataset. 

 

In particular, cluster 3 had 17 genes out of 71 genes from the functional category, ‘Cell 

cycle and DNA processing’ (P value 3.5. 10-4)* (Fig. 2.4b) and cluster 8 had 12 genes out 

of 41 from the functional category ‘Transcription’  (P value (1.9. 10-3)) 

In the heat shock dataset, clusters were enriched with genes of similar functional 

category (Fig. 2.5a). In particular cluster 1 had 63 genes out of 73 from the functional 

category ‘protein synthesis’ (P value 3.9. 10-54)(Fig. 2.5b).  The clusters from these two 

datasets with significant P values are summarized in Table 2.7. 

 
 

 

 

 

 

 

 

 

 

*P values were calculated using binomial distribution using hypergeometric approximation (Section 3.2.3) 
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Fig. 2.5a. Functional distribution of selected clusters from the heat shock 

data set. Showing Cluster 1 having significant number of genes from the 

functional category ‘Protein synthesis’. 

 

Fig. 2.5b. Functional distribution of genes in cluster 1 from the heat shock 

data set. 
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Table 2.7. Clusters with significant P values 

 

 

2.1.8 Limitations 
 Although this method was designed to predict the time-delayed correlations 

(Section 2.2.10), it has the following limitation. 

1) Local vs. global normalization 

2) Time taken for analysis 

 

1) Local vs. global normalization 

Given the “raw” expression data matrix, it is usually common to perform the 

normalization step (Section 1.4.2) before proceeding with the correlation coefficient. 

Usually this normalization procedure is done globally by considering all the time 

points in case of time series data.  But doing this type of global normalization is 

challenging while considering the locally similar regions. This is because different 

time points may affect the expression levels at a different scale. For example, consider 

the expression level corresponding to two time points t1 and t2. The first time point t1 

may induce or reduce the gene expression of a set of genes g1 by a very large fold 

change for example a 50-fold increase or decrease (>> 1). While another time point 

may affect mainly the same set genes g1, but shifts their expression level by a much 

smaller amount for example a 2-fold increase or decrease. Although the two time 

points affect the similar set of genes and are thus related, this relation is not explicit 

while observing the fold change in expression data.  So in these cases performing a 

global normalization by considering both the t1 and t2 gives us normalized expression 

values. 

Dataset Cluster 
No. 

Number 
of ORFs 
(n) 

MIPS 
Category 
No. of 
ORFs 
(M) 

MIPS 
category 
code 

MIPS Category name ORFs 
within 
Category 
(k) 

P- value 

Cell cycle 3 71 628 03 Cell cycle and DNA processing 17 3.5. 10-4 
Cell cycle 8 41 771 04 Transcription 12 1.9. 10-3 
Heat 
shock 

1 73 359 05 Protein synthesis 63 3.9. 10-54 
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Consider another two time points t3 and t4 that affects a different set of genes g2, 

but shifts their expression level by a very large factor (more than 10 folds) (>> 1). By 

considering all 4 time points t1, t2, t3 and t4 together and performing a global 

normalization results in normalizing the data matrix according to all 4 time points. But, 

they are basically affecting different sets of genes g1 and g2 locally.  

To illustrate the effect of global normalization that affects the locally similar 

regions, consider the two profiles shown in Fig. 2.7 that are locally similar while 

measuring the gene expression for time points 1 to 5 (Pearson correlation of 0.68). But 

they don’t have similar relationship when measuring the gene expression for time 

points 1 to 15 (Pearson correlation 0.22). After the global normalization, the Pearson 

correlation corresponding to the locally similar region of time points 1 to 5 reduces to 

0.49 illustrated in Fig. 2.8. 

Since the data matrix supplied, as input to the dynamic programming is a globally 

normalized one, looking for locally similar regions in this normalized data set might 

not reveal the interesting local time shifted correlations. This is one of the major 

limitations of this method.  

-60

-40

-20

0

20

40

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

            
Fig. 2.7. Two example profiles before global normalization. The gene 

expression values from time point 1 to time point 5 have a Pearson 

correlation of 0.68. 



                 Predicting time delayed and local correlations  

                                                                                                                                    41 

        
-2

-1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 
Fig. 2.8. Two example profiles after global normalization. Pearson 

correlation from time point 1 to time point 5 is 0.49. 

 

2)  Time taken for analysis 

Since optimal sub vectors are predicted by using dynamic programming 

optimization, another main disadvantage comes from the time taken for computation 

using dynamic programming. The time taken for calculation is in the order of O (n2) 

both in time and space, which is often too large for practical purposes, especially when 

it comes to large expression matrices of many genes measured over many time points.  

In order to overcome the local similarity limitation of the method using dynamic 

programming, we extended it to another method called CLARITY that surmounts the 

problem of local similarity. 

 

2.2 CLARITY 
2.2.1 Method   

Recall that we are looking for local relationships (similarities) between expression 

profiles and, furthermore, that we seek to incorporate the possibility of time-shifts. Thus, 

we consider two genes respective expression profiles X and Y, represented by sequences 

(x1 ...xn) and (y1...yn), as similar if there are similar subsequences X [i, j] and Y [k, l], 

where X [i, j] = def (xi, xi+1...xj) for 1 ≤ i ≤ j ≤ n. In analogy to sequence analysis, one can 

consider a tuple (X [i, j], Y [k, l]) as an (local) “alignment” (of length j – i + 1 = l – k + 1) 

(Section 2.2.2).  
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2.2.2 Exact Similarity Computation  
The simplest approach for discovering local, time-shifted relationships between 

two profiles is to enumerate all possible alignments in a systematic way. Thus,  

the similarity SIM (X, Y) between two profiles X and Y of length n is computed as  

 

SIM (X, Y) = def       max     SIMk (X, Y),     (2.3)   

         kmin ≤ k≤ n  

 

where SIMk (X, Y) is given by   

 

max     S(X [i, i + k -1], Y [j, j + k - 1])      (2.4)  

       1≤i, j≤n-k+1  

 

for an underlying basic similarity measure S. Our particular choice of S will be discussed 

and motivated below.  

As can be seen, SIMk (X, Y) corresponds to the similarity of the best alignment of 

length k. In deriving the similarity between two profiles from very short local alignments 

is questionable and usually not statistically significant. Therefore, the parameter kmin 

specifies a lower bound to the length of an alignment.  

 

2.2.3 Approximate Similarity Computation  
A straightforward implementation of (2.3) leads to a “sliding window” algorithm 

(i.e., SIMk (X, Y) is computed by sliding two windows of size k over X and Y) whose time 

complexity is O (n3). Note that the complexity is reduced to O (n2) if no time-shifts are 

allowed (and, hence, i = j in (2.4)). Both cases are completely acceptable for small n. For 

longer expression profiles, however, the exact computation of SIM (X, Y) might become 

too expensive. In that case, we suggest the use of an approximate algorithm that is 

inspired by the well-known BLAST (Altschul et al., 1990) method for sequence 

alignment. The idea of this approach is to find an initial “hit” in the form of a short 

optimal alignment. Then, in a second step, this alignment is extended in both directions. 

More precisely, our heuristic approach works as follows:  
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1. Hit: SIMk (X, Y) is computed for k = kmin. Suppose that this similarity degree is 

obtained for the “best match” X[ax, bx],Y[ay, by], i.e. 

SIMk (X, Y) = S (X [ax, bx], Y [ay, by]).  

If the “best match” is not unique, the second step is carried out for all other 

candidates as well. 

 

2. Extend: The similarity degrees  

S (X [ax -u, bx + v], Y [ay - u, by + v])  

are derived for all  

0 ≤ u ≤ min {d, ax - 1, ay - 1}  

0 ≤ v ≤ min {d, n - bx, n - by}  

and the best match (X [ax – u*, bx + v*],Y [ay – u*,by +  v*]) is determined.   

In the case of ties, longer matches are preferred to shorter ones.  

If there are still several optimal matches, one is chosen at random.  

 

3. Iterate: The optimal local alignment is updated by setting  

ax    ax – u*, bx       bx + v*, ay          ay – u*, by   by +v*,  

and the second step is repeated. This process is iterated until the optimal  

alignment does not change (u* = v* = 0).  

The parameter d in the second step is a pre-specified constant that 

determines the size of the neighborhood to be searched and, hence, the complexity 

of this step, which is obviously O (d2). Note that the “myopic” strategy obtained 

for d =1 carries a high risk of getting caught in local maxima. On the other hand, 

experience has shown that large values for d are usually not necessary for this 

type of “look-ahead search”. Most often, sufficiently good approximations or 

even exact results are already obtained for d =2.  

 

2.2.4 Basic Similarity Measure  
So far, the algorithm outlined above is completely independent of the basic 

similarity measure S. As noted before, measures commonly used in gene expression 

analysis include the Euclidean distance and the Pearson correlation. Such numerical 
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measures are easy to compute but suffer from some disadvantages. Particularly, they are 

quite sensitive toward outliers and measurement errors, a point of critical importance in 

connection with gene expression data. Moreover, in the context of expression analysis, 

we prefer a concept of similarity that is based on the qualitative behavior or, say, the 

shape of the profiles to one that is very sensitive to the precise values of fold changes.  

Our similarity measure S is therefore defined by the Spearman rank correlation 

(SRC). The SRC between two profiles X and Y is given by  

 

       6              n 
SRC (X, Y) = 1 -          Σ  (rX (xi) – rY (yi)) 2 

n (n2-1)      i =1 
 

where rX (xi) is the rank of xi in the profile (x1 ... nn): rX (xi) = k ⇔ |{ j | xj < xi}| = k - 

1. Actually, we used an extended version of the SRC (Press et al., 2002) which takes the 

possibility of ties, i.e. xi = xj for i ≠ j, into account. The SRC satisfies -1 ≤ SRC (X, Y) = 1 

for all X, Y.  

To exemplify the aforementioned difference between the Pearson correlation and 

SRC, Fig. 2.9, shows two profiles (of length 7), which are highly correlated according to 

the latter but almost uncorrelated according to the former. This is mainly caused by the 

comparatively large value of the third fold change in one of the sequences.  

As opposed to this, the SRC correctly reflects the fact that both profiles have a 

rather similar shape. In fact, even though SRC ignores some information, it seems that it 

retains only the relevant information, making it much more robust than the Pearson 

correlation. 

 

(2.5) 
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Fig. 2.9. The SRC for the two profiles is 0.93 whereas the Pearson 

correlation is 0.3 

             
Fig. 2.10. The SRC for the two profiles is 0.93 whereas the Pearson 

correlation is 0.3 
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In this connection, it should also be noted that SRC retains more information than a 

frequently used qualitative measure that compares the sign of the first-order differences 

(i.e. the “ups” and “downs”):  

 

                                           1       n -1 

  SRC (X, Y) = 1  -       Σ  sgn ((xi+1 - xi) – (yi+1 - yi)),                                 
       n      i =1 

 

Where sgn (z) is the sign of z. For example, this measure suggests a similarity of 

only 0.3 for the two profiles in Fig. 2.10, even though both profiles do again have a rather 

similar shape. Fig. 2.11 shows an example obtained from the mitotic cell cycle time 

course experiment (Cho et al., 1998 see below) of two expression profiles where SRC 

yields a similarity of 0.8, whereas Pearson correlation gives only 0.4.  
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YPL241C Cin2 YPL256C Cln2

 

Fig. 2.11. The SRC for this pair of genes is 0.8 over the first 15 time points, 

whereas the global Pearson correlation is only 0.4. For each of the time 

points, the expression ratio is plotted. The genes Cin2 and Cln2 were 

detected as co-induced in a Cdc28-13 mutant during late G1 phase of the 

cell cycle (Cho et al., 1998; Jiang et al., 2004). 

 

(2.6) 
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The overall similarity of two profiles X and Y, as defined by (2.3), is the maximum 

of similarity degrees for sequences of different lengths k. In order to guarantee the 

comparability of the similarities SIMk (X, Y), kmin ≤ k ≤ n, these similarities have been 

defined by their corresponding P -value rather than by the SRC directly. Thus, if S* 

denotes the optimal SRC that has been found for sequences of length k, then SIMk is 

given by the probability to obtain a correlation of at most S* under the null hypothesis of 

completely unrelated profiles (of length n). Note that the statistical distribution of this 

measure is an extreme value distribution that depends on the parameters k and n. As there 

is apparently no simple analytical expression for this distribution, we derived 

approximations from simulated data. Fig. 2.12 shows the result of such a simulation for 

profiles with 17 time points.  

In order to decide whether or not two profiles X, Y are “significantly similar”, we 

also need the P -value of the overall similarity SIM (X, Y). Again, we derived 

approximations of these P -values from simulated distributions.  

        
Fig. 2.12. The empirical distribution functions of the (maximal) SRC 

obtained from simulations for n = 17 and k = 15 (solid line in green) 
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2.2.5 Data and clustering 
In order to test CLARITY on a real dataset, a dataset from a mitotic cell cycle 

time course experiment in the yeast Saccharomyces cerevisiae that included 6331 open 

reading frames and has been measured over 17 time points by Cho et al., (1998) was 

used. The yeast cell cultures were synchronized using so-called Cdc28 gene arrest and 

sampled at uniform intervals covering nearly two complete cycles of cell cycle. The 

experiment were done using Affymetrix oligonucleotide array. The data is scaled to 

account for the experimental differences between arrays used. As a first step some data 

points that appeared to be aberrant were eliminated. The dataset was then converted to 

ratio style measurements by dividing each measurement by the average value of the 

measurements for that gene as described in Spellman et al., (1998). 6145 genes were 

taken for further analysis. 
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Fig. 2.13. An example for a time-shifted relationship that was also 

identified by Yu et al., (2003). For each of the time points, the expression 

ratio is plotted. The profiles are shifted one time point, starting from time 

point 2. These genes are found in the same cluster 19 if one uses kmin = 15. 

If one sets kmin = 17, they are found in different clusters. 
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We first applied CLARITY with kmin = 15 in order to calculate the pairwise 

similarity matrix between the expression profiles of the individual genes. i.e., time-shifts 

of maximally two time-points is allowed as longer shifts are hard to explain from a 

biological point of view. Additionally, it is difficult to obtain significant degrees of 

similarity if much shorter sub-profiles are used as can be seen from the simulations 

described above. 

Fig. 2.13 shows an example of a time-shifted relationship among genes that was 

described by Yu et al., (2003) and that was also successfully identified by our approach. 

Clusters of genes were derived from the similarity matrix thus obtained using 

CLUTO, a program package for graph based clustering (Karypis, 2002). CLUTO first 

constructs a graph where each gene is represented by a node and edges between nodes are 

labeled with corresponding similarity degrees. Dense regions in this graph correspond to 

sets of genes that are highly co-expressed and thus form good candidates for clusters.  
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Fig. 2.14. The profiles of a generated cluster that are highly related to the 

cell cycle. For each of the time points, the ranks of the expression value are 

plotted to clarify why the method assigned the genes to the same cluster.  
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For computational efficiency and in order to avoid bias of the results due to 

insignificant relationships between genes, we simplified the graph in a preprocessing 

step: The edge between two nodes is deleted whenever the corresponding similarity 

degree falls below a similarity threshold. In order to derive a clustering structure, CLUTO 

partitions the graph obtained by means of optimal (minimal) cuts. This is repeated in a 

recursive manner until a pre-specified number of clusters have been constructed. As can 

be seen, two critical parameters have to be specified for the clustering approach, namely 

the number of clusters and the similarity threshold. Fortunately, we found that in my case 

the clustering results are quite robust toward variations of the above parameters. More 

specifically, computations with various similarity thresholds showed that thresholds 

above 0.7 yield almost identical clustering structures. Likewise, we found that the 

clustering structure did not change appreciably if the number of clusters was raised above 

25. We therefore decided to use this number to obtain a maximal number of 

“independent” sets of genes. Additionally, the generated clusters appear to be quite 

homogeneous and show a high internal similarity. See Fig. 2.14 for an example. 

 

2.2.6 Functional evaluation 
In several cases it has been shown that genes with similar function can be co-

expressed (Eisen et al., 1998). To elucidate the biological significance of the clusters 

generated by our procedure, the clusters produced from CLUTO were mapped to the 400 

different MIPS functional categories (section 2.1.6), and one or several predominant 

categories were assigned to each cluster. Moreover, in order to prove that the occurrence 

of a predominant category is statistically significant, we derived corresponding P-values 

for each cluster. The probability of observing at least m ORFs from a functional category 

within a cluster of size n is given by 

 

                      f          N   - f 
                 m-1      i           n  -i 

P = 1 - ∑                        
 i = 0             N 

                 n 
 

(2.7) 
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where f is the total number of genes within a functional category and N  is the total 

number of genes within the genome (6331). Since this P- value obviously ignores the 

problem of multiple-hypothesis testing, it should be therefore interpreted with caution. 

For reasons of numerical stability, we computed the above value using the binomial 

distribution as an approximation of the hypergeometric distribution. 

 

2.2.7 Results 
Clusters with P-values less than 10-4 and average similarity among cluster members 

smaller than 0.5 were not reported in this thesis. We found several clusters to be 

significantly enriched with genes of similar function. The results were summarized in 

Table 2.8. 

 In general, the clusters can be divided into those that do not follow the periodicity 

of the cell cycle (clusters 0, 5, 6, 15, 16 and 21 see Fig. 2.15 (a), (b), (c), (d), (e)) and 

those that are cell cycle related (clusters 3, 4, 8; See Fig. 2.16 (a), (b) (c)).  

 

2.2.8 Non-periodic clusters 
Among the clusters with non-periodically expressed genes, the most significant 

functional grouping expressed genes, the most significant grouping occurs in cluster 0. 

This cluster consists of 43 genes, 33 of them being associated with ribosome biogenesis 

(P- value 5.0. 10-34).  

Cluster 16 also contains significant number of protein synthesis related genes (46 

out of 168, P value 10-18) including 29 ribosomal genes (P-value 1.2. 10-20). In addition, 

this cluster contains 14 genes related to amino acid metabolism (P value 1.5. 10-4), 

indicating that genes within this cluster might play a role in protein synthesis and related 

functions. 
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(a) Cluster 0 contains 43 profiles, 33 of them associated to ribosome 

biogenesis 
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(b) Cluster 5 contains 61 profiles that are mainly related to transcription, 

rRNA synthesis and tRNA synthesis. 
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(c) Cluster 6 contains 86 profiles that are mainly related to protein fate 
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(d) Cluster 15 contains 77 profiles that are mainly related to amino acid 

metabolism 
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(e) Cluster 16 contains 168 profiles that are mainly related to protein 

synthesis 

Fig. 2.15. The expression profiles of non cell cycle related clusters 
 

Cluster 21 has a significant enrichment of genes that can be related to energy (P-

value 4.5. 10-12) in the broader sense, including genes related to mitochondrial protein 

synthesis (4.9. 10-11), mitochondrial organization (P- value 5.8. 10 -15), and energy and 

carbohydrate metabolism (P value 2.5. 10-7). Six among the seven genes for the nuclear 

encoded proteins of the cytochrome C oxidase protein complex 1V (Cox4. Cox5a, Cox7, 

Cox8, Cox12 and Cox13) are present within this cluster, and similarly several genes 

encoding proteins of the mitochondrial protein synthesis turnover complex (Mrpl10, 

Mrpl17, Mrpl24, Mrpl28, Mrpl3, Ydr116C and Ypr100w). These findings support the 

functional relationships of these genes; the proteins encoded should be co-expressed in 

stoichiometric amounts required for the assembly of the respective protein complexes. 

 

2.2.9 Periodic clusters 
As is expected, among the clusters with a periodic profile many of the genes 

encode proteins with functions in cell cycle dependent processes, like DNA- processing, 

DNA synthesis and DNA- replication. These periodic clusters are defined by the timing 
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of the maximum expression of the genes within the cluster. For example, cluster 8 can be 

considered as G1 specific as it harbors 95 out of 300 reported genes that peak during the 

G1 phase of cell cycle, while cluster 3 includes 33 out of 197 genes regulated in the M 

phase (Spellman et al., 1998). 
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 (a) Cluster 3 contains 74 profiles that are mainly related to cell cycle 
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(b) Cluster 4 contains 60 profiles that are mainly related to DNA 

processing, cell cycle and mitotic cell cycle control. 
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(c) Cluster 8 contains 113 profiles that are mainly related to cell cycle, 

mitosis and DNA processing. 

Fig. 2.16. The expression profiles of cell cycle related clusters 

 

2.2.10 Time delayed correlations 
 One of the advantages of the CLARITY algorithm is that time-shifted relations 

can be discovered. The time-shifted relations constitute up to 55.4% of the total number 

of relationships within individual clusters (Table 2.9). 

 To elucidate whether the implementation of time-shifted relations can aid the 

discovery of biological implications, we analyzed cluster 15, comprising the highest 

portion of time-shifted correlations, in more detail. We compared this cluster with the 

clusters from Tavazoie et al., (1999) which have been generated using Euclidean distance 

and K-means clustering. From 77 genes in cluster 15, 38 were found in clusters 4, 5, and 

8 of Tavazoie et al., the remaining 39 genes have not been assigned to any cluster. 

Among such genes is Tps3, encoding the regulatory component of the trehalose-6-

phosphate synthase/phosphatase complex consisting of Tps1p, Tps2p and Tps3p. 

Although Tps1 encoding the trehalose-6-phosphatese synthase is present in cluster 8 of 
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Tavazoie et al., the time shifted relations with Tps3 has not been detected by these 

authors. (See Fig. 2.17). 

-1

0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

YBR126C (Tps1) YMR261C (Tps3)  
Fig. 2.17. Example of time shifted correlation detected by CLARITY 

between Tps1 and Tps3. 

 

Table 2.9. Analysis of the relations among n entries of the respective 

clusters. For each of the       . n . (n -1) possible relationships, the number of 

time shifted relationships found by CLARITY is shown. Some of the 

clusters are constituted heavily by time-shifted relationships. Disregarding 

such relations would thus likely lead to a different cluster structure.  

Cluster no No of genes  No of 
relationships 

No of time-
shifted 
relationships 

Percentage 

0 43 903 20 2.2 
3 74 2701 822 30.4 
4 60 1770 368 20.8 
5 61 1830 407 22.2 
6 86 3655 2 0.08 
7 113 6328 711 11.2 
15 77 2926 1622 55.4 
16 168 14028 653 4.7 
19 130 8385 3242 38.7 
21 201 20100 7062 35.0 

1  
2
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2.2.11 Local correlations 
As an example for local correlations, Put1 (Proline oxidase) and Put2 (Delta-1-

pyrroline-5-carboxylate dehydrogenase) are found to be in cluster 15, but were found to 

be in different clusters by Tavazoie et al., (1999). Put2p in conjunction with Put1p 

converts praline to glutamate in the mitochondrion. In addition, cluster 15 harbors several 

other genes involved in glutamate metabolism that show local similarities with Put1 and 

Put2: Put4, a high affinity praline permease, Agp1, the principal transported of 

asparagines and glutamine, Dip5, an amino acid permease for the transport of alanine, 

glycine, serine, asparagines and glutamine, and the Glutamate decarboxylase Gad1 (see 

Fig. 2.18). 

 

Fig. 2.18. Expression profiles of genes Put1 and Put2, together with other 

genes involved in glutamate metabolism. 
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YCL025C Agp1 YCLX09W AGP1 YHR037W Put2
YLR142W Put1 YMR250W Gad1 YOR348C Put4
YPL265W Dip5
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Table 2.8. Results of the clustering analysis. For each of the generated cluster, we show  

some MIPS functional categories that were found to be significantly enriched.

Cluster 
No. 

Internal 
Similarity 

Number 
of ORFs 
(n) 

MIPS 
Category 
No. of 
ORFs 
(M) 

MIPS 
category 
code 

MIPS Category name ORFs 
within 
Category 
(k) 

P- value 

0 0.737 43 380 
 
234 

05 
 
05.05 

Protein synthesis 
 
Ribosome biogenesis 

33 
 
33 
 

7.5. 10 –27 

 
5.0. 10 –34 

 
3 0.766 74 492 03.03 Cell cycle 16 9.5. 10 –5 
4 0.740 60 271 

157 
492 
354 

03.01 
03.01.05 
03.03 
03.03.01 

DNA processing 
DNA recombination and repair 
Cell cycle 
Mitotic cell cycle control 

10 
8 
19 
11 

6.9. 10 –5 

2.1. 10 –5 

9.3. 10 –8 

1.8. 10 –4 
5 0.755 61 

 
832 
75 
31 

04 
04.01.01 
04.03.01 

Transcription 
rRNA synthesis 
tRNA synthesis 

24 
10 
3 

1.0. 10 –6 

1.9. 10 –10 

2.2. 10 –4 
6 0.803 86 624 06 Protein fate 19 4.7. 10 –4 
8 0.824 113 271 

103 
157 
492 
354 

03.01 
03.01.03 
03.01.05 
03.03 
03.03.01 

DNA processing 
DNA synthesis and replication 
DNA recombination and repair 
Cell cycle 
Mitotic cell cycle control 

35 
17 
17 
29 
19 

1.7. 10 –20 

4.3. 10 –20 

6.0. 10 –10 

1.0. 10 –8 

8.3. 10 –6 
15 0.732 77 186 01.01 Amino acid metabolism 9 1.0. 10 –4 
16 0.722 168 186 

380 
234 

01.01 
05 
05.01 

Amino acid metabolism 
Protein synthesis 
Ribosome biogenesis 

14 
46 
39 

1.5. 10 –4 

4.7. 10 –18 

1.2. 10 –20 
19 0.622 130 492 

354 
430 
343 
186 
121 

03.03 
03.03.01 
04.05.01 
04.05.01.04 
01.01 
01.01.01 

Cell cycle  
Mitotic cell cycle control 
mRNA synthesis 
Transcription control 
Amino acid metabolism 
Amino acid biosynthesis 

33 
18 
19 
16 
15 
10 

1.5. 10 –9 

1.7. 10 –4 

7.3. 10 –4 

8.9. 10 –4 

1.9. 10 –6 

4.4. 10 –5 
21 0.800 201 260 

93 
37 
25 
378 
 
380 
234 
52 
 
100 
 
128 

02 
02.13 
02.01 
02.10 
01.05 
 
05 
05.01 
05.01.01 
 
06.13.01 
 
30.16 

Energy 
Energy: Respiration 
Energy: Glycolysis 
TCA cycle 
C- compound and carbohydrate 
metabolism 
Protein synthesis 
Ribosome biogenesis 
Mitochondrial ribosomal 
proteins 
Cytoplasmic and nuclear 
degradation 
Control of cellular organization: 
Mitochondria 

33 
14 
6 
6 
32 
 
29 
20 
14 
 
11 
 
26 

4.5. 10 –12 

2.5. 10 –7 

1.4. 10 –4 

9.4. 10 –6 

2.5. 10 –7 

 

6.4. 10 –6 

2.3. 10 –5 

4.9. 10 –11 

 

8.5. 10 –5 

 

5.8. 10 –15 
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Chapter 3 

Predicting evolutionarily conserved functional 

modules using genetic algorithms 

3.1 Bicluster 

In order to address the shortcomings of independent condition dataset stated 

in section 1.5.3, the concept of ‘biclustering’ was introduced to gene expression 

analysis. The biclustering concept was first defined by Hartigan, (1975). Since then 

it has been applied to several domains before Cheng and Church, (2000) introduced 

the concept in gene expression data analysis. The concept of bicluster corresponds 

to a subset of genes and a subset of conditions with a high similarity score. Given a 

gene expression matrix, a biclustering algorithm searches for sub matrices, (or 

biclusters) which are tightly co-regulated according to some scoring criterion (Fig. 

3.1 (a) (b) and (c)). Similarity is not treated as a function of pairs of genes or pairs 

of conditions. Instead it is a measure of coherence of genes and conditions in the 

bicluster. This measure can be a symmetric function of the genes and conditions 

involved and thus the finding of bicluster is a process that groups genes and 

conditions simultaneously.  

Since each bicluster consists of a set of genes that are expressed similarly 

under given conditions they might be responsible for inducing certain 

transcriptional or functional modules. Thus the tightly clustered predicted 

biclusters can be referred to as condition specific functional modules. For a 

detailed survey of biclustering refer to Madeira and Oliveira, (2004). 

In order to address the drawbacks regarding the independent gene expression 

data analysis (stated in section 1.5.3) by predicting biclusters or modules (section 

2.2.1), we adopted a genetic algorithmic approach.  This section introduces genetic 

algorithms in general as well as in the context of gene expression. It also explains 

the fitness function and selection method.  
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 E(i, j) c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 
Gene 1 -0.42 -0.08 0.68 0.55 0.33 -0.18 -0.1 0.29 0.25 0.02 
Gene 2 0.01 -0.82 -0.5 -1.02 -0.23 1.40 0.05 -2.1 0.31 0.8 
Gene 3 0.21 0 -0.5 -0.25 0.33 0.12 0.18 0.3 0.13 0.38 
Gene 4 0.04 -0.12 -0.3 -0.13 -0.03 -0.04 0.21 0.43 0.26 0.09 
Gene 5 0.24 0.02 -0.4 -0.23 -0.05 -0.02 -1.3 0.6 0.49 0.71 
Gene 6 0 0.43 -0.6 -0.2 0.78 0.44 0.45 0.74 0.22 -0.42 
Gene 7 0.01 -0.01 0.04 -0.1 -0.07 -0.02 0.03 0.25 0.06 0.35 
Gene 8 0.87 -0.91 0.04 -1.56 -0.5 2.3 -0.6 3.2 -0.26 0.9 
Gene 9 0.9 0.25 0 0.16 -0.32 -0.22 -0.4 -0.3 -0.44 0.34 
Gene 10 0.15 -0.168 -0.088 -0.011 0.081 -0.038 -0.15 0.254 0.11 0.388 
     

 
m1= {g2, g8} {c2, c4, c6, c10} 
 

Fig. 3.1a. Representation of a gene expression matrix of 10 genes that has 

been measured over 10 different independent conditions. A sample bicluster 

(module) m1 that consists of gene2 and gene8 that change the expression 

simultaneously under the set of conditions {c2, c4, c6, c10} , representing a 

bicluster of dimension 2 x 4, is shown in the bottom of the matrix.  
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Fig. 3.1b. Graphical representation of expression profiles from gene2 and 

gene8 including all conditions. Pearson correlation is equal to –0.03.   

-2
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gene 2 gene 8
 

Fig. 3.1c. Graphical representation of the expression profiles from 

module m1 including only subset of conditions. Pearson correlation is 

equal to 0.98. 

-0.82 -1.02 1.40 0.8 
-0.91 -1.56 2.3 0.9 
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3.2 Optimization problem  
Optimization problems are abundant in everyday life. In computational 

biology, well-known optimization problems of finding the low energy protein 

conformations, protein structure comparison and finding the best optimal multiple 

alignment. In our present case, searching for the best bicluster that has a set of 

genes co-expressed under a set of conditions representing a functional module is an 

optimization problem.  

The metaphor of a mountain landscape is often used to represent the 

optimization problems. Here, the landscape corresponds to the fitness function. The 

landscape might have many peaks representing possible solutions of the problem, 

which makes it difficult to determine the highest peak representing the best 

solution to the problem. Many optimization problems are so complex that a 

mathematical optimization of all possible solutions is not feasible. Especially when 

local optima are present it is very hard to find the global optimum. In such a case, 

optimization strategies must be used. The simplest strategy is random search like 

Monte Carlo search, in which, one randomly samples from the space of potential 

solutions and selects the one that appeared to be the best.  The nature of random 

searching strategies for near-optimal solutions involves a large degree of 

potentially wasteful computation through sampling unfavorable regions of 

parameter space. A general, non problem-specific optimization method ideally 

should combine robust exploration of the parameter space and efficient exploitation 

of the information provided from sampling. 

An alternative is heuristic search, in which rules of thumb are used to guess a 

solution that is at least acceptable. Heuristic strategies start from a trial solution and 

go on to a next solution through small modifications, perhaps after a small 

assessment of the best direction. Methods like gradient descent and simulated 

annealing belong to this category. Simulated annealing is able to escape from local 

optima by accepting moves to a worse state with a small probability, whereas the 

others are likely to find the peak nearest to the starting point, instead of the highest.   
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3.3 Evolutionary optimization 
Another class of optimization methods that can be applied to complex 

optimization problems is formed by evolutionary algorithms such as Genetic 

Algorithms (GAs) (Goldberg, 1989; Davis, 1991; Holland, 1992). The Genetic 

algorithms were formally introduced in the United States in the 1970s by John 

Holland at the University of Michigan basically adopts the idea from Charles 

Darwin’s theory of evolution-often paraphrased as “survival of the fittest”.  

The principle of natural selection from Darwin states that, given the available 

resources, individuals better adapted to their environment can possibly survive, and 

will, on average leave behind more offspring than those members who cannot 

adapt to their environment. This implies that unfit members will die from attrition 

before they have a chance to reproduce.  

For natural selection to lead to evolution, at least two essential features are 

required: (1) Recombination or crossover: By making crossover, the offspring 

retain at least some of the features that made their parents fitter than the average; 

(2) Mutation:  By permitting a mutation at any given time results in a population of 

individuals of varying fitness, making the natural selection to operate on. The 

crossover process allows offspring to have a combination of the parent’s 

characteristics. Mutation is a random process that also provides the opportunity to 

introduce new characteristics unrelated to the parents. In the general scheme of 

evolution, mutation generally is regarded as secondary crossover. In part, this is 

because mutation occurs relatively infrequently but, more importantly, it is a less 

efficient optimizing process because it fails to exploit the information contained in 

the parent structures which contribute to successful organisms. From an 

algorithmic point of view, mutation is extremely important since it guarantees the 

diversity. 

The principal characteristics of evolutionary algorithms are that they 

consider populations of solutions rather than one solution at a time. By a 

reproduction process that is biased towards better solutions the next population is 

formed, containing new and hopefully better solutions. If one is interested in more 

than one solution, it is difficult to prevent individual based approaches from 
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finding the same optimum over and over again; in evolutionary optimization one 

can force diversity in the population. Another advantage of evolutionary algorithms 

is that the machinery of the algorithm determines the next population of trial 

solutions. In individual-based approaches, the user has to define how to proceed 

from one state to the next. Since genetic algorithms evaluate multiple points in the 

solution space simultaneously, they have the potential to converge on the global 

optimum.  

 

3.4 Genetic algorithms 
The idea of searching among a collection of candidate solutions for a desired 

solution is common in computer science. The space that consists of possible 

solutions to the problem is defined as the “search space”. The basic idea in using 

genetic algorithms as an optimization method is to represent a population of 

possible solutions, in a chromosome-type encoding, and manipulate these encoded 

solutions through simulated reproduction, crossover and mutation. Those sample 

solutions with more characteristics in common with the correct solution would tend 

to survive during the evolutionary process, where the less successful solutions 

would die off, in a manner analogous to the survival of the fittest in nature.  

 

3.4.1 The basic genetic algorithm 
Genetic algorithms produce an initial population of solutions, and simple 

manipulations or operators are applied to the population of solutions. The result of 

applying the operators to a population is to produce a new population of solutions. 

This process is repeated a number of times until a suitable solution or group of 

solutions evolve. Fig. 3.2 represents the basic genetic algorithm steps. 

In genetic algorithmic terminology, the current population is referred to as 

parents; the new population as offspring, and every iteration represents a 

successive generation. 
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Fig. 3.2. Basic genetic algorithm 

 

3.4.2 Model representation 
A key aspect of genetic algorithms is the representation of complex solution 

by simple encoding. The encoding adopted by Holland, (1975) is the representation 

of a solution by binary digits or bit strings. There are many types of encoding other 

than binary encoding. As stated by both Goldberg, (1989) and Davis, (1991), the 

best encoding is problem specific and may require some experimentation and 

modification of the crossover and mutation operators. This study uses the binary 

encoding. 

Our initial population consists of Q biclusters or modules. Each bicluster mq 

has dimension of g x c, 1 ≤ g ≤ G and 1 ≤ c ≤ C, where q ∈ 1 … Q, G represents 

the number of genes taken for analysis and C represents the number of conditions 

under which the experiments have been conducted (Fig. 3.3a and 3.3b). In order to 

avoid complications, the dimension of every bicluster was kept constant.  

 

 

 

 

 

                                            Fig. 3.3a. Initial population of mN biclusters 
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                  g2c2      g2c10 
     m1  =  {g2, g3} {c2, c10},          m1   =           

            g3c2      g3c10 
 

            Fig. 3.3b. Representation of a 2 x 2 bicluster m1 (module). 

 

3.4.3 Model evaluation 
The other important aspect of genetic algorithms is to specify the model 

evaluation criterion, referred to as the fitness. While invoking the genetic 

algorithm, we are looking for the fittest biclusters in the sense of the survival of the 

fittest. For many problems of interest, this is reasonably straightforward as we are 

concerned with observed data, and are interested in determining a set of parameters 

that provide a good prediction of the observed data. We used the average Pearson 

correlation as the fitness function in this study. Consider a bicluster of dimension g 

x c, where g and c represents the number of rows and columns of the bicluster, 

respectively. The average Pearson correlation Ravg of the bicluster is given as 

 

                 1   N 

Ravg  =     ∑ r (i, j)     
                            N       i, j =1 

r (i, j) represents the Pearson correlation of any two rows i, j, where i, j ∈  (1 … g) 

and N is given by N = g*(g-1)/2. 

 

3.4.4 Genetic algorithm operators 
Having defined a population of Q biclusters and calculated the value of 

fitness function Ravg for each bicluster, an iteration of our genetic algorithm 

proceeds in three stages, corresponding to the operations as mentioned here. 

 

1. Reproduction using selection 

 This stage selects an interim population of Q biclusters via rank a based 

fitness selection assignment. As the aim is to propagate better or fitter biclusters, 

those biclusters with higher values of the fitness function should have a higher 

(3.1) 
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probability of proceeding to the next generation. In the selection process the 

offspring-producing individuals or parents are chosen. The first step is the fitness 

assignment. Each individual in the selection pool receives a reproduction 

probability depending on the own fitness value and the fitness value of all other 

individuals in the selection pool. This fitness is used for the actual selection step 

afterwards.  

In rank based fitness assignment, the population is sorted according to the 

fitness values. The probability assigned to each individual depends only on its 

position in the individual rank and not on the actual fitness value. Rank-based 

fitness assignment overcomes the ‘scaling problems’ of the proportional fitness 

assignment such as the effect of fitness on one or two extreme individuals. The 

fitness values of these extreme individuals will be neglected irrespective of how 

much greater or less their fitness is than the rest of the population. The 

reproductive range is limited, so that no individuals generate an excessive number 

of offspring. Ranking introduces a uniform scaling across the population and 

provides a simple and effective way of controlling selective pressure. Rank-based 

fitness assignment behaves in a more robust manner than proportional fitness 

assignment and, thus, is the method of choice (Bäck and Hoffmeister, 

1991;Whitley, 1989). 

In a population of Q individuals, let Pos represents the position of an 

individual in this position (least fit individual has Pos = 1, the fittest individual Pos 

= Q), Let SP be the selective pressure represents the probability of the best 

individual being selected compared to the average probability of selection of all 

individuals. The fitness value for an individual can be calculated in two ways using 

linear ranking or non-linear ranking as given below. In this study, we used linear 

ranking as the method of selection. 

 
              (Pos –1) 
Fitness (Pos) = 2 – SP + 2*(SP-1)  
          (Q-1) 
 

(3.2) 
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Linear ranking allows values of selective pressure in [1.0, 2.0]. The 

probability of each individual being selected for mating depends on its fitness 

normalized by the total fitness of the population. 

 

2. Crossover 

Having selected an interim population of individuals called parent 

population, we want to produce an offspring population and this is achieved by 

randomly paring off members of the parent population. Once all parents have been 

paired off to form Q/2 pairs, each pair is selected randomly out of the interim 

population and crossed over progressively.  The crossover operation involves the 

random selection of two positions xNc and xNg as a first step for column crossover 

corresponding to conditions and for row crossover corresponding to rows 

respectively, where Ng x Nc represents the dimension of the bicluster. In the 

second step, from the selected positions parts are exchanged from one parent with 

the equivalent part in the other parent. For example, consider two-selected bicluster 

parents m1 and m2 from a population, of dimension 5 x 5, and xNc and xNg be 3 and 

2 respectively, then the column crossover followed by row crossover to produce 

offspring mQ1 and mQ1 is illustrated in Fig. 3.4 and Fig. 3.5. 

 

 

Column crossover  

  M1  =  {g2, g3, g1, g6, g10} {c2, c10, c1, c5, c8}           
                         
     m2  =  {g4, g5, g9, g8, g7} {c3, c4, c6, c7, c9}            
 

 
      m Q1   =  {g2, g3, g1, g6, g10} {c2, c10, c1, c7, c9}           
 
    m Q2   =  {g4, g5, g9, g8, g7} {c3, c4, c6, c5, c8}        

 
Fig. 3.4. Representation of Column cross over 
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Row crossover                

                             
m1  =   {g2, g3, g1, g6,  g10} {c2, c10, c1, c7, c9 }           

                
                
           m2  =    {g4,  g5,  g9, g8,  g7} {c3, c4 , c6, c5 , c8 }            
 

 
     m Q1   =   {g2, g3,  g9,  g8,  g7} {c2, c10 , c1, c7, c9}           
 

m Q2   =  {g4, g5, g1, g6,  g10} {c3, c4 , c6, c5 , c8 }     
 
 
Fig. 3.5. Representation of Row cross over 
 

3. Mutation 
 

The mutation operator randomly selects a gene gm ∈ 1…G or condition cm ∈ 

1…C for any set of gene G and condition C and selects positions xNg or xNc from 

any bicluster mq and swaps with the selected gene or condition in a bicluster. For 

example, let gm = g6 and xNg = 5, after mutation the offspring m Q1 from the 

previous section is illustrated in Fig. 3.6. 

 

     Mutation 

         

        m Q1   =  {g2, g3,  g9,  g8,  g7} {c2, c10, c1, c7, c9}           
 
 

      m Q1   =  {g2, g3,  g9,  g8,  g6} {c2, c10, c1, c7, c9}        
    

Fig. 3.6. Representation of Mutation 
 

Mutation is important as it introduces diversity in the model population, which 

reproduction and crossover cannot achieve. 
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3.5 Testing the module prediction algorithm on a 

synthetic dataset 
In order to test the genetic algorithm based module predictor, we used a 

synthetic dataset. Synthetic data was created in two steps. In the first step, random 

expression profiles were generated as follows. We considered the normalized gene 

expression matrix of size 6152 X 173 from Gasch et al., (2000) as the input to 

create the random dataset. This dataset measured the change in expression pattern 

during various environmental conditions in yeast. From this dataset, a small gene 

expression matrix E of dimension 100 X 50 was created by randomly selecting 

expression values from the data matrix of Gasch et al. In the second step, 

expression profiles of 10 highly co-expressed (correlation coefficient 0.99) 

ribosomal genes during the heat shock condition time course from Gasch et al. 

were chosen.  
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Fig. 3.7. Plot representing fitness vs. generations 

 

 

 



      Predicting evolutionarily conserved modules  

                                                                                                                                    
71 

These genes were spiked in to the randomly generated gene expression 

matrix E at positions specified below. 

 

{g1, g6, g14, g22, g32, g41, g48, g54, g62, g92}{c1, c5, c11, c15, c20, c24, c28, c34, c38, c42} 

The initial population was considered as 20 modules and the size of the module 

was 10 X 10. During evolution, one would expect an increase in the fitness during 

every generation. 

 

Fig. 3.8. Plot representing correctly predicted genes and conditions 

with their corresponding correlations. 

 

The GA based module prediction algorithm was applied to this synthetic data 

for 150 generations. The fitness during each generation is plotted as shown in Fig. 

3.7. This Figure depicts the fitness evolution during the GA optimization process. 
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It can be seen that fit modules could be found within 50 generations. The fittest 

modules were harvested after 150th generation. 

If the evolution works fine, one would expect to find all spiked genes and 

their respective conditions as fittest modules. The correctly predicted genes and 

conditions from these modules with their respective correlations were plotted in 

Fig. 3.8. From the figure, it is clear that as the correlation increases, each predicted 

module consists of an increased number of spiked genes and conditions. Once it 

reaches the highest correlation of 0.96, nearly all spiked genes with almost all 

conditions were predicted as the fittest module, thus proving the algorithm as well 

as the functioning of evolution on this synthetic dataset. 

 

3.6 Ustilago maydis genome and DNA microarray 
In order to apply the module prediction algorithm on a real dataset, we 

considered the DNA microarray datasets from Ustilago maydis. Ustilago maydis, 

the causal agent of corn smut disease, has been used the last decades as a model 

system for studying genetics and pathogen-host interactions. Recently, the fungus 

has emerged as an excellent experimental model for the molecular genetic analysis 

of phytopathogenesis, particularly in the characterization of infection-specific 

morphogenesis in response to signals from host plants.  

With the cooperation of BayerCropScience AG*, the U. maydis genome 

sequencing for the strain Um521 was made available to our department. Um521 

has an estimated genome size of 20.5 Mb, with 23 chromosomes ranging in size 

between 350 kb and 2.4 Mb. The Ustilago maydis sequence project is also a part of 

the Broad Institute's Fungal Genome Initiative. The goal of the Broad Institute’s± 

U. maydis sequencing project is to release 10X genomic coverage for U. maydis 

strain Um521. The BayerCropScience assembly consists of 28 physical contiguous 

sequence blocks covering 17.4 Mb.  

 

 
± http://www.broad.mit.edu/annotation/fungi/ustilago_maydis/  *Bayer Crop Science AG, 40789 

Manheim am Rhein, Germany 
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Taking into consideration that the repetitive elements were not sequenced, 

sequence information was available for about 93% of the genome and 6297 genes 

were predicted. On the basis of the gene prediction, a DNA gene chip was designed 

by Affymetrix that allows the detection of the transcript levels of 6200 U. maydis 

genes.  

 

3.7 Comparison between U. maydis and Yeast genomes 
Elucidating the functions of the large fraction of U. maydis genes, whose 

functions are currently unknown, is a challenging process.  DNA microarrays could 

provide us with the first step toward the goal of uncovering gene function on a 

global scale. With the assumption that genes that encode proteins that participate in 

the same pathway or are part of the same protein complex are often co-expressed, 

predicting the co-expressed cluster of genes is often the first step towards assigning 

functions for unknown genes.  However, co-expression does not necessarily imply 

that genes are functionally related. For example, it would be difficult to distinguish 

accidentally expressed genes from those that are physiologically important. On the 

other hand, evolutionary conservation is a powerful criterion to identify genes that 

are functionally important from a set of co-expressed genes (Stuart et al., 2003). 

With this assumption, we considered looking for conserved modules among 

evolutionarily distant organisms that consists of a similar set of co-expressed genes 

under diverse conditions.  

With the aim of finding evolutionarily conserved modules between 

evolutionarily conserved organisms, we considered Saccharomyces cerevisiae and 

Ustilago maydis for the analysis.  We associated genes from yeast with similar 

genes of U. maydis. Similar genes were identified by performing all-against-all 

BLAST search (Altschul et al., 1990) between every pair of gene sequences from 

U. maydis with yeast. Around 2966 genes were identified to be similar with an E-

value ≤ 10–10, and around 330 similar genes were identified to be similar with an E-

value of 10–7 and 10–10. Since the similarity searches were done on the gene level, 

we considered those highly similar 973 genes whose similarity E-value is ≤ 10–65 

for further analysis. 
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3.8     Application of the program on a dataset   
We sought to identify evolutionarily conserved sets of similar genes from the 

973 genes comprising a module that are co-expressed not only in one experiment 

and in one organism but that also show co-expression in diverse experiments in 

both organisms. We extracted data corresponding to 973 genes from diverse sets of 

DNA microarray experiments from yeast and U. maydis. Forty-four DNA 

microarray experiments from yeast and 27 diverse experiments from U. maydis 

were considered (Appendix I). 

  

3.8.1 U. maydis microarray data normalization 

The data was first scaled to account for the experimental differences between 

the arrays used by taking the mean of the replicate experiments. Some data points 

that appeared to be aberrant in all the replicates (Absent signal) were reduced to 0.  

In order to compare gene expression results from 27 diverse experiments in U. 

maydis Affymetrix Genechips, it was necessary to normalize the microarray data. 

As the normalization step, ‘Per-gene normalization’ which compares the results for 

a single gene across all the samples was done as explained in the section 1.4.2, 

such that gene expression profiles are ensured to have mean equal to 0 and a 

standard deviation equal to 1. Since our goal was to identify the genes whose 

expression change under different conditions, per-gene normalization was 

necessary to compare the gene expression profiles of genes that may be expressed 

at very different levels. In addition, it gives information about the expression fold 

change at each condition with respect to the mean of all conditions. 

3.8.2 Yeast microarray data normalization 
The fluorescence signal from 44 diverse experimental conditions cDNA 

microarrays from yeast (Gasch et al., 2000) was first background corrected for red 

(from dye Cy5) and green (from dye Cy3) intensities for each spot.  
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Normalization is usually applied to the log-ratios of expression, which is 

written as 

 

M = log2 (R /G)   

 

The data were further normalized as explained in section 1.4.2. 

 

3.9 Results: Evolutionarily conserved modules  

In order to find the evolutionarily conserved modules between two 

organisms, we adopted the following strategy. First, we applied the module 

prediction algorithm to the microarray dataset of yeast. The Q modules predicted 

from the algorithm were considered as prototype. As a second step, the microarray 

data corresponding to those co-expressed genes in Q modules were collected from 

U. maydis. The module prediction algorithm was applied to this restricted dataset. 

This restricted analysis was done to test the evolutionary conservation of the 

modules. If the modules were evolutionarily conserved, one would expect a 

significant number of co-expressed sets of genes from every module from Q 

modules in other organism. Similar strategy was followed in the vice versa case, in 

which modules from another dataset are considered as prototypes for U. maydis, 

and the same procedure described above had been followed to predict 

evolutionarily conserved modules. 

 With this idea, we first considered the U. maydis microarray dataset. The 

Module prediction algorithm was applied on this dataset. The modules were 

harvested after the 200th generation and those modules with an average fitness 

greater than 0.7 were analyzed further. The size of the module was kept constant. 

Four modules were predicted to satisfy the criteria of an average fitness of greater 

than 0.7.  All 4 modules were found to have a similar set of genes co-expressed 

among a similar set of conditions.  

The best module with a fitness of 0.81 is shown in Fig. 3.9a. The conditions 

inducing the co-regulation are shown in Fig. 3.9b.  The functional roles of the 

genes that participate in this module are summarized in Table 3.1. This module has 

(3.3) 
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29 genes co-expressed under 11 different conditions in the U. maydis dataset. After 

introducing the threshold parameter of at least 0.5 fold gene expression change, this 

module reduces to 20 genes co-regulated over 11 conditions. 

In order to examine whether this is an evolutionarily conserved module, the 

microarray expression data corresponding to the 20 genes in this module were 

collected for all 44 conditions from yeast. If this was an evolutionary conserved 

module, one would expect a co-regulation of genes from the yeast dataset under 

different conditions. We applied the module prediction algorithm on the yeast 

dataset corresponding to the 20 genes from 44 different conditions. The modules 

were collected after the 200th generation and those modules with an average 

correlation greater than 0.7 were analyzed further. As a result we found only one 

module with an average fitness of 0.81 that has 17 genes (Figure 3.10a and 3.10b) 

that includes 14 ribosomal related genes out of 20 genes from the prototype module 

from U. maydis. These 17 genes were found to be co-regulated over 22 different 

conditions in yeast and are indicated in red in Table 3.1. This implies that this 

module is related to protein synthesis and is evolutionarily conserved.  

Next we considered the vice versa case. The yeast microarray dataset 

corresponding to 44 different conditions is taken as the prototype dataset and the 

module prediction algorithm is applied to the dataset. The modules were harvested 

after the 200th generation and those modules with average fitness greater than 0.7 

were analyzed further. The size of the module was kept constant. There were 3 

predicted modules of overlapping genes co-regulated among different conditions. 

The best module with the average fitness of 0.88 is shown in Fig. 3.11a, the 

conditions that induce co-regulation are summarized in Fig. 3.11b. The functional 

roles of the genes that participate in this module are summarized in Table 3.2. This 

module has 29 genes co-expressed under 19 different conditions in the yeast 

dataset  

In order to examine whether this is an evolutionarily co-expressed module, 

the microarray data corresponding to genes in this module were collected for all 27 

conditions from U. maydis. We applied the module prediction algorithm on the U. 

maydis dataset corresponding to the 29 genes from 27 different conditions. The 
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modules were collected after the 200th generation and those modules with an 

average correlation greater than 0.7 were analyzed further. The best module with 

an average fitness of 0.73 is shown in Figure 3.12a, the conditions that induce co-

regulation of this module is shown in Fig. 3.12b. As a result we found 15 genes 

that includes 11 amino acid biosynthesis genes out of the 29 genes from the 

prototype module from yeast were found to be co-expressed over 7 different 

conditions in U. maydis are indicated in red in Table 3.2. This implies that this 

module is amino acid biosynthesis related and is evolutionarily conserved.  
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Fig. 3.9a. Co-expressed genes from a protein synthesis specific 

module in U. maydis with correlation of 0.81. 
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Fig. 3.10a. Evolutionarily conserved cluster from yeast that has 17 

genes co-expressed in a protein synthesis specific module from U. 

maydis. 
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 Conditions 
  
SG200_WT_ CCara_ 4h  
FB1 0mM H2O2  
AB32_WT_MMara_5h  
AB34_WT_MMnit_2h  
delta yap 0.5 mM H2O2  
delta yap 0mM H2o2  
FB 1 0.5 mM H2o2  
AB34_WT_MMnit_5h  
SG200_WT_ CCara_ 8h  
delta yap 0.5 mM H2O2  
AB32_WT_MMara_0h 

 
Fig. 3.9b. Experimental conditions in U. maydis under those co-

expression modules are detected  

 
 
 

Conditions  
dtt 000 min dtt2  
mannose vs. reference pool  car-1  
Nitrogen Depletion 30 min.  
dtt 480 min dtt-2  
glucose vs. reference pool car-1  
YPD 10 h  ypd-2  
1.5 mM diamide (90 min)  
diauxic shift timecourse 20.5 h  
Nitrogen Depletion 8 h  
29C to 33C - 5 minutes  
29C to 33C - 30 minutes  
25 deg growth ct-1  
YPD 5 d ypd-2  
1.5 mM diamide (5 min)  
37C to 25C shock - 90 min  
1M sorbitol - 5 min  
1.5 mM diamide (90 min)  
2.5mM DTT 180 min dtt-1  
29C +1M sorbitol to 33C + 1M sorbitol - 5 minutes  
29C +1M sorbitol to 33C + *NO sorbitol - 30 minutes  
1 mM Menadione (20 min) redo  
Hypo-osmotic shock - 60 min 

 
 

 
Fig. 3.10b. Experimental conditions corresponding to yeast under 

those co-expression protein synthesis specific modules are detected  
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Fig. 3.11a. Co-expressed genes in an amino acid biosynthesis 

specific module from yeast with a correlation of 0.88. 
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Fig. 3.12a. Evolutionarily conserved cluster from U. maydis that has 15 

genes co-expressed in an amino acid biosynthesis specific module from 

yeast. 
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Conditions 
Heat Shock 05 minutes hs-1  
37C to 25C shock - 15 min  
2.5mM DTT 005 min dtt-1  
dtt 000 min  dtt-2  
1.5 mM diamide (5 min)  
Diauxic Shift Time course - 0 h  
YPD 2 h ypd-2  
YPD 5 d ypd-2  
ethanol vs. reference pool car-1  
galactose vs. reference pool car-1  
raffinose vs. reference pool car-1  
sucrose vs. reference pool car-1  
17 deg growth ct-1  
21 deg growth ct-1  
25 deg growth ct-1  
29 deg growth ct-1  
37 deg growth ct-1  
29C +1M sorbitol to 33C + 1M sorbitol - 30 minutes  
Hypo-osmotic shock - 60 min 
 

 
Fig. 3.11b. Experimental conditions in yeast under those co-expression 
modules are detected. 
 

 
 

Conditions 
AB32_WT_MMara_3h  
AB34_WT_MMnit_1h  
FB1_CMa2_75min  
FB1_CMdmso_75min  
SG200_WT_ CCara_ 8h  
FB1 0mM H2O2  
delta yap 0.5 mM H2O2 
 

 
Fig. 3.12b. Experimental conditions corresponding to U. maydis under that 

co-expression of amino acid biosynthesis specific modules are detected 
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Table 3.1. List of genes in the best co-expressed module from U. maydis.  

Evolutionarily conserved genes from both yeast and U. maydis are indicated in red. 

 

 

 

Yeast  
Acc no 

U. maydis 
Acc no 

Functional class Function 
 

yor063w W30UM029G Protein synthesis   Ribosomal protein L3                    
ydr023w C75UM020G Protein synthesis   tRNA Synthetase, Seryl                   
ylr340w W65UM075G Protein synthesis   Ribosomal protein L10, Acidic 
yol097c W25UM092G Protein synthesis   tRNA Ligase, Tryptophan                 
yll045c C55UM166G Protein synthesis   Ribosomal protein L8B                    
ymr121c C20UM015G Protein synthesis   Ribosomal protein L15B                   
ynl178w C95UM023G Protein synthesis   Ribosomal protein S3  
ybr143c C30UM066G Protein synthesis   Translation release factor ERF1 SUBUNIT 
yjl138c C90UM185G Protein synthesis   Translation initiation factor EIF4A      
yer025w W40UM044G Protein synthesis   Translation initiation factor EIF2 GAMMA 
yor063w W30UM029G Protein synthesis   Ribosomal protein L3       
yor206w C107UM044G  Protein involved in biogenesis of the 60S   

ribosome 
ylr276c C75UM097G  Member of the DEAD-box RNA helicase family, 

functions in rRNA processing to the   
precursor of 60S ribosomal subunits, interacts with 
Dbp6p 

yhr066w W40UM029G  Protein involved in 27S rRNA processing required 
for the maturation of 25S and 5.8S rRNA products, 
contains a BRIX domain and is a member of the 
Imp4p superfamily containing a sigma70-like 
motif 

ypr110c W15UM070G Transcription RNA Polymerase III 40 KD SUBUNIT  
ydr390c C35UM116G Protein degradation, 

ubiquitin mediated 
Subunit of a heterodimeric enzyme consisting of 
Uba2p and Aos1p, activates the ubiquitin-like 
Smt3p for conjugation to other proteins 

ymr300c W60UM216G Purine biosynthesis Amidophosphoribosyltransferase, (glutamine 
phosphoribosylpyrophosphate amidotransferase), 
catalyzes the first step in de novo purine 
biosynthesis 

ycl030c C40UM055G Histidine 
biosynthesis 

Phosphoribosyl-AMP cyclohydrolase /  
phosphoribosyl-ATP pyrophosphohydrolase / 
histidinol dehydrogenase, second, third, and tenth 
steps of histidine biosynthesis pathway 

ygl148w W45UM223G Aromatic amino acid 
biosynthesis 

Chorismate synthase,  
bifunctional enzyme with a flavin eductase activity 
that acts in the phenylalanine, tyrosine and 
tryptophan biosynthesis 
 

 
yal036c 

 
C70UM120G 

  
Protein that contains a GTP1/OBG GTP- 
binding domain 
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Table 3.2. List of genes in the amino acid biosynthesis specific evolutionarily  

conserved module from yeast. Evolutionarily conserved genes from both yeast and 

U. maydis are indicated in red. 

 

Yeast  
Acc no 

U. maydis 
Acc no 

Functional class Function 
 

yil094c W70UM127G Lysine biosynthesis Homoisocitrate dehydrogenase, converts 
homoisocitrate to alpha-ketoadipate, the fourth  
step in the lysine biosynthesis pathway 

ynr050c C145UM005G Lysine biosynthesis Saccharopine dehydrogenase (saccharopine 
reductase; NADP+, L-glutamate forming),  
catalyzes the seventh step in the lysine 
biosynthesis pathway 

ycl009c C110UM170G Isoleucine and valine 
biosynthesis 

Acetolactate synthase regulatory subunit 

ygr155w W60UM043G Methionine 
biosynthesis      
 

Cystathionine beta-synthase (beta-CTSase), 
converts serine and homocysteine to  
cystathionine 

ygr012w C175UM281G  Protein with similarity to Cys4p  Cysteine 
synthase activity,  
Biological Process: Amino acid metabolism 

yil020c C65UM085G Histidine 
biosynthesis 

Phosphoribosyl imidazolecarboxamide isomerase 

yer052c C40UM020G Methionine and 
Threonine 
biosynthesis  

Aspartate kinase (L-aspartate 4-P-transferase), 
catalyzes the first step in the common  
pathway for methionine and threonine biosynthesis 

yor323c W50UM245G Proline biosynthesis  Gamma-glutamyl phosphate reductase 
(phosphoglutamate dehydrogenase), proline  
biosynthetic enzyme 

ybr249c W30UM026G Aromatic amino acid 
biosynthesis 

2-Dehydro-3-deoxyphosphoheptonate aldolase (3-
deoxy-D-arabino-heptulosonate-7- 
phosphate synthase or DAHP synthase), inhibited 
by tyrosine 

ylr058c C55UM072G L-serine 
biosynthesis 

Serine hydroxymethyltransferase (glycine 
hydroxymethyltransferase), cytosolic isoform,  
catalyzes the transfer of the hydroxymethyl group 
of serine to tetrahydrofolate to form 5,10-
methylenetetrahydrofolate and glycine.  Glycine 
hydroxymethyltransferase activity. 
Biological Process:  Formate metabolism; L-serine 
biosynthesis; Amino acid metabolism 

ylr359w C90UM033G Purine biosynthesis  Adenylosuccinate lyase, carries out the eighth step 
in de novo purine biosynthesis 

ynl169c C35UM012G Phospholipid 
metabolism  

Phosphatidylserine decarboxylase, mitochondrial 
isozyme, converts phosphatidyl-L-serine to 
phosphatidylethanolamine 
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Yeast  
Acc no 

 
U. maydis 
Acc no 

 
Functional class 

 
Function 
 

ylr172c C50UM258G Diphthamide 
biosynthesis    

Diphthamide methyltransferase, required for 
diphthamide biosynthesis S-adenosylmethionine-
dependent methyltransferase activity ;Diphthine 
synthase activity. Biological Process: Peptidyl-
diphthamide biosynthesis from peptidyl-histidine. 

ygl171w C90UM186G rRNA processing         ATP-dependent RNA helicase required for rRNA 
processing, member of DEAD-box family of RNA 
helicases 

yfl002c C60UM079G rRNA processing 
25S                     
 

ATP-dependent RNA helicase of DEAD-box 
family, required for processing of 25S ribosomal 
RNA precursor 

ynl161w W20UM155G Cell wall 
biosynthesis 
(putative) 

Serine/threonine protein kinase required for 
sporulation and production of daughter specific 
proteins 

yer164w C32UM196G 
 
 

Transcription               Protein involved in ATP-dependent nucleosome 
remodeling and DNA replication- independent 
nucleosome assembly, member of the 
Chromodomain-Helicase-DNA-binding (CHD) 
family 

ybr118w W85UM090G Protein synthesis  Translation elongation factor EF-1alpha, identical 
to Tef1p 

yor168w C75UM133G Protein synthesis Glutaminyl-tRNA synthetase for the cytoplasm 
and mitochondria 

yhr200w W50UM091G Protein degradation Non-ATPase component of the 26S proteasome 
complex that also functions in RNA polymerase II 
transcription elongation 

yer125w W50UM054G Protein degradation, 
ubiquitin-mediated 

Essential ubiquitin-protein ligase (E3 enzyme), a 
member of HECT domain family of ligases, may 
be involved in the maintenance and remodeling of 
actin cytoskeleton during endocytosis 

ycl059c W50UM080G  Component of 90S preribosomal particles in 
association with small nucleolar RNAs,  
essential for cell division and spore germination 

yil109c C10UM236G Secretion                      Component of the COPII coat of vesicles, involved 
in endoplasmic reticulum to Golgi transport 

ypr029c C65UM054G Secretion  Gamma-Adaptin, large subunit of the clathrin-
associated protein (AP) complex 

ylr293c C80UM179G Nuclear protein 
targeting 

Ran, a GTP-binding protein of the ras superfamily 
involved in trafficking through nuclear pores 

yfl037w W105UM005G Cytoskeleton Tubulin beta chain, required for mitosis and 
karyogamy 

yil103w C20UM250G  Protein involved in susceptibility to K. lactis killer 
toxin 

yor209c W34UM052G NAD Biosynthesis  Nicotinatephosphoribosyltransferase (NAPRTase), 
catalyzes the first step in the Preiss-Handler 
pathway leading to the synthesis of nicotinamide 
adenine dinucleotide (NAD) 

yor175c W26UM223G  Member of the membrane bound O-acyl 
transferase (MBOAT) family, which are found  
in acyltransferase enzymes, has high similarity to 
uncharacterized C. glabrata Cagl0l04642gp 
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Chapter 4 

Summary and discussion 

The contributions of this thesis are novel methods that exploit biological 

information from DNA microarray data. DNA microarray technology produces data on a 

large scale. The comprehensive analysis of this data is often done using the standard 

clustering algorithms presented in Chapter 1. However, the major drawback of most of 

these algorithms is th e lack of ability to predict time delayed and local correlations in 

time course datasets. We proposed two novel approaches to address the problems. The 

first proposed method is using dynamic programming, and the other is an extension of 

this method, solving the limitation of local versus global normalization.   

In independent datasets, most standard algorithms cluster the data according to all 

conditions by missing those genes that change their expression only under a limited 

number of conditions. In order to address this problem, we developed the genetic 

algorithm based module prediction algorithm to predict modules consisting of co-

regulated genes and subset of conditions that induce co-regulation. 

 

4.1 Predicting time delayed correlations 
Various methods have been developed in order to extract useful information from 

gene expression time course datasets. Herwig et al., (1999) used the mutual information 

between genes as a similarity measure. This measure separates the expression pattern into 

three states, unchanged normal expression, increased expression and decreased 

expression. These defined states were then used to estimate the mutual information 

between the genes. Although in principle three states of expression are sufficient to 

characterize an expression pattern, a slight variation in the expression level can lead to a 

dramatic change in the mutual information estimation. Spellman et al., (1998) used 

Fourier transformations on the time series data to calculate the similarity between the 

gene expression profiles. However, this method is only suitable for cyclic data such as 

cell cycle time series that has been analyzed by them.  

A method for approximating an ideal similarity measure by training a neural 

network by learning from a pre-specified target gene expression pattern has been 
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suggested in Sawa and Ohno-Machado, (2003). Qian et al., (2001) addressed the problem 

of identifying local similarities in gene expression time course data by means of a method 

based on the Smith-Waterman algorithm for (local) sequence alignment. However, in this 

approach the data is normalized by converting each expression value to its z score. Such 

global normalization is critical since it is not in agreement with our goal to discover local 

similarities. In fact, once should realize that normalizing a complete profile means that 

two sub-profiles cannot be compared independently of all other expression values.  

All of the aforementioned algorithms compare concrete values for the change of 

gene expression profiles. Wen et al., (1998) suggested a shape based similarity measure 

that compares two profiles on the basis of qualitative changes of expression values. Thus, 

two sequences are considered as similar if they increase and decrease more or less 

simultaneously. However, this measure is still a global one in the sense that all time 

points are taken into consideration and missing the local time shifted relationships as 

discussed in Section 1.5.2.  

Filkov et al., (2002) proposed a kind of “edge detection” method for periodic 

datasets with small sequences. This method searches for local regions in pairs of 

expression profiles where major changes in expression occur (edges). The profiles are 

regarded as similar if they do have similar edges. Kwon et al., (1999) suggested an 

“event-based” edge detection method. An event in specific time interval is considered as 

the directional change of the gene expression curve at that instant. This method converts 

the raw data to a string of events, such as: “R” representing changes greater than a certain 

(upper) threshold value, “F” for changes less than a “lower” threshold and “C” for 

insignificant changes. The event strings are then aligned using a modified version of the 

Needleman-Wunsch algorithm for global sequence alignment. 

 By converting a time series into a sequence of “events” such as an increase or 

decrease, tend to oversimplify the original data. This makes the methods robust toward 

noise and outliers, but also looses a lot of information contained in the original times 

series.  

The methods that were developed here were aimed at predicting time delayed as 

well as local correlations from DNA microarray time course data. The method using the 

dynamic programming predicts clusters with a significant enrichment of genes of similar 
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functions. However, this method has the limitation of local versus global normalization 

(Section 2.1.8).   
Chapter 3.1 introduces the method we developed using dynamic programming 

algorithm to predict time delayed and local correlation from DNA microarray time course 

data.  We used this method on two different datasets from yeast, mitotic cell cycle (Cho 

et al., 1998) and heat shock conditions (Gasch et al., 2000). Some of the resulting clusters 

had a significant number of genes with similar functions. For example, the best 

significant cluster from heat shock conditions had 63 genes out of 73 genes from the 

functional category ‘Protein synthesis’ with the P value of 3.9. 10-54. However, this 

method has the limitation of local vs. global normalization. Since one cannot normalize 

locally using the dynamic programming algorithm, the dataset was already normalized 

globally by converting each expression value to its z score. In this globally normalized 

dataset, looking for the local similarities is critical.  

A new approach to address the problem of finding regions with local similarity in 

expression profiles is presented in Chapter 3.2. These local regions can be time-shifted to 

allow for example for the detection of transcription control relationships. The measure of 

similarity is based on the Spearman rank correlation and can be seen as a good 

compromise between numerical measures (like Pearson correlation or Euclidean distance) 

and simple qualitative measures (like measures that consider only “ups” and downs of a 

time series) that ignore much of the relevant information. Simulations were performed to 

assess the statistical significance of the obtained degrees of similarity. 

The actual comparison of the profiles is then performed with a heuristic sliding-

window approach. Using this approach has the advantage that it does not impose 

restrictions on properties of the similarity measure as do methods that rely on dynamic 

programming. For example, the Spearman rank correlation could not be used with the 

approach of Qian et al., (2001), as it does not allow one to calculate the similarity of two 

profiles directly from the similarities of its sub-profiles. 

CLARITY was applied to a dataset of gene expression profiles from the yeast 

Saccharomyces cerevisiae that was measured to study the mitotic cell cycle (Cho et al., 

1998). The similarities among the profiles were then used to assign co-expressed genes to 

clusters. The obtained clusters were divided into two categories, periodic clusters and 
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non-periodic clusters. The periodic clusters contain mainly cell cycle related genes that 

show as expected, a periodic behavior. The non-periodic clusters contain genes that have 

a non-periodic expression profile and thus are not directly related to the cell cycle. This 

result is expected, as the approach considers profiles similar that show a similar shape- 

and a cyclic behavior is just one of the many possible shapes of a profile. 

The obtained clusters were then compared against an existing functional 

classification of the genes of Saccharomyces cerevisiae. Among the clusters with 

periodic behavior, many of genes encode proteins with cell cycle dependent functions, 

like DNA-processing, DNA synthesis and DNA replication, reflecting the fact that genes 

with a similar function are often co-regulated and thus co-expressed. On a reasonable 

level, one would not expect all genes in clusters to be simple correlations, but 

considerably more likely than random expectation to have a similar function or a similar 

cellular role.  

One of the advantages of the CLARITY algorithm is that time-shifted as well as 

local correlations can be discovered. Apart from the proposed time shifted correlations 

between Ndd1, a cell cycle regulator during S and G2/M transition, Stb5, another 

transcription factor and Mcm21, a kinetochore protein required for normal cell growth 

from later S to early M phase, CLARITY predicted the new time delayed correlations 

between Tps3, and Tps1. Tps3 encodes the regulatory component of the trehalose-6-

phosphate synthase/phosphatase complex consisting of Tps1. Further, CLARITY 

predicted local correlations between Put1 and Put2. Put2p in conjunction with Put1p 

converts proline to glutamate in the mitochondrion. Further, Put4, Agp1, Dip5 and Gad1, 

all genes involved in glutamate metabolism, were also predicted to have local similarities 

with Put1 and Put2 by CLARITY. 

Although there is an obvious justification from published biological literature for 

the time delayed and local relationships like the one between Ndd1, Stb5, and Mcm21, 

many additional pairs of genes whose functions and relationships need to be further 

explored experimentally in order to have a better understanding of the gene interactions.  

Thus the novel relationships we proposed here should be viewed as a potential 

hypothesis until they are validated by appropriate biological experiments. This type of 
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hybrid computational and experimental analysis may allow one to investigate more of the 

gene networks or regulatory networks in future.  

 

4.2 Predicting evolutionarily conserved functional modules 
Extracting a set of genes that change their expression over a set of conditions called 

modules or biclusters can be seen basically as an optimization problem. The first 

application of the biclustering concept to gene expression data was done by Cheng and 

Church, (2000). They used a mean squared residue score as similarity score and used a 

greedy algorithmic approach to find one bicluster, combined iteratively to produce a 

collection of biclusters. The mean squared residue score is the variance of the set of all 

elements in the bicluster plus the mean row variance and the mean column variance. 

Their aim was to find biclusters with low mean squared residue scores, in particular large 

and maximal ones with scores below a certain threshold. The lowest mean residue score 

equaling 0 could indicate that the gene expression levels fluctuate in unison. This trivial 

or constant biclusters were discovered and masked.  

Ihmels et al., (2002) proposed a signature algorithm in order to find meaningful 

modules of biclusters. As a first step, the algorithm receives a set of genes as input and 

identifies experimental conditions under which the input genes are co-regulated most 

tightly. This is done by calculating the average change in the expression (or condition 

scores) of the input genes for each condition and selecting those conditions with large 

absolute conditional score. In the second step, the algorithm selects those genes that show 

a significant change in expression under the conditions selected in the first step from the 

gene expression profiles of all the genes in the genome. This central idea of this work was 

to integrate prior biological information such as the function or sequence of known genes 

into the gene expression data analysis.  

In Bergmann et al., (2003) the authors presented a complementary method to that 

of Ihmels et al., (2002) that does not require any prior biological knowledge. They 

introduced the term called transcription module (TM). A TM contains both set of genes 

and conditions. The conditions of the TM induce co-regulated expression of the genes 

belonging to this TM. The degree of similarity is determined by a pair of threshold 

parameters, the gene threshold and the conditions threshold. They proposed an iterative 
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signature algorithm that searches for transcription modules encoded in the data by 

iteratively refining sets of genes and conditions until they match their definition of 

transcription module. 

In order to identify “patterns” from gene expression data of cells characterized by a 

given phenotype and of control cells, Califano et al., (2000) proposed a supervised 

learning based method. The algorithm randomly selects genes and conditions, and assigns 

the corresponding bicluster. The chosen bicluster can be considered as a δ valid gene-

condition “pattern” if each column in the bicluster is tightly clustered in an interval of 

size up to δ for a given δ > 0. 

Tang and Zhang, (2003) developed a heuristic searching method that adopts the 

simulated annealing technique to predict the empirical phenotypes and hidden phenotype 

structures of clinically interested microarray data. Their definition of a phenotype 

corresponds to a particular macroscopic phenotype such as the presence or absence of 

clinical syndromes or cancer types. For example, if the gene expression levels in the 

matrix are discretized into three-level ordinal values i.e., either “high”, “intermediate” or 

“low”; empirical phenotypes of samples can be discriminated through a small subset of 

genes whose expression levels strongly correlate with the phenotype distinction possible 

results could reveal expression levels that are low for one phenotype, intermediate for 

another phenotype and high for the third empirical phenotype. Their heuristic searching 

algorithm dynamically measures and manipulates the relationship between conditions and 

genes while conducting an iterative adjustment of the candidate phenotype structures to 

approximate the best quality. 

Murali and Kasif, (2003) suggested another representation of gene expression data 

called gene expression motifs or xMOTIFs. A gene’s expression level is conserved across 

a set of samples if the gene is expressed with the same abundance in the entire sample. A 

conserved gene expression motif is a subset of genes that is simultaneously conserved 

across a subset of samples. They employed a heuristic approach to discover large and 

conserved gene expression motifs that cover all the samples and classes in the data.  

A new approach for biclustering based on the Gibbs sampling paradigm called 

GEMS (Gene Expression Module Sampler) was applied on gene expression data by Wu 

et al., (2004). Their algorithm starts from a randomly selected module (bicluster) that 
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matches a defined subset of conditions (samples) such as 10 conditions in each module, 

and uses Gibbs sampling to iteratively update this condition subset to maximize the 

number of genes in the module. 

Tanay et al., (2002) proposed a fast biclustering method called SAMBA (Statistical 

Algorithmic Method for Bicluster Analysis). SAMBA uses a graph theory approach to 

find statistically significant clusters. In their approach, the expression data is modeled as 

a bipartite graph whose two parts correspond to conditions and genes respectively, with 

edges for significant expression changes. They assigned weights to the vertex pairs of the 

bipartite graph according to a statistical model so that heavy sub graphs correspond to 

significant biclusters. They used a polynomial algorithm that reduces under a defined 

scoring scheme, to find the significant, heaviest sub graphs in the bipartite graph. 

Lasseroni and Owen, (2000) proposed “plaid models”, in which the expression 

matrix is considered as a sum of “plaids” – signals that dominate the submatrix.  They 

were interested in finding plaids so that the difference between their sum and the 

observed signal is only noise. In order to explain “plaids”, consider coloring each element 

in the gene expression matrix with a specific color with each cell colored according to the 

expression value. The ordering of the rows and the columns is usually arbitrary. By 

considering ways of reordering the rows and columns in order to group together similar 

rows and similar columns thus forming an image with blocks of similar color called a 

‘plaid’ pattern. A set of genes behaving similarly in a set of samples defined as a ‘layer’ 

in a plaid model context is similar in definition to that of a bicluster.  

Ben-Dor et al., (2002) defined a bicluster as an order-preserving sub-matrix 

(OPSM). According to them, a bicluster is a group of rows whose values induce a linear 

order across a subset of columns. Their work focuses on the relative order of the columns 

in the bicluster rather than on the uniformity of the actual values in the data matrix as the 

plaid model did. They wanted to identify large OPSMs. A submatix is order preserving if 

there is a permutation of its columns under which the sequence of values in every row is 

strictly increasing. Liu and Wang, (2003) followed the OPSM idea to define a bicluster as 

an OP-cluster (Order Preserving Cluster). Their goal was also to discover biclusters with 

coherent evolutions on the columns. 



                    Summary and discussion 

                                                                                                                                    92 

In this thesis, a genetic algorithm based method for predicting meaningful 

condition specific biclusters (modules) from gene expression data is proposed. This 

algorithm was used to compare the common functional modules from gene expression 

data of two different organisms, Saccharomyces cerevisiae and Ustilago maydis. 
The method was developed to compensate for some of the drawbacks of standard 

clustering methods that use the biclustering approach on an independent condition 

dataset. The aforementioned biclustering algorithms use different optimization strategies 

to predict significant biclusters. We used genetic algorithms to address the problem of 

biclustering. The first and important point is that genetic algorithms are intrinsically 

parallel. They consider populations of solutions rather than one solution at a time.  Most 

of aforementioned biclustering algorithms are serial and can only explore the solution 

space of a given problem in one direction at a time, and if the solution they discover turns 

out to be sub-optimal, there is nothing can be done but to abandon all work previously 

completed and start over. However, since GAs have multiple offspring, they can explore 

the solution space in multiple directions at once. If one path turns out to be a dead end, 

they can easily eliminate it and continue work on more promising avenues, giving them a 

greater chance of finding the optimal solution in each run. 

Bleuler et al., (2004) proposed a hybrid evolutionary framework that can be 

coupled to existing biclustering methods. They used the top-down biclustering approach 

that starts with the entire gene expression matrix that iteratively partitions it to smaller 

biclusters. Compared to Bleuler et al., (2004), we used a bottom-up approach that start 

with a population of biclusters that are iteratively modified, until no local improvement is 

possible anymore. Bleuler et al., (2004) started with the whole gene expression matrix 

and searched for the largest bicluster, that is then optimized. Since they are not 

considering all possible solutions to the problem, smaller biclusters might be overseen. In 

our approach, we are selecting an initial population of solutions by that maintaining 

diversity in a better way.  Moreover, we used different model evaluation, operators and 

selection strategies compared to them.  

We have used the module prediction algorithm on the U. maydis DNA microarray 

independent dataset to predict significant biclusters. Since the U. maydis genome lacks 

proper annotation, the resulting modules could not be functionally compared.  
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Aforementioned biclustering algorithms have been applied on at least annotated genome 

DNA datasets like Saccharomyces cerevisiae.  

Up to now, co-expression of sets of genes under large number of conditions has 

been considered as one of the criteria in determining function.  Stuart et al., (2003) used 

phylogenetic conservation as a very strong criterion to identify functionally relevant co-

expression links among genes. Significant co-expression of two or more orthologous 

genes across evolutionarily distant organisms is very likely due to selective advantage, 

strongly suggesting a functional relation. In their approach they selected big datasets from 

four divergent organisms: Homo sapiens, Saccharomyces cerevisiae, Drosophila 

melanogaster and Caenorhabditis elegans. The orthologous genes among these 

organisms were selected by performing reciprocal BLAST searches. They wanted to 

identify pairs of orthologous genes that were co-expressed among multiple organisms 

showing correlation with respect to diverse experiments. They used the Pearson 

correlation as a correlation measure and then ranked all genes according to it. They 

constructed a multiple species co-expression network using the probability of observing 

the gene-gene correlation by chance using the technique of order statistics. Pellegrino et 

al., (2004) used a similar strategy as that of Stuart et al., (2003) to predict putative 

functional relationships among genes from two closely related organisms, human and 

mouse. They used orthologous ESTs instead of genes, and proposed a data mining 

method to predict similar ESTs. In these methods, they used huge datasets to find the 

correlation. This increases the background noise and can lead to missing of those 

important conditions that change the expression of orthologous genes significantly. If the 

available data is limited as in the case of U. maydis then one needs to find an alternative 

solution.  

Interestingly, Bergmann et al., (2004) presented the comparison of homologous 

modules among six different organisms. In this approach, starting from a list of co-

expressed genes associated with a particular function from one organism as seed, they 

identified the homologues in another organism by using BLAST. The co-expressed 

homologues were selected further by their signature algorithm, and genes that were not 

identified based on sequence homology but share similar expression profiles were 

predicted further.   By restricting the analysis only to a list of functionally similar genes, 
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other orthologous genes are missed in this approach. Systematic study of all orthologous 

genes could help exploring all conserved modules among evolutionarily distant 

organisms. 

In order to supplement the U. maydis annotation, we used the phylogenetic 

conservation criteria from Stuart et al., (2003). The orthologous genes between yeast and 

U. maydis were found by all against all BLAST search. We have chosen 973 genes 

(Appendix II) with the E value of 10-65 for further analysis, reciprocal BLAST was 

performed on these genes to check the consistency. Stuart et al. used the cut off E value 

of 10-5 for the best BLAST hit and found that about 2000 genes from yeast had 

orthologous from other 3 organisms. By comparing the orthologous gene list from Stuart 

et al., (2003), we found that 612 genes out of 2000 genes occurred in our 973 orthologous 

gene list. The remaining 361 genes out of 973 in our list could be those genes that were 

not conserved among other 3 organisms. 

 In sequence analysis, significant sequence similarity that may reflect functional 

conservation of the protein is often considered to be at least 25% in protein level. 

Considering a small E value of 10-5 as in Stuart et al. will be critical. Since we consider a 

higher cut off E value of 10-65 for similarity, the remaining ≈1400 genes from the 

orthologous gene list of Stuart et al. could be those genes that have E value greater than 

10-65.  

The microarray datasets corresponding to 973 orthologous genes between both 

organisms were extracted. The module prediction algorithm was applied to the 

microarray dataset from one organism. In order to check the evolutionary conservation of 

the modules between organisms, the modules predicted for one organism were checked 

further on the microarray dataset of another organism and vice versa.  The predicted 

modules from the algorithm from two organisms had genes of similar function. Most 

notably, the module consist of 20 genes predicted from the U. maydis dataset co-

expressed over 11 different conditions with a protein synthesis specific function, was 

found to be an evolutionarily conserved module with that of the yeast dataset over 22 

different conditions. Similarly, another module that consists of 29 genes from yeast, co-

expressed in over 19 different conditions, with an amino acid biosynthesis specific 

function, was found to be evolutionarily conserved with that of the U. maydis dataset 
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over 7 different conditions. Since we have limited array data from U. maydis, the number 

of predicted modules is small. Although we could predict the conserved functional 

modules between two organisms, further modules could be predicted based on more 

experimental data. 

Compared to the approach of Bergmann et al., (2004), we followed a reciprocal 

approach. We have predicted modules from the list of orthologous genes from two 

organisms. Bergmann et al. selected a subset of functionally similar genes from one 

organism and searched for homologues in other organisms as well as their co-expression 

behavior.  By comparing our conserved modules to that of Bergmann et al. we found that 

only two genes from our protein synthesis specific module were predicted by them in the 

homologous module of ribosomal proteins in S. cerevisiae. Other genes from our protein 

synthesis specific module as well as amino acid biosynthesis specific module were not 

predicted by Bergmann et al. as homologous modules. Since Bergmann et al. started the 

analysis with subsets of similar genes and not with all orthologous genes among the 6 

organisms, the probability of missing other conserved modules like our protein synthesis 

specific module as well as amino acid biosynthesis is significant.  

Further, one should consider the fact that these predicted modules from our 

approach were from entirely different microarray experimental setups from the two 

organisms. Nevertheless, the modules predicted by the algorithm have functional 

similarity. This could entail that if a set of genes is co-expressed under set of conditions 

from one organism they can also be co-expressed under a different set of experimental 

conditions in other organisms, thus having a selective advantage implying they could be 

functionally similar. 

4.2.1 Future directions 

The final results of the module prediction algorithm appear to be ad-hoc, having 

many ‘tuning parameters’ determined by hand. While checking the algorithm on 

synthetic data, we have considered the dimension of the dataset as 100 x 50. In order to 

have a complete picture of the threshold dataset size and population size a systematic 

investigation is needed. 
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Further, in our approach parameters like the size of the module is kept constant 

whenever the algorithm is applied on the dataset. This could restrict those other genes 

that also behave similarly over the same set of conditions or, on the other hand those 

conditions that induce co-regulation over the same set of genes. An upgrade such as 

increasing the size of the module to a bigger one is needed. This could be done one way 

by first having a fixed module size say m x n, and comparing the resulting modules for 

overlapping genes between the modules. Defining a threshold parameter say p, and if the 

number of overlapping genes between modules is above x then one could combine both 

modules to (2m-p) x n, conversely, if the number of overlapping conditions between 

modules is above p, one could combine both modules to m x (2n-p).  

Further other fitness functions such as multiple correlation coefficients can be used 

in future. ‘Multiple correlation’ represented as R2 provides the simultaneous calculation 

of the correlation coefficient of several variables. Since in our case the fitness of the 

module depends on number of genes or conditions in the module, applying multiple 

correlations will be useful.  

  Since the annotation of U. maydis is not complete, one can transfer the yeast 

annotation to U. maydis for the predicted evolutionarily conserved modules, further 

experimental investigations are needed to prove these proposed modules. 
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Appendix I 
Table A-1. Yeast and U. maydis microarray experiments considered for 

analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental Conditions from U. maydis 
(Min: minutes, h: hours, d: days) 

Experimental Conditions from yeast 
(Min: minutes, h: hours, d: days) 

AB32_WT_MMara_0h 
AB32_WT_MMara_12h 
AB32_WT_MMara_1h_1 
AB32_WT_MMara_2h_1 
AB32_WT_MMara_3h 
AB32_WT_MMara_5h 
AB34_WT_MMnit_0h 
AB34_WT_MMnit_12h 
AB34_WT_MMnit_1h 
AB34_WT_MMnit_2h 
AB34_WT_MMnit_3h 
AB34_WT_MMnit_5h 
AJ1-2 NM 
AJ38 -33 -2 
FB1 I NM 
FB1_CMa2_360min 
FB1_CMa2_75min 
FB1_CMdmso_360min 
FB1_CMdmso_75min 
GE38 NM 
SG200_WT_ CCara_ 4h 
SG200_WT_ CCara_ 8h 
FB1 0mM H2O2 
FB 1 0.5 mM H2o2 
FB1 5 mM H2o2 
∆ yap 0mM H2o2 
∆ yap 0.5 mM H2O2 
∆ yap1 5 mM 

Heat Shock 05 min hs-1 
37C to 25C shock - 15 min 
29C to 33C - 5 min 
29C +1M sorbitol to 33C + 1M sorbitol - 5 min 
29C +1M sorbitol to 33C + *NO sorbitol - 5 min 
Constant 0.32 mM H2O2 (10 min) redo 
1 mM Menadione (10 min) redo 
2.5mM DTT 005 min dtt-1 
dtt 000 min  dtt-2 
1.5 mM diamide (5 min) 
1M sorbitol - 5 min 
Hypo-osmotic shock - 5 min 
Amino acid starvation 0.5 h 
Nitrogen Depletion 30 min. 
Diauxic Shift Time course - 0 h 
YPD 2 h ypd-2 
YPD 5 d ypd-2 
Ethanol vs. reference pool car-1 
Galactose vs. reference pool car-1 
Glucose vs. reference pool car-1 
Mannose vs. reference pool car-1 
Raffinose vs. reference pool car-1 
Sucrose vs. reference pool car-1 
17 deg growth ct-1 
21 deg growth ct-1 
25 deg growth ct-1 
29 deg growth ct-1 
37 deg growth ct-1 
Heat Shock 060 minutes hs-2 
37C to 25C shock - 90 min 
29C to 33C - 30 minutes 
29C +1M sorbitol to 33C + 1M sorbitol - 30 min 
29C +1M sorbitol to 33C + *NO sorbitol - 30 min 
Constant 0.32 mM H2O2 (160 min) redo 
1 mM Menadione (20 min) redo 
2.5mM DTT 180 min dtt-1 
dtt 480 min dtt-2 
1.5 mM diamide (90 min) 
1M sorbitol - 120 min 
Hypo-osmotic shock - 60 min 
Amino acid starvation 6 h 
Nitrogen Depletion 8 h 
Diauxic shift time course 20.5 h 
YPD 10 h  ypd-2 
1 mM Menadione (160 min) redo 
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Appendix II 

Supplementary data and Program codes 

The supplementary data and program codes of the three developed methods are presented 

in the CD-ROM. The data is presented in the following order. 
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In these files, alltoallblast.xls represents our all to all reciprocal BLAST search 

results and our orthologous genes list. Further, this excel sheet has the comparison of our 

results with that of Stuart et al., (2003). OrthovsGenRE.xls represents the comparison of 

our orthologous genes list with that the result of GenRE* results from MIPS. The files, 

Rajipaper.pdf and Rajithesis.pdf represents the published paper and the pdf version of 

this respectively. The algorithm folder is divided into 3 subfolders: 1) CLARITY, 2) 

Module and 3) Subvector. Each subfolder has the respective source code, executable 

code, sample input file, sample output file and README file. 

   

 

 

 

 

 

 

 

 

 

 

 

* http://mips.gsf.de/genre/proj/ustilago/ 
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