561 research outputs found

    Improving Deep Reinforcement Learning Using Graph Convolution and Visual Domain Transfer

    Get PDF
    Recent developments in Deep Reinforcement Learning (DRL) have shown tremendous progress in robotics control, Atari games, board games such as Go, etc. However, model free DRL still has limited use cases due to its poor sampling efficiency and generalization on a variety of tasks. In this thesis, two particular drawbacks of DRL are investigated: 1) the poor generalization abilities of model free DRL. More specifically, how to generalize an agent\u27s policy to unseen environments and generalize to task performance on different data representations (e.g. image based or graph based) 2) The reality gap issue in DRL. That is, how to effectively transfer a policy learned in a simulator to the real world. This thesis makes several novel contributions to the field of DRL which are outlined sequentially in the following. Among these contributions is the generalized value iteration network (GVIN) algorithm, which is an end-to-end neural network planning module extending the work of Value Iteration Networks (VIN). GVIN emulates the value iteration algorithm by using a novel graph convolution operator, which enables GVIN to learn and plan on irregular spatial graphs. Additionally, this thesis proposes three novel, differentiable kernels as graph convolution operators and shows that the embedding-based kernel achieves the best performance. Furthermore, an improvement upon traditional nn-step QQ-learning that stabilizes training for VIN and GVIN is demonstrated. Additionally, the equivalence between GVIN and graph neural networks is outlined and shown that GVIN can be further extended to address both control and inference problems. The final subject which falls under the graph domain that is studied in this thesis is graph embeddings. Specifically, this work studies a general graph embedding framework GEM-F that unifies most of the previous graph embedding algorithms. Based on the contributions made during the analysis of GEM-F, a novel algorithm called WarpMap which outperforms DeepWalk and node2vec in the unsupervised learning settings is proposed. The aforementioned reality gap in DRL prohibits a significant portion of research from reaching the real world setting. The latter part of this work studies and analyzes domain transfer techniques in an effort to bridge this gap. Typically, domain transfer in RL consists of representation transfer and policy transfer. In this work, the focus is on representation transfer for vision based applications. More specifically, aligning the feature representation from source domain to target domain in an unsupervised fashion. In this approach, a linear mapping function is considered to fuse modules that are trained in different domains. Proposed are two improved adversarial learning methods to enhance the training quality of the mapping function. Finally, the thesis demonstrates the effectiveness of domain alignment among different weather conditions in the CARLA autonomous driving simulator

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Graph Priors, Optimal Transport, and Deep Learning in Biomedical Discovery

    Get PDF
    Recent advances in biomedical data collection allows the collection of massive datasets measuring thousands of features in thousands to millions of individual cells. This data has the potential to advance our understanding of biological mechanisms at a previously impossible resolution. However, there are few methods to understand data of this scale and type. While neural networks have made tremendous progress on supervised learning problems, there is still much work to be done in making them useful for discovery in data with more difficult to represent supervision. The flexibility and expressiveness of neural networks is sometimes a hindrance in these less supervised domains, as is the case when extracting knowledge from biomedical data. One type of prior knowledge that is more common in biological data comes in the form of geometric constraints. In this thesis, we aim to leverage this geometric knowledge to create scalable and interpretable models to understand this data. Encoding geometric priors into neural network and graph models allows us to characterize the models’ solutions as they relate to the fields of graph signal processing and optimal transport. These links allow us to understand and interpret this datatype. We divide this work into three sections. The first borrows concepts from graph signal processing to construct more interpretable and performant neural networks by constraining and structuring the architecture. The second borrows from the theory of optimal transport to perform anomaly detection and trajectory inference efficiently and with theoretical guarantees. The third examines how to compare distributions over an underlying manifold, which can be used to understand how different perturbations or conditions relate. For this we design an efficient approximation of optimal transport based on diffusion over a joint cell graph. Together, these works utilize our prior understanding of the data geometry to create more useful models of the data. We apply these methods to molecular graphs, images, single-cell sequencing, and health record data

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Modeling Human Group Behavior In Virtual Worlds

    Get PDF
    Virtual worlds and massively-multiplayer online games are rich sources of information about large-scale teams and groups, offering the tantalizing possibility of harvesting data about group formation, social networks, and network evolution. They provide new outlets for human social interaction that differ from both face-to-face interactions and non-physically-embodied social networking tools such as Facebook and Twitter. We aim to study group dynamics in these virtual worlds by collecting and analyzing public conversational patterns of users grouped in close physical proximity. To do this, we created a set of tools for monitoring, partitioning, and analyzing unstructured conversations between changing groups of participants in Second Life, a massively multi-player online user-constructed environment that allows users to construct and inhabit their own 3D world. Although there are some cues in the dialog, determining social interactions from unstructured chat data alone is a difficult problem, since these environments lack many of the cues that facilitate natural language processing in other conversational settings and different types of social media. Public chat data often features players who speak simultaneously, use jargon and emoticons, and only erratically adhere to conversational norms. Humans are adept social animals capable of identifying friendship groups from a combination of linguistic cues and social network patterns. But what is more important, the content of what people say or their history of social interactions? Moreover, is it possible to identify whether iii people are part of a group with changing membership merely from general network properties, such as measures of centrality and latent communities? These are the questions that we aim to answer in this thesis. The contributions of this thesis include: 1) a link prediction algorithm for identifying friendship relationships from unstructured chat data 2) a method for identifying social groups based on the results of community detection and topic analysis. The output of these two algorithms (links and group membership) are useful for studying a variety of research questions about human behavior in virtual worlds. To demonstrate this we have performed a longitudinal analysis of human groups in different regions of the Second Life virtual world. We believe that studies performed with our tools in virtual worlds will be a useful stepping stone toward creating a rich computational model of human group dynamics

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Dimension-reduction and discrimination of neuronal multi-channel signals

    Get PDF
    Dimensionsreduktion und Trennung neuronaler Multikanal-Signale
    corecore