
Machine Learning
Edited by Abdelhamid Mellouk

and Abdennacer Chebira

Edited by Abdelhamid Mellouk
and Abdennacer Chebira

Machine Learning can be defined in various ways related to a scientific domain
concerned with the design and development of theoretical and implementation tools that

allow building systems with some Human Like intelligent behavior. Machine learning
addresses more specifically the ability to improve automatically through experience.

Photo by agsandrew / iStock

ISBN 978-3-902613-56-1

M
achine Learning

Machine Learning

Edited by

Abdelhamid Mellouk
and

Abdennacer Chebira

I-Tech

Machine Learning

Edited by

Abdelhamid Mellouk
and

Abdennacer Chebira

I-Tech

Machine Learning
http://dx.doi.org/10.5772/intechopen.85684
Edited by Abdelhamid Mellouk and Abdennacer Chebira

© The Editor(s) and the Author(s) 2009
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2009 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Machine Learning
Edited by Abdelhamid Mellouk and Abdennacer Chebira

p. cm.

ISBN 978-3-902613-56-1

eBook (PDF) ISBN 978-953-51-5838-7

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

4,200+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International authors and editors

125M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Meet the editors

Abdelhamid Mellouk , full Professor of Networks and Telecommunica-
tions Department (IUT C/V) at the University of Paris-Est (UPEC), Abdel-
hamid Mellouk is currently the Technical Program Chair of the IEEE Tech-
nical Committee on Communications Software in Communications Society
and IEEE Senior Member. Founder of TINC (Transport Infrastructure and
Network Control) research activity, his general area is in high-speed new
generation wired/wireless networking, end to end quality of service and
quality of experience. Currently, he is working on routing and switching
optimization in dynamic traffic networks; human and bio-inspired artifi-
cial intelligence approaches. He investigates particularly the use of artifi-
cial neuronal intelligence together with biologically inspired techniques
such as reinforcement learning, to control network decision in real-time.

Dr. Abdennasser Chebira received his Ph.D. degree in Electrical Engineer-
ing and Computer Sciences from PARIS XI University, Orsay, France, in
1994. Since September 1994 he works as Professor Assistant at Sénart Insti-
tute of Technology of PARIS XII – Val de Marne University. He is a staff re-
searcher at Images, Signal and Intelligent Systems Laboratory (LISSI / EA
3956) of this University. His current research works concern selforganizing
neural network based multi-modeling, hybrid neural based information
processing systems; Neural based data fusion and complexity estimation.

Preface

Machine Learning is often referred to as a branch of artificial intelligence which deals

with the design and the development of algorithms and techniques that help machines to
“learn”. Hence, it is closely related to various scientific domains as Optimization, Vision,
Robotic and Control, Theoretical Computer Science, etc.

Based on this, Machine Learning can be defined in various ways related to a scientific
domain concerned with the design and development of theoretical and implementation
tools that allow building systems with some Human Like intelligent behavior. Machine
learning addresses more specifically the ability to improve automatically through
experience.

This book brings together many different aspects of the current research on several
fields associated to Machine Learning. The selection of the chapters for this book was done
in respect to the fact that it comprises a cross-edition of topics that reflect variety of
perspectives and disciplinary backgrounds.

Four main parts have been defined and allow gathering the 21 chapters around the
following topics: machine learning approaches, Human-like behavior and machine Human
interaction, supervised and unsupervised learning approaches, reinforcement learning
approaches and their applications.

This book starts with a first set of chapters which addresses general approaches in
Machine Learning fields. One can find discussion about various issues: how to use the
paradigm divide and conquer to build a hybrid self organized neural network tree structure,
how to move from automation to autonomy, how to take experience to a whole new level,
how to design very large scale networks based on Hamiltonian neural networks, how to
design classifiers generative with similarity based abilities, and how information-theoretic
competitive learning can force networks to increase knowledge.

In addition, the second part addresses the problem of Human-like behavior and
machine Human interaction. It contains five chapters that deal with the following scope:
Human-Knowledge poor-process of ontological information extraction, Machine learning
for spoken dialogue system optimization, Bayesian additive regression trees applied to mail
phishing detection, Composition of web services under multiple criteria and supervised
learning problems under the ranking framework.

Another set of chapters presents an overview and challenges in several areas of
supervised and unsupervised learning approaches. Subjects deal with generation method
for a person specific facial expression map, linear subspace methods in the context of
automatic facial expression analysis, nearest neighbor re-sampling method for prognostic
gene expression patterns of tumor patients, 3D shape classification and retrieval algorithm
and classification of faults in electrical power systems using a hybrid model based on neural
networks.

The last part of the book deals with reinforcement learning approaches used in Machine
Learning area. Various techniques are developed: Genetic learning programming and Sarsa

Preface

Machine Learning is often referred to as a branch of artificial intelligence which deals

with the design and the development of algorithms and techniques that help machines to
“learn”. Hence, it is closely related to various scientific domains as Optimization, Vision,
Robotic and Control, Theoretical Computer Science, etc.

Based on this, Machine Learning can be defined in various ways related to a scientific
domain concerned with the design and development of theoretical and implementation
tools that allow building systems with some Human Like intelligent behavior. Machine
learning addresses more specifically the ability to improve automatically through
experience.

This book brings together many different aspects of the current research on several
fields associated to Machine Learning. The selection of the chapters for this book was done
in respect to the fact that it comprises a cross-edition of topics that reflect variety of
perspectives and disciplinary backgrounds.

Four main parts have been defined and allow gathering the 21 chapters around the
following topics: machine learning approaches, Human-like behavior and machine Human
interaction, supervised and unsupervised learning approaches, reinforcement learning
approaches and their applications.

This book starts with a first set of chapters which addresses general approaches in
Machine Learning fields. One can find discussion about various issues: how to use the
paradigm divide and conquer to build a hybrid self organized neural network tree structure,
how to move from automation to autonomy, how to take experience to a whole new level,
how to design very large scale networks based on Hamiltonian neural networks, how to
design classifiers generative with similarity based abilities, and how information-theoretic
competitive learning can force networks to increase knowledge.

In addition, the second part addresses the problem of Human-like behavior and
machine Human interaction. It contains five chapters that deal with the following scope:
Human-Knowledge poor-process of ontological information extraction, Machine learning
for spoken dialogue system optimization, Bayesian additive regression trees applied to mail
phishing detection, Composition of web services under multiple criteria and supervised
learning problems under the ranking framework.

Another set of chapters presents an overview and challenges in several areas of
supervised and unsupervised learning approaches. Subjects deal with generation method
for a person specific facial expression map, linear subspace methods in the context of
automatic facial expression analysis, nearest neighbor re-sampling method for prognostic
gene expression patterns of tumor patients, 3D shape classification and retrieval algorithm
and classification of faults in electrical power systems using a hybrid model based on neural
networks.

The last part of the book deals with reinforcement learning approaches used in Machine
Learning area. Various techniques are developed: Genetic learning programming and Sarsa

X

learning allow the selection of appropriate stock trading rules in financial area, convergence
of the online value-iteration in dynamic programming techniques is given in the case of the
optimal control problem for general nonlinear discrete-time systems, modular reinforcement
learning with situation-sensitive ability is used for intention estimation, experience replay
technique is applied to real-words application and finally sequential modeling and
prediction allow an adaptive intrusion detection in computer system.

This book shows that Machine Learning is a very dynamic area in terms of theory and
application. The field of Machine Learning has been growing rapidly, producing a wide
variety of learning algorithms for different applications. The ultimate value of those
algorithms is to a great extent judged by their success in solving real-world problems. There
is also a very extensive literature on Machine Learning, and to give a complete bibliography
and a historical account of the research that led to the present form would have been
impossible. It is thus inevitable that some topics have been treated in less detail than others.
The choices made reflect on one hand personal taste and expertise and on second hand a
preference for a very promising research and recent developments in Machine Learning
fields.

Finally, we would to thank all contributors to this book for their research and effort.We
hope you enjoy reading this book and get many helpful ideas and overviews for your own
study.

Editors

Abdelhamid Mellouk
IUT Creteil/Vitry,
LiSSi Laboratory,

University of Paris 12
France

Abdennacer Chebira
IUT Senart/Fontainebleau,

LiSSi Laboratory,
University of Paris 12

France

Contents
 Preface V

1. Neural Machine Learning Approaches: Q-Learning
and Complexity Estimation Based Information Processing System

001

Abdennasser Chebira, Abdelhamid Mellouk, Kurosh Madani and Said Hoceini

2. From Automation To Autonomy 039
Kentarou Kurashige, Yukiko Onoue and Toshio Fukuda

3. Taking Experience to a Whole New Level 053
Luis Ignacio Lopera

4. Hamiltonian Neural Networks Based Networks for Learning 075
Wieslaw Sienko and Wieslaw Citko

5. Similarity Discriminant Analysis 093
Luca Cazzanti

6. Forced Information for Information-Theoretic Competitive Learning 125
Ryotaro Kamimura

7. Learning to Build a Semantic Thesaurus from Free Text Corpora
without External Help

145

Katia Lida Kermanidis

8. Machine Learning Methods for Spoken Dialogue Simulation
and Optimization

167

Olivier Pietquin

9. Hardening Email Security via Bayesian Additive Regression Trees 185
Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang and Suku Nair

10. Learning Optimal Web Service Selections in Dynamic Environments
when Many Quality-of-Service Criteria Matter

207

Stéphane Dehousse, Stéphane Faulkner, Caroline Herssens,
Ivan J. Jureta and Marcos Saerens

VI

learning allow the selection of appropriate stock trading rules in financial area, convergence
of the online value-iteration in dynamic programming techniques is given in the case of the
optimal control problem for general nonlinear discrete-time systems, modular reinforcement
learning with situation-sensitive ability is used for intention estimation, experience replay
technique is applied to real-words application and finally sequential modeling and
prediction allow an adaptive intrusion detection in computer system.

This book shows that Machine Learning is a very dynamic area in terms of theory and
application. The field of Machine Learning has been growing rapidly, producing a wide
variety of learning algorithms for different applications. The ultimate value of those
algorithms is to a great extent judged by their success in solving real-world problems. There
is also a very extensive literature on Machine Learning, and to give a complete bibliography
and a historical account of the research that led to the present form would have been
impossible. It is thus inevitable that some topics have been treated in less detail than others.
The choices made reflect on one hand personal taste and expertise and on second hand a
preference for a very promising research and recent developments in Machine Learning
fields.

Finally, we would to thank all contributors to this book for their research and effort.We
hope you enjoy reading this book and get many helpful ideas and overviews for your own
study.

Editors

Abdelhamid Mellouk
IUT Creteil/Vitry,
LiSSi Laboratory,

University of Paris 12
France

Abdennacer Chebira
IUT Senart/Fontainebleau,

LiSSi Laboratory,
University of Paris 12

France

Contents
 Preface IX

1. Neural Machine Learning Approaches: Q-Learning
and Complexity Estimation Based Information Processing System

001

Abdennasser Chebira, Abdelhamid Mellouk, Kurosh Madani and Said Hoceini

2. From Automation To Autonomy 039
Kentarou Kurashige, Yukiko Onoue and Toshio Fukuda

3. Taking Experience to a Whole New Level 053
Luis Ignacio Lopera

4. Hamiltonian Neural Networks Based Networks for Learning 075
Wieslaw Sienko and Wieslaw Citko

5. Similarity Discriminant Analysis 093
Luca Cazzanti

6. Forced Information for Information-Theoretic Competitive Learning 125
Ryotaro Kamimura

7. Learning to Build a Semantic Thesaurus from Free Text Corpora
without External Help

145

Katia Lida Kermanidis

8. Machine Learning Methods for Spoken Dialogue Simulation
and Optimization

167

Olivier Pietquin

9. Hardening Email Security via Bayesian Additive Regression Trees 185
Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang and Suku Nair

10. Learning Optimal Web Service Selections in Dynamic Environments
when Many Quality-of-Service Criteria Matter

207

Stéphane Dehousse, Stéphane Faulkner, Caroline Herssens,
Ivan J. Jureta and Marcos Saerens

XII

11. Model Selection for Ranking SVM Using Regularization Path 231
Karina Zapien, Gilles Gasso, Thomas Gärtner and Stéphane Canu

12. Generation of Facial Expression Map using Supervised
and Unsupervised Learning

245

Masaki Ishii, Kazuhito Sato, Hirokazu Madokoro and Makoto Nishida

13. Linear Subspace Learning for Facial Expression Analysis 259
Caifeng Shan

14. Resampling Methods for Unsupervised Learning from Sample Data 289
Ulrich Möller

15. 3D Shape Classification and Retrieval Using Heterogenous Features
and Supervised Learning

305

Hamid Laga

16. Performance Analysis of Hybrid Non-Supervised
& Supervised Learning Techniques Applied
to the Classification of Faults in Energy Transport Systems

325

Jhon Albeiro Calderón, Germán Zapata Madrigal
and Demetrio A. Ovalle Carranza

17. Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

345

Yan Chen, Shingo Mabu and Kotaro Hirasawa

18. Heuristic Dynamic Programming Nonlinear Optimal Controller 361
Asma Al-tamimi, Murad Abu-Khalaf and Frank Lewis

19. Implicit Estimation of Another’s Intention Based
on Modular Reinforcement Learning

381

Tadahiro Taniguchi, Kenji Ogawa and Tetsuo Sawaragi

20. Machine Learning for Sequential Behavior Modeling and Prediction 401
Xin Xu

1

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based

Information Processing System
Abdennasser Chebira, Abdelhamid Mellouk,

Kurosh Madani and Said Hoceini
LISSI laboratory, University Paris 12-Val de Marne

France

1. Introduction
Real world dilemmas, and especially industry related ones, are set apart from academic ones
from several basic points of views. The difference appears since definition of the “problem’s
solution” notion. In fact, academic (called also sometime theoretical) approach often begins
by problem’s constraints simplification in order to obtain a “solvable” model (here, solvable
model means a set of mathematically solvable relations or equations describing a behavior,
phenomena, etc…) (Madani, 2008). If the theoretical consideration is a mandatory step to
study a given problem’s solvability, for a very large number of real world dilemmas, it
doesn’t lead to a solvable or realistic solution. Difficulty could be related to several issues
among which:
- large number of parameters to be taken into account (influencing the behavior) making

conventional mathematical tools inefficient,
- strong nonlinearity of the system (or behavior), leading to unsolvable equations,
- partial or total inaccessibility of system’s relevant features, making the model

insignificant,
- subjective nature of relevant features, parameters or data, making the processing of

such data or parameters difficult in the frame of conventional quantification,
- necessity of expert’s knowledge, or heuristic information consideration,
- imprecise information or data leakage.
Examples illustrating the above-mentioned difficulties are numerous and may concern
various areas of real world or industrial applications. As first example, one can emphasize
difficulties related to economical and financial modeling and prediction, where the large
number of parameters, on the one hand, and human related factors, on the other hand, make
related real world problems among the most difficult to solve. Another illustrative example
concerns the delicate class of dilemmas dealing with complex data’s and multifaceted
information’s processing, especially when processed information (representing patterns,
signals, images, etc.) are strongly noisy or involve deficient data. In fact, real world and
industrial applications, comprising system identification, industrial processes control,
systems and plants safety, manufacturing regulation and optimization, pattern recognition,
communication networks (complex routing, large communication networks management

VIII

11. Model Selection for Ranking SVM Using Regularization Path 231
 Karina Zapien, Gilles Gasso, Thomas Gärtner and Stéphane Canu

12. Generation of Facial Expression Map using Supervised
and Unsupervised Learning

245

 Masaki Ishii, Kazuhito Sato, Hirokazu Madokoro and Makoto Nishida

13. Linear Subspace Learning for Facial Expression Analysis 259
 Caifeng Shan

14. Resampling Methods for Unsupervised Learning from Sample Data 289
 Ulrich Möller

15. 3D Shape Classification and Retrieval Using Heterogenous Features
and Supervised Learning

305

 Hamid Laga

16. Performance Analysis of Hybrid Non-Supervised
& Supervised Learning Techniques Applied
to the Classification of Faults in Energy Transport Systems

325

 Jhon Albeiro Calderón, Germán Zapata Madrigal
and Demetrio A. Ovalle Carranza

17. Genetic Network Programming with Reinforcement Learning

and Its Application to Creating Stock Trading Rules
345

 Yan Chen, Shingo Mabu and Kotaro Hirasawa

18. Heuristic Dynamic Programming Nonlinear Optimal Controller 361
 Asma Al-tamimi, Murad Abu-Khalaf and Frank Lewis

19. Implicit Estimation of Another’s Intention Based
on Modular Reinforcement Learning

381

 Tadahiro Taniguchi, Kenji Ogawa and Tetsuo Sawaragi

20. Machine Learning for Sequential Behavior Modeling and Prediction 401
 Xin Xu

1

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based

Information Processing System
Abdennasser Chebira, Abdelhamid Mellouk,

Kurosh Madani and Said Hoceini
LISSI laboratory, University Paris 12-Val de Marne

France

1. Introduction
Real world dilemmas, and especially industry related ones, are set apart from academic ones
from several basic points of views. The difference appears since definition of the “problem’s
solution” notion. In fact, academic (called also sometime theoretical) approach often begins
by problem’s constraints simplification in order to obtain a “solvable” model (here, solvable
model means a set of mathematically solvable relations or equations describing a behavior,
phenomena, etc…) (Madani, 2008). If the theoretical consideration is a mandatory step to
study a given problem’s solvability, for a very large number of real world dilemmas, it
doesn’t lead to a solvable or realistic solution. Difficulty could be related to several issues
among which:
- large number of parameters to be taken into account (influencing the behavior) making

conventional mathematical tools inefficient,
- strong nonlinearity of the system (or behavior), leading to unsolvable equations,
- partial or total inaccessibility of system’s relevant features, making the model

insignificant,
- subjective nature of relevant features, parameters or data, making the processing of

such data or parameters difficult in the frame of conventional quantification,
- necessity of expert’s knowledge, or heuristic information consideration,
- imprecise information or data leakage.
Examples illustrating the above-mentioned difficulties are numerous and may concern
various areas of real world or industrial applications. As first example, one can emphasize
difficulties related to economical and financial modeling and prediction, where the large
number of parameters, on the one hand, and human related factors, on the other hand, make
related real world problems among the most difficult to solve. Another illustrative example
concerns the delicate class of dilemmas dealing with complex data’s and multifaceted
information’s processing, especially when processed information (representing patterns,
signals, images, etc.) are strongly noisy or involve deficient data. In fact, real world and
industrial applications, comprising system identification, industrial processes control,
systems and plants safety, manufacturing regulation and optimization, pattern recognition,
communication networks (complex routing, large communication networks management

Machine Learning 2

and optimization, etc.) (Mellouk, 2008a), are often those belonging to such class of
dilemmas.
If much is still to discover about how the animal’s brain trains and self-organizes itself in
order to process so various and so complex information, a number of recent advances in
“neurobiology” allow already highlighting some of key mechanisms of this marvels
machine. Among them one can emphasizes brain’s “modular” structure and its “self-
organizing” capabilities. In fact, if our simple and inappropriate binary technology remains
too primitive to achieve the processing ability of these marvels mechanisms, a number of
those highlighted points could already be sources of inspiration for designing new machine
learning approaches leading to higher levels of artificial systems’ intelligence (Madani, 2007).
In this chapter, we deal with machine learning based modular approaches which could offer
powerful solutions to overcome processing difficulties in the aforementioned frame. If the
machine learning capability provides processing system’s adaptability and offers an
appealing alternative for fashioning the processing technique adequacy, the modularity may
result on a substantial reduction of treatment’s complexity. In fact, the modularity issued
complexity reduction may be obtained from several instances: it may result from
distribution of computational effort on several modules; it can emerge from cooperative or
concurrent contribution of several processing modules in handling a same task; it may drop
from the modules’ complementary contribution (e.g. specialization of a module on treating a
given task to be performed).
A number of works dealing with modular computing and issued architectures have been
proposed since 1990. Most of them associate a set of Artificial Neural Networks (ANN) in a
modular structure in order to process a complex task by dividing it into several simpler sub-
tasks. One can mention active learning approaches (Fahlman & Lebiere, 1990), neural
networks ensemble concept proposed by (Hanibal, 1993), intelligent hybrid systems (Krogh
& Vedelsby, 1995), Mixture of experts concept proposed by (Bruske & Sommer, 1995) and
(Sung & Niyogi, 1995) or structures based on dynamic cells (Lang & Witbrock, 1998). In the
same years, a number of authors proposed multi-modeling concept for nonlinear systems
modeling, where a set of simple models is used to sculpt a complex behaviour
(Goonnatilake & Khebbal, 1996), (Mayoubi et al., 1995), (Murray-Smith & Johansen, 1997),
(Ernst, 1998)) in order to avoid difficulties (modeling complexity). However, it is important
to remind that the most of proposed works (except those described in the four latest
references) remain essentially theoretical and if a relatively consequent number of different
structures have been proposed, a very few of them have been applied to real-world
dilemmas solution.
The present chapter focuses those machine learning based modular approaches which take
advantage either from modules’ independence (multi-agent approach) or from self-
organizing multi-modeling ("divide and conquer" paradigm). In other words, we will
expound online and self-organizing approaches which are used when no a priori learning
information is available. Within this frame, we will present, detail and discuss two
challenging applicative aspects: the first one dealing with routing optimization in high
speed communication networks and the other with complex information processing.
Concerning the network routing optimization problem, we will describe and evaluate an
adaptive online machine learning based approach, combining multi-agent based modularity
and neural network based reinforcement learning ((Mellouk, 2007), (Mellouk, 2008b)). On
the side of complex information processing, we will describe and evaluate a self-organizing

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 3

modular machine learning approach, combining "divide and conquer" paradigm and
“complexity estimation” techniques that we called self-organizing “Tree-like Divide To
Simplify” (T-DTS) approach ((Madani et al., 2003), (Madani et al., 2005), (Bouyoucef et al.,
2005), (Chebira et al., 2006)).
This chapter is composed by four sections. The second section presents the state of the art of
modular approaches over three modular paradigms: "divide and conquer" paradigm,
Committee Machines and Multi Agent systems. In section 3, a neural network based
reinforcement learning approach dealing with adaptive routing in communication networks
is presented. In the last section, dealing with complex information processing, we will detail
the self-organizing Tree divide to simplify approach, including methods and strategies for
building the modular structure, decomposition of databases and finally processing. A sub-
section will present a number of aspects relating “complexity estimation” that is used in T-
DTS in order to self-organize such modular structure. Evaluating the universality of T-DTS
approach, by showing its applicability to different classes of problems will concern other
sub-sections of this fourth section. Global conclusions end this chapter and give further
perspectives for the future development of proposed approaches.

2. Modular approaches
Apart from specialized "one-piece" algorithm as explicit solution of a problem, there exist a
number of alternative solutions, which promote modular structure. In modular structure,
units (computational unit or model) could either have some defined and regularized
connectivity or be more or less randomly linked, ending up at completely independent and
individual units. The units can communicate with each others. The units’ communication
may take various forms. It may consist of data exchange. It may consist of orders exchange,
resulting either on module’s features modification or on its structure. Units may espouse
cooperative or competitive interaction. A modular structure composed of Artificial Neural
Networks is called Multi Neural Network (MNN).
We will present here three modular paradigms that are of particular interest: "Divide and
Conquer" paradigm, Committee Machines and Multi Agent Systems. "Divide and conquer"
paradigm is certainly a leading idea for the tree structure described in this section.
Committee machines are in large part incorporation of this paradigm. For multi-agent
approach the stress is put on the modules independence.

2.1 “Divide and Conquer" paradigms
This approach is based on the principle "Divide et Impera" (Julius Caesar). The main frame
of the principle can be expressed as:
- Break up problem into two (or more) smaller sub-problems;
- Solve sub-problems;
- Combine results to produce a solution to original problem.
The ways in which the original problem is split differ as well as the algorithms of solving
sub-problems and combining the partial solutions. The splitting of the problem can be done
in recursive way. Very known algorithm using this paradigm is Quicksort (Hoare, 1962),
which splits recursively data in order to sort them in a defined order. In the Artificial Neural
Networks area the most known algorithm of similar structure is Mixture of Experts (Bruske
& Sommer, 1995).

Machine Learning 2

and optimization, etc.) (Mellouk, 2008a), are often those belonging to such class of
dilemmas.
If much is still to discover about how the animal’s brain trains and self-organizes itself in
order to process so various and so complex information, a number of recent advances in
“neurobiology” allow already highlighting some of key mechanisms of this marvels
machine. Among them one can emphasizes brain’s “modular” structure and its “self-
organizing” capabilities. In fact, if our simple and inappropriate binary technology remains
too primitive to achieve the processing ability of these marvels mechanisms, a number of
those highlighted points could already be sources of inspiration for designing new machine
learning approaches leading to higher levels of artificial systems’ intelligence (Madani, 2007).
In this chapter, we deal with machine learning based modular approaches which could offer
powerful solutions to overcome processing difficulties in the aforementioned frame. If the
machine learning capability provides processing system’s adaptability and offers an
appealing alternative for fashioning the processing technique adequacy, the modularity may
result on a substantial reduction of treatment’s complexity. In fact, the modularity issued
complexity reduction may be obtained from several instances: it may result from
distribution of computational effort on several modules; it can emerge from cooperative or
concurrent contribution of several processing modules in handling a same task; it may drop
from the modules’ complementary contribution (e.g. specialization of a module on treating a
given task to be performed).
A number of works dealing with modular computing and issued architectures have been
proposed since 1990. Most of them associate a set of Artificial Neural Networks (ANN) in a
modular structure in order to process a complex task by dividing it into several simpler sub-
tasks. One can mention active learning approaches (Fahlman & Lebiere, 1990), neural
networks ensemble concept proposed by (Hanibal, 1993), intelligent hybrid systems (Krogh
& Vedelsby, 1995), Mixture of experts concept proposed by (Bruske & Sommer, 1995) and
(Sung & Niyogi, 1995) or structures based on dynamic cells (Lang & Witbrock, 1998). In the
same years, a number of authors proposed multi-modeling concept for nonlinear systems
modeling, where a set of simple models is used to sculpt a complex behaviour
(Goonnatilake & Khebbal, 1996), (Mayoubi et al., 1995), (Murray-Smith & Johansen, 1997),
(Ernst, 1998)) in order to avoid difficulties (modeling complexity). However, it is important
to remind that the most of proposed works (except those described in the four latest
references) remain essentially theoretical and if a relatively consequent number of different
structures have been proposed, a very few of them have been applied to real-world
dilemmas solution.
The present chapter focuses those machine learning based modular approaches which take
advantage either from modules’ independence (multi-agent approach) or from self-
organizing multi-modeling ("divide and conquer" paradigm). In other words, we will
expound online and self-organizing approaches which are used when no a priori learning
information is available. Within this frame, we will present, detail and discuss two
challenging applicative aspects: the first one dealing with routing optimization in high
speed communication networks and the other with complex information processing.
Concerning the network routing optimization problem, we will describe and evaluate an
adaptive online machine learning based approach, combining multi-agent based modularity
and neural network based reinforcement learning ((Mellouk, 2007), (Mellouk, 2008b)). On
the side of complex information processing, we will describe and evaluate a self-organizing

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 3

modular machine learning approach, combining "divide and conquer" paradigm and
“complexity estimation” techniques that we called self-organizing “Tree-like Divide To
Simplify” (T-DTS) approach ((Madani et al., 2003), (Madani et al., 2005), (Bouyoucef et al.,
2005), (Chebira et al., 2006)).
This chapter is composed by four sections. The second section presents the state of the art of
modular approaches over three modular paradigms: "divide and conquer" paradigm,
Committee Machines and Multi Agent systems. In section 3, a neural network based
reinforcement learning approach dealing with adaptive routing in communication networks
is presented. In the last section, dealing with complex information processing, we will detail
the self-organizing Tree divide to simplify approach, including methods and strategies for
building the modular structure, decomposition of databases and finally processing. A sub-
section will present a number of aspects relating “complexity estimation” that is used in T-
DTS in order to self-organize such modular structure. Evaluating the universality of T-DTS
approach, by showing its applicability to different classes of problems will concern other
sub-sections of this fourth section. Global conclusions end this chapter and give further
perspectives for the future development of proposed approaches.

2. Modular approaches
Apart from specialized "one-piece" algorithm as explicit solution of a problem, there exist a
number of alternative solutions, which promote modular structure. In modular structure,
units (computational unit or model) could either have some defined and regularized
connectivity or be more or less randomly linked, ending up at completely independent and
individual units. The units can communicate with each others. The units’ communication
may take various forms. It may consist of data exchange. It may consist of orders exchange,
resulting either on module’s features modification or on its structure. Units may espouse
cooperative or competitive interaction. A modular structure composed of Artificial Neural
Networks is called Multi Neural Network (MNN).
We will present here three modular paradigms that are of particular interest: "Divide and
Conquer" paradigm, Committee Machines and Multi Agent Systems. "Divide and conquer"
paradigm is certainly a leading idea for the tree structure described in this section.
Committee machines are in large part incorporation of this paradigm. For multi-agent
approach the stress is put on the modules independence.

2.1 “Divide and Conquer" paradigms
This approach is based on the principle "Divide et Impera" (Julius Caesar). The main frame
of the principle can be expressed as:
- Break up problem into two (or more) smaller sub-problems;
- Solve sub-problems;
- Combine results to produce a solution to original problem.
The ways in which the original problem is split differ as well as the algorithms of solving
sub-problems and combining the partial solutions. The splitting of the problem can be done
in recursive way. Very known algorithm using this paradigm is Quicksort (Hoare, 1962),
which splits recursively data in order to sort them in a defined order. In the Artificial Neural
Networks area the most known algorithm of similar structure is Mixture of Experts (Bruske
& Sommer, 1995).

Machine Learning 4

Algorithmic paradigms evaluation could be made on the basis of running time. This is
useful in that it allows computational effort comparisons between the performances of two
algorithms to be made. For Divide-and-Conquer algorithms the running time is mainly
affected by:
- The number of sub-instances into which a problem is split;
- The ratio of initial problem size to sub-problem size;
- The number of steps required to divide the initial instance and to combine sub-

solutions;
- Task complexity;
- Database size.

2.2 Committee machines
The committee machines are based on engineering principle divide and conquer. According
to that rule, a complex computational task is solved by dividing it into a number of
computationally simple sub-tasks and then combining the solutions of these sub-tasks. In
supervised learning, the task is distributed among a number of experts. The combination of
experts is called committee machine. Committee machine fuses knowledge of experts to
achieve an overall task, which may be more efficient than that achieved by any of the
experts alone (Tresp, 2001).
The taxonomy of committee machines could be as follows:
- Static structures: Ensemble Averaging and Boosting;
- Dynamic structures: Mixture of Experts and Hierarchical Mixture of Experts.
Next several subsections will present the types of committee machines in detail.

2.2.1 Ensemble averaging
In ensemble averaging technique (Haykin, 1999), (Arbib, 1989), a number of differently
trained experts (i.e. neural networks) share a common input and their outputs are combined
to produce an overall output value y.

Fig. 1. Ensemble averaging structure

The advantage of such structure over a single expert is that the variance of the average
function is smaller than the variance of single expert. Simultaneously both average
functions have the same bias. These two facts lead to a training strategy for reducing the
overall error produced by a committee machine due to varying initial conditions (Naftaly
et al., 1997): the experts are purposely over-trained, what results in reducing the bias at
the variance cost. The variance is subsequently reduced by averaging the experts, leaving
the bias unchanged.

Input x (n)

y1(n) Expert 1

Expert 2

Expert K

Combiner y2(n)

yK(n)

Output y(n)

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 5

2.2.2 Boosting
In boosting approach (Schapire, 1999) the experts are trained on data sets with entirely
different distributions; it is a general method which can improve the performance of any
learning algorithm. Boosting can be implemented in three different ways: Boosting by
filtering, Boosting by sub-sampling and Boosting by re-weighing. A well known example is
AdaBoost (Schapire, 1999) algorithm, which runs a given weak learner several times on
slightly altered training data, and combining the hypotheses to one final hypothesis, in
order to achieve higher accuracy than the weak learner's hypothesis would have.

2.2.3 Mixture of experts
Mixture of experts consists of K supervised models called expert networks and a gating
network, which performs a function of mediator among expert networks. The output is a
weighted sum of experts' outputs (Jordan & Jacobs, 2002).
A typical Mixture of Experts structure is presented by figure 2. One can notice the K experts
and a gating network that filters the solutions of experts. Finally the weighted outputs are
combined to produce overall structure output. The gating network consists of K neurons,
each one is assigned to a specific expert.
The neurons in gating network are nonlinear with activation function that is a differentiable
version of "winner-takes-all" operation of picking the maximum value. It is referred as
"softmax" transfer function (Bridle, 1990). The mixture of experts is an associative Gaussian
mixture model, which is a generalization of traditional Gaussian mixture model
(Titterington et al., 1985), (MacLachlan & Basford, 1988).

2.2.4 Hierarchical mixture of experts
Hierarchical mixture of experts (Jordan & Jacobs, 1993) works similarly to ordinary mixture
of experts, except that multiple levels of gating networks exist. So the outputs of mixture of
experts are gated in order to produce combined output of several mixtures of expert
structures. In figure 3 one can see two separate mixture of experts blocks (marked with
dashed rectangles). The additional gating network is gating the outputs of these two blocks
in order to produce the global structure output.

Fig. 2. Mixture of Experts

Input x

Expert 1

Expert 2

Expert K

Gating
network

gK

g1

g2

...

yK

y2 Σ

y1

y

Machine Learning 4

Algorithmic paradigms evaluation could be made on the basis of running time. This is
useful in that it allows computational effort comparisons between the performances of two
algorithms to be made. For Divide-and-Conquer algorithms the running time is mainly
affected by:
- The number of sub-instances into which a problem is split;
- The ratio of initial problem size to sub-problem size;
- The number of steps required to divide the initial instance and to combine sub-

solutions;
- Task complexity;
- Database size.

2.2 Committee machines
The committee machines are based on engineering principle divide and conquer. According
to that rule, a complex computational task is solved by dividing it into a number of
computationally simple sub-tasks and then combining the solutions of these sub-tasks. In
supervised learning, the task is distributed among a number of experts. The combination of
experts is called committee machine. Committee machine fuses knowledge of experts to
achieve an overall task, which may be more efficient than that achieved by any of the
experts alone (Tresp, 2001).
The taxonomy of committee machines could be as follows:
- Static structures: Ensemble Averaging and Boosting;
- Dynamic structures: Mixture of Experts and Hierarchical Mixture of Experts.
Next several subsections will present the types of committee machines in detail.

2.2.1 Ensemble averaging
In ensemble averaging technique (Haykin, 1999), (Arbib, 1989), a number of differently
trained experts (i.e. neural networks) share a common input and their outputs are combined
to produce an overall output value y.

Fig. 1. Ensemble averaging structure

The advantage of such structure over a single expert is that the variance of the average
function is smaller than the variance of single expert. Simultaneously both average
functions have the same bias. These two facts lead to a training strategy for reducing the
overall error produced by a committee machine due to varying initial conditions (Naftaly
et al., 1997): the experts are purposely over-trained, what results in reducing the bias at
the variance cost. The variance is subsequently reduced by averaging the experts, leaving
the bias unchanged.

Input x (n)

y1(n) Expert 1

Expert 2

Expert K

Combiner y2(n)

yK(n)

Output y(n)

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 5

2.2.2 Boosting
In boosting approach (Schapire, 1999) the experts are trained on data sets with entirely
different distributions; it is a general method which can improve the performance of any
learning algorithm. Boosting can be implemented in three different ways: Boosting by
filtering, Boosting by sub-sampling and Boosting by re-weighing. A well known example is
AdaBoost (Schapire, 1999) algorithm, which runs a given weak learner several times on
slightly altered training data, and combining the hypotheses to one final hypothesis, in
order to achieve higher accuracy than the weak learner's hypothesis would have.

2.2.3 Mixture of experts
Mixture of experts consists of K supervised models called expert networks and a gating
network, which performs a function of mediator among expert networks. The output is a
weighted sum of experts' outputs (Jordan & Jacobs, 2002).
A typical Mixture of Experts structure is presented by figure 2. One can notice the K experts
and a gating network that filters the solutions of experts. Finally the weighted outputs are
combined to produce overall structure output. The gating network consists of K neurons,
each one is assigned to a specific expert.
The neurons in gating network are nonlinear with activation function that is a differentiable
version of "winner-takes-all" operation of picking the maximum value. It is referred as
"softmax" transfer function (Bridle, 1990). The mixture of experts is an associative Gaussian
mixture model, which is a generalization of traditional Gaussian mixture model
(Titterington et al., 1985), (MacLachlan & Basford, 1988).

2.2.4 Hierarchical mixture of experts
Hierarchical mixture of experts (Jordan & Jacobs, 1993) works similarly to ordinary mixture
of experts, except that multiple levels of gating networks exist. So the outputs of mixture of
experts are gated in order to produce combined output of several mixtures of expert
structures. In figure 3 one can see two separate mixture of experts blocks (marked with
dashed rectangles). The additional gating network is gating the outputs of these two blocks
in order to produce the global structure output.

Fig. 2. Mixture of Experts

Input x

Expert 1

Expert 2

Expert K

Gating
network

gK

g1

g2

...

yK

y2 Σ

y1

y

Machine Learning 6

Fig. 3. Example of hierarchical mixture of experts

2.3 Multi agent systems
Multi agent system is a system that compounds of independent modules called "agents".
There is no single control structure (designer) which controls all agents. Each of these agents
can work on different goals, sometimes in cooperative and sometimes in competitive modes.
Both cooperation and competition modes are possible among agents (Decker et al., 1997).
There is a great variety of intelligent software agents and structures. The characteristics of
Multi Agent Systems (Ferber, 1998) are:
- Each agent has incomplete information or capabilities for solving the problem and,

thus, has a limited viewpoint;
- There is no system global control;
- Data are decentralized;
- Computation is asynchronous.
In Multi Agent Systems many intelligent agents interact with each other. The agents can
share a common goal (e.g. an ant colony), or they can pursue their own interests (as in the
free market economy). Figure 4 gives the classification of intelligent artificial agents
considering their origin.
Agents may also be classified according to the tasks they perform:

Input x

Output

Expert 1,2

Expert 1,2

Expert L,2

...

Gating network 2

gL2

g12

g22

...

...

yL2

y22 ∑

y12

Expert 1,1

Expert 2,1

Expert K,1

...

Gating network 1

gK1

g11

g21

...

yK1

y21 ∑

y11

Gating network 3

g2

g1

∑

Output y2

Output y1

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 7

- Interface Agents - Computer programs using artificial intelligence techniques in order
to provide assistance to a user dealing with a particular application. The metaphor is
that of a personal assistant who is collaborating with the user in the same work
environment (Maes, 1994).

- Information Agents - An information agent is an agent that has access to at least one,
and potentially many information sources, and is able to collect and manipulate
information obtained from these sources to answer to users and other information
agent’s queries (Wooldridge & Jennings, 1995).

Fig. 4. Classification of intelligent artificial agents considering origin

- Commerce Agents- A commerce agent is an agent that provides commercial services
(e.g., selling, buying and prices' advice) for a human user or for another agent.

- Entertainment Agents - Artistically interesting, highly interactive, simulated worlds to
give users the experience of living in (not merely watching) dramatically rich worlds
that include moderately competent, emotional agents (Bate et al., 1992).

Agents can communicate, cooperate and negotiate with other agents. The basic idea behind
Multi Agent systems is to build many agents with small areas of action and link them
together to create a structure which is much more powerful than the single agent itself.

2.4 Discussion
If over past decade wide studies have been devoted to theoretical aspects of modular
structures (and algorithms), very few works have concerned their effective implementation
and their application to real-world dilemmas. Presenting appealing potential advantages
over single structures, this kind of processing systems may avoid difficulties inherent to
large and complicated processing systems by splitting the initial complex task into a set of
simpler task requiring simpler processing algorithms. The other main advantage is the
customized nature of the modular design regarding the task under hand. Among the above-
presented structures, the "Divide and Conquer" class of algorithms presents engaging
faultlessness. Three variants could be distinguished:
- Each module works with full database aiming a "global" processing. This variant uses a

combination of the results issued from individual modules to construct the final
system’s response.

- Modules work with a part of database (sub-database) aiming a “local” but “not
exclusive” processing. In this variant, some of the processing data could be shared by
several modules. However, depending on the amount of shared data this variant could
be more or less similar to the two others cases.

Autonomous

Biological agents Robotic agents Computational agents

Software agents Artificial life agents

Task-specific agents Entertainment agents Viruses

Machine Learning 6

Fig. 3. Example of hierarchical mixture of experts

2.3 Multi agent systems
Multi agent system is a system that compounds of independent modules called "agents".
There is no single control structure (designer) which controls all agents. Each of these agents
can work on different goals, sometimes in cooperative and sometimes in competitive modes.
Both cooperation and competition modes are possible among agents (Decker et al., 1997).
There is a great variety of intelligent software agents and structures. The characteristics of
Multi Agent Systems (Ferber, 1998) are:
- Each agent has incomplete information or capabilities for solving the problem and,

thus, has a limited viewpoint;
- There is no system global control;
- Data are decentralized;
- Computation is asynchronous.
In Multi Agent Systems many intelligent agents interact with each other. The agents can
share a common goal (e.g. an ant colony), or they can pursue their own interests (as in the
free market economy). Figure 4 gives the classification of intelligent artificial agents
considering their origin.
Agents may also be classified according to the tasks they perform:

Input x

Output

Expert 1,2

Expert 1,2

Expert L,2

...

Gating network 2

gL2

g12

g22

...

...

yL2

y22 ∑

y12

Expert 1,1

Expert 2,1

Expert K,1

...

Gating network 1

gK1

g11

g21

...

yK1

y21 ∑

y11

Gating network 3

g2

g1

∑

Output y2

Output y1

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 7

- Interface Agents - Computer programs using artificial intelligence techniques in order
to provide assistance to a user dealing with a particular application. The metaphor is
that of a personal assistant who is collaborating with the user in the same work
environment (Maes, 1994).

- Information Agents - An information agent is an agent that has access to at least one,
and potentially many information sources, and is able to collect and manipulate
information obtained from these sources to answer to users and other information
agent’s queries (Wooldridge & Jennings, 1995).

Fig. 4. Classification of intelligent artificial agents considering origin

- Commerce Agents- A commerce agent is an agent that provides commercial services
(e.g., selling, buying and prices' advice) for a human user or for another agent.

- Entertainment Agents - Artistically interesting, highly interactive, simulated worlds to
give users the experience of living in (not merely watching) dramatically rich worlds
that include moderately competent, emotional agents (Bate et al., 1992).

Agents can communicate, cooperate and negotiate with other agents. The basic idea behind
Multi Agent systems is to build many agents with small areas of action and link them
together to create a structure which is much more powerful than the single agent itself.

2.4 Discussion
If over past decade wide studies have been devoted to theoretical aspects of modular
structures (and algorithms), very few works have concerned their effective implementation
and their application to real-world dilemmas. Presenting appealing potential advantages
over single structures, this kind of processing systems may avoid difficulties inherent to
large and complicated processing systems by splitting the initial complex task into a set of
simpler task requiring simpler processing algorithms. The other main advantage is the
customized nature of the modular design regarding the task under hand. Among the above-
presented structures, the "Divide and Conquer" class of algorithms presents engaging
faultlessness. Three variants could be distinguished:
- Each module works with full database aiming a "global" processing. This variant uses a

combination of the results issued from individual modules to construct the final
system’s response.

- Modules work with a part of database (sub-database) aiming a “local” but “not
exclusive” processing. In this variant, some of the processing data could be shared by
several modules. However, depending on the amount of shared data this variant could
be more or less similar to the two others cases.

Autonomous

Biological agents Robotic agents Computational agents

Software agents Artificial life agents

Task-specific agents Entertainment agents Viruses

Machine Learning 8

- Modules work with a part of database (sub-database) aiming a “local” and “exclusive”
processing. In this option, sub-databases are exclusive by meaning that no data is
shared by modules. The final system’s result could either be a set of responses
corresponding to different parts of the initial treated problem or be the output of the
most appropriated module among the available ones.

Tree-like Divide To Simplify Approach (described later in this chapter) could be classified as
belonging to "Divide and Conquer" class of algorithms as it breaks up an initially complex
problem into a set of sub-problems. However, regarding the three aforementioned variants,
its actually implemented version solves the sub-problems issued from the decomposition
process according to the last variant. In the next section, we present a first modular
algorithms which hybridize multi-agents techniques and Q-Neural learning.

3. Multi-agents approach and Q-neural reinforcement learning hybridization:
application to QoS complex routing problem
This section present in detail a Q-routing algorithm optimizing the average packet delivery
time, based on Neural Network (NN) ensuring the prediction of parameters depending on
traffic variations. Compared to the approaches based on Q-tables, the Q-value is
approximated by a reinforcement learning based neural network of a fixed size, allowing
the learner to incorporate various parameters such as local queue size and time of day, into
its distance estimation. Indeed, a Neural Network allows the modeling of complex functions
with a good precision along with a discriminating training and network context
consideration. Moreover, it can be used to predict non-stationary or irregular traffics. The Q-
Neural Routing algorithm is presented in detail in section 3.2. The performance of Q-
Routing and Q-Neural Routing algorithms are evaluated experimentally in section 3.3 and
compared to the standard shortest path routing algorithms.

3.1 Routing problem in communication networks
Network, such as Internet, has become the most important communication infrastructure of
today's human society. It enables the world-wide users (individual, group and
organizational) to access and exchange remote information scattered over the world.
Currently, due to the growing needs in telecommunications (VoD, Video-Conference, VoIP,
etc.) and the diversity of transported flows, Internet network does not meet the
requirements of the future integrated-service networks that carry multimedia data traffic
with a high Quality of Service (QoS). The main drivers of this evolution are the continuous
growth of the bandwidth requests, the promise of cost improvements and finally the
possibility of increasing profits by offering new services. First, it does not support resource
reservation which is primordial to guarantee an end-to-end Qos (bounded delay, bounded
delay jitter, and/or bounded loss ratio). Second, data packets may be subjected to
unpredictable delays and thus may arrive at their destination after the expiration time,
which is undesirable for continuous real-time media. In this Context, for optimizing the
financial investment on their networks, operators must use the same support for
transporting all the flows. Therefore, it is necessary to develop a high quality control
mechanism to check the network traffic load and ensure QoS requirements.
A lot of different definitions and parameters for this concept of quality of service can be
found. For ITU-T E.800 recommendation, QoS is described as “the collective effect of service
performance which determines the degree of satisfaction of a user of the service”. This

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 9

definition is completed by the I.350 ITU-T recommendation which defines more precisely
the differences between QoS and Network Performance. Relating QoS concepts in the
Internet are focused on a packet-based end-to-end, edge-to-edge or end-to-edge
communication. QoS parameters which refer to this packet transport at different layers are:
availability, bandwidth, delay, jitter and loss ratio. It’s clear that the integration of these QoS
parameters increases the complexity of the used algorithms. Anyway, there will be QoS
relevant technological challenges in the emerging hybrid networks which mixes several
networks topologies and technologies (wireless, broadcast, mobile, fixed, etc.).
In the literature, we can find the usage of QoS in three ways:
- Deterministic QoS consists in sufficiently resources reserved for a particular flow in

order to respect the strict temporal constraints for all the packages of flow. No loss of
package or going beyond of expiries is considered in this type of guarantee. This model
makes it possible to provide an absolute terminal on the time according to the reserved
resources.

- Probabilistic QoS consists in providing a long-term guarantee of the level of service
required by a flow. For time-reality applications tolerating the loss of a few packages or
the going beyond of some expiries, the temporal requirements as well as the rates of
loss are evaluated on average. The probabilistic guarantee makes it possible to provide
a temporal terminal with a certain probability which is given according to the
conditions of load of the network.

- Stochastic QoS which is fixed before by a stochastic distribution.
Various techniques have been proposed to take into account QoS requirements (Strassner,
2003). By using in-band or out-band specific control protocols, these techniques may be
classified as follows: the congestion control (Slow Start (Welzl, 2003), Weighted Random
Early Detection (Jacobson, 1988)), the traffic shaping (Leaky Bucket (Feng et al., 1997), Token
Bucket (Turner, 1986)), integrated services architecture, (RSVP (Shenker et al., 1997), (Zhang
et al., 1993)), the differentiated services (DiffServ (Zhang et al., 1993), (Bernet, 1998)) and
QoS based routing. In this section, we focus on QoS routing policies.
A routing algorithm is based on the hop-by-hop shortest-path paradigm. The source of a
packet specifies the address of the destination, and each router along the route forwards the
packet to a neighbour located “closest” to the destination. The best optimal path is selected
according to given criteria. When the network is heavily loaded, some of the routers
introduce an excessive delay while others are ignored (not expoited). In some cases, this
non-optimized usage of the network resources may introduce not only excessive delays but
also high packet loss rate. Among routing algorithms extensively employed in routers, one
can note: distance vector algorithm such as RIP (Malkin, 1993) and the link state algorithm
such as OSPF (Moy, 1998). These kinds of algorithms take into account variations of load
leading to limited performances.
A lot of study has been conducted in a search for an alternative routing paradigm that
would address the integration of dynamic criteria. The most popular formulation of the
optimal distributed routing problem in a data network is based on a multi-commodity flow
optimization whereby a separable objective function is minimized with respect to the types
of flow subject to multi-commodity flow constraints (Gallager, 1977), (Ozdalgar et al., 2003).
However, due their complexity, increased processing burden, a few proposed routing
schemes could be accepted for the internet. We listed here some QoS based routing
algorithms proposed in the literature: QOSPF (Quality Of Service Path First) (Crawley et al.,

Machine Learning 8

- Modules work with a part of database (sub-database) aiming a “local” and “exclusive”
processing. In this option, sub-databases are exclusive by meaning that no data is
shared by modules. The final system’s result could either be a set of responses
corresponding to different parts of the initial treated problem or be the output of the
most appropriated module among the available ones.

Tree-like Divide To Simplify Approach (described later in this chapter) could be classified as
belonging to "Divide and Conquer" class of algorithms as it breaks up an initially complex
problem into a set of sub-problems. However, regarding the three aforementioned variants,
its actually implemented version solves the sub-problems issued from the decomposition
process according to the last variant. In the next section, we present a first modular
algorithms which hybridize multi-agents techniques and Q-Neural learning.

3. Multi-agents approach and Q-neural reinforcement learning hybridization:
application to QoS complex routing problem
This section present in detail a Q-routing algorithm optimizing the average packet delivery
time, based on Neural Network (NN) ensuring the prediction of parameters depending on
traffic variations. Compared to the approaches based on Q-tables, the Q-value is
approximated by a reinforcement learning based neural network of a fixed size, allowing
the learner to incorporate various parameters such as local queue size and time of day, into
its distance estimation. Indeed, a Neural Network allows the modeling of complex functions
with a good precision along with a discriminating training and network context
consideration. Moreover, it can be used to predict non-stationary or irregular traffics. The Q-
Neural Routing algorithm is presented in detail in section 3.2. The performance of Q-
Routing and Q-Neural Routing algorithms are evaluated experimentally in section 3.3 and
compared to the standard shortest path routing algorithms.

3.1 Routing problem in communication networks
Network, such as Internet, has become the most important communication infrastructure of
today's human society. It enables the world-wide users (individual, group and
organizational) to access and exchange remote information scattered over the world.
Currently, due to the growing needs in telecommunications (VoD, Video-Conference, VoIP,
etc.) and the diversity of transported flows, Internet network does not meet the
requirements of the future integrated-service networks that carry multimedia data traffic
with a high Quality of Service (QoS). The main drivers of this evolution are the continuous
growth of the bandwidth requests, the promise of cost improvements and finally the
possibility of increasing profits by offering new services. First, it does not support resource
reservation which is primordial to guarantee an end-to-end Qos (bounded delay, bounded
delay jitter, and/or bounded loss ratio). Second, data packets may be subjected to
unpredictable delays and thus may arrive at their destination after the expiration time,
which is undesirable for continuous real-time media. In this Context, for optimizing the
financial investment on their networks, operators must use the same support for
transporting all the flows. Therefore, it is necessary to develop a high quality control
mechanism to check the network traffic load and ensure QoS requirements.
A lot of different definitions and parameters for this concept of quality of service can be
found. For ITU-T E.800 recommendation, QoS is described as “the collective effect of service
performance which determines the degree of satisfaction of a user of the service”. This

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 9

definition is completed by the I.350 ITU-T recommendation which defines more precisely
the differences between QoS and Network Performance. Relating QoS concepts in the
Internet are focused on a packet-based end-to-end, edge-to-edge or end-to-edge
communication. QoS parameters which refer to this packet transport at different layers are:
availability, bandwidth, delay, jitter and loss ratio. It’s clear that the integration of these QoS
parameters increases the complexity of the used algorithms. Anyway, there will be QoS
relevant technological challenges in the emerging hybrid networks which mixes several
networks topologies and technologies (wireless, broadcast, mobile, fixed, etc.).
In the literature, we can find the usage of QoS in three ways:
- Deterministic QoS consists in sufficiently resources reserved for a particular flow in

order to respect the strict temporal constraints for all the packages of flow. No loss of
package or going beyond of expiries is considered in this type of guarantee. This model
makes it possible to provide an absolute terminal on the time according to the reserved
resources.

- Probabilistic QoS consists in providing a long-term guarantee of the level of service
required by a flow. For time-reality applications tolerating the loss of a few packages or
the going beyond of some expiries, the temporal requirements as well as the rates of
loss are evaluated on average. The probabilistic guarantee makes it possible to provide
a temporal terminal with a certain probability which is given according to the
conditions of load of the network.

- Stochastic QoS which is fixed before by a stochastic distribution.
Various techniques have been proposed to take into account QoS requirements (Strassner,
2003). By using in-band or out-band specific control protocols, these techniques may be
classified as follows: the congestion control (Slow Start (Welzl, 2003), Weighted Random
Early Detection (Jacobson, 1988)), the traffic shaping (Leaky Bucket (Feng et al., 1997), Token
Bucket (Turner, 1986)), integrated services architecture, (RSVP (Shenker et al., 1997), (Zhang
et al., 1993)), the differentiated services (DiffServ (Zhang et al., 1993), (Bernet, 1998)) and
QoS based routing. In this section, we focus on QoS routing policies.
A routing algorithm is based on the hop-by-hop shortest-path paradigm. The source of a
packet specifies the address of the destination, and each router along the route forwards the
packet to a neighbour located “closest” to the destination. The best optimal path is selected
according to given criteria. When the network is heavily loaded, some of the routers
introduce an excessive delay while others are ignored (not expoited). In some cases, this
non-optimized usage of the network resources may introduce not only excessive delays but
also high packet loss rate. Among routing algorithms extensively employed in routers, one
can note: distance vector algorithm such as RIP (Malkin, 1993) and the link state algorithm
such as OSPF (Moy, 1998). These kinds of algorithms take into account variations of load
leading to limited performances.
A lot of study has been conducted in a search for an alternative routing paradigm that
would address the integration of dynamic criteria. The most popular formulation of the
optimal distributed routing problem in a data network is based on a multi-commodity flow
optimization whereby a separable objective function is minimized with respect to the types
of flow subject to multi-commodity flow constraints (Gallager, 1977), (Ozdalgar et al., 2003).
However, due their complexity, increased processing burden, a few proposed routing
schemes could be accepted for the internet. We listed here some QoS based routing
algorithms proposed in the literature: QOSPF (Quality Of Service Path First) (Crawley et al.,

Machine Learning 10

1998), MPLS (Multiprotocol label switching) (Rosen et al., 1999), (Stallings, 2001), (Partridge,
1992), Traffic Engineering (Strasnner, 2003), (Welzl, 2003), Wang-Crowcroft algorithm
(Wang & Crowcroft, 1996), Ants routing approach (Subramanian et al., 1997), Cognitive
Packet Networks based on random neural networks (Gelenbe et al., 2002).
For a network node to be able to make an optimal routing decision, according to relevant
performance criteria, it requires not only up-to-date and complete knowledge of the state of
the entire network but also an accurate prediction of the network dynamics during
propagation of the message through the network. This, however, is impossible unless the
routing algorithm is capable of adapting to network state changes in almost real time. So, it
is necessary to develop a new intelligent and adaptive optimizing routing algorithm. This
problem is naturally formulated as a dynamic programming problem, which, however, is
too complex to be solved exactly.
In our approach, we use the methodology of reinforcement learning (RL) introduced by
Sutton (Sutton & Barto, 1997) to approximate the value function of dynamic programming.
One of pioneering works related to this kind of approaches concerns Q-Routing algorithm
(Boyan & Littman, 1994) based on Q-learning technique (Watkins & Dayan, 1989). In this
approach, each node makes its routing decision based on the local routing information,
represented as a table of Q values which estimate the quality of the alternative routes. These
values are updated each time the node sends a packet to one of its neighbors. However,
when a Q value is not updated for a long time, it does not necessarily reflect the current
state of the network and hence a routing decision based on such an unreliable Q value will
not be accurate. The update rule in Q-Routing does not take into account the reliability of
the estimated or updated Q value because it’s depending on the traffic pattern, and load
levels, only a few Q values are current while most of the Q values in the network are
unreliable. For this purpose, other algorithms have been proposed like Confidence based Q-
Routing (CQ-Routing) (Kumar & Miikkualainen, 1998) or Dual Reinforcement Q-Routing
(DRQ-Routing) (Kumar & Miikkualainen, 1997), (Goetz et al., 1996). All these routing
algorithms use a table to estimate Q values. However, the size of the table depends on the
number of destination nodes existing in the network. Thus, this approach is not well suited
when we are concerned with a state-space of high dimensionality.

3.2 Q-neural routing approach
In this section, we present an adaptive routing algorithm based on the Q-learning approach,
the Q-function is approximated by a reinforcement learning based neural network. First, we
formulate the reinforcement learning process.

3.2.1 Reinforcement learning
Algorithms for reinforcement learning face the same issues as traditional distributed
algorithms, with some additional peculiarities. First, the environment is modelled as
stochastic (especially links, link costs, traffic, and congestion), so routing algorithms can take
into account the dynamics of the network. However no model of dynamics is assumed to be
given. This means that RL algorithms have to sample, estimate, and perhaps build models of
pertinent aspect of the environment. Second, RL algorithms, unlike other machine learning
algorithms, do not have an explicit learning phase followed by evaluation. Since there is no
training signal for a direct evaluation of the policy’s performance before the packet has
reached its final destination, it is difficult to apply supervised learning techniques to this

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 11

problem (Haykin, 1998). In addition, it is difficult to determine to what extent a routing
decision that has been made on a single node may influence the network’s overall
performance. This fact fits into the temporal credit assignment problem (Watkins, 1989).
The RL algorithm, called reactive approach, consists of endowing an autonomous agent
with a correctness behavior guaranteeing the fulfillment of the desired task in the dynamics
environment. The behavior must be specified in terms of Perception - Decision – Action loop
(Fig. 5). Each variation of the environment induces stimuli received by the agent, leading to
the determination of the appropriate action. The reaction is then considered as a punishment
or a performance function, also called, reinforcement signal.

Fig. 5. Reinforcement learning model

Thus, the agent must integrate this function to modify its future actions in order to reach an
optimal performance. In other words, a RL Algorithm is a finite-state machine that interacts
with a stochastic environment, trying to learn the optimal action the environment offers
through a learning process. At any iteration the automaton’s agent chooses an action,
according to a probability vector, using an output function. This function stimulates the
environment, which responds with an answer (reward or penalty). The automaton’s agent
takes into account this answer and jumps, if necessary, to a new state using a transition
function.

Network Elements RL System
Network
Each network node
Delay in links and nodes
Estimate of total delay
Action of sending a packet
Node through which the packet passes
in time t
Local routing decision

Environment
Agent
Reinforcement
Function
Value Function
Action
State in time t
Policy

-
-
T

(, ,)Q s y d
a(st)

st

π

Table. 1. Correspondences between a RL system and network elements

It is necessary for the agent to gather useful experience about the possible system states,
actions, transitions and rewards actively to act optimally. Another difference from

E
N
V
I
R
O
N
M
E
N
T

REINFORCEMENT
FUNCTION

VALUE
FUNCTION

POLICY

EXECUTORS

Indication of the

current state
SENSORS

Reinforcement signal

action

Reinforcement learning system

Machine Learning 10

1998), MPLS (Multiprotocol label switching) (Rosen et al., 1999), (Stallings, 2001), (Partridge,
1992), Traffic Engineering (Strasnner, 2003), (Welzl, 2003), Wang-Crowcroft algorithm
(Wang & Crowcroft, 1996), Ants routing approach (Subramanian et al., 1997), Cognitive
Packet Networks based on random neural networks (Gelenbe et al., 2002).
For a network node to be able to make an optimal routing decision, according to relevant
performance criteria, it requires not only up-to-date and complete knowledge of the state of
the entire network but also an accurate prediction of the network dynamics during
propagation of the message through the network. This, however, is impossible unless the
routing algorithm is capable of adapting to network state changes in almost real time. So, it
is necessary to develop a new intelligent and adaptive optimizing routing algorithm. This
problem is naturally formulated as a dynamic programming problem, which, however, is
too complex to be solved exactly.
In our approach, we use the methodology of reinforcement learning (RL) introduced by
Sutton (Sutton & Barto, 1997) to approximate the value function of dynamic programming.
One of pioneering works related to this kind of approaches concerns Q-Routing algorithm
(Boyan & Littman, 1994) based on Q-learning technique (Watkins & Dayan, 1989). In this
approach, each node makes its routing decision based on the local routing information,
represented as a table of Q values which estimate the quality of the alternative routes. These
values are updated each time the node sends a packet to one of its neighbors. However,
when a Q value is not updated for a long time, it does not necessarily reflect the current
state of the network and hence a routing decision based on such an unreliable Q value will
not be accurate. The update rule in Q-Routing does not take into account the reliability of
the estimated or updated Q value because it’s depending on the traffic pattern, and load
levels, only a few Q values are current while most of the Q values in the network are
unreliable. For this purpose, other algorithms have been proposed like Confidence based Q-
Routing (CQ-Routing) (Kumar & Miikkualainen, 1998) or Dual Reinforcement Q-Routing
(DRQ-Routing) (Kumar & Miikkualainen, 1997), (Goetz et al., 1996). All these routing
algorithms use a table to estimate Q values. However, the size of the table depends on the
number of destination nodes existing in the network. Thus, this approach is not well suited
when we are concerned with a state-space of high dimensionality.

3.2 Q-neural routing approach
In this section, we present an adaptive routing algorithm based on the Q-learning approach,
the Q-function is approximated by a reinforcement learning based neural network. First, we
formulate the reinforcement learning process.

3.2.1 Reinforcement learning
Algorithms for reinforcement learning face the same issues as traditional distributed
algorithms, with some additional peculiarities. First, the environment is modelled as
stochastic (especially links, link costs, traffic, and congestion), so routing algorithms can take
into account the dynamics of the network. However no model of dynamics is assumed to be
given. This means that RL algorithms have to sample, estimate, and perhaps build models of
pertinent aspect of the environment. Second, RL algorithms, unlike other machine learning
algorithms, do not have an explicit learning phase followed by evaluation. Since there is no
training signal for a direct evaluation of the policy’s performance before the packet has
reached its final destination, it is difficult to apply supervised learning techniques to this

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 11

problem (Haykin, 1998). In addition, it is difficult to determine to what extent a routing
decision that has been made on a single node may influence the network’s overall
performance. This fact fits into the temporal credit assignment problem (Watkins, 1989).
The RL algorithm, called reactive approach, consists of endowing an autonomous agent
with a correctness behavior guaranteeing the fulfillment of the desired task in the dynamics
environment. The behavior must be specified in terms of Perception - Decision – Action loop
(Fig. 5). Each variation of the environment induces stimuli received by the agent, leading to
the determination of the appropriate action. The reaction is then considered as a punishment
or a performance function, also called, reinforcement signal.

Fig. 5. Reinforcement learning model

Thus, the agent must integrate this function to modify its future actions in order to reach an
optimal performance. In other words, a RL Algorithm is a finite-state machine that interacts
with a stochastic environment, trying to learn the optimal action the environment offers
through a learning process. At any iteration the automaton’s agent chooses an action,
according to a probability vector, using an output function. This function stimulates the
environment, which responds with an answer (reward or penalty). The automaton’s agent
takes into account this answer and jumps, if necessary, to a new state using a transition
function.

Network Elements RL System
Network
Each network node
Delay in links and nodes
Estimate of total delay
Action of sending a packet
Node through which the packet passes
in time t
Local routing decision

Environment
Agent
Reinforcement
Function
Value Function
Action
State in time t
Policy

-
-
T

(, ,)Q s y d
a(st)

st

π

Table. 1. Correspondences between a RL system and network elements

It is necessary for the agent to gather useful experience about the possible system states,
actions, transitions and rewards actively to act optimally. Another difference from

E
N
V
I
R
O
N
M
E
N
T

REINFORCEMENT
FUNCTION

VALUE
FUNCTION

POLICY

EXECUTORS

Indication of the

current state
SENSORS

Reinforcement signal

action

Reinforcement learning system

Machine Learning 12

supervised learning is that on-line performance is important: the evaluation of the system is
often concurrent with learning.
A Reinforcement Learning system thus involves the following elements: an Agent, an
Environment, a Reinforcement Function, an Action, a State, a Value Function, which is
obtained from the reinforcement function, and a Policy. In order to obtain a network routing
useful model, it is possible to associate the network’s elements to the basic elements of a RL
system, as shown in Table 1.

3.2.2 Q-learning algorithm for routing
In our routing algorithm (Mellouk, 2006), the objective is to minimize the average packet
delivery time. Consequently, the reinforcement signal which is chosen corresponds to the
estimated time to transfer a packet to its destination. Typically, the packet delivery time
includes three variables: The packet transmission time, the packet treatment time in the
router and the latency in the waiting queue. In our case, the packet transmission time is not
taken into account. In fact, this parameter can be neglected in comparison to the other ones
and has no effect on the routing process.
The reinforcement signal T employed in the Q-learning algorithm can be defined as the
minimum of the sum of the estimated Q (y, x, d) sent by the router x neighbor of router y
and the latency in waiting queue qy corresponding to router y.

 { }
neighbor of y
min (, ,)yx

T q Q y x d
∈

= + (1)

Q(s, y, d) denote the estimated time by the router s so that the packet p reaches its
destination d through the router y. This parameter does not include the latency in the
waiting queue of the router s. The packet is sent to the router y which determines the
optimal path to send this packet (Watkins, 1989).

Fig. 6. Updating the reinforcement signal
Once the choice of the next router made, the router y puts the packet in the waiting queue,
and sends back the value T as a reinforcement signal to the router s. It can therefore update
its reinforcement function as:

 (, ,) ((, ,))Q s y d T Q s y dη αΔ = + − (2)

So, the new estimation),,(' dysQ can be written as follows (fig.6):

 '(, ,)Q s y d = (, ,)Q s y d ()1 η− + ()Tη α+ (3)

α and η are respectively, the packet transmission time between s and y, and the learning rate.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 13

3.2.2 Q-learning neural net architecture
The neural network proposed in our study is a Recurrent Multi-Layers Perceptron (MLP)
with an input, one hidden and an output layer.

Fig. 7. Artificial Neural Network Architecture

The input cells correspond to the destination addresses d and the waiting queue states. The
outputs are the estimated packet transfer times passing through the neighbors of the
considered router. The algorithm derived from this architecture is called Q-Neural Routing
and can be described according to the following algorithm:

Etiq1 :
{While (not packet receive)

Begin
End

}
If (packet = "packet of reinforcement")

Begin
1. Neural Network updating using a retro-propagation algorithm based on gradient

method,
2. Destroy the reinforcement packet.

End
Else

Begin
1. Calculate Neural Network outputs,
2. Select the smallest output value and get an IP address of the associated router,
3. Send the packet to this router,
4. Get an IP address of the precedent router,
5. Create and send the packet as a reinforcement signal.

End
End
Goto Etiq1

Machine Learning 12

supervised learning is that on-line performance is important: the evaluation of the system is
often concurrent with learning.
A Reinforcement Learning system thus involves the following elements: an Agent, an
Environment, a Reinforcement Function, an Action, a State, a Value Function, which is
obtained from the reinforcement function, and a Policy. In order to obtain a network routing
useful model, it is possible to associate the network’s elements to the basic elements of a RL
system, as shown in Table 1.

3.2.2 Q-learning algorithm for routing
In our routing algorithm (Mellouk, 2006), the objective is to minimize the average packet
delivery time. Consequently, the reinforcement signal which is chosen corresponds to the
estimated time to transfer a packet to its destination. Typically, the packet delivery time
includes three variables: The packet transmission time, the packet treatment time in the
router and the latency in the waiting queue. In our case, the packet transmission time is not
taken into account. In fact, this parameter can be neglected in comparison to the other ones
and has no effect on the routing process.
The reinforcement signal T employed in the Q-learning algorithm can be defined as the
minimum of the sum of the estimated Q (y, x, d) sent by the router x neighbor of router y
and the latency in waiting queue qy corresponding to router y.

 { }
neighbor of y
min (, ,)yx

T q Q y x d
∈

= + (1)

Q(s, y, d) denote the estimated time by the router s so that the packet p reaches its
destination d through the router y. This parameter does not include the latency in the
waiting queue of the router s. The packet is sent to the router y which determines the
optimal path to send this packet (Watkins, 1989).

Fig. 6. Updating the reinforcement signal
Once the choice of the next router made, the router y puts the packet in the waiting queue,
and sends back the value T as a reinforcement signal to the router s. It can therefore update
its reinforcement function as:

 (, ,) ((, ,))Q s y d T Q s y dη αΔ = + − (2)

So, the new estimation),,(' dysQ can be written as follows (fig.6):

 '(, ,)Q s y d = (, ,)Q s y d ()1 η− + ()Tη α+ (3)

α and η are respectively, the packet transmission time between s and y, and the learning rate.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 13

3.2.2 Q-learning neural net architecture
The neural network proposed in our study is a Recurrent Multi-Layers Perceptron (MLP)
with an input, one hidden and an output layer.

Fig. 7. Artificial Neural Network Architecture

The input cells correspond to the destination addresses d and the waiting queue states. The
outputs are the estimated packet transfer times passing through the neighbors of the
considered router. The algorithm derived from this architecture is called Q-Neural Routing
and can be described according to the following algorithm:

Etiq1 :
{While (not packet receive)

Begin
End

}
If (packet = "packet of reinforcement")

Begin
1. Neural Network updating using a retro-propagation algorithm based on gradient

method,
2. Destroy the reinforcement packet.

End
Else

Begin
1. Calculate Neural Network outputs,
2. Select the smallest output value and get an IP address of the associated router,
3. Send the packet to this router,
4. Get an IP address of the precedent router,
5. Create and send the packet as a reinforcement signal.

End
End
Goto Etiq1

Machine Learning 14

3.3 Implementation and simulation results
To show the efficiency and evaluate the performances of our approach, an implementation
has been performed on OPNET software of MIL3 Company. The proposed approach has
been compared to that based on standard Q-routing (Boyan & Littman, 1994) and shortest
path routing policy. OPNET constitutes for telecommunication networks an appropriate
modeling, scheduling and simulation tool. It allows the visualization of a physical topology
of a local, metropolitan, distant or on board network. The protocol specification language is
based on a formal description of a finite state automaton.
The proposed approaches have been compared to that based on standard Q-routing and
shortest paths routing policies (such as Routing Internet Protocol RIP). The topology of the
network used for simulations purpuse, which used in many papers, includes 33
interconnected nodes, as shown in figure 8. Two kinds of traffic have been studied: low load
and high load of the network. In the first case, a low rate flow is sent to node destination-1,
from nodes source-1 and source-4. From the previous case, we have created conditions of
congestion of the network. Thus, a high rate flow is generated by nodes source-2 and
source-3. Two possible ways R-1 (router-29 and router-30) and R-2 (router-21 and router-22)
to route the packets between the left part and the right part of the network.

Routeur 21

IBM PS/2 IBM PS/2

IBM PS/2
IBM PS/2

Routeur 22

Destination 1Source 1

Source 2 Source 3

R1

R2

Routeur 29 Routeur 30

IBM PS/2Source 4

Fig. 8. Network topology for simulation

Performances of algorithms are evaluated in terms of average packet delivery time. Figure 9
and figure 10 illustrates the obtained results when source-2 and source-3 send information
packets during 10 minutes. From figure 10, one can see clearly, that after an initialization
period, the Q-routing and Q-Neural routing algorithms, exhibit better performances than
RIP. Thus, packet average delivery time obtained by Q-routing algorithm and Q-Neural
routing algorithm is reduced of respectively 23.6% and 27.3% compared to RIP routing
policy (table 2). These results confirm that classical shortest path routing algorithm like RIP
lead to weak performances due to packets delayed in the waiting queues of the routers.
Moreover, this policy does not take into account the load of the network. On the other hand,
when a way of destination is saturated, Q-routing and Q-Neural routing algorithms allow

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 15

the selection of a new one to avoid this congestion. In the case of a low load (figure 10), one
can note that after a period of initialization, performances of these algorithms are
approximately the same as those obtained with RIP routing policy.

Fig. 9. Network with a low load Fig. 10. Network with a high load

Computed
Algorithms MAPTT

Q-routing 42

Q-neural
routing 40

RIP 55

Table 2. Maximum average packet delivery time

Figure 11 illustrates the average packet delivery time obtained when a congestion of the
network is generated during 60 minutes. Thus, in the case where the number of packets is
more important, the Q-Neural routing algorithm gives better results compared to Q-
routing algorithm. For example, after 2 hours of simulation, Q-Neural routing exhibits a
performance of 20% higher than that of Q-routing. Indeed, the use of waiting queue state
of the neighboring routers in the routing decision, allows anticipation of routers
congestion.
In general, the topology of the neural network must be fixed before the training process.
The only variables being able to be modified are the values of the weights of connections.
The specification of this architecture, the number of cells of each layer and of connections,
remains a crucial problem. If this number is insufficient, the model will not be able to take
into account all data. A contrario, if it is too significant, the training will be perfect but the
network generalization ability will be poor (overfitting problem). However, we are
concerned here by online training, for which the number of examples is not defined a
priori. For that, we propose an empirical study based on pruning technique to find a
compromise between a satisfactory estimate of the function Q and an acceptable
computing time.

Machine Learning 14

3.3 Implementation and simulation results
To show the efficiency and evaluate the performances of our approach, an implementation
has been performed on OPNET software of MIL3 Company. The proposed approach has
been compared to that based on standard Q-routing (Boyan & Littman, 1994) and shortest
path routing policy. OPNET constitutes for telecommunication networks an appropriate
modeling, scheduling and simulation tool. It allows the visualization of a physical topology
of a local, metropolitan, distant or on board network. The protocol specification language is
based on a formal description of a finite state automaton.
The proposed approaches have been compared to that based on standard Q-routing and
shortest paths routing policies (such as Routing Internet Protocol RIP). The topology of the
network used for simulations purpuse, which used in many papers, includes 33
interconnected nodes, as shown in figure 8. Two kinds of traffic have been studied: low load
and high load of the network. In the first case, a low rate flow is sent to node destination-1,
from nodes source-1 and source-4. From the previous case, we have created conditions of
congestion of the network. Thus, a high rate flow is generated by nodes source-2 and
source-3. Two possible ways R-1 (router-29 and router-30) and R-2 (router-21 and router-22)
to route the packets between the left part and the right part of the network.

Routeur 21

IBM PS/2 IBM PS/2

IBM PS/2
IBM PS/2

Routeur 22

Destination 1Source 1

Source 2 Source 3

R1

R2

Routeur 29 Routeur 30

IBM PS/2Source 4

Fig. 8. Network topology for simulation

Performances of algorithms are evaluated in terms of average packet delivery time. Figure 9
and figure 10 illustrates the obtained results when source-2 and source-3 send information
packets during 10 minutes. From figure 10, one can see clearly, that after an initialization
period, the Q-routing and Q-Neural routing algorithms, exhibit better performances than
RIP. Thus, packet average delivery time obtained by Q-routing algorithm and Q-Neural
routing algorithm is reduced of respectively 23.6% and 27.3% compared to RIP routing
policy (table 2). These results confirm that classical shortest path routing algorithm like RIP
lead to weak performances due to packets delayed in the waiting queues of the routers.
Moreover, this policy does not take into account the load of the network. On the other hand,
when a way of destination is saturated, Q-routing and Q-Neural routing algorithms allow

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 15

the selection of a new one to avoid this congestion. In the case of a low load (figure 10), one
can note that after a period of initialization, performances of these algorithms are
approximately the same as those obtained with RIP routing policy.

Fig. 9. Network with a low load Fig. 10. Network with a high load

Computed
Algorithms MAPTT

Q-routing 42

Q-neural
routing 40

RIP 55

Table 2. Maximum average packet delivery time

Figure 11 illustrates the average packet delivery time obtained when a congestion of the
network is generated during 60 minutes. Thus, in the case where the number of packets is
more important, the Q-Neural routing algorithm gives better results compared to Q-
routing algorithm. For example, after 2 hours of simulation, Q-Neural routing exhibits a
performance of 20% higher than that of Q-routing. Indeed, the use of waiting queue state
of the neighboring routers in the routing decision, allows anticipation of routers
congestion.
In general, the topology of the neural network must be fixed before the training process.
The only variables being able to be modified are the values of the weights of connections.
The specification of this architecture, the number of cells of each layer and of connections,
remains a crucial problem. If this number is insufficient, the model will not be able to take
into account all data. A contrario, if it is too significant, the training will be perfect but the
network generalization ability will be poor (overfitting problem). However, we are
concerned here by online training, for which the number of examples is not defined a
priori. For that, we propose an empirical study based on pruning technique to find a
compromise between a satisfactory estimate of the function Q and an acceptable
computing time.

Machine Learning 16

Fig. 11. Very High load Network

Fig. 12. Empirical pruning study for choosing the number of hidden cells over time

The Neural network structure has been fixed using an empirical pruning strategy (figure
12). A self-organizing approach is useful for automatic adjustment of the neural network
parameters as the number of neuron per layer and the hidden layers numbers for example.
Next section introduces such a concept and present complexity estimation based self
organizing structure.

4. Self-organizing modular information processing through the Tree-like
Divide To Simplify approach
This section presents in detail the “Tree-like-Divide To Simplify” (T-DTS) approach, define
its structure, and describe the types of modules that are used in the structure. T-DTS is
based on modular tree-like decomposition structure, which is used amongst others for task
decomposition. This section will present also in detail procedures and algorithms that are
used for the creation, execution and modification of the modules. It will discuss also
advantages and disadvantages of T-DTS approach and compare it with other approaches.
T-DTS is a self-organizing modular structure including two types of modules:
Decomposition Unit (DU) and Processing Unit (PU). The purpose is based on the use of a set
of specialized mapping neural networks (PU), supervised by a set of DU. DU could be a
prototype based neural network, Markovian decision process, etc. The T-DTS paradigm

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 10 20 50 80 100 150 200 250 300

ite

ra
tio

ns

hidden cells

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 17

allows us to build a modular tree structure. In such structure, DU could be seen as “nodes”
and PU as leaves. At the nodes level, the input space is decomposed into a set of subspaces
of smaller sizes. At the leaves level, the aim is to learn the relations between inputs and
outputs of sub-spaces, obtained from splitting. As the modules are based on Artificial
Neural Networks, they inherit the ANN’s approximation universality as well as their
learning and generalization abilities.

4.1 Hybrid Multiple Neural Networks framework - T-DTS
As it has been mentioned above, in essence, T-DTS is a self-organizing modular structure
(Madani et Al., 2003). T-DTS paradigm builds a tree-like structure of models (DU and PU).
Decomposition Units are prototypes based ANNs and Processing Units are specialized
mapping ANNs. However, in a general frame, PU could be any kind of processing model
(conventional algorithm or model, ANN based model, etc…). At the nodes level(s) - the
input space is decomposed into a set of optimal sub-spaces of the smaller size. At the leaves
level(s) - the aim is to learn the relation between inputs and outputs of sub-spaces obtained
from splitting. T-DTS acts in two main operational phases:
Learning: recursive decomposition under DU supervision of the database into sub-sets: tree
structure building phase;
Operational: Activation of the tree structure to compute system output (provided by PU at
tree leaf’s level).
General block diagram of T-DTS is described on Figure 13. The proposed schema is open
software architecture. It can be adapted to specific problem using the appropriate modeling
paradigm at PU level: we use mainly Artificial Neural Network computing model in this
work. In our case the tree structure construction is based on a complexity estimation
module. This module introduces a feedback in the learning process and control the tree
building process. The reliability of tree model to sculpt the problem behavior is associated to
the complexity estimation module. The whole decomposing process is built on the paradigm
“splitting database into sub-databases - decreasing task complexity”. It means that the
decomposition process is activated until a low satisfactory complexity ratio is reached. T- DTS

Processing Results

Structure Construction

Learning Phase
Feature Space Splitting

NN based Models Generation

Preprocessing (Normalizing,
Removing Outliers, Principal

Component Analysis)

(PD) - Preprocessed Data Targets (T)

Data (D), Targets (T)

P – Prototypes NNTP - NN Trained Parameters

Operation Phase

Complexity
Estimation

Module

Fig. 13. Bloc scheme of T-DTS: Left – Modular concept, Right – Algorithmic concept

Machine Learning 16

Fig. 11. Very High load Network

Fig. 12. Empirical pruning study for choosing the number of hidden cells over time

The Neural network structure has been fixed using an empirical pruning strategy (figure
12). A self-organizing approach is useful for automatic adjustment of the neural network
parameters as the number of neuron per layer and the hidden layers numbers for example.
Next section introduces such a concept and present complexity estimation based self
organizing structure.

4. Self-organizing modular information processing through the Tree-like
Divide To Simplify approach
This section presents in detail the “Tree-like-Divide To Simplify” (T-DTS) approach, define
its structure, and describe the types of modules that are used in the structure. T-DTS is
based on modular tree-like decomposition structure, which is used amongst others for task
decomposition. This section will present also in detail procedures and algorithms that are
used for the creation, execution and modification of the modules. It will discuss also
advantages and disadvantages of T-DTS approach and compare it with other approaches.
T-DTS is a self-organizing modular structure including two types of modules:
Decomposition Unit (DU) and Processing Unit (PU). The purpose is based on the use of a set
of specialized mapping neural networks (PU), supervised by a set of DU. DU could be a
prototype based neural network, Markovian decision process, etc. The T-DTS paradigm

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 10 20 50 80 100 150 200 250 300

ite

ra
tio

ns

hidden cells

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 17

allows us to build a modular tree structure. In such structure, DU could be seen as “nodes”
and PU as leaves. At the nodes level, the input space is decomposed into a set of subspaces
of smaller sizes. At the leaves level, the aim is to learn the relations between inputs and
outputs of sub-spaces, obtained from splitting. As the modules are based on Artificial
Neural Networks, they inherit the ANN’s approximation universality as well as their
learning and generalization abilities.

4.1 Hybrid Multiple Neural Networks framework - T-DTS
As it has been mentioned above, in essence, T-DTS is a self-organizing modular structure
(Madani et Al., 2003). T-DTS paradigm builds a tree-like structure of models (DU and PU).
Decomposition Units are prototypes based ANNs and Processing Units are specialized
mapping ANNs. However, in a general frame, PU could be any kind of processing model
(conventional algorithm or model, ANN based model, etc…). At the nodes level(s) - the
input space is decomposed into a set of optimal sub-spaces of the smaller size. At the leaves
level(s) - the aim is to learn the relation between inputs and outputs of sub-spaces obtained
from splitting. T-DTS acts in two main operational phases:
Learning: recursive decomposition under DU supervision of the database into sub-sets: tree
structure building phase;
Operational: Activation of the tree structure to compute system output (provided by PU at
tree leaf’s level).
General block diagram of T-DTS is described on Figure 13. The proposed schema is open
software architecture. It can be adapted to specific problem using the appropriate modeling
paradigm at PU level: we use mainly Artificial Neural Network computing model in this
work. In our case the tree structure construction is based on a complexity estimation
module. This module introduces a feedback in the learning process and control the tree
building process. The reliability of tree model to sculpt the problem behavior is associated to
the complexity estimation module. The whole decomposing process is built on the paradigm
“splitting database into sub-databases - decreasing task complexity”. It means that the
decomposition process is activated until a low satisfactory complexity ratio is reached. T- DTS

Processing Results

Structure Construction

Learning Phase
Feature Space Splitting

NN based Models Generation

Preprocessing (Normalizing,
Removing Outliers, Principal

Component Analysis)

(PD) - Preprocessed Data Targets (T)

Data (D), Targets (T)

P – Prototypes NNTP - NN Trained Parameters

Operation Phase

Complexity
Estimation

Module

Fig. 13. Bloc scheme of T-DTS: Left – Modular concept, Right – Algorithmic concept

Machine Learning 18

software architecture is depicted on Figure 14. T-DTS software incorporates three databases:
decomposition methods, ANN models and complexity estimation modules databases.

Fig. 14. T-DTS software architecture

T-DTS software engine is the Control Unit. This core-module controls and activates several
software packages: normalization of incoming database (if it’s required), splitting and
building a tree of prototypes using selected decomposition method, sculpting the set of local
results and generating global result (learning and generalization rates). T-DTS software can
be seen as a Lego system of decomposition methods, processing methods powered by a
control engine an accessible by operator thought Graphic User Interface.
The three databases can be independently developed out of the main frame and more
important, they can be easily incorporated into T-DTS framework.
For example, SOM-LSVMDT (Mehmet et al., 2003) algorithm; which is based on the same
idea of decomposition, can be implement by T-DTS by mean of LSVMDT (Chi & Ersoy,
2002) (Linear Support Vector Machine Decision Tree) processing method incorporation into
PU database.
- The current T-DTS software (version 2.02) includes the following units and methods:

 Decomposition Units:
 CN (Competitive Network)
 SOM (Self Organized Map)
 LVQ (Learning Vector Quantization)

- Processing Units:
 LVQ (Learning Vector Quantization)
 Perceptrons
 MLP (Multilayer Perceptron)
 GRNN (General Regression Neural Network)
 RBF (Radial basis function network)
 PNN (Probabilistic Neural Network)
 LN

- Complexity estimators (Bouyoucef, 2007), presented in sub-section 4.2.5, are based on
the following criteria:

 MaxStd (Sum of the maximal standard deviations)

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 19

 Fisher measure.
 Purity measure
 Normalized mean distance
 Divergence measure
 Jeffries-Matusita distance
 Bhattacharyya bound
 Mahalanobis distance
 Scattered-matrix method based on inter-intra matrix-criteria (Fukunaga, 1972).
 ZISC© IBM ® based complexity indicator (Budnyk & al. 2007).

4.2 T-DTS learning and decomposition mechanism
The decomposition mechanism in T-DTS approach builds a tree structure. The creation of
decomposition tree is data-driven. It means that the decision to-split-or-not and how-to-split
is made depending on the properties of the current sub-database. For each database the
decision to-split-or-not should be made. After a positive decision a Decomposition Unit
(DU) is created which divides the data and distributes the resulting sub-databases creating
children in the tree. If the decision is negative the decomposition of this sub-database (and
tree branch) is over and a Processing Unit should be built for the sub-database. The type of
the new tree module depends on the result of decomposition decision made for the current
sub-database (and in some cases also on other parameters, as described later). The tree is
built beginning from the root which achieves the complete learning database. The process
results in a tree which has DUs at nodes and Processing Unit models in tree leaves.
Figure 15 shows decomposition tree structure (in case of binary tree) and its recurrent
construction in time, while question marks mean decomposition decisions.
For any database B (including the initial) a splitting decision (if to split and how to split) is
taken. When the decision is positive then a Decomposition Unit is created, and the database
is decomposed (clustered) by the new Decomposition Unit. When the decomposition
decision is negative, a Processing Unit is created in order to process the database (for
example to create a model).
The database B incoming to some Decomposition Unit will be split into several sub-
databases b1,b2...bk , depending on the properties of the database B and parameters τ

obtained from controlling structure. The function S(ψi,τ) assigns any vector ψi from database

B to an appropriate sub-database j. The procedure is repeated in recursive way i.e. for each
resulting sub-database a decomposition decision is taken and the process repeats. One chain
of the process is depicted in figure 16.

T
Mki sssξτS)......(=),,Ψ(1 with

else0=
=and= if1= k

k

kk

s
ξξττs (4)

The scheduling vector S(ψi,τk) will activate (select) the K-th Processing Unit, and so the
processing of an unlearned input data conform to parameter τk and condition ξk will be given
by the output of the selected Processing Unit:

 () ()()i k k iY Y i FΨ = = Ψ (5)

Complexity indicators are used in our approach in order to reach one of the following goals:

Machine Learning 18

software architecture is depicted on Figure 14. T-DTS software incorporates three databases:
decomposition methods, ANN models and complexity estimation modules databases.

Fig. 14. T-DTS software architecture

T-DTS software engine is the Control Unit. This core-module controls and activates several
software packages: normalization of incoming database (if it’s required), splitting and
building a tree of prototypes using selected decomposition method, sculpting the set of local
results and generating global result (learning and generalization rates). T-DTS software can
be seen as a Lego system of decomposition methods, processing methods powered by a
control engine an accessible by operator thought Graphic User Interface.
The three databases can be independently developed out of the main frame and more
important, they can be easily incorporated into T-DTS framework.
For example, SOM-LSVMDT (Mehmet et al., 2003) algorithm; which is based on the same
idea of decomposition, can be implement by T-DTS by mean of LSVMDT (Chi & Ersoy,
2002) (Linear Support Vector Machine Decision Tree) processing method incorporation into
PU database.
- The current T-DTS software (version 2.02) includes the following units and methods:

 Decomposition Units:
 CN (Competitive Network)
 SOM (Self Organized Map)
 LVQ (Learning Vector Quantization)

- Processing Units:
 LVQ (Learning Vector Quantization)
 Perceptrons
 MLP (Multilayer Perceptron)
 GRNN (General Regression Neural Network)
 RBF (Radial basis function network)
 PNN (Probabilistic Neural Network)
 LN

- Complexity estimators (Bouyoucef, 2007), presented in sub-section 4.2.5, are based on
the following criteria:

 MaxStd (Sum of the maximal standard deviations)

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 19

 Fisher measure.
 Purity measure
 Normalized mean distance
 Divergence measure
 Jeffries-Matusita distance
 Bhattacharyya bound
 Mahalanobis distance
 Scattered-matrix method based on inter-intra matrix-criteria (Fukunaga, 1972).
 ZISC© IBM ® based complexity indicator (Budnyk & al. 2007).

4.2 T-DTS learning and decomposition mechanism
The decomposition mechanism in T-DTS approach builds a tree structure. The creation of
decomposition tree is data-driven. It means that the decision to-split-or-not and how-to-split
is made depending on the properties of the current sub-database. For each database the
decision to-split-or-not should be made. After a positive decision a Decomposition Unit
(DU) is created which divides the data and distributes the resulting sub-databases creating
children in the tree. If the decision is negative the decomposition of this sub-database (and
tree branch) is over and a Processing Unit should be built for the sub-database. The type of
the new tree module depends on the result of decomposition decision made for the current
sub-database (and in some cases also on other parameters, as described later). The tree is
built beginning from the root which achieves the complete learning database. The process
results in a tree which has DUs at nodes and Processing Unit models in tree leaves.
Figure 15 shows decomposition tree structure (in case of binary tree) and its recurrent
construction in time, while question marks mean decomposition decisions.
For any database B (including the initial) a splitting decision (if to split and how to split) is
taken. When the decision is positive then a Decomposition Unit is created, and the database
is decomposed (clustered) by the new Decomposition Unit. When the decomposition
decision is negative, a Processing Unit is created in order to process the database (for
example to create a model).
The database B incoming to some Decomposition Unit will be split into several sub-
databases b1,b2...bk , depending on the properties of the database B and parameters τ

obtained from controlling structure. The function S(ψi,τ) assigns any vector ψi from database

B to an appropriate sub-database j. The procedure is repeated in recursive way i.e. for each
resulting sub-database a decomposition decision is taken and the process repeats. One chain
of the process is depicted in figure 16.

T
Mki sssξτS)......(=),,Ψ(1 with

else0=
=and= if1= k

k

kk

s
ξξττs (4)

The scheduling vector S(ψi,τk) will activate (select) the K-th Processing Unit, and so the
processing of an unlearned input data conform to parameter τk and condition ξk will be given
by the output of the selected Processing Unit:

 () ()()i k k iY Y i FΨ = = Ψ (5)

Complexity indicators are used in our approach in order to reach one of the following goals:

Machine Learning 20

- Global decomposition control - estimator which evaluates the difficulty of classification
of the whole dataset and chooses decomposition strategy and parameters before any
decomposition has started,

- Local decomposition control - estimator which evaluates the difficulty of classification
of the current sub-database during decomposition of dataset, in particular:

 Estimator which evaluates the difficulty of classification of the current sub-database,
to produce decomposition decision (if to divide the current sub-database or not);

 Estimator which can be used to determine the type of used classifier or its
properties and parameters.

- Mixed approach - use of many techniques mentioned above at once, for example: usage
of Global decomposition control to determine the parameters of local decomposition
control.

One should mention also that estimation of sub-database complexity occurs for each sub-
database dividing decision thus computational complexity of the algorithm should rather be
small. Thus it doesn't require advanced complexity estimation methods. Considering these
features, the second option - estimation during decomposition - has been chosen in our
experiments in order to achieve self adaptation feature of T-DTS structure.

Fig. 15. T-DTS decomposition tree creation in time

Fig. 16. Decomposition Unit activities

DU DU

DU

DU

?

?

PU

DU

DU

DU

DU

DU

DU

?

?

?

?

PU

PU

PU

DU

DU

DU

DU

PU

PU
DU

PU

PU
DU

?
?

?
?

?
?

Ψi S(Ψi, τ)

Parameters: τ

Decomposition
Unit

sub-databases bi
 Original database B

b1
b2

b3

B

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 21

4.2.1 Decomposition Unit (DU)
The purpose of Decomposition Unit is to divide the database into several sub-databases.
This task is referred in the literature as clustering (Hartgan, 1975). To accomplish this task a
plenty of methods are known. We are using Vector Quantization unsupervised methods, in
particular: competitive Neural Networks and Kohonen Self-Organizing Maps (Kohonen,
1984). These methods are based on prototype, that represent the centre of cluster (cluster =
group of vectors). In our approach cluster is referred to as sub-database.

4.2.2 Decomposition of learning database
The learning database is split into M learning sub-databases by DUs during building of the
decomposition tree. The learning database decomposition is equivalent to "following the
decomposition tree" decomposition strategy. The resulting learning sub-databases could be
used for Processing Unit learning. Each sub-database has then Processing Unit attached. The
Processing Unit models are trained using the corresponding learning sub-database.

Fig. 17. Decomposition of learning database "following the decomposition tree" strategy

4.2.3 Training of Processing Units (models)
For each sub-database T-DTS constructs a neural based model describing the relations
between inputs and outputs. Training of Processing Unit models is performed using
standard supervised training techniques, possibly most appropriate for the learning task
required. In this work only Artificial Neural Networks are used, however there should be no
difficulty to use other modelling techniques.
Processing Unit is provided with a sub-database and target data. It is expected to model the
input/output mapping underlying the subspace as reflected by the sub-database provided.
The trained model is used later to process data patterns assigned to the Processing Unit by
assignment rules.

4.2.4 Processing Units
Processing Unit models used in our approach can be of any origin. In fact they could be also
not based on Artificial Neural Networks at all. The structure used depend on the type of
learning task, we use:

Learning
database

DU

DU

DU

DU

DU

DU

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Machine Learning 20

- Global decomposition control - estimator which evaluates the difficulty of classification
of the whole dataset and chooses decomposition strategy and parameters before any
decomposition has started,

- Local decomposition control - estimator which evaluates the difficulty of classification
of the current sub-database during decomposition of dataset, in particular:

 Estimator which evaluates the difficulty of classification of the current sub-database,
to produce decomposition decision (if to divide the current sub-database or not);

 Estimator which can be used to determine the type of used classifier or its
properties and parameters.

- Mixed approach - use of many techniques mentioned above at once, for example: usage
of Global decomposition control to determine the parameters of local decomposition
control.

One should mention also that estimation of sub-database complexity occurs for each sub-
database dividing decision thus computational complexity of the algorithm should rather be
small. Thus it doesn't require advanced complexity estimation methods. Considering these
features, the second option - estimation during decomposition - has been chosen in our
experiments in order to achieve self adaptation feature of T-DTS structure.

Fig. 15. T-DTS decomposition tree creation in time

Fig. 16. Decomposition Unit activities

DU DU

DU

DU

?

?

PU

DU

DU

DU

DU

DU

DU

?

?

?

?

PU

PU

PU

DU

DU

DU

DU

PU

PU
DU

PU

PU
DU

?
?

?
?

?
?

Ψi S(Ψi, τ)

Parameters: τ

Decomposition
Unit

sub-databases bi
 Original database B

b1
b2

b3

B

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 21

4.2.1 Decomposition Unit (DU)
The purpose of Decomposition Unit is to divide the database into several sub-databases.
This task is referred in the literature as clustering (Hartgan, 1975). To accomplish this task a
plenty of methods are known. We are using Vector Quantization unsupervised methods, in
particular: competitive Neural Networks and Kohonen Self-Organizing Maps (Kohonen,
1984). These methods are based on prototype, that represent the centre of cluster (cluster =
group of vectors). In our approach cluster is referred to as sub-database.

4.2.2 Decomposition of learning database
The learning database is split into M learning sub-databases by DUs during building of the
decomposition tree. The learning database decomposition is equivalent to "following the
decomposition tree" decomposition strategy. The resulting learning sub-databases could be
used for Processing Unit learning. Each sub-database has then Processing Unit attached. The
Processing Unit models are trained using the corresponding learning sub-database.

Fig. 17. Decomposition of learning database "following the decomposition tree" strategy

4.2.3 Training of Processing Units (models)
For each sub-database T-DTS constructs a neural based model describing the relations
between inputs and outputs. Training of Processing Unit models is performed using
standard supervised training techniques, possibly most appropriate for the learning task
required. In this work only Artificial Neural Networks are used, however there should be no
difficulty to use other modelling techniques.
Processing Unit is provided with a sub-database and target data. It is expected to model the
input/output mapping underlying the subspace as reflected by the sub-database provided.
The trained model is used later to process data patterns assigned to the Processing Unit by
assignment rules.

4.2.4 Processing Units
Processing Unit models used in our approach can be of any origin. In fact they could be also
not based on Artificial Neural Networks at all. The structure used depend on the type of
learning task, we use:

Learning
database

DU

DU

DU

DU

DU

DU

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Learning
sub-database

Machine Learning 22

- for classification - MLP, LVQ, Probabilistic Networks (Haykin, 1999), RBF, Linear
Networks;

- for regression - MLP, RBF;
- for model identification - MLP.
Processing Unit models are created and trained in the learning phase of T-DTS algorithm,
using learning sub-databases assigned by decomposition structure. In the generalization
phase, they are provided with generalization vectors assigned to them by pattern
assignment rules. The vectors form generalization sub-databases are processed by
Processing Unit models. Each Processing Unit produce some set of approximated output
vectors, and the ensemble of them will compose whole generalization database.

4.2.5 Complexity estimation techniques
The goal of complexity estimation techniques is to estimate the processing task’s difficulty.
The information provided by these techniques is mainly used in a splitting process
according to a divide and conquer approach. It act’s at three levels:
- The task decomposition process up to some degree dependant on task or data complexity.
- The choice of appropriate processing structure (i.e. appropriated model) for each subset

of decomposed data.
- The choice of processing architecture (i.e. models parameters).
The techniques usually used for complexity estimation are sorted out in three main
categories: those based on Bayes error estimation, those based on space partitioning
methods and others based on intuitive paradigms. Bayes error estimation may involve two
classes of approaches, known as: indirect and non-parametric Bayes error estimation methods,
respectively. This sub-section of the chapter will present a detailed summery of these main
complexity estimation methods which are used in the T-DTS self-organizing system core,
focusing mainly on measurements supporting task decomposition aspect.
4.2.5.1 Indirect Bayes error estimation
To avoid the difficulties related to direct estimation of the Bayes error, an alternative
approach is to estimate a measure directly related to the Bayes error, but easier to compute.
Usually one assumes that the data distribution is normal (Gaussian). Statistical methods
grounded in the estimation of probability distributions are most frequently used. The
drawback of these is that they assume data normality. A number of limitations have been
documented in literature (Vapnik, 1998):
- model construction could be time consuming;
- model checking could be difficult;
- as data dimensionality increases, a much larger number of samples is needed to

estimate accurately class conditional probabilities;
- if sample does not sufficiently represent the problem, the probability distribution

function cannot be reliably approximated;
- with a large number of classes, estimating a priori probabilities is quite difficult. This

can be only partially overcome by assuming equal class probabilities (Fukunaga, 1990),
(Ho & Basu, 2002).

- we normally do not know the density form (distribution function);
- most distributions in practice are multimodal, while models are unimodal;
- approximating a multimodal distributions as a product of univariate distributions do

not work well in practice.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 23

4.2.5.1.1 Normalized mean distance

Normalized mean distance is a very simple complexity measure for Gaussian unimodal
distribution. It raises when the distributions are distant and not overlapping.

 1 2

1 2
normd

μ μ
σ σ

−
=

+
 (6)

The main drawback of that estimator is that it is inadequate (as a measure of separability)
when both classes have the same mean values.

4.2.5.1.2 Chernoff bound

The Bayes error for the two class case can be expressed as:

 ()min () |k ki
P c p x c dxε = ⎡ ⎤⎣ ⎦∫ (7)

Through modifications, we can obtain a Chernoff bound εu, which is an upper bound on ε for
the two class case:

 1 1
1 2 1 2() () (|) (|)s s s s

u P c P c p x c p x c dxε − −= ∫ for 0≤s≤1 (8)

The tightness of bound varies with s.
4.2.5.1.3 Bhattacharyya bound

The Bhattacharyya bound is a special case of Chernoff bound for s = 1/2. Empirical evidence
indicates that optimal value for Chernoff bound is close to 1/2 when the majority of
separation comes from the difference in class means. Under a Gaussian assumption, the
expression of the Bhattacharyya bound is:

 (1/2)
1 2() ()b P c P c e με −= (9)

where:

 1 21
21 2

2 1 2 1
1 2

1 1(1/ 2) () () ln
8 2 2

Tμ μ μ μ μ
Σ +Σ−Σ +Σ⎡ ⎤= − − +⎢ ⎥⎣ ⎦ Σ Σ

 (10)

and μi and Σi are respectively the means and classes covariance’s (i in {1,2}).

4.2.5.1.4 Mahalanobis distance

Mahalanobis distance (Takeshita et al., 1987) is defined as follows:

 () ()1
2 1 2 1

T
DM μ μ μ μ−= − Σ − (11)

MD is the Mahalanobis distance between two classes. The classes' means are μ1 and μ2 and Σ
is the covariance matrix. Mahalanobis distance is used in statistics to measure the similarity
of two data distributions. It is sensitive to distribution of points in both samples. The
Mahalanobis distance is measured in units of standard deviation, so it is possible to assign
statistical probabilities (that the data comes from the same class) to the specific measure

Machine Learning 22

- for classification - MLP, LVQ, Probabilistic Networks (Haykin, 1999), RBF, Linear
Networks;

- for regression - MLP, RBF;
- for model identification - MLP.
Processing Unit models are created and trained in the learning phase of T-DTS algorithm,
using learning sub-databases assigned by decomposition structure. In the generalization
phase, they are provided with generalization vectors assigned to them by pattern
assignment rules. The vectors form generalization sub-databases are processed by
Processing Unit models. Each Processing Unit produce some set of approximated output
vectors, and the ensemble of them will compose whole generalization database.

4.2.5 Complexity estimation techniques
The goal of complexity estimation techniques is to estimate the processing task’s difficulty.
The information provided by these techniques is mainly used in a splitting process
according to a divide and conquer approach. It act’s at three levels:
- The task decomposition process up to some degree dependant on task or data complexity.
- The choice of appropriate processing structure (i.e. appropriated model) for each subset

of decomposed data.
- The choice of processing architecture (i.e. models parameters).
The techniques usually used for complexity estimation are sorted out in three main
categories: those based on Bayes error estimation, those based on space partitioning
methods and others based on intuitive paradigms. Bayes error estimation may involve two
classes of approaches, known as: indirect and non-parametric Bayes error estimation methods,
respectively. This sub-section of the chapter will present a detailed summery of these main
complexity estimation methods which are used in the T-DTS self-organizing system core,
focusing mainly on measurements supporting task decomposition aspect.
4.2.5.1 Indirect Bayes error estimation
To avoid the difficulties related to direct estimation of the Bayes error, an alternative
approach is to estimate a measure directly related to the Bayes error, but easier to compute.
Usually one assumes that the data distribution is normal (Gaussian). Statistical methods
grounded in the estimation of probability distributions are most frequently used. The
drawback of these is that they assume data normality. A number of limitations have been
documented in literature (Vapnik, 1998):
- model construction could be time consuming;
- model checking could be difficult;
- as data dimensionality increases, a much larger number of samples is needed to

estimate accurately class conditional probabilities;
- if sample does not sufficiently represent the problem, the probability distribution

function cannot be reliably approximated;
- with a large number of classes, estimating a priori probabilities is quite difficult. This

can be only partially overcome by assuming equal class probabilities (Fukunaga, 1990),
(Ho & Basu, 2002).

- we normally do not know the density form (distribution function);
- most distributions in practice are multimodal, while models are unimodal;
- approximating a multimodal distributions as a product of univariate distributions do

not work well in practice.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 23

4.2.5.1.1 Normalized mean distance

Normalized mean distance is a very simple complexity measure for Gaussian unimodal
distribution. It raises when the distributions are distant and not overlapping.

 1 2

1 2
normd

μ μ
σ σ

−
=

+
 (6)

The main drawback of that estimator is that it is inadequate (as a measure of separability)
when both classes have the same mean values.

4.2.5.1.2 Chernoff bound

The Bayes error for the two class case can be expressed as:

 ()min () |k ki
P c p x c dxε = ⎡ ⎤⎣ ⎦∫ (7)

Through modifications, we can obtain a Chernoff bound εu, which is an upper bound on ε for
the two class case:

 1 1
1 2 1 2() () (|) (|)s s s s

u P c P c p x c p x c dxε − −= ∫ for 0≤s≤1 (8)

The tightness of bound varies with s.
4.2.5.1.3 Bhattacharyya bound

The Bhattacharyya bound is a special case of Chernoff bound for s = 1/2. Empirical evidence
indicates that optimal value for Chernoff bound is close to 1/2 when the majority of
separation comes from the difference in class means. Under a Gaussian assumption, the
expression of the Bhattacharyya bound is:

 (1/2)
1 2() ()b P c P c e με −= (9)

where:

 1 21
21 2

2 1 2 1
1 2

1 1(1/ 2) () () ln
8 2 2

Tμ μ μ μ μ
Σ +Σ−Σ +Σ⎡ ⎤= − − +⎢ ⎥⎣ ⎦ Σ Σ

 (10)

and μi and Σi are respectively the means and classes covariance’s (i in {1,2}).

4.2.5.1.4 Mahalanobis distance

Mahalanobis distance (Takeshita et al., 1987) is defined as follows:

 () ()1
2 1 2 1

T
DM μ μ μ μ−= − Σ − (11)

MD is the Mahalanobis distance between two classes. The classes' means are μ1 and μ2 and Σ
is the covariance matrix. Mahalanobis distance is used in statistics to measure the similarity
of two data distributions. It is sensitive to distribution of points in both samples. The
Mahalanobis distance is measured in units of standard deviation, so it is possible to assign
statistical probabilities (that the data comes from the same class) to the specific measure

Machine Learning 24

values. Mahalanobis distance greater than 3 is considered as a signal that data are not
homogenous (does not come from the same distribution).
4.2.5.1.5 Jeffries-Matusita distance

Jeffries-Matusita (Matusita ,1967) distance between class’s c1 and c2 is defined as:

 () (){ }2

2 1| |D x
JM p X c p X c dx= −∫ (12)

If class’s distributions are normal Jeffries-Matusita distance reduces to:

 ()2 1DJM e α−= − , where (13)

() ()

1
2 1

2 1 2 1
1 2

1 1 detlog
8 2 2 det det

T
eα μ μ μ μ

− ⎛ ⎞Σ +Σ Σ⎛ ⎞= − − + ⎜ ⎟⎜ ⎟ Σ − Σ⎝ ⎠ ⎝ ⎠

(14)

Matusita distance is bounded within range [0, 2] where high values signify high separation
between c1 and c2 classes.
4.2.5.2 Non-Parametric Bayes error estimation and bounds
Non-parametric Bayes error estimation methods make no assumptions about the specific
distributions involved. They use some intuitive methods and then prove the relation to
Bayes error. Non-parametric techniques do not suffer from problems with parametric
techniques.

4.2.5.2.1 Error of the classifier itself

This is the most intuitive measure. However it varies much depending on the type of
classifier used and, as such, it is not very reliable unless one uses many classification
methods and averages the results. The last solution is certainly not computationally
efficient.

4.2.5.2.2 k-Nearest Neighbours, (k-NN)

K- Nearest Neighbours (Cove & Hart, 1967) technique relays on the concept of setting a local
region Γ(x) around each sample x and examining the ratio of the number of samples
enclosed k to the total number of samples N, normalized with respect to region volume v:

 ()() k xp x
vN

= (15)

K-NN technique fixes the number of samples enclosed by the local region (k becomes
constant). The density estimation Equation for k-NN becomes:

 -1()
()
kp x
v x N

= (16)

where p(x) represent probability of specific class appearance and v(x) represent local region
volume. K-NN is used to estimate Bayes error by either providing an asymptotic bound or
through direct estimation. K-NN estimation is computationally complex.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 25

4.2.5.2.3 Paren Estimation
Parzen techniques relay on the same concept as k-NN: setting a local region Γ(x) around
each sample x and examining the ratio of the samples enclosed k, to the total number of
samples N, normalized with respect to region volume v:

 () kp x
vN

= (17)

The difference according to k-NN is that Parzen fixes the volume of local region v. Then the
density estimation equation becomes:

 ()() k xp x
vN

= (18)

where p(x) represents density and k(x) represents number of samples enclosed in volume.
Estimating the Bayes error using the Parzen estimate is done by forming the log likelihood
ratio functions based upon the Parzen density estimates and then using resubstitution and
leave-one-out methodologies to find an optimistic and pessimistic value for error estimate.
Parzen estimates are however not known to bound the Bayes error. Parzen estimation is
computationally complex.

4.2.5.2.4 Boundary methods

The boundary methods are described in the work of Pierson (Pierson, 1998). Data from each
class is enclosed within a boundary of specified shape according to some criteria. The
boundaries can be generated using general shapes like: ellipses, convex hulls, splines and
others. The boundary method often uses ellipsoidal boundaries for Gaussian data, since it is
a natural representation of those. The boundaries may be made compact by excluding
outlying observations. Since most decision boundaries pass through overlap regions, a
count of these samples may give a measure related to misclassification rate. Collapsing
boundaries iteratively in a structured manner and counting the measure again lead to a
series of decreasing values related to misclassification error. The rate of overlap region
decay provides information about the separability of classes. Pierson discuses in his work a
way in which the process from two classes in two dimensions can be expanded to higher
dimension with more classes. Pierson has demonstrated that the measure of separability
called the Overlap Sum is directly related to Bayes error with a much more simple
computational complexity. It does not require any exact knowledge of the a posteriori
distributions. Overlap Sum is the arithmetical mean of overlapped points with respect to
progressive collapsing iterations:

0 0 0

1

1() () ()
m

S
k

O mt kt s kt
N =

= Δ∑ (19)

where to is the step size, m is the maximum number of iteration (collapsing boundaries), N is
the number of data points in whole dataset and Δs(kt0) is the number of points in the
differential overlap.
4.2.5.3 Measures related to space partitioning
Measures related to space partitioning are connected to space partitioning algorithms. Space
partitioning algorithms divide the feature space into sub-spaces. That allows obtaining some

Machine Learning 24

values. Mahalanobis distance greater than 3 is considered as a signal that data are not
homogenous (does not come from the same distribution).
4.2.5.1.5 Jeffries-Matusita distance

Jeffries-Matusita (Matusita ,1967) distance between class’s c1 and c2 is defined as:

 () (){ }2

2 1| |D x
JM p X c p X c dx= −∫ (12)

If class’s distributions are normal Jeffries-Matusita distance reduces to:

 ()2 1DJM e α−= − , where (13)

() ()

1
2 1

2 1 2 1
1 2

1 1 detlog
8 2 2 det det

T
eα μ μ μ μ

− ⎛ ⎞Σ +Σ Σ⎛ ⎞= − − + ⎜ ⎟⎜ ⎟ Σ − Σ⎝ ⎠ ⎝ ⎠

(14)

Matusita distance is bounded within range [0, 2] where high values signify high separation
between c1 and c2 classes.
4.2.5.2 Non-Parametric Bayes error estimation and bounds
Non-parametric Bayes error estimation methods make no assumptions about the specific
distributions involved. They use some intuitive methods and then prove the relation to
Bayes error. Non-parametric techniques do not suffer from problems with parametric
techniques.

4.2.5.2.1 Error of the classifier itself

This is the most intuitive measure. However it varies much depending on the type of
classifier used and, as such, it is not very reliable unless one uses many classification
methods and averages the results. The last solution is certainly not computationally
efficient.

4.2.5.2.2 k-Nearest Neighbours, (k-NN)

K- Nearest Neighbours (Cove & Hart, 1967) technique relays on the concept of setting a local
region Γ(x) around each sample x and examining the ratio of the number of samples
enclosed k to the total number of samples N, normalized with respect to region volume v:

 ()() k xp x
vN

= (15)

K-NN technique fixes the number of samples enclosed by the local region (k becomes
constant). The density estimation Equation for k-NN becomes:

 -1()
()
kp x
v x N

= (16)

where p(x) represent probability of specific class appearance and v(x) represent local region
volume. K-NN is used to estimate Bayes error by either providing an asymptotic bound or
through direct estimation. K-NN estimation is computationally complex.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 25

4.2.5.2.3 Paren Estimation
Parzen techniques relay on the same concept as k-NN: setting a local region Γ(x) around
each sample x and examining the ratio of the samples enclosed k, to the total number of
samples N, normalized with respect to region volume v:

 () kp x
vN

= (17)

The difference according to k-NN is that Parzen fixes the volume of local region v. Then the
density estimation equation becomes:

 ()() k xp x
vN

= (18)

where p(x) represents density and k(x) represents number of samples enclosed in volume.
Estimating the Bayes error using the Parzen estimate is done by forming the log likelihood
ratio functions based upon the Parzen density estimates and then using resubstitution and
leave-one-out methodologies to find an optimistic and pessimistic value for error estimate.
Parzen estimates are however not known to bound the Bayes error. Parzen estimation is
computationally complex.

4.2.5.2.4 Boundary methods

The boundary methods are described in the work of Pierson (Pierson, 1998). Data from each
class is enclosed within a boundary of specified shape according to some criteria. The
boundaries can be generated using general shapes like: ellipses, convex hulls, splines and
others. The boundary method often uses ellipsoidal boundaries for Gaussian data, since it is
a natural representation of those. The boundaries may be made compact by excluding
outlying observations. Since most decision boundaries pass through overlap regions, a
count of these samples may give a measure related to misclassification rate. Collapsing
boundaries iteratively in a structured manner and counting the measure again lead to a
series of decreasing values related to misclassification error. The rate of overlap region
decay provides information about the separability of classes. Pierson discuses in his work a
way in which the process from two classes in two dimensions can be expanded to higher
dimension with more classes. Pierson has demonstrated that the measure of separability
called the Overlap Sum is directly related to Bayes error with a much more simple
computational complexity. It does not require any exact knowledge of the a posteriori
distributions. Overlap Sum is the arithmetical mean of overlapped points with respect to
progressive collapsing iterations:

0 0 0

1

1() () ()
m

S
k

O mt kt s kt
N =

= Δ∑ (19)

where to is the step size, m is the maximum number of iteration (collapsing boundaries), N is
the number of data points in whole dataset and Δs(kt0) is the number of points in the
differential overlap.
4.2.5.3 Measures related to space partitioning
Measures related to space partitioning are connected to space partitioning algorithms. Space
partitioning algorithms divide the feature space into sub-spaces. That allows obtaining some

Machine Learning 26

advantages, like information about the distribution of class instances in the sub-spaces. Then
the local information is globalized in some manner to obtain information about the whole
database, not only the parts of it.
4.2.5.3.1 Class Discriminability Measures

Class Discriminability Measure (CDM) (Kohn et al., 1996) is based on the idea of
inhomogeneous buckets. The idea here is to divide the feature space into a number of
hypercuboids. Each of those hypercuboids is called a "box". The dividing process stops
when any of following criteria is fulfilled:
- box contains data from only one class;
- box is non-homogenous but linearly separable;
- number of samples in a box is lower that N0.375, where N is the total number of samples

in dataset.
If the stopping criteria are not satisfied, the box is partitioned into two boxes along the axis
that has the highest range in terms of samples, as a point of division using among others
median of the data.
Final result will be a number of boxes which can be:
- homogenous terminal boxes (HTB);
- non-linearly separable terminal boxes (NLSTB);
- non-homogenous non-linearly separable terminal boxes (NNLSTB).
In order to measure complexity, CDM uses only Not Linearly Separable Terminal Boxes, as,
according to author (Kohn et al., 1996), only these contribute to Bayes error. That is however
not true, because Bayes error of the set of boxes can be greater than the sum of Bayes errors
of the boxes - partitioning (and in fact nothing) cannot by itself diminish the Bayes error of
the whole dataset; however it can help classifiers in approaching the Bayes error optimum.
So given enough partitions we arrive to have only homogenous terminal boxes, so the Bayes
error is supposed to be zero, that is not true.
 The formula for CDM is:

 { }
1

1 () max[(|)
M

i

CDM k i k j i
N =

= −∑ (20)

where k(i) is the total number of samples in the i-th NNLSTB, k(j|i) is the number of samples
from class j in the i-th NNLSTB and N is the total number of samples. For task that lead to
only non-homogenous but linearly separable boxes, this measure equals zero.
4.2.5.3.2 Purity measure
Purity measure (Sing, 2003) is developed by Singh and it is presented with connection to his
idea based on feature space partitioning called PRISM (Pattern Recognition using
Information Slicing Method). PRISM divides the space into cells within defined resolution B.
Then for each cell probability of class i in cell l is:

1

l

il
il K

jl
j

np
n

=

=

∑
 (21)

where njl is the number of points of class j in cell l, nil is the number of points of class i in cell
l and Kl is the total number of classes.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 27

Degree of separability in cell l is given by:

()∑

1

2

)(
1

1

k

i
illH kp

k
kS

=

⎟
⎠
⎞

⎜
⎝
⎛=

(22)

These values are averaged for all classes, obtaining overall degree of separability:

()

1

totalH l

H H l
l

NS S
N=

= ∑ (23)

where Nl signifies the number of points in the l-th cell, and N signifies total number of
points. If this value was computed at resolution B then it is weighted by factor

Bw
2
1= for

B=(0,1,...31). Considering the curve (SH versus normalized resolution) as a closed polygon
with vertices (xi,yi), the area under the curve called purity for a total of n vertices is given as:

 ()
1

1 1
1

1 -
2

n

H i i i i
i

AS x y y x
−

+ +
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ (24)

The x axis is scaled to achieve values bounded within range [0, 1]. After the weighing
process maximum possible value is 0.702, thus the value is rescaled once again to be
between [0, 1] range.
The main drawback of purity measure is that if in a given cell, the number of points from
each class is equal, then the purity measure is zero despite that in fact the distribution may
be linearly separable. Purity measure does not depend on the distribution of data in space of
single cell, but the distribution of data into the cells is obviously associated with data
distribution.

4.2.5.3.3 Neighborhood Separability

Neighborhood Separability (Singh, 2003) measure is developed by Singh. Similarly to
purity, it also depends on the PRISM partitioning results. In each cell, up to k nearest
neighbors are found. Then one measure a proportion pk of nearest neighbors that come from
the same class to total number of nearest neighbors. For each number of neighbors k,
1<=k<=λil calculate the area under the curve that plots pk against k as φj. Then compute the
average proportion for cell Hl as:

1

1 lN

l jl
j

p
N

φ
=

= ∑ (25)

Overall separability of data is given as:

1

totalH l

NN l
l

NS p
N=

= ∑ (26)

One compute the SNN measure for each resolution B=(0, 1, … ,31). Finally, the area ASNN
under the curve SNN versus resolution gives the measure of neighborhood separability for a
given data set.

Machine Learning 26

advantages, like information about the distribution of class instances in the sub-spaces. Then
the local information is globalized in some manner to obtain information about the whole
database, not only the parts of it.
4.2.5.3.1 Class Discriminability Measures

Class Discriminability Measure (CDM) (Kohn et al., 1996) is based on the idea of
inhomogeneous buckets. The idea here is to divide the feature space into a number of
hypercuboids. Each of those hypercuboids is called a "box". The dividing process stops
when any of following criteria is fulfilled:
- box contains data from only one class;
- box is non-homogenous but linearly separable;
- number of samples in a box is lower that N0.375, where N is the total number of samples

in dataset.
If the stopping criteria are not satisfied, the box is partitioned into two boxes along the axis
that has the highest range in terms of samples, as a point of division using among others
median of the data.
Final result will be a number of boxes which can be:
- homogenous terminal boxes (HTB);
- non-linearly separable terminal boxes (NLSTB);
- non-homogenous non-linearly separable terminal boxes (NNLSTB).
In order to measure complexity, CDM uses only Not Linearly Separable Terminal Boxes, as,
according to author (Kohn et al., 1996), only these contribute to Bayes error. That is however
not true, because Bayes error of the set of boxes can be greater than the sum of Bayes errors
of the boxes - partitioning (and in fact nothing) cannot by itself diminish the Bayes error of
the whole dataset; however it can help classifiers in approaching the Bayes error optimum.
So given enough partitions we arrive to have only homogenous terminal boxes, so the Bayes
error is supposed to be zero, that is not true.
 The formula for CDM is:

 { }
1

1 () max[(|)
M

i

CDM k i k j i
N =

= −∑ (20)

where k(i) is the total number of samples in the i-th NNLSTB, k(j|i) is the number of samples
from class j in the i-th NNLSTB and N is the total number of samples. For task that lead to
only non-homogenous but linearly separable boxes, this measure equals zero.
4.2.5.3.2 Purity measure
Purity measure (Sing, 2003) is developed by Singh and it is presented with connection to his
idea based on feature space partitioning called PRISM (Pattern Recognition using
Information Slicing Method). PRISM divides the space into cells within defined resolution B.
Then for each cell probability of class i in cell l is:

1

l

il
il K

jl
j

np
n

=

=

∑
 (21)

where njl is the number of points of class j in cell l, nil is the number of points of class i in cell
l and Kl is the total number of classes.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 27

Degree of separability in cell l is given by:

()∑

1

2

)(
1

1

k

i
illH kp

k
kS

=

⎟
⎠
⎞

⎜
⎝
⎛=

(22)

These values are averaged for all classes, obtaining overall degree of separability:

()

1

totalH l

H H l
l

NS S
N=

= ∑ (23)

where Nl signifies the number of points in the l-th cell, and N signifies total number of
points. If this value was computed at resolution B then it is weighted by factor

Bw
2
1= for

B=(0,1,...31). Considering the curve (SH versus normalized resolution) as a closed polygon
with vertices (xi,yi), the area under the curve called purity for a total of n vertices is given as:

 ()
1

1 1
1

1 -
2

n

H i i i i
i

AS x y y x
−

+ +
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ (24)

The x axis is scaled to achieve values bounded within range [0, 1]. After the weighing
process maximum possible value is 0.702, thus the value is rescaled once again to be
between [0, 1] range.
The main drawback of purity measure is that if in a given cell, the number of points from
each class is equal, then the purity measure is zero despite that in fact the distribution may
be linearly separable. Purity measure does not depend on the distribution of data in space of
single cell, but the distribution of data into the cells is obviously associated with data
distribution.

4.2.5.3.3 Neighborhood Separability

Neighborhood Separability (Singh, 2003) measure is developed by Singh. Similarly to
purity, it also depends on the PRISM partitioning results. In each cell, up to k nearest
neighbors are found. Then one measure a proportion pk of nearest neighbors that come from
the same class to total number of nearest neighbors. For each number of neighbors k,
1<=k<=λil calculate the area under the curve that plots pk against k as φj. Then compute the
average proportion for cell Hl as:

1

1 lN

l jl
j

p
N

φ
=

= ∑ (25)

Overall separability of data is given as:

1

totalH l

NN l
l

NS p
N=

= ∑ (26)

One compute the SNN measure for each resolution B=(0, 1, … ,31). Finally, the area ASNN
under the curve SNN versus resolution gives the measure of neighborhood separability for a
given data set.

Machine Learning 28

4.2.5.3.4 Collective entropy

Collective entropy (Singh & Galton, 2002), (Singh, 2003) measure the degree of uncertainty.
High values of entropy represent disordered systems. The measure is connected to data
partitioning algorithm called PRISM.
Calculate the entropy measure for each cell Hl:

()()∑

1

log
lK

i
ilill ppE

=

=

(27)

Estimate overall entropy of data as weighted by the number of data in each cell:

1

totalH l

l
l

NE E
N=

= ⋅∑ (28)

Collective entropy for data at given partition resolution is defined as:

 1 - CE E= (29)

This is to keep consistency with other measures: maximal value of 1 signifies complete
certainty and minimum value of 0 uncertainty and disorder.
Collective entropy is measured at multiple partition resolutions B=(0,…31) and scaled by
factor Bw 2/1= to promote lower resolution. Area under the curve of Collective Entropy
versus resolution gives a measure of uncertainty for a given data set. That measure should
be scaled as

702.0
E

E
ASAS = to keep the values in [0,1] range.

4.2.5.4 Other Measures
The measures described here are difficult to classify as they are very different in idea and it's
difficult to distinguish common properties.
4.2.5.4.1 Correlation-based approach
Correlation-based approach (Rahman & Fairhurst, 1998) is described by Rahman and
Fairhust. In their work, databases are ranked by the complexity of images within them. The
degree of similarity in database is measured as the correlation between a given image and
the remaining images in database. It indicates how homogenous the database is. For
separable data, the correlation between data of different classes should be low.
4.2.5.4.2 Fisher discriminant ratio
 Fisher discriminant ratio (Fisher, 2000) originates from Linear Discriminant Analysis (LDA).
The idea of linear discriminant approach is to seek a linear combination of the variables
which separates two classes in best way. The Fisher discriminant ratio is given as:

 ()21 2
2 2

1 2

-
1f

μ μ

σ σ+
= (30)

where μ1, μ2, σ1, σ2 are the means and variances of two classes respectively. The measure is
calculated in each dimension separately and afterwards the maximum of the values is taken.
It takes values from [0,+∞] ; high value signifies high class separability. To use it for multi
class problem it is necessary however to compute Fisher discriminant ratios for each two-
element combination of classes and later average the values.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 29

Important feature of the measurement is that it is strongly related to data structure. The
main drawback is that it acts more like a detector of linearly separable classes than
complexity measure. The advantage is very low computational complexity.

4.2.5.4.3 Interclass distance measures

The interclass distance measures (Fukunaga, 1990) are founded upon the idea that class
separability increases as class means separate and class covariance’s become tighter. We
define:
Within-class scatter matrix:

1

()
L

w i i
i

S P ω
=

= Σ∑ (31)

Between-class scatter matrix:

0 0

1

()()()
L

T
b i i i

i

S P ω μ μ μ μ
=

= − −∑
 (32)

Mixture (total) scatter matrix:

m w bS S S= + (33)

where μi are class means, P(ci) are the class probabilities, Σi are class covariance matrices,
and ∑

1=0)(=
L

i ii μωPμ is the mean of all classes.

Many intuitive measures of class separability come from manipulating these matrices which
are formulated to capture the separation of class means and class covariance compactness.
Some of the popular measures are:

 -1
1 2 1()J tr S S= , -1

2 2 1lnJ S S= , 1
3

2

()
()
tr SJ
tr S

=
 (34)

where S1, S2 are a tuple from among { Sb, Sw, Sm}, and tr signifies matrix trace. Frequently
many of these combinations and criteria result in the same optimal features.
4.2.5.4.4 Volume of the overlap region

We can find volume of the overlap region (Ho & Baird, 1998) by finding the lengths of
overlapping of two classes' combination across all dimensions. The lengths are then divided
by overall range of values in the dimension (normalized), where do represents length of
overlapping region, dmax and dmin represent consequently maximum and minimum feature
values in specified dimension:

max min

o
d

dr
d d

=
−

 (35)

Resulting ratios are multiplied across all dimensions dim to achieve volume of overlapping
ratio for the 2-class case (normalized with respect to feature space)

 dim

1
o d

i

v r
=

=∏ (36)

Machine Learning 28

4.2.5.3.4 Collective entropy

Collective entropy (Singh & Galton, 2002), (Singh, 2003) measure the degree of uncertainty.
High values of entropy represent disordered systems. The measure is connected to data
partitioning algorithm called PRISM.
Calculate the entropy measure for each cell Hl:

()()∑

1

log
lK

i
ilill ppE

=

=

(27)

Estimate overall entropy of data as weighted by the number of data in each cell:

1

totalH l

l
l

NE E
N=

= ⋅∑ (28)

Collective entropy for data at given partition resolution is defined as:

 1 - CE E= (29)

This is to keep consistency with other measures: maximal value of 1 signifies complete
certainty and minimum value of 0 uncertainty and disorder.
Collective entropy is measured at multiple partition resolutions B=(0,…31) and scaled by
factor Bw 2/1= to promote lower resolution. Area under the curve of Collective Entropy
versus resolution gives a measure of uncertainty for a given data set. That measure should
be scaled as

702.0
E

E
ASAS = to keep the values in [0,1] range.

4.2.5.4 Other Measures
The measures described here are difficult to classify as they are very different in idea and it's
difficult to distinguish common properties.
4.2.5.4.1 Correlation-based approach
Correlation-based approach (Rahman & Fairhurst, 1998) is described by Rahman and
Fairhust. In their work, databases are ranked by the complexity of images within them. The
degree of similarity in database is measured as the correlation between a given image and
the remaining images in database. It indicates how homogenous the database is. For
separable data, the correlation between data of different classes should be low.
4.2.5.4.2 Fisher discriminant ratio
 Fisher discriminant ratio (Fisher, 2000) originates from Linear Discriminant Analysis (LDA).
The idea of linear discriminant approach is to seek a linear combination of the variables
which separates two classes in best way. The Fisher discriminant ratio is given as:

 ()21 2
2 2

1 2

-
1f

μ μ

σ σ+
= (30)

where μ1, μ2, σ1, σ2 are the means and variances of two classes respectively. The measure is
calculated in each dimension separately and afterwards the maximum of the values is taken.
It takes values from [0,+∞] ; high value signifies high class separability. To use it for multi
class problem it is necessary however to compute Fisher discriminant ratios for each two-
element combination of classes and later average the values.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 29

Important feature of the measurement is that it is strongly related to data structure. The
main drawback is that it acts more like a detector of linearly separable classes than
complexity measure. The advantage is very low computational complexity.

4.2.5.4.3 Interclass distance measures

The interclass distance measures (Fukunaga, 1990) are founded upon the idea that class
separability increases as class means separate and class covariance’s become tighter. We
define:
Within-class scatter matrix:

1

()
L

w i i
i

S P ω
=

= Σ∑ (31)

Between-class scatter matrix:

0 0

1

()()()
L

T
b i i i

i

S P ω μ μ μ μ
=

= − −∑
 (32)

Mixture (total) scatter matrix:

m w bS S S= + (33)

where μi are class means, P(ci) are the class probabilities, Σi are class covariance matrices,
and ∑

1=0)(=
L

i ii μωPμ is the mean of all classes.

Many intuitive measures of class separability come from manipulating these matrices which
are formulated to capture the separation of class means and class covariance compactness.
Some of the popular measures are:

 -1
1 2 1()J tr S S= , -1

2 2 1lnJ S S= , 1
3

2

()
()
tr SJ
tr S

=
 (34)

where S1, S2 are a tuple from among { Sb, Sw, Sm}, and tr signifies matrix trace. Frequently
many of these combinations and criteria result in the same optimal features.
4.2.5.4.4 Volume of the overlap region

We can find volume of the overlap region (Ho & Baird, 1998) by finding the lengths of
overlapping of two classes' combination across all dimensions. The lengths are then divided
by overall range of values in the dimension (normalized), where do represents length of
overlapping region, dmax and dmin represent consequently maximum and minimum feature
values in specified dimension:

max min

o
d

dr
d d

=
−

 (35)

Resulting ratios are multiplied across all dimensions dim to achieve volume of overlapping
ratio for the 2-class case (normalized with respect to feature space)

 dim

1
o d

i

v r
=

=∏ (36)

Machine Learning 30

It should be noted that the value is zero as long as there is at least one dimension in which
the classes don't overlap.

Technique Relation to
Bayes error

Computing
cost

Probability density
functions

Number of
classes

Chernoff bound Yes High needed 2
Bhattacharyya bound Yes Medium needed 2

Divergence Yes High needed 2
Mahalanobis distance Yes Medium not needed 2

Matusita distance Yes High needed 2
Entropy measures No High needed >2

Classifier error Potential Depends on the classifier used
k-Nearest Neighbours Yes High not needed >2

Parzen estimation No High not needed >2
Boundary methods Yes Medium not needed 2

Class Discriminability
Measures No High not needed 2

Purity No High not needed >2
Neighbourhood separability No High not needed >2

Collective entropy No High not needed 2
Correlation based approach No High not needed >2

Fisher discriminant ratio No very low not needed 2
Interclass distance measures No Low not needed >2
Volume of the overlap region No Low not needed 2

Feature efficiency No Medium not needed 2
Minimum Spanning Tree No High not needed >2

Inter-intra cluster distance No High not needed 2
Space covered by epsilon

neighbourhoods No High not needed >2

Ensemble of estimators Potential High depends Depends

Table 3. Comparison of Classification Complexity Techniques

4.2.6 Discussion
Classification complexity estimation methods present great variability. The methods which
are derived from Bayes error are most reliable in terms of performance, as they are
theoretically stated. The most obvious drawback is that they have to do assumptions about a
priori probability distributions. If the advantage of the methods designed using
experimental (empirical) basis is that they are based uniquely on experimental data and do
not need probability density estimates of distributions, these methods are as various as
those relating the Bayes error’s estimation and their performance are difficult to predict.
Some methods are designed only for two-class problems, and as such they need special
procedures to accommodate them to multi-class problem (like counting the average of
complexities of all two-class combinations). The table 3, comparing complexity estimation
methods, is aimed at several specific aspects which are:
- Relation with Bayes error which could be seen as a proof of estimator's accuracy up to

some point;
- Computational Cost, this is especially important when the measurements are taken

many times during the processing of problem, as in T-DTS case;

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 31

- Need for probability density function estimates;
- Number of classes in classification problem for which the method can be applied

directly.
Recently, a number of investigations pushed forward the idea to combine several
complexity estimation methods: for example by using a weighted average of them
(Bouyoucef, 2007). It is possible that a single measure of complexity be not suitable for
practical applications; instead, a hierarchy of estimators may be more appropriate (Maddox,
1990).
Using complexity estimation techniques based splitting regulation, T-DTS is able to reduce
complexity on both data and processing chain levels (Madani et Al., 2003). It constructs a
treelike evolutionary architecture of models, where nodes (DU) are decision units and leaves
correspond to Neural Network - based Models (Processing Unit). That results in splitting
the learning database into set of sub-databases. For each sub-database a separate model is
built.
This approach presents numerous advantages among which are:
- simplification of the treated problem - by using a set of simpler local models;
- parallel processing capability - after decomposition, the sub-databases can be processed

independently and joined together after processing;
- task decomposition is useful in cases when information about system is distributed

locally and the models used are limited in strength in terms of computational difficulty
or processing (modeling) power;

- modular structure gives universality: it allows using of specialized processing
structures as well as replacing Decomposition Units with another clustering techniques;

- classification complexity estimation and other statistical techniques may influence the
parameters to automate processing, i.e., decompose automatically;

- automatic learning.
However, our approach is not free of some disadvantages:
- if the problem doesn't require simplification (problem is solved efficiently with single

model) then Task Decomposition may decrease the time performance, as learning or
executing of some problems divided into sub-problems is slower than learning or
executing of not split problem; especially if using sequential processing (in opposition
to parallel processing);

- some problems may be naturally suited to solve by one-piece model - in this case
splitting process should detect that and do not divide the problem;

- too much decomposition leads to very small learning sub-databases. Then they may
loss of generalization properties. In extreme case leading to problem solution based
only on distance to learning examples, so equal to nearest-neighbor classification
method.

In the following section, we study the efficiency of T-DTS approach when dealing with
classification problems.

4.2.7 Implementation and validation results
In order to validate the T-DTS self-organizing approach, we present in this section the
application of such a paradigm to three complex problems. The first one concerns a pattern
recognition problem. The second and third one are picked from the well know UCI
repository: a toy problem (Tic-Tac-Toe) for validation purpose and a DNA classification one.

Machine Learning 30

It should be noted that the value is zero as long as there is at least one dimension in which
the classes don't overlap.

Technique Relation to
Bayes error

Computing
cost

Probability density
functions

Number of
classes

Chernoff bound Yes High needed 2
Bhattacharyya bound Yes Medium needed 2

Divergence Yes High needed 2
Mahalanobis distance Yes Medium not needed 2

Matusita distance Yes High needed 2
Entropy measures No High needed >2

Classifier error Potential Depends on the classifier used
k-Nearest Neighbours Yes High not needed >2

Parzen estimation No High not needed >2
Boundary methods Yes Medium not needed 2

Class Discriminability
Measures No High not needed 2

Purity No High not needed >2
Neighbourhood separability No High not needed >2

Collective entropy No High not needed 2
Correlation based approach No High not needed >2

Fisher discriminant ratio No very low not needed 2
Interclass distance measures No Low not needed >2
Volume of the overlap region No Low not needed 2

Feature efficiency No Medium not needed 2
Minimum Spanning Tree No High not needed >2

Inter-intra cluster distance No High not needed 2
Space covered by epsilon

neighbourhoods No High not needed >2

Ensemble of estimators Potential High depends Depends

Table 3. Comparison of Classification Complexity Techniques

4.2.6 Discussion
Classification complexity estimation methods present great variability. The methods which
are derived from Bayes error are most reliable in terms of performance, as they are
theoretically stated. The most obvious drawback is that they have to do assumptions about a
priori probability distributions. If the advantage of the methods designed using
experimental (empirical) basis is that they are based uniquely on experimental data and do
not need probability density estimates of distributions, these methods are as various as
those relating the Bayes error’s estimation and their performance are difficult to predict.
Some methods are designed only for two-class problems, and as such they need special
procedures to accommodate them to multi-class problem (like counting the average of
complexities of all two-class combinations). The table 3, comparing complexity estimation
methods, is aimed at several specific aspects which are:
- Relation with Bayes error which could be seen as a proof of estimator's accuracy up to

some point;
- Computational Cost, this is especially important when the measurements are taken

many times during the processing of problem, as in T-DTS case;

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 31

- Need for probability density function estimates;
- Number of classes in classification problem for which the method can be applied

directly.
Recently, a number of investigations pushed forward the idea to combine several
complexity estimation methods: for example by using a weighted average of them
(Bouyoucef, 2007). It is possible that a single measure of complexity be not suitable for
practical applications; instead, a hierarchy of estimators may be more appropriate (Maddox,
1990).
Using complexity estimation techniques based splitting regulation, T-DTS is able to reduce
complexity on both data and processing chain levels (Madani et Al., 2003). It constructs a
treelike evolutionary architecture of models, where nodes (DU) are decision units and leaves
correspond to Neural Network - based Models (Processing Unit). That results in splitting
the learning database into set of sub-databases. For each sub-database a separate model is
built.
This approach presents numerous advantages among which are:
- simplification of the treated problem - by using a set of simpler local models;
- parallel processing capability - after decomposition, the sub-databases can be processed

independently and joined together after processing;
- task decomposition is useful in cases when information about system is distributed

locally and the models used are limited in strength in terms of computational difficulty
or processing (modeling) power;

- modular structure gives universality: it allows using of specialized processing
structures as well as replacing Decomposition Units with another clustering techniques;

- classification complexity estimation and other statistical techniques may influence the
parameters to automate processing, i.e., decompose automatically;

- automatic learning.
However, our approach is not free of some disadvantages:
- if the problem doesn't require simplification (problem is solved efficiently with single

model) then Task Decomposition may decrease the time performance, as learning or
executing of some problems divided into sub-problems is slower than learning or
executing of not split problem; especially if using sequential processing (in opposition
to parallel processing);

- some problems may be naturally suited to solve by one-piece model - in this case
splitting process should detect that and do not divide the problem;

- too much decomposition leads to very small learning sub-databases. Then they may
loss of generalization properties. In extreme case leading to problem solution based
only on distance to learning examples, so equal to nearest-neighbor classification
method.

In the following section, we study the efficiency of T-DTS approach when dealing with
classification problems.

4.2.7 Implementation and validation results
In order to validate the T-DTS self-organizing approach, we present in this section the
application of such a paradigm to three complex problems. The first one concerns a pattern
recognition problem. The second and third one are picked from the well know UCI
repository: a toy problem (Tic-Tac-Toe) for validation purpose and a DNA classification one.

Machine Learning 32

4.2.7.1 Application to UCI Reprository
Complexity estimating plays key-role in decomposition and tree-building process. In order to
evaluate and validate T-DTS approach, we use two benchmarks from the UCI Machine
Learning Repository (Bouyoucef, 2007). These two benchmarks are:
1. Tic-tac-toe end-game problem. The problem is to predict whether each of 958 legal

endgame boards for tic-tac-toe is won for `x'. The 958 instances encode the complete set
of possible board configurations at the end of tic-tac-toe. This problem is hard for the
covering family algorithm, because of multi-overlapping.

2. Splice-junction DNA Sequences classification problem. The problem posed in this
dataset is to recognize, given a sequence of DNA, the boundaries between exons (the
parts of the DNA sequence retained after splicing) and introns (the parts of the DNA
sequence that are spliced out). This problem consists of two subtasks: recognizing
exon/intron boundaries (referred to as EI sites), and recognizing intron/exon
boundaries (IE sites). There are 3190 numbers of instances from Genbank 64.1, each of
them compound 62 attributes which defines DNA sequences (ftp-site:
ftp://ftp.genbank.bio.net) problem.

Next subsections include description of experimental protocol.
4.2.7.2 Experimental protocol
In the first case, Tic-tac-toe end game, we have used 50% of database for learning purpose
and 50% for generalization purpose. At the node level (DU), competitive networks perform
the decomposition. The following complexity estimation methods have been used:
Mahalanobis, ZISC and Normalized mean. At T-DTS leaf level we have applied PU - LVQ.

Method type Max Gr (± Std. Dev.) (%)
IB3-CI 99.1

CN2 standard 98.33 (± 0.08)
IB1 98.1

Decision Tree (DT)+FICUS 96.45 (± 1.68)
3-Nearest neighbor algorithm+FICUS 96.14 (± 2.03)

MBRTalk 88.4
Decision Tree (DT) Learning Concept 85.38 (± 2.18)

T-DTS&Mahalanobis com. est. 84.551 (± 4.592)
NewID 84.0

CN2-SD (add. weight.) 83.92 (± 0.39)
T-DTS&ZISC based com. est. 82.087 (± 2.455)

IB3 82.0
Back propagation +FICUS 81.66 (± 14.46)

T-DTS&Normalized mean com. est. 81.002 (±1.753)
7-Nearest neighbor 76.36 (± 1.87)

CN2-WRAcc 70.56 (± 0.42)
3-Nearest neighbor 67.95 (± 1.82)
Back propagation 62.90 (± 3.88)
Perceptron+FICUS 37.69 (± 3.98)

Perceptron 34.66 (± 1.84)

Table 4. Tic-tac-toe endgame problem

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 33

Method type Max Gr (± Std. Dev.) (%)
3-Nearest neighbor algorithm+FICUS 86.30 (± 4.96)

Perceptron+FICUS 83.96 (± 6.22)
Decision Tree (DT)+FICUS 83.78 (± 4.61)

Back propagation algorithm+FICUS 83.42 (± 7.73)
T-DTS&ZISC based com. Est 80.084 (± 3.176)
3-Nearest neighbor algorithm 79.18 (± 6.32)

T-DTS&Mahalanobis based com. Est 78.672 (± 4.998)
Perceptron 76.34 (± 6.71)

T-DTS & Jeffries-Matusita based c.e. 75.647 (±8.665)
Decision Tree (DT) Learning Concept 73.55 (± 5.88)

Table 5. Splice-junction DNA sequences classification test

For DNA Benchmark, we have used 20% of database for learning purpose and 80% for
generalization purpose. At the node level competitive networks perform the decomposition.
The following complexity estimation methods have been used: Mahalanobis, Bhattacharya,
ZISC, Purity and Fisher Measure. At T-DTS leaf level we applied PU - MLP.
For DNA Benchmark, we have used 20% of database for learning purpose and 80% for
generalization purpose. At the node level competitive networks perform the decomposition.
The following complexity estimation methods have been used: Mahalanobis, Bhattacharya,
ZISC, Purity and Fisher Measure. At T-DTS leaf level we applied PU - MLP.
For both cases, a manual optimization has been performed. We have selected the
decomposition units, the complexity estimation methods and the processing units that allow
us to reach the highest performances in terms of generalization rate. In the next subsection,
we present the results and compare them to those obtained by other approaches, mainly
based on decision tree algorithms.
4.2.7.3 Results presentation and discussion
Various experiments have been conducted according to the experimental protocol described
previously. Table 4 and Table 5 consolidate the results of our experiments and the results
obtained by other classification approaches (Lavrac et al,. 2002), (Aha, 1991), (Markovitch &
Rosenstein, 2002). As it is shown, we have resolved Tic-tac-toe endgame classification task
with respectively 84.55%, 82.09% and 81.00% of generalization rates using Mahalanobis, ZISC
and Normalized mean complexity estimators with a standard deviation of 4.59%, 2.46% and
1.75%. Taking into account standard deviation ratio, we can state that these results are
equivalent as they are in the same range.
IB3-CI, CN2, IB1, DT and MBRTalk algorithms are rely on the instances extracting and their
extrapolation. So, they are well adapted to board game problems. They also use domain
knowledge to reach very high generalization rates (around 95%). Methods associated to
FICUS use hypothesis driven construction strategies and especially FICUS algorithms
allows to enhance the learning data base size.
In our case, T-DTS uses only data driven strategy. So, as we can see in Table 5, for Splice-
junction DNA Sequences benchmark, taking into account the generalization rate standard
deviation, the leading algorithms exhibit the same performances (3-Nearest
neighbor+FICUS, Perceptron+FICUS, DT+FICUS, Back propagation +FICUS and T-
DTS&ZISC). So, without using specific domain knowledge, T-DTS reaches a high

Machine Learning 32

4.2.7.1 Application to UCI Reprository
Complexity estimating plays key-role in decomposition and tree-building process. In order to
evaluate and validate T-DTS approach, we use two benchmarks from the UCI Machine
Learning Repository (Bouyoucef, 2007). These two benchmarks are:
1. Tic-tac-toe end-game problem. The problem is to predict whether each of 958 legal

endgame boards for tic-tac-toe is won for `x'. The 958 instances encode the complete set
of possible board configurations at the end of tic-tac-toe. This problem is hard for the
covering family algorithm, because of multi-overlapping.

2. Splice-junction DNA Sequences classification problem. The problem posed in this
dataset is to recognize, given a sequence of DNA, the boundaries between exons (the
parts of the DNA sequence retained after splicing) and introns (the parts of the DNA
sequence that are spliced out). This problem consists of two subtasks: recognizing
exon/intron boundaries (referred to as EI sites), and recognizing intron/exon
boundaries (IE sites). There are 3190 numbers of instances from Genbank 64.1, each of
them compound 62 attributes which defines DNA sequences (ftp-site:
ftp://ftp.genbank.bio.net) problem.

Next subsections include description of experimental protocol.
4.2.7.2 Experimental protocol
In the first case, Tic-tac-toe end game, we have used 50% of database for learning purpose
and 50% for generalization purpose. At the node level (DU), competitive networks perform
the decomposition. The following complexity estimation methods have been used:
Mahalanobis, ZISC and Normalized mean. At T-DTS leaf level we have applied PU - LVQ.

Method type Max Gr (± Std. Dev.) (%)
IB3-CI 99.1

CN2 standard 98.33 (± 0.08)
IB1 98.1

Decision Tree (DT)+FICUS 96.45 (± 1.68)
3-Nearest neighbor algorithm+FICUS 96.14 (± 2.03)

MBRTalk 88.4
Decision Tree (DT) Learning Concept 85.38 (± 2.18)

T-DTS&Mahalanobis com. est. 84.551 (± 4.592)
NewID 84.0

CN2-SD (add. weight.) 83.92 (± 0.39)
T-DTS&ZISC based com. est. 82.087 (± 2.455)

IB3 82.0
Back propagation +FICUS 81.66 (± 14.46)

T-DTS&Normalized mean com. est. 81.002 (±1.753)
7-Nearest neighbor 76.36 (± 1.87)

CN2-WRAcc 70.56 (± 0.42)
3-Nearest neighbor 67.95 (± 1.82)
Back propagation 62.90 (± 3.88)
Perceptron+FICUS 37.69 (± 3.98)

Perceptron 34.66 (± 1.84)

Table 4. Tic-tac-toe endgame problem

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 33

Method type Max Gr (± Std. Dev.) (%)
3-Nearest neighbor algorithm+FICUS 86.30 (± 4.96)

Perceptron+FICUS 83.96 (± 6.22)
Decision Tree (DT)+FICUS 83.78 (± 4.61)

Back propagation algorithm+FICUS 83.42 (± 7.73)
T-DTS&ZISC based com. Est 80.084 (± 3.176)
3-Nearest neighbor algorithm 79.18 (± 6.32)

T-DTS&Mahalanobis based com. Est 78.672 (± 4.998)
Perceptron 76.34 (± 6.71)

T-DTS & Jeffries-Matusita based c.e. 75.647 (±8.665)
Decision Tree (DT) Learning Concept 73.55 (± 5.88)

Table 5. Splice-junction DNA sequences classification test

For DNA Benchmark, we have used 20% of database for learning purpose and 80% for
generalization purpose. At the node level competitive networks perform the decomposition.
The following complexity estimation methods have been used: Mahalanobis, Bhattacharya,
ZISC, Purity and Fisher Measure. At T-DTS leaf level we applied PU - MLP.
For DNA Benchmark, we have used 20% of database for learning purpose and 80% for
generalization purpose. At the node level competitive networks perform the decomposition.
The following complexity estimation methods have been used: Mahalanobis, Bhattacharya,
ZISC, Purity and Fisher Measure. At T-DTS leaf level we applied PU - MLP.
For both cases, a manual optimization has been performed. We have selected the
decomposition units, the complexity estimation methods and the processing units that allow
us to reach the highest performances in terms of generalization rate. In the next subsection,
we present the results and compare them to those obtained by other approaches, mainly
based on decision tree algorithms.
4.2.7.3 Results presentation and discussion
Various experiments have been conducted according to the experimental protocol described
previously. Table 4 and Table 5 consolidate the results of our experiments and the results
obtained by other classification approaches (Lavrac et al,. 2002), (Aha, 1991), (Markovitch &
Rosenstein, 2002). As it is shown, we have resolved Tic-tac-toe endgame classification task
with respectively 84.55%, 82.09% and 81.00% of generalization rates using Mahalanobis, ZISC
and Normalized mean complexity estimators with a standard deviation of 4.59%, 2.46% and
1.75%. Taking into account standard deviation ratio, we can state that these results are
equivalent as they are in the same range.
IB3-CI, CN2, IB1, DT and MBRTalk algorithms are rely on the instances extracting and their
extrapolation. So, they are well adapted to board game problems. They also use domain
knowledge to reach very high generalization rates (around 95%). Methods associated to
FICUS use hypothesis driven construction strategies and especially FICUS algorithms
allows to enhance the learning data base size.
In our case, T-DTS uses only data driven strategy. So, as we can see in Table 5, for Splice-
junction DNA Sequences benchmark, taking into account the generalization rate standard
deviation, the leading algorithms exhibit the same performances (3-Nearest
neighbor+FICUS, Perceptron+FICUS, DT+FICUS, Back propagation +FICUS and T-
DTS&ZISC). So, without using specific domain knowledge, T-DTS reaches a high

Machine Learning 34

generalization rate. The T-DTS strength is its ability to solve hard classification problems
without need of domain specific knowledge. In the experiments described in this paper, T-
DTS structure optimization has been conducted manually (by the user). This is the main
drawback.

5. Conclusion
Due the complexity of the actual systems based on heterogeneous methods, artificial neural
networks approaches can reduce this complexity by modeling the environment as
stochastic. Algorithms based on Neural Networks can take into account the dynamics of
these environments with no model of dynamics to be given. Main idea of the approaches
developed in this chapter is to take advantage from distributed processing and task
simplification by dividing an initially complex processing task into a set of simpler subtasks
using complexity estimation based loop to control the splitting process. An appealing
consequence of combining complexity estimation based splitting and artificial neural
networks based processing techniques is decreasing of user’s intervention in specifying
processing parameters. A first modular structure is proposed. We have focused our
attention in some special kind of Constrained Based Routing in wired networks which we
called QoS self-optimization Routing. In a second part, we study the use of T-DTS self-
organizing and task adaptive abilities. Beside complexity estimation based self-organization
and adaptation abilities of our approach, the neural nature of generated models leads to
additional attractive features which are modularity and some universality of the issued
processing system, opening new dimensions in bio-inspired artificial intelligence. Moreover,
the distributed nature of T-DTS makes the processing phase potentially realizable using
either parallel machine or network of sequential machines. Very promising results, obtained
from experimental validation, involving either the presented set of classification
benchmarks (problems) or the reported pattern recognition dilemma, show efficiency of
such self-organizing multiple models’ generator to enhance global and local processing
capabilities by reducing complexity on both processing and data levels.

6. Acknowlegments
The present work has been partially supported by French Ministry of High Education and
Research. A part of this project has also benefit from the French Eiffel Excellence Program of
EGIDE.

7. References
Aha. D. W. (1991). Incremental Constructive Induction: An Instance-Based Approach,

Proceedings of the Eight International Workshop on Machine Learning, Morgan
Kaufmann.

Arbib (1989). The Metaphorical Brain, 2nd Edition, New York: Wiley.
Bates. J., Bryan Loyall A. & Scott Reilly W. (1989). Integrating reactivity, goals and emotion

in a broad agent. Technical Report CMU-CS-92-142, School of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA.

Bernet Y. (1998). Requirements of Diff-serv Boundary Routers, IETF Internet Draft.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 35

Bouyoucef E. (2007). Contribution à l’étude et la mise en œuvre d’indicateurs quantitatifs et
qualitatifs d’estimation de la complexité pour la régulation du processus d’auto
organisation d’une structure neuronale modulaire de traitement d’information,
PhD Thesis, LISSI, University Paris XII.

Bouyoucef E., Chebira A., Rybnik M., Madani K. (2005). Multiple Neural Network Model
Generator with Complexity Estimation and self Organization Abilities”,
International Scientific Journal of Computing, vol.4, issue 3, pp.20-29.

Boyan J. A. and Littman M. L., Packet Routing in Dynamically Changing Networks: A
Reinforcement Learning Approach, Advances in Neural Information Processing
Systems 6, Cowan, Tesauro and Alspector (eds).

Bridle, J.S. (1990). Probabilistic interpretation of feedforward classification network outputs,
with relationships to statistical pattern recognition, Neurocomputing: Algorithms,
architectures and applications, F.Foulgelman-Soulie and J Hérault, eds., New York:
Springer-Verlag.

Bruske J., Sommer G. (1995). Dynamic Cell Structure, Advances in Neural Information
Processing Systems 7, The MIT Press, Ed by G. Tesauro, pp.497-504.

Budnyk I., Chebira A., Madani K. (2008). Estimating Complexity of Classification Tasks
Using Neurocomputers Technology, International Scientific Journal of Computing,
under press.

Chebira A., Bouyoucef E., Rybnik M., Madani K. (2006). ATNS: An Adaptive Tree Neural
Structure, International Journal of Information Technology and Intelligent Computing,
IEEE Computational Intelligence Society, Vol. 1, N°3, pp.463-476.

Chi H., Ersoy O.K. (2002). Support Vector Machine Decision Trees with Rare Event
Detection, International Journal for Smart Engineering System Design, Vol. 4, 225-242.

Cover T. M., Hart P. E. (1967). Nearest neighbour pattern classification. IEEE Transactions on
information theory, Vol IT-13, pp 21-27.

Crawley E., Nair R., Rajagopalan B., Sandick H. (1998). A Framework for QoS-based Routing
in the Internet, RFC2386, IETF, August.

Decker, K., Sycara, K., Williamson, M. (1997). Middle-Agents for the Internet “, Proceedings of
the 15th International Joint Conference on Artificial Intelligence, Nagoya, Japan.

Ernst S. (1998). “Hinging hyper-plane trees for approximation and identification, 37th IEEE
Conf. on Decision and Control, Tampa, Florida, USA.

Fahlman S. E., Lebiere C. (1990). The Cascaded-Correlation Learning Architecture, Advances
in Neural Information Processing Systems 2, Morgan Kauffman, San Mateo, pp.524-
534.

Feng W., Kandlur D., Saha D., Shin K. (1997). Understanding TCP Dynamics in an
Integrated Services Internet", Proceedings of NOSSDAV.

Ferber J. (1998). Multi-Agent Systems: Towards a Collective Intelligence, Reading, MA:
Addison-Wesley.

Fisher A. (2000). The mathematical theory of probabilities, John Wiley ed.
Fukunaga K. (1972). Introduction to statistical pattern recognition, School of Electrical

Engineering, Purdue University, Lafayette, Indiana, Academic Press, New York and
London.

Fukunaga K. (1990). Introduction to statistical pattern recognition, Academic Press, New York,
2nd edition.

Gallager R. G.(1997). A minimum delay routing algorithm using distributed computations,
IEEE Transactions on Communications, Vol. COM-25.

Machine Learning 34

generalization rate. The T-DTS strength is its ability to solve hard classification problems
without need of domain specific knowledge. In the experiments described in this paper, T-
DTS structure optimization has been conducted manually (by the user). This is the main
drawback.

5. Conclusion
Due the complexity of the actual systems based on heterogeneous methods, artificial neural
networks approaches can reduce this complexity by modeling the environment as
stochastic. Algorithms based on Neural Networks can take into account the dynamics of
these environments with no model of dynamics to be given. Main idea of the approaches
developed in this chapter is to take advantage from distributed processing and task
simplification by dividing an initially complex processing task into a set of simpler subtasks
using complexity estimation based loop to control the splitting process. An appealing
consequence of combining complexity estimation based splitting and artificial neural
networks based processing techniques is decreasing of user’s intervention in specifying
processing parameters. A first modular structure is proposed. We have focused our
attention in some special kind of Constrained Based Routing in wired networks which we
called QoS self-optimization Routing. In a second part, we study the use of T-DTS self-
organizing and task adaptive abilities. Beside complexity estimation based self-organization
and adaptation abilities of our approach, the neural nature of generated models leads to
additional attractive features which are modularity and some universality of the issued
processing system, opening new dimensions in bio-inspired artificial intelligence. Moreover,
the distributed nature of T-DTS makes the processing phase potentially realizable using
either parallel machine or network of sequential machines. Very promising results, obtained
from experimental validation, involving either the presented set of classification
benchmarks (problems) or the reported pattern recognition dilemma, show efficiency of
such self-organizing multiple models’ generator to enhance global and local processing
capabilities by reducing complexity on both processing and data levels.

6. Acknowlegments
The present work has been partially supported by French Ministry of High Education and
Research. A part of this project has also benefit from the French Eiffel Excellence Program of
EGIDE.

7. References
Aha. D. W. (1991). Incremental Constructive Induction: An Instance-Based Approach,

Proceedings of the Eight International Workshop on Machine Learning, Morgan
Kaufmann.

Arbib (1989). The Metaphorical Brain, 2nd Edition, New York: Wiley.
Bates. J., Bryan Loyall A. & Scott Reilly W. (1989). Integrating reactivity, goals and emotion

in a broad agent. Technical Report CMU-CS-92-142, School of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA.

Bernet Y. (1998). Requirements of Diff-serv Boundary Routers, IETF Internet Draft.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 35

Bouyoucef E. (2007). Contribution à l’étude et la mise en œuvre d’indicateurs quantitatifs et
qualitatifs d’estimation de la complexité pour la régulation du processus d’auto
organisation d’une structure neuronale modulaire de traitement d’information,
PhD Thesis, LISSI, University Paris XII.

Bouyoucef E., Chebira A., Rybnik M., Madani K. (2005). Multiple Neural Network Model
Generator with Complexity Estimation and self Organization Abilities”,
International Scientific Journal of Computing, vol.4, issue 3, pp.20-29.

Boyan J. A. and Littman M. L., Packet Routing in Dynamically Changing Networks: A
Reinforcement Learning Approach, Advances in Neural Information Processing
Systems 6, Cowan, Tesauro and Alspector (eds).

Bridle, J.S. (1990). Probabilistic interpretation of feedforward classification network outputs,
with relationships to statistical pattern recognition, Neurocomputing: Algorithms,
architectures and applications, F.Foulgelman-Soulie and J Hérault, eds., New York:
Springer-Verlag.

Bruske J., Sommer G. (1995). Dynamic Cell Structure, Advances in Neural Information
Processing Systems 7, The MIT Press, Ed by G. Tesauro, pp.497-504.

Budnyk I., Chebira A., Madani K. (2008). Estimating Complexity of Classification Tasks
Using Neurocomputers Technology, International Scientific Journal of Computing,
under press.

Chebira A., Bouyoucef E., Rybnik M., Madani K. (2006). ATNS: An Adaptive Tree Neural
Structure, International Journal of Information Technology and Intelligent Computing,
IEEE Computational Intelligence Society, Vol. 1, N°3, pp.463-476.

Chi H., Ersoy O.K. (2002). Support Vector Machine Decision Trees with Rare Event
Detection, International Journal for Smart Engineering System Design, Vol. 4, 225-242.

Cover T. M., Hart P. E. (1967). Nearest neighbour pattern classification. IEEE Transactions on
information theory, Vol IT-13, pp 21-27.

Crawley E., Nair R., Rajagopalan B., Sandick H. (1998). A Framework for QoS-based Routing
in the Internet, RFC2386, IETF, August.

Decker, K., Sycara, K., Williamson, M. (1997). Middle-Agents for the Internet “, Proceedings of
the 15th International Joint Conference on Artificial Intelligence, Nagoya, Japan.

Ernst S. (1998). “Hinging hyper-plane trees for approximation and identification, 37th IEEE
Conf. on Decision and Control, Tampa, Florida, USA.

Fahlman S. E., Lebiere C. (1990). The Cascaded-Correlation Learning Architecture, Advances
in Neural Information Processing Systems 2, Morgan Kauffman, San Mateo, pp.524-
534.

Feng W., Kandlur D., Saha D., Shin K. (1997). Understanding TCP Dynamics in an
Integrated Services Internet", Proceedings of NOSSDAV.

Ferber J. (1998). Multi-Agent Systems: Towards a Collective Intelligence, Reading, MA:
Addison-Wesley.

Fisher A. (2000). The mathematical theory of probabilities, John Wiley ed.
Fukunaga K. (1972). Introduction to statistical pattern recognition, School of Electrical

Engineering, Purdue University, Lafayette, Indiana, Academic Press, New York and
London.

Fukunaga K. (1990). Introduction to statistical pattern recognition, Academic Press, New York,
2nd edition.

Gallager R. G.(1997). A minimum delay routing algorithm using distributed computations,
IEEE Transactions on Communications, Vol. COM-25.

Machine Learning 36

Gelenbe E., Lent R., Xu Z. (2002). Networking with Cognitive Packets, Proc. ICANN 2002,
Madrid, Spain, August 27-30.

Goetz P., Kumar S., Miikkulainen R. (1996). On-Line Adaptation of a Signal Predistorter
through Dual Reinforcement Learning, Proc. of the 13th Annual Conference
Machine Learning, Bari, Italy.

Goonatilake S., Khebbal S. (1996). Intelligent Hybrid Systems: Issues, Classification and
Future Directions, Intelligent Hybrid Systems, John Wiley & Sons Ed., pp.1-20.

Hannibal A. (1993). VLSI Building Block for Neural Networks with on chip Back Learning,
Neurocomputing, n°5, pp.25-37.

Hartigan J. (1975). Clustering Algorithms. John Wiley and Sons Ed., New York.
Haykin S (1988). Neural Networks– A Comprehensive Foundation, Mcmillan College Publishing.
Haykin S. (1999). Neural Networks – a Comprehensive foundation, Prentice Hall Int.
Ho T.K., Basu M (2000). Measuring the complexity of classification problems, Proceedings of

the 15th Intenational Conference on Pattern Recognition, Barcelona, Spain, pp. 43-47,
September 3-8.

Ho T.K., Baird H.S. (1998). Pattern classification with compact distribution maps, Computer
Vision and Image Understanding, vol. 70, no.1, pp.101-110.

Ho T.K., Basu M. (2002). Complexity measures of supervised classification problems, IEEE
Transactions on pattern Analysis and Machine Intelligence, vol. 24, issue 3, March,
pp.289-300.

Hoare C.A.R. (1962). Quicksort, Computer Journal, 5(1), pp.10-15.
Jacobson V. (1988). Congestion Avoidance of Network Traffic, Computer Communication"

Review, vol. 18, no. 4, pp.314-329.
Jordan M.I., Jacobs R.A. (1993). Hierarchical mixtures of experts and the EM algorithm,

Technical Report AIM-1440.
Jordan M.I., Jacobs R.A (2002). Learning in Modular and hierarchical systems, The

Handbook of Brain Theory and Neural Networks, 2nd edition. Cambridge, MA:
MIT Press, 2002.

Kohonen T. (1984). Self-Organization and Associative Memory, Springer-Verlag.
Kohn A., Nakano L. G., and Mani V. (1996). A class discriminability measure based on

feature space partitioning, Pattern Recognition, 29(5), pp.873-887.
Krogh A., Vedelsby J. (1995). Neural Network Ensembles, Cross Validation, and Active

Learning, Advances in Neural Information Processing Systems 7, The MIT Press, Ed by
G. Tesauro, pp. 231-238.

Kumar S. and Miikkualainen R. (1998). Confidence-based Q-routing: an on-queue adaptive
routing algorithm, Proceedings of Symp. of Neural Networks in Engineering.

Kumar S. and Miikkualainen R. (1997). Dual reinforcement Q-routing: an on-queue adaptive
routing algorithm, Proceedings of Symp. of Neural Networks in Engineering.

Lang K. J. and Witbrock M. J. (1998). Learning to tell two spirals apart, Proc. of the
Connectionist Models Summer School, Morgan Kauffman Ed., pp. 52-59.

Lavrac N., Flach P., Kavsek B., Todorovski L. (2002). Rule induction for subgroup discovery
with CN2-SD, Proc. Of IEEE ICDM, pp. 266-273.

McLachlan, G.J., Basford, K.E. (1988). Mixture Models: Interference and Applications to
Clustering”, New York: Marcel Dekker.

Madani K., Chebira A., Rybnik M. (2003). Data Driven Multiple Neural Network Models
Generator Based on a Tree-like Scheduler, Lecture Notes in Computer Science n°2686,
SI on Computational Methods in Neural Modelling, (Jose Mira, Jose R. Alvarez Ed.)
- Springer Verlag Berlin Heidelberg, ISBN 3-540-40210-1, pp.382-389.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 37

Madani K., Thiaw L., Malti R., Sow G. (2005). Multi-Modeling: a Different Way to Design
Intelligent Predictors, LNCS 3512, Ed.: J. Cabestany, A. Prieto, and F. Sandoval,
Springer Verlag Berlin Heidelberg, pp.976 – 984.

Madani K. (2007). Toward Higher Level Intelligent Systems, (Key-Note Paper), proceedings of
IEEE- 6th International conference on Computer Information Systems and Industrial
Management Applications (IEEE-CISIM’07), IEEE Computer Society, Elk, Poland,
June, 28-30, pp.31-36.

Madani K. (2008). Artificial Neural Networks Based Image Processing & Pattern
Recognition: From Concepts to Real-World Applications, (Plenary Tutorial Talk,
Key-Note Paper), proceedings of IEEE- 1st International workshop on Image Processing
Theory, Tools and Applications (IEEE-IPTA’08), IEEE Computer Society, Sousse,
Tunisia, November 23-26, pp. 19-27.

Maddox J. (1990). Complicated measure of complexity, Nature, vol. 344, pp. 705.
Maes, P. (1994). Social interface agents: Acquiring competence by learning from users and

other agents, Spring Symposium on Software Agents (Technical Report SS-94-03), O.
Etzioni (ed.), AAAI Press. pp.71-78.

Malkin G. (1998). RIP version2, Carrying Additional Information, IETF RFC 1388 RFC 1993.
Moy J. (1998). OSPF Version 2, IETF RFC2328.
Markovitch S., Rosenstein D. (2002). Feature Generation Using General Constructor

Functions, Machine Learning, Springer Ed., Volume 45, N°. 1, pp.59-98.
Matusita K. (1967). On the notion of anity of several distributions and some of its

applications. Annals Inst. Statistical Mathematics, Vol., 19, pp.181-192.
Mayoubi M., Schafer M., Sinsel S. (1995). Dynamic Neural Units for Non-linear Dynamic

Systems Identification, LNCS Vol. 930, Springer Verlag, pp.1045-1051.
Mehmet I. S., Bingul Y., Okan K. E. (2003). Classification of Satellite Images by Using Self-

organizing Map and Linear Support Vector Machine Decision Tree, 2nd Annual
Asian Conference and Exhibition in the field of GIS.

Mellouk A. (2008a). End to End Quality of Service Engineering in Next Generation Heteregenous
Networks, ISTE/Wiley Ed.

Mellouk A., Hoceini S., Cheurfa M. (2008b). Reinforcing Probabilistic Selective Quality of
service Routes in Dynamic Heterogeneous Networks, Journal of Computer
Communication, Elsevier Ed., Vol 31, n°11, pp. 2706-2715.

Mellouk A., Lorenz P., Boukerche A., Lee M. H. (2007). Quality of Service Based Routing
Algorithms for heterogeneous networks, IEEE Communication Magazine, Vol. 45,
n°2, pp.65-66.

Mellouk A., Hoceini S., Amirat Y. (2006). Adaptive Quality of Service Based Routing
Approaches: Development of a Neuro-Dynamic State-Dependent Reinforcement
Learning Algorithm, International Journal of Communication Systems, Ed. Wiley
InterSciences, Vol 20, n°10, pp.1113-1130.

Murray-Smith R. and Johansen T.A. (1997). Multiple Model Approaches to Modeling and
Control, ed. Murray-Smith R. and T.A. Johansen, Taylor & Francis Publishers.

Naftaly, U., Intrator, N., Horn, D. (1997). Optimal ensemble averaging of neural networks,
Network, vol.8, pp.283-296.

Ozdaglar A.E., Bertsekas D. P. (2003). Optimal Solution of Integer Multicommodity Flow
Problem with Application in Optical Networks, Proc. Of Symposium on Global
Optimisation.

Partridge C. (1992). A proposed flow specification, IETF RFC1363.

Machine Learning 36

Gelenbe E., Lent R., Xu Z. (2002). Networking with Cognitive Packets, Proc. ICANN 2002,
Madrid, Spain, August 27-30.

Goetz P., Kumar S., Miikkulainen R. (1996). On-Line Adaptation of a Signal Predistorter
through Dual Reinforcement Learning, Proc. of the 13th Annual Conference
Machine Learning, Bari, Italy.

Goonatilake S., Khebbal S. (1996). Intelligent Hybrid Systems: Issues, Classification and
Future Directions, Intelligent Hybrid Systems, John Wiley & Sons Ed., pp.1-20.

Hannibal A. (1993). VLSI Building Block for Neural Networks with on chip Back Learning,
Neurocomputing, n°5, pp.25-37.

Hartigan J. (1975). Clustering Algorithms. John Wiley and Sons Ed., New York.
Haykin S (1988). Neural Networks– A Comprehensive Foundation, Mcmillan College Publishing.
Haykin S. (1999). Neural Networks – a Comprehensive foundation, Prentice Hall Int.
Ho T.K., Basu M (2000). Measuring the complexity of classification problems, Proceedings of

the 15th Intenational Conference on Pattern Recognition, Barcelona, Spain, pp. 43-47,
September 3-8.

Ho T.K., Baird H.S. (1998). Pattern classification with compact distribution maps, Computer
Vision and Image Understanding, vol. 70, no.1, pp.101-110.

Ho T.K., Basu M. (2002). Complexity measures of supervised classification problems, IEEE
Transactions on pattern Analysis and Machine Intelligence, vol. 24, issue 3, March,
pp.289-300.

Hoare C.A.R. (1962). Quicksort, Computer Journal, 5(1), pp.10-15.
Jacobson V. (1988). Congestion Avoidance of Network Traffic, Computer Communication"

Review, vol. 18, no. 4, pp.314-329.
Jordan M.I., Jacobs R.A. (1993). Hierarchical mixtures of experts and the EM algorithm,

Technical Report AIM-1440.
Jordan M.I., Jacobs R.A (2002). Learning in Modular and hierarchical systems, The

Handbook of Brain Theory and Neural Networks, 2nd edition. Cambridge, MA:
MIT Press, 2002.

Kohonen T. (1984). Self-Organization and Associative Memory, Springer-Verlag.
Kohn A., Nakano L. G., and Mani V. (1996). A class discriminability measure based on

feature space partitioning, Pattern Recognition, 29(5), pp.873-887.
Krogh A., Vedelsby J. (1995). Neural Network Ensembles, Cross Validation, and Active

Learning, Advances in Neural Information Processing Systems 7, The MIT Press, Ed by
G. Tesauro, pp. 231-238.

Kumar S. and Miikkualainen R. (1998). Confidence-based Q-routing: an on-queue adaptive
routing algorithm, Proceedings of Symp. of Neural Networks in Engineering.

Kumar S. and Miikkualainen R. (1997). Dual reinforcement Q-routing: an on-queue adaptive
routing algorithm, Proceedings of Symp. of Neural Networks in Engineering.

Lang K. J. and Witbrock M. J. (1998). Learning to tell two spirals apart, Proc. of the
Connectionist Models Summer School, Morgan Kauffman Ed., pp. 52-59.

Lavrac N., Flach P., Kavsek B., Todorovski L. (2002). Rule induction for subgroup discovery
with CN2-SD, Proc. Of IEEE ICDM, pp. 266-273.

McLachlan, G.J., Basford, K.E. (1988). Mixture Models: Interference and Applications to
Clustering”, New York: Marcel Dekker.

Madani K., Chebira A., Rybnik M. (2003). Data Driven Multiple Neural Network Models
Generator Based on a Tree-like Scheduler, Lecture Notes in Computer Science n°2686,
SI on Computational Methods in Neural Modelling, (Jose Mira, Jose R. Alvarez Ed.)
- Springer Verlag Berlin Heidelberg, ISBN 3-540-40210-1, pp.382-389.

Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based Information Processing System 37

Madani K., Thiaw L., Malti R., Sow G. (2005). Multi-Modeling: a Different Way to Design
Intelligent Predictors, LNCS 3512, Ed.: J. Cabestany, A. Prieto, and F. Sandoval,
Springer Verlag Berlin Heidelberg, pp.976 – 984.

Madani K. (2007). Toward Higher Level Intelligent Systems, (Key-Note Paper), proceedings of
IEEE- 6th International conference on Computer Information Systems and Industrial
Management Applications (IEEE-CISIM’07), IEEE Computer Society, Elk, Poland,
June, 28-30, pp.31-36.

Madani K. (2008). Artificial Neural Networks Based Image Processing & Pattern
Recognition: From Concepts to Real-World Applications, (Plenary Tutorial Talk,
Key-Note Paper), proceedings of IEEE- 1st International workshop on Image Processing
Theory, Tools and Applications (IEEE-IPTA’08), IEEE Computer Society, Sousse,
Tunisia, November 23-26, pp. 19-27.

Maddox J. (1990). Complicated measure of complexity, Nature, vol. 344, pp. 705.
Maes, P. (1994). Social interface agents: Acquiring competence by learning from users and

other agents, Spring Symposium on Software Agents (Technical Report SS-94-03), O.
Etzioni (ed.), AAAI Press. pp.71-78.

Malkin G. (1998). RIP version2, Carrying Additional Information, IETF RFC 1388 RFC 1993.
Moy J. (1998). OSPF Version 2, IETF RFC2328.
Markovitch S., Rosenstein D. (2002). Feature Generation Using General Constructor

Functions, Machine Learning, Springer Ed., Volume 45, N°. 1, pp.59-98.
Matusita K. (1967). On the notion of anity of several distributions and some of its

applications. Annals Inst. Statistical Mathematics, Vol., 19, pp.181-192.
Mayoubi M., Schafer M., Sinsel S. (1995). Dynamic Neural Units for Non-linear Dynamic

Systems Identification, LNCS Vol. 930, Springer Verlag, pp.1045-1051.
Mehmet I. S., Bingul Y., Okan K. E. (2003). Classification of Satellite Images by Using Self-

organizing Map and Linear Support Vector Machine Decision Tree, 2nd Annual
Asian Conference and Exhibition in the field of GIS.

Mellouk A. (2008a). End to End Quality of Service Engineering in Next Generation Heteregenous
Networks, ISTE/Wiley Ed.

Mellouk A., Hoceini S., Cheurfa M. (2008b). Reinforcing Probabilistic Selective Quality of
service Routes in Dynamic Heterogeneous Networks, Journal of Computer
Communication, Elsevier Ed., Vol 31, n°11, pp. 2706-2715.

Mellouk A., Lorenz P., Boukerche A., Lee M. H. (2007). Quality of Service Based Routing
Algorithms for heterogeneous networks, IEEE Communication Magazine, Vol. 45,
n°2, pp.65-66.

Mellouk A., Hoceini S., Amirat Y. (2006). Adaptive Quality of Service Based Routing
Approaches: Development of a Neuro-Dynamic State-Dependent Reinforcement
Learning Algorithm, International Journal of Communication Systems, Ed. Wiley
InterSciences, Vol 20, n°10, pp.1113-1130.

Murray-Smith R. and Johansen T.A. (1997). Multiple Model Approaches to Modeling and
Control, ed. Murray-Smith R. and T.A. Johansen, Taylor & Francis Publishers.

Naftaly, U., Intrator, N., Horn, D. (1997). Optimal ensemble averaging of neural networks,
Network, vol.8, pp.283-296.

Ozdaglar A.E., Bertsekas D. P. (2003). Optimal Solution of Integer Multicommodity Flow
Problem with Application in Optical Networks, Proc. Of Symposium on Global
Optimisation.

Partridge C. (1992). A proposed flow specification, IETF RFC1363.

Machine Learning 38

Pierson W.E. (1998). Using boundary methods for estimating class separability, PhD thesis,
Department of Electrical Engineering, Oho State University.

Rahman A. F. R., Fairhurst M. (1998). Measuring classification complexity of image
databases : a novel approach, Proceedings of International Conference on Image
Analysis and Processing, pp.893-897.

Rosen E., Viswanathan A., Callon R. (1999). Multiprotocol Label Switching Architecture,
IETF Internet Draft draft-ietf-mpls-arch-06.txt.

Saeed K., Tabedzki M., Adamski M. (2003). A View-Based Approach for Object Recognition,
Conradi Research Review Finland, Vol. 2, Issue 1, pp.85-95.

Schapire R. E. (1999). A Brief Introduction to Boosting, Proc. Of IJCAI, pp.1401-1406.
Shenker S., Partridge C., Guerin R. (1997). Specification of guaranteed quality of service,

IETF RFC2212.
Singh S. (2003). Multiresolution Estimates of classification complexity, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Volume 25 , Issue 12, pp 1534 – 1539.
Singh S., A.P. Galton (2002). Pattern Recognition using Information Slicing Model (PRISM),

Proc. 15th International Conference on Pattern Recognition (ICPR2002), Quebec.
Stallings W. (2001). MPLS , Internet Protocol Journal, Vol. 4, n° 3, pp.34-46.
Strassner J. (2003), Policy-Based Network Management: Solutions for the Next Generation,

Morgan-Kaufmann Ed.
Subramanian D., Druschel P., and Chen J. (1997). Ants and reinforcement learning: A case

study in routing in dynamic networks, Proc. of the Fifteenth International Joint
Conference on Artificial Intelligence, vol. 2, pp.832-839.

Sung K. K., Niyogi P. (1995). Active Learning for Function Approximation, Advances in
Neural Information Processing Systems7, pp.593-600.

Sutton R. S. and Barto A. G. (1994). Reinforcement Learning, MIT Press.
Takeshita, T., Kimura, F., Miyake, Y. (1987). On the Estimation Error of Mahalanobis

Distanc, Trans. IEICE Journal, 70-D, pp.567-573.
Titterington D. M., Smith A.F., Makov V.E. (1985). Statistical Analysis of Finite Mixture

Distributions, Wiley New York.
Tresp V. (2001). Handbook for Neural Network Signal Processing, CRC Press.
Turner J. (1986). New directions in communications (or which way to the information age),

IEEE Communications Magazine, vol. 24(10), pp.8-15.
Vapnik V.N. (1998). Statistical Learning Theory, New York Wiley Ed.
Wasserman P. D. (1993)., Advanced Methods in Neural Computing, New York: Van Nostrand

Reinhold, pp.35-55.
Wang Z. and Crowcroft J. (1996). QoS Routing for Supporting Resource Reservation, IEEE

Journal on Selected Areas in Communications, 17 (8), pp. 1488-1504.
Watkins C. J., Dayan P. (1989). Q-Learning, Machine Learning, Vol.8, pp.279–292.
Watkins C. J. (1989). Learning from Delayed Rewards, Ph.D. thesis, University of Cambridge,

England.
Welzl M. (2003). Scalable Performance Signalling and Congestion Avoidance, Kluwer Academic

Publishers.
Wooldridge M., Jennings N. (1995). Intelligent agents: theory and practice, The Knowledge

Engineering Review, Vol.10:2, pp.115-152.
Zhang L., Deering S., Estrin D. et Zappala D. (1993). RSVP : A New Resource ReSerVation

Protocol, IEEE Network, vol. 7, No 5, pp.8–18.

2

From Automation To Autonomy
Kentarou Kurashige1, Yukiko Onoue1 and Toshio Fukuda2

1Muroran Institute of Technology,
 2Nagoya University

Japan

1. Introduction
Recently, there are many researches on intelligence in the field of engineering from various
viewpoints. Representative aim is to satisfy two desires. One desire is to want more convenient
machine (Kawamoto et al., 2003; Kobayashi et al., 1999; Hasegawa et al., 2004). Researchers
have tried to improve existing machines or invent new machines. And now, researchers
consider realizing new one by incorporating with a mechanism of life intelligence. Another
desire is to want to know what intelligence is. Here, a purpose is to elucidate a mechanism of
intelligence and to create it (Asada et al., 2001; Brooks & Stein, 1994; Goodwin, 1994).
Researchers have expected that utility will be made known as a result of various studies.
As the milestone for intelligent machine, realizing autonomy on machine as a progress from
automation is expected. The research of automation can be regarded as study how to make
proper outputs by rules which human prepared. It is smarter than operating machine
manually, but still not intelligent. Autonomy can be regarded as a mechanism which can
make rules corresponding with surrounding environment and make proper outputs by
making rules.
As one method to realize autonomy on machine, there are researches into machine learning.
Especially, researches using soft computing method are so active. Essence of learning is
making knowledge through trial and error and making outputs using this knowledge
(Jordan, 1992). Expression of knowledge is different between each method, for example
neural network (Nolfi & Parisi, 1997) has knowledge with weight matrix, but knowledge
can be regarded as a rule which is mapping from input to output. Here, we have been free
from necessity of a load that we must make rules to get proper outputs for all situations
machine will face.
But new problem has occurred and we have gotten new load when we use learning method.
We must make evaluation to learn a task or environment. In the framework of machine
learning, human imagines a task which he/she gives to machine at first. Next, human must
design evaluation which is a way how to teach a machine human desire. Evaluation
functions expressed by numerical formula are used mostly as evaluation. The point of this is
that these functions are closely related with context. So it is possible that evaluations of one
output on different tasks are different values. Evaluation is strongly affected by a task,
environment or a viewpoint of researchers. For this reason, a machine can work only for
taught task and it is difficult to apply acquired knowledge or rules for other tasks. Human
must design evaluation for all tasks individually. This load is heavy; especially in a case of

Machine Learning 38

Pierson W.E. (1998). Using boundary methods for estimating class separability, PhD thesis,
Department of Electrical Engineering, Oho State University.

Rahman A. F. R., Fairhurst M. (1998). Measuring classification complexity of image
databases : a novel approach, Proceedings of International Conference on Image
Analysis and Processing, pp.893-897.

Rosen E., Viswanathan A., Callon R. (1999). Multiprotocol Label Switching Architecture,
IETF Internet Draft draft-ietf-mpls-arch-06.txt.

Saeed K., Tabedzki M., Adamski M. (2003). A View-Based Approach for Object Recognition,
Conradi Research Review Finland, Vol. 2, Issue 1, pp.85-95.

Schapire R. E. (1999). A Brief Introduction to Boosting, Proc. Of IJCAI, pp.1401-1406.
Shenker S., Partridge C., Guerin R. (1997). Specification of guaranteed quality of service,

IETF RFC2212.
Singh S. (2003). Multiresolution Estimates of classification complexity, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Volume 25 , Issue 12, pp 1534 – 1539.
Singh S., A.P. Galton (2002). Pattern Recognition using Information Slicing Model (PRISM),

Proc. 15th International Conference on Pattern Recognition (ICPR2002), Quebec.
Stallings W. (2001). MPLS , Internet Protocol Journal, Vol. 4, n° 3, pp.34-46.
Strassner J. (2003), Policy-Based Network Management: Solutions for the Next Generation,

Morgan-Kaufmann Ed.
Subramanian D., Druschel P., and Chen J. (1997). Ants and reinforcement learning: A case

study in routing in dynamic networks, Proc. of the Fifteenth International Joint
Conference on Artificial Intelligence, vol. 2, pp.832-839.

Sung K. K., Niyogi P. (1995). Active Learning for Function Approximation, Advances in
Neural Information Processing Systems7, pp.593-600.

Sutton R. S. and Barto A. G. (1994). Reinforcement Learning, MIT Press.
Takeshita, T., Kimura, F., Miyake, Y. (1987). On the Estimation Error of Mahalanobis

Distanc, Trans. IEICE Journal, 70-D, pp.567-573.
Titterington D. M., Smith A.F., Makov V.E. (1985). Statistical Analysis of Finite Mixture

Distributions, Wiley New York.
Tresp V. (2001). Handbook for Neural Network Signal Processing, CRC Press.
Turner J. (1986). New directions in communications (or which way to the information age),

IEEE Communications Magazine, vol. 24(10), pp.8-15.
Vapnik V.N. (1998). Statistical Learning Theory, New York Wiley Ed.
Wasserman P. D. (1993)., Advanced Methods in Neural Computing, New York: Van Nostrand

Reinhold, pp.35-55.
Wang Z. and Crowcroft J. (1996). QoS Routing for Supporting Resource Reservation, IEEE

Journal on Selected Areas in Communications, 17 (8), pp. 1488-1504.
Watkins C. J., Dayan P. (1989). Q-Learning, Machine Learning, Vol.8, pp.279–292.
Watkins C. J. (1989). Learning from Delayed Rewards, Ph.D. thesis, University of Cambridge,

England.
Welzl M. (2003). Scalable Performance Signalling and Congestion Avoidance, Kluwer Academic

Publishers.
Wooldridge M., Jennings N. (1995). Intelligent agents: theory and practice, The Knowledge

Engineering Review, Vol.10:2, pp.115-152.
Zhang L., Deering S., Estrin D. et Zappala D. (1993). RSVP : A New Resource ReSerVation

Protocol, IEEE Network, vol. 7, No 5, pp.8–18.

2

From Automation To Autonomy
Kentarou Kurashige1, Yukiko Onoue1 and Toshio Fukuda2

1Muroran Institute of Technology,
 2Nagoya University

Japan

1. Introduction
Recently, there are many researches on intelligence in the field of engineering from various
viewpoints. Representative aim is to satisfy two desires. One desire is to want more convenient
machine (Kawamoto et al., 2003; Kobayashi et al., 1999; Hasegawa et al., 2004). Researchers
have tried to improve existing machines or invent new machines. And now, researchers
consider realizing new one by incorporating with a mechanism of life intelligence. Another
desire is to want to know what intelligence is. Here, a purpose is to elucidate a mechanism of
intelligence and to create it (Asada et al., 2001; Brooks & Stein, 1994; Goodwin, 1994).
Researchers have expected that utility will be made known as a result of various studies.
As the milestone for intelligent machine, realizing autonomy on machine as a progress from
automation is expected. The research of automation can be regarded as study how to make
proper outputs by rules which human prepared. It is smarter than operating machine
manually, but still not intelligent. Autonomy can be regarded as a mechanism which can
make rules corresponding with surrounding environment and make proper outputs by
making rules.
As one method to realize autonomy on machine, there are researches into machine learning.
Especially, researches using soft computing method are so active. Essence of learning is
making knowledge through trial and error and making outputs using this knowledge
(Jordan, 1992). Expression of knowledge is different between each method, for example
neural network (Nolfi & Parisi, 1997) has knowledge with weight matrix, but knowledge
can be regarded as a rule which is mapping from input to output. Here, we have been free
from necessity of a load that we must make rules to get proper outputs for all situations
machine will face.
But new problem has occurred and we have gotten new load when we use learning method.
We must make evaluation to learn a task or environment. In the framework of machine
learning, human imagines a task which he/she gives to machine at first. Next, human must
design evaluation which is a way how to teach a machine human desire. Evaluation
functions expressed by numerical formula are used mostly as evaluation. The point of this is
that these functions are closely related with context. So it is possible that evaluations of one
output on different tasks are different values. Evaluation is strongly affected by a task,
environment or a viewpoint of researchers. For this reason, a machine can work only for
taught task and it is difficult to apply acquired knowledge or rules for other tasks. Human
must design evaluation for all tasks individually. This load is heavy; especially in a case of

 Machine Learning

40

robot which has the ability to achieve various tasks and cause changeful environment by its
moving ability, human must persevere in design of evaluation functions.
To overcome this problem, we focus on learning based on universal evaluation. We define
universal evaluation as evaluation which is independent of a task or task information and
environment a machine will be used. And we try to realize a mechanism which can learn
with universal evaluation. In this chapter, we show two challenges using robot as
application. One challenge is study of learning with sense of pain as universal evaluation
(Kurashige & Onoue, 2007). Another challenge is study about creation of evaluation
functions for concrete task and environment with energy as universal evaluation (Kurashige
et al., 2002). On both challenges, we show robot can learn and create proper movement for a
task or environment robot will face.

2. Learning with sense of pain on robot
In this section, we show a case of learning by using sense of pain on robot as universal
evaluation (Kurashige & Onoue, 2007). We think universal evaluation must be independent
of information related with each task and environment robot will face. Here, we consulted
evolutionary process. Instinct which life has innately is important to keep living, and is
independent of concrete environment it will face to a certain extent. Sense of pain, which is a
kind of instinct, is especially important to detect abnormal state. Life can learn avoiding fatal
injury with this instinct. We define sense of pain on robot and make robot learn to protect
itself. And it is so hard to learn various concrete tasks only with universal evaluation. So we
combine learning based on universal evaluation with usual learning method. We construct a
learning system with both learning and expect that operator will be able to design
evaluation function for each task easier by focusing only on a task.
We explain proposed system at first, and next we show an experiment with small-sized
humanoid robot.

2.1 Outline of proposed system using sense of pain
Proposed system consist of three component; usual learning method, learning by sense of
pain, action adjuster. Usual learning method is for learning a task human wants to give a
robot. Here operator designs evaluation function for a task. Learning by sense of pain is for
learning avoiding fatal injury. This learning is not related with each task and can be used to
various tasks. Each component creates or selects action independently, so these actions
conflict sometimes. Proposed system must need action adjuster to solve this problem.
We show outline of proposed system in fig. 1.

sensor
data

usual learning method
(role of task learning)

learning by sense of pain
(role of instinct)

action
adjuster

(for each task)

Fig. 1. Component of proposed system

From Automation To Autonomy

41

2.2 Experimental robot
We use small-sized humanoid robot as application. We show the robot in fig. 2. This robot is
about 50cm tall and has 23 degrees of freedom and various sensors. Especially, each
servomotor has sensors about a position, a load and its temperature. This robot has
processor unit on which UNIX OS runs internally. I show the detail in table 1.

Fig. 2. The photo of the robot and the structure of the robot

Tall / Weight 50cm / 3.7kg
Degree of freedom 23 axes
sensing single-degree-of-freedom gyro
 three-degrees-of-freedom gravity
 CMOS color camera
 2 x monaural microphone
sensing (each servomotor) angle
 torque
 temperature
other interface 2 x LED (3 color)
 speaker
 wireless LAN (IEEE 802.11b)

Table 1. The specification of experimental robot

2.3 Definition of pain on the robot
We define pain on the robot based on its sensor values. We consider that a robot has N
kinds of sensors. For each sensor, we define normal value and abnormal value. And if there
is over one sensor which has abnormal value, we define a robot feels pain. In this section,
we use a torque sensor which can detect a load on a servomotor and define pain on
experimental robot. Using Li which is the value of i-th torque sensor, we define the state
which the sensor has abnormal value as Li > Li’. By this, we define paini as follows; value of 1
means robot feels pain on place of i-th sensor, value of 0 means robot doesn’t feel pain on it.

 Machine Learning

40

robot which has the ability to achieve various tasks and cause changeful environment by its
moving ability, human must persevere in design of evaluation functions.
To overcome this problem, we focus on learning based on universal evaluation. We define
universal evaluation as evaluation which is independent of a task or task information and
environment a machine will be used. And we try to realize a mechanism which can learn
with universal evaluation. In this chapter, we show two challenges using robot as
application. One challenge is study of learning with sense of pain as universal evaluation
(Kurashige & Onoue, 2007). Another challenge is study about creation of evaluation
functions for concrete task and environment with energy as universal evaluation (Kurashige
et al., 2002). On both challenges, we show robot can learn and create proper movement for a
task or environment robot will face.

2. Learning with sense of pain on robot
In this section, we show a case of learning by using sense of pain on robot as universal
evaluation (Kurashige & Onoue, 2007). We think universal evaluation must be independent
of information related with each task and environment robot will face. Here, we consulted
evolutionary process. Instinct which life has innately is important to keep living, and is
independent of concrete environment it will face to a certain extent. Sense of pain, which is a
kind of instinct, is especially important to detect abnormal state. Life can learn avoiding fatal
injury with this instinct. We define sense of pain on robot and make robot learn to protect
itself. And it is so hard to learn various concrete tasks only with universal evaluation. So we
combine learning based on universal evaluation with usual learning method. We construct a
learning system with both learning and expect that operator will be able to design
evaluation function for each task easier by focusing only on a task.
We explain proposed system at first, and next we show an experiment with small-sized
humanoid robot.

2.1 Outline of proposed system using sense of pain
Proposed system consist of three component; usual learning method, learning by sense of
pain, action adjuster. Usual learning method is for learning a task human wants to give a
robot. Here operator designs evaluation function for a task. Learning by sense of pain is for
learning avoiding fatal injury. This learning is not related with each task and can be used to
various tasks. Each component creates or selects action independently, so these actions
conflict sometimes. Proposed system must need action adjuster to solve this problem.
We show outline of proposed system in fig. 1.

sensor
data

usual learning method
(role of task learning)

learning by sense of pain
(role of instinct)

action
adjuster

(for each task)

Fig. 1. Component of proposed system

From Automation To Autonomy

41

2.2 Experimental robot
We use small-sized humanoid robot as application. We show the robot in fig. 2. This robot is
about 50cm tall and has 23 degrees of freedom and various sensors. Especially, each
servomotor has sensors about a position, a load and its temperature. This robot has
processor unit on which UNIX OS runs internally. I show the detail in table 1.

Fig. 2. The photo of the robot and the structure of the robot

Tall / Weight 50cm / 3.7kg
Degree of freedom 23 axes
sensing single-degree-of-freedom gyro
 three-degrees-of-freedom gravity
 CMOS color camera
 2 x monaural microphone
sensing (each servomotor) angle
 torque
 temperature
other interface 2 x LED (3 color)
 speaker
 wireless LAN (IEEE 802.11b)

Table 1. The specification of experimental robot

2.3 Definition of pain on the robot
We define pain on the robot based on its sensor values. We consider that a robot has N
kinds of sensors. For each sensor, we define normal value and abnormal value. And if there
is over one sensor which has abnormal value, we define a robot feels pain. In this section,
we use a torque sensor which can detect a load on a servomotor and define pain on
experimental robot. Using Li which is the value of i-th torque sensor, we define the state
which the sensor has abnormal value as Li > Li’. By this, we define paini as follows; value of 1
means robot feels pain on place of i-th sensor, value of 0 means robot doesn’t feel pain on it.

 Machine Learning

42

0→'
1'

=≤
=→>

iii

iii

painLL
painLL (1)

To determine Li’, we examine pre-experiment which made the robot move randomly, collect
data of values of Li and calculate average μi and deviation i. By these values, we define Li’
as follows

 iiiL σμ 3' += (2)
Using paini, we define pain as follow.

 i
i

pain pain= ∪ (3)

2.4 Learning a given task and avoiding fatal injury using RL as learning method
We give the robot a task which is to select action human want the robot to do. Here we
decide desired action as follows.
learning task :
a. If the robot detects load on arm in back and forth, desired action is to move its arm back

and forth.
b. If the robot detects load on arm in right and left, desired action is to move its arm right

and left.
At the same time, we expect that the robot learn by sense of pain and avoiding fatal injury.
learning by sense of pain :
c. If the robot detects abnormal load on arm, desired action is avoidance action.
We use reinforcement learning (Sutton & Barto, 1998) to realize these learning. We adopt Q
learning as a learning method (eq. 4). This way, we applied same equation to both learning.

 () () ()[]# # ## 1## # ## # # ,,, ttttttt asQrasQasQ −+← +α (4)

Here, St # is a current state, a t # is a selected action, r t # is a reward obtained by the action.
Subscript symbol “t” is discrete time step, and “#” is whether “pain” or “task”. For example,

painta is action a at time t considering at learning based on sense of pain. And we adopt

Softmax Action Selection defined by eq. 5 to select action a.

 ()
()

()∑
=

#

#

#

/,

/,

,
a

asQ

asQ

tt
tt

tt

e
eas τ

τ
π (5)

Here, #τ is a positive constant called temperature. Other is same meaning as upper case.
Next, we define states and actions to use reinforcement learning. For learning task, we
define these as table 2. And for learning by sense of pain we define these as table 3.
We use plural learning which is for task and is based on sense of pain, so plural actions will
be selected. To make the robot move actually, one action must be selected. We consider
action adjuster to select an action the robot will act. On this mechanism, an action which has
maximum value in #π at “#” is selected. We show the outline of action adjuster in fig. 3.
Using proposed system, we realize to learn given task and to learn avoiding fatal injury at
the same time. At the experiment, the learning for given task is tried 100 times in each state.

From Automation To Autonomy

43

tasks 0 load detection in back and forth
tasks 1 load detection in right and left

(a) state
taska 0 move arm back and forth
taska 1 move arm right and left

(b) action
Table 2. States and actions for learning task

pains 0 pain = 0 (robot doesn’t feels pain)

pains 1 pain = 1 (robot feels pain)
(c) state

paina 0 continue a present action
(no action for avoidance)

paina 1 return the servo to an initial position
(avoidance action)

(d) action
Table 3. States and actions for learning by sense of pain

positive reward 5
negative reward -3
taskα 0.1

Learning for given task

taskτ 3
reward if return the servo to an initial position -1
reward if servo become to be abnormal state -100
painα 0.5

Learning by sense of pain

painτ 0.5

Table 4. The parameter for the experiment

learning for task
selected best action

()taskttaskttask
a

taskt asa
taskt

*
 ,max

π=

learning by sense of pain
selected best action

()paintpaintpain
a

paint asa
paint

*
 ,max

π=

()*
#

#

* ,max ttt asa π=

selected best action
action adjuster

Fig. 3. Outline of action adjuster

And the learning by sense of pain is done once every 500msec. Other parameter is shown in
table 4.

 Machine Learning

42

0→'
1'

=≤
=→>

iii

iii

painLL
painLL (1)

To determine Li’, we examine pre-experiment which made the robot move randomly, collect
data of values of Li and calculate average μi and deviation i. By these values, we define Li’
as follows

 iiiL σμ 3' += (2)
Using paini, we define pain as follow.

 i
i

pain pain= ∪ (3)

2.4 Learning a given task and avoiding fatal injury using RL as learning method
We give the robot a task which is to select action human want the robot to do. Here we
decide desired action as follows.
learning task :
a. If the robot detects load on arm in back and forth, desired action is to move its arm back

and forth.
b. If the robot detects load on arm in right and left, desired action is to move its arm right

and left.
At the same time, we expect that the robot learn by sense of pain and avoiding fatal injury.
learning by sense of pain :
c. If the robot detects abnormal load on arm, desired action is avoidance action.
We use reinforcement learning (Sutton & Barto, 1998) to realize these learning. We adopt Q
learning as a learning method (eq. 4). This way, we applied same equation to both learning.

 () () ()[]# # ## 1## # ## # # ,,, ttttttt asQrasQasQ −+← +α (4)

Here, St # is a current state, a t # is a selected action, r t # is a reward obtained by the action.
Subscript symbol “t” is discrete time step, and “#” is whether “pain” or “task”. For example,

painta is action a at time t considering at learning based on sense of pain. And we adopt

Softmax Action Selection defined by eq. 5 to select action a.

 ()
()

()∑
=

#

#

#

/,

/,

,
a

asQ

asQ

tt
tt

tt

e
eas τ

τ
π (5)

Here, #τ is a positive constant called temperature. Other is same meaning as upper case.
Next, we define states and actions to use reinforcement learning. For learning task, we
define these as table 2. And for learning by sense of pain we define these as table 3.
We use plural learning which is for task and is based on sense of pain, so plural actions will
be selected. To make the robot move actually, one action must be selected. We consider
action adjuster to select an action the robot will act. On this mechanism, an action which has
maximum value in #π at “#” is selected. We show the outline of action adjuster in fig. 3.
Using proposed system, we realize to learn given task and to learn avoiding fatal injury at
the same time. At the experiment, the learning for given task is tried 100 times in each state.

From Automation To Autonomy

43

tasks 0 load detection in back and forth
tasks 1 load detection in right and left

(a) state
taska 0 move arm back and forth
taska 1 move arm right and left

(b) action
Table 2. States and actions for learning task

pains 0 pain = 0 (robot doesn’t feels pain)

pains 1 pain = 1 (robot feels pain)
(c) state

paina 0 continue a present action
(no action for avoidance)

paina 1 return the servo to an initial position
(avoidance action)

(d) action
Table 3. States and actions for learning by sense of pain

positive reward 5
negative reward -3
taskα 0.1

Learning for given task

taskτ 3
reward if return the servo to an initial position -1
reward if servo become to be abnormal state -100
painα 0.5

Learning by sense of pain

painτ 0.5

Table 4. The parameter for the experiment

learning for task
selected best action

()taskttaskttask
a

taskt asa
taskt

*
 ,max

π=

learning by sense of pain
selected best action

()paintpaintpain
a

paint asa
paint

*
 ,max

π=

()*
#

#

* ,max ttt asa π=

selected best action
action adjuster

Fig. 3. Outline of action adjuster

And the learning by sense of pain is done once every 500msec. Other parameter is shown in
table 4.

 Machine Learning

44

2.5 Result
We show results in fig. 4 and fig. 5 and table 5. The transition of action selection probability
in learning for given task is shown in fig. 4. It shows that the selection probability of the best
action was rising with progress of the trial time. The transition of action selection probability
in learning by sense of pain is shown in fig. 5. It shows that the learning was done and the
robot got the ability of avoiding fatal injury.

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

20 40 60 80 100
trial

probability of selection of taska 0

probability of selection of taska 1

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
20 40 60 80 100

trial

probability of selection of taska 1

probability of selection of taska 0

 (a) The case in the state tasks 0 (b) The case in the state tasks 1

Fig. 4. The transition of probability of action selection in learning for given task

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

2000 4000
trial

probability of selection of paina 1

probability of selection of paina 0

0

0.2
0.4

0.6
0.8
1

pr
ob

ab
ili

ty

2000 4000
trial

probability of selection of paina 0

probability of selection of paina 1

 (a) The case in the state pains 0 (b) The case in the state pains 1

Fig. 5. The transition of probability of action selection in learning by sense of pain

paina 0 (no avoidance action)

taska 0 taska 1 paina 1

tasks 0 and pains 0 99.67% 3.33% 0%

tasks 1 and pains 0 6.67% 93.33% 0%

tasks 0 and pains 1 0% 0% 100%

tasks 1 and pains 1 0% 0% 100%

Table 5. The result of action selection after 120 times learning

After learning, we experimented to confirm the result of the learning. We give the robot
given task at 120times including the case caused abnormal state. The result of this
confirmation is shown in table 5.

From Automation To Autonomy

45

3. Creation of evaluation functions with energy
In this section, we show a study about creation of evaluation functions by using energy of
robot as universal evaluation (Kurashige et al., 2002). How to evaluate robot’s action
changes in different contexts, in different tasks or environment. For usual learning, human
must design evaluation functions for concrete task or environment robot will face. We have
tried to create proper evaluations along concrete task and environment by universal
evaluation. We proposed a method based on motivation to drive action on life. Here, we
show motivation model we proposed and experiment on computer simulation.

3.1 Proposed concept “motivation model” based on life
Life has desire to feel satisfaction, especially when they feel insufficiency. They act for the
aim of being satisfied with their status. The force that causes life to take action by desire is
called “motive” in the field of psychology (Atkinson et al., 1999). Motive is classified
roughly into two types; one is called basic motive and another is called derived motive.
Basic motive is considered as motive which life has innately and which is equally among life
or a species. Derived motive is considered as motive which is acquired through individual
experience and is different on each other. And derived motive is considered as one gained
based on basic motive. But this acquisition process isn’t fixed on yet.

environment

motive drive action

sufficiency

can’t be sufficient

new desire

desire to satisfy onetime desire

change environment into one
on which agent can satisfy desire easier

or
on which agent doesn’t have the desire agent can’t satisfy

create a new desire

desire

new motive

evaluation function

learning
(the process of

making proper action)

Fig. 6. Proposed concept named motivation model

Here, we thought of basic idea based on this knowledge as follows. Desire on agent, which
is robot or etc., is a direction or index of satisfaction. And motive on agent is the process
which agent creates or selects action to satisfy its desire. We consider desire as evaluation
function and motive as learning process. If agent can learn and satisfy its desire, there is no
problem. If it is hard or impossible to make proper action for satisfaction of its desire, there

 Machine Learning

44

2.5 Result
We show results in fig. 4 and fig. 5 and table 5. The transition of action selection probability
in learning for given task is shown in fig. 4. It shows that the selection probability of the best
action was rising with progress of the trial time. The transition of action selection probability
in learning by sense of pain is shown in fig. 5. It shows that the learning was done and the
robot got the ability of avoiding fatal injury.

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

20 40 60 80 100
trial

probability of selection of taska 0

probability of selection of taska 1

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

20 40 60 80 100
trial

probability of selection of taska 1

probability of selection of taska 0

 (a) The case in the state tasks 0 (b) The case in the state tasks 1

Fig. 4. The transition of probability of action selection in learning for given task

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

2000 4000
trial

probability of selection of paina 1

probability of selection of paina 0

0

0.2
0.4

0.6
0.8
1

pr
ob

ab
ili

ty

2000 4000
trial

probability of selection of paina 0

probability of selection of paina 1

 (a) The case in the state pains 0 (b) The case in the state pains 1

Fig. 5. The transition of probability of action selection in learning by sense of pain

paina 0 (no avoidance action)

taska 0 taska 1 paina 1

tasks 0 and pains 0 99.67% 3.33% 0%

tasks 1 and pains 0 6.67% 93.33% 0%

tasks 0 and pains 1 0% 0% 100%

tasks 1 and pains 1 0% 0% 100%

Table 5. The result of action selection after 120 times learning

After learning, we experimented to confirm the result of the learning. We give the robot
given task at 120times including the case caused abnormal state. The result of this
confirmation is shown in table 5.

From Automation To Autonomy

45

3. Creation of evaluation functions with energy
In this section, we show a study about creation of evaluation functions by using energy of
robot as universal evaluation (Kurashige et al., 2002). How to evaluate robot’s action
changes in different contexts, in different tasks or environment. For usual learning, human
must design evaluation functions for concrete task or environment robot will face. We have
tried to create proper evaluations along concrete task and environment by universal
evaluation. We proposed a method based on motivation to drive action on life. Here, we
show motivation model we proposed and experiment on computer simulation.

3.1 Proposed concept “motivation model” based on life
Life has desire to feel satisfaction, especially when they feel insufficiency. They act for the
aim of being satisfied with their status. The force that causes life to take action by desire is
called “motive” in the field of psychology (Atkinson et al., 1999). Motive is classified
roughly into two types; one is called basic motive and another is called derived motive.
Basic motive is considered as motive which life has innately and which is equally among life
or a species. Derived motive is considered as motive which is acquired through individual
experience and is different on each other. And derived motive is considered as one gained
based on basic motive. But this acquisition process isn’t fixed on yet.

environment

motive drive action

sufficiency

can’t be sufficient

new desire

desire to satisfy onetime desire

change environment into one
on which agent can satisfy desire easier

or
on which agent doesn’t have the desire agent can’t satisfy

create a new desire

desire

new motive

evaluation function

learning
(the process of

making proper action)

Fig. 6. Proposed concept named motivation model

Here, we thought of basic idea based on this knowledge as follows. Desire on agent, which
is robot or etc., is a direction or index of satisfaction. And motive on agent is the process
which agent creates or selects action to satisfy its desire. We consider desire as evaluation
function and motive as learning process. If agent can learn and satisfy its desire, there is no
problem. If it is hard or impossible to make proper action for satisfaction of its desire, there

 Machine Learning

46

is problem that agent can’t satisfy its desire. To solve this problem, we consider that agent
creates new desire which is to satisfy one time desire. By action caused by new motive to try
to satisfy corresponding desire, agent tries to change an environment into the others on
which agent can satisfy its desire easier or on which agent doesn’t have the desire it can’t
satisfy. Especially by the latter case, agent tries to avoid an environment on which agent
can’t satisfy its desire, and tries to learn proper action on other environment to satisfy its
desire. This is outline of idea named “motivation model”. We show proposed concept in fig.
6. Next, we construct concrete algorithm by motivation model.

3.2 The algorithm to generate evaluation functions based on motivation model
We propose an algorithm to generate evaluation functions based on motivation model.
Here, we construct the algorithm by modifying reinforcement learning (Sutton & Barto,
1998). The outline of proposed algorithm is shown in fig. 7. Evaluation μi is i-th evaluation
and produces reward which is decided according to an agent’s state. Knowledge space is the
space composed by μi, s, a and is made by learning. If agent can get high reward and be
sufficient by learning, there is no problem. If it is hard or impossible to get high reward, we
think there is problem and try to make agent create new evaluation to solve the problem.
We explain when agent creates new evaluation, and next explain the algorithm how to
create it.
We define the timing to create new evaluation by a shape of knowledge space. At first, we
define knowledge space corresponding to i-th evaluation as ()asM ii ,: ×μ and show outline
in fig. 8. We classify this under four typical types to explain a concept of creation of new

evaluation: knowledge space Mi :

environment: s

action: a

evaluation:

desire motive

motivation

iμ

iμ

1+iμ

try to be sufficient

difficult to be sufficientcreate

try to change environment

reward
construct Q(, s , a)

()asi ,×μ

Fig. 7. The outline of proposed algorithm
evaluation as shown in fig. 9. In the case of fig. 9(a), both an agent’s action and a state of
environment agent faces influence an evaluation score, so they have the strong relationship.
In the case of fig. 9(b) and (c), the relationship between an agent’s action and a state is
weaker than in the case of fig. 9(a). Evaluation score depends only on a state of environment
in the case of fig. 9(b) and depends only on an agent’s action in the case of fig. 9(c). Lastly,
there is no relationship between an agent’s action and a state of environment in the case of

From Automation To Autonomy

47

fig. 9(d). Here, we focus on cases of fig. 9(a) and (b). In these cases, an agent can’t control its
evaluation score only by its action. The evaluation score depends on a state of environment.
So we consider that an agent creates new evaluation in these cases, and by created action
under new evaluation an agent tries to be in a state which has possibility to get high reward.
To judge whether new evaluation must be created or not, we use joint probability
distribution ()asP i ,,μ . By this, we can calculate marginal probability distribution ()ag i ,μ as
shown in eq. 5.

 () ()∑=
s

ii asPag ,,, μμ (5)

At this time, we can calculate existence probability p on
i
rμ as follows.

 ()targp
i
,μ= (6)

Here,
i
rμ is reward for an action at under a state st according to evaluation iμ . Using

existence probability p, we define the probability of generation of evaluation function as 1-p.

M iM i : iμ
s : Sensor space
a : Action spaceiμ

s

a

: Evaluation

Fig. 8. The outline of knowledge space

iμ

s

a

iμ

s

a

iμ

s

a

iμ

s

a
(a) strong relationship (b) insensitive to action (c) insensitive to env. (d) weak relationship
Fig. 9. Four typical types of knowledge space
Next, we explain how to create new evaluation. We think that an agent tries to be in a state
which agent can get higher reward by an action derived by new evaluation. So we define
new evaluation jμ with a state s. On knowledge space Mi , we can calculate marginal
probability distribution ()sf i ,μ as shown in eq. 7.

 () ()∑=
a

ii asPsf ,,, μμ (7)

 Machine Learning

46

is problem that agent can’t satisfy its desire. To solve this problem, we consider that agent
creates new desire which is to satisfy one time desire. By action caused by new motive to try
to satisfy corresponding desire, agent tries to change an environment into the others on
which agent can satisfy its desire easier or on which agent doesn’t have the desire it can’t
satisfy. Especially by the latter case, agent tries to avoid an environment on which agent
can’t satisfy its desire, and tries to learn proper action on other environment to satisfy its
desire. This is outline of idea named “motivation model”. We show proposed concept in fig.
6. Next, we construct concrete algorithm by motivation model.

3.2 The algorithm to generate evaluation functions based on motivation model
We propose an algorithm to generate evaluation functions based on motivation model.
Here, we construct the algorithm by modifying reinforcement learning (Sutton & Barto,
1998). The outline of proposed algorithm is shown in fig. 7. Evaluation μi is i-th evaluation
and produces reward which is decided according to an agent’s state. Knowledge space is the
space composed by μi, s, a and is made by learning. If agent can get high reward and be
sufficient by learning, there is no problem. If it is hard or impossible to get high reward, we
think there is problem and try to make agent create new evaluation to solve the problem.
We explain when agent creates new evaluation, and next explain the algorithm how to
create it.
We define the timing to create new evaluation by a shape of knowledge space. At first, we
define knowledge space corresponding to i-th evaluation as ()asM ii ,: ×μ and show outline
in fig. 8. We classify this under four typical types to explain a concept of creation of new

evaluation: knowledge space Mi :

environment: s

action: a

evaluation:

desire motive

motivation

iμ

iμ

1+iμ

try to be sufficient

difficult to be sufficientcreate

try to change environment

reward
construct Q(, s , a)

()asi ,×μ

Fig. 7. The outline of proposed algorithm
evaluation as shown in fig. 9. In the case of fig. 9(a), both an agent’s action and a state of
environment agent faces influence an evaluation score, so they have the strong relationship.
In the case of fig. 9(b) and (c), the relationship between an agent’s action and a state is
weaker than in the case of fig. 9(a). Evaluation score depends only on a state of environment
in the case of fig. 9(b) and depends only on an agent’s action in the case of fig. 9(c). Lastly,
there is no relationship between an agent’s action and a state of environment in the case of

From Automation To Autonomy

47

fig. 9(d). Here, we focus on cases of fig. 9(a) and (b). In these cases, an agent can’t control its
evaluation score only by its action. The evaluation score depends on a state of environment.
So we consider that an agent creates new evaluation in these cases, and by created action
under new evaluation an agent tries to be in a state which has possibility to get high reward.
To judge whether new evaluation must be created or not, we use joint probability
distribution ()asP i ,,μ . By this, we can calculate marginal probability distribution ()ag i ,μ as
shown in eq. 5.

 () ()∑=
s

ii asPag ,,, μμ (5)

At this time, we can calculate existence probability p on
i
rμ as follows.

 ()targp
i
,μ= (6)

Here,
i
rμ is reward for an action at under a state st according to evaluation iμ . Using

existence probability p, we define the probability of generation of evaluation function as 1-p.

M iM i : iμ
s : Sensor space
a : Action spaceiμ

s

a

: Evaluation

Fig. 8. The outline of knowledge space

iμ

s

a

iμ

s

a

iμ

s

a

iμ

s

a
(a) strong relationship (b) insensitive to action (c) insensitive to env. (d) weak relationship
Fig. 9. Four typical types of knowledge space
Next, we explain how to create new evaluation. We think that an agent tries to be in a state
which agent can get higher reward by an action derived by new evaluation. So we define
new evaluation jμ with a state s. On knowledge space Mi , we can calculate marginal
probability distribution ()sf i ,μ as shown in eq. 7.

 () ()∑=
a

ii asPsf ,,, μμ (7)

 Machine Learning

48

An action at at time t under evaluation jμ is action to make profitable environment under
evaluation iμ . So we define jμ using a state st+1 derived by at as follows. And we show the
concept of how to create new evaluation in fig. 10.

 () ()() ()∑ +++ ⋅===
i

ii
r

ttitjj srfrsEs
μ

μμμμμ 111 , (8)

s

a

jμ

iμ

projection
Fig. 10. Concept of how to create new evaluation

Finally, we explain how to select action using these evaluation functions. On each
evaluation iμ , an action ai which can take max iμ is selected. Here, max iμ is maximum value of
evaluation iμ . The number of candidate actions is equal to the number of evaluation
functions. We define probability of selection for each action ai as eq. 9. An agent decides an
action based on this probability of selection.

 ()
∑

=

i
i

i
iaq

max

max

μ
μ (9)

3.3 Burden-carrying task
We applied proposed algorithm to burden-carrying task. The object environment is shown
in fig. 11. The task is to carry burdens from loading station to unloading station. The robot
which is the agent at this task can get energy β per one burden as a reward for work. In the
environment, there are several kinds of hindrances. They are walls and burdens. Walls bar
robot’s way. If the robot puts burden down on any place except unloading station, it will
become hindrance.
For this task and environment, the robot can takes several actions: Load, Unload, Forward,
Left, Right and Stop. The robot needs energy to execute each action whether the robot can
do or not. So if the robot fails to execute an action, for example the robot tries to go through
a wall, the robot loses same amount of energy when the robot succeeds to take that action
and a state of the robot doesn’t change. In this task, we set energy to take any action as α.
Actions the robot can take and perceptions the robot can use are as follows.

Load get a burden in front of the robot
Unload put a burden down in front of the robot
Forward take a step forward
Left turn to the left
Right turn to the right
Stop stop

Table 6. Actions the robot can take

From Automation To Autonomy

49

direcstate state around the robot
(direc : forward, right, left, back)

burdenstate state whether the robot has burden or not
(x , y , direc) current location and direction
energyΔ change of energy

Table 7. Perceptions the robot can use

We define initial evaluation function by using the change of energy of the robot as eq. 10.
This is basic motive at this task. And it plays the role of universal evaluation because of the
definition which is independent of environment.

⎩
⎨
⎧−

=Δ=
β
α

μ energy1
 (10)

Here, α is energy to take an action and β is a reward for work when the robot can get at
unloading station.

Loading Station:L

Unloading Station:UL

Robot

Obstacle

W
al

l

W
al

l

Loading Station:L

Unloading Station:UL

get
burden

put
burden

Fig. 11. Outline of load-carrying task

3.4 Results of computer simulation
We experiment burden-carrying task on computer simulation. The robot has energy ϕ as
initial energy. If energy of the robot drops to zero, we give the robot energy γ in the midst
of learning as recharging. The number of burden which the robot can carry at once is
expressed as χ . We show the parameter of simulation in table 8.

α -1
β 150
ϕ 100
γ 10
χ 10

Table 8. The parameter of simulation

 Machine Learning

48

An action at at time t under evaluation jμ is action to make profitable environment under
evaluation iμ . So we define jμ using a state st+1 derived by at as follows. And we show the
concept of how to create new evaluation in fig. 10.

 () ()() ()∑ +++ ⋅===
i

ii
r

ttitjj srfrsEs
μ

μμμμμ 111 , (8)

s

a

jμ

iμ

projection
Fig. 10. Concept of how to create new evaluation

Finally, we explain how to select action using these evaluation functions. On each
evaluation iμ , an action ai which can take max iμ is selected. Here, max iμ is maximum value of
evaluation iμ . The number of candidate actions is equal to the number of evaluation
functions. We define probability of selection for each action ai as eq. 9. An agent decides an
action based on this probability of selection.

 ()
∑

=

i
i

i
iaq

max

max

μ
μ (9)

3.3 Burden-carrying task
We applied proposed algorithm to burden-carrying task. The object environment is shown
in fig. 11. The task is to carry burdens from loading station to unloading station. The robot
which is the agent at this task can get energy β per one burden as a reward for work. In the
environment, there are several kinds of hindrances. They are walls and burdens. Walls bar
robot’s way. If the robot puts burden down on any place except unloading station, it will
become hindrance.
For this task and environment, the robot can takes several actions: Load, Unload, Forward,
Left, Right and Stop. The robot needs energy to execute each action whether the robot can
do or not. So if the robot fails to execute an action, for example the robot tries to go through
a wall, the robot loses same amount of energy when the robot succeeds to take that action
and a state of the robot doesn’t change. In this task, we set energy to take any action as α.
Actions the robot can take and perceptions the robot can use are as follows.

Load get a burden in front of the robot
Unload put a burden down in front of the robot
Forward take a step forward
Left turn to the left
Right turn to the right
Stop stop

Table 6. Actions the robot can take

From Automation To Autonomy

49

direcstate state around the robot
(direc : forward, right, left, back)

burdenstate state whether the robot has burden or not
(x , y , direc) current location and direction
energyΔ change of energy

Table 7. Perceptions the robot can use

We define initial evaluation function by using the change of energy of the robot as eq. 10.
This is basic motive at this task. And it plays the role of universal evaluation because of the
definition which is independent of environment.

⎩
⎨
⎧−

=Δ=
β
α

μ energy1
 (10)

Here, α is energy to take an action and β is a reward for work when the robot can get at
unloading station.

Loading Station:L

Unloading Station:UL

Robot

Obstacle

W
al

l

W
al

l

Loading Station:L

Unloading Station:UL

get
burden

put
burden

Fig. 11. Outline of load-carrying task

3.4 Results of computer simulation
We experiment burden-carrying task on computer simulation. The robot has energy ϕ as
initial energy. If energy of the robot drops to zero, we give the robot energy γ in the midst
of learning as recharging. The number of burden which the robot can carry at once is
expressed as χ . We show the parameter of simulation in table 8.

α -1
β 150
ϕ 100
γ 10
χ 10

Table 8. The parameter of simulation

 Machine Learning

50

0 10000 20000 30000 40000 50000

500

1000

1500

2000

2500

3000

step

am
ou

nt
 o

f e
ne

rg
y

(a) Transition of the amount of energy robot keeps

0 10000 20000 30000 40000 50000

50

100

150

200

step

th
e

nu
m

be
r o

f e
va

lu
at

io
ns

(b) Transition of the number of evaluation

Fig. 12. Results through learning

The results of simulation under this condition are shown in fig. 12. Figure 12(a) represents
transition of amount of energy on the robot. Figure 12(b) represents the number of
evaluation which the robot creates with proposed algorithm.
In the first part of fig. 12(a), the amount of energy which the robot kept was low. We
consider it was occurred because the robot took actions randomly in this phase which is
early phase of learning. And increasing the number of evaluation, we can see the amount of
energy which robot kept was rising.
And we show the existence probability of the robot on the environment from 40000 step to
50000 step in fig. 13. This shows the robot went round between loading station and
unloading station.

From Automation To Autonomy

51

0
0.05

0.1
0.15

existence probability

x

y

loading station

unloading station

Fig. 13. Existence probability of the robot on learning between 4000 step and 5000 step

4. Conclusion
Our goal is to realize a system which keeps adapting various tasks and environment with
universal mechanism which is independent of concrete tasks and environment. In this
chapter, we proposed the concept of universal evaluation as a kind of universal mechanism.
Here, we showed two experiments as instances. One is the study using sense of pain as
universal evaluation. With this universal evaluation, the robot could avoid being injured by
unexpected load. Another is the study to create evaluation functions for concrete
environment by universal evaluation. We showed recursive algorithm to create evaluation
functions by existing evaluation functions. And we used evaluation about energy on robot
as the beginning and universal evaluation. We showed the robot could take more proper
action as it created evaluation functions by proposed algorithm.
As the future works, we try to find and propose better universal mechanisms. For example,
we consider that a rule how to interact environment can be used as a universal mechanism.
As the first step of this, we have tried to create evaluation functions for concrete task and
environment with an interaction rule which is defined by variance of sensor data
(Kurashige, 2007). By importing a concept of universal mechanism into learning method, we
try to divide between how to design a robot and how to use a robot, and we try to realize a
system which can get necessary knowledge whenever it is necessary only with an operation
of its information. We think that is next step for autonomy.

5. References
Asada, M.; MacDorman, K. F.; Ishiguro, H. & Kuniyoshi, Y. (2001). Cognitive

Developmental Robotics As a New Paradigm for the Design of Humanoid Robots,
Robotics and Autonomous System, 37, (2001), pp. 185-193

Atkinson, R. L.; Smith, E. E.; Bem, D. J. Nolen-Hoeksema, S. (1999). Hilgard’s introduction to
psychology, Thirteenth edition, Wadsworth Publishing

 Machine Learning

50

0 10000 20000 30000 40000 50000

500

1000

1500

2000

2500

3000

step

am
ou

nt
 o

f e
ne

rg
y

(a) Transition of the amount of energy robot keeps

0 10000 20000 30000 40000 50000

50

100

150

200

step

th
e

nu
m

be
r o

f e
va

lu
at

io
ns

(b) Transition of the number of evaluation

Fig. 12. Results through learning

The results of simulation under this condition are shown in fig. 12. Figure 12(a) represents
transition of amount of energy on the robot. Figure 12(b) represents the number of
evaluation which the robot creates with proposed algorithm.
In the first part of fig. 12(a), the amount of energy which the robot kept was low. We
consider it was occurred because the robot took actions randomly in this phase which is
early phase of learning. And increasing the number of evaluation, we can see the amount of
energy which robot kept was rising.
And we show the existence probability of the robot on the environment from 40000 step to
50000 step in fig. 13. This shows the robot went round between loading station and
unloading station.

From Automation To Autonomy

51

0
0.05

0.1
0.15

existence probability

x

y

loading station

unloading station

Fig. 13. Existence probability of the robot on learning between 4000 step and 5000 step

4. Conclusion
Our goal is to realize a system which keeps adapting various tasks and environment with
universal mechanism which is independent of concrete tasks and environment. In this
chapter, we proposed the concept of universal evaluation as a kind of universal mechanism.
Here, we showed two experiments as instances. One is the study using sense of pain as
universal evaluation. With this universal evaluation, the robot could avoid being injured by
unexpected load. Another is the study to create evaluation functions for concrete
environment by universal evaluation. We showed recursive algorithm to create evaluation
functions by existing evaluation functions. And we used evaluation about energy on robot
as the beginning and universal evaluation. We showed the robot could take more proper
action as it created evaluation functions by proposed algorithm.
As the future works, we try to find and propose better universal mechanisms. For example,
we consider that a rule how to interact environment can be used as a universal mechanism.
As the first step of this, we have tried to create evaluation functions for concrete task and
environment with an interaction rule which is defined by variance of sensor data
(Kurashige, 2007). By importing a concept of universal mechanism into learning method, we
try to divide between how to design a robot and how to use a robot, and we try to realize a
system which can get necessary knowledge whenever it is necessary only with an operation
of its information. We think that is next step for autonomy.

5. References
Asada, M.; MacDorman, K. F.; Ishiguro, H. & Kuniyoshi, Y. (2001). Cognitive

Developmental Robotics As a New Paradigm for the Design of Humanoid Robots,
Robotics and Autonomous System, 37, (2001), pp. 185-193

Atkinson, R. L.; Smith, E. E.; Bem, D. J. Nolen-Hoeksema, S. (1999). Hilgard’s introduction to
psychology, Thirteenth edition, Wadsworth Publishing

 Machine Learning

52

Brooks, R. A. & Stein, L. A. (1994). Building Brains for Bodies, Autonomous Robots, 1, 1,
(November, 1994), pp.7-25

Goodwin, R. (1994). Reasoning about when to start Acting, Proceedings of the 2nd International
Conference on Artificial Intelligence Planning Systems, pp.86-91, Chicago, IL, USA,
May, 1994

Hasegawa, Y; Yokoe, K; Kawai, Y. & Fukuda, T. (2004). GPR-based Adaptive Sensing -GPR
Manipulation According to Terrain Configurations, Proceedings of 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp.3021-3026, Sendai,
Japan, October, 2004

Jordan, I. M. (1992). Forward models: Supervised learning with a distal teacher, Cognitive
Science, 16, (1992), pp.307-354

Kawamoto, H.; Lee, S.; Kanbe, S. & Sankai, Y. (2003). Power Assist Method for HAL-3 using
EMG-based Feedback Controller, Proceedings of International Conference on Systems,
Man and Cybernetics, pp.1648-1653, Washington DC, USA, October, 2003

Kobayashi, E.; Masamune, K.; Sakuma, I.; Dohi, T. & Hashimoto, D. (1999). A New Safe
Laparoscopic Manipulator System with a Five-Bar Linkage Mechanism and an
Optical Zoom, Computer Aided Surgery, 4, 4, pp.182-192

Kurashige, K. (2007). A simple rule how to make a reward for learning with human
interaction., Proceedings of the 2007 IEEE International Symposium on Computational
Intelligence in Robotics and Automation, pp.202-205, Jacksonville, FL, USA, June, 2007

Kurashige, K.; Aramaki, S. & Fukuda, T. (2002), Proposal of the motion planning with
Motivation Model, Proceedings of Fuzzy, Artificial Intelligence, Neural Networks and
Computational Intelligence, pp. 467-472, Saga, Japan, November, 2002

Kurashige, K. & Onoue, Y. (2007). The robot learning by using “sense of pain”, Proceedings of
International Symposium on Humanized Systems 2007, pp.1-4, Muroran, Japan,
September, 2007

Nolfi, S. & Parisi, D. (1997). Learning to adapt to changing environments in evolving neural
networks, Adaptive Behavior, 5, 1, (1997), pp.75-98

Sutton, R. S.; Barto, A. G. (1998). Reinforcement Learning An Introduction, The MIT Press,
Cambridge

3

Taking Experience to a Whole New Level
Luis Ignacio Lopera

Universidad de los Andes
Colombia

1. Introduction
Human kind through out history has shown a keen ability to learn by observation and to
create. He’s the only species on earth that has drastically changed his surroundings by
constructing cities, houses and parks among other things. He also has left the planet for the
nearest celestial body and built a home on the stars. But if one takes the knowledge needed
to build something as complicated as the space station, one soon realizes that one did not
have to learn everything at once. As matter of fact the knowledge needed to build the station
is the result of a very long learning process that was done one step at the time.
This type of learning process, based very strongly on previous experiences, has proved to be
efficient in the way that once something works it is fairly easy to replicate or do it better.
However, it is interesting to point out that regardless if it is the best method for learning it is
the only method used. The school systems all around the world expect a child to learn
certain skills during the first years of schooling, such as reading, writing and spatial
reasoning. Then these skills are broadly used from there on to learn things like basic algebra,
logic reasoning, arts, crafts, history and so on. Once in college the student is expected to
choose an area of interest and study the extra skills necessary to learn the advanced subjects
of the area and be able to use them in a professional environment. If the student pursues a
higher degree of education his success will reside on his ability to interconnect past
experiences to produce some new bits of knowledge.
Interesting enough, the power of knowledge is derived not only from personal experience
but from a collective experience as well. This can be seen in very isolated communities as
well as in the global community of today. In aborigine tribes, the collective experience is
passed from generation to generation usually by means of oral tradition. For example, the
best way to hunt, the best grassing places for cattle and so on. Such knowledge is updated
by the most recent personal experiences. In today’s more globalized community experiences
are shared through many different channels, such as books or the internet.
The discussion comes to the point where it becomes important to define experience. In a
general context; the Merriam Webster’s dictionary defines experience as:
“1 a: direct observation of or participation in events as a basis of knowledge b: the fact or
state of having been affected by or gained knowledge through direct observation or
participation
2 a: practical knowledge, skill, or practice derived from direct observation of or participation
in events or in a particular activity b: the length of such participation <has 10 years'
experience in the job>

 Machine Learning

52

Brooks, R. A. & Stein, L. A. (1994). Building Brains for Bodies, Autonomous Robots, 1, 1,
(November, 1994), pp.7-25

Goodwin, R. (1994). Reasoning about when to start Acting, Proceedings of the 2nd International
Conference on Artificial Intelligence Planning Systems, pp.86-91, Chicago, IL, USA,
May, 1994

Hasegawa, Y; Yokoe, K; Kawai, Y. & Fukuda, T. (2004). GPR-based Adaptive Sensing -GPR
Manipulation According to Terrain Configurations, Proceedings of 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp.3021-3026, Sendai,
Japan, October, 2004

Jordan, I. M. (1992). Forward models: Supervised learning with a distal teacher, Cognitive
Science, 16, (1992), pp.307-354

Kawamoto, H.; Lee, S.; Kanbe, S. & Sankai, Y. (2003). Power Assist Method for HAL-3 using
EMG-based Feedback Controller, Proceedings of International Conference on Systems,
Man and Cybernetics, pp.1648-1653, Washington DC, USA, October, 2003

Kobayashi, E.; Masamune, K.; Sakuma, I.; Dohi, T. & Hashimoto, D. (1999). A New Safe
Laparoscopic Manipulator System with a Five-Bar Linkage Mechanism and an
Optical Zoom, Computer Aided Surgery, 4, 4, pp.182-192

Kurashige, K. (2007). A simple rule how to make a reward for learning with human
interaction., Proceedings of the 2007 IEEE International Symposium on Computational
Intelligence in Robotics and Automation, pp.202-205, Jacksonville, FL, USA, June, 2007

Kurashige, K.; Aramaki, S. & Fukuda, T. (2002), Proposal of the motion planning with
Motivation Model, Proceedings of Fuzzy, Artificial Intelligence, Neural Networks and
Computational Intelligence, pp. 467-472, Saga, Japan, November, 2002

Kurashige, K. & Onoue, Y. (2007). The robot learning by using “sense of pain”, Proceedings of
International Symposium on Humanized Systems 2007, pp.1-4, Muroran, Japan,
September, 2007

Nolfi, S. & Parisi, D. (1997). Learning to adapt to changing environments in evolving neural
networks, Adaptive Behavior, 5, 1, (1997), pp.75-98

Sutton, R. S.; Barto, A. G. (1998). Reinforcement Learning An Introduction, The MIT Press,
Cambridge

3

Taking Experience to a Whole New Level
Luis Ignacio Lopera

Universidad de los Andes
Colombia

1. Introduction
Human kind through out history has shown a keen ability to learn by observation and to
create. He’s the only species on earth that has drastically changed his surroundings by
constructing cities, houses and parks among other things. He also has left the planet for the
nearest celestial body and built a home on the stars. But if one takes the knowledge needed
to build something as complicated as the space station, one soon realizes that one did not
have to learn everything at once. As matter of fact the knowledge needed to build the station
is the result of a very long learning process that was done one step at the time.
This type of learning process, based very strongly on previous experiences, has proved to be
efficient in the way that once something works it is fairly easy to replicate or do it better.
However, it is interesting to point out that regardless if it is the best method for learning it is
the only method used. The school systems all around the world expect a child to learn
certain skills during the first years of schooling, such as reading, writing and spatial
reasoning. Then these skills are broadly used from there on to learn things like basic algebra,
logic reasoning, arts, crafts, history and so on. Once in college the student is expected to
choose an area of interest and study the extra skills necessary to learn the advanced subjects
of the area and be able to use them in a professional environment. If the student pursues a
higher degree of education his success will reside on his ability to interconnect past
experiences to produce some new bits of knowledge.
Interesting enough, the power of knowledge is derived not only from personal experience
but from a collective experience as well. This can be seen in very isolated communities as
well as in the global community of today. In aborigine tribes, the collective experience is
passed from generation to generation usually by means of oral tradition. For example, the
best way to hunt, the best grassing places for cattle and so on. Such knowledge is updated
by the most recent personal experiences. In today’s more globalized community experiences
are shared through many different channels, such as books or the internet.
The discussion comes to the point where it becomes important to define experience. In a
general context; the Merriam Webster’s dictionary defines experience as:
“1 a: direct observation of or participation in events as a basis of knowledge b: the fact or
state of having been affected by or gained knowledge through direct observation or
participation
2 a: practical knowledge, skill, or practice derived from direct observation of or participation
in events or in a particular activity b: the length of such participation <has 10 years'
experience in the job>

 Machine Learning

54

3 a: the conscious events that make up an individual life b: the events that make up the
conscious past of a community or nation or humankind generally
4: something personally encountered, undergone, or lived through
5: the act or process of directly perceiving events or reality”.
These definitions illustrate clearly how knowledge can derive from direct or indirect
involvement in an activity. It also defines a way of learning. More precisely in the context of
this book, “Learning is done by a machine when it records its experience into internal system
changes that causes its behavior to be changed.” (Looney, 1997). Most algorithms in machine
learning use this definition to better adjust the detected classes and generate new ones if
necessary.
But unfortunately, these inner changes do not take the machine closer to a human like
learning method. It only perfects the machine output to a constrained set of variables. But if
the set of variables, all of the sudden, become unconstrained or the constraints change
drastically, the previews experiences become obsolete and the training process has to star all
over again (Hagras et al., 1997). As a result, for machine learning applications, you want the
problem to be as constrained as possible and the machine as invariable as possible. These
limitations become the “Achilles’ heel” of systems that have to undertake unexplored and
unstructured environments.
Understanding human experience has been the material of study by many philosophers,
and scientists. Is not the intention of this chapter to enter in the discussion on any way,
however, it is relevant to point out that the basic definition given before falls short to
describe experience that transcends the observed event’s context; in other words, experience
that is used in something else than the set of events where it was generated. This is best
illustrated by an example: An electrical technician learned throughout his career how to
repair CRT TV’s, now he is faced with the challenge of repairing LCD screens. It is evident
that some additional learning has to be done, but, a lot of the skills used to fix the CRT will
be useful to fix the LCD. And furthermore, if another CRT TV comes to his shop, he would
still be able to fix it.
From a systemic point of view, the agent’s physical capabilities, such as sensors actuators,
computational power, etc, can be considered services to the way of doing things. And these
services become the framework to design and develop the architecture that will take
experience to the next level.
The chapter starts the discussion by analyzing the way people carry out tasks, then
introduces a concept of knowledge and its intricate relation to experience then a series of
architectures are presented that illustrate the way next level experience can be implemented.
These architectures are thought out to implement the ability, very often seen in human
reasoning, of extrapolating experience; as in the example of the TV technician. The goal of
the presented architectures is to establish the ways in which to use the agent’s services to
obtain the most of the agent’s capabilities and increase the chance of success when faced
with various problems and circumstances. Then it shows the application of one of the
architectures to a theoretical problem and ends the discussion with some final remarks
about the practical implications of using the proposed architectures.

2. Simplicity, fun facts of the way we do things.
‘STOP, think on what are you about to do!’, many times we have heard mothers instruct their
children, usually because the youngster is about to harm himself, or engage in some
mischievous behavior. This phrase is going to be the motto for this chapter’s section.

Taking Experience to a Whole New Level

55

Must people have certainly come across the annoying problem of having to fix a house
appliance or an office gadget. And the resulting outcome for most of these people is to
throw it away or call tech services. The focus of this section is the small portion of users who
actually try to fix the broken object. For them here’s the motto: ‘STOP!!, think on what are you
about to do!’. Otherwise, how are we ever going to understand what’s going on in the users’
heads?
The problem of fixing things is very interesting to study the way we do things, mostly
because it involves several brain actions/properties, like experience, analysis, observation,
decision making, and coordination of movement, among others.

2.1 Case 1: opening the black box problem.
Once upon a time there was a black box. This box had a lid which was screwed shut with
flat head screws, there where four of them one on each corner. The box had a “broken”
behavior. (At this point it is irrelevant what the problem of the box is) To fix it, the person
who’s going to fix it (from here on, the fixer) must open the box and see what is causing the
problem.
Inspired by the motto, an interesting question arises: What is the sequence of steps that are
required to get in to the box? Let’s follow a line of reasoning to find the answer to this
question.
First step is always observation, observe the problem in detail and get as many
characteristics as possible. From here the fixer will know things like there’s a lid, there are 4
flat head screws, their position and size, and so on. It seems obvious after reading the
problem’s description, but bear in mind that the fixer is presented with the black box and
not the description of the black box.
Next step is experience, the fixer must ask himself, “Have I opened THIS black box before?” if
the answer to this question is YES, the answer to the “what is the sequence…” question is
immediately found, the steps are somewhere in the fixer’s head. But this trivial answer is
not what we are looking for. If we take the NO answer, the following question arises: “Have
I opened SOMETHING LIKE this before?” In this case a YES answer would lead to compare
the black box, with every experience of opening THINGS LIKE this one, and using the best
match to try and open it. In essence, finding similarities with previous elements would give
us a starting point that is further ahead in the solution process than starting from scratch.
On the other hand, the NO answer would lead to the next step.
Analysis, here the fixer must determine the type of tool he’s going to use to unscrew the
screws. Probably establish if there’s a sequence to follow or just any random order will do
the job, determine if it is sufficient to unfasten the screws or if they have to be removed
completely.
The final step is action: the fixer does something, for example, removes a screw, from here
on, the road can take two paths: trial and error or a methodic process of disassembly. Either
one will get the job done, it’s important to appreciate that in both roads the process becomes
cyclic, as the fixer will have to stop and observe after each step is taken to determine if he’s
going to achieve his goal and apply this sequence of steps for each particular problem
encountered. Figure 1, shows a flow chart of the Meta algorithm of opening the black box.
It is interesting to notice how there are two type of experiences that become very useful in
this process. The first type of experience is very much like defined in section 1, and used
widely in machine learning algorithms: direct experience over the event, the second type of

 Machine Learning

54

3 a: the conscious events that make up an individual life b: the events that make up the
conscious past of a community or nation or humankind generally
4: something personally encountered, undergone, or lived through
5: the act or process of directly perceiving events or reality”.
These definitions illustrate clearly how knowledge can derive from direct or indirect
involvement in an activity. It also defines a way of learning. More precisely in the context of
this book, “Learning is done by a machine when it records its experience into internal system
changes that causes its behavior to be changed.” (Looney, 1997). Most algorithms in machine
learning use this definition to better adjust the detected classes and generate new ones if
necessary.
But unfortunately, these inner changes do not take the machine closer to a human like
learning method. It only perfects the machine output to a constrained set of variables. But if
the set of variables, all of the sudden, become unconstrained or the constraints change
drastically, the previews experiences become obsolete and the training process has to star all
over again (Hagras et al., 1997). As a result, for machine learning applications, you want the
problem to be as constrained as possible and the machine as invariable as possible. These
limitations become the “Achilles’ heel” of systems that have to undertake unexplored and
unstructured environments.
Understanding human experience has been the material of study by many philosophers,
and scientists. Is not the intention of this chapter to enter in the discussion on any way,
however, it is relevant to point out that the basic definition given before falls short to
describe experience that transcends the observed event’s context; in other words, experience
that is used in something else than the set of events where it was generated. This is best
illustrated by an example: An electrical technician learned throughout his career how to
repair CRT TV’s, now he is faced with the challenge of repairing LCD screens. It is evident
that some additional learning has to be done, but, a lot of the skills used to fix the CRT will
be useful to fix the LCD. And furthermore, if another CRT TV comes to his shop, he would
still be able to fix it.
From a systemic point of view, the agent’s physical capabilities, such as sensors actuators,
computational power, etc, can be considered services to the way of doing things. And these
services become the framework to design and develop the architecture that will take
experience to the next level.
The chapter starts the discussion by analyzing the way people carry out tasks, then
introduces a concept of knowledge and its intricate relation to experience then a series of
architectures are presented that illustrate the way next level experience can be implemented.
These architectures are thought out to implement the ability, very often seen in human
reasoning, of extrapolating experience; as in the example of the TV technician. The goal of
the presented architectures is to establish the ways in which to use the agent’s services to
obtain the most of the agent’s capabilities and increase the chance of success when faced
with various problems and circumstances. Then it shows the application of one of the
architectures to a theoretical problem and ends the discussion with some final remarks
about the practical implications of using the proposed architectures.

2. Simplicity, fun facts of the way we do things.
‘STOP, think on what are you about to do!’, many times we have heard mothers instruct their
children, usually because the youngster is about to harm himself, or engage in some
mischievous behavior. This phrase is going to be the motto for this chapter’s section.

Taking Experience to a Whole New Level

55

Must people have certainly come across the annoying problem of having to fix a house
appliance or an office gadget. And the resulting outcome for most of these people is to
throw it away or call tech services. The focus of this section is the small portion of users who
actually try to fix the broken object. For them here’s the motto: ‘STOP!!, think on what are you
about to do!’. Otherwise, how are we ever going to understand what’s going on in the users’
heads?
The problem of fixing things is very interesting to study the way we do things, mostly
because it involves several brain actions/properties, like experience, analysis, observation,
decision making, and coordination of movement, among others.

2.1 Case 1: opening the black box problem.
Once upon a time there was a black box. This box had a lid which was screwed shut with
flat head screws, there where four of them one on each corner. The box had a “broken”
behavior. (At this point it is irrelevant what the problem of the box is) To fix it, the person
who’s going to fix it (from here on, the fixer) must open the box and see what is causing the
problem.
Inspired by the motto, an interesting question arises: What is the sequence of steps that are
required to get in to the box? Let’s follow a line of reasoning to find the answer to this
question.
First step is always observation, observe the problem in detail and get as many
characteristics as possible. From here the fixer will know things like there’s a lid, there are 4
flat head screws, their position and size, and so on. It seems obvious after reading the
problem’s description, but bear in mind that the fixer is presented with the black box and
not the description of the black box.
Next step is experience, the fixer must ask himself, “Have I opened THIS black box before?” if
the answer to this question is YES, the answer to the “what is the sequence…” question is
immediately found, the steps are somewhere in the fixer’s head. But this trivial answer is
not what we are looking for. If we take the NO answer, the following question arises: “Have
I opened SOMETHING LIKE this before?” In this case a YES answer would lead to compare
the black box, with every experience of opening THINGS LIKE this one, and using the best
match to try and open it. In essence, finding similarities with previous elements would give
us a starting point that is further ahead in the solution process than starting from scratch.
On the other hand, the NO answer would lead to the next step.
Analysis, here the fixer must determine the type of tool he’s going to use to unscrew the
screws. Probably establish if there’s a sequence to follow or just any random order will do
the job, determine if it is sufficient to unfasten the screws or if they have to be removed
completely.
The final step is action: the fixer does something, for example, removes a screw, from here
on, the road can take two paths: trial and error or a methodic process of disassembly. Either
one will get the job done, it’s important to appreciate that in both roads the process becomes
cyclic, as the fixer will have to stop and observe after each step is taken to determine if he’s
going to achieve his goal and apply this sequence of steps for each particular problem
encountered. Figure 1, shows a flow chart of the Meta algorithm of opening the black box.
It is interesting to notice how there are two type of experiences that become very useful in
this process. The first type of experience is very much like defined in section 1, and used
widely in machine learning algorithms: direct experience over the event, the second type of

 Machine Learning

56

experience is an extrapolated experience, in other words, it is experience achieved in other
events that is used to find a quick solution to the problem, a starting point further ahead in
the road of solving the problem. As an example, opening the black box would allow the
fixer to understand the way the computer’s cover is quickly removed.

Fig. 1. Meta algorithm for problem solving

Other interesting observation on this case is the way it can be compared to recursive
programming. In recursive programming the algorithm is called several times but every
time with a simpler task, in terms, the same thing happens in case 1, the same four basic
steps are recalled every time with partitions of the bigger problem.
Simplicity in this case is related to understanding that only 4 steps are needed, and that they
repeat themselves over and over.

2.2 Case 2: fixing the black box’s broken behavior.
At this point the fixer has opened the black box, and needs to fix the problem, as in the
previous case, a very similar question arises: What is the sequence of steps needed to repair
the problem? To find the answer to this question this time, we are going to take a different
path; there is a meta-algorithm used widely for fixing things, it can be simplified to three
stages as: Diagnose, repairing (replace, reposition, reconfigure, reinstall) and test.
With this meta-algorithm it is important to subdivide the task in two types. First type, it is
the kind that comes with a manual, in this type of fixing, the fixer only needs to follow a set
of steps designed to pinpoint the problem and fix it. Its only reasonable to mention that on
this type of process, the fixer needs direct experience on how to solve the little details, the
ones the “manual” assumes the fixer knows how to do. So, only one type of experience is
needed. This is the type of activity people train for.
The second type of subdivision is the one with no “manual” or only limited information
available. There are no steps or a determined sequence to follow, in this case (which is very
interesting for this chapter), the fixer must use experience of different types to diagnose the

Taking Experience to a Whole New Level

57

problem, and fix it. Interesting enough, if the meta-algorithm applied in case 1 is used for
the diagnostics, repairing and testing stages, a solution to the problem can be found.
To illustrate, let’s say the black box’s broken behavior consists of a failure on an indication
led that informs the status of the connection to a wireless network. Assume that the problem
is a burnt resistor from the led’s amplifying circuit. To understand what is going on
(diagnostics stage) the fixer starts proving, looking to see if the box is actually able to
connect, regardless of the led. The fixer must see that the box seems to work fine in this
regard (observation), he turns to analyze the led’s circuitry, un-solders the led (action) and
tests it by itself. This because he knows from his experience, that L.E.Ds blow out rather often
(It is important to mention that this is based on the fixer’s experience, and only for the
purpose of the example). When he finds that the led is not the problem, then he solders back
the L.E.D, and starts checking for voltage level in the amplifying circuit until he finds the
blown resistor. Again it is clear how the four basic steps of the meta-algorithm are used over
and over again.
Then he gets the replacement resistor (repairing stage), un-solders the blown one and
solders the new one. Repairing is usually a trained activity, therefore, this stage usually does
not use the meta-algorithm; rather, it will use a list of steps or procedures. However, once in
a while, to repair something the fixer must get creative. Assume now that he doesn’t have
the right value resistor, better yet, he has no resistors at all. He could run to the store and
buy a new one; but again, not a very interesting solution. He could get the resistor from
another broken gadget. In this case the meta-algorithm could be used to find and recover the
part, and as it usually happens, the replacement is probably not a perfect fit, so he would
have to use the meta-algorithm again to modify it and make it fit.
Finally testing, the fixer has to undergo a procedure to figure out if the repair was well
done. Again we stumble with the duality of procedure vs. experience. The fixer could use
procedures if they exist. But if not, he must rely heavily on experience to test the system
until a suitable set of possibilities for failure is tried out and pass satisfactorily. In the
example of the black box, it is rather simple: Activate wireless communication and see if the
L.E.D blinks as it is supposed to.
With case 2 it becomes clear that there’s a layer-like architecture to the process of fixing
something. Upper layers determine the general procedure to follow, and lower layers take
care of particular tasks. Furthermore, simplicity is associated to the use of the meta-
algorithm in several occasions and contexts.
After having “stopped and thought” on what we where about to do to the black box; it is
important to extrapolate at this point. If all possible problems are grouped together in to
categories based on the agent’s capacity to solve them, only three categories arise: problems
which already have been solved, those which haven’t and those which can’t be solved by
the agent. Those that have been solved become procedures like how to build a computer or
a car, in the case of people, they could also become instinct, like running or dancing. Those
that haven’t been solved are the ones that present a challenge, and there’s where the meta-
algorithm comes in action, always observing, putting all other experiences to the test,
analyzing and acting upon.
Although it is not the intention of this section either to undermine or to simplify the creative
process, the act of problem solving of the human mind, which relies on creativity, can be
approximated by understanding that a big part of the creative process comes from melding
experiences achieved through out a series of events in a similar or even in completely
different context than that of the problem at hand. A glance at the way any engineer’s talent

 Machine Learning

56

experience is an extrapolated experience, in other words, it is experience achieved in other
events that is used to find a quick solution to the problem, a starting point further ahead in
the road of solving the problem. As an example, opening the black box would allow the
fixer to understand the way the computer’s cover is quickly removed.

Fig. 1. Meta algorithm for problem solving

Other interesting observation on this case is the way it can be compared to recursive
programming. In recursive programming the algorithm is called several times but every
time with a simpler task, in terms, the same thing happens in case 1, the same four basic
steps are recalled every time with partitions of the bigger problem.
Simplicity in this case is related to understanding that only 4 steps are needed, and that they
repeat themselves over and over.

2.2 Case 2: fixing the black box’s broken behavior.
At this point the fixer has opened the black box, and needs to fix the problem, as in the
previous case, a very similar question arises: What is the sequence of steps needed to repair
the problem? To find the answer to this question this time, we are going to take a different
path; there is a meta-algorithm used widely for fixing things, it can be simplified to three
stages as: Diagnose, repairing (replace, reposition, reconfigure, reinstall) and test.
With this meta-algorithm it is important to subdivide the task in two types. First type, it is
the kind that comes with a manual, in this type of fixing, the fixer only needs to follow a set
of steps designed to pinpoint the problem and fix it. Its only reasonable to mention that on
this type of process, the fixer needs direct experience on how to solve the little details, the
ones the “manual” assumes the fixer knows how to do. So, only one type of experience is
needed. This is the type of activity people train for.
The second type of subdivision is the one with no “manual” or only limited information
available. There are no steps or a determined sequence to follow, in this case (which is very
interesting for this chapter), the fixer must use experience of different types to diagnose the

Taking Experience to a Whole New Level

57

problem, and fix it. Interesting enough, if the meta-algorithm applied in case 1 is used for
the diagnostics, repairing and testing stages, a solution to the problem can be found.
To illustrate, let’s say the black box’s broken behavior consists of a failure on an indication
led that informs the status of the connection to a wireless network. Assume that the problem
is a burnt resistor from the led’s amplifying circuit. To understand what is going on
(diagnostics stage) the fixer starts proving, looking to see if the box is actually able to
connect, regardless of the led. The fixer must see that the box seems to work fine in this
regard (observation), he turns to analyze the led’s circuitry, un-solders the led (action) and
tests it by itself. This because he knows from his experience, that L.E.Ds blow out rather often
(It is important to mention that this is based on the fixer’s experience, and only for the
purpose of the example). When he finds that the led is not the problem, then he solders back
the L.E.D, and starts checking for voltage level in the amplifying circuit until he finds the
blown resistor. Again it is clear how the four basic steps of the meta-algorithm are used over
and over again.
Then he gets the replacement resistor (repairing stage), un-solders the blown one and
solders the new one. Repairing is usually a trained activity, therefore, this stage usually does
not use the meta-algorithm; rather, it will use a list of steps or procedures. However, once in
a while, to repair something the fixer must get creative. Assume now that he doesn’t have
the right value resistor, better yet, he has no resistors at all. He could run to the store and
buy a new one; but again, not a very interesting solution. He could get the resistor from
another broken gadget. In this case the meta-algorithm could be used to find and recover the
part, and as it usually happens, the replacement is probably not a perfect fit, so he would
have to use the meta-algorithm again to modify it and make it fit.
Finally testing, the fixer has to undergo a procedure to figure out if the repair was well
done. Again we stumble with the duality of procedure vs. experience. The fixer could use
procedures if they exist. But if not, he must rely heavily on experience to test the system
until a suitable set of possibilities for failure is tried out and pass satisfactorily. In the
example of the black box, it is rather simple: Activate wireless communication and see if the
L.E.D blinks as it is supposed to.
With case 2 it becomes clear that there’s a layer-like architecture to the process of fixing
something. Upper layers determine the general procedure to follow, and lower layers take
care of particular tasks. Furthermore, simplicity is associated to the use of the meta-
algorithm in several occasions and contexts.
After having “stopped and thought” on what we where about to do to the black box; it is
important to extrapolate at this point. If all possible problems are grouped together in to
categories based on the agent’s capacity to solve them, only three categories arise: problems
which already have been solved, those which haven’t and those which can’t be solved by
the agent. Those that have been solved become procedures like how to build a computer or
a car, in the case of people, they could also become instinct, like running or dancing. Those
that haven’t been solved are the ones that present a challenge, and there’s where the meta-
algorithm comes in action, always observing, putting all other experiences to the test,
analyzing and acting upon.
Although it is not the intention of this section either to undermine or to simplify the creative
process, the act of problem solving of the human mind, which relies on creativity, can be
approximated by understanding that a big part of the creative process comes from melding
experiences achieved through out a series of events in a similar or even in completely
different context than that of the problem at hand. A glance at the way any engineer’s talent

 Machine Learning

58

evolves shows that although early stages could be magnificent, the best work is always later
in the career because is fueled in part by the new experiences achieved in the early stages.

3. Storage, the key for knowledge.
Although the debate on a definition of Knowledge is still on-going, for all purposes of this
chapter knowledge would be understood as defined in the Oxford English Dictionary: (i)
expertise, and skills acquired by a person through experience or education; the theoretical or
practical understanding of a subject, (ii) what is known in a particular field or in total; facts
and information or (iii) awareness or familiarity gained by experience of a fact or situation.
It is interesting how knowledge and experience are intricately related. From the definition
can be derived that since machine learning algorithms use a process of experience to better
perform the given tasks, ergo, any system that uses a machine learning algorithm has
knowledge of the specific task. The only problem with this statement is that by definition,
knowledge seems to be a trait exclusive of a “person”. Never the less it is still valid, if we
understand a person as the ultimate system or agent. In other words, extrapolating the
concept of knowledge to lesser systems, such as mechanical or electronic system, to describe
the information, expertise and familiarity obtained through experience or education.
The term information is clear to see in current day technology, people store hundreds of
thousands of information represented in bytes. It is also clear to see how a few fields in
memory describing the algorithm’s results or properties can be considered valid information,
and that such can be acquired or refined through experience or programming (the equivalent
of education in “lesser” systems),therefore also considered as knowledge. However, what to
make of awareness and expertise? Can they be replicated in a non human system?
Expertise can be defined as the capacity of the system to carry out a task efficiently.
Therefore, it can be replicated as it has been widely demonstrated that for certain tasks,
machines are far more efficient than people. Awareness at a very primitive level has been
replicated in machines (Bongard, Zykov, Lipson, 2006), and as a matter of fact is achieved
through a method of experience. So, it is safe to extrapolate the term knowledge to a wider
variety of systems.
A system has knowledge of how to carry out the task it is meant to do, because, in the worst
case, the system was programmed to do it, since programming was proposed equivalent to
education, the statement becomes true by definition.
But in the interest of this chapter, how does having knowledge take experience to the next
level? From section 2 it can be determined that next level experience starts when the system
can extrapolate what was learnt in one problem and use that to solve something else, and it
ends when the system has evaluated the level of success on solving the problem. Then,
knowledge of other problems is useful when using next level experience. But as experience
goes up on level, so does knowledge, because by definition, if there is experience, the
information achieved by it is knowledge.
A quick look on what could be seen in next level knowledge would throw probably some
algorithms and some indicators on how efficient it was under certain circumstances. There
would be an algorithm that would know how to choose and combine algorithms to solve
new problems, and there must certainly be an algorithm that would store procedures that
had effectively solved a problem. In this case, traditional machine learning algorithms and
any algorithm designed to specifically solve a problem becomes an essential component to
the algorithms found in next level knowledge.

Taking Experience to a Whole New Level

59

People store information by creating interconnection between different neurons, part of that
information, which is consider knowledge, is actually information about the way people
carry out tasks. Some of it is fuzzy knowledge as the person knows that certain algorithm
works well under certain cases in a certain way, while other may not work as well. There’s
also deterministic knowledge of this kind, for example, the way a person writes; clearly
there is certainty that the algorithm for writing works every time.
Without the neurons’ connections the storing of information wouldn’t be possible, and
without storage, comparison, characterization and choosing are not feasible. One of the
reasons would be that there would be no knowledge (because there’s no information) about
the efficiency of an algorithm, so there would be no factors in which to base the choice other
than randomness; there would also be no information to compare any two algorithms and
no information about any algorithm could be generated because it would be immediately
forgotten.
As in people, machines have various methods to store information. From the simpler latch
or flip-flop all the way trough to quantum dots (Stick, Sterk, Monroe, 2007) and
buckyballs(Anderson, 2007) passing by registers, and more traditional R.A.Ms, R.O.Ms, and
magnetic hard drives. Although some neuroscientist despise the idea of comparing the
human brain to a computer, some similarities can be pointed out; for instance, the “natural
instinct” or “born instinct” can be compared to the functionality of the ROM in the
computer, the short term memory to the RAM, and the long term memory to the hard drive.
Information in the brain seems to be stored in different sectors of the brain, depending of
where it comes from or what it does; in a system, the information also has to be structure to
achieve functionality.
By design artificial systems have a “natural” partition, in one hand there’s the program
memory while on the other is the data memory. In a way, this separates the “how to” from
information, as mentioned before a program is knowledge achieved through “education” so
this basic natural partition could be sufficient in some cases. However, the downside of this
storage strategy is that the size of program memory is usually limited. This lack of space
obligates to simplify algorithms and use only a small set of them. It also implies that the
complexity of the higher level algorithms (HLA) is reduced to simple lookup tables as the
actual algorithms could not be changed or manipulated.
In modern computing systems this lack of capacity is a matter of the past, today it is very
inexpensive to have large amounts of memory available. This means a large number of
programs and a large amount of information could be made available to a CPU or the
processing unit of choice. Under this circumstances, HLA do not have to be limited to a look
up table, they can be very sophisticated algorithm that could spawn new versions of basic
level algorithms (BLA).
It is clear at this point that in order to have knowledge, there has to be a storage system.
And such storage system has to be capable not only of storing data, but it has to be able to
store algorithms as well, and if the HLA are sophisticated enough, it must allow them to
manipulate the algorithms.
There are three characteristics intrinsic to a storage system of any kind. First of all it must
have an appropriate capacity, not too much that the system would have trouble carrying the
extra space not too little that algorithms could not work or be worked around easily. And
second, the storage system has to be fast, even it means that it must compensate for latencies
associated to slow media, it also means that it needs to be organized so it will find the data
or algorithm that the HLA is looking for almost immediately. Last but actually the most

 Machine Learning

58

evolves shows that although early stages could be magnificent, the best work is always later
in the career because is fueled in part by the new experiences achieved in the early stages.

3. Storage, the key for knowledge.
Although the debate on a definition of Knowledge is still on-going, for all purposes of this
chapter knowledge would be understood as defined in the Oxford English Dictionary: (i)
expertise, and skills acquired by a person through experience or education; the theoretical or
practical understanding of a subject, (ii) what is known in a particular field or in total; facts
and information or (iii) awareness or familiarity gained by experience of a fact or situation.
It is interesting how knowledge and experience are intricately related. From the definition
can be derived that since machine learning algorithms use a process of experience to better
perform the given tasks, ergo, any system that uses a machine learning algorithm has
knowledge of the specific task. The only problem with this statement is that by definition,
knowledge seems to be a trait exclusive of a “person”. Never the less it is still valid, if we
understand a person as the ultimate system or agent. In other words, extrapolating the
concept of knowledge to lesser systems, such as mechanical or electronic system, to describe
the information, expertise and familiarity obtained through experience or education.
The term information is clear to see in current day technology, people store hundreds of
thousands of information represented in bytes. It is also clear to see how a few fields in
memory describing the algorithm’s results or properties can be considered valid information,
and that such can be acquired or refined through experience or programming (the equivalent
of education in “lesser” systems),therefore also considered as knowledge. However, what to
make of awareness and expertise? Can they be replicated in a non human system?
Expertise can be defined as the capacity of the system to carry out a task efficiently.
Therefore, it can be replicated as it has been widely demonstrated that for certain tasks,
machines are far more efficient than people. Awareness at a very primitive level has been
replicated in machines (Bongard, Zykov, Lipson, 2006), and as a matter of fact is achieved
through a method of experience. So, it is safe to extrapolate the term knowledge to a wider
variety of systems.
A system has knowledge of how to carry out the task it is meant to do, because, in the worst
case, the system was programmed to do it, since programming was proposed equivalent to
education, the statement becomes true by definition.
But in the interest of this chapter, how does having knowledge take experience to the next
level? From section 2 it can be determined that next level experience starts when the system
can extrapolate what was learnt in one problem and use that to solve something else, and it
ends when the system has evaluated the level of success on solving the problem. Then,
knowledge of other problems is useful when using next level experience. But as experience
goes up on level, so does knowledge, because by definition, if there is experience, the
information achieved by it is knowledge.
A quick look on what could be seen in next level knowledge would throw probably some
algorithms and some indicators on how efficient it was under certain circumstances. There
would be an algorithm that would know how to choose and combine algorithms to solve
new problems, and there must certainly be an algorithm that would store procedures that
had effectively solved a problem. In this case, traditional machine learning algorithms and
any algorithm designed to specifically solve a problem becomes an essential component to
the algorithms found in next level knowledge.

Taking Experience to a Whole New Level

59

People store information by creating interconnection between different neurons, part of that
information, which is consider knowledge, is actually information about the way people
carry out tasks. Some of it is fuzzy knowledge as the person knows that certain algorithm
works well under certain cases in a certain way, while other may not work as well. There’s
also deterministic knowledge of this kind, for example, the way a person writes; clearly
there is certainty that the algorithm for writing works every time.
Without the neurons’ connections the storing of information wouldn’t be possible, and
without storage, comparison, characterization and choosing are not feasible. One of the
reasons would be that there would be no knowledge (because there’s no information) about
the efficiency of an algorithm, so there would be no factors in which to base the choice other
than randomness; there would also be no information to compare any two algorithms and
no information about any algorithm could be generated because it would be immediately
forgotten.
As in people, machines have various methods to store information. From the simpler latch
or flip-flop all the way trough to quantum dots (Stick, Sterk, Monroe, 2007) and
buckyballs(Anderson, 2007) passing by registers, and more traditional R.A.Ms, R.O.Ms, and
magnetic hard drives. Although some neuroscientist despise the idea of comparing the
human brain to a computer, some similarities can be pointed out; for instance, the “natural
instinct” or “born instinct” can be compared to the functionality of the ROM in the
computer, the short term memory to the RAM, and the long term memory to the hard drive.
Information in the brain seems to be stored in different sectors of the brain, depending of
where it comes from or what it does; in a system, the information also has to be structure to
achieve functionality.
By design artificial systems have a “natural” partition, in one hand there’s the program
memory while on the other is the data memory. In a way, this separates the “how to” from
information, as mentioned before a program is knowledge achieved through “education” so
this basic natural partition could be sufficient in some cases. However, the downside of this
storage strategy is that the size of program memory is usually limited. This lack of space
obligates to simplify algorithms and use only a small set of them. It also implies that the
complexity of the higher level algorithms (HLA) is reduced to simple lookup tables as the
actual algorithms could not be changed or manipulated.
In modern computing systems this lack of capacity is a matter of the past, today it is very
inexpensive to have large amounts of memory available. This means a large number of
programs and a large amount of information could be made available to a CPU or the
processing unit of choice. Under this circumstances, HLA do not have to be limited to a look
up table, they can be very sophisticated algorithm that could spawn new versions of basic
level algorithms (BLA).
It is clear at this point that in order to have knowledge, there has to be a storage system.
And such storage system has to be capable not only of storing data, but it has to be able to
store algorithms as well, and if the HLA are sophisticated enough, it must allow them to
manipulate the algorithms.
There are three characteristics intrinsic to a storage system of any kind. First of all it must
have an appropriate capacity, not too much that the system would have trouble carrying the
extra space not too little that algorithms could not work or be worked around easily. And
second, the storage system has to be fast, even it means that it must compensate for latencies
associated to slow media, it also means that it needs to be organized so it will find the data
or algorithm that the HLA is looking for almost immediately. Last but actually the most

 Machine Learning

60

important, the storage system has to allow algorithm modification; with ever increasing
complexity a good HLA could evolve an algorithm with time, so it is important to allow for
such type of action over the algorithm.
Based on the second characteristics, the way an algorithm is stored has a great impact on the
overall performance of the system. If the storage system is not fast enough, the system is
going to have critical waiting periods while it loads the next algorithm to execute, and if
such times are grater than the system’s natural response time. The system could become
unstable or collapse all together. Therefore it is crucial to structure the storage system to
have a fast response.

To execution
buffer

New or modified
algorithm

Copy of algorithm

Actual algorithm

Speed through
structure and
organization

Adequate size

Allow HLA and BLA
modification

Fig. 2. Storage system characteristics

4. Architectures that allow for higher level algorithms.
Any means of storage could be considered a valid architecture for HLAs; however, it is
important to keep in mind the three qualities associated for a good storage system for
knowledge. Furthermore, any architecture has to provide the means to evaluate or at least
have a grading mechanism to choose the appropriate algorithm for the given set of
circumstances.
Without evaluation there’s no experience to be achieved, because there wouldn’t be the
means to measure an improvement in certain task. In other words, if there is an HLA, it
needs to keep track of how well it has resolved the problems at hand with the BLAs,
meaning it needs to evaluate each BLA’s performance. So whether the evaluation is

Taking Experience to a Whole New Level

61

embedded into the HLA or its part of the system design and it is made available to the HLA
as a service, it needs to be present.
Turning to the architectures, they can be divided into two groups, software architectures and
hardware architectures. Although software architectures are the easiest to implement and the
most familiar for developers, resent studies in hardware design are showing promising results.
Software based architectures have several advantages, for starters, must of the elements
needed to create them are intrinsic to an operating system or a program i.e. multi-thread
multi-process operations, file management or dynamic library loading. Other important
advantage is the level of possible manipulation; an algorithm can be disassemble and
assemble with changed properties. But the downside is that all that preparedness has a high
cost in size, operating systems usually take a lot of space in order to give all that
functionality as does the additional software.
In contrast, the speed achieved in hardware is dazzling, and with reconfigurable hardware
techniques, drastically changing algorithms is possible. The problem is that there’s a higher
cost in design time, because all the interfaces needed to use massive storage, and reconfigure
hardware have to be hard wired and hard coded; also there’s less portability to other
systems due to the hardware specificity.
Regardless of the technical issues that embrace each technology, it is important to take a
look at some examples as for different practical problems there’ll be a most appropriate
implementation.

4.1 Software architectures: using a file system.
Despite the operating system of preference, it is going to present the developer with a file
system. This File system allows the storage of massive amounts of information, and usually
lets you handle multiple storage media like USB memories or hard drives with ease.
Figure 3 illustrates the basic layout of an architecture based on a file system. The evaluation
subsystem could be an independent module; or as mentioned before, embedded in the HLA.
The file type of choice is a dynamically linked library that can be loaded and unloaded as
needed. The HLA is the entity that decides which algorithm to load based on the
information stored in the evaluation file. The execution module runs the algorithm
achieving a change on the system’s stat; the efficiency and accuracy of the operation is
measured by the HLA and the result is stored through the evaluation module.
The algorithms are recommended to be stored in compiled form, in other words in an
executable format, i.e. .dll for Windows operating systems. This ensures a faster execution
and allows the direct interaction with all of the systems’ services; also it allows the direct use
multi thread technology, leaving the responsibility of processor time assignment to the
operating system.
Interpreted formats, like a Matlab file, are not recommended for the BLA as they become
costly to execute because they have to load the interpreter. Also the algorithm has to use the
interface provided by the interpreter in order to access the system’s services, this usually has
an impact on performance and some services are restricted. Things like multi threading
depend exclusively on the interpreter of choice so it is not always available. In (Lopera,
2005) the Matlab algorithms always caused the execution time to default to the worst case.
When regarding direct algorithm manipulation by the HLA, a few things have to be taken
care of. First of all naming new libraries, the HLA has to keep track of the new libraries
created otherwise it might not keep an appropriate performance log and thus, it might not
use the newly created algorithms even if they turn out to be more efficient.

 Machine Learning

60

important, the storage system has to allow algorithm modification; with ever increasing
complexity a good HLA could evolve an algorithm with time, so it is important to allow for
such type of action over the algorithm.
Based on the second characteristics, the way an algorithm is stored has a great impact on the
overall performance of the system. If the storage system is not fast enough, the system is
going to have critical waiting periods while it loads the next algorithm to execute, and if
such times are grater than the system’s natural response time. The system could become
unstable or collapse all together. Therefore it is crucial to structure the storage system to
have a fast response.

To execution
buffer

New or modified
algorithm

Copy of algorithm

Actual algorithm

Speed through
structure and
organization

Adequate size

Allow HLA and BLA
modification

Fig. 2. Storage system characteristics

4. Architectures that allow for higher level algorithms.
Any means of storage could be considered a valid architecture for HLAs; however, it is
important to keep in mind the three qualities associated for a good storage system for
knowledge. Furthermore, any architecture has to provide the means to evaluate or at least
have a grading mechanism to choose the appropriate algorithm for the given set of
circumstances.
Without evaluation there’s no experience to be achieved, because there wouldn’t be the
means to measure an improvement in certain task. In other words, if there is an HLA, it
needs to keep track of how well it has resolved the problems at hand with the BLAs,
meaning it needs to evaluate each BLA’s performance. So whether the evaluation is

Taking Experience to a Whole New Level

61

embedded into the HLA or its part of the system design and it is made available to the HLA
as a service, it needs to be present.
Turning to the architectures, they can be divided into two groups, software architectures and
hardware architectures. Although software architectures are the easiest to implement and the
most familiar for developers, resent studies in hardware design are showing promising results.
Software based architectures have several advantages, for starters, must of the elements
needed to create them are intrinsic to an operating system or a program i.e. multi-thread
multi-process operations, file management or dynamic library loading. Other important
advantage is the level of possible manipulation; an algorithm can be disassemble and
assemble with changed properties. But the downside is that all that preparedness has a high
cost in size, operating systems usually take a lot of space in order to give all that
functionality as does the additional software.
In contrast, the speed achieved in hardware is dazzling, and with reconfigurable hardware
techniques, drastically changing algorithms is possible. The problem is that there’s a higher
cost in design time, because all the interfaces needed to use massive storage, and reconfigure
hardware have to be hard wired and hard coded; also there’s less portability to other
systems due to the hardware specificity.
Regardless of the technical issues that embrace each technology, it is important to take a
look at some examples as for different practical problems there’ll be a most appropriate
implementation.

4.1 Software architectures: using a file system.
Despite the operating system of preference, it is going to present the developer with a file
system. This File system allows the storage of massive amounts of information, and usually
lets you handle multiple storage media like USB memories or hard drives with ease.
Figure 3 illustrates the basic layout of an architecture based on a file system. The evaluation
subsystem could be an independent module; or as mentioned before, embedded in the HLA.
The file type of choice is a dynamically linked library that can be loaded and unloaded as
needed. The HLA is the entity that decides which algorithm to load based on the
information stored in the evaluation file. The execution module runs the algorithm
achieving a change on the system’s stat; the efficiency and accuracy of the operation is
measured by the HLA and the result is stored through the evaluation module.
The algorithms are recommended to be stored in compiled form, in other words in an
executable format, i.e. .dll for Windows operating systems. This ensures a faster execution
and allows the direct interaction with all of the systems’ services; also it allows the direct use
multi thread technology, leaving the responsibility of processor time assignment to the
operating system.
Interpreted formats, like a Matlab file, are not recommended for the BLA as they become
costly to execute because they have to load the interpreter. Also the algorithm has to use the
interface provided by the interpreter in order to access the system’s services, this usually has
an impact on performance and some services are restricted. Things like multi threading
depend exclusively on the interpreter of choice so it is not always available. In (Lopera,
2005) the Matlab algorithms always caused the execution time to default to the worst case.
When regarding direct algorithm manipulation by the HLA, a few things have to be taken
care of. First of all naming new libraries, the HLA has to keep track of the new libraries
created otherwise it might not keep an appropriate performance log and thus, it might not
use the newly created algorithms even if they turn out to be more efficient.

 Machine Learning

62

Dynamically linked libraries
Statically linked libraries

Execution
module

HLA

Evaluation

System’s Status

Algorithm (File)
Selection

Algorithm
Performance Record

File
System

Fig. 3. Basic layout of file system based architecture

Algorithm manipulation is easier to do in interpreted formats because is a natural way to
partition and mix functionalities, in compiled formats, it requires more steps but it can be
done, weather is combining at a source file level and recompiling, or mixing in binary
format; which it hasn’t been tested and requires a profound knowledge of the binary
structure of the compiled library. This also means that the HLA has to keep track of what
source code belongs to which library.
One of the advantages of file system based architecture, especially when using compiled
format, is that the system will only load what ever algorithm is executing and the system’s
services, nothing else, so it can be very efficient in respect to memory usage.
By designed, a file system complies with the characteristics proposed for knowledge
storage; however is the responsibility of the HLA to keep the order and structure of the file
system. A poorly designed HLA can end up clogging the file system surrendering it
inefficient and ultimately halting the system. Other advantage of the file system is its
portability; the hardware architecture is some what transparent, as long as it supports the
operating system: it will support the file system.
The disadvantages lie with the evaluation module; because is a file based module, all
searches have to be carried on within files, so a lot of searching and updating functions have
to be written in order to allow the HLA to effectively evaluate and choose BLAs.

4.2 Software architectures: databases
The database architecture is an expansion of the file system architecture; it seeks to improve
where the file system presents its most weaknesses. It also takes care of the evaluation
structure, which allows having multiple HLAs that share the same information about the
algorithms and simplifies overall HLA development.
A database is designed to store information, and as such it allows storage of multiple types
of information in an orderly fashion; its internal structure is designed to relate information
between tables so it facilitates data management and storage structure, furthermore, it also
specializes on information retrieval; it is designed to fetch huge amounts of information in
short periods of time. This makes it ideal to take care of storing the algorithms in binary

Taking Experience to a Whole New Level

63

form as well as in source code form, associating all sorts of parameters that allow the HLA
to choose the best algorithm for a more complex context.
Figure 4 illustrates a general architecture, in this case the HLA works with the database to
manipulate and evaluate the stored algorithms, once it has chosen one, it retrieves it and
saves it to the file system for execution. This because most operating systems don’t allow
executing information that is considered data, except for executable files on the file system.

Dynamically linked libraries
Statically linked libraries

Execution
module

HLA

Evaluation Table
Algorithm Table

System’s Status

Algorithm Performance Record
Algorithm Selection

Algorithm Manipulation

File
System

Data
Base

Save Algorithm to file

SQL statements

Fig. 4. Basic layout for the database architecture

As mentioned before, the database improves performance and facilitates the job of the
HLAs, at the cost of having to load the database server which implies some memory usage
and processor time; however for most systems based on pc computers this is not a problem.
The advantages outweigh the cost. In (Lopera, 2007) there is an interesting analysis about
the pros and cons between both architectures.

4.3 Software architecture: when space is limited
This type of architecture is considering systems that are developed using microcontrollers
where access to memory resources is limited and no operating system is available or does
not have file system capabilities much less a database server.

Routines

Execution
module

HLA

Evaluation

System’s Status

Algorithm Performance Record

Memory
Bank

Fig. 5. basic layout for limited space architectures

 Machine Learning

62

Dynamically linked libraries
Statically linked libraries

Execution
module

HLA

Evaluation

System’s Status

Algorithm (File)
Selection

Algorithm
Performance Record

File
System

Fig. 3. Basic layout of file system based architecture

Algorithm manipulation is easier to do in interpreted formats because is a natural way to
partition and mix functionalities, in compiled formats, it requires more steps but it can be
done, weather is combining at a source file level and recompiling, or mixing in binary
format; which it hasn’t been tested and requires a profound knowledge of the binary
structure of the compiled library. This also means that the HLA has to keep track of what
source code belongs to which library.
One of the advantages of file system based architecture, especially when using compiled
format, is that the system will only load what ever algorithm is executing and the system’s
services, nothing else, so it can be very efficient in respect to memory usage.
By designed, a file system complies with the characteristics proposed for knowledge
storage; however is the responsibility of the HLA to keep the order and structure of the file
system. A poorly designed HLA can end up clogging the file system surrendering it
inefficient and ultimately halting the system. Other advantage of the file system is its
portability; the hardware architecture is some what transparent, as long as it supports the
operating system: it will support the file system.
The disadvantages lie with the evaluation module; because is a file based module, all
searches have to be carried on within files, so a lot of searching and updating functions have
to be written in order to allow the HLA to effectively evaluate and choose BLAs.

4.2 Software architectures: databases
The database architecture is an expansion of the file system architecture; it seeks to improve
where the file system presents its most weaknesses. It also takes care of the evaluation
structure, which allows having multiple HLAs that share the same information about the
algorithms and simplifies overall HLA development.
A database is designed to store information, and as such it allows storage of multiple types
of information in an orderly fashion; its internal structure is designed to relate information
between tables so it facilitates data management and storage structure, furthermore, it also
specializes on information retrieval; it is designed to fetch huge amounts of information in
short periods of time. This makes it ideal to take care of storing the algorithms in binary

Taking Experience to a Whole New Level

63

form as well as in source code form, associating all sorts of parameters that allow the HLA
to choose the best algorithm for a more complex context.
Figure 4 illustrates a general architecture, in this case the HLA works with the database to
manipulate and evaluate the stored algorithms, once it has chosen one, it retrieves it and
saves it to the file system for execution. This because most operating systems don’t allow
executing information that is considered data, except for executable files on the file system.

Dynamically linked libraries
Statically linked libraries

Execution
module

HLA

Evaluation Table
Algorithm Table

System’s Status

Algorithm Performance Record
Algorithm Selection

Algorithm Manipulation

File
System

Data
Base

Save Algorithm to file

SQL statements

Fig. 4. Basic layout for the database architecture

As mentioned before, the database improves performance and facilitates the job of the
HLAs, at the cost of having to load the database server which implies some memory usage
and processor time; however for most systems based on pc computers this is not a problem.
The advantages outweigh the cost. In (Lopera, 2007) there is an interesting analysis about
the pros and cons between both architectures.

4.3 Software architecture: when space is limited
This type of architecture is considering systems that are developed using microcontrollers
where access to memory resources is limited and no operating system is available or does
not have file system capabilities much less a database server.

Routines

Execution
module

HLA

Evaluation

System’s Status

Algorithm Performance Record

Memory
Bank

Fig. 5. basic layout for limited space architectures

 Machine Learning

64

In this case HLA must have embedded the evaluation module; it should work over a
memory area, keeping a rather simple record of performance and link to the respective
program counter’s position of each routine. It is recommended that the routines be
constructed in an interrupt basis so in that way they’ll return handle to the HLA so it will be
able to monitor the system status and the routine’s performance.
To achieve some level of routines manipulation they should be parameterize, in that way
the HLA can modify the parameters to fine tune the routine’s efficiency.

4.4 Hardware architectures: reconfigurable hardware
A typical architecture for reconfigurable hardware is the cooperation of a processor unit
with a programmable electronic device (PED) as PSOC or FPGA. In this configuration the
processor has the responsibility of programming the PED, and for that, the processor uses
storage memory to store the binary files that contain the programming sequences, usually
downloaded in to the PED through JTAG.

Processor running the HLA

Evaluation

Storage
Memory

Reconfigurable
Hardware

(FPGA CPLD etc)
Inputs Outputs

Hardware Programming
Interface

Fig. 6. basic layout for reconfigurable hardware architectures

In this case there are several configurations that can be carried out, and they all depend on
the capacity and speed of the processor as well as the PED. For instance the evaluation
module can be run at the processor along with the HLA or can be programmed and
configured in the PED so it will match its internal configuration and facilitate performance
measurement.
The HLA is recommended to be executing in the non-reconfigurable part of the system as it
is pointless to load and reload every time the PED has to go through a programming. This
takes up some time, and could compromise system’s stability.
Some of this configurations support small operating systems, this operating systems could
run small database servers, in this case leaving the BLA to be implemented at hardware
level. This certainly has some performance issues that have to be evaluated based on each
specific application.

Taking Experience to a Whole New Level

65

One of the advantages of this architecture is that PED have become interestingly complex
and powerful as they have grown in capacity, mixing microcontrollers with analog cells and
digital cells. This resource availability can be used to implement high performance BLAs
using very up to date design techniques.

4.5 Hardware architectures: non reconfigurable hardware
Not all types of algorithms are worth the trouble of implementing at a hardware level. In
most cases due to the repetitiveness and the sequential nature of its internal operations a
software architecture is more suitable. Even though, parallel processing, state machines, and
other hardware design techniques can be embraced to implement powerful solutions.

Hardware HLA

Evaluation subsystem

Memory
Bank

Hardware BLA
subsystem

id=n

Hardware BLA
subsystem

id=0

O
utput

M
ultiplexer

Input dem
ultiplexer

or BufferInputs Outputs

System
State
inputs Subsystem

selector

Performance
measuring
Outputs

Fig. 7. basic layout of non reconfigurable hardware architectures

The way this architecture works is as follows: The HLA controls the output multiplexer and
input buffer (or demux) it also must enable the chosen subsystem that will operate over the
inputs and produce the appropriate outputs. This choice is based on the information stored
in the memory bank. The evaluation subsystem is constantly monitoring the system’s state
inputs and the outputs selected to measure the hardware algorithm’s (HA) performance; it
also communicates the results to the HLA which in turn stores that information into the
memory bank.
The hardware HLA, from the hardware design point of view, could be conceived as the
control unit of the system. The evaluation is considered a separate module in this
architecture because based in good hardware design strategies modularity is enforced and

 Machine Learning

64

In this case HLA must have embedded the evaluation module; it should work over a
memory area, keeping a rather simple record of performance and link to the respective
program counter’s position of each routine. It is recommended that the routines be
constructed in an interrupt basis so in that way they’ll return handle to the HLA so it will be
able to monitor the system status and the routine’s performance.
To achieve some level of routines manipulation they should be parameterize, in that way
the HLA can modify the parameters to fine tune the routine’s efficiency.

4.4 Hardware architectures: reconfigurable hardware
A typical architecture for reconfigurable hardware is the cooperation of a processor unit
with a programmable electronic device (PED) as PSOC or FPGA. In this configuration the
processor has the responsibility of programming the PED, and for that, the processor uses
storage memory to store the binary files that contain the programming sequences, usually
downloaded in to the PED through JTAG.

Processor running the HLA

Evaluation

Storage
Memory

Reconfigurable
Hardware

(FPGA CPLD etc)
Inputs Outputs

Hardware Programming
Interface

Fig. 6. basic layout for reconfigurable hardware architectures

In this case there are several configurations that can be carried out, and they all depend on
the capacity and speed of the processor as well as the PED. For instance the evaluation
module can be run at the processor along with the HLA or can be programmed and
configured in the PED so it will match its internal configuration and facilitate performance
measurement.
The HLA is recommended to be executing in the non-reconfigurable part of the system as it
is pointless to load and reload every time the PED has to go through a programming. This
takes up some time, and could compromise system’s stability.
Some of this configurations support small operating systems, this operating systems could
run small database servers, in this case leaving the BLA to be implemented at hardware
level. This certainly has some performance issues that have to be evaluated based on each
specific application.

Taking Experience to a Whole New Level

65

One of the advantages of this architecture is that PED have become interestingly complex
and powerful as they have grown in capacity, mixing microcontrollers with analog cells and
digital cells. This resource availability can be used to implement high performance BLAs
using very up to date design techniques.

4.5 Hardware architectures: non reconfigurable hardware
Not all types of algorithms are worth the trouble of implementing at a hardware level. In
most cases due to the repetitiveness and the sequential nature of its internal operations a
software architecture is more suitable. Even though, parallel processing, state machines, and
other hardware design techniques can be embraced to implement powerful solutions.

Hardware HLA

Evaluation subsystem

Memory
Bank

Hardware BLA
subsystem

id=n

Hardware BLA
subsystem

id=0

O
utput

M
ultiplexer

Input dem
ultiplexer

or BufferInputs Outputs

System
State
inputs Subsystem

selector

Performance
measuring
Outputs

Fig. 7. basic layout of non reconfigurable hardware architectures

The way this architecture works is as follows: The HLA controls the output multiplexer and
input buffer (or demux) it also must enable the chosen subsystem that will operate over the
inputs and produce the appropriate outputs. This choice is based on the information stored
in the memory bank. The evaluation subsystem is constantly monitoring the system’s state
inputs and the outputs selected to measure the hardware algorithm’s (HA) performance; it
also communicates the results to the HLA which in turn stores that information into the
memory bank.
The hardware HLA, from the hardware design point of view, could be conceived as the
control unit of the system. The evaluation is considered a separate module in this
architecture because based in good hardware design strategies modularity is enforced and

 Machine Learning

66

since its job is so distinctly clear and does not mix with any other process the HLA might be
doing. The input buffer has to be designed so it will present in adequate form the inputs to
the HBLAs, just wiring every system input to the HBLA’s input might encounter fan-in, fan-
out or loading issues. The output multiplexer is pretty straight forward, the only concern is
the signal types, in which case, an appropriate multiplexer has to be designed.
Unfortunately this architecture is the most expensive to implement and the most keen to
present problems do to implementation, i.e. wiring and signal coupling issues. Despite its
cost and arduous construction, it is worth while presenting this architecture as it illustrates
how the HLA can be taken to the must basic level. It also reinforces the following concept:
the importance of basic level modularity, which is going to be presented in more detail in
section 5. In other words, regarding HBLAs inputs and outputs, they all have to talk the
same languages, since they will be connected to the same interfaces; this becomes an
important design restriction.

4.6 Remarks
The presented architectures show some alternatives of how to implement HLA and the
evaluation mechanism, which are necessary for higher level experience. In general, Figure 8
shows a basic hierarchical structure of how to design an architecture that is considered HLA
enabled.

HLA

BLA BLABLA BLA

Input / Output signal coupling

Service ServiceService ServicePe
rf

or
m

an
ce

 e
va

lu
at

or

Fig. 8. general architecture

Service based design is crucial for these types of architectures. This way, each BLA knows
exactly how to talk and listen to a system service. It also allows the execution of multiple
BLA that use independent services at any one time and simplifies the design of the BLA as it
only needs to interface with services it requires.

5. How to design robots with Higher Level Algorithms
This section analyses the design procedure of a mobile robot, it does not design a robot itself
but assumes that there is certain mechanical infrastructure, hardware, and even software at
a service level. The center idea is to structure the general architecture at a high level. For this
we assume that the robot is at an advanced stage, in other words the first elements of the
design process have been taken care of, the basic physical structure, the control system and
electronics of the individual elements like motors, arms, cameras, etc are up and running.

Taking Experience to a Whole New Level

67

5.1 The robot
BoBoT, which is going to be the robot’s name, has three main service subsystems: the first
one consist of a set of four independently driven wheels; second, 2 grippers each mounted
on a arm with 2 sections and 2 degrees of freedom for each joint (3 in total); and third it has
a bundled dual camera system with pan, tilt and zoom capabilities. The brain of the
operation is going to be a laptop system and the database architecture is going to be used.
BoBoT is also equipped with a series of sensors that complement the basic instrumentation
used to achieve control of the service subsystems:
- A three axis accelerometer
- An up down sensor.
- An applied force sensor for the arms.
- A battery charge meter.
- A GPS
Figure 9, Figure 10 and Figure 11 show the black box models of the service subsystems

Engine Subsystem

Electric Engine
power

Actual
RPM

Desired speed
(m/s)

Desired RPM

Direction

Fig. 9. Black box diagram of the engine subsystem
The engine subsystem has two ways of operation: it can turn by specifying an actual desired
speed in meter per second; the engine will turn in the direction implied by the speed’s sign.
The other way is to establishing the RPMs and a direction. To specify which input to listen
to, the unwanted one has to be set to 0. If not, desired speed prevails. In turn, the engine
subsystem’s outputs inform of the power given to the motor and the measured RPM s.

Dual camera subsystem

Camera 1 Digital
video stream

Camera 2 Digital
video stream

Panning
position

Tilt position

Zoom aperture

Fig. 10. Black box diagram of de dual camera subsystem

To operate the dual camera subsystem it is sufficient to specify the position in the pan and
tilt axis, and how much zoom is desired, the cameras can not be controlled separately. The
outputs are the two video streams in a mildly compressed digital format.
To use the arm it is important to understand that the grip operation is independent of arm
operation. The grip has two ways of operation: one is by establishing a desired action and a
speed of the action, i.e. “close” “fast” and the other is by establishing the action and the
forced to be applied, i.e. “close” “hard”. In the first example, the grip will close fast and

 Machine Learning

66

since its job is so distinctly clear and does not mix with any other process the HLA might be
doing. The input buffer has to be designed so it will present in adequate form the inputs to
the HBLAs, just wiring every system input to the HBLA’s input might encounter fan-in, fan-
out or loading issues. The output multiplexer is pretty straight forward, the only concern is
the signal types, in which case, an appropriate multiplexer has to be designed.
Unfortunately this architecture is the most expensive to implement and the most keen to
present problems do to implementation, i.e. wiring and signal coupling issues. Despite its
cost and arduous construction, it is worth while presenting this architecture as it illustrates
how the HLA can be taken to the must basic level. It also reinforces the following concept:
the importance of basic level modularity, which is going to be presented in more detail in
section 5. In other words, regarding HBLAs inputs and outputs, they all have to talk the
same languages, since they will be connected to the same interfaces; this becomes an
important design restriction.

4.6 Remarks
The presented architectures show some alternatives of how to implement HLA and the
evaluation mechanism, which are necessary for higher level experience. In general, Figure 8
shows a basic hierarchical structure of how to design an architecture that is considered HLA
enabled.

HLA

BLA BLABLA BLA

Input / Output signal coupling

Service ServiceService ServicePe
rf

or
m

an
ce

 e
va

lu
at

or

Fig. 8. general architecture

Service based design is crucial for these types of architectures. This way, each BLA knows
exactly how to talk and listen to a system service. It also allows the execution of multiple
BLA that use independent services at any one time and simplifies the design of the BLA as it
only needs to interface with services it requires.

5. How to design robots with Higher Level Algorithms
This section analyses the design procedure of a mobile robot, it does not design a robot itself
but assumes that there is certain mechanical infrastructure, hardware, and even software at
a service level. The center idea is to structure the general architecture at a high level. For this
we assume that the robot is at an advanced stage, in other words the first elements of the
design process have been taken care of, the basic physical structure, the control system and
electronics of the individual elements like motors, arms, cameras, etc are up and running.

Taking Experience to a Whole New Level

67

5.1 The robot
BoBoT, which is going to be the robot’s name, has three main service subsystems: the first
one consist of a set of four independently driven wheels; second, 2 grippers each mounted
on a arm with 2 sections and 2 degrees of freedom for each joint (3 in total); and third it has
a bundled dual camera system with pan, tilt and zoom capabilities. The brain of the
operation is going to be a laptop system and the database architecture is going to be used.
BoBoT is also equipped with a series of sensors that complement the basic instrumentation
used to achieve control of the service subsystems:
- A three axis accelerometer
- An up down sensor.
- An applied force sensor for the arms.
- A battery charge meter.
- A GPS
Figure 9, Figure 10 and Figure 11 show the black box models of the service subsystems

Engine Subsystem

Electric Engine
power

Actual
RPM

Desired speed
(m/s)

Desired RPM

Direction

Fig. 9. Black box diagram of the engine subsystem
The engine subsystem has two ways of operation: it can turn by specifying an actual desired
speed in meter per second; the engine will turn in the direction implied by the speed’s sign.
The other way is to establishing the RPMs and a direction. To specify which input to listen
to, the unwanted one has to be set to 0. If not, desired speed prevails. In turn, the engine
subsystem’s outputs inform of the power given to the motor and the measured RPM s.

Dual camera subsystem

Camera 1 Digital
video stream

Camera 2 Digital
video stream

Panning
position

Tilt position

Zoom aperture

Fig. 10. Black box diagram of de dual camera subsystem

To operate the dual camera subsystem it is sufficient to specify the position in the pan and
tilt axis, and how much zoom is desired, the cameras can not be controlled separately. The
outputs are the two video streams in a mildly compressed digital format.
To use the arm it is important to understand that the grip operation is independent of arm
operation. The grip has two ways of operation: one is by establishing a desired action and a
speed of the action, i.e. “close” “fast” and the other is by establishing the action and the
forced to be applied, i.e. “close” “hard”. In the first example, the grip will close fast and

 Machine Learning

68

apply maximum force, in the second it will close slowly until it reaches the desired applied
force. The system will constantly give out the grip status, i.e. opened, opening, closed,
closing, and the actual force applied.

Arm subsystem

Arm position

Joint position

Joint limit
reached

Grip status

Grip force

Arm position

Joint speed of
movement

Joint direction

Joint position

Grip operation

Grip speed

Grip force
Signal
Signal Array

Fig. 11. Black box diagram of arm subsystem

The arm can be operated in three different ways: In the first one, the grip can be positioned
in a 3D space with origin at the shoulder. The second way, allows positioning each joint
accordingly. And at last, a joint speed and direction can be specified in order to achieve
constant movement. And as outputs there are: the grips position with respect to the
shoulder, joint position in their local coordinates, and an indicator if any of the joint’s limit
sensors was reached.
BoBoT has two arm subsystems, 4 engine subsystems and 1 dual camera subsystem.

5.2 The things BoBoT can do:
As part of the design process it is important to know precisely what it is expected of the
robot. This section assumes that the robot has to carry out the following actions:
- Vision based navigation with global positioning
- Vision based navigation with inertial positioning
- Vision based navigation with visual terrain recognition for positioning
- Wide turns, forward and backwards.
- Rotations around wheel base center
- Pick up and place delicate objects.
- Pick up and place sturdy object.
- Variable speed and direction.
- Movement with the arms
- Swing
- …
These actions also show that there are commonalities between them, and also give the sense
that there is more ways to achieve success, or that they share a common goal, i.e. the first three,
the ones using vision based navigation, share the goal of moving from one point to another.

Taking Experience to a Whole New Level

69

The next step is to identify the possible BLAs, as mentioned before the BLAs have to be
extremely modular, so the expected actions not necessarily become BLAs. For instance, to
pick up an object BoBoT will have to use vision to identify the object’s position and use that
position to place the grip at a gripping distance, regardless if it is delicate or sturdy. Thus,
there are at least three BLAs, one for object location, one for arm movement, and one to
identify if the object is delicate or not so BoBoT can actually grab it.
There can be multiple versions of the BLAs, in the picking up example, moving the arm
could be done by controlling the trajectory in a 3D space assuming the trajectory is clear, or
also assuming a clear trajectory but monitor the arm’s applied force sensor to detect
collision, or use the cameras to check for obstacles. If used the latter, the importance of
modular service design is critical as the camera would be used by two BLAs. When using
HLAs, there’s no need to choose one of these three approaches to the same problem, instead
you can store all three BLAs and have the evaluation subsystem evaluate them under
different circumstances.
To further reassure the importance of modular service design, at least three BLAs can be
designed to use the arm modules, one for each input pair, one for 3d positioning, one that
uses joint positioning, and other one that uses joint movement. In this case it is simple to
develop the BLA, but if instead there were no good service design, each BLA would have to
deal with problems related to the direct control of the arm, and maybe wouldn’t be as easily
interchangeable or their size and complexity would increase.
Once identified all the BLAs with their different versions, the next step is to write them,
compile them and individually test them. Also the BLAs have to be tested in group as the
way they are expected to be used and correct any interfacing problem that might result from
things like resource sharing.

5.3 The storage strategy
Having tested all the BLAs, it is needed to gather the following information:
- Excluding BLAs, those that perform different tasks but can not run at the same time.
- BLAs that perform the same task but in different versions
- Qualifiers of BLA performance
- Environment status variables in which each BLA out performs the others in the same

task.
- BLA parameters if any.
- BLAs needed to perform each action
- Qualifiers of action’s performance; how efficient was BoBoT to perform the task.
- Switching task times, it is easier to manage system stability at a HLA level, but it only

matters when switching times are really critical.
- Which subsystems are used by each BLA
If at this point some incongruence is found among the BLAs they must be corrected before
continuing because they might induce critical changes that force to repeat the previews
steps.
With this information the database tables can be created; it is recommended but not strictly
necessary to: 1 BLA table, 1 BLA parameters table, 1BLA evaluation table, 1 action table, 1
action evaluation table. For the action table it is recommended to use a code, if space is
sufficient an extra table could be used to store that code, but it would only be useful for the

 Machine Learning

68

apply maximum force, in the second it will close slowly until it reaches the desired applied
force. The system will constantly give out the grip status, i.e. opened, opening, closed,
closing, and the actual force applied.

Arm subsystem

Arm position

Joint position

Joint limit
reached

Grip status

Grip force

Arm position

Joint speed of
movement

Joint direction

Joint position

Grip operation

Grip speed

Grip force
Signal
Signal Array

Fig. 11. Black box diagram of arm subsystem

The arm can be operated in three different ways: In the first one, the grip can be positioned
in a 3D space with origin at the shoulder. The second way, allows positioning each joint
accordingly. And at last, a joint speed and direction can be specified in order to achieve
constant movement. And as outputs there are: the grips position with respect to the
shoulder, joint position in their local coordinates, and an indicator if any of the joint’s limit
sensors was reached.
BoBoT has two arm subsystems, 4 engine subsystems and 1 dual camera subsystem.

5.2 The things BoBoT can do:
As part of the design process it is important to know precisely what it is expected of the
robot. This section assumes that the robot has to carry out the following actions:
- Vision based navigation with global positioning
- Vision based navigation with inertial positioning
- Vision based navigation with visual terrain recognition for positioning
- Wide turns, forward and backwards.
- Rotations around wheel base center
- Pick up and place delicate objects.
- Pick up and place sturdy object.
- Variable speed and direction.
- Movement with the arms
- Swing
- …
These actions also show that there are commonalities between them, and also give the sense
that there is more ways to achieve success, or that they share a common goal, i.e. the first three,
the ones using vision based navigation, share the goal of moving from one point to another.

Taking Experience to a Whole New Level

69

The next step is to identify the possible BLAs, as mentioned before the BLAs have to be
extremely modular, so the expected actions not necessarily become BLAs. For instance, to
pick up an object BoBoT will have to use vision to identify the object’s position and use that
position to place the grip at a gripping distance, regardless if it is delicate or sturdy. Thus,
there are at least three BLAs, one for object location, one for arm movement, and one to
identify if the object is delicate or not so BoBoT can actually grab it.
There can be multiple versions of the BLAs, in the picking up example, moving the arm
could be done by controlling the trajectory in a 3D space assuming the trajectory is clear, or
also assuming a clear trajectory but monitor the arm’s applied force sensor to detect
collision, or use the cameras to check for obstacles. If used the latter, the importance of
modular service design is critical as the camera would be used by two BLAs. When using
HLAs, there’s no need to choose one of these three approaches to the same problem, instead
you can store all three BLAs and have the evaluation subsystem evaluate them under
different circumstances.
To further reassure the importance of modular service design, at least three BLAs can be
designed to use the arm modules, one for each input pair, one for 3d positioning, one that
uses joint positioning, and other one that uses joint movement. In this case it is simple to
develop the BLA, but if instead there were no good service design, each BLA would have to
deal with problems related to the direct control of the arm, and maybe wouldn’t be as easily
interchangeable or their size and complexity would increase.
Once identified all the BLAs with their different versions, the next step is to write them,
compile them and individually test them. Also the BLAs have to be tested in group as the
way they are expected to be used and correct any interfacing problem that might result from
things like resource sharing.

5.3 The storage strategy
Having tested all the BLAs, it is needed to gather the following information:
- Excluding BLAs, those that perform different tasks but can not run at the same time.
- BLAs that perform the same task but in different versions
- Qualifiers of BLA performance
- Environment status variables in which each BLA out performs the others in the same

task.
- BLA parameters if any.
- BLAs needed to perform each action
- Qualifiers of action’s performance; how efficient was BoBoT to perform the task.
- Switching task times, it is easier to manage system stability at a HLA level, but it only

matters when switching times are really critical.
- Which subsystems are used by each BLA
If at this point some incongruence is found among the BLAs they must be corrected before
continuing because they might induce critical changes that force to repeat the previews
steps.
With this information the database tables can be created; it is recommended but not strictly
necessary to: 1 BLA table, 1 BLA parameters table, 1BLA evaluation table, 1 action table, 1
action evaluation table. For the action table it is recommended to use a code, if space is
sufficient an extra table could be used to store that code, but it would only be useful for the

 Machine Learning

70

developer or generating reports, it wouldn’t have any effect on the HLA. Figure 12 shows a
possible table setup.

Exclussion

Task

Source_code

Binary_code

Name

ID

BLAs

type

value

BLA

Name

ID

BLAs_Parameters

Env_Sta_Var n

Env_Sta_Var …

Env_Sta_Var 1

Qualifier …

Qualifier n

Qualifier …

Qualifier 1

BLA

BLAs_evaluation

Sequence

Action_ID

BLA

Action_BLA

Env_Sta_Var 1

Env_Sta_Var …

Env_Sta_Var n

Env_Sta_Var …

Qualifier 1

Qualifier …

Qualifier n

Qualifier …

Action_ID

Action_Eval

Group

Name

ID

Actions

Fig. 12. Table reference diagram

In this setup, there’s the Actions table that stores the coding but the additional field of group
allows identifying which actions are the same, so they can be evaluated and associate
different, but equivalent, BLAs. Also the Actions_Eval table stores information about the
Environment Status variables so the HLA can track which combination of BLAs worked best
for those conditions of the environment.
In case of using other HLA architecture, the same steps can be followed, only the storage
structuring has to be adequate to the choice.

5.6 Finally the HLA
The HLA could have several roles in BoBoT, it could be in charge of fulfilling a mission,
deciding the best way to successfully complete it. In this role the HLA would work with the
Action tables evaluating and calculating constantly course of action, and how far it is to
completion.
Other role the HLA could assume is to take a course of action from a user, and follow it; in
this case the HLA would work closely with the BLA_Evaluation table to choose the best BLA
for the given conditions and course of action. A course of action can be expressed in terms of
the Actions table, the corresponding BLA retrieved from the Action_BLA table and the best

Taking Experience to a Whole New Level

71

BLA from the BLA_evaluation searching among the algorithms that share the same value in
the task field and are none excluding.
It is important to keep clear the role the HLA is going to take and how is going to take
advantage of the tables, if several roles are detected it is a clear sign that the HLA has to be
broken into modules, one for each role, and each module assume the appropriate hierarchy.
If it turns out that there’s something on top of the HLA, those on top could be considered
next level HLAs.
Once the HLA’s role is established, the type has to be chosen, and there are two types HLA:
Those that have programmatic responses, and those that have learnt responses. HLAs with
programmatic responses are those algorithms that have transfer function or some
mathematical equation that relates the inputs to the outputs and are programmed. In the
second type, the HLA learns from experience, it tries actions, evaluates performance and
start to mix accordingly to achieve better results. Thus, this type of HLA could be any of
several machine learning algorithms, working with other algorithms and a sub set of inputs.
Into what BoBoT is concerned, BLA of al sorts could be written, i.e. to use the four engines
individually, in pairs or all together, to use each hand separately or gracefully coordinated,
visually inspect the world surrounding him and use vision for a diversity of tasks. He
‘would be able to successfully complete hundreds of mission of all sorts.
The level of success can be associated to the complexity or smartness of the HLA, for
instance, a very programmatic HLA that was designed for a very specific and stable
environment would certainly fail on dynamic environments. However, an adaptive HLA
that takes record of how the environment affects its BLA’s performance is more likely to
succeed.
One of the advantages of using HLAs is that they force the design to be so modular that new
BLA could be introduced and the previous work wouldn’t be wasted, it will let the HLA
evaluate and choose and optimize procedures, and user machine interfacing is done at a
more natural way since it could be done by describing actions.
The storage strategy is open for the designer to best choose the tables or structures he needs,
and allows to be as sophisticated as to have several levels of associations, or as simple as a
few register in the memory bank of a microcontroller.

6. Being practical, final remarks.
In this chapter the discussion has focused on the how to and the what, but it is important to
reflect on the “if we should” or the “is it worth it”.
A NASA rover sent to mars, even though it seems a promising scenario, is not the best
candidate for HLA, at the first glance, because putting it on mars cost a lot of money; and
just to have it start trying stuff that won’t work and that might cause an unpredictable
failure it would be too risky. However, if once the rover has acquired the relevant
information materials pictures etc. putting it to try out BLA becomes interesting, at least
more interesting than letting it rot there.
The horse gait problem proposed in (Lopera, 2007) which is actually an energy optimization
problem is a good example of the power of modularity since each leg is driven differently
on each gate, but is worth the trouble of installing an HLA? There’s a trick to this problem,
and that is that depending on the terrain, especially on its slope, the gait has to be modified

 Machine Learning

70

developer or generating reports, it wouldn’t have any effect on the HLA. Figure 12 shows a
possible table setup.

Exclussion

Task

Source_code

Binary_code

Name

ID

BLAs

type

value

BLA

Name

ID

BLAs_Parameters

Env_Sta_Var n

Env_Sta_Var …

Env_Sta_Var 1

Qualifier …

Qualifier n

Qualifier …

Qualifier 1

BLA

BLAs_evaluation

Sequence

Action_ID

BLA

Action_BLA

Env_Sta_Var 1

Env_Sta_Var …

Env_Sta_Var n

Env_Sta_Var …

Qualifier 1

Qualifier …

Qualifier n

Qualifier …

Action_ID

Action_Eval

Group

Name

ID

Actions

Fig. 12. Table reference diagram

In this setup, there’s the Actions table that stores the coding but the additional field of group
allows identifying which actions are the same, so they can be evaluated and associate
different, but equivalent, BLAs. Also the Actions_Eval table stores information about the
Environment Status variables so the HLA can track which combination of BLAs worked best
for those conditions of the environment.
In case of using other HLA architecture, the same steps can be followed, only the storage
structuring has to be adequate to the choice.

5.6 Finally the HLA
The HLA could have several roles in BoBoT, it could be in charge of fulfilling a mission,
deciding the best way to successfully complete it. In this role the HLA would work with the
Action tables evaluating and calculating constantly course of action, and how far it is to
completion.
Other role the HLA could assume is to take a course of action from a user, and follow it; in
this case the HLA would work closely with the BLA_Evaluation table to choose the best BLA
for the given conditions and course of action. A course of action can be expressed in terms of
the Actions table, the corresponding BLA retrieved from the Action_BLA table and the best

Taking Experience to a Whole New Level

71

BLA from the BLA_evaluation searching among the algorithms that share the same value in
the task field and are none excluding.
It is important to keep clear the role the HLA is going to take and how is going to take
advantage of the tables, if several roles are detected it is a clear sign that the HLA has to be
broken into modules, one for each role, and each module assume the appropriate hierarchy.
If it turns out that there’s something on top of the HLA, those on top could be considered
next level HLAs.
Once the HLA’s role is established, the type has to be chosen, and there are two types HLA:
Those that have programmatic responses, and those that have learnt responses. HLAs with
programmatic responses are those algorithms that have transfer function or some
mathematical equation that relates the inputs to the outputs and are programmed. In the
second type, the HLA learns from experience, it tries actions, evaluates performance and
start to mix accordingly to achieve better results. Thus, this type of HLA could be any of
several machine learning algorithms, working with other algorithms and a sub set of inputs.
Into what BoBoT is concerned, BLA of al sorts could be written, i.e. to use the four engines
individually, in pairs or all together, to use each hand separately or gracefully coordinated,
visually inspect the world surrounding him and use vision for a diversity of tasks. He
‘would be able to successfully complete hundreds of mission of all sorts.
The level of success can be associated to the complexity or smartness of the HLA, for
instance, a very programmatic HLA that was designed for a very specific and stable
environment would certainly fail on dynamic environments. However, an adaptive HLA
that takes record of how the environment affects its BLA’s performance is more likely to
succeed.
One of the advantages of using HLAs is that they force the design to be so modular that new
BLA could be introduced and the previous work wouldn’t be wasted, it will let the HLA
evaluate and choose and optimize procedures, and user machine interfacing is done at a
more natural way since it could be done by describing actions.
The storage strategy is open for the designer to best choose the tables or structures he needs,
and allows to be as sophisticated as to have several levels of associations, or as simple as a
few register in the memory bank of a microcontroller.

6. Being practical, final remarks.
In this chapter the discussion has focused on the how to and the what, but it is important to
reflect on the “if we should” or the “is it worth it”.
A NASA rover sent to mars, even though it seems a promising scenario, is not the best
candidate for HLA, at the first glance, because putting it on mars cost a lot of money; and
just to have it start trying stuff that won’t work and that might cause an unpredictable
failure it would be too risky. However, if once the rover has acquired the relevant
information materials pictures etc. putting it to try out BLA becomes interesting, at least
more interesting than letting it rot there.
The horse gait problem proposed in (Lopera, 2007) which is actually an energy optimization
problem is a good example of the power of modularity since each leg is driven differently
on each gate, but is worth the trouble of installing an HLA? There’s a trick to this problem,
and that is that depending on the terrain, especially on its slope, the gait has to be modified

 Machine Learning

72

drastically thus its energy consumption. Furthermore, if the gait algorithm (BLA) can be
parameterized in order to adjust leg position and rhythm, the HLA becomes a powerful tool
since it will start evaluating and adjusting those parameters so the horse would be able to
keep doing the gate. But as far as the optimization problem, there would be the need to
generate an additional level in which to operate in terms of the speed achieved by each gate,
the energy it consumes and the track’s layout.
In an industrial application, there’s no need to have HLA, because once the process is
optimized it would operate like such. The process sequence is usually determined by its
nature and there are optimization techniques and algorithms that do this type of process
fine tuning rather well.
In multiprocessor/multicore architectures HLAs could be used to supervise the execution of
several learning algorithms in parallel to find optimums in highly complex functions. Since
it can analyze the topology of the function, it could use the best optimization algorithm for
the area of search. In that way, it could also be used to automatically evaluate classifying
algorithms.
The appropriate scenarios for HLA are those that present high environment variability, or
are highly unstructured, have several possible BLAs, and there’s good computational power
and memory availability.
The use of HLAs serves as implementation to the problem presented by (Van de Velde 1995)
as to how internalize representations. As he puts it in his child example, the walk by holding
a hand is an infant BLA that the HLA will perfect until it has a walking by own means BLA,
thus constituting the internalization.

7. Future research
There’s an interesting discussion, which this chapter purposely avoided getting in to, about
if these architectures could be considered as epistemological. It would be interesting to
compare what experts in this area have to say.
One line of research that emerges naturally from this proposed architectures, is the
involvement of other natural concepts that participate in the experience process, for
instance: What use would have concepts like pain or tiredness for a system that has the
capacity to choose the way to solve a problem? How could they be implemented and
interconnected with the presented architectures?
The presented architectures have a strong hardware based, reality measuring and affecting
feeling to it, since they where thought out for physical systems as mobile robots and such.
However, it would be interesting to measure the effect of the architecture in purely virtual
systems. How would it affect performance compared to more traditional implementations?
And the last couple of question that emerges from this line of reasoning are: How to code
creativity? And would we be able to create a HLA that has creativity as one of it biggest
traits?

8. Conclusion
This chapter described a few architectures that support a higher level of experience;
however they are not the only architectures possible. Any architecture that evaluates and

Taking Experience to a Whole New Level

73

records the performance of basic modules and uses that information to decide which
module to use or how to adjust the module’s parameters is considered an architecture that
supports higher level experience.
It is clear that the intricate relationship between knowledge and experience can be
constructed on an artificial system. Furthermore, it can be generated by the system if its
architecture and available resources allow it. Unfortunately, the power of the relationship
between knowledge and experience and how the system embraces that power is only as
good as the HLA allows it to be. In other words, a lookup table HLA would never be
able to undertake tasks for which the environment parameters are not within the lookup
table.
The architecture has to be carefully chosen for the resources available and the complexity
level of the system. As mentioned before, their use in invariant environments, invariant
systems and where no learning is involved, becomes a waste of resource and could
compromise development time. But, in the other hand, there is little or no knowledge
about the environment and it is desired to maximize mission scope, then architectures
that support next level experience could simplify the problem dramatically. This
simplification occurs in part because the designers do not have to resolve all the possible
problems the system could encounter. Instead they solve basic issues, and leave problem
solving to the system.
This type of architecture meets the definition by (Van de Velde 1995) of intelligent systems.
As it has cognitive knowledge of its environment as evaluation criteria for the BLAs
obtained through the inputs subsystems, and uses that knowledge to determine appropriate
course of action, establishing a behavior in its environment.

9. References
Josh Bongard, Victor Zykov, Hod Lipson, (2006) “Resilient machines through Continuous

self-modeling”, Science 17 November 2006: Vol. 314. no. 5802, pp. 1118 – 1121, DOI:
10.1126/science.1133687

Hani Hagras, Martin Colley, Victor Callaghan, (2001) “Life Long Learning and Adaptation
for Embedded agents operating in unstructured Environments”, IFSA World
Congress and 20th NAFIPS International Conference, 2001. Joint 9th Volume
3, Page(s):1547 - 1552 vol.3.

Carl G. Looney (1997), Pattern Recognition Using Neural Networks, oxford university press.
Luis I. Lopera, (2005) “S.N.A.P.A. ‘Supervision, navigation and planning architecture’:

arquitectura de navegación, planificación y navegación para un dirigible no
tripulado, Tesis de maestría, Universidad de los Andes, Bogotá Colombia, 2005.

Lopera, L.I.; (2007) “Algorithms Storage System”, Electronics, Robotics and Automotive
Mechanics Conference, 2007. CERMA 2007 25-28 Sept. 2007 Page(s):370 – 375
Digital Object Identifier 10.1109/CERMA.2007.4367715

Anderson M, (2008) “Buckyballs to boost flash memory”, IEEE Spectrum, June 2008, Page 15
Daniel Stick, Jonathan D. Sterk, and Christopher Monroe, (2007) “The trap technique toward

a chip based quantum computer”, IEEE Spectrum ONLINE, First Published August
2007.

 Machine Learning

72

drastically thus its energy consumption. Furthermore, if the gait algorithm (BLA) can be
parameterized in order to adjust leg position and rhythm, the HLA becomes a powerful tool
since it will start evaluating and adjusting those parameters so the horse would be able to
keep doing the gate. But as far as the optimization problem, there would be the need to
generate an additional level in which to operate in terms of the speed achieved by each gate,
the energy it consumes and the track’s layout.
In an industrial application, there’s no need to have HLA, because once the process is
optimized it would operate like such. The process sequence is usually determined by its
nature and there are optimization techniques and algorithms that do this type of process
fine tuning rather well.
In multiprocessor/multicore architectures HLAs could be used to supervise the execution of
several learning algorithms in parallel to find optimums in highly complex functions. Since
it can analyze the topology of the function, it could use the best optimization algorithm for
the area of search. In that way, it could also be used to automatically evaluate classifying
algorithms.
The appropriate scenarios for HLA are those that present high environment variability, or
are highly unstructured, have several possible BLAs, and there’s good computational power
and memory availability.
The use of HLAs serves as implementation to the problem presented by (Van de Velde 1995)
as to how internalize representations. As he puts it in his child example, the walk by holding
a hand is an infant BLA that the HLA will perfect until it has a walking by own means BLA,
thus constituting the internalization.

7. Future research
There’s an interesting discussion, which this chapter purposely avoided getting in to, about
if these architectures could be considered as epistemological. It would be interesting to
compare what experts in this area have to say.
One line of research that emerges naturally from this proposed architectures, is the
involvement of other natural concepts that participate in the experience process, for
instance: What use would have concepts like pain or tiredness for a system that has the
capacity to choose the way to solve a problem? How could they be implemented and
interconnected with the presented architectures?
The presented architectures have a strong hardware based, reality measuring and affecting
feeling to it, since they where thought out for physical systems as mobile robots and such.
However, it would be interesting to measure the effect of the architecture in purely virtual
systems. How would it affect performance compared to more traditional implementations?
And the last couple of question that emerges from this line of reasoning are: How to code
creativity? And would we be able to create a HLA that has creativity as one of it biggest
traits?

8. Conclusion
This chapter described a few architectures that support a higher level of experience;
however they are not the only architectures possible. Any architecture that evaluates and

Taking Experience to a Whole New Level

73

records the performance of basic modules and uses that information to decide which
module to use or how to adjust the module’s parameters is considered an architecture that
supports higher level experience.
It is clear that the intricate relationship between knowledge and experience can be
constructed on an artificial system. Furthermore, it can be generated by the system if its
architecture and available resources allow it. Unfortunately, the power of the relationship
between knowledge and experience and how the system embraces that power is only as
good as the HLA allows it to be. In other words, a lookup table HLA would never be
able to undertake tasks for which the environment parameters are not within the lookup
table.
The architecture has to be carefully chosen for the resources available and the complexity
level of the system. As mentioned before, their use in invariant environments, invariant
systems and where no learning is involved, becomes a waste of resource and could
compromise development time. But, in the other hand, there is little or no knowledge
about the environment and it is desired to maximize mission scope, then architectures
that support next level experience could simplify the problem dramatically. This
simplification occurs in part because the designers do not have to resolve all the possible
problems the system could encounter. Instead they solve basic issues, and leave problem
solving to the system.
This type of architecture meets the definition by (Van de Velde 1995) of intelligent systems.
As it has cognitive knowledge of its environment as evaluation criteria for the BLAs
obtained through the inputs subsystems, and uses that knowledge to determine appropriate
course of action, establishing a behavior in its environment.

9. References
Josh Bongard, Victor Zykov, Hod Lipson, (2006) “Resilient machines through Continuous

self-modeling”, Science 17 November 2006: Vol. 314. no. 5802, pp. 1118 – 1121, DOI:
10.1126/science.1133687

Hani Hagras, Martin Colley, Victor Callaghan, (2001) “Life Long Learning and Adaptation
for Embedded agents operating in unstructured Environments”, IFSA World
Congress and 20th NAFIPS International Conference, 2001. Joint 9th Volume
3, Page(s):1547 - 1552 vol.3.

Carl G. Looney (1997), Pattern Recognition Using Neural Networks, oxford university press.
Luis I. Lopera, (2005) “S.N.A.P.A. ‘Supervision, navigation and planning architecture’:

arquitectura de navegación, planificación y navegación para un dirigible no
tripulado, Tesis de maestría, Universidad de los Andes, Bogotá Colombia, 2005.

Lopera, L.I.; (2007) “Algorithms Storage System”, Electronics, Robotics and Automotive
Mechanics Conference, 2007. CERMA 2007 25-28 Sept. 2007 Page(s):370 – 375
Digital Object Identifier 10.1109/CERMA.2007.4367715

Anderson M, (2008) “Buckyballs to boost flash memory”, IEEE Spectrum, June 2008, Page 15
Daniel Stick, Jonathan D. Sterk, and Christopher Monroe, (2007) “The trap technique toward

a chip based quantum computer”, IEEE Spectrum ONLINE, First Published August
2007.

 Machine Learning

74

Van de Velde W, (1995) “Cognitive Architectures - From Knowledge Level To Structural
Coupling”, L. Steelss (Ed.) The biology and technology of intelligent Autonomous
Agents. NATO ASI Series, Series F: Computer and systems Sciences, Vol. 144, pp.
197-221. Springer, Berlin

4

Hamiltonian Neural Networks
Based Networks for Learning

Wieslaw Sienko and Wieslaw Citko
Gdynia Maritime University

Poland

1. Introduction
The problem of learning represents a gateway to understanding intelligence in brains and
machines. Many researchers believe that supervised learning will become a key technology
for extracting information from the flood of data around us. The supervised learning
techniques, i.e. learning from examples, can be seen as an implementation of the mappings
y = F(x), relying on the fitting of given data pairs {xk ,yk}. The key point is that the fitting
should be predictive and uncover an underlying physical law, which is then used in a
predictive or anticipatory way. A great number of models implementing the supervised
learning techniques have been proposed in literature. Artificial Neural Networks (ANN),
Radial Basis Functions (RBF), Support Vector Machines (SVM) and Fuzzy Logic based
models (ANFIS) should be here mentioned. Support Vector Machines, distinctive tools for
data classification, are the product of statistical learning theory. Recently, a new learning
algorithm named Regularized Least Squares Classification (RLSC) has been proposed. The
RLSC concept relyies on multivariate function approximation with regularization theory as
a natural framework for solving ill-posed problems of approximation. It is worth noting that
SVM and RBF models can be regarded as special cases in the framework of approximation
and regularization theory. On the other hand, the Hamiltonian Neural Networks (HNN)
based orthogonal filters can be regarded as a natural implementation of the regularization
technique. Using Hamiltonian Neural Networks based spectrum analysis, recognition, and
memorization, gives rise to mapping implementations with skew-symmetric and symmetric
kernels. The purpose of this chapter is to present how very large scale networks for learning
can be designed by using HNN-based orthogonal filters and, specifically, by using 8-
dimensional (octonionic) modules. The unique feature of HNN is the fact that they can exist
as either algorithms or physically implementable devices. In this chapter we mainly
concentrate on algorithmic description of HNN-based networks. Moreover, since the
structures of HNN can be based on the family of Hurwitz-Radon matrices, we present here
how to design large scale nonlinear mappings by using neural networks with weight
matrices determined by Hurwitz-Radon matrices. Hence, this chapter consists of the
following issues:
- Fundamentals of HNN
- Family of Hurwitz-Radon matrices
- RLSC basics

 Machine Learning

74

Van de Velde W, (1995) “Cognitive Architectures - From Knowledge Level To Structural
Coupling”, L. Steelss (Ed.) The biology and technology of intelligent Autonomous
Agents. NATO ASI Series, Series F: Computer and systems Sciences, Vol. 144, pp.
197-221. Springer, Berlin

4

Hamiltonian Neural Networks
Based Networks for Learning

Wieslaw Sienko and Wieslaw Citko
Gdynia Maritime University

Poland

1. Introduction
The problem of learning represents a gateway to understanding intelligence in brains and
machines. Many researchers believe that supervised learning will become a key technology
for extracting information from the flood of data around us. The supervised learning
techniques, i.e. learning from examples, can be seen as an implementation of the mappings
y = F(x), relying on the fitting of given data pairs {xk ,yk}. The key point is that the fitting
should be predictive and uncover an underlying physical law, which is then used in a
predictive or anticipatory way. A great number of models implementing the supervised
learning techniques have been proposed in literature. Artificial Neural Networks (ANN),
Radial Basis Functions (RBF), Support Vector Machines (SVM) and Fuzzy Logic based
models (ANFIS) should be here mentioned. Support Vector Machines, distinctive tools for
data classification, are the product of statistical learning theory. Recently, a new learning
algorithm named Regularized Least Squares Classification (RLSC) has been proposed. The
RLSC concept relyies on multivariate function approximation with regularization theory as
a natural framework for solving ill-posed problems of approximation. It is worth noting that
SVM and RBF models can be regarded as special cases in the framework of approximation
and regularization theory. On the other hand, the Hamiltonian Neural Networks (HNN)
based orthogonal filters can be regarded as a natural implementation of the regularization
technique. Using Hamiltonian Neural Networks based spectrum analysis, recognition, and
memorization, gives rise to mapping implementations with skew-symmetric and symmetric
kernels. The purpose of this chapter is to present how very large scale networks for learning
can be designed by using HNN-based orthogonal filters and, specifically, by using 8-
dimensional (octonionic) modules. The unique feature of HNN is the fact that they can exist
as either algorithms or physically implementable devices. In this chapter we mainly
concentrate on algorithmic description of HNN-based networks. Moreover, since the
structures of HNN can be based on the family of Hurwitz-Radon matrices, we present here
how to design large scale nonlinear mappings by using neural networks with weight
matrices determined by Hurwitz-Radon matrices. Hence, this chapter consists of the
following issues:
- Fundamentals of HNN
- Family of Hurwitz-Radon matrices
- RLSC basics

 Machine Learning

76

- Orthogonal filter-based approximation
- Modeling classifiers, pattern recognition and associative memories via nonlinear

mappings
- Attractors based very large scale associative memories
- Conclusions
There is a large literature on the subject of networks for learning. Here we only refer to some
comprehensive and useful, from the point of view of our presentation, reviews: (Evgeniou et
al., 2000), (Poggio & Smale, 2003), (Boucheron et al., 2005), (Predd et al., 2006).

2. Hamiltonian neural networks
It is well known that a general description form of an autonomous Hamiltonian network is
given by the following state-space equation:

 () ()'= =JH x ν xx� (1)

where: x - state vector, 2nR∈x
 ν(x) – a nonlinear vector field
and: -J = JT = J-1 i.e. J is skew-symmetric and orthogonal.
Function H(x) is a Hamiltonian (energy) of the network. Since Hamiltonian networks are
lossless (there is no dissipation of energy), their trajectories in the state space can be very
complex for t → ±∞ . It is, however, worth noting that Eq.(1) has constant solutions, i.e.

every points
0

2nR∈x such that H’(x0) = 0 is the equilibrium and x(t) ≡ x0 is the solution.
Equation (1) gives rise to the modeling of Hamiltonian Neural Networks, as follows:

 ()= +�x WΘ x d (2)

where: W- (2n×2n) skew-symmetric orthogonal weight matrix
 Θ(x) – vector of activation functions
 d – input vector (input data)
and: Θ(x) ≡ H’(x)
 E=H(x) - the energy absorbed by HNN
It can be easy seen that HNN, as described by Eq.(2), is a compatible connection of n
elementary building blocks – lossless neurons (Fig.1).

±w1

∫

∫

Θ(x2)

Θ(x1)
d1

d2

x1 x1

x2

y1

y2

∓w1

x2

Fig.1. Structure of a lossless neuron.

Hamiltonian Neural Networks Based Networks for Learning

77

The state-space description of a lossless neuron is as follows:

 11 1 1

2 1 2 2

dx 0 w Θ(x)

x w 0 Θ(x) d

±
= +

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�

� ∓
 (3)

where the activation function Θ(xi) , i = 1, 2 has been assumed as a passive nonlinearity, i.e.:

 i

1 2 1 2

i

Θ(x)
μ μ ; μ ,μ (0,)

x
≤ ≤ ∈ ∞ (4)

A lossless neuron is an elementary Hamiltonian network with absorbed energy given by:

21 2

1 2 1 1 2 2
0 0

E=E +E ()dς ()dς 0
x x

ς ς= Θ + Θ ≥∫ ∫ (5)

Formula (5) can be directly extended onto n-neuron HNN:

n

i
i=1

E E= ∑

where: Ei – energy absorbed by the i-th neuron.
Note, that for weight matrix W skew-symmetric but nonorthogonal, Eq.(2) describes a
lossless neural network. The Hamiltonian neural network described by Eq.(1) cannot be
realized as a macroscopic scale physical object. But HNN determines a type of orthogonal
transformation, namely:

 ()⋅ + =W Θ x d 0 (6)

 ()= =y Θ x Wd (7)

(y, d) = 0; (· , ·) – scalar product
Rows (and columns) of W constitute an orthogonal Haar basis. The components of output
vector are Haar coefficients. Thus, Haar spectrum analysis using HNN is given by:

 y =W d and d= -W y (8)

and formula (8) can be used as an algebraic transformation. The problem of physical
realizability of HNN can be solved by using HNN-based orthogonal filters. A basic
structure of such filters is shown in Fig.2.

y d y = Θ(x) d

- w0 1

u

HNN
W

w0 > 0

Orthogonal
Filter

Fig. 2. Structure of an orthogonal filter.

 Machine Learning

76

- Orthogonal filter-based approximation
- Modeling classifiers, pattern recognition and associative memories via nonlinear

mappings
- Attractors based very large scale associative memories
- Conclusions
There is a large literature on the subject of networks for learning. Here we only refer to some
comprehensive and useful, from the point of view of our presentation, reviews: (Evgeniou et
al., 2000), (Poggio & Smale, 2003), (Boucheron et al., 2005), (Predd et al., 2006).

2. Hamiltonian neural networks
It is well known that a general description form of an autonomous Hamiltonian network is
given by the following state-space equation:

 () ()'= =JH x ν xx� (1)

where: x - state vector, 2nR∈x
 ν(x) – a nonlinear vector field
and: -J = JT = J-1 i.e. J is skew-symmetric and orthogonal.
Function H(x) is a Hamiltonian (energy) of the network. Since Hamiltonian networks are
lossless (there is no dissipation of energy), their trajectories in the state space can be very
complex for t → ±∞ . It is, however, worth noting that Eq.(1) has constant solutions, i.e.

every points
0

2nR∈x such that H’(x0) = 0 is the equilibrium and x(t) ≡ x0 is the solution.
Equation (1) gives rise to the modeling of Hamiltonian Neural Networks, as follows:

 ()= +�x WΘ x d (2)

where: W- (2n×2n) skew-symmetric orthogonal weight matrix
 Θ(x) – vector of activation functions
 d – input vector (input data)
and: Θ(x) ≡ H’(x)
 E=H(x) - the energy absorbed by HNN
It can be easy seen that HNN, as described by Eq.(2), is a compatible connection of n
elementary building blocks – lossless neurons (Fig.1).

±w1

∫

∫

Θ(x2)

Θ(x1)
d1

d2

x1 x1

x2

y1

y2

∓w1

x2

Fig.1. Structure of a lossless neuron.

Hamiltonian Neural Networks Based Networks for Learning

77

The state-space description of a lossless neuron is as follows:

 11 1 1

2 1 2 2

dx 0 w Θ(x)

x w 0 Θ(x) d

±
= +

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�

� ∓
 (3)

where the activation function Θ(xi) , i = 1, 2 has been assumed as a passive nonlinearity, i.e.:

 i

1 2 1 2

i

Θ(x)
μ μ ; μ ,μ (0,)

x
≤ ≤ ∈ ∞ (4)

A lossless neuron is an elementary Hamiltonian network with absorbed energy given by:

21 2

1 2 1 1 2 2
0 0

E=E +E ()dς ()dς 0
x x

ς ς= Θ + Θ ≥∫ ∫ (5)

Formula (5) can be directly extended onto n-neuron HNN:

n

i
i=1

E E= ∑

where: Ei – energy absorbed by the i-th neuron.
Note, that for weight matrix W skew-symmetric but nonorthogonal, Eq.(2) describes a
lossless neural network. The Hamiltonian neural network described by Eq.(1) cannot be
realized as a macroscopic scale physical object. But HNN determines a type of orthogonal
transformation, namely:

 ()⋅ + =W Θ x d 0 (6)

 ()= =y Θ x Wd (7)

(y, d) = 0; (· , ·) – scalar product
Rows (and columns) of W constitute an orthogonal Haar basis. The components of output
vector are Haar coefficients. Thus, Haar spectrum analysis using HNN is given by:

 y =W d and d= -W y (8)

and formula (8) can be used as an algebraic transformation. The problem of physical
realizability of HNN can be solved by using HNN-based orthogonal filters. A basic
structure of such filters is shown in Fig.2.

y d y = Θ(x) d

- w0 1

u

HNN
W

w0 > 0

Orthogonal
Filter

Fig. 2. Structure of an orthogonal filter.

 Machine Learning

78

It is worth noting that an orthogonal filter performs the following decomposition:

 d = u +w0 y (9)
where: u, y are orthogonal i.e. (u, y) = 0
Moreover, Eq.(9) sets up the following orthogonal transformation (W2 = -1):

0

0

1
(w)

1 w
= +

+
y W 1 d (10)

where: (d, y) ≠ 0
The output vector y = Θ(x) constitutes the Haar spectrum of input data d. Since, however,
y = Θ(x) is the output of a nonlinear dynamical system, Eq.(10) is true for bounded input
only. It means, for example, that for neuron activation functions of sigmoidal type, the
following conditions have to be fulfilled:

│Θ(xi)│≤ bi , i = 1, 2, … , 2n
where: bi – asymptotical value of a sigmoid
Some orthogonal filter based transformations, given by the following formulae, are useful
for further consideration:

 d= (WT+w01) y (11)
product of transformations (w0 = 1):

1 1

() ()
4 2

= + ⋅ + =y W 1 W 1 d Wd (12)

orthogonalization of outputs for given d:

1

1
()

2
= +y W 1 d

T

2

1
()

2
= +y W 1 d

hence:

 T

1 2 1 2
(,) 0⋅ = =y y y y (13)

Note that the transformations given by formulae (10), (11), (12) and (13) can be regarded
either as algebraic algorithms or as physically implementable HNN-based orthogonal filters.
Such an implementation is guaranteed by the stabilizing action of negative feedback loops,
even if the weight matrix W is not exactly skew-symmetric.

3. Hurwitz-Radon matrices
As mentioned above, the main issue in HNN-based orthogonal filters is forming the weight
matrices W – skew symmetric and orthogonal. The most adequate mathematical framework

Hamiltonian Neural Networks Based Networks for Learning

79

for this task seems to be an algebraic theory of Hurwitz-Radon matrices. Renewed interest
in this old algebraic theory of Hurwitz-Radon matrices can be recently observed.
Particularly, a link between this important old matrix problem and refined methods of
algebraic topology (homology theories) has been established (Eckmann, 1999), (Vakhania,
1993). The purpose of these considerations is to show how Hurwitz-Radon matrices can be
used in design of orthogonal filters. Hence, we provide, below, some basic statements from
the theory of Hurwitz-Radon matrices. Let us note that a set of real N×N matrices Aj
fulfilling the following equation (so called Hurwitz matrix equation):

 2

j j k k j
, = − + =A 1 A A A A 0 (14)

for k ≠ j, k = 1, ... , s; 1-unit matrix
is called Hurwitz-Radon family matrices (HR family). The matrices Aj of family are

orthogonal, i.e. T -1 T

j j j j
, = − =A A A A , j = 1, … , s. The maximum possible number s of family

members for given dimension N is determined by the Radon number ρ(N). It can be found,
as follows:
Let N = 2a b, where b is an odd number and a = 4c +d; 0 ≤ d ≤ 4; c ≥ 0. Then the Radon
number ρ(N) is given by:

 ρ(N) = 8 c +2d (15)

and such a family consists of smax(N×N)-matrices, where:

 smax = ρ(N) – 1 (16)

Generally: ρ(N) ≤ N and for N = 2, 4, 8 only, ρ(N) = N and smax = N – 1.
Thus, for example, Hurwitz-Radon family of 8-dim. matrices consists of 7 matrices. The
following issues in Hurwitz-Radon theory, useful for further consideration, are worth
noting:
1. Algebra of complex numbers, quaternions and octonions, is directly related to Hurwitz-

Radon families for N = 2, 4, 8, respectively.
2. Maximum number of continuous orthonormal tangent vector fields on sphere

N-1 NS R∈ is given by smax = ρ(N) – 1. Moreover, let A1, … , As be a family of Hurwitz-
Radon integer {-1, 0, 1} matrices. Let A0 = 1 and a0, … , as be real numbers with

s
2
i

i=1

1α =∑ . Then N×N matrix:

 i

s

i
i=1

() a= ∑A a A (17)

is orthogonal and A(a) can be considered as a map of sphere Ss into orthogonal group
O(N).

3. All 8-dim. HR matrices have the following form (smax=7)

 Machine Learning

78

It is worth noting that an orthogonal filter performs the following decomposition:

 d = u +w0 y (9)
where: u, y are orthogonal i.e. (u, y) = 0
Moreover, Eq.(9) sets up the following orthogonal transformation (W2 = -1):

0

0

1
(w)

1 w
= +

+
y W 1 d (10)

where: (d, y) ≠ 0
The output vector y = Θ(x) constitutes the Haar spectrum of input data d. Since, however,
y = Θ(x) is the output of a nonlinear dynamical system, Eq.(10) is true for bounded input
only. It means, for example, that for neuron activation functions of sigmoidal type, the
following conditions have to be fulfilled:

│Θ(xi)│≤ bi , i = 1, 2, … , 2n
where: bi – asymptotical value of a sigmoid
Some orthogonal filter based transformations, given by the following formulae, are useful
for further consideration:

 d= (WT+w01) y (11)
product of transformations (w0 = 1):

1 1

() ()
4 2

= + ⋅ + =y W 1 W 1 d Wd (12)

orthogonalization of outputs for given d:

1

1
()

2
= +y W 1 d

T

2

1
()

2
= +y W 1 d

hence:

 T

1 2 1 2
(,) 0⋅ = =y y y y (13)

Note that the transformations given by formulae (10), (11), (12) and (13) can be regarded
either as algebraic algorithms or as physically implementable HNN-based orthogonal filters.
Such an implementation is guaranteed by the stabilizing action of negative feedback loops,
even if the weight matrix W is not exactly skew-symmetric.

3. Hurwitz-Radon matrices
As mentioned above, the main issue in HNN-based orthogonal filters is forming the weight
matrices W – skew symmetric and orthogonal. The most adequate mathematical framework

Hamiltonian Neural Networks Based Networks for Learning

79

for this task seems to be an algebraic theory of Hurwitz-Radon matrices. Renewed interest
in this old algebraic theory of Hurwitz-Radon matrices can be recently observed.
Particularly, a link between this important old matrix problem and refined methods of
algebraic topology (homology theories) has been established (Eckmann, 1999), (Vakhania,
1993). The purpose of these considerations is to show how Hurwitz-Radon matrices can be
used in design of orthogonal filters. Hence, we provide, below, some basic statements from
the theory of Hurwitz-Radon matrices. Let us note that a set of real N×N matrices Aj
fulfilling the following equation (so called Hurwitz matrix equation):

 2

j j k k j
, = − + =A 1 A A A A 0 (14)

for k ≠ j, k = 1, ... , s; 1-unit matrix
is called Hurwitz-Radon family matrices (HR family). The matrices Aj of family are

orthogonal, i.e. T -1 T

j j j j
, = − =A A A A , j = 1, … , s. The maximum possible number s of family

members for given dimension N is determined by the Radon number ρ(N). It can be found,
as follows:
Let N = 2a b, where b is an odd number and a = 4c +d; 0 ≤ d ≤ 4; c ≥ 0. Then the Radon
number ρ(N) is given by:

 ρ(N) = 8 c +2d (15)

and such a family consists of smax(N×N)-matrices, where:

 smax = ρ(N) – 1 (16)

Generally: ρ(N) ≤ N and for N = 2, 4, 8 only, ρ(N) = N and smax = N – 1.
Thus, for example, Hurwitz-Radon family of 8-dim. matrices consists of 7 matrices. The
following issues in Hurwitz-Radon theory, useful for further consideration, are worth
noting:
1. Algebra of complex numbers, quaternions and octonions, is directly related to Hurwitz-

Radon families for N = 2, 4, 8, respectively.
2. Maximum number of continuous orthonormal tangent vector fields on sphere

N-1 NS R∈ is given by smax = ρ(N) – 1. Moreover, let A1, … , As be a family of Hurwitz-
Radon integer {-1, 0, 1} matrices. Let A0 = 1 and a0, … , as be real numbers with

s
2
i

i=1

1α =∑ . Then N×N matrix:

 i

s

i
i=1

() a= ∑A a A (17)

is orthogonal and A(a) can be considered as a map of sphere Ss into orthogonal group
O(N).

3. All 8-dim. HR matrices have the following form (smax=7)

 Machine Learning

80

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=

 0hhhhhhh
h 0hhhhhh
hh 0hhhhh
hhh 0hhhh
hhhh 0hhh
hhhhh 0hh
hhhhhh 0h
hhhhhhh 0

1234567

1325476

2316745

3217654

4567123

5476132

6745231

7654321

8H (18)

where: hi ∈ R, i =1, …, 7.
Similarly for N =16 HR family consists of smax= 8 matrices and all 16-dim. matrices can
be found according to the following structure:

8

8

8 8
16 8

8 8
T
8

8

h

h
h

h

h

= = +
− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

H

0 H 0 0 1
H

0 0 H -1 0

H

0

 (19)

where: h8 ∈ R.
For N = 32, ρ(N) = 10 and smax=9. All 32- dim. HR matrices can be found as:

 16
32 9

16

h= +
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

H 0 0 1
H

0 H -1 0
 (20)

Note that the number of free parameters hi in H8, H16 and H32 is equal smax. For
dimension N = 2k, k = 6, 7, … all 2k- dim. HR matrices can be similarly found, i.e.

k-1

k

k-1
K

2
2

2

h= +
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

H 0 0 1
H

0 H -1 0
 (21)

where: hK ∈ R.
But, then the number of free parameters is smaller than smax = ρ(N) – 1 (K < smax). HR
matrices of dimension N = 2k are particularly interesting due to their structures-
the connections of 8-dim. blocks can be here recognized.

4. Taking into account the definition of HNN given by Eq.(2), weight matrices W can be
implemented by using HR matrices (e.g.

2
kH). Moreover, adding diagonal matrix h01,

where dim 1 = 2k, to skew-symmetric matrix
2

kH , we obtain an implementation of the

orthogonal transformation from Eq.(10), as follows:

Hamiltonian Neural Networks Based Networks for Learning

81

02 2

0

k

1
(h)

1 h
= +

+
y H 1 d (22)

where: h0 > 0.
It is worth noting that for 8-dim. weight matrix H8, Eq.(22) describes either the
following orthogonal transformation:

8 02

0

1
(h)

1 h
= +

+
y H 1 d (23)

or an equivalently 8-dim. orthogonal filter, as shown in Fig.3.

y d

- h0 1

u HNN
H8

Fig. 3. Structure of 8-dim. orthogonal filter

This type of orthogonal filter will be further called the octonionic module. Because in
Eq.(23) we have in disposition eight free design parameters; h0, h1 , … , h7, so this
equation allows us to formulate and to solve the following inverse problem: for given
input vector d0 and given output y0 find parameters h0, h1 , … , h7 such that d0 is
transformed into y0 (d0 → y0). In other words, we set up a best adapted basis for given
d0 and y0. An adequate solution is given by:

0 1 2 3 4 5 6 7 8

1 2 1 4 3 6 5 8 7

2 3 4 1 2 7 8 5 6

3 4 3 2 1 8 7 6 5

4 5 6 7 8 1 2 3 4

5 6 5 8 7 2 1 4 3

6 7 8 5 6 3 4 1 2

7 8 7 6 5

8
2
i

i 1

h y y y y y y y y
h y y y y y y y y
h y y y y y y y y
h y y y y y y y y1
h y y y y y y y y
h y y y y y y y y
h y y y y y y y y
h y y y y y

y
=

⎡ ⎤
⎢ ⎥ − − − −⎢ ⎥
⎢ ⎥ − − − −
⎢ ⎥ − − − −⎢ ⎥ =⎢ ⎥ − − − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥ − − − −
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

∑

1

2

3

4

5

6

7

4 3 2 1 8

d
d
d
d

d
d
d

y y y d

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(24)

Thus, Eq.(24) can be regarded as a design formula for an octonionic module. It is
interesting to note that a classical perceptron performing a scalar product of input data
d and memory vector m can be implemented by the octanionic module with best
adaptive basis (m → y1= [1, … ,1]T), as presented in Fig. 4.
The implementation in Fig. 4 relies on a linear summing of the output flat spectrum of
the orthogonal filter.

 Machine Learning

80

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=

 0hhhhhhh
h 0hhhhhh
hh 0hhhhh
hhh 0hhhh
hhhh 0hhh
hhhhh 0hh
hhhhhh 0h
hhhhhhh 0

1234567

1325476

2316745

3217654

4567123

5476132

6745231

7654321

8H (18)

where: hi ∈ R, i =1, …, 7.
Similarly for N =16 HR family consists of smax= 8 matrices and all 16-dim. matrices can
be found according to the following structure:

8

8

8 8
16 8

8 8
T
8

8

h

h
h

h

h

= = +
− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

H

0 H 0 0 1
H

0 0 H -1 0

H

0

 (19)

where: h8 ∈ R.
For N = 32, ρ(N) = 10 and smax=9. All 32- dim. HR matrices can be found as:

 16
32 9

16

h= +
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

H 0 0 1
H

0 H -1 0
 (20)

Note that the number of free parameters hi in H8, H16 and H32 is equal smax. For
dimension N = 2k, k = 6, 7, … all 2k- dim. HR matrices can be similarly found, i.e.

k-1

k

k-1
K

2
2

2

h= +
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

H 0 0 1
H

0 H -1 0
 (21)

where: hK ∈ R.
But, then the number of free parameters is smaller than smax = ρ(N) – 1 (K < smax). HR
matrices of dimension N = 2k are particularly interesting due to their structures-
the connections of 8-dim. blocks can be here recognized.

4. Taking into account the definition of HNN given by Eq.(2), weight matrices W can be
implemented by using HR matrices (e.g.

2
kH). Moreover, adding diagonal matrix h01,

where dim 1 = 2k, to skew-symmetric matrix
2

kH , we obtain an implementation of the

orthogonal transformation from Eq.(10), as follows:

Hamiltonian Neural Networks Based Networks for Learning

81

02 2

0

k

1
(h)

1 h
= +

+
y H 1 d (22)

where: h0 > 0.
It is worth noting that for 8-dim. weight matrix H8, Eq.(22) describes either the
following orthogonal transformation:

8 02

0

1
(h)

1 h
= +

+
y H 1 d (23)

or an equivalently 8-dim. orthogonal filter, as shown in Fig.3.

y d

- h0 1

u HNN
H8

Fig. 3. Structure of 8-dim. orthogonal filter

This type of orthogonal filter will be further called the octonionic module. Because in
Eq.(23) we have in disposition eight free design parameters; h0, h1 , … , h7, so this
equation allows us to formulate and to solve the following inverse problem: for given
input vector d0 and given output y0 find parameters h0, h1 , … , h7 such that d0 is
transformed into y0 (d0 → y0). In other words, we set up a best adapted basis for given
d0 and y0. An adequate solution is given by:

0 1 2 3 4 5 6 7 8

1 2 1 4 3 6 5 8 7

2 3 4 1 2 7 8 5 6

3 4 3 2 1 8 7 6 5

4 5 6 7 8 1 2 3 4

5 6 5 8 7 2 1 4 3

6 7 8 5 6 3 4 1 2

7 8 7 6 5

8
2
i

i 1

h y y y y y y y y
h y y y y y y y y
h y y y y y y y y
h y y y y y y y y1
h y y y y y y y y
h y y y y y y y y
h y y y y y y y y
h y y y y y

y
=

⎡ ⎤
⎢ ⎥ − − − −⎢ ⎥
⎢ ⎥ − − − −
⎢ ⎥ − − − −⎢ ⎥ =⎢ ⎥ − − − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥ − − − −
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

∑

1

2

3

4

5

6

7

4 3 2 1 8

d
d
d
d

d
d
d

y y y d

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(24)

Thus, Eq.(24) can be regarded as a design formula for an octonionic module. It is
interesting to note that a classical perceptron performing a scalar product of input data
d and memory vector m can be implemented by the octanionic module with best
adaptive basis (m → y1= [1, … ,1]T), as presented in Fig. 4.
The implementation in Fig. 4 relies on a linear summing of the output flat spectrum of
the orthogonal filter.

 Machine Learning

82

.

.

.

Orthogonal
filter

(m→y1)

+

y = Θ(mT·x)

≡

x +

y = Θ(mT·x)

m1
.
.
.

m8

1
.
.
.

1

y1 = [1, … ,1]T

x

Fig. 4. Implementation of perceptron by octonionic module.

4. RLSC basics
The problem of learning from examples is about predicting the unknown class of
observations generated by the underlying physical system. In the last decade the learning
problems have been formalized by probabilistic setting, giving rise to statistical learning
theory. As products of learning theory, some new and effective techniques, like boosting
and support vector machines have been developed. On the other hand, approximation
theory, supported by regularization theory, provides a new perspective on learning theory.
Regularization theory has been introduced as a natural framework for solving ill-posed
problems of approximation (Evgeniou et al., 2000). The purpose of this section is to provide
some basic knowledge of Regularization Networks (RN) and, particularly, of RLSC, useful
for further consideration. We limit ourselves to briefly describing the main ideas in a simple
way.
As mentioned above, learning issues can be formulated as a problem of approximating a

multivariate function from sparse data. Starting with training pairs { }m

i=1
,
i i

x y , where input

vectors
i

nX R∈ ⊂x and
i

Y R∈ ⊂y , one can synthesize a function which represents the
relation between the input x and y, in the best way. In the language of statistics this means
that the probability of error f(x) ≠ y should be minimal. According to (Evgeniou et al., 2000)
the most general framework, unifying several learning techniques can be formulated by
considering functionals of the form:

2

K

m

i=1

1
H(f) V(y , f ()) λ f

m
i i

= +∑ x (25)

where: f : X → Y
 V(· , ·)- loss function
 λ - regularization parameter

2
Kf - norm in a Reproducing Kernel Hilbert Space (RKHS)

 K - kernel (positive definite function)
The synthesized function f(x) corresponds to the minimum of functional H for different loss
functions V. Choosing square loss V (L2 loss function):

 2

i i i iV(y , f ()) (y f ())= −x x (26)

the approximation scheme arises from the minimization of quadratic functional:

Hamiltonian Neural Networks Based Networks for Learning

83

i

2

Kf i=1

1
min H(f) V(y , f ()) λ f

m
iH

m

∈
= +∑ x (27)

where: λ > 0;
 H - Reproducing Kernel Hilbert Space (RKHS) defined by symmetric, positive
 definite function K(x, y)

2

Kf - norm in this RKHS
Thus, Eq.(27) presents the classical Tikhonow minimization problem formulated and solved
in his regularization theory. It can be shown that the function that solves Eq.(27), i.e. that
minimizes the regularized quadratic functional, has the form:

i

i=1
f() c K(,)

i

m
= ∑x x x (28)

where: c = [c1, … , cm]T

and kernels K(x, xi) are symmetric, i.e. K(x, xi) = K(xi, x), positive definite functions
continuous on X×X. The coefficients ci are such as to minimize the error on the training set,
i.e. they satisfy the following linear system of the equations:

 ()λ+ =K 1 c y (29)

where: K is square positive-definite matrix with elements Kij = K(xi, xj,) and y is the vector
with coordinates yi. The equation (29) is well-posed, hence a numerical stable solution exists:

 1()λ −= +c K 1 y (30)

and, moreover, the regularization parameter λ > 0 determines the approximation errors. It
is worth noting that:
1. an approximation is stable if small perturbations in the input data xi do not

substantially change the performance of the approximator. Hence, the regularization
parameter λ can be regarded as the stability control factor.

2. a construction of effective kernels is a challenging task. One of the most distinctive
kernels is the Gaussian:

i

2 2
i /2

K(,) e
σ− −

=
x x

x x (31)
leading to RBF networks.

4. Orthogonal filter-based approximation
The purpose of our considerations is to show how a function, given at limited number of
training data xi, can be implemented in the form of composition of HNN based orthogonal
filters.
Define f: X→Y by:

 i i

m

i=1
f () c K(,)= ∑x x x (32)

 Machine Learning

82

.

.

.

Orthogonal
filter

(m→y1)

+

y = Θ(mT·x)

≡

x +

y = Θ(mT·x)

m1
.
.
.

m8

1
.
.
.

1

y1 = [1, … ,1]T

x

Fig. 4. Implementation of perceptron by octonionic module.

4. RLSC basics
The problem of learning from examples is about predicting the unknown class of
observations generated by the underlying physical system. In the last decade the learning
problems have been formalized by probabilistic setting, giving rise to statistical learning
theory. As products of learning theory, some new and effective techniques, like boosting
and support vector machines have been developed. On the other hand, approximation
theory, supported by regularization theory, provides a new perspective on learning theory.
Regularization theory has been introduced as a natural framework for solving ill-posed
problems of approximation (Evgeniou et al., 2000). The purpose of this section is to provide
some basic knowledge of Regularization Networks (RN) and, particularly, of RLSC, useful
for further consideration. We limit ourselves to briefly describing the main ideas in a simple
way.
As mentioned above, learning issues can be formulated as a problem of approximating a

multivariate function from sparse data. Starting with training pairs { }m

i=1
,
i i

x y , where input

vectors
i

nX R∈ ⊂x and
i

Y R∈ ⊂y , one can synthesize a function which represents the
relation between the input x and y, in the best way. In the language of statistics this means
that the probability of error f(x) ≠ y should be minimal. According to (Evgeniou et al., 2000)
the most general framework, unifying several learning techniques can be formulated by
considering functionals of the form:

2

K

m

i=1

1
H(f) V(y , f ()) λ f

m
i i

= +∑ x (25)

where: f : X → Y
 V(· , ·)- loss function
 λ - regularization parameter

2
Kf - norm in a Reproducing Kernel Hilbert Space (RKHS)

 K - kernel (positive definite function)
The synthesized function f(x) corresponds to the minimum of functional H for different loss
functions V. Choosing square loss V (L2 loss function):

 2

i i i iV(y , f ()) (y f ())= −x x (26)

the approximation scheme arises from the minimization of quadratic functional:

Hamiltonian Neural Networks Based Networks for Learning

83

i

2

Kf i=1

1
min H(f) V(y , f ()) λ f

m
iH

m

∈
= +∑ x (27)

where: λ > 0;
 H - Reproducing Kernel Hilbert Space (RKHS) defined by symmetric, positive
 definite function K(x, y)

2

Kf - norm in this RKHS
Thus, Eq.(27) presents the classical Tikhonow minimization problem formulated and solved
in his regularization theory. It can be shown that the function that solves Eq.(27), i.e. that
minimizes the regularized quadratic functional, has the form:

i

i=1
f() c K(,)

i

m
= ∑x x x (28)

where: c = [c1, … , cm]T

and kernels K(x, xi) are symmetric, i.e. K(x, xi) = K(xi, x), positive definite functions
continuous on X×X. The coefficients ci are such as to minimize the error on the training set,
i.e. they satisfy the following linear system of the equations:

 ()λ+ =K 1 c y (29)

where: K is square positive-definite matrix with elements Kij = K(xi, xj,) and y is the vector
with coordinates yi. The equation (29) is well-posed, hence a numerical stable solution exists:

 1()λ −= +c K 1 y (30)

and, moreover, the regularization parameter λ > 0 determines the approximation errors. It
is worth noting that:
1. an approximation is stable if small perturbations in the input data xi do not

substantially change the performance of the approximator. Hence, the regularization
parameter λ can be regarded as the stability control factor.

2. a construction of effective kernels is a challenging task. One of the most distinctive
kernels is the Gaussian:

i

2 2
i /2

K(,) e
σ− −

=
x x

x x (31)
leading to RBF networks.

4. Orthogonal filter-based approximation
The purpose of our considerations is to show how a function, given at limited number of
training data xi, can be implemented in the form of composition of HNN based orthogonal
filters.
Define f: X→Y by:

 i i

m

i=1
f () c K(,)= ∑x x x (32)

 Machine Learning

84

where kernels K(xi, x) are defined by the following function (induced by the activation
function of neuron, Eq.(4)):

 T

i i n
K(,) ()= Θx x x H x (33)

where: []T

i 1 n

nx ,…,x , R
i

= ∈x x is i-th training vector
 Hn is skew-symmetric matrix
 Θ(·) is an odd function
Hence:

 T

i n i
0=x H x (34)

and

 T T

i n j j n i
= −x H x x H x (35)

Thus, the matrix

 { } { }
i jijK K(,)= =K x x (36)

is skew-symmetric

Notice that in the case of kernels given by Eq.(33), regulizer
2

Kf in Eq.(26) is seminorm i.e.:

i i j j i j i j

T

i j i j

i=1

m m m m2

K
i=1 j=1 i=1 j 1

m m

j=1

c K(,), c K(,) c c (K(,), K(,))

c c (K(,) 0

f
=

= =

= = =

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ ∑ ∑∑

∑∑

x x x x

x x c Kc

i i i i

 (37)

Despite the property given by Eq.(37), we use the key approximation algorithm as
formulated by Eq. (29) and (30), i.e. the regularized kernel matrix takes the form:

R

()γ= +K 1 K (38)
where: γ > 0
 K –skew-symmetric kernel matrix
Thus, the key design equation is well-posed:

 -1 1

R
()γ −= = +c K y 1 K y (39)

It is easy to see that the type of regularization proposed by Eq.(38) means that one changes
the type of Θ(·) function, in kernel definition, as follows:

0

() () () ()
r

γ γΘ → Θ + ⋅ = Θi i i i (40)
where: γ > 0

 γ0 (·) – distribution, e.g.
0

2 2

0

-p /δ(p) lim e , p R
δ

γ
→

= ∈

Hamiltonian Neural Networks Based Networks for Learning

85

In other words, the activation function Θ(·) should be endowed with “a superconducting
impulse γ” as shown in Fig.5.

a) b)

Θ(p)

0 p 0 p

Θr(p)
 γ

 regularization

Fig. 5. Regularization by adding γ impuls.

The mechanism of stabilization by means of Θr(·) can be easy explained when one
considers the solution of Eq.(39) in a dynamical manner. Such an orthogonal filter-based
structure, solving Eq.(39), is shown in Fig.6.

Lossless
neural

network
W = -K

+

-γ1

y Θ(ζ) = c

Fig. 6. Structure of orthogonal filter for solution of Eq.(39).

The state-space description of the filter from Fig.(6). is given by:

 () ()γ
•

= − + +ς 1 K Θ ς y (41)

and the output in steady state as:

 1() ()γ −= = +c Θ ς 1 K y (42)

The stability of approximation in the sense mentioned above can be achieved by damping
influence of parameter γ. One of the possible architectures implementing approximation
equation (32) is schematically shown in Fig.7 (Sienko & Zamojski, 2006).

c

Perceptron-
Based Memory

Hn

+

+

+

.

.
.
.

.

.

u

 c1

 cm

p1

pm

x

x1

.

.

.

xn

x1

xm

Θ1(⋅)

Θm(⋅)

u1

.

.

.

un

y=f(x)

Fig. 7. Basic structure of function approximator.

 Machine Learning

84

where kernels K(xi, x) are defined by the following function (induced by the activation
function of neuron, Eq.(4)):

 T

i i n
K(,) ()= Θx x x H x (33)

where: []T

i 1 n

nx ,…,x , R
i

= ∈x x is i-th training vector
 Hn is skew-symmetric matrix
 Θ(·) is an odd function
Hence:

 T

i n i
0=x H x (34)

and

 T T

i n j j n i
= −x H x x H x (35)

Thus, the matrix

 { } { }
i jijK K(,)= =K x x (36)

is skew-symmetric

Notice that in the case of kernels given by Eq.(33), regulizer
2

Kf in Eq.(26) is seminorm i.e.:

i i j j i j i j

T

i j i j

i=1

m m m m2

K
i=1 j=1 i=1 j 1

m m

j=1

c K(,), c K(,) c c (K(,), K(,))

c c (K(,) 0

f
=

= =

= = =

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ ∑ ∑∑

∑∑

x x x x

x x c Kc

i i i i

 (37)

Despite the property given by Eq.(37), we use the key approximation algorithm as
formulated by Eq. (29) and (30), i.e. the regularized kernel matrix takes the form:

R

()γ= +K 1 K (38)
where: γ > 0
 K –skew-symmetric kernel matrix
Thus, the key design equation is well-posed:

 -1 1

R
()γ −= = +c K y 1 K y (39)

It is easy to see that the type of regularization proposed by Eq.(38) means that one changes
the type of Θ(·) function, in kernel definition, as follows:

0

() () () ()
r

γ γΘ → Θ + ⋅ = Θi i i i (40)
where: γ > 0

 γ0 (·) – distribution, e.g.
0

2 2

0

-p /δ(p) lim e , p R
δ

γ
→

= ∈

Hamiltonian Neural Networks Based Networks for Learning

85

In other words, the activation function Θ(·) should be endowed with “a superconducting
impulse γ” as shown in Fig.5.

a) b)

Θ(p)

0 p 0 p

Θr(p)
 γ

 regularization

Fig. 5. Regularization by adding γ impuls.

The mechanism of stabilization by means of Θr(·) can be easy explained when one
considers the solution of Eq.(39) in a dynamical manner. Such an orthogonal filter-based
structure, solving Eq.(39), is shown in Fig.6.

Lossless
neural

network
W = -K

+

-γ1

y Θ(ζ) = c

Fig. 6. Structure of orthogonal filter for solution of Eq.(39).

The state-space description of the filter from Fig.(6). is given by:

 () ()γ
•

= − + +ς 1 K Θ ς y (41)

and the output in steady state as:

 1() ()γ −= = +c Θ ς 1 K y (42)

The stability of approximation in the sense mentioned above can be achieved by damping
influence of parameter γ. One of the possible architectures implementing approximation
equation (32) is schematically shown in Fig.7 (Sienko & Zamojski, 2006).

c

Perceptron-
Based Memory

Hn

+

+

+

.

.
.
.

.

.

u

 c1

 cm

p1

pm

x

x1

.

.

.

xn

x1

xm

Θ1(⋅)

Θm(⋅)

u1

.

.

.

un

y=f(x)

Fig. 7. Basic structure of function approximator.

 Machine Learning

86

This structure consists of three basic blocks:
1. Block Hn , where matrix Hn is randomly skew-symmetric or Hn belongs to Hurwitz-

Radon family, e.g. n 2k=H H (Eq.(21)).

2. Perceptron-Based Memory consists of m perceptrons, each designed at points xi of one
of the m training points, for any m < ∞. Note that activation functions Θi(·), i =1, …, m
are odd functions (e.g. sigmoidal) allowing for error approximation at training points xi.
Modeling a nonsmooth function only, they have to be extended by γ impulses.

3. Block of parameters ci. Note that an implementation of a mapping y = F(x) needs l such
blocks, where l = dim y.
The approximation scheme, illustrated in Fig.7., can be described by:

 m,n n= ⋅ ⋅p S H x (43)

and

 Tf () ()= ⋅x Θ p c (44)

where: Hn- (nxn) skew-symmetric matrix
 Sm,n – (m×n) memory matrix, Sm,n = [x1, x2, … ,xm]T
 Θ(p) = [Θ(p1), Θ(p2), … ,Θ(pm)]T

 c = [c1, c2, … , cm]T
Another orthogonal filter-based structure of function approximator, is shown in Fig.8
(Sienko & Citko 2007).

Orthogonal
Filter

-W-1

Perceptron-

Based
Memory

c

v

Orthogonal
Filter
W-1

Pattern
recognition

ui, i =1, …, m

xi

+

y = f(x)
x

 Spectrum

memorizing

Spectrum analysis of
training vectors

Fig. 8. Orthogonal Filter-Based structure of an approximator.

The structure of the approximator shown in Fig.8. relies on using the skew-symmetric
kernels, as given by:

 T

i i
K(,) ()= Θu v u v (45)

where: ui = (W-1) xi

Hamiltonian Neural Networks Based Networks for Learning

87

 v = - (W+1) x
 Θ(•) is an odd function
Assuming: W2 = -1, WT W = 1 i.e. W- skew-symmetric, orthogonal e.g. k2

=W H Hurwitz-

Radon matrix, Eq.(21).
Then: ui, v – Haar spectrum of input xi and x, respectively.
thus, elements of kernel matrix fulfill:

T T

i j i j i j
K(,) () (2)= Θ = Θu v u v x Wx

and

 K(ui,vj) = - K(vj, ui) (46)

Hence, matrix

{ } { }i j i jK K(,)= =K u v is skew-symmetric.

Note that for the structure from Fig.8., the same key design equation (39) is relevant.
However, the structure from Fig.8. can be seen as HNN-based dynamically implemented
system, as well. Moreover, taking into account the implementation presented in Fig.4. one
can formulate the following statement:
Statement 1
Orthogonal filter-based structures of function approximator can be implemented by
compatible connections of octonionic modules.
Other important remarks concluding the above described approximation scheme can be
formulated as follows:
Statement 2
Due to the skew-symmetry of kernel matrix, the orthogonal filter based approximation
scheme can be regarded as a global method. It means that the neighborhood of the training
point xi is reconstructed by all the other training points. Exceptionally, this global method is
completed by a pointwise local one, if the activation function of used perceptrons has a form
Θr(·) (Fig.5.).
Statement 3
Orthogonal filter-based approximation scheme can be easy reformulated as a local
technique. Indeed, taking into considerations the kernel defined by Eq.(33), where activation
function is an even function e.g. Gaussian function:

2

2
p-
σ1

(p) e
2 σπ

Θ = (47)

where: p R∈
then the kernel matrix

 { } { } { }T
ij i j i n js K K(,) ()= = = ΘK x x x H x (48)

is a symmetric, positive matrix.
For Θ(p) given by Eq.(47) matrix { }i jK fulfils:

 Machine Learning

86

This structure consists of three basic blocks:
1. Block Hn , where matrix Hn is randomly skew-symmetric or Hn belongs to Hurwitz-

Radon family, e.g. n 2k=H H (Eq.(21)).

2. Perceptron-Based Memory consists of m perceptrons, each designed at points xi of one
of the m training points, for any m < ∞. Note that activation functions Θi(·), i =1, …, m
are odd functions (e.g. sigmoidal) allowing for error approximation at training points xi.
Modeling a nonsmooth function only, they have to be extended by γ impulses.

3. Block of parameters ci. Note that an implementation of a mapping y = F(x) needs l such
blocks, where l = dim y.
The approximation scheme, illustrated in Fig.7., can be described by:

 m,n n= ⋅ ⋅p S H x (43)

and

 Tf () ()= ⋅x Θ p c (44)

where: Hn- (nxn) skew-symmetric matrix
 Sm,n – (m×n) memory matrix, Sm,n = [x1, x2, … ,xm]T
 Θ(p) = [Θ(p1), Θ(p2), … ,Θ(pm)]T

 c = [c1, c2, … , cm]T
Another orthogonal filter-based structure of function approximator, is shown in Fig.8
(Sienko & Citko 2007).

Orthogonal
Filter

-W-1

Perceptron-

Based
Memory

c

v

Orthogonal
Filter
W-1

Pattern
recognition

ui, i =1, …, m

xi

+

y = f(x)
x

 Spectrum

memorizing

Spectrum analysis of
training vectors

Fig. 8. Orthogonal Filter-Based structure of an approximator.

The structure of the approximator shown in Fig.8. relies on using the skew-symmetric
kernels, as given by:

 T

i i
K(,) ()= Θu v u v (45)

where: ui = (W-1) xi

Hamiltonian Neural Networks Based Networks for Learning

87

 v = - (W+1) x
 Θ(•) is an odd function
Assuming: W2 = -1, WT W = 1 i.e. W- skew-symmetric, orthogonal e.g. k2

=W H Hurwitz-

Radon matrix, Eq.(21).
Then: ui, v – Haar spectrum of input xi and x, respectively.
thus, elements of kernel matrix fulfill:

T T

i j i j i j
K(,) () (2)= Θ = Θu v u v x Wx

and

 K(ui,vj) = - K(vj, ui) (46)

Hence, matrix

{ } { }i j i jK K(,)= =K u v is skew-symmetric.

Note that for the structure from Fig.8., the same key design equation (39) is relevant.
However, the structure from Fig.8. can be seen as HNN-based dynamically implemented
system, as well. Moreover, taking into account the implementation presented in Fig.4. one
can formulate the following statement:
Statement 1
Orthogonal filter-based structures of function approximator can be implemented by
compatible connections of octonionic modules.
Other important remarks concluding the above described approximation scheme can be
formulated as follows:
Statement 2
Due to the skew-symmetry of kernel matrix, the orthogonal filter based approximation
scheme can be regarded as a global method. It means that the neighborhood of the training
point xi is reconstructed by all the other training points. Exceptionally, this global method is
completed by a pointwise local one, if the activation function of used perceptrons has a form
Θr(·) (Fig.5.).
Statement 3
Orthogonal filter-based approximation scheme can be easy reformulated as a local
technique. Indeed, taking into considerations the kernel defined by Eq.(33), where activation
function is an even function e.g. Gaussian function:

2

2
p-
σ1

(p) e
2 σπ

Θ = (47)

where: p R∈
then the kernel matrix

 { } { } { }T
ij i j i n js K K(,) ()= = = ΘK x x x H x (48)

is a symmetric, positive matrix.
For Θ(p) given by Eq.(47) matrix { }i jK fulfils:

 Machine Learning

88

Kii > 0 for all i,
Kii > Kij for i ≠ j
and there is such a σ > 0 that det Ks > 0.
Thus, matrix Ks is positive definite.
Hence, it is clear that the key design equation is well-posed:

 -1
s=c K y (49)

and the local properties of this approximation scheme can be controlled by parameter σ. It
should be however noted that positive definiteness is not necessary for det Ks > 0 and for
existing an inverse Ks-1. To summarize this section, let us note that by choosing a different
type of activation functions, one generates a family of functions or mappings fulfilling:

qi iF ()=y x , i = 1, … , m; q = 1, 2, …

To minimize the approximation errors, one should select a function or mapping which, in
terms of learning, optimally transforms a neighborhood S(xi) of xi onto yi.

5. Modeling classifiers and associative memories
As mentioned in the previous section, an approximation of a mapping can be obtained as an
extended structure of a multivariate function approximation. Hence, for the sake of
generalization, we below use a notation of mapping approximation.

Define mapping F: X → Y
where X, Y are input and output training vector spaces, respectively. The values of

mapping are known at training points{ }
i j

m

i=1
,x y where, dim xi = n and dim yi= l:

Thus:

i i

F()=y x i = 1, … , m (50)

where: X, Y
i i
∈ ∈x y

Classification issues can be seen as a special problem in mapping approximations. If output
vectors y of mapping F (·) take values from an unordered finite set, then F (·) performs the
function of a classifier. In a two-class classification, one class is labeled by y = 1 and the
other class by y = -1. The general functionality of classifiers can be then determined by the
following equation:

 i iF() =x y , i = 1, …, m (51)

where:
i

x denotes a neighborhood of “center” xi
 yi – class label
The determination of neighborhoods ix depends on the application of a classifier, but
generally, to minimize the erroneous classifications, ix have to be densely covered by
spheres belonging to ix , i = 1, … , m. Thus, the problem of classifier design can be
formulated as follows:

Hamiltonian Neural Networks Based Networks for Learning

89

1. generate a family of mappings Fq(·), q =1, 2, … fulfilling:

i i

qF

X Y, F()→ =x y� (52)
where X, Y are input and output training vector spaces, respectively.
Members of this family are created by choosing different type of kernels (antisymmetric
or symmetric) and different values of regularization parameters γ or σ

2. select the mapping that transforms input points onto output vectors in an optimal way
(minimizing approximation errors):

optF

(X) (Y)∈ → ∈x y

The problem of optimal mapping selection has been recently formulated in the
framework of statistical operators on family (52) (e.g. bagging and boosting techniques).
We propose here to consider an optimal solution as a superposition of global and local
schemes. In the simplest case, we have the following equation:

opt G L

F () (1)F () αF ()α= − +i i i (53)
where: weight parameter α; 0 ≤ α ≤ 1.
and

G
F ()i - a global model of mapping obtained by using antisymmetric kernels Eq.(33) and
Eq.(45)

L
F ()i - a local model of mapping obtained by using symmetric kernels, Eq.(48).
The relation (53) is motivated by the general properties of dynamical systems: a vector
field F(·) underlying a physical law, object or process generally consists of two
components-global and local (recombination and selection in biological systems,
respectively).

To illustrate the considerations above, let us consider the following example:
Example1
Let us design a classification of 8-dim. vector input space X, where x = [x1, x2, … ,x8]T,
xk ∈ [-1 , 1], k = 1, … , 8. into 25 classes centered in randomly chosen points: xi, i =1, … , 32.
This classification has to be error free, with probability 1, for solid spheres x∈ Sρ(xi), where
ρ(radius) = 0.2. It has been experimentally found (i.e. by simulation) that covering randomly
every sphere Sρ(xi) with 10 balls, such a classifier design can be reformulated as the
following mapping approximation (n = 8, m = 320-number of inputs points):

ij iF() =x y , i = 1, … , 32; j = 1, … , 10

where: yi = [±1, ±1, ±1 , ±1, ±1]T (binary label of classes)
The set of input points is given by:

{ }ij ρ iS ()∈x x , i = 1, … , 32, j = 1, … , 10

where: ρ = 0.2
To implement the above defined mapping F(xij), let us choose the antisymmetric kernels
Eq.(33), where:

 Machine Learning

88

Kii > 0 for all i,
Kii > Kij for i ≠ j
and there is such a σ > 0 that det Ks > 0.
Thus, matrix Ks is positive definite.
Hence, it is clear that the key design equation is well-posed:

 -1
s=c K y (49)

and the local properties of this approximation scheme can be controlled by parameter σ. It
should be however noted that positive definiteness is not necessary for det Ks > 0 and for
existing an inverse Ks-1. To summarize this section, let us note that by choosing a different
type of activation functions, one generates a family of functions or mappings fulfilling:

qi iF ()=y x , i = 1, … , m; q = 1, 2, …

To minimize the approximation errors, one should select a function or mapping which, in
terms of learning, optimally transforms a neighborhood S(xi) of xi onto yi.

5. Modeling classifiers and associative memories
As mentioned in the previous section, an approximation of a mapping can be obtained as an
extended structure of a multivariate function approximation. Hence, for the sake of
generalization, we below use a notation of mapping approximation.

Define mapping F: X → Y
where X, Y are input and output training vector spaces, respectively. The values of

mapping are known at training points{ }
i j

m

i=1
,x y where, dim xi = n and dim yi= l:

Thus:

i i

F()=y x i = 1, … , m (50)

where: X, Y
i i
∈ ∈x y

Classification issues can be seen as a special problem in mapping approximations. If output
vectors y of mapping F (·) take values from an unordered finite set, then F (·) performs the
function of a classifier. In a two-class classification, one class is labeled by y = 1 and the
other class by y = -1. The general functionality of classifiers can be then determined by the
following equation:

 i iF() =x y , i = 1, …, m (51)

where:
i

x denotes a neighborhood of “center” xi
 yi – class label
The determination of neighborhoods ix depends on the application of a classifier, but
generally, to minimize the erroneous classifications, ix have to be densely covered by
spheres belonging to ix , i = 1, … , m. Thus, the problem of classifier design can be
formulated as follows:

Hamiltonian Neural Networks Based Networks for Learning

89

1. generate a family of mappings Fq(·), q =1, 2, … fulfilling:

i i

qF

X Y, F()→ =x y� (52)
where X, Y are input and output training vector spaces, respectively.
Members of this family are created by choosing different type of kernels (antisymmetric
or symmetric) and different values of regularization parameters γ or σ

2. select the mapping that transforms input points onto output vectors in an optimal way
(minimizing approximation errors):

optF

(X) (Y)∈ → ∈x y

The problem of optimal mapping selection has been recently formulated in the
framework of statistical operators on family (52) (e.g. bagging and boosting techniques).
We propose here to consider an optimal solution as a superposition of global and local
schemes. In the simplest case, we have the following equation:

opt G L

F () (1)F () αF ()α= − +i i i (53)
where: weight parameter α; 0 ≤ α ≤ 1.
and

G
F ()i - a global model of mapping obtained by using antisymmetric kernels Eq.(33) and
Eq.(45)

L
F ()i - a local model of mapping obtained by using symmetric kernels, Eq.(48).
The relation (53) is motivated by the general properties of dynamical systems: a vector
field F(·) underlying a physical law, object or process generally consists of two
components-global and local (recombination and selection in biological systems,
respectively).

To illustrate the considerations above, let us consider the following example:
Example1
Let us design a classification of 8-dim. vector input space X, where x = [x1, x2, … ,x8]T,
xk ∈ [-1 , 1], k = 1, … , 8. into 25 classes centered in randomly chosen points: xi, i =1, … , 32.
This classification has to be error free, with probability 1, for solid spheres x∈ Sρ(xi), where
ρ(radius) = 0.2. It has been experimentally found (i.e. by simulation) that covering randomly
every sphere Sρ(xi) with 10 balls, such a classifier design can be reformulated as the
following mapping approximation (n = 8, m = 320-number of inputs points):

ij iF() =x y , i = 1, … , 32; j = 1, … , 10

where: yi = [±1, ±1, ±1 , ±1, ±1]T (binary label of classes)
The set of input points is given by:

{ }ij ρ iS ()∈x x , i = 1, … , 32, j = 1, … , 10

where: ρ = 0.2
To implement the above defined mapping F(xij), let us choose the antisymmetric kernels
Eq.(33), where:

 Machine Learning

90

()3p

2
Θ(p) 5 1 , p R

1 e−
= − ∈

+

and

8

0 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 11

1 1 1 1 0 1 1 17

1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0

− − − −

− − − −

− − − −
=

− − − −

− − − −

− − − −

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

H

Some simulation experiments showed that the mapping F(xij) fulfils formulated constraints
on classification for the case: min d(xi, xj) ≥ 0.7 (distance between sphere centers) and under
condition that regularization parameters γ ≥ 0.75 (Eq.(38)).
Equation (51) can be seen as a definition of associative memory as well, under the
assumption that dim xi = dim yi, where xi is a memorized pattern. For yi ≡ xi, one gets a
feedforward structure of an autoassociative memory, i.e.:

i i

F() =x x , i = 1, …, m (54)

Hence, the problem of a nonlinear mapping-based design of the associative memory can be
regarded as a covering problem of input space X by spheres Sρ(xi).
Moreover, Eq.(54) determines an identity map i.e. :

i i

F() =x x , i = 1, …, m (55)
and F(·) is an expansion.
Hence, the mapping F(·) possesses at least one fixed point, i.e. :

 F() =e e (56)
where: e- a fixed point of F(·)
Specifically, let us construct the family of identity maps for orthogonal vectors hi , i =1, …, 8,
constituting eight columns of matrix H8 in Eq.(18), i.e.:

 F ()
q i i

=h h , i = 1, … , m; q = 1, 2, … (57)
using antisymmetric kernels Eq.(33), hi ∈ R8.
It can be shown that in family (57) there are mappings Fq(·) with the number of fixed points
ne ≤ 256 (e.g. ne =144), giving rise to a feedback structure of associative memories. Indeed, let
us embed such a Fq(·) into a dynamical system, as shown in Fig. 9.
The state-space equation of structure from Fig.9. is given by:

q

β F ()
•

= − +ς ς ς (58)
where: ς - 8-dim. state vector, 0 < β ≤1.

Hamiltonian Neural Networks Based Networks for Learning

91

-β1

+

output

Fq(·)

input
(initial value)

external
connection

()•∫
ς

•

ς

Fig. 9. Dynamical structure of an attractor type associative memory.
Thus, one obtains a feedback type structure of an associative memory with e.g. over 144
asymptotic stable equilibria, but generally with different diameters of attraction basins.
Unfortunately the set {ek}of fixed points of a map F(·), can not be found analitically but
rather by a method of asymptotic sequences. This can be done relatively simply for 8-dim.
identity map presented by Eq.(57) and (58). Thus, due to the exceptional topological
properties of a 8-dim vector space, very large scale associative memories could be
implemented by a compatible connection of the 8-dim. blocks from Fig.9. An example of
such a connection is presented in Fig.10, where two 8-dim. blocks from Fig.9., weakly
coupled by parameters εi > 0, create a space with a set of equilibria given by:

{ } { } { }
k

(1) (2)
c j= ×e e e where: k =1, 2, …, 144, …; j = 1, 2, … , 144 ...

Finally, it is worth noting that the structure from Fig.10 can be scaled up to very large scale
memory (by combinatorial diversity), due to its stabilizing type of connections (parameters
εi). More detailed analysis of the above presented feedback structures is beyond the scope of
this chapter.
To summarize, this section points out the main features of orthogonal filter-based mapping
approximators:
1. Due to regularization and stability, orthogonal filter-based classifiers can be

implemented for any even n (dimension of input vector space) and any m < ∞ (number
of training vectors). Particularly for n = 2k , k ≥ 3 such classifiers can be realized by
using octonionic modules.

2. As mentioned above, the problem of a nonlinear mapping-based design of classifiers
and associative memories can be regarded as a covering problem of input space X by
spheres with centers xi . The radius of the spheres needed to cover X depends on the
topology of X and can be changed by a suitably chosen nonlinearity of function Θ(·).
Using, for example, a sigmoidal function for the implementation of Θ(·)., this radius
depends on the slope of Θ(·) at zero. Hence, note that antisymmetric kernels allow us
to classify very closely placed input patterns in terms of Θ(·)→ sgn(·).

6. Conclusions
The main issue considered in this chapter is the deterministic learning of mappings. The
learning method analysed here relies on multivariate function approximations using mainly
skew-symmetric kernels, thus giving rise to very large scale classifiers and associative
memories. By using HNN-based orthogonal filters, one obtains regularized and stable
structures of networks for learning. Hence, classifiers and memories can be implemented for

 Machine Learning

90

()3p

2
Θ(p) 5 1 , p R

1 e−
= − ∈

+

and

8

0 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 11

1 1 1 1 0 1 1 17

1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0

− − − −

− − − −

− − − −
=

− − − −

− − − −

− − − −

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

H

Some simulation experiments showed that the mapping F(xij) fulfils formulated constraints
on classification for the case: min d(xi, xj) ≥ 0.7 (distance between sphere centers) and under
condition that regularization parameters γ ≥ 0.75 (Eq.(38)).
Equation (51) can be seen as a definition of associative memory as well, under the
assumption that dim xi = dim yi, where xi is a memorized pattern. For yi ≡ xi, one gets a
feedforward structure of an autoassociative memory, i.e.:

i i

F() =x x , i = 1, …, m (54)

Hence, the problem of a nonlinear mapping-based design of the associative memory can be
regarded as a covering problem of input space X by spheres Sρ(xi).
Moreover, Eq.(54) determines an identity map i.e. :

i i

F() =x x , i = 1, …, m (55)
and F(·) is an expansion.
Hence, the mapping F(·) possesses at least one fixed point, i.e. :

 F() =e e (56)
where: e- a fixed point of F(·)
Specifically, let us construct the family of identity maps for orthogonal vectors hi , i =1, …, 8,
constituting eight columns of matrix H8 in Eq.(18), i.e.:

 F ()
q i i

=h h , i = 1, … , m; q = 1, 2, … (57)
using antisymmetric kernels Eq.(33), hi ∈ R8.
It can be shown that in family (57) there are mappings Fq(·) with the number of fixed points
ne ≤ 256 (e.g. ne =144), giving rise to a feedback structure of associative memories. Indeed, let
us embed such a Fq(·) into a dynamical system, as shown in Fig. 9.
The state-space equation of structure from Fig.9. is given by:

q

β F ()
•

= − +ς ς ς (58)
where: ς - 8-dim. state vector, 0 < β ≤1.

Hamiltonian Neural Networks Based Networks for Learning

91

-β1

+

output

Fq(·)

input
(initial value)

external
connection

()•∫
ς

•

ς

Fig. 9. Dynamical structure of an attractor type associative memory.
Thus, one obtains a feedback type structure of an associative memory with e.g. over 144
asymptotic stable equilibria, but generally with different diameters of attraction basins.
Unfortunately the set {ek}of fixed points of a map F(·), can not be found analitically but
rather by a method of asymptotic sequences. This can be done relatively simply for 8-dim.
identity map presented by Eq.(57) and (58). Thus, due to the exceptional topological
properties of a 8-dim vector space, very large scale associative memories could be
implemented by a compatible connection of the 8-dim. blocks from Fig.9. An example of
such a connection is presented in Fig.10, where two 8-dim. blocks from Fig.9., weakly
coupled by parameters εi > 0, create a space with a set of equilibria given by:

{ } { } { }
k

(1) (2)
c j= ×e e e where: k =1, 2, …, 144, …; j = 1, 2, … , 144 ...

Finally, it is worth noting that the structure from Fig.10 can be scaled up to very large scale
memory (by combinatorial diversity), due to its stabilizing type of connections (parameters
εi). More detailed analysis of the above presented feedback structures is beyond the scope of
this chapter.
To summarize, this section points out the main features of orthogonal filter-based mapping
approximators:
1. Due to regularization and stability, orthogonal filter-based classifiers can be

implemented for any even n (dimension of input vector space) and any m < ∞ (number
of training vectors). Particularly for n = 2k , k ≥ 3 such classifiers can be realized by
using octonionic modules.

2. As mentioned above, the problem of a nonlinear mapping-based design of classifiers
and associative memories can be regarded as a covering problem of input space X by
spheres with centers xi . The radius of the spheres needed to cover X depends on the
topology of X and can be changed by a suitably chosen nonlinearity of function Θ(·).
Using, for example, a sigmoidal function for the implementation of Θ(·)., this radius
depends on the slope of Θ(·) at zero. Hence, note that antisymmetric kernels allow us
to classify very closely placed input patterns in terms of Θ(·)→ sgn(·).

6. Conclusions
The main issue considered in this chapter is the deterministic learning of mappings. The
learning method analysed here relies on multivariate function approximations using mainly
skew-symmetric kernels, thus giving rise to very large scale classifiers and associative
memories. By using HNN-based orthogonal filters, one obtains regularized and stable
structures of networks for learning. Hence, classifiers and memories can be implemented for

 Machine Learning

92

Fig. 10. Very Large Scale Structure of associative memory.

any even n (dimension of input vectors) and any m < ∝ (number of training patterns).
Moreover, they can be regarded as numerically well-posed algorithms or physically
implementable devices able to perform their functions in real-time. We believe that
orthogonal filter-based data processing can be considered as motivated by structures
encountered in biological systems.

6. References
Boucheron, S.; Bousquet, O. & Lugosi, G. (2005). Theory of Classification: A survey of some

Resent Advances, ESAIM: Probability and Statistics, pp. 323-375.
Eckmann, B. (1999). Topology, Algebra, Analysis-Relations and Missing Links, Notices of the

AMS, vol. 46, No 5, pp. 520-527.
Evgeniou, T.; Pontil, M. & Poggio, T. (2000). Regularization Networks and Support Vector

Machines, In Advances in Large Margin Classifiers, Smola, A.; Bartlett, P.; Schoelkopf,
G. & Schuurmans, D., (Ed), pp. 171-203, Cambridge, MA, MIT Press.

Poggio, T. & Smale, S. (2003). The Mathematics of Learning. Dealing with Data, Notices of the
AMS, vol. 50, No 5, pp. 537-544.

Predd, J.; Kulkarni, S. & Poor, H. (2006). Distributed Learning in Wireless Sensor Networks,
IEEE Signal Processing Magazine, vol. 23, No 4, pp.56-69.

Sienko, W. & Citko, W. (2007). Orthogonal Filter-Based Classifiers and Associative
Memories, Proceedings of International Joint Conference on Neural Networks, Orlando,
USA, pp. 1739-1744.

Sienko, W. & Zamojski, D. (2006). Hamiltonian Neural Networks Based Classifiers and
Mappings, Proceedings of IEEE World Congress on Computational Intelligence,
Vancouver, Canada, pp. 1773-1777.

Vakhania, N. (1993). Orthogonal Random Vectors and the Hurwitz-Radon-Eckmann Theorem,
Proceedings of the Georgian Academy of Sciences, Mathematics, 1(1), pp. 109-125.

1

j

5

Similarity Discriminant Analysis
Luca Cazzanti

Applied Physics Lab
Box 355640

University of Washington, Seattle, WA 98105,
USA

1. Introduction
This chapter details similarity discriminant analysis (SDA), a new framework for similarity-
based classification. The two defining characteristics of the SDA classifica- tion framework
are similarity-based and generative. The classifiers in this framework are similarity-based,
because they classify based on the pairwise similarities of data samples, and they are
generative, because they build class-dependent probability models of the similarities
between samples. Similarity-based classifiers already exist; classifiers based on generative
models already exist. SDA is a new framework for classification comprising classifiers that
are both similarity-based and generative.
Within the general SDA framework, this chapter describes several families of classifiers: the
SDA classifier, the local SDA classifier, and the mixture SDA classifier. The SDA classifier is at
the foundation of SDA. It classifies based on the class-conditional generative models of the
similarity of the samples to representative class prototypes, or centroids. The SDA
framework is introduced, developed, and discussed with the aid of this centroid-based SDA
classifier. Then, the centroid-based SDA classifier is generalized beyond class centroids to
arbitrary class-descriptive statistics. Other possible statistics are described, illustrating the
power and generality of the SDA framework.
The local SDA classifier is a local version of the SDA classifier. It builds similarity-based
class-conditional generative models within a neighborhood of a test sample to be classified.
The local class models are endowed with low bias and retain the powerful quality of
interpretability associated with generative probability models. Local SDA is a consistent
classifier, in the sense that its error rate converges to the Bayes error rate, which is the best
possible error rate attainable by a classifier.
The mixture SDA classifier draws from the well-established metric learning mixture model
research. It generalizes the single-centroid SDA classifier to a mixture of single-centroid
SDA components. The mixture SDA classifier can be trained with an expectation-
maximization (EM) algorithm which parallels the standard EM approach for the well-
known Gaussian mixture models.
The problem of classifying samples based only on their pairwise similarities may be divided
into two sub-problems: measuring the similarity between samples and classifying the
samples based on their pairwise similarities. It is beyond the scope of this chapter to discuss
exhaustively and in detail various ways to measure similarity and various similarity-based

 Machine Learning

92

Fig. 10. Very Large Scale Structure of associative memory.

any even n (dimension of input vectors) and any m < ∝ (number of training patterns).
Moreover, they can be regarded as numerically well-posed algorithms or physically
implementable devices able to perform their functions in real-time. We believe that
orthogonal filter-based data processing can be considered as motivated by structures
encountered in biological systems.

6. References
Boucheron, S.; Bousquet, O. & Lugosi, G. (2005). Theory of Classification: A survey of some

Resent Advances, ESAIM: Probability and Statistics, pp. 323-375.
Eckmann, B. (1999). Topology, Algebra, Analysis-Relations and Missing Links, Notices of the

AMS, vol. 46, No 5, pp. 520-527.
Evgeniou, T.; Pontil, M. & Poggio, T. (2000). Regularization Networks and Support Vector

Machines, In Advances in Large Margin Classifiers, Smola, A.; Bartlett, P.; Schoelkopf,
G. & Schuurmans, D., (Ed), pp. 171-203, Cambridge, MA, MIT Press.

Poggio, T. & Smale, S. (2003). The Mathematics of Learning. Dealing with Data, Notices of the
AMS, vol. 50, No 5, pp. 537-544.

Predd, J.; Kulkarni, S. & Poor, H. (2006). Distributed Learning in Wireless Sensor Networks,
IEEE Signal Processing Magazine, vol. 23, No 4, pp.56-69.

Sienko, W. & Citko, W. (2007). Orthogonal Filter-Based Classifiers and Associative
Memories, Proceedings of International Joint Conference on Neural Networks, Orlando,
USA, pp. 1739-1744.

Sienko, W. & Zamojski, D. (2006). Hamiltonian Neural Networks Based Classifiers and
Mappings, Proceedings of IEEE World Congress on Computational Intelligence,
Vancouver, Canada, pp. 1773-1777.

Vakhania, N. (1993). Orthogonal Random Vectors and the Hurwitz-Radon-Eckmann Theorem,
Proceedings of the Georgian Academy of Sciences, Mathematics, 1(1), pp. 109-125.

1

j

5

Similarity Discriminant Analysis
Luca Cazzanti

Applied Physics Lab
Box 355640

University of Washington, Seattle, WA 98105,
USA

1. Introduction
This chapter details similarity discriminant analysis (SDA), a new framework for similarity-
based classification. The two defining characteristics of the SDA classifica- tion framework
are similarity-based and generative. The classifiers in this framework are similarity-based,
because they classify based on the pairwise similarities of data samples, and they are
generative, because they build class-dependent probability models of the similarities
between samples. Similarity-based classifiers already exist; classifiers based on generative
models already exist. SDA is a new framework for classification comprising classifiers that
are both similarity-based and generative.
Within the general SDA framework, this chapter describes several families of classifiers: the
SDA classifier, the local SDA classifier, and the mixture SDA classifier. The SDA classifier is at
the foundation of SDA. It classifies based on the class-conditional generative models of the
similarity of the samples to representative class prototypes, or centroids. The SDA
framework is introduced, developed, and discussed with the aid of this centroid-based SDA
classifier. Then, the centroid-based SDA classifier is generalized beyond class centroids to
arbitrary class-descriptive statistics. Other possible statistics are described, illustrating the
power and generality of the SDA framework.
The local SDA classifier is a local version of the SDA classifier. It builds similarity-based
class-conditional generative models within a neighborhood of a test sample to be classified.
The local class models are endowed with low bias and retain the powerful quality of
interpretability associated with generative probability models. Local SDA is a consistent
classifier, in the sense that its error rate converges to the Bayes error rate, which is the best
possible error rate attainable by a classifier.
The mixture SDA classifier draws from the well-established metric learning mixture model
research. It generalizes the single-centroid SDA classifier to a mixture of single-centroid
SDA components. The mixture SDA classifier can be trained with an expectation-
maximization (EM) algorithm which parallels the standard EM approach for the well-
known Gaussian mixture models.
The problem of classifying samples based only on their pairwise similarities may be divided
into two sub-problems: measuring the similarity between samples and classifying the
samples based on their pairwise similarities. It is beyond the scope of this chapter to discuss
exhaustively and in detail various ways to measure similarity and various similarity-based

 Machine Learning

94

classifiers. The reader is referred to the references for more details; here, only a brief
summary of relevant techniques is provided

1.1 Measuring similarity
Judging similarity between samples characterized by many disparate data types poses
challenges of data representation and quantitative comparison. For example, modern
databases store information from disparate data sources in different formats: multimedia
databases store audio, video and text data; proteomics databases store information on
proteins, genetic sequences, and related annotations; internet traffic databases store mouse
click histories, user profiles, and marketing rules; homeland security databases may store
data on individuals and organizations, annotations from intelligence reports, and maritime
shipping records. These database objects, or samples, are described by both numerical and
non-numerical data. For example, a security database might store cell phone records in
textual form and voice parameters for speaker recognition in numerical form. Representing
all these different data types with continuous-valued numbers in a geometric feature space
is not appropriate. Thus, current metric space classifiers which rely on metric similarity
functions may not be applicable.
Furthermore, in some applications, only the pairwise similarities may be observed, and the
underlying features may be inaccessible. For example, one of the datasets discussed in this
chapter consists of human-judged similarities between pairs of sonar echoes. For this
dataset, the putative perceptual features from which the human similarity ratings are
generated are unknown - indeed eliciting the features remains an ongoing research problem
(Philips et al., 2006) - but the similarity ratings are nonetheless successfully used for
classification. In many applications, the similarity relationship between samples may lack
the metric properties usually associated with distance (minimality, symmetry, triangle
inequality); thus, using a metric function to express the pairwise similarities is suboptimal.
Similarities are more general than distances and require more general functions than metrics
(Tversky, 1977). Several researchers have addressed the problem of measuring similarity by
rpoposing several simialrity measures. Psychologists, leacd by Tversky, have proposed
models of similarity that take into account context and the non-metric way in which humans
judge the similarity between complex objects (Tversky, 1977; Tversky & Gati, 1978; Gati &
Tversky, 1984; Sattath & Tversky, 1987). The value difference metric (VDM) was originally
designed with the goal of improving nearest-neighbor classification (Stanfill & Waltz, 1986)
of text documents, and subsequent improvements extended it to classification of objects
characterized by both textual and numerical features (Wilson & Martinez, 1997; Cost &
Salzberg, 1993). Lin proposed an information-theoretic similarity (Lin, 1998) for document
retrieval; (Cazzanti & Gupta, 2006) proposed the residual entropy similarity measure by
extending Tversky's psychological similarity models with information-theoretic notions, and
showed that it strongly takes into account the context in which the similarity is being
evaluated. More comprehensive reviews of similarity measures appear in (Santini & Jain,
1999) and (Everitt & Rabe-Hesketh, 1997).

1.2 Similarity-based classifiers
Similarity-based classifiers are defined as those classifiers that require only a pairwise
similarity - a description of the samples themselves is not needed. Similarity-based
classifiers classify test samples given a labeled set of training samples, the pairwise

Similarity Discriminant Analysis

95

similarity values of the training samples, and the similarity of the test sample to the training
samples. If the description of the samples in terms of feature vectors is available, an existing
or ad hoc similarity function that maps any two samples to a similarity value may be used
(Bicego et al., 2006; Pekalska et al., 2001; Jacobs et al., 2000; Hochreiter & Obermayer, 2006).
Among the existing similarity-based classifiers, the simplest method is the nearest neighbor
classifier, which determines the most similar training sample z to the test sample x, and
classifies x as z’s class:

(1)

where h is the set of training samples from class h. More generally, the k-nearest neighbor
classifier (k-NN) determines a neighborhood of k most similar training samples to the test
sample x, and classifies x as the most-frequently occurring class label among the neighbors.
Experiments have shown that nearest neighbors can perform well on practical similarity-
based classification tasks (Cost & Salzberg, 1993; Pekalska et al., 2001; Simard et al., 1993;
Belongie et al., 2002). For example, nearest neighbor classifiers using a tangent distortion
metric and a shape similarity metric have both been shown to achieve very low error on the
MNIST character recognition task.
Condensed near-neighbor strategies replace the set of training samples for each class with a
set of prototypes for that class. Usually the prototype set is an edited set of the original
training samples (also called edited nearest neighbors), but the prototypes do not need to be
from the original training set. Let ch be the number of the prototypes {µhl} for class h; then,
the condensed nearest neighbor rule is to classify a test sample x as the class of the
prototype to which it is most similar,

(2)

Many authors have considered strategies for condensing near-neighbors for similarity-based
classification to increase classification speed, decrease the required memory, remove
outliers, and possibly attain better performance (Weinshall et al., 1999; Jacobs et al., 2000;
Lam et al., 2002; Pekalska et al., 2006; Lozano et al., 2006). A well-known strategy for
condensing nearest neighbors in non-metric spaces is the k-medoids algorithm (Hastie et al.,
2001). Given a set of ch candidate prototypes selected from h, the remaining training
samples z ∈ h are assigned to their nearest (most similar) prototype, so that the set h of all
training samples from class h is partitioned in ch mutually-exclusive subsets { hl}, and each

hl is uniquely associated with candidate prototype µhl. Then, the lth prototype for the hth
class is updated according to the standard maximum similarity update rule, which selects
the new µhl as the training sample in hl which is most similar to all other samples in hl,

(3)

The training samples are then reassigned to the updated prototypes, and the update rule (3)
is repeated. The reassignment and update steps are repeated until a predetermined

 Machine Learning

94

classifiers. The reader is referred to the references for more details; here, only a brief
summary of relevant techniques is provided

1.1 Measuring similarity
Judging similarity between samples characterized by many disparate data types poses
challenges of data representation and quantitative comparison. For example, modern
databases store information from disparate data sources in different formats: multimedia
databases store audio, video and text data; proteomics databases store information on
proteins, genetic sequences, and related annotations; internet traffic databases store mouse
click histories, user profiles, and marketing rules; homeland security databases may store
data on individuals and organizations, annotations from intelligence reports, and maritime
shipping records. These database objects, or samples, are described by both numerical and
non-numerical data. For example, a security database might store cell phone records in
textual form and voice parameters for speaker recognition in numerical form. Representing
all these different data types with continuous-valued numbers in a geometric feature space
is not appropriate. Thus, current metric space classifiers which rely on metric similarity
functions may not be applicable.
Furthermore, in some applications, only the pairwise similarities may be observed, and the
underlying features may be inaccessible. For example, one of the datasets discussed in this
chapter consists of human-judged similarities between pairs of sonar echoes. For this
dataset, the putative perceptual features from which the human similarity ratings are
generated are unknown - indeed eliciting the features remains an ongoing research problem
(Philips et al., 2006) - but the similarity ratings are nonetheless successfully used for
classification. In many applications, the similarity relationship between samples may lack
the metric properties usually associated with distance (minimality, symmetry, triangle
inequality); thus, using a metric function to express the pairwise similarities is suboptimal.
Similarities are more general than distances and require more general functions than metrics
(Tversky, 1977). Several researchers have addressed the problem of measuring similarity by
rpoposing several simialrity measures. Psychologists, leacd by Tversky, have proposed
models of similarity that take into account context and the non-metric way in which humans
judge the similarity between complex objects (Tversky, 1977; Tversky & Gati, 1978; Gati &
Tversky, 1984; Sattath & Tversky, 1987). The value difference metric (VDM) was originally
designed with the goal of improving nearest-neighbor classification (Stanfill & Waltz, 1986)
of text documents, and subsequent improvements extended it to classification of objects
characterized by both textual and numerical features (Wilson & Martinez, 1997; Cost &
Salzberg, 1993). Lin proposed an information-theoretic similarity (Lin, 1998) for document
retrieval; (Cazzanti & Gupta, 2006) proposed the residual entropy similarity measure by
extending Tversky's psychological similarity models with information-theoretic notions, and
showed that it strongly takes into account the context in which the similarity is being
evaluated. More comprehensive reviews of similarity measures appear in (Santini & Jain,
1999) and (Everitt & Rabe-Hesketh, 1997).

1.2 Similarity-based classifiers
Similarity-based classifiers are defined as those classifiers that require only a pairwise
similarity - a description of the samples themselves is not needed. Similarity-based
classifiers classify test samples given a labeled set of training samples, the pairwise

Similarity Discriminant Analysis

95

similarity values of the training samples, and the similarity of the test sample to the training
samples. If the description of the samples in terms of feature vectors is available, an existing
or ad hoc similarity function that maps any two samples to a similarity value may be used
(Bicego et al., 2006; Pekalska et al., 2001; Jacobs et al., 2000; Hochreiter & Obermayer, 2006).
Among the existing similarity-based classifiers, the simplest method is the nearest neighbor
classifier, which determines the most similar training sample z to the test sample x, and
classifies x as z’s class:

(1)

where h is the set of training samples from class h. More generally, the k-nearest neighbor
classifier (k-NN) determines a neighborhood of k most similar training samples to the test
sample x, and classifies x as the most-frequently occurring class label among the neighbors.
Experiments have shown that nearest neighbors can perform well on practical similarity-
based classification tasks (Cost & Salzberg, 1993; Pekalska et al., 2001; Simard et al., 1993;
Belongie et al., 2002). For example, nearest neighbor classifiers using a tangent distortion
metric and a shape similarity metric have both been shown to achieve very low error on the
MNIST character recognition task.
Condensed near-neighbor strategies replace the set of training samples for each class with a
set of prototypes for that class. Usually the prototype set is an edited set of the original
training samples (also called edited nearest neighbors), but the prototypes do not need to be
from the original training set. Let ch be the number of the prototypes {µhl} for class h; then,
the condensed nearest neighbor rule is to classify a test sample x as the class of the
prototype to which it is most similar,

(2)

Many authors have considered strategies for condensing near-neighbors for similarity-based
classification to increase classification speed, decrease the required memory, remove
outliers, and possibly attain better performance (Weinshall et al., 1999; Jacobs et al., 2000;
Lam et al., 2002; Pekalska et al., 2006; Lozano et al., 2006). A well-known strategy for
condensing nearest neighbors in non-metric spaces is the k-medoids algorithm (Hastie et al.,
2001). Given a set of ch candidate prototypes selected from h, the remaining training
samples z ∈ h are assigned to their nearest (most similar) prototype, so that the set h of all
training samples from class h is partitioned in ch mutually-exclusive subsets { hl}, and each

hl is uniquely associated with candidate prototype µhl. Then, the lth prototype for the hth
class is updated according to the standard maximum similarity update rule, which selects
the new µhl as the training sample in hl which is most similar to all other samples in hl,

(3)

The training samples are then reassigned to the updated prototypes, and the update rule (3)
is repeated. The reassignment and update steps are repeated until a predetermined

 Machine Learning

96

maximum number of iterations is reached or until the updated prototypes = µhl for all h
and l. The number of prototypes in each class ch is determined by cross-validation; the initial
prototypes {µhl} are selected randomly from the training set.
An extreme form of condensed near-neighbors is to replace each class's training samples by
one prototypical sample, often called a centroid. The resulting nearest centroid classifier can
be considered a simple parametric model (Weinshall et al., 1999), though it lacks a
probabilistic structure. Let s(x, z) be the similarity between a sample x and a sample z, and
let there be a finite set of classes 1, 2, ... ,G. The nearest centroid approach classifies x as the
class

(4)

where µh is the representative centroid for the class h. A standard definition for the centroid
of a set of training samples is the training sample that has the maximum total similarity to
all the training samples of the same class (Weinshall et al., 1999; Jacobs et al., 2000):

(5)

A variation of the nearest centroid classifier is the local nearest centroid classifier, which is
an analog to the local nearest means classifier proposed by Mitani and Hamamoto (Mitani &
Hamamoto, 2006, 2000). In this variant, the class centroids (5) are computed from a local
neighborhood of each test point x; they are not computed from the entire training set. The
neighborhood may be defined in many ways. The most common definition is the k-nearest
neighbors. In this case, local nearest centroid is like the k-NN classifier, except that it
classifies x as the class of its nearest centroid where the centroids are computed from the k-
nearest neighbors of x.
The nearest centroid classifier is analogous to the nearest-mean classifier in Euclidean space,
which is the optimal Euclidean-based classifier if one assumes that the class-conditional
distributions are Gaussian, the class priors are equal, and that each class covariance is the
identity matrix (Duda et al., 2001; Hastie et al., 2001).

2. Similarity discriminant analysis
In standard metric learning, quadratic discriminant analysis (QDA) is a generative classifier
that generalizes the nearest-mean classifier by modeling each class-conditional distribution
as a Gaussian (Duda et al., 2001). Analogously, SDA is a generative similarity-based
classifier that generalizes the nearest-centroid classifier (Weinshall et al., 1999) by modeling
each class-conditional distribution with a parametric probability model (Cazzanti et al.;
Gupta et al., 2007). The SDA class-conditional probability models have exponential form,
because they are derived as the maximum entropy distributions subject to constraints on the
mean similarities of the data to the class centroids. As with other parametric approaches to
classification, the resulting log-linear SDA classifier is powerful when it effectively models
the true generating distribution. This section introduces SDA and shows how it classifies;
then, it extends SDA from using class centroids to using arbitrary descriptive statistics to
discriminate between the classes, including continuous-valued statistics.

Similarity Discriminant Analysis

97

2.1 A generative centroid-based classifier
Assume a class centroid µh has been determined for the hth class, where h = 1, ..., G. A
problem with the nearest centroid classifier given in (4) is that it does not take into account
the variability of the similarities to the centroid within a class. To take into account this
variability, first consider a simple generalization of nearest centroid, here called the adjusted
nearest centroid classifier : classify a test sample x as class ŷ where

(6)

and where s hh is the average similarity of class h samples to the class h centroid,

where nh = │ h│. The adjusted nearest centroid classifier is analogous to the one-
dimensional Gaussian rule of classifying based on the the variance-weighted distances to
the class means, ║x- μ h║/σ h, where x, μ h, σ h ∈ R. The adjusted nearest centroid
classifier is more flexible than the nearest centroid classifier, but lacks a probabilistic
structure, and takes into account only the similarity of a sample to one class centroid.
Thus, a generative centroid-based classifier that models the probability distribution of the
test sample similarity statistics s(x, µh) for each h is proposed. Begin with the Bayes classifier
(Hastie et al., 2001), which assigns a test sample x the class ŷ that minimizes the expected
misclassification cost,

(7)

where C(f,) is the cost of classifying the test sample x as class f if the true class is and
P(│x) is the probability that sample x belongs in class . In practice the distribution
P(│x) is generally unknown, and thus the Bayes classifier of (7) is an unattainable ideal.
Assume that all test and training samples come from some abstract space of samples ,
which might be an ill-defined space, such as is the set of all amino acids, or is the set of
all terrorist events, or is the set of all women who gave birth to twins. Let x, µh, z ∈ , and
let the similarity function be some function s : × →Ω, where Ω ⊂ R. If the set of possible
samples is finite, then the space of the pairwise similarities Ω will also be finite, and hence
discrete. For simplicity, in this section assume that Ω is a finite discrete space. Continuous
and possibly infinite spaces B, Ω are briefly discussed in Section 2.2.3.
Consider a random test sample X with random class label Y, where x will denote a
realization of X. Assume that the relevant information about X’s class label is captured by
the set (X) of G descriptive statistics

 Machine Learning

96

maximum number of iterations is reached or until the updated prototypes = µhl for all h
and l. The number of prototypes in each class ch is determined by cross-validation; the initial
prototypes {µhl} are selected randomly from the training set.
An extreme form of condensed near-neighbors is to replace each class's training samples by
one prototypical sample, often called a centroid. The resulting nearest centroid classifier can
be considered a simple parametric model (Weinshall et al., 1999), though it lacks a
probabilistic structure. Let s(x, z) be the similarity between a sample x and a sample z, and
let there be a finite set of classes 1, 2, ... ,G. The nearest centroid approach classifies x as the
class

(4)

where µh is the representative centroid for the class h. A standard definition for the centroid
of a set of training samples is the training sample that has the maximum total similarity to
all the training samples of the same class (Weinshall et al., 1999; Jacobs et al., 2000):

(5)

A variation of the nearest centroid classifier is the local nearest centroid classifier, which is
an analog to the local nearest means classifier proposed by Mitani and Hamamoto (Mitani &
Hamamoto, 2006, 2000). In this variant, the class centroids (5) are computed from a local
neighborhood of each test point x; they are not computed from the entire training set. The
neighborhood may be defined in many ways. The most common definition is the k-nearest
neighbors. In this case, local nearest centroid is like the k-NN classifier, except that it
classifies x as the class of its nearest centroid where the centroids are computed from the k-
nearest neighbors of x.
The nearest centroid classifier is analogous to the nearest-mean classifier in Euclidean space,
which is the optimal Euclidean-based classifier if one assumes that the class-conditional
distributions are Gaussian, the class priors are equal, and that each class covariance is the
identity matrix (Duda et al., 2001; Hastie et al., 2001).

2. Similarity discriminant analysis
In standard metric learning, quadratic discriminant analysis (QDA) is a generative classifier
that generalizes the nearest-mean classifier by modeling each class-conditional distribution
as a Gaussian (Duda et al., 2001). Analogously, SDA is a generative similarity-based
classifier that generalizes the nearest-centroid classifier (Weinshall et al., 1999) by modeling
each class-conditional distribution with a parametric probability model (Cazzanti et al.;
Gupta et al., 2007). The SDA class-conditional probability models have exponential form,
because they are derived as the maximum entropy distributions subject to constraints on the
mean similarities of the data to the class centroids. As with other parametric approaches to
classification, the resulting log-linear SDA classifier is powerful when it effectively models
the true generating distribution. This section introduces SDA and shows how it classifies;
then, it extends SDA from using class centroids to using arbitrary descriptive statistics to
discriminate between the classes, including continuous-valued statistics.

Similarity Discriminant Analysis

97

2.1 A generative centroid-based classifier
Assume a class centroid µh has been determined for the hth class, where h = 1, ..., G. A
problem with the nearest centroid classifier given in (4) is that it does not take into account
the variability of the similarities to the centroid within a class. To take into account this
variability, first consider a simple generalization of nearest centroid, here called the adjusted
nearest centroid classifier : classify a test sample x as class ŷ where

(6)

and where s hh is the average similarity of class h samples to the class h centroid,

where nh = │ h│. The adjusted nearest centroid classifier is analogous to the one-
dimensional Gaussian rule of classifying based on the the variance-weighted distances to
the class means, ║x- μ h║/σ h, where x, μ h, σ h ∈ R. The adjusted nearest centroid
classifier is more flexible than the nearest centroid classifier, but lacks a probabilistic
structure, and takes into account only the similarity of a sample to one class centroid.
Thus, a generative centroid-based classifier that models the probability distribution of the
test sample similarity statistics s(x, µh) for each h is proposed. Begin with the Bayes classifier
(Hastie et al., 2001), which assigns a test sample x the class ŷ that minimizes the expected
misclassification cost,

(7)

where C(f,) is the cost of classifying the test sample x as class f if the true class is and
P(│x) is the probability that sample x belongs in class . In practice the distribution
P(│x) is generally unknown, and thus the Bayes classifier of (7) is an unattainable ideal.
Assume that all test and training samples come from some abstract space of samples ,
which might be an ill-defined space, such as is the set of all amino acids, or is the set of
all terrorist events, or is the set of all women who gave birth to twins. Let x, µh, z ∈ , and
let the similarity function be some function s : × →Ω, where Ω ⊂ R. If the set of possible
samples is finite, then the space of the pairwise similarities Ω will also be finite, and hence
discrete. For simplicity, in this section assume that Ω is a finite discrete space. Continuous
and possibly infinite spaces B, Ω are briefly discussed in Section 2.2.3.
Consider a random test sample X with random class label Y, where x will denote a
realization of X. Assume that the relevant information about X’s class label is captured by
the set (X) of G descriptive statistics

 Machine Learning

98

That is, the relevant information about x is captured by its similarity to each class centroid.
Under this assumption, given a particular test sample x, the classification rule (7) becomes:
classify x as class ŷ that solves

Using Bayes rule, this is equivalent to the problem

(8)

Note that P((x)│Y =) is the probability of seeing a particular set of similarities between
the test sample x and the G class centroids {µ1, µ2, ..., µG} given that x is a class sample.
Next, assume that each unknown class-conditional distribution P((x)│Y =) has the same
average value as the training sample data from class g. That is, given a random test sample
X there will be a random similarity s(X, µh); constrain the class-conditional distribution
P((x)│Y =) such that

(9)

holds for each and h where ng is the number of training samples of class . Each constraint
requires that the class-conditional expectation of one of the elements of (X) is equal to the
maximum likelihood estimate of that element given the training data. This makes for G
constraints for each class-conditional distribution, for a total of G×G constraints because
there are G class-conditional distributions. Given these constraints, there is some compact
and convex feasible set of class-conditional distributions. A feasible solution will always
exist because the constraints are based on the data.
As prescribed by Jaynes' principle of maximum entropy (Jaynes, 1982), a unique class-
conditional joint distribution is selected by choosing the maximum entropy solution that
satisfies (9). Maximum entropy distributions have the maximum possible uncertainty, such
that they are as uniform as possible while still satisfying given constraints. Given a set of
moment constraints, the maximum entropy solution is known to have exponential form
(Cover & Thomas, 1991). For example, in standard metric learning, the Gaussian class-
conditional distribution model used in LDA and QDA is the maximum entropy distribution
given a specific mean vector and covariance matrix (Cover & Thomas, 1991).
The maximum entropy distribution that satisfies the moment constraints specified in (9) is

(10)

where {γg, λg1, λg2, ... , λgG} are a unique set that ensures that the constraints (9) are satisfied
and that P̂ ((x)│Y =) is non-negative and normalized. Rewrite equation (10) as

(11)

Similarity Discriminant Analysis

99

where . Let

then (11) can be written

That is, under the maximum entropy assumption, the joint distribution on (x) is the
product of the marginal distributions on each similarity statistic comprising the set (X).
Thus, the similarity statistics are conditionally independent given the class label under this
model. Although one does not expect this conditional independence to be strictly valid, the
hypothesis is that it will be an effective model, just as the naive Bayes' model that features
are independent is optimistic but useful.
Substituting the maximum entropy solution (10) into (8) yields the classification rule:
classify x as the class ŷ which solves

(12)

To solve for the parameters {λgh, γgh}, one solves the G constraints individually for λgh. Then
given {λgh}, the {γgh} are trivially found using the normalization constraint. Solving for λgh is
straightforward; for example, one uses the Nelder-Mead optimizer built into Matlab
(version 15) in the fminsearch()function (Mat). This is the method used throughout this
work. As an alternative, one may find the probability mass function with maximum
entropy, subject to the constraints, without a priori knowledge that the solution is
exponential.
The classifier given in (12) is termed the similarity discriminant analysis (SDA).

2.2 General generative models for similarity-based classification
The previous section introduced SDA for the case when the descriptive statistics are the
similarities of the samples to the class centroids. This section generalizes SDA to arbitrary
descriptive statistics (x) which can be used to discriminate different classes and describes
the resulting general generative model for classifying with arbitrary statistics.

2.2.1 Descriptive statistics
Several possibilities for the descriptive statistics (x) are described below.
• Centroid Definitions - A standard centroid definition was given in (5). Another choice is

to allow a class prototype that is not constrained to be a training sample,

(13)

In this case the solution requires a description of the entire space of possible samples
. In practice, one may not know the entire sample space , only the training samples
, so it may not be possible to calculate .

 Machine Learning

98

That is, the relevant information about x is captured by its similarity to each class centroid.
Under this assumption, given a particular test sample x, the classification rule (7) becomes:
classify x as class ŷ that solves

Using Bayes rule, this is equivalent to the problem

(8)

Note that P((x)│Y =) is the probability of seeing a particular set of similarities between
the test sample x and the G class centroids {µ1, µ2, ..., µG} given that x is a class sample.
Next, assume that each unknown class-conditional distribution P((x)│Y =) has the same
average value as the training sample data from class g. That is, given a random test sample
X there will be a random similarity s(X, µh); constrain the class-conditional distribution
P((x)│Y =) such that

(9)

holds for each and h where ng is the number of training samples of class . Each constraint
requires that the class-conditional expectation of one of the elements of (X) is equal to the
maximum likelihood estimate of that element given the training data. This makes for G
constraints for each class-conditional distribution, for a total of G×G constraints because
there are G class-conditional distributions. Given these constraints, there is some compact
and convex feasible set of class-conditional distributions. A feasible solution will always
exist because the constraints are based on the data.
As prescribed by Jaynes' principle of maximum entropy (Jaynes, 1982), a unique class-
conditional joint distribution is selected by choosing the maximum entropy solution that
satisfies (9). Maximum entropy distributions have the maximum possible uncertainty, such
that they are as uniform as possible while still satisfying given constraints. Given a set of
moment constraints, the maximum entropy solution is known to have exponential form
(Cover & Thomas, 1991). For example, in standard metric learning, the Gaussian class-
conditional distribution model used in LDA and QDA is the maximum entropy distribution
given a specific mean vector and covariance matrix (Cover & Thomas, 1991).
The maximum entropy distribution that satisfies the moment constraints specified in (9) is

(10)

where {γg, λg1, λg2, ... , λgG} are a unique set that ensures that the constraints (9) are satisfied
and that P̂ ((x)│Y =) is non-negative and normalized. Rewrite equation (10) as

(11)

Similarity Discriminant Analysis

99

where . Let

then (11) can be written

That is, under the maximum entropy assumption, the joint distribution on (x) is the
product of the marginal distributions on each similarity statistic comprising the set (X).
Thus, the similarity statistics are conditionally independent given the class label under this
model. Although one does not expect this conditional independence to be strictly valid, the
hypothesis is that it will be an effective model, just as the naive Bayes' model that features
are independent is optimistic but useful.
Substituting the maximum entropy solution (10) into (8) yields the classification rule:
classify x as the class ŷ which solves

(12)

To solve for the parameters {λgh, γgh}, one solves the G constraints individually for λgh. Then
given {λgh}, the {γgh} are trivially found using the normalization constraint. Solving for λgh is
straightforward; for example, one uses the Nelder-Mead optimizer built into Matlab
(version 15) in the fminsearch()function (Mat). This is the method used throughout this
work. As an alternative, one may find the probability mass function with maximum
entropy, subject to the constraints, without a priori knowledge that the solution is
exponential.
The classifier given in (12) is termed the similarity discriminant analysis (SDA).

2.2 General generative models for similarity-based classification
The previous section introduced SDA for the case when the descriptive statistics are the
similarities of the samples to the class centroids. This section generalizes SDA to arbitrary
descriptive statistics (x) which can be used to discriminate different classes and describes
the resulting general generative model for classifying with arbitrary statistics.

2.2.1 Descriptive statistics
Several possibilities for the descriptive statistics (x) are described below.
• Centroid Definitions - A standard centroid definition was given in (5). Another choice is

to allow a class prototype that is not constrained to be a training sample,

(13)

In this case the solution requires a description of the entire space of possible samples
. In practice, one may not know the entire sample space , only the training samples
, so it may not be possible to calculate .

 Machine Learning

100

A third definition of a class prototype is based on Tversky's analysis of similarity-based
near-neighbor relationships (Tversky & Hutchinson, 1986; Schwartz & Tversky, 1980),
and takes into account the similarity-based ranks of a training sample's near-neighbors.
Define the neighborhood (z) ⊆ of a sample z as the set of training samples whose
nearest neighbor in similarity space is z. The popularity of z is the size of its
neighborhood │ (z)│. The class centroid is the sample with the highest popularity,
that is,

(14)

This centroid is the training sample that is most often the closest neighbor of the
training samples in the class. Ties in popularity are broken by selecting the sample with
the highest total similarity to its neighbors.

• Higher Order and Non-Centroidal Descriptive Statistics - Given a set of class centroids
{µh}, higher-order statistics could be used as, or added to, the set of descriptive statistics

(X), such as (s(X, µh) - E[s(X, µh)])2, or cross-class statistics, such as (s(X, µh) - E[s(X,
µg)])2. Or, instead of the centroid-based statistics fs(X, µh)g, it might be more appropriate
to use the nonparametric statistics formed by the total pairwise similarity for each class
h, such that the hth descriptive statistic in test set (X) is s(X, z).

• Nearest Neighbor Similarity - A descriptive statistic that is not centroid-based is the nearest
neighbor similarity: a test sample's similarity to its most similar training sample. Given a
sample x and the training samples z ∈ , the nearest neighbor similarity is defined

 (15)

The SDA classifier based on nearest neighbor similarity, denoted by nnSDA, may be
viewed as a generalization of the similarity-based nearest neighbor classifier (1-NN)
defined in 1. That classifier labels x with the same class label as its nearest neighbor
without making use of any information about its similarity to such nearest neighbor.
The nnSDA classifier, on the other hand, classifies x as the class of its nearest neighbor
based on a probabilistic model of snn(x). The probability model is computed with the
mean-constrained maximum entropy approach of Section 2.1, which results in
exponential solutions. In this case, the constraint is that the mean of the distribution
must be the same as the empirical average of the observed nearest neighbor similarities.
Denote by snn,h(X) the random similarity of a random test sample X to its nearest
neighbor in class h. For nnSDA, the constraint is written as

(16)

and the classification rule becomes to classify as the class ŷ that solves

(17)

Similarity Discriminant Analysis

101

where the parameters λgh and γgh are computed with the same numerical optimization
method used for SDA.

As further discussed in the next section, the SDA framework accommodates any desired set
of descriptive statistics (x): different similarity functions could be mixed, dissimilarities
and similarities can be mixed, and so on.

2.2.2 Generative classifier from arbitrary descriptive statistics
Given an arbitrary set of M descriptive statistics (x), the same reasoning of Section 2.1
produces a generative similarity-based classifier. First, the assumption is that (x) is
sufficient information to classify x leads to the classification rule given in (8). Second, for the
mth descriptive statistic Tm(x) ∈ (x), m = 1, ..., M, one assumes that its mean with respect to
the class conditional distribution of (x) is equal to the training sample mean:

(18)

Third, given the M×G constraints specified by (18), one estimates the class-conditional
distribution to be the maximum entropy distribution,

(19)

Substituting the maximum entropy solution (19) into (8) yields the SDA classification rule:
classify x as the class ŷ which solves

(20)

The parameters {λgm, γgm} are calculated as in the centroid-based SDA case described in
Section 2.1.

2.2.3 Continuous-valued statistics
The generative classification models presented in this chapter can be extended to the case in
which the statistics (x) are from a continuous set Ω. This will be the case, for example,
when using an overlap similarity (e.g. max{x[i], z[i]}) with real-valued features, or when the
similarity between X and z is the Euclidean distance. Then, the expectation in (18) is a
normalized integral over the continuous set of possible similarity values. Let a and b denote
the minimum and maximum possible similarity values (and hence the lower and upper
bound on the expectation's integral). Then simplifying (18) yields the relationship

(21)

 Machine Learning

100

A third definition of a class prototype is based on Tversky's analysis of similarity-based
near-neighbor relationships (Tversky & Hutchinson, 1986; Schwartz & Tversky, 1980),
and takes into account the similarity-based ranks of a training sample's near-neighbors.
Define the neighborhood (z) ⊆ of a sample z as the set of training samples whose
nearest neighbor in similarity space is z. The popularity of z is the size of its
neighborhood │ (z)│. The class centroid is the sample with the highest popularity,
that is,

(14)

This centroid is the training sample that is most often the closest neighbor of the
training samples in the class. Ties in popularity are broken by selecting the sample with
the highest total similarity to its neighbors.

• Higher Order and Non-Centroidal Descriptive Statistics - Given a set of class centroids
{µh}, higher-order statistics could be used as, or added to, the set of descriptive statistics

(X), such as (s(X, µh) - E[s(X, µh)])2, or cross-class statistics, such as (s(X, µh) - E[s(X,
µg)])2. Or, instead of the centroid-based statistics fs(X, µh)g, it might be more appropriate
to use the nonparametric statistics formed by the total pairwise similarity for each class
h, such that the hth descriptive statistic in test set (X) is s(X, z).

• Nearest Neighbor Similarity - A descriptive statistic that is not centroid-based is the nearest
neighbor similarity: a test sample's similarity to its most similar training sample. Given a
sample x and the training samples z ∈ , the nearest neighbor similarity is defined

 (15)

The SDA classifier based on nearest neighbor similarity, denoted by nnSDA, may be
viewed as a generalization of the similarity-based nearest neighbor classifier (1-NN)
defined in 1. That classifier labels x with the same class label as its nearest neighbor
without making use of any information about its similarity to such nearest neighbor.
The nnSDA classifier, on the other hand, classifies x as the class of its nearest neighbor
based on a probabilistic model of snn(x). The probability model is computed with the
mean-constrained maximum entropy approach of Section 2.1, which results in
exponential solutions. In this case, the constraint is that the mean of the distribution
must be the same as the empirical average of the observed nearest neighbor similarities.
Denote by snn,h(X) the random similarity of a random test sample X to its nearest
neighbor in class h. For nnSDA, the constraint is written as

(16)

and the classification rule becomes to classify as the class ŷ that solves

(17)

Similarity Discriminant Analysis

101

where the parameters λgh and γgh are computed with the same numerical optimization
method used for SDA.

As further discussed in the next section, the SDA framework accommodates any desired set
of descriptive statistics (x): different similarity functions could be mixed, dissimilarities
and similarities can be mixed, and so on.

2.2.2 Generative classifier from arbitrary descriptive statistics
Given an arbitrary set of M descriptive statistics (x), the same reasoning of Section 2.1
produces a generative similarity-based classifier. First, the assumption is that (x) is
sufficient information to classify x leads to the classification rule given in (8). Second, for the
mth descriptive statistic Tm(x) ∈ (x), m = 1, ..., M, one assumes that its mean with respect to
the class conditional distribution of (x) is equal to the training sample mean:

(18)

Third, given the M×G constraints specified by (18), one estimates the class-conditional
distribution to be the maximum entropy distribution,

(19)

Substituting the maximum entropy solution (19) into (8) yields the SDA classification rule:
classify x as the class ŷ which solves

(20)

The parameters {λgm, γgm} are calculated as in the centroid-based SDA case described in
Section 2.1.

2.2.3 Continuous-valued statistics
The generative classification models presented in this chapter can be extended to the case in
which the statistics (x) are from a continuous set Ω. This will be the case, for example,
when using an overlap similarity (e.g. max{x[i], z[i]}) with real-valued features, or when the
similarity between X and z is the Euclidean distance. Then, the expectation in (18) is a
normalized integral over the continuous set of possible similarity values. Let a and b denote
the minimum and maximum possible similarity values (and hence the lower and upper
bound on the expectation's integral). Then simplifying (18) yields the relationship

(21)

 Machine Learning

102

where . The solution to (21) can be computed numerically. For the

special case a = 0 and b = ∞, the solution is

3. Local SDA
This chapter introduces local SDA (Cazzanti & Gupta, 2007), a similarity-based classifier that
is both generative and local. An advantage of generative classifiers is their interpretability:
classes are modeled by conditional probability distributions which are assumed to have
generated the observed data. An advantage of local classifiers it that they reduce the
estimation bias problem which affects generative classifiers. Local SDA combines the
qualities of both generative and local classifiers.
For the SDA classifier, the class-conditional generative distributions are exponentials that
model the similarities between samples - or more generally the descriptive statistics of the
sample. The exponentials are the maximum entropy distributions subject to constraints on
the mean values of the similarities. However, when the underlying distributions are
complex, a particular set of empirical statistics may fail to capture the necessary information
about a sample’s class membership. In fact, in SDA, constraining the means of the class-
conditional distributions may result in too much model bias, just as the QDA model of one
Gaussian per class causes model bias (Hastie et al., 2001). In standard metric learning, one
way to address the bias problem while retaining the advantages of a generative approach is
to form more flexible Gaussian mixture models. In similarity-based learning, mixture
models may also be formed; this approach is discussed in Section 4.
Here, the bias in SDA is addressed by using local classifiers in similarity space. In metric
learning, one way to avoid the bias problem is to use local classifiers, e.g. k-NN, which
classify test samples based on the class labels of their nearest neighbors. Local classifiers do
not estimate probabilistic models for the sample classes and consequently lack the
interpretability of generative models. Even so, they provide an intuitive framework for
classification through the concepts of nearest-neighbor and neighborhood. In this chapter,
SDA is applied to a local neighborhood about the test sample. The resulting local SDA
classifier trades-off model bias and estimation variance depending on the neighborhood
size, while retaining the power of a generative classifier. To the author's knowledge, local
SDA is the first example of a classifier that is both generative and local. The only arguable
contender is the local nearest- mean classifier (Mitani & Hamamoto, 2000, 2006) for metric
learning; however that classifier was not proposed as a generative model.
Local SDA is a straightforward variation of SDA. The local SDA classifier model is that all of
the relevant information about classifying a test sample x depends only on the k nearest
(most similar) training samples to x. Thus, the local SDA classifier computes the descriptive
statistics from a neighborhood of a test sample. More specifically, local SDA is a log-linear
generative classifier that models the probability distribution of the similarity s(x, µh)
between the test sample x and the class centroids {µh}, just like SDA. Unlike SDA, the class
centroids, the class-conditional similarity probability models, and the estimates of the class
priors are computed from a neighborhood of the test sample rather than from the entire
training set. Thus, the class centroid definition (5) used for SDA still holds for local SDA; one
simply redefines h as the subset of the k nearest neighbors from class h. The class priors are
estimated using normalized class membership counts of the neighbors of x, that is P̂ (Y = h)
= │ h│/k. The mean similarity constraints (9) for the SDA maximum entropy optimization

Similarity Discriminant Analysis

103

are formally the same for local SDA, except that the mean is computed from the neighbors
of test sample x rather than the whole training set. Thus, the optimized parameters λgh and
γgh are local. Given the set of local class centroids {µh}, the local class priors P̂ (Y = g), and
the local class-conditional model parameters γgh the local SDA classification rule is identical
to the SDA rule (12):

A problem can occur if the hth class has few training samples in the neighborhood of test
sample x. In this case, the local SDA model for class h is difficult to estimate. To avoid this
problem, if the number of local training samples in any of the classes is very small, for
example nh < 3, the local SDA classifier reverts to the local nearest centroid classifier. If nh = 0
so that h is the empty set, then the probability of class h is locally zero, and that class is not
considered in the classification rule (12). This strategy enables local SDA to gracefully
handle small k and very small class priors.
Local classification algorithms have traditionally been weighted voting methods, including
classifying with local linear regression, which can be formulated as a weighted voting
method (Hastie et al., 2001). These methods are by their nature non-parametric and their use
arises in situations when the available training samples are too few to accurately build class
models. On the other hand, it is known that the number of training samples required by
nonparametric classifiers to achieve low error rates grows exponentially with the number of
features (Mitani & Hamamoto, 2006). Thus, when only small training sets are available,
nonparametric classifiers are negatively impacted by outliers. In 2000, Mitani and
Hamamoto (Mitani & Hamamoto, 2000, 2006) were the first ones to propose a classifier that
is both model-based and local. However, they did not develop it as a local generative
method; instead, they proposed the classifier as a local weighted-distance method. Their
nearest-means classifier can be interpreted as a local QDA classifier with identity
covariances. In experiments with simulated and real data sets, the local nearest-means
classifier was competitive with, and often better than, nearest neighbor, the Parzen classifier,
and an artificial neural network, especially for small training sets and for high dimensional
problems.
Local nearest-means differs from local SDA in several aspects. First, the classifier by Mitani
and Hamamoto in (Mitani & Hamamoto, 2006) learns a metric problem, not a similarity
problem: the class prototypes are the local class-conditional means of the features and a
weighted Euclidean distance is used to classify a test sample as the class of its nearest class
mean. Second, the neighborhood definition is different than the usual k nearest neighbors:
they select k nearest neighbors from each class, so that the total neighborhood size is k ×G.
More recently, it was proposed to apply a support vector machine to the k nearest neighbors
of the test sample (Zhang et al., 2006). The SVM-KNN method was developed to address the
robustness and dimensionality concerns that a²ict nearest neighbors and SVMs. Similarly to
the nearest-means classifier, the SVM-KNN is a hybrid local and global classifier developed
to mitigate the high variance typical of nearest neighbor methods and the curse-of-
dimensionality. However, unlike the nearest means classifier of Mitani and Hamamoto,
which is rooted in Euclidean space, the SVM-KNN can be used with any similarity function,
as it assumes that the class information about the samples is captured by their pairwise

 Machine Learning

102

where . The solution to (21) can be computed numerically. For the

special case a = 0 and b = ∞, the solution is

3. Local SDA
This chapter introduces local SDA (Cazzanti & Gupta, 2007), a similarity-based classifier that
is both generative and local. An advantage of generative classifiers is their interpretability:
classes are modeled by conditional probability distributions which are assumed to have
generated the observed data. An advantage of local classifiers it that they reduce the
estimation bias problem which affects generative classifiers. Local SDA combines the
qualities of both generative and local classifiers.
For the SDA classifier, the class-conditional generative distributions are exponentials that
model the similarities between samples - or more generally the descriptive statistics of the
sample. The exponentials are the maximum entropy distributions subject to constraints on
the mean values of the similarities. However, when the underlying distributions are
complex, a particular set of empirical statistics may fail to capture the necessary information
about a sample’s class membership. In fact, in SDA, constraining the means of the class-
conditional distributions may result in too much model bias, just as the QDA model of one
Gaussian per class causes model bias (Hastie et al., 2001). In standard metric learning, one
way to address the bias problem while retaining the advantages of a generative approach is
to form more flexible Gaussian mixture models. In similarity-based learning, mixture
models may also be formed; this approach is discussed in Section 4.
Here, the bias in SDA is addressed by using local classifiers in similarity space. In metric
learning, one way to avoid the bias problem is to use local classifiers, e.g. k-NN, which
classify test samples based on the class labels of their nearest neighbors. Local classifiers do
not estimate probabilistic models for the sample classes and consequently lack the
interpretability of generative models. Even so, they provide an intuitive framework for
classification through the concepts of nearest-neighbor and neighborhood. In this chapter,
SDA is applied to a local neighborhood about the test sample. The resulting local SDA
classifier trades-off model bias and estimation variance depending on the neighborhood
size, while retaining the power of a generative classifier. To the author's knowledge, local
SDA is the first example of a classifier that is both generative and local. The only arguable
contender is the local nearest- mean classifier (Mitani & Hamamoto, 2000, 2006) for metric
learning; however that classifier was not proposed as a generative model.
Local SDA is a straightforward variation of SDA. The local SDA classifier model is that all of
the relevant information about classifying a test sample x depends only on the k nearest
(most similar) training samples to x. Thus, the local SDA classifier computes the descriptive
statistics from a neighborhood of a test sample. More specifically, local SDA is a log-linear
generative classifier that models the probability distribution of the similarity s(x, µh)
between the test sample x and the class centroids {µh}, just like SDA. Unlike SDA, the class
centroids, the class-conditional similarity probability models, and the estimates of the class
priors are computed from a neighborhood of the test sample rather than from the entire
training set. Thus, the class centroid definition (5) used for SDA still holds for local SDA; one
simply redefines h as the subset of the k nearest neighbors from class h. The class priors are
estimated using normalized class membership counts of the neighbors of x, that is P̂ (Y = h)
= │ h│/k. The mean similarity constraints (9) for the SDA maximum entropy optimization

Similarity Discriminant Analysis

103

are formally the same for local SDA, except that the mean is computed from the neighbors
of test sample x rather than the whole training set. Thus, the optimized parameters λgh and
γgh are local. Given the set of local class centroids {µh}, the local class priors P̂ (Y = g), and
the local class-conditional model parameters γgh the local SDA classification rule is identical
to the SDA rule (12):

A problem can occur if the hth class has few training samples in the neighborhood of test
sample x. In this case, the local SDA model for class h is difficult to estimate. To avoid this
problem, if the number of local training samples in any of the classes is very small, for
example nh < 3, the local SDA classifier reverts to the local nearest centroid classifier. If nh = 0
so that h is the empty set, then the probability of class h is locally zero, and that class is not
considered in the classification rule (12). This strategy enables local SDA to gracefully
handle small k and very small class priors.
Local classification algorithms have traditionally been weighted voting methods, including
classifying with local linear regression, which can be formulated as a weighted voting
method (Hastie et al., 2001). These methods are by their nature non-parametric and their use
arises in situations when the available training samples are too few to accurately build class
models. On the other hand, it is known that the number of training samples required by
nonparametric classifiers to achieve low error rates grows exponentially with the number of
features (Mitani & Hamamoto, 2006). Thus, when only small training sets are available,
nonparametric classifiers are negatively impacted by outliers. In 2000, Mitani and
Hamamoto (Mitani & Hamamoto, 2000, 2006) were the first ones to propose a classifier that
is both model-based and local. However, they did not develop it as a local generative
method; instead, they proposed the classifier as a local weighted-distance method. Their
nearest-means classifier can be interpreted as a local QDA classifier with identity
covariances. In experiments with simulated and real data sets, the local nearest-means
classifier was competitive with, and often better than, nearest neighbor, the Parzen classifier,
and an artificial neural network, especially for small training sets and for high dimensional
problems.
Local nearest-means differs from local SDA in several aspects. First, the classifier by Mitani
and Hamamoto in (Mitani & Hamamoto, 2006) learns a metric problem, not a similarity
problem: the class prototypes are the local class-conditional means of the features and a
weighted Euclidean distance is used to classify a test sample as the class of its nearest class
mean. Second, the neighborhood definition is different than the usual k nearest neighbors:
they select k nearest neighbors from each class, so that the total neighborhood size is k ×G.
More recently, it was proposed to apply a support vector machine to the k nearest neighbors
of the test sample (Zhang et al., 2006). The SVM-KNN method was developed to address the
robustness and dimensionality concerns that a²ict nearest neighbors and SVMs. Similarly to
the nearest-means classifier, the SVM-KNN is a hybrid local and global classifier developed
to mitigate the high variance typical of nearest neighbor methods and the curse-of-
dimensionality. However, unlike the nearest means classifier of Mitani and Hamamoto,
which is rooted in Euclidean space, the SVM-KNN can be used with any similarity function,
as it assumes that the class information about the samples is captured by their pairwise

 Machine Learning

104

similarities without reference to the underlying feature space. Experiments on benchmark
datasets using various similarity functions showed that SVM-KNN outperforms k-NN and
its variants especially for cases with small training sets and large number of classes. SVM-
KNN differs from local SDA because it is not a generative classifier.
Finally, note that different definitions of neighborhood may be used with local SDA. One
could use the Mitani and Hamamoto (Mitani & Hamamoto, 2006) definition described
above, or radius-based definitions. For example, the neighborhood of a test sample x may be
defined as all the samples that fall within a factor of 1+α of its similarity to its most similar
neighbor, and α is cross-validated. This work employs the traditional definition of
neighborhood, as the k nearest neighbors.

3.1 Consistency of the local SDA classifier
Generative classifiers with a finite number of model parameters, such as QDA or SDA, will
not asymptotically converge to the Bayes classifier due to the model bias. This section shows
that, like k-NN, the local SDA classifier is consistent such that its expected classification
error E[L] converges to the Bayes error rate L* under the usual asymptotic assumptions that
the number of training samples N → ∞, the neighborhood size k → ∞, but that the
neighborhood size grows relatively slowly such that k=N → 0. First a lemma is proven that
will be used in the proof of the local SDA consistency theorem. Also, the known result that
k-NN is a consistent classifier is reviewed in terms of similarity.
Let the similarity function be s : × → Ω, where Ω ⊂ R is discrete and let the largest
element of -Ω be termed smax. Let X be a test sample and let the training samples {X1,X2, ...
,XN} be drawn identically and independently. Re-order the training samples according to
decreasing similarity and label them {Z1,Z2, ..., ZN} such that Zk is the kth most similar
neighbor of X.
Lemma 1 Suppose s(x,Z) = smax if and only if x = Z and P(s(x,Z) = smax) > 0 where Z is a random
training sample. Then P(s(x,Zk) = smax) → 1 as k, N →∞ and k/N → 0.
Proof: The proof is by contradiction and is similar to the proof of Lemma 5.1 in (Devroye et
al., 1996). Note that s(x,Zk) ≠ smax if and only if

(22)

because if there are less than k training samples whose similarity to x is smax, the similarity of
the kth training sample to x cannot be smax. The left-hand side of (22) converges to P(s(x,Z) =
smax) as N→∞ with probability one by the strong law of large numbers, and by assumption
P(s(x,Z) = smax) > 0. However, the right-hand side of (22) converges to 0 by assumption.
Thus, assuming s(x,Zk) ≠ smax leads to a contradiction in the limit. Therefore, it must be that
s(x,Zk) = smax.
Theorem 1 Assume the conditions of Lemma 1. Define L to be the probability of error for test sample
X given the training sample and label pairs {(Z1, Y1), (Z2, Y2), ... , (ZN, YN)}, and let L* be the Bayes
error. If k,N → ∞ and k/N → 0, then for the local SDA classifier E[L] → L*.
Proof: By Lemma 1, s(x,Zi) = smax for i ≤ k in the limit as N → ∞, and thus in the limit the
centroid µh of the subset of the k neighbors that are from class h must satisfy s(x, µh) = smax,
for every class h which is represented by at least one sample in the k neighbors. By definition

Similarity Discriminant Analysis

105

of the local SDA algorithm, any class h that does not have at least one sample in the k
neighbors is assigned the class prior probability P(Y = h) = 0, so it is effectively eliminated
from the possible classification outcomes. Then, the constraint (9) on the expected value of
the class-conditional similarity for every class g that is represented in the k neighbors of x is

 (23)

which is solved by the pmf P(s(x, µh)│Y = g) = 1 if s(x, µh) = smax, and zero otherwise. Thus
the local SDA classifier (12) becomes

(24)

where the estimated probability of each class P̂ (Y = g) is calculated using a maximum
likelihood estimate of the class probabilities for the neighborhood. Then, P̂ (Y = g) →P(Y =
g│x) as k →∞ with probability one by the strong law of large numbers. Thus the local SDA
classifier converges to the Bayes classifier, and the local SDA average error E[L] → L*.
The known result that k-NN is a consistent classifier can be stated in terms of similarity as a
direct consequence of Lemma 1:
Lemma 2 Assume the conditions of Lemma 1 and define L and L* as in Theorem 1. For the
similarity-based k-NN classifier E[L] →L*.
Proof. It follows directly from Lemma 1 that within the size-k neighborhood of x, Zi = x for i
≤k. Thus, the k-NN classifier (1) estimates the most frequent class among the k samples
maximally similar to x:

The summation converges to the class prior P(Y = g→x) as k →∞ with probability one by the
strong law of large numbers, and the k-NN classifier becomes that in (24). Thus the
similarity-based k-NN classifier is consistent.

4. Mixture SDA
Like LDA and QDA, basic SDA may be too biased if the similarity space - or more generally
the descriptive statistics space - is multi-modal. In analogy to metric space mixture models,
the bias problem in similarity space may be alleviated by generalizing the SDA formulation
with similarity-based mixture models. In the mixture SDA models, the class-conditional
probability distribution of the descriptive statistics (x) for a test sample x is modeled as a
weighted sum of exponential components. Generalizing the single centroid-based SDA
classifier and drawing from the metric mixture models (Duda et al., 2001; Hastie et al., 2001),
each class h is characterized by ch centroids {µhl}. The descriptive statistics for test sample x
are its similarities to the centroids of class h, {s(x, µh1), s(x, µh2), ... , s(x,)}, for each class h.
The mixture SDA model for the probability of the similarities, assuming that test sample x is
drawn from class g, is written as

 Machine Learning

104

similarities without reference to the underlying feature space. Experiments on benchmark
datasets using various similarity functions showed that SVM-KNN outperforms k-NN and
its variants especially for cases with small training sets and large number of classes. SVM-
KNN differs from local SDA because it is not a generative classifier.
Finally, note that different definitions of neighborhood may be used with local SDA. One
could use the Mitani and Hamamoto (Mitani & Hamamoto, 2006) definition described
above, or radius-based definitions. For example, the neighborhood of a test sample x may be
defined as all the samples that fall within a factor of 1+α of its similarity to its most similar
neighbor, and α is cross-validated. This work employs the traditional definition of
neighborhood, as the k nearest neighbors.

3.1 Consistency of the local SDA classifier
Generative classifiers with a finite number of model parameters, such as QDA or SDA, will
not asymptotically converge to the Bayes classifier due to the model bias. This section shows
that, like k-NN, the local SDA classifier is consistent such that its expected classification
error E[L] converges to the Bayes error rate L* under the usual asymptotic assumptions that
the number of training samples N → ∞, the neighborhood size k → ∞, but that the
neighborhood size grows relatively slowly such that k=N → 0. First a lemma is proven that
will be used in the proof of the local SDA consistency theorem. Also, the known result that
k-NN is a consistent classifier is reviewed in terms of similarity.
Let the similarity function be s : × → Ω, where Ω ⊂ R is discrete and let the largest
element of -Ω be termed smax. Let X be a test sample and let the training samples {X1,X2, ...
,XN} be drawn identically and independently. Re-order the training samples according to
decreasing similarity and label them {Z1,Z2, ..., ZN} such that Zk is the kth most similar
neighbor of X.
Lemma 1 Suppose s(x,Z) = smax if and only if x = Z and P(s(x,Z) = smax) > 0 where Z is a random
training sample. Then P(s(x,Zk) = smax) → 1 as k, N →∞ and k/N → 0.
Proof: The proof is by contradiction and is similar to the proof of Lemma 5.1 in (Devroye et
al., 1996). Note that s(x,Zk) ≠ smax if and only if

(22)

because if there are less than k training samples whose similarity to x is smax, the similarity of
the kth training sample to x cannot be smax. The left-hand side of (22) converges to P(s(x,Z) =
smax) as N→∞ with probability one by the strong law of large numbers, and by assumption
P(s(x,Z) = smax) > 0. However, the right-hand side of (22) converges to 0 by assumption.
Thus, assuming s(x,Zk) ≠ smax leads to a contradiction in the limit. Therefore, it must be that
s(x,Zk) = smax.
Theorem 1 Assume the conditions of Lemma 1. Define L to be the probability of error for test sample
X given the training sample and label pairs {(Z1, Y1), (Z2, Y2), ... , (ZN, YN)}, and let L* be the Bayes
error. If k,N → ∞ and k/N → 0, then for the local SDA classifier E[L] → L*.
Proof: By Lemma 1, s(x,Zi) = smax for i ≤ k in the limit as N → ∞, and thus in the limit the
centroid µh of the subset of the k neighbors that are from class h must satisfy s(x, µh) = smax,
for every class h which is represented by at least one sample in the k neighbors. By definition

Similarity Discriminant Analysis

105

of the local SDA algorithm, any class h that does not have at least one sample in the k
neighbors is assigned the class prior probability P(Y = h) = 0, so it is effectively eliminated
from the possible classification outcomes. Then, the constraint (9) on the expected value of
the class-conditional similarity for every class g that is represented in the k neighbors of x is

 (23)

which is solved by the pmf P(s(x, µh)│Y = g) = 1 if s(x, µh) = smax, and zero otherwise. Thus
the local SDA classifier (12) becomes

(24)

where the estimated probability of each class P̂ (Y = g) is calculated using a maximum
likelihood estimate of the class probabilities for the neighborhood. Then, P̂ (Y = g) →P(Y =
g│x) as k →∞ with probability one by the strong law of large numbers. Thus the local SDA
classifier converges to the Bayes classifier, and the local SDA average error E[L] → L*.
The known result that k-NN is a consistent classifier can be stated in terms of similarity as a
direct consequence of Lemma 1:
Lemma 2 Assume the conditions of Lemma 1 and define L and L* as in Theorem 1. For the
similarity-based k-NN classifier E[L] →L*.
Proof. It follows directly from Lemma 1 that within the size-k neighborhood of x, Zi = x for i
≤k. Thus, the k-NN classifier (1) estimates the most frequent class among the k samples
maximally similar to x:

The summation converges to the class prior P(Y = g→x) as k →∞ with probability one by the
strong law of large numbers, and the k-NN classifier becomes that in (24). Thus the
similarity-based k-NN classifier is consistent.

4. Mixture SDA
Like LDA and QDA, basic SDA may be too biased if the similarity space - or more generally
the descriptive statistics space - is multi-modal. In analogy to metric space mixture models,
the bias problem in similarity space may be alleviated by generalizing the SDA formulation
with similarity-based mixture models. In the mixture SDA models, the class-conditional
probability distribution of the descriptive statistics (x) for a test sample x is modeled as a
weighted sum of exponential components. Generalizing the single centroid-based SDA
classifier and drawing from the metric mixture models (Duda et al., 2001; Hastie et al., 2001),
each class h is characterized by ch centroids {µhl}. The descriptive statistics for test sample x
are its similarities to the centroids of class h, {s(x, µh1), s(x, µh2), ... , s(x,)}, for each class h.
The mixture SDA model for the probability of the similarities, assuming that test sample x is
drawn from class g, is written as

 Machine Learning

106

(25)

where wghl = 1 and wghl > 0. Then, the SDA classification rule (12) for mixture SDA
becomes to classify x as the class ŷ that solves the maximum a posteriori problem

(26)

Note how the mixture SDA generative model (25) parallels the metric mixture formulation
of Gaussian mixture models (GMMs), with the exponentials in place of the
Gaussian components. However, there are deep differences between mixture SDA and
metric mixture models. In metric learning, the mixtures model the underlying generative
probability distributions of the features. Due to the curse of dimensionality, high-
dimensional, multi-modal feature spaces require many training samples for robust model
parameter estimation. For example, for d features, GMMs require that a d × 1 mean vector
and a d × d covariance matrix be estimated for each component in each class, for a total of
ch ×(d2 +3d)/2 parameters per mixture. Constraining each Gaussian covariance to be diagonal,
at the cost of an increased number of mixture components, alleviates the robust estimation
problem, but does not solve it (Reynolds & Rose, 1995).
When relatively few training samples are available, robust parameter estimation becomes
particularly di±cult. In similarity-based learning the modeled quantity is the similarity of a
sample to a class centroid. The estimation problem is essentially univariate and reduces to
estimating the exponent λghl in each component of the mixture, for a total of ch × G × 2
parameters per mixture (the scaling parameter γghl follows trivially). This simpler classifier
architecture allows robust parameter estimation from smaller training set depending on the
number of centroids per class, or, more generally, the number of descriptive statistics.
Another major difference between mixture SDA and metric mixture models is in the number
of class-conditional probability models that must be estimated. In metric learning, G
mixtures are estimated, one for each of the G possible classes from which a sample x may be
drawn. In mixture SDA, G2 mixture models are estimated. Each sample x is hypothesized
drawn from class g = 1, 2, ...G, and its similarities to each of the G classes are modeled by the
mixture (25), with h = 1, 2. ...G. When the number of classes grows, or when the number of
components in each mixture model grows, the quadratic growth in the number of needed
models presents a challenge in robust parameter estimation, especially when the number of
available training samples is relatively small. However, this problem is mitigated by the fact
that the component SDA parameters may be robustly estimated with smaller training sets
than in metric mixture models due to the simpler, univariate estimation problem at the heart
of SDA classification. The next section discusses the mixture SDA parameter estimation
procedure.

4.1 Estimating the parameters for mixture SDA models
Computing the SDA mixture model for the similarities of samples x ∈ g to class h requires
estimating the number of components ch, the component centroids {µhl}, the component

Similarity Discriminant Analysis

107

weights {wghl} and the component SDA parameters {λghl} and {γghl}. This section describes an
EM algorithm for estimating these mixture parameters. The algorithm parallels the EM
approach for estimating GMM parameters (Duda et al., 2001; Hastie et al., 2001); it is first
summarized below, and then explained in detail in the following sections.
Let θgh = {{wghl}, {γghl}, {λghl}} for l = 1, 2 ... ch be the set of parameters for the class h mixture
model to be estimated under the assumption that the training samples zi, for i = 1, 2, ... ng are
drawn identically and independently. Denote by C a random component of the mixture and
by P(C = l│s(zi, µhl), θgh) the responsibility (Hastie et al., 2001) of the lth component for the
ith training sample similarity s(zi, µhl). Also write P(s(zi, µhl)│C = l, θgh) = .
The proposed EM algorithm for mixture SDA is:
1. Compute the centroids {µhl} with K-medoids algorithm.
2. Initialize the parameters {wghl} and the components P(s(zi, µhl)│C = l, θgh).
3. E step: compute the responsibilities

(27)

4. M step: compute model parameters
(a) Find the λghl which solves

(28)

(b) Compute the corresponding scaling factor

(29)

(c) Compute the component weights

(30)

5. Repeat E and M steps until convergence criterion is satisfied.
Note that, just like EM for GMMs, the EM algorithm for mixture SDA involves iterating the
E step, which estimates the responsibilities, and the M step, which estimates the parameters
that maximize the expected log-likelihood of the training data. At each iteration of the M
step, the explicit expression (30) updates the component weights. However, unlike EM for
GMMs, the update expression for the component parameters (28) is implicit and must be
solved numerically. Another difference between the GMM and SDA EM algorithms is in
how the centroids are estimated. For GMMs, the component means {uhl}, which are the
metric centroids, are updated at each iteration of the M step. For mixture SDA, the centroids
{µhl} are estimated at the beginning of the algorithm and kept constant throughout the
iterations.

 Machine Learning

106

(25)

where wghl = 1 and wghl > 0. Then, the SDA classification rule (12) for mixture SDA
becomes to classify x as the class ŷ that solves the maximum a posteriori problem

(26)

Note how the mixture SDA generative model (25) parallels the metric mixture formulation
of Gaussian mixture models (GMMs), with the exponentials in place of the
Gaussian components. However, there are deep differences between mixture SDA and
metric mixture models. In metric learning, the mixtures model the underlying generative
probability distributions of the features. Due to the curse of dimensionality, high-
dimensional, multi-modal feature spaces require many training samples for robust model
parameter estimation. For example, for d features, GMMs require that a d × 1 mean vector
and a d × d covariance matrix be estimated for each component in each class, for a total of
ch ×(d2 +3d)/2 parameters per mixture. Constraining each Gaussian covariance to be diagonal,
at the cost of an increased number of mixture components, alleviates the robust estimation
problem, but does not solve it (Reynolds & Rose, 1995).
When relatively few training samples are available, robust parameter estimation becomes
particularly di±cult. In similarity-based learning the modeled quantity is the similarity of a
sample to a class centroid. The estimation problem is essentially univariate and reduces to
estimating the exponent λghl in each component of the mixture, for a total of ch × G × 2
parameters per mixture (the scaling parameter γghl follows trivially). This simpler classifier
architecture allows robust parameter estimation from smaller training set depending on the
number of centroids per class, or, more generally, the number of descriptive statistics.
Another major difference between mixture SDA and metric mixture models is in the number
of class-conditional probability models that must be estimated. In metric learning, G
mixtures are estimated, one for each of the G possible classes from which a sample x may be
drawn. In mixture SDA, G2 mixture models are estimated. Each sample x is hypothesized
drawn from class g = 1, 2, ...G, and its similarities to each of the G classes are modeled by the
mixture (25), with h = 1, 2. ...G. When the number of classes grows, or when the number of
components in each mixture model grows, the quadratic growth in the number of needed
models presents a challenge in robust parameter estimation, especially when the number of
available training samples is relatively small. However, this problem is mitigated by the fact
that the component SDA parameters may be robustly estimated with smaller training sets
than in metric mixture models due to the simpler, univariate estimation problem at the heart
of SDA classification. The next section discusses the mixture SDA parameter estimation
procedure.

4.1 Estimating the parameters for mixture SDA models
Computing the SDA mixture model for the similarities of samples x ∈ g to class h requires
estimating the number of components ch, the component centroids {µhl}, the component

Similarity Discriminant Analysis

107

weights {wghl} and the component SDA parameters {λghl} and {γghl}. This section describes an
EM algorithm for estimating these mixture parameters. The algorithm parallels the EM
approach for estimating GMM parameters (Duda et al., 2001; Hastie et al., 2001); it is first
summarized below, and then explained in detail in the following sections.
Let θgh = {{wghl}, {γghl}, {λghl}} for l = 1, 2 ... ch be the set of parameters for the class h mixture
model to be estimated under the assumption that the training samples zi, for i = 1, 2, ... ng are
drawn identically and independently. Denote by C a random component of the mixture and
by P(C = l│s(zi, µhl), θgh) the responsibility (Hastie et al., 2001) of the lth component for the
ith training sample similarity s(zi, µhl). Also write P(s(zi, µhl)│C = l, θgh) = .
The proposed EM algorithm for mixture SDA is:
1. Compute the centroids {µhl} with K-medoids algorithm.
2. Initialize the parameters {wghl} and the components P(s(zi, µhl)│C = l, θgh).
3. E step: compute the responsibilities

(27)

4. M step: compute model parameters
(a) Find the λghl which solves

(28)

(b) Compute the corresponding scaling factor

(29)

(c) Compute the component weights

(30)

5. Repeat E and M steps until convergence criterion is satisfied.
Note that, just like EM for GMMs, the EM algorithm for mixture SDA involves iterating the
E step, which estimates the responsibilities, and the M step, which estimates the parameters
that maximize the expected log-likelihood of the training data. At each iteration of the M
step, the explicit expression (30) updates the component weights. However, unlike EM for
GMMs, the update expression for the component parameters (28) is implicit and must be
solved numerically. Another difference between the GMM and SDA EM algorithms is in
how the centroids are estimated. For GMMs, the component means {uhl}, which are the
metric centroids, are updated at each iteration of the M step. For mixture SDA, the centroids
{µhl} are estimated at the beginning of the algorithm and kept constant throughout the
iterations.

 Machine Learning

108

The update expressions for the mixture SDA parameters are derived from the expression of
the expected log-likelihood of the observed similarities. A standard assumption in EM is
that the observed data are independent and identically distributed given the class and
mixture component. For mixture SDA, this assumption means that the training sample
similarities { g(zi)} = {s(zi, µhl)}, zi ∈ g to the component centroids are identically
distributed and conditionally independent given the lth class component. Then, the
expected log-likelihood of { g(zi)} is

(31)

Using the properties of the logarithm and rearranging the terms, L({ g(zi)}│θgh) splits into
the terms depending on wghl and the terms depending on λghl and γghl:

(32)

The standard EM approach to maximizing (32) is to set its partial derivatives with respect to
the parameters to zero and solve the resulting equations. This is the approach adopted here
for estimating the mixture SDA parameters θgh for all g, h.
The derivation of the expression for the component weights {wghl} follows directly from (32);
both the derivation of and the final expression for the component weights are identical to
the metric mixtures case. Section 4.1.1 re-derives the well-known expression for wghl.
Applying the EM approach, however, does not lead to explicit expressions for {λghl} and
{γghl}. Instead, it leads to many single-parameter constraint expressions for the mean
similarities of the training data to the mixture component centroids. These expressions are
solved with the same numerical solver used in the single-centroid SDA classifier.

4.1.1 Estimating the component weights
To compute the log-likelihood-maximizing weights wghl, one uses the standard technique of
taking the derivative of the log-likelihood with respect to wghl, setting it to zero, and solving
the resulting expression for wghl. The constraint wghl = 1 is taken into account with the
Lagrange multiplier η:

which gives the well-known expression for the component weights of a mixture model in
terms of the responsibilities:

Similarity Discriminant Analysis

109

(33)

4.1.2 Estimating γghl and λghl
The same approach used for estimating the component weights {wghl} is adopted to estimate
the SDA parameters {γghl} and {λghl}: Find the likelihood-maximizing values of the
parameters by setting the corresponding partial derivatives to zero and solving the resulting
equations. First, since each γghl is simply a scaling factor that ensures that each mixture
component is a probability mass function, one rewrites

(34)

where X ∈ g is a random sample from class g, s(X, µhl) is its corresponding random
similarity to component centroid µhl, and Ω is the set of all possible similarity values.
Substituting (34) into (32), setting the partial derivative of L({ h(zi)}│θgh) with respect to λghl

to zero, and rearranging the terms gives

(35)

The first term on the left side of (35) is simply the definition of the expected value of the
similarity of samples in class g to the lth centroid of class h. Thus, one rewrites (35)

(36)

Expression (36) is an equality constraint on the expected value of the similarity of samples
zi ∈ g to the component centroids µhl of class h. This is the same type of constraint that must
be solved in the mean-constrained, maximum entropy formulation of single-centroid SDA
(9). In (9), the mean similarity of samples from class g to the single centroid of class h is
constrained to be equal to the observed average similarity. Analogously, in (36), the mean
similarity of the samples from class g to the lth centroid of class h is constrained to be equal
to the weighted sum of the observed similarities, where each similarity is weighted by its
normalized responsibility. To solve for λghl, one uses the same numerical procedure used to
solve (9) and described in Section 2.1. Thus, solving for all the {λghl} requires solving the
G × ch expressions of (36).
It is not surprising that taking the EM approach to estimating λghl has lead to the same
expressions for the mean constraints in the maximum entropy approach to density
estimation. It is known that maximum likelihood (ML) - the foundation for EM - and

 Machine Learning

108

The update expressions for the mixture SDA parameters are derived from the expression of
the expected log-likelihood of the observed similarities. A standard assumption in EM is
that the observed data are independent and identically distributed given the class and
mixture component. For mixture SDA, this assumption means that the training sample
similarities { g(zi)} = {s(zi, µhl)}, zi ∈ g to the component centroids are identically
distributed and conditionally independent given the lth class component. Then, the
expected log-likelihood of { g(zi)} is

(31)

Using the properties of the logarithm and rearranging the terms, L({ g(zi)}│θgh) splits into
the terms depending on wghl and the terms depending on λghl and γghl:

(32)

The standard EM approach to maximizing (32) is to set its partial derivatives with respect to
the parameters to zero and solve the resulting equations. This is the approach adopted here
for estimating the mixture SDA parameters θgh for all g, h.
The derivation of the expression for the component weights {wghl} follows directly from (32);
both the derivation of and the final expression for the component weights are identical to
the metric mixtures case. Section 4.1.1 re-derives the well-known expression for wghl.
Applying the EM approach, however, does not lead to explicit expressions for {λghl} and
{γghl}. Instead, it leads to many single-parameter constraint expressions for the mean
similarities of the training data to the mixture component centroids. These expressions are
solved with the same numerical solver used in the single-centroid SDA classifier.

4.1.1 Estimating the component weights
To compute the log-likelihood-maximizing weights wghl, one uses the standard technique of
taking the derivative of the log-likelihood with respect to wghl, setting it to zero, and solving
the resulting expression for wghl. The constraint wghl = 1 is taken into account with the
Lagrange multiplier η:

which gives the well-known expression for the component weights of a mixture model in
terms of the responsibilities:

Similarity Discriminant Analysis

109

(33)

4.1.2 Estimating γghl and λghl
The same approach used for estimating the component weights {wghl} is adopted to estimate
the SDA parameters {γghl} and {λghl}: Find the likelihood-maximizing values of the
parameters by setting the corresponding partial derivatives to zero and solving the resulting
equations. First, since each γghl is simply a scaling factor that ensures that each mixture
component is a probability mass function, one rewrites

(34)

where X ∈ g is a random sample from class g, s(X, µhl) is its corresponding random
similarity to component centroid µhl, and Ω is the set of all possible similarity values.
Substituting (34) into (32), setting the partial derivative of L({ h(zi)}│θgh) with respect to λghl

to zero, and rearranging the terms gives

(35)

The first term on the left side of (35) is simply the definition of the expected value of the
similarity of samples in class g to the lth centroid of class h. Thus, one rewrites (35)

(36)

Expression (36) is an equality constraint on the expected value of the similarity of samples
zi ∈ g to the component centroids µhl of class h. This is the same type of constraint that must
be solved in the mean-constrained, maximum entropy formulation of single-centroid SDA
(9). In (9), the mean similarity of samples from class g to the single centroid of class h is
constrained to be equal to the observed average similarity. Analogously, in (36), the mean
similarity of the samples from class g to the lth centroid of class h is constrained to be equal
to the weighted sum of the observed similarities, where each similarity is weighted by its
normalized responsibility. To solve for λghl, one uses the same numerical procedure used to
solve (9) and described in Section 2.1. Thus, solving for all the {λghl} requires solving the
G × ch expressions of (36).
It is not surprising that taking the EM approach to estimating λghl has lead to the same
expressions for the mean constraints in the maximum entropy approach to density
estimation. It is known that maximum likelihood (ML) - the foundation for EM - and

 Machine Learning

110

maximum entropy are dual approaches to estimating distribution parameters which lead to
the same unique solution based on the observed data (Jordan, 20xx). The ML approach
assumes exponential distributions for the similarities, maximizes the likelihood, and arrives
at constraint expressions whose solutions give the desired values for the parameters. The
maximum entropy approach assumes the constraints, maximizes the entropy, and arrives at
exponential distributions whose parameters satisfy the given constraints. This powerful
dual relationship between ML and maximum entropy extends from metric problems to
similarity-based problems; for this reason it leads to the the constraint expression (36), from
which λghl is numerically computed. The corresponding γghl is found by applying (34).

4.1.3 Estimating the centroids
Estimating the centroids of a mixture model encompasses two problems: estimating the
number of components (i.e. centroids) {ch}, and estimating the centroids {µhl}. This work
adopts the common metric learning practice of cross-validating the number of mixture
components {ch}. The centroids {µhl} are estimated with the K-medoids algorithm (Hastie et
al., 2001), using the maximum-sum-similarity criterion (3). The initial centroids are selected
randomly from the training set samples zi ∈ h.

4.1.4 Initializing EM for SDA
In this work, the component weights {wghl} are uniformly initialized to wghl = 1=ch and the
components are assigned uniform initial probability P(s(zi, µhl)│C = l, θgh) = 1/ch. This
initialization reflects the assumption that initially the mixture components equally
contribute to a sample's class-conditional probability: it is the least-assumptive initialization.
Another strategy would be to initialize the weights by the fraction of training samples
assigned to the clusters which result from estimating the centroids with K-medoids. The
component probabilities may also be initialized by estimating the SDA parameters {λghl} and
{γghl} from the K-medoids clusters. This is analogous to the GMM initialization strategy
based on the results of the K-means algorithm. In practice, the simple uniform initialization
works well.

5. Experimental results
SDA, local SDA, mixture SDA, and nnSDA are compared to other similarity-based
classifiers in a series of experiments: the tested classifiers are the nearest centroid (NC), local
nearest centroid (local NC), k-nearest neighbors (k-NN) in similarity space, condensed
nearest neighbor (CNN) (Hastie et al., 2001) in similarity space, and the potential support
vector machine (PSVM) (Hochreiter & Obermayer, 2006). When the features underlying the
similarity are available, the classifiers are also compared to the naive Bayes classifier (Hastie
et al., 2001). The counting similarity (the number of features identically shared by two
binary vectors) and the VDM (Stanfill & Waltz, 1986; Cost & Salzberg, 1993; Wilson &
Martinez, 1997) similarities are used to compute the similarities on which the classifiers
operate, except for cases in which similarity is provided as part of benchmark datasets.
The first set of comparisons involves simulated binary data, where each class is generated
by random perturbations of one or two centroids. The perturbed centroids simulation is a
scenario where each class is characterized by one or two prototypical samples (centroids),
but samples have random perturbations that make them different from their class centroid

Similarity Discriminant Analysis

111

in some features. Thus, this simulation fits the centroid- based SDA models, in that each
class is defined by perturbations around one or two prototypical centroids.
Then, three benchmark datasets are investigated: the protein dataset, the voting dataset, and
the sonar dataset. The results on the simulated and benchmark datasets show that the
proposed similarity-based classifiers are effective in classification problems spanning
several application domains, including cases when the similarity measures do not possess
the metric properties usually assumed for metric classifiers and when the underlying
features are unavailable.
For local SDA and local NC, the class prior probabilities are estimated as the empirical
frequency of each class in the neighborhood; for SDA, mixture SDA, nnSDA, NC, and CNN
they are estimated as the empirical frequency of each class in the entire training data set. The
k-NN classifier is implemented in the standard way, with the neighborhood defined by the
test sample’s k most similar training samples, irrespective of the training samples class. Ties
are broken by assigning a test sample to class one.

5.1 Perturbed centroids
In this two-class simulation, each sample is described by d binary features such that
B = {0, 1}d. Each class is defined by one or two prototypical sets of features (one or two
centroids). Every sample drawn from each class is a class centroid with some features
possibly changed, according to a feature perturbation probability. Several variants of the
simulation are presented, using different combinations of number of class centroids, feature
perturbation probabilities, and similarity measures. Given samples x, z ∈ B, s(x, z) is either
the counting or the VDM similarity. The simulations span several values for the feature
dimensions d and are run several times to better estimate mean error rates. For each run of
the simulation and for each number of features considered, the neighborhood size k for local
SDA, local NC, and k-NN is determined independently for the three classifiers by leave-one-
out cross-validation on the training set of 100 samples; the range of tested values for k is
{1, 2, ... 20, 29, 39, ... , 99}. The optimum k is then used to classify 1000 test samples. Similarly,
the candidate numbers of components for mixture SDA and for CNN are {2, 3, 4, 5, 7, 10}. To
keep the experiment run time within a manageable practical limit, five-fold cross validation
was used to determine the number of components for mixture SDA, and the mixture SDA
EM algorithm was limited to 30 iterations for each cross-validated mixture model. The
parameters for the PSVM classifier are cross-validated over the range of possible values
ε = {0.1, 0.2, ... 1} and C = {1, 51, 101, ... 951}.
The perturbed centroid simulation results are in Tables 1-8. For each value of d, the lowest
mean cross-validation error rate is in bold. Also in bold for each d are the error rates which
are not statistically significantly different from the lowest mean error rate, as determined by
the Wilcoxon signed rank test for paired differences, with a significance level of 0.05. The
naive Bayes classifier results are also included for reference.

5.1.1 Perturbed centroids – one centroid per class
Each class is generated by perturbing one centroidal sample. There are two, equally likely
classes, and each class is defined by one prototypical set of d binary features, c1 or c2, where
c1 and c2 are each drawn uniformly and independently from {0, 1}d. A training or test sample
z drawn from class g has the ith feature z[i] = cg[i] with probability 1 - pg, and z[i] ≠ cg[i] with
perturbation probability pg. In one set of simulation results p1 = 1/3 and p2 = 1/30; thus, class

 Machine Learning

110

maximum entropy are dual approaches to estimating distribution parameters which lead to
the same unique solution based on the observed data (Jordan, 20xx). The ML approach
assumes exponential distributions for the similarities, maximizes the likelihood, and arrives
at constraint expressions whose solutions give the desired values for the parameters. The
maximum entropy approach assumes the constraints, maximizes the entropy, and arrives at
exponential distributions whose parameters satisfy the given constraints. This powerful
dual relationship between ML and maximum entropy extends from metric problems to
similarity-based problems; for this reason it leads to the the constraint expression (36), from
which λghl is numerically computed. The corresponding γghl is found by applying (34).

4.1.3 Estimating the centroids
Estimating the centroids of a mixture model encompasses two problems: estimating the
number of components (i.e. centroids) {ch}, and estimating the centroids {µhl}. This work
adopts the common metric learning practice of cross-validating the number of mixture
components {ch}. The centroids {µhl} are estimated with the K-medoids algorithm (Hastie et
al., 2001), using the maximum-sum-similarity criterion (3). The initial centroids are selected
randomly from the training set samples zi ∈ h.

4.1.4 Initializing EM for SDA
In this work, the component weights {wghl} are uniformly initialized to wghl = 1=ch and the
components are assigned uniform initial probability P(s(zi, µhl)│C = l, θgh) = 1/ch. This
initialization reflects the assumption that initially the mixture components equally
contribute to a sample's class-conditional probability: it is the least-assumptive initialization.
Another strategy would be to initialize the weights by the fraction of training samples
assigned to the clusters which result from estimating the centroids with K-medoids. The
component probabilities may also be initialized by estimating the SDA parameters {λghl} and
{γghl} from the K-medoids clusters. This is analogous to the GMM initialization strategy
based on the results of the K-means algorithm. In practice, the simple uniform initialization
works well.

5. Experimental results
SDA, local SDA, mixture SDA, and nnSDA are compared to other similarity-based
classifiers in a series of experiments: the tested classifiers are the nearest centroid (NC), local
nearest centroid (local NC), k-nearest neighbors (k-NN) in similarity space, condensed
nearest neighbor (CNN) (Hastie et al., 2001) in similarity space, and the potential support
vector machine (PSVM) (Hochreiter & Obermayer, 2006). When the features underlying the
similarity are available, the classifiers are also compared to the naive Bayes classifier (Hastie
et al., 2001). The counting similarity (the number of features identically shared by two
binary vectors) and the VDM (Stanfill & Waltz, 1986; Cost & Salzberg, 1993; Wilson &
Martinez, 1997) similarities are used to compute the similarities on which the classifiers
operate, except for cases in which similarity is provided as part of benchmark datasets.
The first set of comparisons involves simulated binary data, where each class is generated
by random perturbations of one or two centroids. The perturbed centroids simulation is a
scenario where each class is characterized by one or two prototypical samples (centroids),
but samples have random perturbations that make them different from their class centroid

Similarity Discriminant Analysis

111

in some features. Thus, this simulation fits the centroid- based SDA models, in that each
class is defined by perturbations around one or two prototypical centroids.
Then, three benchmark datasets are investigated: the protein dataset, the voting dataset, and
the sonar dataset. The results on the simulated and benchmark datasets show that the
proposed similarity-based classifiers are effective in classification problems spanning
several application domains, including cases when the similarity measures do not possess
the metric properties usually assumed for metric classifiers and when the underlying
features are unavailable.
For local SDA and local NC, the class prior probabilities are estimated as the empirical
frequency of each class in the neighborhood; for SDA, mixture SDA, nnSDA, NC, and CNN
they are estimated as the empirical frequency of each class in the entire training data set. The
k-NN classifier is implemented in the standard way, with the neighborhood defined by the
test sample’s k most similar training samples, irrespective of the training samples class. Ties
are broken by assigning a test sample to class one.

5.1 Perturbed centroids
In this two-class simulation, each sample is described by d binary features such that
B = {0, 1}d. Each class is defined by one or two prototypical sets of features (one or two
centroids). Every sample drawn from each class is a class centroid with some features
possibly changed, according to a feature perturbation probability. Several variants of the
simulation are presented, using different combinations of number of class centroids, feature
perturbation probabilities, and similarity measures. Given samples x, z ∈ B, s(x, z) is either
the counting or the VDM similarity. The simulations span several values for the feature
dimensions d and are run several times to better estimate mean error rates. For each run of
the simulation and for each number of features considered, the neighborhood size k for local
SDA, local NC, and k-NN is determined independently for the three classifiers by leave-one-
out cross-validation on the training set of 100 samples; the range of tested values for k is
{1, 2, ... 20, 29, 39, ... , 99}. The optimum k is then used to classify 1000 test samples. Similarly,
the candidate numbers of components for mixture SDA and for CNN are {2, 3, 4, 5, 7, 10}. To
keep the experiment run time within a manageable practical limit, five-fold cross validation
was used to determine the number of components for mixture SDA, and the mixture SDA
EM algorithm was limited to 30 iterations for each cross-validated mixture model. The
parameters for the PSVM classifier are cross-validated over the range of possible values
ε = {0.1, 0.2, ... 1} and C = {1, 51, 101, ... 951}.
The perturbed centroid simulation results are in Tables 1-8. For each value of d, the lowest
mean cross-validation error rate is in bold. Also in bold for each d are the error rates which
are not statistically significantly different from the lowest mean error rate, as determined by
the Wilcoxon signed rank test for paired differences, with a significance level of 0.05. The
naive Bayes classifier results are also included for reference.

5.1.1 Perturbed centroids – one centroid per class
Each class is generated by perturbing one centroidal sample. There are two, equally likely
classes, and each class is defined by one prototypical set of d binary features, c1 or c2, where
c1 and c2 are each drawn uniformly and independently from {0, 1}d. A training or test sample
z drawn from class g has the ith feature z[i] = cg[i] with probability 1 - pg, and z[i] ≠ cg[i] with
perturbation probability pg. In one set of simulation results p1 = 1/3 and p2 = 1/30; thus, class

 Machine Learning

112

two is well-clustered around its generating centroid and the two classes are well-separated.
In another set of simulation results, p1 = 1/3 and p2 = 1/4 and the two classes are not as well
separated. Classifiers are trained on 100 training samples and tested on 1000 test samples
per run; twenty runs are executed for a total of 20, 000 test samples. The number of features
d ranges from d = 2 to d = 200 in the simulation, but the number of training samples is kept
constant at 100, so that d = 200 is a sparsely populated feature space. This procedure was
repeated for the counting and for the VDM similarities, so there are four sets of results for
the one centroid simulation, depending on the perturbation probabilities and the similarity
measure used. The results are in Tables 1-4.
The performance of all classifiers increases as d increases. For large d, the feature space is
sparsely populated by the training and test samples, which are segregated around their
corresponding generating centroids. This leads to good classification performance for all
classifiers. For small d, the feature space is densely populated by the samples, and the two
classes considerably overlap, negatively affecting the classification performance.

Table 1. Perturbed centroids experiment - One centroid per class. Misclasssification
percentage for counting similarity, perturbation probabilities p1 = 1/3 and p2 = 1/30.

Across all four sets of results, the naive Bayes classifier almost always gives the best
performance. Its assumption that the features are independent captures the true underlying
relationship of the sample features makes the naive Bayes classifier well suited for these
particular data sets: indeed the samples are generated as random vectors of independent
binary features. The consequent excellent performance of the naive Bayes classifier provides
a reference point for the other classifiers. More generally, when a classification problem
involves samples natively embedded in an Euclidean space, as in these perturbed centroids
experiments, metric-space classifiers like naive Bayes can perform well. In these cases, the
similarity-based classification framework provides no clear advantage.
On the other hand, naive Bayes cannot be used when the samples are not described by vectors
of independent features, either because the features are not known, the independence
assumption is too restrictive for effective performance, or because the Euclidean

Similarity Discriminant Analysis

113

representation does not sufficiently capture the pairwise relationships of the samples. In
these cases, the similarity-based techniques provide solutions to classification problems.
Thus, in these perturbed centroids experiments, the naive Bayes classifier is a good reference
for assessing the effectiveness of the similarity-based classifiers, but it is not considered for
the Wilcoxon significance tests because it is not generally applicable to similarity-based
classification.

Table 2. Perturbed centroids experiment - One centroid per class. Misclasssification
percentage for counting similarity, perturbation probabilities p1 = 1/3 and p2 = 1/4.

Table 3. Perturbed centroids experiment - One centroid per class. Misclasssification
percentage for VDM similarity, perturbation probabilities p1 = 1/3 and p2 = 1/30.

 Machine Learning

112

two is well-clustered around its generating centroid and the two classes are well-separated.
In another set of simulation results, p1 = 1/3 and p2 = 1/4 and the two classes are not as well
separated. Classifiers are trained on 100 training samples and tested on 1000 test samples
per run; twenty runs are executed for a total of 20, 000 test samples. The number of features
d ranges from d = 2 to d = 200 in the simulation, but the number of training samples is kept
constant at 100, so that d = 200 is a sparsely populated feature space. This procedure was
repeated for the counting and for the VDM similarities, so there are four sets of results for
the one centroid simulation, depending on the perturbation probabilities and the similarity
measure used. The results are in Tables 1-4.
The performance of all classifiers increases as d increases. For large d, the feature space is
sparsely populated by the training and test samples, which are segregated around their
corresponding generating centroids. This leads to good classification performance for all
classifiers. For small d, the feature space is densely populated by the samples, and the two
classes considerably overlap, negatively affecting the classification performance.

Table 1. Perturbed centroids experiment - One centroid per class. Misclasssification
percentage for counting similarity, perturbation probabilities p1 = 1/3 and p2 = 1/30.

Across all four sets of results, the naive Bayes classifier almost always gives the best
performance. Its assumption that the features are independent captures the true underlying
relationship of the sample features makes the naive Bayes classifier well suited for these
particular data sets: indeed the samples are generated as random vectors of independent
binary features. The consequent excellent performance of the naive Bayes classifier provides
a reference point for the other classifiers. More generally, when a classification problem
involves samples natively embedded in an Euclidean space, as in these perturbed centroids
experiments, metric-space classifiers like naive Bayes can perform well. In these cases, the
similarity-based classification framework provides no clear advantage.
On the other hand, naive Bayes cannot be used when the samples are not described by vectors
of independent features, either because the features are not known, the independence
assumption is too restrictive for effective performance, or because the Euclidean

Similarity Discriminant Analysis

113

representation does not sufficiently capture the pairwise relationships of the samples. In
these cases, the similarity-based techniques provide solutions to classification problems.
Thus, in these perturbed centroids experiments, the naive Bayes classifier is a good reference
for assessing the effectiveness of the similarity-based classifiers, but it is not considered for
the Wilcoxon significance tests because it is not generally applicable to similarity-based
classification.

Table 2. Perturbed centroids experiment - One centroid per class. Misclasssification
percentage for counting similarity, perturbation probabilities p1 = 1/3 and p2 = 1/4.

Table 3. Perturbed centroids experiment - One centroid per class. Misclasssification
percentage for VDM similarity, perturbation probabilities p1 = 1/3 and p2 = 1/30.

 Machine Learning

114

Table 4. Perturbed centroids experiment - One centroid per class. Misclasssification
percentage for VDM similarity, perturbation probabilities p1 = 1/3 and p2 = 1/4.

With few exceptions the PSVM performs best on the four sets of results on a wide range of d.
This is likely because the PSVM classifies a test sample based on its similarities to the entire
training set. In contrast, local methods such as local SDA, local NC, nnSDA, k-NN, and
CNN make use of a subset of the training samples and thus have less information available
to classify. Global methods based on the similarity-to-class-centroid summary statistic such
as SDA, NC, and CNN also use less information. It is plausible that the ability to make use
of all the similarity information in the training set and to optimally weight the similarities to
the training samples gives the PSVM a performance advantage over the other techniques.
However, in spite of this advantage, the results show that for low and high values of d the
SDA-based techniques yield statistically equivalent performance to the PSVM, and in some
cases match or exceed its results. When the PSVM statistically produces significantly
different results from the other techniques, its performance does not hugely surpass them.
Thus the similarity-based techniques possess the ability to produce good classification
results using less information. This quality can be immensely useful when few training
samples are available.
In all four sets of results, the SDA-based algorithms generally perform better than their non-
generative counterparts: local SDA performs better than local NC and SDA performs better
than NC. This shows that generative models based on the similarity of samples to local or
global class centroids provide increased discriminative power over the non-generative
centroid-based similarity models. Furthermore, in almost all cases across the four sets of
results, local SDA performs better than SDA. While the classification performance of SDA is
good, its inherent model bias prevents it from achieving even better performance; local SDA
is not as susceptible to model bias, and is able to perform very well. Still, the SDA
performance is close to that of the local SDA in all cases and sometimes it surpasses it (VDM
similarity with p2 = 1/4), a confirmation that the single-centroid generative model at the heart
of SDA matches well the perturbed single-centroid experimental setup for these sets of
results.

Similarity Discriminant Analysis

115

The similarity-space k-NN performs well, albeit not as well as the PSVM. Compared to SDA,
k-NN performs better only for the counting similarity and p2 = 1/4. Since SDA matches well
the class models for the generated samples, it is not surprising that it performs better than k-
NN, which does not rely on class models. However, k-NN does better when the class two
perturbed samples are more likely to differ from their generating class two centroid (p2 =
1/4), that is when the classes overlap more. In this case, it is more di±cult to estimate the
class centroids, and the SDA performance is affected. On the other hand, SDA is better than
k-NN for the VDM similarity, for both p2 = 1/30 and p2 = 1/4. The VDM similarity is
calculated from class-dependent lookup tables pre-computed from the training set, and this
additional information seems to favor the SDA classifier more than the k-NN. Local SDA,
performs slightly better than k-NN when p2 = 1/30 for both counting and VDM similarities.
The CNN classifier generally does not perform as well as k-NN. This is expected, because,
as for its metric learning analog, the condensing process primarily aims to reduce the size of
large training sets and possibly eliminate outliers rather than to improve classification
performance. The observed lower performance of CNN compared to k-NN reflects the
expectation that classification performance will degrade when using the condensed training
set instead of the full set of available training samples.
The nnSDA classifier performs well for the counting similarity when p2 = 1/30, and in
general for higher values of d. For low values of d the performance is particularly poor: for
d = 2 the error rate is essentially equal to that of a random classifier (50%) and for d = 4 it is
only slightly better. In fact, the nnSDA performance is limited by the interplay of its
asymptotic behavior and the value of d. Recall that by Lemma (1) from Section 3.1,
P(s(x,Zk) = smax) → 1 as k,N →∞ and k/N → 0, where k is the neighborhood size, N is the
number of available training samples, and Zk is the k-th nearest neighbor of test sample x.
Then, it follows that P(snn,h(x) = smax) → 1 for all h as k, n →∞, because snn,h(x) = s(x,Z1) for
Z1 ∈ h as k→∞. Thus, for nnSDA, the similarities of a test sample to its nearest neighbors in
each class are all identical in the limit of infinite number of training samples. Consequently,
for a large training set, all class discriminants in the nnSDA classification rule (17) are
identical and therefore uninformative. The classification rule (17) reduces to the trivial rule
that classifies according to the cost-adjusted class priors,

(37)

When 0-1 costs are used, as in this simulation, the rule (37) always classifies as the class g
with the highest prior probability P̂ (Y = g), estimated as the empirical frequency from the
training data:

(38)

In this experiment, the samples are generated from two, a priori equally likely classes, so the
limit misclassification rate is

The limit error rate is noticeable when d is small. In this case the similarity can take on
values in a limited range bounded by d (s(x, z) ∈[0, 1 ...d] for the counting similarity) and the
training set is highly redundant. Thus, a test sample x is very likely to be maximally similar

 Machine Learning

114

Table 4. Perturbed centroids experiment - One centroid per class. Misclasssification
percentage for VDM similarity, perturbation probabilities p1 = 1/3 and p2 = 1/4.

With few exceptions the PSVM performs best on the four sets of results on a wide range of d.
This is likely because the PSVM classifies a test sample based on its similarities to the entire
training set. In contrast, local methods such as local SDA, local NC, nnSDA, k-NN, and
CNN make use of a subset of the training samples and thus have less information available
to classify. Global methods based on the similarity-to-class-centroid summary statistic such
as SDA, NC, and CNN also use less information. It is plausible that the ability to make use
of all the similarity information in the training set and to optimally weight the similarities to
the training samples gives the PSVM a performance advantage over the other techniques.
However, in spite of this advantage, the results show that for low and high values of d the
SDA-based techniques yield statistically equivalent performance to the PSVM, and in some
cases match or exceed its results. When the PSVM statistically produces significantly
different results from the other techniques, its performance does not hugely surpass them.
Thus the similarity-based techniques possess the ability to produce good classification
results using less information. This quality can be immensely useful when few training
samples are available.
In all four sets of results, the SDA-based algorithms generally perform better than their non-
generative counterparts: local SDA performs better than local NC and SDA performs better
than NC. This shows that generative models based on the similarity of samples to local or
global class centroids provide increased discriminative power over the non-generative
centroid-based similarity models. Furthermore, in almost all cases across the four sets of
results, local SDA performs better than SDA. While the classification performance of SDA is
good, its inherent model bias prevents it from achieving even better performance; local SDA
is not as susceptible to model bias, and is able to perform very well. Still, the SDA
performance is close to that of the local SDA in all cases and sometimes it surpasses it (VDM
similarity with p2 = 1/4), a confirmation that the single-centroid generative model at the heart
of SDA matches well the perturbed single-centroid experimental setup for these sets of
results.

Similarity Discriminant Analysis

115

The similarity-space k-NN performs well, albeit not as well as the PSVM. Compared to SDA,
k-NN performs better only for the counting similarity and p2 = 1/4. Since SDA matches well
the class models for the generated samples, it is not surprising that it performs better than k-
NN, which does not rely on class models. However, k-NN does better when the class two
perturbed samples are more likely to differ from their generating class two centroid (p2 =
1/4), that is when the classes overlap more. In this case, it is more di±cult to estimate the
class centroids, and the SDA performance is affected. On the other hand, SDA is better than
k-NN for the VDM similarity, for both p2 = 1/30 and p2 = 1/4. The VDM similarity is
calculated from class-dependent lookup tables pre-computed from the training set, and this
additional information seems to favor the SDA classifier more than the k-NN. Local SDA,
performs slightly better than k-NN when p2 = 1/30 for both counting and VDM similarities.
The CNN classifier generally does not perform as well as k-NN. This is expected, because,
as for its metric learning analog, the condensing process primarily aims to reduce the size of
large training sets and possibly eliminate outliers rather than to improve classification
performance. The observed lower performance of CNN compared to k-NN reflects the
expectation that classification performance will degrade when using the condensed training
set instead of the full set of available training samples.
The nnSDA classifier performs well for the counting similarity when p2 = 1/30, and in
general for higher values of d. For low values of d the performance is particularly poor: for
d = 2 the error rate is essentially equal to that of a random classifier (50%) and for d = 4 it is
only slightly better. In fact, the nnSDA performance is limited by the interplay of its
asymptotic behavior and the value of d. Recall that by Lemma (1) from Section 3.1,
P(s(x,Zk) = smax) → 1 as k,N →∞ and k/N → 0, where k is the neighborhood size, N is the
number of available training samples, and Zk is the k-th nearest neighbor of test sample x.
Then, it follows that P(snn,h(x) = smax) → 1 for all h as k, n →∞, because snn,h(x) = s(x,Z1) for
Z1 ∈ h as k→∞. Thus, for nnSDA, the similarities of a test sample to its nearest neighbors in
each class are all identical in the limit of infinite number of training samples. Consequently,
for a large training set, all class discriminants in the nnSDA classification rule (17) are
identical and therefore uninformative. The classification rule (17) reduces to the trivial rule
that classifies according to the cost-adjusted class priors,

(37)

When 0-1 costs are used, as in this simulation, the rule (37) always classifies as the class g
with the highest prior probability P̂ (Y = g), estimated as the empirical frequency from the
training data:

(38)

In this experiment, the samples are generated from two, a priori equally likely classes, so the
limit misclassification rate is

The limit error rate is noticeable when d is small. In this case the similarity can take on
values in a limited range bounded by d (s(x, z) ∈[0, 1 ...d] for the counting similarity) and the
training set is highly redundant. Thus, a test sample x is very likely to be maximally similar

 Machine Learning

116

to its nearest neighbor from each class, and snn,h(x) is uninformative. In higher dimensions,
the experimental results show that the training set is sufficiently sparse for effective
classification. Thus nnSDA is a viable classifier for sparse training sets which do not cover
the entire range of possible values for the chosen similarity. In applications when few
training samples are available, nnSDA can be a valuable tool for achieving actionable
classification results.

5.1.2 Perturbed centroids – two centroids per class
In this variation of the perturbed centroids simulation, each class is characterized by two
prototypical samples, c11, c12 for class one, and c21, c22 for class two. Each time the simulation
is run, the centroids c11, c12, c21, c22 are drawn independently and identically using a uniform
distribution over .
Every sample drawn from each class is a perturbed version of one of the two class
prototypes, where the class labels are drawn independently and identically with probability
1/2. A training or test sample z drawn from class one is randomly selected to be z = c11 or z =
c12 with probability 1/2, and then for each i = 1, ... , d, z’s ith feature is probabilistically
perturbed so that z[i] ≠ c11[i] with probability p11 (or z[i] ≠ c12[i] with probability p12). Thus on
average, a randomly drawn sample based on c11 will have dp11 features that are different
from the class prototype c11’s features. Likewise, a training or test sample v drawn from class
two starts out as v = c21 or v = c22 with probability 1/2, but then for each i = 1, ..., d, v’s ith
feature is changed so that v[i] ≠ c21[i] with probability p21 (or v[i] ≠ c22[i] with probability p22).
The number of features d ranges from d = 2 to d = 200 in the simulation, but the number of
training samples is kept constant at 100, so that d = 200 is a sparsely populated feature space.
Two different sets of values of the perturbation probabilities p11, p12, p21, p22 were used: in the
first case p11 = p12 = 1/3 and p21 = p22 = 1/30, so that the class two samples are much more
tightly clustered around c21 and c22 than the class one samples are with respect to c11 and c12.
In the second case, p11 = p12 = 1/3 and p21 = p22 = 1/4, resulting in a higher Bayes error. Each
simulation was run twenty times, for a total of 20,000 test samples. The resulting mean error
rates are given in Tables 5-8.

Table 5. Perturbed centroids experiment - Two centroids per class. Misclassification percentage
for counting similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/30.

Similarity Discriminant Analysis

117

Table 6. Perturbed centroids experiment - Two centroids per class. Misclassification percentage
for counting similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/4.

Table 7. Perturbed centroids experiment - Two centroids per class. Misclassification percentage
for VDM similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/30.

For all four sets of results, the local SDA classifier performs better than the local NC
classifier. This result agrees with the analogous case for the single centroid experiments and
attests to the advantage that similarity-based generative models provide over simpler
nearest-centroid classifiers. However, the SDA classifier yields better classification than its
counterpart NC classifier only for the VDM similarity. For the counting similarity, SDA does
not provide an advantage over NC. There are two causes that contribute to this outcome.
First, the single-centroid SDA is a biased model that does not match the true two-centroids-
per-class experimental setup. Consider class one and its centroids, c11 and c12. SDA at best
correctly estimates one of the two centroids per class, let's say ĉ 11. Thus, the estimated

 Machine Learning

116

to its nearest neighbor from each class, and snn,h(x) is uninformative. In higher dimensions,
the experimental results show that the training set is sufficiently sparse for effective
classification. Thus nnSDA is a viable classifier for sparse training sets which do not cover
the entire range of possible values for the chosen similarity. In applications when few
training samples are available, nnSDA can be a valuable tool for achieving actionable
classification results.

5.1.2 Perturbed centroids – two centroids per class
In this variation of the perturbed centroids simulation, each class is characterized by two
prototypical samples, c11, c12 for class one, and c21, c22 for class two. Each time the simulation
is run, the centroids c11, c12, c21, c22 are drawn independently and identically using a uniform
distribution over .
Every sample drawn from each class is a perturbed version of one of the two class
prototypes, where the class labels are drawn independently and identically with probability
1/2. A training or test sample z drawn from class one is randomly selected to be z = c11 or z =
c12 with probability 1/2, and then for each i = 1, ... , d, z’s ith feature is probabilistically
perturbed so that z[i] ≠ c11[i] with probability p11 (or z[i] ≠ c12[i] with probability p12). Thus on
average, a randomly drawn sample based on c11 will have dp11 features that are different
from the class prototype c11’s features. Likewise, a training or test sample v drawn from class
two starts out as v = c21 or v = c22 with probability 1/2, but then for each i = 1, ..., d, v’s ith
feature is changed so that v[i] ≠ c21[i] with probability p21 (or v[i] ≠ c22[i] with probability p22).
The number of features d ranges from d = 2 to d = 200 in the simulation, but the number of
training samples is kept constant at 100, so that d = 200 is a sparsely populated feature space.
Two different sets of values of the perturbation probabilities p11, p12, p21, p22 were used: in the
first case p11 = p12 = 1/3 and p21 = p22 = 1/30, so that the class two samples are much more
tightly clustered around c21 and c22 than the class one samples are with respect to c11 and c12.
In the second case, p11 = p12 = 1/3 and p21 = p22 = 1/4, resulting in a higher Bayes error. Each
simulation was run twenty times, for a total of 20,000 test samples. The resulting mean error
rates are given in Tables 5-8.

Table 5. Perturbed centroids experiment - Two centroids per class. Misclassification percentage
for counting similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/30.

Similarity Discriminant Analysis

117

Table 6. Perturbed centroids experiment - Two centroids per class. Misclassification percentage
for counting similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/4.

Table 7. Perturbed centroids experiment - Two centroids per class. Misclassification percentage
for VDM similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/30.

For all four sets of results, the local SDA classifier performs better than the local NC
classifier. This result agrees with the analogous case for the single centroid experiments and
attests to the advantage that similarity-based generative models provide over simpler
nearest-centroid classifiers. However, the SDA classifier yields better classification than its
counterpart NC classifier only for the VDM similarity. For the counting similarity, SDA does
not provide an advantage over NC. There are two causes that contribute to this outcome.
First, the single-centroid SDA is a biased model that does not match the true two-centroids-
per-class experimental setup. Consider class one and its centroids, c11 and c12. SDA at best
correctly estimates one of the two centroids per class, let's say ĉ 11. Thus, the estimated

 Machine Learning

118

centroid- based generative model for class one is a good match for the samples which are
generated as random perturbations of c11. The model, however, is not a good match for
samples generated as random perturbations of c12. The model cannot distinguish the
similarities of these class one samples to ĉ 11 from their similarities to the centroids of class
two. The result is that the c12-generated samples are classified according to the class priors,
that is half as class one and half as class two. The same argument applies to class two, so
that overall about 25% of the samples are misclassified. Indeed, the SDA error rates quickly
settle to ≈25% for the counting similarity for medium to large values of d. For lower d, the
class overlap due to the density of the feature space dominates the misclassification rate.

Table 8. Perturbed centroids experiment - Two centroids per class. Misclassification percentage
for VDM similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/4.

The second cause contributing to the observed SDA results stems from the way the class
centroids are generated. Each class centroid is generated randomly from a multivariate
uniform distribution over the feature space. Thus, there is no guarantee that two centroids
from the same class be more similar to each other than two centroids from different classes,
that is there is no guarantee that s(c1i, c1j) < s(c1i, c2j) for i, j = 1, 2. On the contrary, on average
over many draws from the sample space, the centroids are equally similar, and
consequently the samples generated as perturbations of c12, c21, and c22 are approximately
equally similar to c11. This amplifies the detrimental effect of the bias in the SDA model. If
the condition on the similarities between centroids s(c1i, c1j) < s(c1i, c2j) were enforced, then
even the biased SDA model would produce better classification results.
The performance of mixture SDA is comparable to that of SDA if not slightly better. For the
particularly simple case of the counting similarity with p21 = p22 = 1/30, the mixture SDA
provides an order of magnitude improvement over SDA, showing that it is able to alleviate
the bias problem inherent to the single-centroid SDA. However, in all other perturbed
centroids results the comparison between the performance of mixture SDA and SDA is
inconclusive. For p21 = p22 = 1/4, the overlap between the classes overshadows any
performance gains mixture SDA might obtain; for the VDM results, the advantage provided
by the optimized similarity measure brings the performance of SDA and mixture SDA closer
together, and thus limits the gains of mixture SDA. Given the increase in complexity of the

Similarity Discriminant Analysis

119

mixture SDA classifier and its inconclusive performance advantages, for these experiments
it might be more advantageous to use local classifiers such as local SDA to obtain improved
performance. The results show that local SDA consistently performs very well, and with
only a few exceptions outperforms SDA and mixture SDA.
Note that for the VDM similarity, SDA produces excellent classification results which are
very competitive with local SDA and local NC, and consistently outperform NC. The large
improvement is attributable to the fact that the VDM undergoes a training phase, performed
on the training set, in which the class information is used to optimize the similarity measure
for class discrimination. This training step greatly benefits the SDA classifier and yields
improved classification results for all classifiers when compared to the counting similarity,
which does not rely on such pre-computations.
As for the single-centroid results, nnSDA is most effective at higher values of d, when the
feature space is sparsely populated by the samples. A consistently good performer is the k-
NN classifier, which is very competitive with local SDA, local NC, and the PSVM when p21 =
p22 = 1/30, and often outperforms them when p21 = p22 = 1/4. Using a subset of the training
samples, as with CNN, negatively impacts the classification performance for all sets of
simulations, consistently with the single-centroids results discussed in the previous section.

5.2 Benchmark data sets
Three benchmark data sets are used to analyze further the performance of various
similarity-based classifiers: a data set of protein similarities, a data set of congressional
voting records, and a data set of aural sonar similarities. The tested classifiers are the local
SDA, local NC, SDA, NC, nnSDA, k-NN, and PSVM classifiers. The mixture SDA and CNN
classifiers are not tested on these data sets, as the long time required to cross-validate their
parameters does not justify their attainable performance.
The performance of the classifiers on all three benchmark data sets is evaluated as the leave-
one-out error, as follows. One sample is set aside as the test sample, and all other N – 1
samples are used for training. The parameters for each classifier are cross-validated on the N
– 1 training samples using leave-one-out cross validation. The resulting best parameters are
used to train each classifier on the entire N – 1 training samples, and the trained classifier
finally classifies the test sample. The process is repeated until all available samples are
tested by the trained classifiers. For local SDA, local NC and k-NN, the neighborhood size is
cross-validated on the set of possible sizes {1, 2, ... 20, 30 ... 100, 150, 200}. The PSVM
parameters are cross-validated over the sets of possible values C = {1, 51, ... 951}, and
ε = {0.1, 0.2, ... 1}. The class priors are estimated to be the empirical probability of seeing a
sample from each class, with Laplace correction (Jaynes, 2003). Table 9 shows the percent
leave-one-out error for each classifier evaluated on the three benchmark datasets. The data
sets experiments are discussed in more detail in the following sections.

Table 9. Percentage of leave-one-out misclassifications on the protein data set.

 Machine Learning

118

centroid- based generative model for class one is a good match for the samples which are
generated as random perturbations of c11. The model, however, is not a good match for
samples generated as random perturbations of c12. The model cannot distinguish the
similarities of these class one samples to ĉ 11 from their similarities to the centroids of class
two. The result is that the c12-generated samples are classified according to the class priors,
that is half as class one and half as class two. The same argument applies to class two, so
that overall about 25% of the samples are misclassified. Indeed, the SDA error rates quickly
settle to ≈25% for the counting similarity for medium to large values of d. For lower d, the
class overlap due to the density of the feature space dominates the misclassification rate.

Table 8. Perturbed centroids experiment - Two centroids per class. Misclassification percentage
for VDM similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/4.

The second cause contributing to the observed SDA results stems from the way the class
centroids are generated. Each class centroid is generated randomly from a multivariate
uniform distribution over the feature space. Thus, there is no guarantee that two centroids
from the same class be more similar to each other than two centroids from different classes,
that is there is no guarantee that s(c1i, c1j) < s(c1i, c2j) for i, j = 1, 2. On the contrary, on average
over many draws from the sample space, the centroids are equally similar, and
consequently the samples generated as perturbations of c12, c21, and c22 are approximately
equally similar to c11. This amplifies the detrimental effect of the bias in the SDA model. If
the condition on the similarities between centroids s(c1i, c1j) < s(c1i, c2j) were enforced, then
even the biased SDA model would produce better classification results.
The performance of mixture SDA is comparable to that of SDA if not slightly better. For the
particularly simple case of the counting similarity with p21 = p22 = 1/30, the mixture SDA
provides an order of magnitude improvement over SDA, showing that it is able to alleviate
the bias problem inherent to the single-centroid SDA. However, in all other perturbed
centroids results the comparison between the performance of mixture SDA and SDA is
inconclusive. For p21 = p22 = 1/4, the overlap between the classes overshadows any
performance gains mixture SDA might obtain; for the VDM results, the advantage provided
by the optimized similarity measure brings the performance of SDA and mixture SDA closer
together, and thus limits the gains of mixture SDA. Given the increase in complexity of the

Similarity Discriminant Analysis

119

mixture SDA classifier and its inconclusive performance advantages, for these experiments
it might be more advantageous to use local classifiers such as local SDA to obtain improved
performance. The results show that local SDA consistently performs very well, and with
only a few exceptions outperforms SDA and mixture SDA.
Note that for the VDM similarity, SDA produces excellent classification results which are
very competitive with local SDA and local NC, and consistently outperform NC. The large
improvement is attributable to the fact that the VDM undergoes a training phase, performed
on the training set, in which the class information is used to optimize the similarity measure
for class discrimination. This training step greatly benefits the SDA classifier and yields
improved classification results for all classifiers when compared to the counting similarity,
which does not rely on such pre-computations.
As for the single-centroid results, nnSDA is most effective at higher values of d, when the
feature space is sparsely populated by the samples. A consistently good performer is the k-
NN classifier, which is very competitive with local SDA, local NC, and the PSVM when p21 =
p22 = 1/30, and often outperforms them when p21 = p22 = 1/4. Using a subset of the training
samples, as with CNN, negatively impacts the classification performance for all sets of
simulations, consistently with the single-centroids results discussed in the previous section.

5.2 Benchmark data sets
Three benchmark data sets are used to analyze further the performance of various
similarity-based classifiers: a data set of protein similarities, a data set of congressional
voting records, and a data set of aural sonar similarities. The tested classifiers are the local
SDA, local NC, SDA, NC, nnSDA, k-NN, and PSVM classifiers. The mixture SDA and CNN
classifiers are not tested on these data sets, as the long time required to cross-validate their
parameters does not justify their attainable performance.
The performance of the classifiers on all three benchmark data sets is evaluated as the leave-
one-out error, as follows. One sample is set aside as the test sample, and all other N – 1
samples are used for training. The parameters for each classifier are cross-validated on the N
– 1 training samples using leave-one-out cross validation. The resulting best parameters are
used to train each classifier on the entire N – 1 training samples, and the trained classifier
finally classifies the test sample. The process is repeated until all available samples are
tested by the trained classifiers. For local SDA, local NC and k-NN, the neighborhood size is
cross-validated on the set of possible sizes {1, 2, ... 20, 30 ... 100, 150, 200}. The PSVM
parameters are cross-validated over the sets of possible values C = {1, 51, ... 951}, and
ε = {0.1, 0.2, ... 1}. The class priors are estimated to be the empirical probability of seeing a
sample from each class, with Laplace correction (Jaynes, 2003). Table 9 shows the percent
leave-one-out error for each classifier evaluated on the three benchmark datasets. The data
sets experiments are discussed in more detail in the following sections.

Table 9. Percentage of leave-one-out misclassifications on the protein data set.

 Machine Learning

120

5.2.1 Protein data
Many bioinformatics prediction problems are formulated in terms of pairwise similarities or
dissimilarities. An example is the protein data set used by (Hochreiter & Obermayer, 2006).
For this data set, pairwise dissimilarity values are calculated using the evolutionary
distance, which is the probability that an amino acid sequence transforms into another one
(Hofmann & Buhmann, 1997). The sample space is not enumerated, so classification must
be done based only on the pairwise dissimilarity values. The dataset contains 213 proteins
with class labels “HA” (72 samples), “HB” (72 samples), “M” (39 samples) , and “G” (30
samples). The SDA, local SDA, nearest centroid, local nearest centroid, and k-NN classifiers
natively support multiclass classification problems, so they can be applied directly to this
four-class experiment. The PSVM, however, is a binary classifier and cannot be applied to
this multiclass data set.
Guessing that all samples were from the most prevalent class would yield a 66.2% error rate.
The simple one-centroid per class model of SDA achieves half that error, and works better
than the more flexible local nearest centroid classifier. Local SDA, local nearest centroid and
k-NN all have the same free parameter, the neighborhood size k. Of these, local SDA is seen
to be best suited to this problem.

5.2.2 Voting data set
The UCI voting data set (Newman et al., 1998) records the voting record of 435 members of
the US House of Representatives on 16 bills. The binary classification problem is to predict
each member's political party affiliation given the voting records. Each of the 16 votes is
either a yes, a no, or “neither”, so there are 16 features which can each take on 3 possible
values. This classification problem can be treated as a similarity-based classification problem
by applying a similarity function to the trinary feature space. The adopted similarity in this
experiment is the counting similarity.

5.2.3 Aural sonar echoes classification
In the sonar echoes classification experiment, the data consist of 100 pairwise similarities
assessed by human listeners. The listeners rated the pairwise similarities of digitized active
sonar echoes from two classes { clutter or target { without knowledge of the class labels, and
based their evaluation of similarity only on their perceptual judgement of how the echoes
sounded similar; thus, the underlying features of similarity are inaccessible. Each listener
assigned a discrete similarity value between 1 and 5 to each pair of echoes; each pair was
rated by two different listeners, and the two assigned similarity scores were added, so that
the range of possible values for the similarity is [2, 10]. The target and clutter classes are
equally likely, each one containing 50 echoes. This set of echoes is particularly difficult to
classify in that metric-space classifiers produced incorrect results. Further details on this
data set are in (Philips et al., 2006).

6. Summary
The chapter introduced a new framework for classification that is both similarity-based and
generative: similarity discriminant analysis, or SDA. The experimental results show that the

Similarity Discriminant Analysis

121

classifiers resulting from the proposed SDA framework have practical advantages in terms
of performance, interpretability, and ease of use. SDA is similarity-based in that it classifies
samples based on their pairwise similarities and does not require that the samples be
described by numerical feature vectors, the standard sample description method in metric
learning. SDA is generative, in that it estimates probabilistic models based on descriptive
statistics of the classes. Having access to probability estimates is important. A probabilistic
framework seamlessly accommodates multi-class classifiers, asymmetric misclassification
costs, and class priors. Furthermore, probability estimates are easily fused into into larger
systems, and can be used to identify abnormal samples that have low probability of any
class. The generative models in the SDA family are solutions to constrained maximum
entropy problems where the constraints are placed on the mean values of the similarity-
based descriptive statistics. As dictated by the principle of maximum entropy, the resulting
generative class models are exponential functions of the similarity statistics.
Di®erent choices for the descriptive statistics lead to different SDA classifiers. This chapter
focused on the centroid-based SDA classifiers: each class is described by a prototypical
sample, a centroid, and the generative models are based on the similarities of the samples to
each class centroid. SDA accommodates various definitions of centroid; this chapter focused
on the maximum-sum-similarity centroid. The nearest neighbor similarity is also explored
as a descriptive statistic, yielding the nnSDA classifier.
As with LDA and QDA, the power of the SDA generative classifier depends on how well its
model matches the true class-conditional distributions. A mismatched model will be biased
and produce erroneous classifications. The centroid-based SDA classifier is a good match for
single-centroid distributions of objects, but is a biased model for multi-centroidal
distributions. This chapter proposes local SDA and mixture SDA as similarity-based
generative classifiers with reduced bias that can be used for multimodal distributions. Local
SDA is the SDA classifier applied to a local neighborhood of a test sample. A local class
centroid can be viewed as a representative prototype for the class in the neighborhood of a
test sample and the class-conditional models provide an estimate of the local distribution of
the similarities to the local centroid. Local SDA was shown to be a Bayes error-consistent
classifier and is the first classifier to be similarity-based, generative, and local. Mixture SDA
builds on the metric-learning mixture models by modeling each class as a linear
combination of several single-centroid SDA models. The parameters for the mixture SDA
classifier can be estimated with the EM algorithm.
The family of SDA classifiers is very competitive with, and often outperforms, their
corresponding non-generative similarity-based classifier. SDA competes with nearest
centroid; local SDA competes with local NC. The SDA classifiers are also competitive with
the PSVM, the state-of-the-art support vector machine for similarity-based classification. The
PSVM bases its classification on the entire training set of pairwise similarities. This requires
enumeration of size N × N similarity matrices, thus posing computational challenges for
large data sets. Furthermore, PSVM is a non-generative, intrinsically binary classifier: it is
di±cult to view it in a probabilistic framework where there are more than two possible
classes for the data samples. The SDA classifiers remain competitive while relying on more
parsimonious representations of the underlying similarity relationships between the
samples. Furthermore, the generative quality of the SDA family of classifiers provides

 Machine Learning

120

5.2.1 Protein data
Many bioinformatics prediction problems are formulated in terms of pairwise similarities or
dissimilarities. An example is the protein data set used by (Hochreiter & Obermayer, 2006).
For this data set, pairwise dissimilarity values are calculated using the evolutionary
distance, which is the probability that an amino acid sequence transforms into another one
(Hofmann & Buhmann, 1997). The sample space is not enumerated, so classification must
be done based only on the pairwise dissimilarity values. The dataset contains 213 proteins
with class labels “HA” (72 samples), “HB” (72 samples), “M” (39 samples) , and “G” (30
samples). The SDA, local SDA, nearest centroid, local nearest centroid, and k-NN classifiers
natively support multiclass classification problems, so they can be applied directly to this
four-class experiment. The PSVM, however, is a binary classifier and cannot be applied to
this multiclass data set.
Guessing that all samples were from the most prevalent class would yield a 66.2% error rate.
The simple one-centroid per class model of SDA achieves half that error, and works better
than the more flexible local nearest centroid classifier. Local SDA, local nearest centroid and
k-NN all have the same free parameter, the neighborhood size k. Of these, local SDA is seen
to be best suited to this problem.

5.2.2 Voting data set
The UCI voting data set (Newman et al., 1998) records the voting record of 435 members of
the US House of Representatives on 16 bills. The binary classification problem is to predict
each member's political party affiliation given the voting records. Each of the 16 votes is
either a yes, a no, or “neither”, so there are 16 features which can each take on 3 possible
values. This classification problem can be treated as a similarity-based classification problem
by applying a similarity function to the trinary feature space. The adopted similarity in this
experiment is the counting similarity.

5.2.3 Aural sonar echoes classification
In the sonar echoes classification experiment, the data consist of 100 pairwise similarities
assessed by human listeners. The listeners rated the pairwise similarities of digitized active
sonar echoes from two classes { clutter or target { without knowledge of the class labels, and
based their evaluation of similarity only on their perceptual judgement of how the echoes
sounded similar; thus, the underlying features of similarity are inaccessible. Each listener
assigned a discrete similarity value between 1 and 5 to each pair of echoes; each pair was
rated by two different listeners, and the two assigned similarity scores were added, so that
the range of possible values for the similarity is [2, 10]. The target and clutter classes are
equally likely, each one containing 50 echoes. This set of echoes is particularly difficult to
classify in that metric-space classifiers produced incorrect results. Further details on this
data set are in (Philips et al., 2006).

6. Summary
The chapter introduced a new framework for classification that is both similarity-based and
generative: similarity discriminant analysis, or SDA. The experimental results show that the

Similarity Discriminant Analysis

121

classifiers resulting from the proposed SDA framework have practical advantages in terms
of performance, interpretability, and ease of use. SDA is similarity-based in that it classifies
samples based on their pairwise similarities and does not require that the samples be
described by numerical feature vectors, the standard sample description method in metric
learning. SDA is generative, in that it estimates probabilistic models based on descriptive
statistics of the classes. Having access to probability estimates is important. A probabilistic
framework seamlessly accommodates multi-class classifiers, asymmetric misclassification
costs, and class priors. Furthermore, probability estimates are easily fused into into larger
systems, and can be used to identify abnormal samples that have low probability of any
class. The generative models in the SDA family are solutions to constrained maximum
entropy problems where the constraints are placed on the mean values of the similarity-
based descriptive statistics. As dictated by the principle of maximum entropy, the resulting
generative class models are exponential functions of the similarity statistics.
Di®erent choices for the descriptive statistics lead to different SDA classifiers. This chapter
focused on the centroid-based SDA classifiers: each class is described by a prototypical
sample, a centroid, and the generative models are based on the similarities of the samples to
each class centroid. SDA accommodates various definitions of centroid; this chapter focused
on the maximum-sum-similarity centroid. The nearest neighbor similarity is also explored
as a descriptive statistic, yielding the nnSDA classifier.
As with LDA and QDA, the power of the SDA generative classifier depends on how well its
model matches the true class-conditional distributions. A mismatched model will be biased
and produce erroneous classifications. The centroid-based SDA classifier is a good match for
single-centroid distributions of objects, but is a biased model for multi-centroidal
distributions. This chapter proposes local SDA and mixture SDA as similarity-based
generative classifiers with reduced bias that can be used for multimodal distributions. Local
SDA is the SDA classifier applied to a local neighborhood of a test sample. A local class
centroid can be viewed as a representative prototype for the class in the neighborhood of a
test sample and the class-conditional models provide an estimate of the local distribution of
the similarities to the local centroid. Local SDA was shown to be a Bayes error-consistent
classifier and is the first classifier to be similarity-based, generative, and local. Mixture SDA
builds on the metric-learning mixture models by modeling each class as a linear
combination of several single-centroid SDA models. The parameters for the mixture SDA
classifier can be estimated with the EM algorithm.
The family of SDA classifiers is very competitive with, and often outperforms, their
corresponding non-generative similarity-based classifier. SDA competes with nearest
centroid; local SDA competes with local NC. The SDA classifiers are also competitive with
the PSVM, the state-of-the-art support vector machine for similarity-based classification. The
PSVM bases its classification on the entire training set of pairwise similarities. This requires
enumeration of size N × N similarity matrices, thus posing computational challenges for
large data sets. Furthermore, PSVM is a non-generative, intrinsically binary classifier: it is
di±cult to view it in a probabilistic framework where there are more than two possible
classes for the data samples. The SDA classifiers remain competitive while relying on more
parsimonious representations of the underlying similarity relationships between the
samples. Furthermore, the generative quality of the SDA family of classifiers provides

 Machine Learning

122

intuitive information about the similarity characteristics of the data. The SDA-generated
probability estimates are useful for interpreting the results in a probabilistic framework, and
allow for class priors and costs to be seamlessly integrated into the classification rules.

7. References
S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape

contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(4): 509-522,
April 2002.

M. Bicego, V. Murino, M. Pelillo, and A. Torsello. Special issue on similarity-based
classification. Pattern Recognition, 39, October 2006.

L. Cazzanti and M. R. Gupta. Local similarity discriminant analysis. In Intl. Conf.on Machine
Learning (ICML), 2007.

L. Cazzanti and M. R. Gupta. Information-theoretic and set-theoretic similarity. In Proc. of
the IEEE Intl. Symposium on Information Theory, pages 1836-1840, 2006.

L. Cazzanti, M. R. Gupta, and A. J. Koppal. Generative models for similarity-based
classification. Pattern Recognition, 41, number = 7, pages = 2289-2297, YEAR = 2008,.

S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with symbolic
features. Machine Learning, 10(1):57-78, 1993.

T. Cover and J. Thomas. Elements of Information Theory. John Wiley and Sons, New York,
1991.

L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-
Verlag Inc., New York, 1996.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience, 2001.
B. S. Everitt and S. Rabe-Hesketh. The Analysis of Proximity Data. Arnold, London, 1997.
I. Gati and A. Tversky. Weighting common and distinctive features in perceptual and

conceptual judgments. Cognitive Psychology, (16):341-370, 1984.
M. R. Gupta, L. Cazzanti, and A. J. Koppal. Maximum entropy generative models for

similarity-based learning. In Proc. IEEE Intl. Symposium on Information Theory, 2007.
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-Verlag,

New York, 2001.
S. Hochreiter and K. Obermayer. Support vector machines for dyadic data. Neural

Computation, 18(6):1472-1510, 2006.
T. Hofmann and J.M. Buhmann. Pairwise data clustering by deterministic annealing. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 19(1), January 1997.
D. W. Jacobs, D. Weinshall, and Y. Gdalyahu. Classification with nonmetric distances: Image

retrieval and class representation. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 22(6):583-600, June 2000.

E. T. Jaynes. On the rationale for maximum entropy methods. Proc. of the IEEE, 70(9):939{952,
September 1982.

E. T. Jaynes. Probability theory: the logic of science. Cambridge University Press, 2003.
M. I. Jordan. An Introduction to Probabilistic Graphical Models. To be published, 20xx.
W. Lam, C. Keung, and D. Liu. Discovering useful concept prototypes for classification

based on filtering and abstraction. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 24(8):1075-1090, August 2002.

Similarity Discriminant Analysis

123

D. Lin. An information-theoretic definition of similarity. Proc. of the Intl. Conf. on Machine
Learning, 1998.

M. Lozano, J. M. Sotoca, J. S. Sánchez, F. Pla, E. Pekalska, and R. P. W. Duin. Experimental
study on prototype optimisation algorithms for prototype-based classification in
vector spaces. Pattern Recognition, 39:1827-1838, 2006.

MATLAB: The Language of Technical Computing. The MathWorks, Natick, MA, 2006
edition.

Y. Mitani and Y. Hamamoto. Classifier design based on the use of nearest neighbor samples.
Proc. of the Intl. Conf. on Pattern Recognition, pages 769-772, 2000.

Y. Mitani and Y. Hamamoto. A local mean-based nonparametric classifier. Pattern
Recognition Letters, 27(10):1151-1159, July 2006.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning
databases, 1998.

E. Pekalska, P. Paclíc, and R. P. W. Duin. A generalized kernel approach to dissimilarity-
based classification. Journal of Machine Learning Research, pages 175-211, 2001.

E. Pekalska, R. P. W. Duin, and P. Paclík. Prototype selection for dissimilarity-based
classifiers. Pattern Recognition Letters, 39:189-208, 2006.

S. Philips, J. Pitton, and L. Atlas. Perceptual feature identification for active sonar echoes. In
IEEE OCEANS, 2006.

D. A. Reynolds and R. C. Rose. Robust text-independent speaker-identification using
Gaussian mixture speaker models. IEEE Trans. on Speech and Audio Processing, 3(1),
1995.

S. Santini and R. Jain. Similarity measures. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 21(9):871-883, September 1999.

S. Sattath and A. Tversky. On the relation between common and distinctive feature models.
Psychological Review, (94):16-22, 1987.

G. Schwartz and A. Tversky. On the reciprocity of proximity relations. Journal of
Mathematical Psychology, 22(3):301-307, September 1980.

P. Simard, Y. Le Cun, and J. Denker. Efficient pattern recognition using a new
transformation distance. Advances in Neural Information Processing Systems 5, pages
50-68, 1993.

C. Stanfill and D. Waltz. Toward memory-based reasoning. Communications of the ACM,
29(12):1213-1228, December 1986.

A. Tversky. Features of similarity. Psychological Review, (84):327-352, 1977.
A. Tversky and I. Gati. Studies of similarity. In E. Rosch and B. Lloyd, editors, Cognition and

Categorization. Earlbaum, Hillsdale, N.J., 1978.
A. Tversky and J. W. Hutchinson. Nearest neighbor analysis of psychological spaces.

Psychological Review, 93:3-22, 1986.
D. Weinshall, D. W. Jacobs, and Y. Gdalyahu. Classification in non-metric spaces. Advances

in Neural Information Processing Systems 11, pages 838-844, 1999.
D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions. Journal of

Artificial Intelligence Research, 6:1-34, 1997.

 Machine Learning

122

intuitive information about the similarity characteristics of the data. The SDA-generated
probability estimates are useful for interpreting the results in a probabilistic framework, and
allow for class priors and costs to be seamlessly integrated into the classification rules.

7. References
S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape

contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(4): 509-522,
April 2002.

M. Bicego, V. Murino, M. Pelillo, and A. Torsello. Special issue on similarity-based
classification. Pattern Recognition, 39, October 2006.

L. Cazzanti and M. R. Gupta. Local similarity discriminant analysis. In Intl. Conf.on Machine
Learning (ICML), 2007.

L. Cazzanti and M. R. Gupta. Information-theoretic and set-theoretic similarity. In Proc. of
the IEEE Intl. Symposium on Information Theory, pages 1836-1840, 2006.

L. Cazzanti, M. R. Gupta, and A. J. Koppal. Generative models for similarity-based
classification. Pattern Recognition, 41, number = 7, pages = 2289-2297, YEAR = 2008,.

S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with symbolic
features. Machine Learning, 10(1):57-78, 1993.

T. Cover and J. Thomas. Elements of Information Theory. John Wiley and Sons, New York,
1991.

L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-
Verlag Inc., New York, 1996.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience, 2001.
B. S. Everitt and S. Rabe-Hesketh. The Analysis of Proximity Data. Arnold, London, 1997.
I. Gati and A. Tversky. Weighting common and distinctive features in perceptual and

conceptual judgments. Cognitive Psychology, (16):341-370, 1984.
M. R. Gupta, L. Cazzanti, and A. J. Koppal. Maximum entropy generative models for

similarity-based learning. In Proc. IEEE Intl. Symposium on Information Theory, 2007.
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-Verlag,

New York, 2001.
S. Hochreiter and K. Obermayer. Support vector machines for dyadic data. Neural

Computation, 18(6):1472-1510, 2006.
T. Hofmann and J.M. Buhmann. Pairwise data clustering by deterministic annealing. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 19(1), January 1997.
D. W. Jacobs, D. Weinshall, and Y. Gdalyahu. Classification with nonmetric distances: Image

retrieval and class representation. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 22(6):583-600, June 2000.

E. T. Jaynes. On the rationale for maximum entropy methods. Proc. of the IEEE, 70(9):939{952,
September 1982.

E. T. Jaynes. Probability theory: the logic of science. Cambridge University Press, 2003.
M. I. Jordan. An Introduction to Probabilistic Graphical Models. To be published, 20xx.
W. Lam, C. Keung, and D. Liu. Discovering useful concept prototypes for classification

based on filtering and abstraction. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 24(8):1075-1090, August 2002.

Similarity Discriminant Analysis

123

D. Lin. An information-theoretic definition of similarity. Proc. of the Intl. Conf. on Machine
Learning, 1998.

M. Lozano, J. M. Sotoca, J. S. Sánchez, F. Pla, E. Pekalska, and R. P. W. Duin. Experimental
study on prototype optimisation algorithms for prototype-based classification in
vector spaces. Pattern Recognition, 39:1827-1838, 2006.

MATLAB: The Language of Technical Computing. The MathWorks, Natick, MA, 2006
edition.

Y. Mitani and Y. Hamamoto. Classifier design based on the use of nearest neighbor samples.
Proc. of the Intl. Conf. on Pattern Recognition, pages 769-772, 2000.

Y. Mitani and Y. Hamamoto. A local mean-based nonparametric classifier. Pattern
Recognition Letters, 27(10):1151-1159, July 2006.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning
databases, 1998.

E. Pekalska, P. Paclíc, and R. P. W. Duin. A generalized kernel approach to dissimilarity-
based classification. Journal of Machine Learning Research, pages 175-211, 2001.

E. Pekalska, R. P. W. Duin, and P. Paclík. Prototype selection for dissimilarity-based
classifiers. Pattern Recognition Letters, 39:189-208, 2006.

S. Philips, J. Pitton, and L. Atlas. Perceptual feature identification for active sonar echoes. In
IEEE OCEANS, 2006.

D. A. Reynolds and R. C. Rose. Robust text-independent speaker-identification using
Gaussian mixture speaker models. IEEE Trans. on Speech and Audio Processing, 3(1),
1995.

S. Santini and R. Jain. Similarity measures. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 21(9):871-883, September 1999.

S. Sattath and A. Tversky. On the relation between common and distinctive feature models.
Psychological Review, (94):16-22, 1987.

G. Schwartz and A. Tversky. On the reciprocity of proximity relations. Journal of
Mathematical Psychology, 22(3):301-307, September 1980.

P. Simard, Y. Le Cun, and J. Denker. Efficient pattern recognition using a new
transformation distance. Advances in Neural Information Processing Systems 5, pages
50-68, 1993.

C. Stanfill and D. Waltz. Toward memory-based reasoning. Communications of the ACM,
29(12):1213-1228, December 1986.

A. Tversky. Features of similarity. Psychological Review, (84):327-352, 1977.
A. Tversky and I. Gati. Studies of similarity. In E. Rosch and B. Lloyd, editors, Cognition and

Categorization. Earlbaum, Hillsdale, N.J., 1978.
A. Tversky and J. W. Hutchinson. Nearest neighbor analysis of psychological spaces.

Psychological Review, 93:3-22, 1986.
D. Weinshall, D. W. Jacobs, and Y. Gdalyahu. Classification in non-metric spaces. Advances

in Neural Information Processing Systems 11, pages 838-844, 1999.
D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions. Journal of

Artificial Intelligence Research, 6:1-34, 1997.

 Machine Learning

124

H. Zhang, A. C. Berg, M. Maire, and J. Malik. SVM-KNN: discriminative nearest neighbor
classification for visual category recognition. Proc. of the IEEE Conf. o Computer
Vision and Pattern Recognition, pages 2126 - 2136, 2006.

6

Forced Information for Information-Theoretic
Competitive Learning

Ryotaro Kamimura
IT Education Center, Information Technology Center, Tokai University,

Japan

1. Introduction
We have proposed a new information-theoretic approach to competitive learning [1], [2], [3],
[4], [5]. The information-theoretic method is a very flexible type of competitive learning,
compared with conventional competitive learning. However, some problems have been
pointed out concerning the information-theoretic method, for example, slow convergence. In
this paper, we propose a new computational method to accelerate a process of information
maximization. In addition, an information loss is introduced to detect the salient features of
input patterns.
Competitive learning is one of the most important techniques in neural networks with many
problems such as the dead neuron problem [6], [7]. Thus, many methods have been
proposed to solve those problems, for example, conscience learning [8], frequency-sensitive
learning [9], rival penalized competitive learning [10], lotto-type competitive learning [11]
and entropy maximization [12]. We have so far developed information-theoretic competitive
learning to solve those fundamental problems of competitive learning. In the information-
theoretic learning, no dead neurons can be produced, because entropy of competitive units
must be maximized. In addition, experimental results have shown that final connection
weights are relatively independent of initial conditions.
However, one of the major problems is that it is sometimes slow in increasing information.
As a problem becomes more complex, heavier computation is needed. Without solving this
problem, it is impossible for the information-theoretic method to be applied to practical
problems. To overcome this problem, we propose a new type of computational method to
accelerate a process of information maximization. In this method, information is supposed
to be maximized or sufficiently high at the beginning of learning. This supposed maximum
information forces networks to converge to stable points very rapidly. This supposed
maximum information is obtained by using the ordinary winner-take-all algorithm. Thus,
this method is one in which the winter-takeall is combined with a process of information
maximization.
We also present a new approach to detect the importance of a given variable, that is,
information loss. Information loss is difference between information with all variables and
information without a variable, and is used to represent the importance of a given variable.
Forced information with information loss can be used to extract main features of input
patterns. Connection weights can be interpreted as the main characteristics of classified
groups. On the other hand, information loss is used to extract the features on which input

 Machine Learning

124

H. Zhang, A. C. Berg, M. Maire, and J. Malik. SVM-KNN: discriminative nearest neighbor
classification for visual category recognition. Proc. of the IEEE Conf. o Computer
Vision and Pattern Recognition, pages 2126 - 2136, 2006.

6

Forced Information for Information-Theoretic
Competitive Learning

Ryotaro Kamimura
IT Education Center, Information Technology Center, Tokai University,

Japan

1. Introduction
We have proposed a new information-theoretic approach to competitive learning [1], [2], [3],
[4], [5]. The information-theoretic method is a very flexible type of competitive learning,
compared with conventional competitive learning. However, some problems have been
pointed out concerning the information-theoretic method, for example, slow convergence. In
this paper, we propose a new computational method to accelerate a process of information
maximization. In addition, an information loss is introduced to detect the salient features of
input patterns.
Competitive learning is one of the most important techniques in neural networks with many
problems such as the dead neuron problem [6], [7]. Thus, many methods have been
proposed to solve those problems, for example, conscience learning [8], frequency-sensitive
learning [9], rival penalized competitive learning [10], lotto-type competitive learning [11]
and entropy maximization [12]. We have so far developed information-theoretic competitive
learning to solve those fundamental problems of competitive learning. In the information-
theoretic learning, no dead neurons can be produced, because entropy of competitive units
must be maximized. In addition, experimental results have shown that final connection
weights are relatively independent of initial conditions.
However, one of the major problems is that it is sometimes slow in increasing information.
As a problem becomes more complex, heavier computation is needed. Without solving this
problem, it is impossible for the information-theoretic method to be applied to practical
problems. To overcome this problem, we propose a new type of computational method to
accelerate a process of information maximization. In this method, information is supposed
to be maximized or sufficiently high at the beginning of learning. This supposed maximum
information forces networks to converge to stable points very rapidly. This supposed
maximum information is obtained by using the ordinary winner-take-all algorithm. Thus,
this method is one in which the winter-takeall is combined with a process of information
maximization.
We also present a new approach to detect the importance of a given variable, that is,
information loss. Information loss is difference between information with all variables and
information without a variable, and is used to represent the importance of a given variable.
Forced information with information loss can be used to extract main features of input
patterns. Connection weights can be interpreted as the main characteristics of classified
groups. On the other hand, information loss is used to extract the features on which input

 Machine Learning

126

patterns or groups are classified. Thus, forced information and information loss has a
possibility to show clearly main features of input patterns.
In Section 2, we present how to compute forced information as well as how to compute
information loss. In Section 3 and 4, we present experimental results on a simple symmetric
and Senate problem to show that one epoch is enough to reach stable points. In Section 5, we
present experimental results on a student survey. In this section, we try to show that
learning is accelerated more than sixty times faster, and explicit representations can be
obtained.

2. Information maximization
We consider information content stored in competitive unit activation patterns. For this
purpose, let us define information to be stored in a neural system. Information stored in a
system is represented by decrease in uncertainty [13]. Uncertainty decrease, that is,
information I, is defined by

(1)

where p(j), p(s) and p(j|s) denote the probability of firing of the jth unit, the probability of
the sth input pattern and the conditional probability of the jth unit, given the sth input
pattern, respectively. When the conditional probability p(j|s) is independent of the
occurrence of the sth input pattern, that is, p(j|s) = p(j), mutual information becomes zero.

Fig. 1. A single-layered network architecture for information maximization.

Let us present update rules to maximize information content. As shown in Figure 2, a
network is composed of input units and competitive units . We used as the output
function the inverse of the square of the Euclidean distance between connection weights and
outputs for facilitating the derivation. Thus, distance is defined by

(2)

Forced Information for Information-Theoretic Competitive Learning

127

An output from the jth competitive unit can be computed by

(3)

where L is the number of input units, and wjk denote connections from the kth input unit to
the jth competitive unit. The output is increased as connection weights are closer to input
patterns.
The conditional probability p(j|s) is computed by

(4)

where M denotes the number of competitive units. Since input patterns are supposed to be
uniformly given to networks, the probability of the jth competitive unit is computed by

(5)

Information I is computed by

(6)

Differentiating information with respect to input-competitive connections wjk, we have

(7)

where β is the learning parameter, and

(8)

3. Maximum information-forced learning
One of the major shortcomings of information-theoretic competitive learning is that it is
sometimes very slow in increasing information content to a sufficiently large level. We here
present how to accelerate learning by supposing that information is already maximized
before learning. Thus, we have a conditional probability p(j|s) such that the probability is
set to ε for a winner, and 1 − ε for all the other units. We here suppose that ε ranges between
zero and unity. For example, supposing that information is almost maximized with two

 Machine Learning

126

patterns or groups are classified. Thus, forced information and information loss has a
possibility to show clearly main features of input patterns.
In Section 2, we present how to compute forced information as well as how to compute
information loss. In Section 3 and 4, we present experimental results on a simple symmetric
and Senate problem to show that one epoch is enough to reach stable points. In Section 5, we
present experimental results on a student survey. In this section, we try to show that
learning is accelerated more than sixty times faster, and explicit representations can be
obtained.

2. Information maximization
We consider information content stored in competitive unit activation patterns. For this
purpose, let us define information to be stored in a neural system. Information stored in a
system is represented by decrease in uncertainty [13]. Uncertainty decrease, that is,
information I, is defined by

(1)

where p(j), p(s) and p(j|s) denote the probability of firing of the jth unit, the probability of
the sth input pattern and the conditional probability of the jth unit, given the sth input
pattern, respectively. When the conditional probability p(j|s) is independent of the
occurrence of the sth input pattern, that is, p(j|s) = p(j), mutual information becomes zero.

Fig. 1. A single-layered network architecture for information maximization.

Let us present update rules to maximize information content. As shown in Figure 2, a
network is composed of input units and competitive units . We used as the output
function the inverse of the square of the Euclidean distance between connection weights and
outputs for facilitating the derivation. Thus, distance is defined by

(2)

Forced Information for Information-Theoretic Competitive Learning

127

An output from the jth competitive unit can be computed by

(3)

where L is the number of input units, and wjk denote connections from the kth input unit to
the jth competitive unit. The output is increased as connection weights are closer to input
patterns.
The conditional probability p(j|s) is computed by

(4)

where M denotes the number of competitive units. Since input patterns are supposed to be
uniformly given to networks, the probability of the jth competitive unit is computed by

(5)

Information I is computed by

(6)

Differentiating information with respect to input-competitive connections wjk, we have

(7)

where β is the learning parameter, and

(8)

3. Maximum information-forced learning
One of the major shortcomings of information-theoretic competitive learning is that it is
sometimes very slow in increasing information content to a sufficiently large level. We here
present how to accelerate learning by supposing that information is already maximized
before learning. Thus, we have a conditional probability p(j|s) such that the probability is
set to ε for a winner, and 1 − ε for all the other units. We here suppose that ε ranges between
zero and unity. For example, supposing that information is almost maximized with two

 Machine Learning

128

competitive units, and this means that a conditional probability is close to unity, and all the
other probabilities are close to zero. Thus, we should take the parameter ε as a value close to
unity, say, 0.9. In this case, all the other cases are set to 0.1. Weights are updated so as to
maximize usual information content. The conditional probability p(j|s) is computed by

(9)

where M denotes the number of competitive units.

(10)

At this place, we suppose that information is already close to a maximum value. This means
that if the jth unit is a winner, the probability of the jth unit should be as large as possible,
and close to unity, while all the other units’ firing rates should be as small as possible.

Fig. 2. A single-layered network architecture for information maximization.

Forced Information for Information-Theoretic Competitive Learning

129

This forced information is a method to include the winner-take-all algorithm inside
information maximization. As already mentioned, the winner-take-all is a realization of
forced information maximization, because information is supposed to be maximized.

4. Information loss
We now define information when a neuron is damaged by some reasons. In this case,
distance without the mth unit is defined by

(11)

where summation is over all input units except the mth unit. The output without the mth
unit is defined by

(12)

The normalized output is computed by

(13)

Now, let us define mutual information without the mth input unit by

(14)

where pm and pm(j|s) denote a probability and a conditional probability, given the sth input
pattern. Information loss is defined by difference between original mutual information with
full units and connections and mutual information without a unit. Thus, we have
information loss

 (15)

For each competitive unit, we compute conditional mutual information for each competitive
unit.
For this, we transform mutual information as follows.

(16)

Conditional mutual information for each competitive unit is defined by

(17)

 Machine Learning

128

competitive units, and this means that a conditional probability is close to unity, and all the
other probabilities are close to zero. Thus, we should take the parameter ε as a value close to
unity, say, 0.9. In this case, all the other cases are set to 0.1. Weights are updated so as to
maximize usual information content. The conditional probability p(j|s) is computed by

(9)

where M denotes the number of competitive units.

(10)

At this place, we suppose that information is already close to a maximum value. This means
that if the jth unit is a winner, the probability of the jth unit should be as large as possible,
and close to unity, while all the other units’ firing rates should be as small as possible.

Fig. 2. A single-layered network architecture for information maximization.

Forced Information for Information-Theoretic Competitive Learning

129

This forced information is a method to include the winner-take-all algorithm inside
information maximization. As already mentioned, the winner-take-all is a realization of
forced information maximization, because information is supposed to be maximized.

4. Information loss
We now define information when a neuron is damaged by some reasons. In this case,
distance without the mth unit is defined by

(11)

where summation is over all input units except the mth unit. The output without the mth
unit is defined by

(12)

The normalized output is computed by

(13)

Now, let us define mutual information without the mth input unit by

(14)

where pm and pm(j|s) denote a probability and a conditional probability, given the sth input
pattern. Information loss is defined by difference between original mutual information with
full units and connections and mutual information without a unit. Thus, we have
information loss

 (15)

For each competitive unit, we compute conditional mutual information for each competitive
unit.
For this, we transform mutual information as follows.

(16)

Conditional mutual information for each competitive unit is defined by

(17)

 Machine Learning

130

Thus, conditional information loss is defined by

 (18)

We have the following relation:

(19)

5. Experiment No.1: symmetric data
In this experiment, we try to show that symmetric data can easily be classified by forced
information. Figure 3 shows a network architecture where six input patterns are given into
input units. These input patterns can naturally be classified into two classes. Figure 4 shows

Fig. 3. A network architecture for the artificial data.

Table 1: U.S. congressmen by their voting attitude on 19 environmental bills. The first 8
congressmen are Republicans, while the latter 7 (from 9 to 15) congressmen are Democrats.
In the table, 1, 0 and 0.5 represent yes, no and undecided, respectively.

Forced Information for Information-Theoretic Competitive Learning

131

Fig. 4. Information, forced information, probabilities and information losses for the artificial
data.

 Machine Learning

130

Thus, conditional information loss is defined by

 (18)

We have the following relation:

(19)

5. Experiment No.1: symmetric data
In this experiment, we try to show that symmetric data can easily be classified by forced
information. Figure 3 shows a network architecture where six input patterns are given into
input units. These input patterns can naturally be classified into two classes. Figure 4 shows

Fig. 3. A network architecture for the artificial data.

Table 1: U.S. congressmen by their voting attitude on 19 environmental bills. The first 8
congressmen are Republicans, while the latter 7 (from 9 to 15) congressmen are Democrats.
In the table, 1, 0 and 0.5 represent yes, no and undecided, respectively.

Forced Information for Information-Theoretic Competitive Learning

131

Fig. 4. Information, forced information, probabilities and information losses for the artificial
data.

 Machine Learning

132

information, forced information, probabilities and information losses for the symmetric
data. When the constant ε is set to 0.8, information reaches a stable point with eight epochs.
When the constant is increased to 0.95, just one epoch is enough to reach that point.
However, when information is further increased to 0.99, information reaches easily a stable
point, but obtained probabilities show rather ambiguous patterns. Compared with forced
information, information-theoretic learning needs more than 20 epochs and as many as 30
epochs are needed by competitive learning. We could obtain almost same probabilities
p(j|s) except ε = 0.99. For the information loss, the first and the sixth input patterns show
large information loss, that is, important. This represents quite well symmetric input
patterns.

6. Experiment No.2: senate problem
Table 1 shows the data of U.S. congressmen by their voting attitude on 19 environmental
bills ??. The first 8 congressmen are Republicans, while the latter 7 (from 9 to 15)
congressmen are Democrats. In the table, 1, 0 and 0.5 represent yes, no and undecided.
Figure 5 shows information, forced information and information loss for the senate problem.
When the constant ε is set to 0.8, information reaches a stable point with eight epochs. When
the constant is increased to 0.95, just one epoch is enough to reach that point. However,
when information is further increased to 0.99, obtained probabilities show rather ambiguous
patterns. Compared with forced information, information-theoretic learning needs more
than 25 epochs and as many as 15 epochs are needed by competitive learning. In addition, in
almost all cases, the information loss shows the same pattern. The tenth, eleventh and
twelfth input unit take large losses, meaning that these units play very important roles in
learning. By examining Table 1, we can see that these units surely divide input patterns into
two classes. Thus, the information captures the features in input patterns quite well.

7. Experiment 3: student survey
7.1 Two groups analysis
In the third experiment, we report an experimental result on a student survey. We did
student survey about what subjects they are interested in. The number of students was 580,
and the number of variables (questionnaires) was 58. Figure 6 shows a network architecture
with two competitive units. The number of input units is 58 units, corresponding to 58 items
such as computer, internet and so on. The students must respond to these items with four
scales.
In the previous information-theoretic model, when the number of competitive units is large,
it is sometimes impossible to attain the appropriate level of information. Figure 7 shows
information as a function of the number of epochs. By using simple information
maximization, we need as many as 500 epochs to be stabilized. On the other hand, by forced
information, we need just eight epochs to finish learning. Almost same representations
could be obtained. Thus, we can say that forced information maximization can accelerate
learning almost seven times faster than the ordinary information maximization.
Figure 8 shows connection weights for two groups analysis. The first group represents a
group with a higher interest in the items. The numbers of students in these groups are 256
and 324.

Forced Information for Information-Theoretic Competitive Learning

133

Fig. 5. Information, forced information, probabilities and information loss for the senate
problem.

 Machine Learning

132

information, forced information, probabilities and information losses for the symmetric
data. When the constant ε is set to 0.8, information reaches a stable point with eight epochs.
When the constant is increased to 0.95, just one epoch is enough to reach that point.
However, when information is further increased to 0.99, information reaches easily a stable
point, but obtained probabilities show rather ambiguous patterns. Compared with forced
information, information-theoretic learning needs more than 20 epochs and as many as 30
epochs are needed by competitive learning. We could obtain almost same probabilities
p(j|s) except ε = 0.99. For the information loss, the first and the sixth input patterns show
large information loss, that is, important. This represents quite well symmetric input
patterns.

6. Experiment No.2: senate problem
Table 1 shows the data of U.S. congressmen by their voting attitude on 19 environmental
bills ??. The first 8 congressmen are Republicans, while the latter 7 (from 9 to 15)
congressmen are Democrats. In the table, 1, 0 and 0.5 represent yes, no and undecided.
Figure 5 shows information, forced information and information loss for the senate problem.
When the constant ε is set to 0.8, information reaches a stable point with eight epochs. When
the constant is increased to 0.95, just one epoch is enough to reach that point. However,
when information is further increased to 0.99, obtained probabilities show rather ambiguous
patterns. Compared with forced information, information-theoretic learning needs more
than 25 epochs and as many as 15 epochs are needed by competitive learning. In addition, in
almost all cases, the information loss shows the same pattern. The tenth, eleventh and
twelfth input unit take large losses, meaning that these units play very important roles in
learning. By examining Table 1, we can see that these units surely divide input patterns into
two classes. Thus, the information captures the features in input patterns quite well.

7. Experiment 3: student survey
7.1 Two groups analysis
In the third experiment, we report an experimental result on a student survey. We did
student survey about what subjects they are interested in. The number of students was 580,
and the number of variables (questionnaires) was 58. Figure 6 shows a network architecture
with two competitive units. The number of input units is 58 units, corresponding to 58 items
such as computer, internet and so on. The students must respond to these items with four
scales.
In the previous information-theoretic model, when the number of competitive units is large,
it is sometimes impossible to attain the appropriate level of information. Figure 7 shows
information as a function of the number of epochs. By using simple information
maximization, we need as many as 500 epochs to be stabilized. On the other hand, by forced
information, we need just eight epochs to finish learning. Almost same representations
could be obtained. Thus, we can say that forced information maximization can accelerate
learning almost seven times faster than the ordinary information maximization.
Figure 8 shows connection weights for two groups analysis. The first group represents a
group with a higher interest in the items. The numbers of students in these groups are 256
and 324.

Forced Information for Information-Theoretic Competitive Learning

133

Fig. 5. Information, forced information, probabilities and information loss for the senate
problem.

 Machine Learning

134

Fig. 6. Network architecture for a student analysis.

Fig. 7. Information and forced information as a function of the number of epochs by
information-theoretic and forced-information method.

Fig. 8. Connection weights for two groups analysis.

Forced Information for Information-Theoretic Competitive Learning

135

This means that the method can classify 580 students by the magnitude of connection
weights. Because connection weights try to imitate input patterns directly, we can see that
two competitive units show students with high interest and low interest in the items in the
questionnaire.
Table 2 represents the ranking of items for a group with a high interest in the items. As can
be seen in the table, students respond highly to internet and computer, because we did this
survey for the classes of information technology. Except these items, the majority is related
to the so-called entertainment such as music, travel, movie. In addition, these students have
some interest in human relations as well as qualification. On the other hand, these students
have little interest in traditional and academic sciences such as physics and mathematics.
Table 3 represents the ranking of items for a group with a low interest in the items. Except
the difference of the strength, this group is similar to the first group. That is, students in this
gropup respond highly to internet and computer, and they have keen interest in entertainment.
On the other hand, these students have little interest in traditional and academic sciences
such as physics and mathematics. Table 4 shows the information loss for the two groups. As
can be seen in the table, two groups are separated by items such as multimedia, business.
Especially, many terms concerning business appear in the table. This means that two groups
are separated mainly based upon business. The most important thing to differentiate two
groups is whether students have some interest in buisiness or multimedia. Let us see what the
information loss represents in actual cases. Figure 9 shows the information loss (a) and
difference between two connection weights (b). As can be seen in the figure, two figures are
quite similar to each other. Only difference is the magnitude of two measures. Table 5 shows
the ranking of items by difference between two connection weights. As can be seen in the
table, the items in the list is quite similar to those in information loss. This means that the
information loss in this case is based upon difference between two connection weights.

Table 2. Ranking of items for a group of students who responded to items with a low level
of interest.

 Machine Learning

134

Fig. 6. Network architecture for a student analysis.

Fig. 7. Information and forced information as a function of the number of epochs by
information-theoretic and forced-information method.

Fig. 8. Connection weights for two groups analysis.

Forced Information for Information-Theoretic Competitive Learning

135

This means that the method can classify 580 students by the magnitude of connection
weights. Because connection weights try to imitate input patterns directly, we can see that
two competitive units show students with high interest and low interest in the items in the
questionnaire.
Table 2 represents the ranking of items for a group with a high interest in the items. As can
be seen in the table, students respond highly to internet and computer, because we did this
survey for the classes of information technology. Except these items, the majority is related
to the so-called entertainment such as music, travel, movie. In addition, these students have
some interest in human relations as well as qualification. On the other hand, these students
have little interest in traditional and academic sciences such as physics and mathematics.
Table 3 represents the ranking of items for a group with a low interest in the items. Except
the difference of the strength, this group is similar to the first group. That is, students in this
gropup respond highly to internet and computer, and they have keen interest in entertainment.
On the other hand, these students have little interest in traditional and academic sciences
such as physics and mathematics. Table 4 shows the information loss for the two groups. As
can be seen in the table, two groups are separated by items such as multimedia, business.
Especially, many terms concerning business appear in the table. This means that two groups
are separated mainly based upon business. The most important thing to differentiate two
groups is whether students have some interest in buisiness or multimedia. Let us see what the
information loss represents in actual cases. Figure 9 shows the information loss (a) and
difference between two connection weights (b). As can be seen in the figure, two figures are
quite similar to each other. Only difference is the magnitude of two measures. Table 5 shows
the ranking of items by difference between two connection weights. As can be seen in the
table, the items in the list is quite similar to those in information loss. This means that the
information loss in this case is based upon difference between two connection weights.

Table 2. Ranking of items for a group of students who responded to items with a low level
of interest.

 Machine Learning

136

Table 3. Ranking of items for a group of students who responded to items with a low level
of interest.

Table 4. Ranking of information loss for two groups analysis (×10−3).

Forced Information for Information-Theoretic Competitive Learning

137

(a) Information loss

(b) Difference between two connection weights

Fig. 9. Information loss (a) and difference between two connection weights (w2k −w1k) (b).

Fig. 10. Network architecture for three groups analysis.

 Machine Learning

136

Table 3. Ranking of items for a group of students who responded to items with a low level
of interest.

Table 4. Ranking of information loss for two groups analysis (×10−3).

Forced Information for Information-Theoretic Competitive Learning

137

(a) Information loss

(b) Difference between two connection weights

Fig. 9. Information loss (a) and difference between two connection weights (w2k −w1k) (b).

Fig. 10. Network architecture for three groups analysis.

 Machine Learning

138

Table 5. Difference between two groups of students.

7.2 Three groups analysis
We increase the number of competitive units from two to three units as shown in Figure 10.
Figure 11 shows connection weights for three groups. The third group detected at this time
shows the lowest values of connection weights. The numbers of the first, the second and the
third groups are 216, 341 and 23. Thus, the third group represents only a fraction of the data.
Table 6 shows connection weights for students with strong interest in the items. Similar to a
case with two groups, we can see that students have much interest in entertainment. Table 7
shows connection weights with moderate interest in the items. In the list, qualification and
human relations disappear, and all the items expcet computer and internet are related to
entertainment. Table 8 shows connection weights for the third group with low interest in the
items. Though the scores are much lower than the other groups, this group also shows keen
interest in entertainment. Table 9 shows conditional information losses for the first
competitive unit. Table 10 shows information losses for the second competitive unit. Both
tables show the same patterns of items in which business-related terms such as economics,
stock show high values of information losses. Table 11shows a table of items for the third
competitive units. Though the strength of information losses is small, more practical items
such as cooking are detected.

7.3 Results by the principal component analysis
Figure 12 shows the contribution rates of principal components. As can be seen in the figure,
the first principal component play a very important role in this case. Thus, we interpret the
first principal component. Table 12 shows the ranking of items for the first principal
component.

Forced Information for Information-Theoretic Competitive Learning

139

Fig. 11. Connection weights for three group analysis.

Table 6. Connection weights for students with strong interest in those items.

 Machine Learning

138

Table 5. Difference between two groups of students.

7.2 Three groups analysis
We increase the number of competitive units from two to three units as shown in Figure 10.
Figure 11 shows connection weights for three groups. The third group detected at this time
shows the lowest values of connection weights. The numbers of the first, the second and the
third groups are 216, 341 and 23. Thus, the third group represents only a fraction of the data.
Table 6 shows connection weights for students with strong interest in the items. Similar to a
case with two groups, we can see that students have much interest in entertainment. Table 7
shows connection weights with moderate interest in the items. In the list, qualification and
human relations disappear, and all the items expcet computer and internet are related to
entertainment. Table 8 shows connection weights for the third group with low interest in the
items. Though the scores are much lower than the other groups, this group also shows keen
interest in entertainment. Table 9 shows conditional information losses for the first
competitive unit. Table 10 shows information losses for the second competitive unit. Both
tables show the same patterns of items in which business-related terms such as economics,
stock show high values of information losses. Table 11shows a table of items for the third
competitive units. Though the strength of information losses is small, more practical items
such as cooking are detected.

7.3 Results by the principal component analysis
Figure 12 shows the contribution rates of principal components. As can be seen in the figure,
the first principal component play a very important role in this case. Thus, we interpret the
first principal component. Table 12 shows the ranking of items for the first principal
component.

Forced Information for Information-Theoretic Competitive Learning

139

Fig. 11. Connection weights for three group analysis.

Table 6. Connection weights for students with strong interest in those items.

 Machine Learning

140

Table 7. Connection weights for students with moderate interest in those items.

Table 8. Connection weights for students with low interest in those items.

Forced Information for Information-Theoretic Competitive Learning

141

Table 9. Information loss No.1(×10−3).

Table 10. Information loss No.2(×10−3).

 Machine Learning

140

Table 7. Connection weights for students with moderate interest in those items.

Table 8. Connection weights for students with low interest in those items.

Forced Information for Information-Theoretic Competitive Learning

141

Table 9. Information loss No.1(×10−3).

Table 10. Information loss No.2(×10−3).

 Machine Learning

142

Table 11. Information loss No.3(×10−3).

Fig. 12. Contribution rates for 58 variables.

The ranking seems to be quite similar to that obtained by the information loss. This means that
the principal component seems to represent the main features by which different groups can
be separated. On the other hand, connection weights by forced information represent the
absolute magnitude of students’ interest in the subjects. In forced-information maximization,
we can see information loss as well as connection weights. The connection weights represent
the absolute value of the importance. On the other hand, the information loss represents
difference between several groups. This is a kind of relative importance of variables, because
the importance of a variable in one group is measured in a relation to the other group.

Forced Information for Information-Theoretic Competitive Learning

143

Table 12. The first principal component.

8. Conclusion
In this paper, we have proposed a new computational method to accelerate a process of
information maximization. Information-theoretic competitive learning has been introduced
to solve the fundamental problems of conventional competitive learning such as the dead
neuron problem, dependency on initial conditions and so on. Though information theoretic
competitive learning has demonstrated much better performance in solving these problems,
we have observed that sometimes learning is very slow, especially when problems become
very complex. To overcome this slow convergence, we have introduced forced information
maximization. In this method, information is supposed to be maximized before learning. By
using the WTA algorithm, we have introduced forced information in information-theoretic
competitive learning. We have applied the method to several problems. In all problems, we
have seen that learning is much accelerated, and for the student survey case, networks
converge more than seventy times faster. Though we need to explore the exact mechanism
of forced information maximization, the computational method proposed in this paper
enables information theoretic learning to be applied to more large-scale problems.

9. Acknowledgment
The author is very grateful to Mitali Das for her valuable comments.

10. References
[1] R. Kamimura, T. Kamimura, and O. Uchida, “Flexible feature discovery and structural

information,” Connection Science, vol. 13, no. 4, pp. 323–347, 2001.

 Machine Learning

142

Table 11. Information loss No.3(×10−3).

Fig. 12. Contribution rates for 58 variables.

The ranking seems to be quite similar to that obtained by the information loss. This means that
the principal component seems to represent the main features by which different groups can
be separated. On the other hand, connection weights by forced information represent the
absolute magnitude of students’ interest in the subjects. In forced-information maximization,
we can see information loss as well as connection weights. The connection weights represent
the absolute value of the importance. On the other hand, the information loss represents
difference between several groups. This is a kind of relative importance of variables, because
the importance of a variable in one group is measured in a relation to the other group.

Forced Information for Information-Theoretic Competitive Learning

143

Table 12. The first principal component.

8. Conclusion
In this paper, we have proposed a new computational method to accelerate a process of
information maximization. Information-theoretic competitive learning has been introduced
to solve the fundamental problems of conventional competitive learning such as the dead
neuron problem, dependency on initial conditions and so on. Though information theoretic
competitive learning has demonstrated much better performance in solving these problems,
we have observed that sometimes learning is very slow, especially when problems become
very complex. To overcome this slow convergence, we have introduced forced information
maximization. In this method, information is supposed to be maximized before learning. By
using the WTA algorithm, we have introduced forced information in information-theoretic
competitive learning. We have applied the method to several problems. In all problems, we
have seen that learning is much accelerated, and for the student survey case, networks
converge more than seventy times faster. Though we need to explore the exact mechanism
of forced information maximization, the computational method proposed in this paper
enables information theoretic learning to be applied to more large-scale problems.

9. Acknowledgment
The author is very grateful to Mitali Das for her valuable comments.

10. References
[1] R. Kamimura, T. Kamimura, and O. Uchida, “Flexible feature discovery and structural

information,” Connection Science, vol. 13, no. 4, pp. 323–347, 2001.

 Machine Learning

144

[2] R. Kamimura, T. Kamimura, and H. Takeuchi, “Greedy information acquisition
algorithm: A new information theoretic approach to dynamic information
acquisition in neural networks,” Connection Science, vol. 14, no. 2, pp. 137–162, 2002.

[3] R. Kamimura, “Information theoretic competitive learning in self-adaptive multi-layered
networks,” Connection Science, vol. 13, no. 4, pp. 323–347, 2003.

[4] R. Kamimura, “Information-theoretic competitive learning with inverse euclidean
distance,” Neural Processing Letters, vol. 18, pp. 163–184, 2003.

[5] R. Kamimura, “Unifying cost and information in information-theoretic competitive
learning,” Neural Networks, vol. 18, pp. 711–718, 2006.

[6] D. E. Rumelhart and D. Zipser, “Feature discovery by competitive learning,” in Parallel
Distributed Processing (D. E. Rumelhart and G. E. H. et al., eds.), vol. 1, pp. 151–193,
Cambridge: MIT Press, 1986.

[7] S. Grossberg, “Competitive learning: from interactive activation to adaptive resonance,”
Cognitive Science, vol. 11, pp. 23–63, 1987.

[8] D. DeSieno, “Adding a conscience to competitive learning,” in Proceedings of IEEE
International Conference on Neural Networks, (San Diego), pp. 117–124, IEEE, 1988.

[9] S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton, “Competitive learning
algorithms for vector quantization,” Neural Networks, vol. 3, pp. 277–290, 1990.

[10] L. Xu, “Rival penalized competitive learning for clustering analysis, RBF net, and curve
detection,” IEEE Transaction on Neural Networks, vol. 4, no. 4, pp. 636–649, 1993.

[11] A. Luk and S. Lien, “Properties of the generalized lotto-type competitive learning,” in
Proceedings of International conference on neural information processing, (San Mateo:
CA), pp. 1180–1185, Morgan Kaufmann Publishers, 2000.

[12] M. M. V. Hulle, “The formation of topographic maps that maximize the average mutual
information of the output responses to noiseless input signals,” Neural Computation,
vol. 9, no. 3, pp. 595–606, 1997.

[13] L. L. Gatlin, Information Theory and Living Systems. Columbia University Press, 1972.

7

Learning to Build a Semantic Thesaurus from
Free Text Corpora without External Help

Katia Lida Kermanidis
Ionian University

Greece

1. Introduction
The automatic extraction and representation of domain knowledge has been attracting the
interest of researchers significantly during the last years. The plethora of available
information, the need for intelligent information retrieval, as well as the rise of the semantic
web, have motivated information scientists to develop numerous approaches to building
thesauri, like dictionaries and Ontologies that are specific to a given domain.
Ontologies are hierarchical structures of domain concepts that are enriched with semantic
relations linking the concepts together, as well as concept properties. Domain terms
populate the ontology, as they are assigned to belong to one or more concepts, and enable
the communication and information exchange between domain experts. Furthermore,
domain Ontologies enable information retrieval, data mining, intelligent search, automatic
translation, question answering within the domain.
Building Ontologies automatically to the largest extent possible, i.e. keeping manual
intervention to a minimum, has first the advantage of an easily updateable extracted
ontology, and second of largely avoiding the subjective, i.e. biased, impact of domain
experts, which is inevitable in manually-based approaches.
This chapter describes the knowledge-poor process of extracting ontological information in
the economic domain mostly automatically from Modern Greek text using statistical filters
and machine learning techniques. Fig. 1 shows the various stages of the process. In a first
stage, the text corpora are being pre-processed. Pre-processing includes tokenization, basic
morphological tagging and recognition of named and other semantic entities, that are

Corpus Pre-processing

Term Extraction

Semantic Relations Learning

Semantic Entity Recognition

Tokenization

Morphological Annotation

Fig. 1. System overview

 Machine Learning

144

[2] R. Kamimura, T. Kamimura, and H. Takeuchi, “Greedy information acquisition
algorithm: A new information theoretic approach to dynamic information
acquisition in neural networks,” Connection Science, vol. 14, no. 2, pp. 137–162, 2002.

[3] R. Kamimura, “Information theoretic competitive learning in self-adaptive multi-layered
networks,” Connection Science, vol. 13, no. 4, pp. 323–347, 2003.

[4] R. Kamimura, “Information-theoretic competitive learning with inverse euclidean
distance,” Neural Processing Letters, vol. 18, pp. 163–184, 2003.

[5] R. Kamimura, “Unifying cost and information in information-theoretic competitive
learning,” Neural Networks, vol. 18, pp. 711–718, 2006.

[6] D. E. Rumelhart and D. Zipser, “Feature discovery by competitive learning,” in Parallel
Distributed Processing (D. E. Rumelhart and G. E. H. et al., eds.), vol. 1, pp. 151–193,
Cambridge: MIT Press, 1986.

[7] S. Grossberg, “Competitive learning: from interactive activation to adaptive resonance,”
Cognitive Science, vol. 11, pp. 23–63, 1987.

[8] D. DeSieno, “Adding a conscience to competitive learning,” in Proceedings of IEEE
International Conference on Neural Networks, (San Diego), pp. 117–124, IEEE, 1988.

[9] S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton, “Competitive learning
algorithms for vector quantization,” Neural Networks, vol. 3, pp. 277–290, 1990.

[10] L. Xu, “Rival penalized competitive learning for clustering analysis, RBF net, and curve
detection,” IEEE Transaction on Neural Networks, vol. 4, no. 4, pp. 636–649, 1993.

[11] A. Luk and S. Lien, “Properties of the generalized lotto-type competitive learning,” in
Proceedings of International conference on neural information processing, (San Mateo:
CA), pp. 1180–1185, Morgan Kaufmann Publishers, 2000.

[12] M. M. V. Hulle, “The formation of topographic maps that maximize the average mutual
information of the output responses to noiseless input signals,” Neural Computation,
vol. 9, no. 3, pp. 595–606, 1997.

[13] L. L. Gatlin, Information Theory and Living Systems. Columbia University Press, 1972.

7

Learning to Build a Semantic Thesaurus from
Free Text Corpora without External Help

Katia Lida Kermanidis
Ionian University

Greece

1. Introduction
The automatic extraction and representation of domain knowledge has been attracting the
interest of researchers significantly during the last years. The plethora of available
information, the need for intelligent information retrieval, as well as the rise of the semantic
web, have motivated information scientists to develop numerous approaches to building
thesauri, like dictionaries and Ontologies that are specific to a given domain.
Ontologies are hierarchical structures of domain concepts that are enriched with semantic
relations linking the concepts together, as well as concept properties. Domain terms
populate the ontology, as they are assigned to belong to one or more concepts, and enable
the communication and information exchange between domain experts. Furthermore,
domain Ontologies enable information retrieval, data mining, intelligent search, automatic
translation, question answering within the domain.
Building Ontologies automatically to the largest extent possible, i.e. keeping manual
intervention to a minimum, has first the advantage of an easily updateable extracted
ontology, and second of largely avoiding the subjective, i.e. biased, impact of domain
experts, which is inevitable in manually-based approaches.
This chapter describes the knowledge-poor process of extracting ontological information in
the economic domain mostly automatically from Modern Greek text using statistical filters
and machine learning techniques. Fig. 1 shows the various stages of the process. In a first
stage, the text corpora are being pre-processed. Pre-processing includes tokenization, basic
morphological tagging and recognition of named and other semantic entities, that are

Corpus Pre-processing

Term Extraction

Semantic Relations Learning

Semantic Entity Recognition

Tokenization

Morphological Annotation

Fig. 1. System overview

 Machine Learning

146

related to the economic domain (e.g. values, amounts, percentages etc), and that would be
useful in future data-mining applications. In a second stage, content-words in the text are
categorized into domain terms and non-terms, i.e. words that are economic terms and words
that aren’t. Finally, domain terms are linked together with various types of semantic
relations, such as hyponymy/hyperonymy (is-a), meronymy (part-of), and other relations of
economic nature that don’t fit the typical profile of is-a or part-of relations.

2. Comparison to related work
As mentioned earlier, significant research effort has been put into the automatic extraction
of domain-specific knowledge. This section describes the most characteristic approaches for
every stage in the process, and compares the proposed process to them.
Regarding named entity recognition, Hendrickx and Van den Bosch (2003) employ
manually tagged and chunked English and German datasets, and use memory-based
learning to learn new named entities that belong to four categories. They perform iterative
deepening to optimize their algorithmic parameter and feature selection, and extend the
learning strategy by adding seed list (gazetteer) information, by performing stacking and by
making use of unannotated data. They report an average f-score on all four categories of
78.20% on the English test set. Another approach that makes use of external gazetteers is
described in (Ciaramita & Altun, 2005), where a Hidden Markov Model and Semi-Markov
Model is applied to the CoNLL 2003 dataset. The authors report a mean f-score of 90%.
Multiple stacking is also employed in (Tsukamoto et al., 2002) on Spanish and Dutch data
and the authors report 71.49% and 60.93% mean f-score respectively. The work in (Sporleder
et al., 2006) focuses on the Natural History domain. They employ a Dutch zoological
database to learn three different named-entity classes, and use the contents of specific fields
of the database to bootstrap the named entity tagger. In order to learn new entities they, too,
train a memory-based learner. Their reported average f-measure reaches 68.65% for all three
entity classes. Other approaches (Radu et al., 2003; Wu et al., 2006) utilize combinations of
classifiers in order to tag new named entities by ensemble learning.
For the automatic extraction of domain terms, various approaches have been proposed in
the literature. Regarding the linguistic pre-processing of the text corpora, approaches vary
from simple tokenization and part-of-speech tagging (Drouin, 2004; Frantzi et al., 2000), to
the use of shallow parsers and higher-level linguistic processors (Hulth, 2003; Navigli &
Velardi, 2004). The latter aim at identifying syntactic patterns, like noun phrases, and their
structure (e.g. head-modifier), in order to rule out tokens that are grammatically impossible
to constitute terms (e.g. adverbs, verbs, pronouns, articles, etc). The statistical filters, that
have been employed in previous work to filter out non-terms, also vary. Using corpus
comparison, the techniques try to identify words/phrases that present a different statistical
behaviour in the corpus of the target domain, compared to their behaviour in the rest of the
corpora. Such words/phrases are considered to be terms of the domain in question. In the
simplest case, the observed frequencies of the candidate terms are compared (Drouin, 2004).
Kilgarriff (2001) experiments with various other metrics, like the χ2 score, the t-test, mutual
information, the Mann-Whitney rank test, the Log Likelihood, Fisher’s exact test and the
TF.IDF (term frequency-inverse document frequency). Frantzi et al. (2000) present a metric
that combines statistical (frequencies of compound terms and their nested sub-terms) and
linguistic (context words are assigned a weight of importance) information.

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

147

In the field of taxonomy learning, previous approaches have varied from supervised to
unsupervised clustering techniques, and from methodologies that make use of external
taxonomic thesauri, to those that rely on no external resources. Regarding previous
approaches that employ clustering techniques, Cimiano et al. (2004) describe a conceptual
clustering method that is based on the Formal Concept Analysis for automatic taxonomy
construction from text and compares it to similarity-based clustering (agglomerative and Bi-
Section-KMeans clustering). The automatically generated ontology is compared against a
hand-crafted gold standard ontology for the tourism domain and report a maximum lexical
recall of 44.6%. Other clustering approaches are described in (Faure & Nedellec, 1998) and
(Pereira et al., 1993). The former uses a syntactically parsed text (verb-subcategorization
examples) and utilize iterative clustering to form new concept graphs. The latter also makes
use of verb-object dependencies, and relative frequencies and relative entropy as similarity
metrics for clustering. Pekar and Staab (2002) take advantage of a taxonomic thesaurus (a
tourism-domain ontology) to improve the accuracy of classifying new words into its classes.
Their classification algorithm is an extension of the k-NN method, which takes into account
the taxonomic similarity between nearest neighbors. They report a maximum overall
accuracy of 43.2%. Lendvai (2005) identifies taxonomic relations between two sections of a
medical document using memory-based learning. Binary vectors represent overlap between
the two sections, and the tests are run on parts of two Dutch medical encyclopedias. A best
overall accuracy value of 88% is reported. Witschel (2005) proposes a methodology for
extending lexical taxonomies by first identifying domain-specific concepts, then calculating
semantic similarities between concepts, and finally using decision trees to insert new
concepts to the right position in the taxonomy tree. The classifier is evaluated against two
subtrees from GermaNet. Navigli and Velardi (2004) interpret semantically the set of
complex terms that they extract, based on simple string inclusion. They make use of a
variety of external resources in order to generate a semantic graph of senses. Another
approach that makes use of external hierarchically structured textual resources is
(Makagonov et al., 2005). The authors map an already existing hierarchical structure of
technical documents to the structure of a domain-specific technical ontology. Words are
clustered into concepts, and concepts into topics. They evaluate their ontology against the
structure of existing textbooks in the given domain. Maedche and Volz (2001) make use of
clustering, as well as pattern-based (regular expressions) approaches in order to extract
taxonomies from domain-specific German texts. Degeratu and Hatzivassiloglou (2004) also
make use of syntactic patterns to extract hierarchical relations, and measure the dissimilarity
between the attributes of the terms using the Lance and Williams coefficient. They evaluate
their methodology on a collection of forms provided by the state agencies and report a
precision value of 73% and 85% for is-a and attributive relations respectively.
Compared to previous approaches, the work described in this chapter includes some
interesting novel aspects. The whole process is based on the effort to utilize as limited
external linguistic resources as possible, in order to render the methodology easily portable
to other languages and other thematic domains. To this purpose no semantic networks like
WordNet, grammars, hierarchically structured corpora, or pre-existing Ontologies are
utilized, only two unstructured corpora of free Modern Greek text: one balanced in domain
and genre, and one domain-specific.
Another interesting aspect of the present work is the language itself. Modern Greek is a
relatively free-word-order language, i.e. the ordering of the constituents of a sentence is not
strictly fixed, like it is in English. Therefore, it is primarily the rich morphology and not the

 Machine Learning

146

related to the economic domain (e.g. values, amounts, percentages etc), and that would be
useful in future data-mining applications. In a second stage, content-words in the text are
categorized into domain terms and non-terms, i.e. words that are economic terms and words
that aren’t. Finally, domain terms are linked together with various types of semantic
relations, such as hyponymy/hyperonymy (is-a), meronymy (part-of), and other relations of
economic nature that don’t fit the typical profile of is-a or part-of relations.

2. Comparison to related work
As mentioned earlier, significant research effort has been put into the automatic extraction
of domain-specific knowledge. This section describes the most characteristic approaches for
every stage in the process, and compares the proposed process to them.
Regarding named entity recognition, Hendrickx and Van den Bosch (2003) employ
manually tagged and chunked English and German datasets, and use memory-based
learning to learn new named entities that belong to four categories. They perform iterative
deepening to optimize their algorithmic parameter and feature selection, and extend the
learning strategy by adding seed list (gazetteer) information, by performing stacking and by
making use of unannotated data. They report an average f-score on all four categories of
78.20% on the English test set. Another approach that makes use of external gazetteers is
described in (Ciaramita & Altun, 2005), where a Hidden Markov Model and Semi-Markov
Model is applied to the CoNLL 2003 dataset. The authors report a mean f-score of 90%.
Multiple stacking is also employed in (Tsukamoto et al., 2002) on Spanish and Dutch data
and the authors report 71.49% and 60.93% mean f-score respectively. The work in (Sporleder
et al., 2006) focuses on the Natural History domain. They employ a Dutch zoological
database to learn three different named-entity classes, and use the contents of specific fields
of the database to bootstrap the named entity tagger. In order to learn new entities they, too,
train a memory-based learner. Their reported average f-measure reaches 68.65% for all three
entity classes. Other approaches (Radu et al., 2003; Wu et al., 2006) utilize combinations of
classifiers in order to tag new named entities by ensemble learning.
For the automatic extraction of domain terms, various approaches have been proposed in
the literature. Regarding the linguistic pre-processing of the text corpora, approaches vary
from simple tokenization and part-of-speech tagging (Drouin, 2004; Frantzi et al., 2000), to
the use of shallow parsers and higher-level linguistic processors (Hulth, 2003; Navigli &
Velardi, 2004). The latter aim at identifying syntactic patterns, like noun phrases, and their
structure (e.g. head-modifier), in order to rule out tokens that are grammatically impossible
to constitute terms (e.g. adverbs, verbs, pronouns, articles, etc). The statistical filters, that
have been employed in previous work to filter out non-terms, also vary. Using corpus
comparison, the techniques try to identify words/phrases that present a different statistical
behaviour in the corpus of the target domain, compared to their behaviour in the rest of the
corpora. Such words/phrases are considered to be terms of the domain in question. In the
simplest case, the observed frequencies of the candidate terms are compared (Drouin, 2004).
Kilgarriff (2001) experiments with various other metrics, like the χ2 score, the t-test, mutual
information, the Mann-Whitney rank test, the Log Likelihood, Fisher’s exact test and the
TF.IDF (term frequency-inverse document frequency). Frantzi et al. (2000) present a metric
that combines statistical (frequencies of compound terms and their nested sub-terms) and
linguistic (context words are assigned a weight of importance) information.

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

147

In the field of taxonomy learning, previous approaches have varied from supervised to
unsupervised clustering techniques, and from methodologies that make use of external
taxonomic thesauri, to those that rely on no external resources. Regarding previous
approaches that employ clustering techniques, Cimiano et al. (2004) describe a conceptual
clustering method that is based on the Formal Concept Analysis for automatic taxonomy
construction from text and compares it to similarity-based clustering (agglomerative and Bi-
Section-KMeans clustering). The automatically generated ontology is compared against a
hand-crafted gold standard ontology for the tourism domain and report a maximum lexical
recall of 44.6%. Other clustering approaches are described in (Faure & Nedellec, 1998) and
(Pereira et al., 1993). The former uses a syntactically parsed text (verb-subcategorization
examples) and utilize iterative clustering to form new concept graphs. The latter also makes
use of verb-object dependencies, and relative frequencies and relative entropy as similarity
metrics for clustering. Pekar and Staab (2002) take advantage of a taxonomic thesaurus (a
tourism-domain ontology) to improve the accuracy of classifying new words into its classes.
Their classification algorithm is an extension of the k-NN method, which takes into account
the taxonomic similarity between nearest neighbors. They report a maximum overall
accuracy of 43.2%. Lendvai (2005) identifies taxonomic relations between two sections of a
medical document using memory-based learning. Binary vectors represent overlap between
the two sections, and the tests are run on parts of two Dutch medical encyclopedias. A best
overall accuracy value of 88% is reported. Witschel (2005) proposes a methodology for
extending lexical taxonomies by first identifying domain-specific concepts, then calculating
semantic similarities between concepts, and finally using decision trees to insert new
concepts to the right position in the taxonomy tree. The classifier is evaluated against two
subtrees from GermaNet. Navigli and Velardi (2004) interpret semantically the set of
complex terms that they extract, based on simple string inclusion. They make use of a
variety of external resources in order to generate a semantic graph of senses. Another
approach that makes use of external hierarchically structured textual resources is
(Makagonov et al., 2005). The authors map an already existing hierarchical structure of
technical documents to the structure of a domain-specific technical ontology. Words are
clustered into concepts, and concepts into topics. They evaluate their ontology against the
structure of existing textbooks in the given domain. Maedche and Volz (2001) make use of
clustering, as well as pattern-based (regular expressions) approaches in order to extract
taxonomies from domain-specific German texts. Degeratu and Hatzivassiloglou (2004) also
make use of syntactic patterns to extract hierarchical relations, and measure the dissimilarity
between the attributes of the terms using the Lance and Williams coefficient. They evaluate
their methodology on a collection of forms provided by the state agencies and report a
precision value of 73% and 85% for is-a and attributive relations respectively.
Compared to previous approaches, the work described in this chapter includes some
interesting novel aspects. The whole process is based on the effort to utilize as limited
external linguistic resources as possible, in order to render the methodology easily portable
to other languages and other thematic domains. To this purpose no semantic networks like
WordNet, grammars, hierarchically structured corpora, or pre-existing Ontologies are
utilized, only two unstructured corpora of free Modern Greek text: one balanced in domain
and genre, and one domain-specific.
Another interesting aspect of the present work is the language itself. Modern Greek is a
relatively free-word-order language, i.e. the ordering of the constituents of a sentence is not
strictly fixed, like it is in English. Therefore, it is primarily the rich morphology and not the

 Machine Learning

148

position of a word in a sentence that determines its syntactic and semantic role. As a result,
the extraction of compound terms, as well as the identification of nested terms, are not
straightforward and cannot be treated as cases of simple string concatenation. The
grammatical case of nouns and adjectives affects their semantic labelling. Still, the language-
dependent features of the process are not so binding to not allow it to be applicable to other
inflectional languages with relative easiness.
Looking at each stage of the process in more detail, there are further application-specific
interesting features to be noted. As mentioned earlier in this section, classical approaches to
named-entity recognition are limited to names of organizations, persons and locations. The
semantic entities in the present work, however, also cover names of stocks and bonds, as
well as names of newspapers (due to the newswire genre of the used corpus). Furthermore,
there are other semantic types that are important for economic information retrieval, like
quantitative units (e.g. denoting stock and fund quantities, monetary amounts, stock
values), percentages etc. Temporal words and expressions are also identified due to their
importance for data mining tasks.
Traditionally, approaches to terminology extraction make use of a domain-specific corpus
that is to a large extent restricted in the vocabulary it contains and in the variety of syntactic
structures it presents. The economic corpus in this work does not consist of syntactically
standardized taglines of economic news. On the contrary, it presents a very rich variety in
vocabulary, syntactic formulations, idiomatic expressions, sentence length, making the
process of term extraction an interesting challenge.
Finally, regarding semantic relation learning, related work focuses mostly on
hyperonymy/hyponymy and meronymy, in the process described here attribute relations
are also detected, i.e. more ‘abstract’ relations that are specific to the economic domain. For
example, rise and drop are two attributes of the concept value, a stockholder is an attribute of
the concept company.

3. Advanced learning schemata
The lack of sophisticated resources leads unavoidably to the presence of noise in the data.
Noise is examples of useless data that not only do not help the learning of useful, interesting
linguistic information, but they also mislead the learning algorithm, harming its
performance. In machine learning terms, noise appears in the form of class imbalance.
Positive class instances (instances of the class of interest that needs to be learned) in the data
are underrepresented compared to negative instances (null class instances). Class imbalance
has been dealt with in previous work in various ways: oversampling of the minority class
until it consists of as many examples as the majority class (Japkowicz, 2000), undersampling
of the majority class (random or focused), the use of cost-sensitive classifiers (Domingos,
1999), the ROC convex hull method (Provost & Fawcett, 2001).

3.1 One-sided sampling
In the present methodology, One-sided sampling (Kubat & Matwin, 1997; Laurikkala, 2001)
has been chosen to deal with the noise when learning taxonomy relations as it generally
leads to better classification performance than oversampling, and it avoids the problem of
arbitrarily assigning initial costs to instances that arises with cost-sensitive classifiers. One-
sided sampling prunes out redundant and misleading negative examples while keeping all
the positive examples. Instances of the majority class can be categorized into four groups:

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

149

Noisy are instances that appear within a cluster of examples of the opposite class; borderline
are instances close to the boundary region between two classes; redundant are instances that
can be already described by other examples of the same class; safe are instances crucial for
determining the class. Instances belonging to one of the first three groups need to be
eliminated as they do not contribute to class prediction. Noisy and borderline examples can
be detected using Tomek links: two examples, x and y, of opposite classes have a distance of
δ(x,y). This pair of instances constitutes a Tomek link if no other example z exists, such that
δ(x,z) < δ(x,y) or δ(y,z) < δ(x,y). Redundant instances may be removed by creating a consistent
subset of the initial training set. A subset C of training set T is consistent with T, if, when
using the nearest neighbor (1-NN) algorithm, it correctly classifies all the instances in T. To
this end we start with a subset C of the initial dataset T, consisting of all positive examples
and a few (e.g. 20) negative examples. We train a learner with C and try to classify the rest of
the instances of the initial training set. All misclassified instances are added to C, which is
the final reduced dataset. The normalized Euclidean distance function is used to detect
noisy and borderline examples. One-sided sampling has been used in the past in several
domains such as image processing (Kubat & Matwin, 1997), medicine (Laurikkala, 2001),
text categorization (Lewis & Gale, 1994).

3.2 Ensemble learning
Ensemble learning schemata have also been experimented with to deal with the noise and
help the learner to disregard the useless foggy examples and focus on the useful content
data. An ensemble of classifiers is a set of individual (base) classifiers whose output is
combined in order to classify new instances. The construction of good ensembles of
classifiers is one of the most active areas of research in supervised learning, aiming mainly
at discovering ensembles that are more accurate than the individual classifiers that make
them up (Dietterich, 2002). Various schemes have been proposed for combining the
predictions of the base classifiers into a unique output. The most important are bagging,
boosting and stacking. Bagging entails the random partitioning of the dataset in equally sized
subsets (bags) using resampling (Breiman, 1996). Each subset trains the same base classifier
and produces a classification model (hypothesis). The class of every new test instance is
predicted by every model, and the class label with the majority vote is assigned to the test
instance. Unlike bagging, where the models are created separately, boosting works
iteratively, i.e. each new model is influenced by the performance of those built previously
(Freund & Schapire, 1996; Schapire et al., 2002). In other words, new models are forced, by
appropriate weighting, to focus on instances that have been handled incorrectly by older
ones. Finally, stacking usually combines the models created by different base classifiers,
unlike bagging and stacking where all base models are constructed by the same classifier
(Dietterich, 2002). After constructing the different base models, a new instance is fed into
them, and each model predicts a class label. These predictions form the input to another,
higher-level classifier (the so-called meta-learner), that combines them into a final prediction.

4. The corpora
The corpora used in our experiments were:
1. The ILSP/ELEFTHEROTYPIA (Hatzigeorgiu et al., 2000) and ESPRIT 860 (Partners of

ESPRIT-291/820, 1986) Corpora (a total of 300,000 words). Both these corpora are

 Machine Learning

148

position of a word in a sentence that determines its syntactic and semantic role. As a result,
the extraction of compound terms, as well as the identification of nested terms, are not
straightforward and cannot be treated as cases of simple string concatenation. The
grammatical case of nouns and adjectives affects their semantic labelling. Still, the language-
dependent features of the process are not so binding to not allow it to be applicable to other
inflectional languages with relative easiness.
Looking at each stage of the process in more detail, there are further application-specific
interesting features to be noted. As mentioned earlier in this section, classical approaches to
named-entity recognition are limited to names of organizations, persons and locations. The
semantic entities in the present work, however, also cover names of stocks and bonds, as
well as names of newspapers (due to the newswire genre of the used corpus). Furthermore,
there are other semantic types that are important for economic information retrieval, like
quantitative units (e.g. denoting stock and fund quantities, monetary amounts, stock
values), percentages etc. Temporal words and expressions are also identified due to their
importance for data mining tasks.
Traditionally, approaches to terminology extraction make use of a domain-specific corpus
that is to a large extent restricted in the vocabulary it contains and in the variety of syntactic
structures it presents. The economic corpus in this work does not consist of syntactically
standardized taglines of economic news. On the contrary, it presents a very rich variety in
vocabulary, syntactic formulations, idiomatic expressions, sentence length, making the
process of term extraction an interesting challenge.
Finally, regarding semantic relation learning, related work focuses mostly on
hyperonymy/hyponymy and meronymy, in the process described here attribute relations
are also detected, i.e. more ‘abstract’ relations that are specific to the economic domain. For
example, rise and drop are two attributes of the concept value, a stockholder is an attribute of
the concept company.

3. Advanced learning schemata
The lack of sophisticated resources leads unavoidably to the presence of noise in the data.
Noise is examples of useless data that not only do not help the learning of useful, interesting
linguistic information, but they also mislead the learning algorithm, harming its
performance. In machine learning terms, noise appears in the form of class imbalance.
Positive class instances (instances of the class of interest that needs to be learned) in the data
are underrepresented compared to negative instances (null class instances). Class imbalance
has been dealt with in previous work in various ways: oversampling of the minority class
until it consists of as many examples as the majority class (Japkowicz, 2000), undersampling
of the majority class (random or focused), the use of cost-sensitive classifiers (Domingos,
1999), the ROC convex hull method (Provost & Fawcett, 2001).

3.1 One-sided sampling
In the present methodology, One-sided sampling (Kubat & Matwin, 1997; Laurikkala, 2001)
has been chosen to deal with the noise when learning taxonomy relations as it generally
leads to better classification performance than oversampling, and it avoids the problem of
arbitrarily assigning initial costs to instances that arises with cost-sensitive classifiers. One-
sided sampling prunes out redundant and misleading negative examples while keeping all
the positive examples. Instances of the majority class can be categorized into four groups:

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

149

Noisy are instances that appear within a cluster of examples of the opposite class; borderline
are instances close to the boundary region between two classes; redundant are instances that
can be already described by other examples of the same class; safe are instances crucial for
determining the class. Instances belonging to one of the first three groups need to be
eliminated as they do not contribute to class prediction. Noisy and borderline examples can
be detected using Tomek links: two examples, x and y, of opposite classes have a distance of
δ(x,y). This pair of instances constitutes a Tomek link if no other example z exists, such that
δ(x,z) < δ(x,y) or δ(y,z) < δ(x,y). Redundant instances may be removed by creating a consistent
subset of the initial training set. A subset C of training set T is consistent with T, if, when
using the nearest neighbor (1-NN) algorithm, it correctly classifies all the instances in T. To
this end we start with a subset C of the initial dataset T, consisting of all positive examples
and a few (e.g. 20) negative examples. We train a learner with C and try to classify the rest of
the instances of the initial training set. All misclassified instances are added to C, which is
the final reduced dataset. The normalized Euclidean distance function is used to detect
noisy and borderline examples. One-sided sampling has been used in the past in several
domains such as image processing (Kubat & Matwin, 1997), medicine (Laurikkala, 2001),
text categorization (Lewis & Gale, 1994).

3.2 Ensemble learning
Ensemble learning schemata have also been experimented with to deal with the noise and
help the learner to disregard the useless foggy examples and focus on the useful content
data. An ensemble of classifiers is a set of individual (base) classifiers whose output is
combined in order to classify new instances. The construction of good ensembles of
classifiers is one of the most active areas of research in supervised learning, aiming mainly
at discovering ensembles that are more accurate than the individual classifiers that make
them up (Dietterich, 2002). Various schemes have been proposed for combining the
predictions of the base classifiers into a unique output. The most important are bagging,
boosting and stacking. Bagging entails the random partitioning of the dataset in equally sized
subsets (bags) using resampling (Breiman, 1996). Each subset trains the same base classifier
and produces a classification model (hypothesis). The class of every new test instance is
predicted by every model, and the class label with the majority vote is assigned to the test
instance. Unlike bagging, where the models are created separately, boosting works
iteratively, i.e. each new model is influenced by the performance of those built previously
(Freund & Schapire, 1996; Schapire et al., 2002). In other words, new models are forced, by
appropriate weighting, to focus on instances that have been handled incorrectly by older
ones. Finally, stacking usually combines the models created by different base classifiers,
unlike bagging and stacking where all base models are constructed by the same classifier
(Dietterich, 2002). After constructing the different base models, a new instance is fed into
them, and each model predicts a class label. These predictions form the input to another,
higher-level classifier (the so-called meta-learner), that combines them into a final prediction.

4. The corpora
The corpora used in our experiments were:
1. The ILSP/ELEFTHEROTYPIA (Hatzigeorgiu et al., 2000) and ESPRIT 860 (Partners of

ESPRIT-291/820, 1986) Corpora (a total of 300,000 words). Both these corpora are

 Machine Learning

150

balanced in genre and domain and manually annotated with complete morphological
information. Further (phrase structure) information is obtained automatically.

2. The DELOS Corpus (Kermanidis et al., 2002) is a collection of economic domain texts of
approximately five million words and of varying genre. It has been automatically
annotated from the ground up. Morphological tagging on DELOS was performed by
the analyzer of (Sgarbas et al., 2000). Accuracy in part-of-speech and case tagging
reaches 98% and 94% accuracy respectively. Further (phrase structure) information is
again obtained automatically.

All of the above corpora (including DELOS) are collections of newspaper and journal
articles. More specifically, regarding DELOS, the collection consists of texts taken from the
financial newspaper EXPRESS, reports from the Foundation for Economic and Industrial
Research, research papers from the Athens University of Economics and several reports
from the Bank of Greece. The documents are of varying genre like press reportage, news,
articles, interviews and scientific studies and cover all the basic areas of the economic
domain, i.e. microeconomics, macroeconomics, international economics, finance, business
administration, economic history, economic law, public economics etc. Therefore, it presents
richness in vocabulary, in linguistic structure, in the use of idiomatic expressions and
colloquialisms, which is not encountered in the highly domain- and language-restricted
texts used normally for term extraction (e.g. medical records, technical articles, tourist site
descriptions). To indicate the linguistic complexity of the corpus, we mention that the length
of noun phrases varies from 1 to 53 word tokens.
All the corpora have been phrase-analyzed by the chunker described in detail in (Stamatatos
et al., 2000). Noun, verb, prepositional, adverbial phrases and conjunctions are detected via
multi-pass parsing. From the above phrases, noun and prepositional phrases only are taken
into account for the present task, as they are the only types of phrases that may include
terms. Regarding the phrases of interest, precision and recall reach 85.6% and 94.5% for
noun phrases, and 99.1% and 93.9% for prepositional phrases respectively. The robustness
of the chunker and its independence on extravagant information makes it suitable to deal
with a style-varying and complicated in linguistic structure corpus like DELOS.
It should be noted that phrases are non-overlapping. Embedded phrased are flatly split into
distinct phrases. Nominal modifiers in the genitive case are included in the same phrase
with the noun they modify; nouns joined by a coordinating conjunction are grouped into
one phrase. The chunker identifies basic phrase constructions during the first passes (e.g.
adjective-nouns, article nouns), and combines smaller phrases into lon ger ones in later
passes (e.g. coordination, inclusion of genitive modifiers, compound phrases). As a result,
named entities, proper nouns, compound nominal constructions are identified during
chunking among the rest of the noun phrases.

5. Learning semantic entities
The tagging of semantic entities in written text is an important subtask for information
retrieval and data mining and refers to the task of identifying the entities and assigning
them to the appropriate semantic category. In the present work, each token in the economic
corpus constitutes a candidate semantic entity. Each candidate entity is represented by a
feature-value vector, suitable for learning. The features forming the vector are:
1. The token lemma. In the case where automatic lemmatization was not able to produce

the token lemma, the token itself is the value of this feature.
2. The part-of-speech category of the token.

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

151

3. The morphological tag of the token. The morphological tag is a string of 3 characters
encoding the case, number, and gender of the token, if it is nominal (noun, adjective or
article).

4. The case tag of the token. The case tag is one of three characters denoting the token case.
5. Capitalization. A Boolean feature encodes whether the first letter of the token is

capitalized or not.
For each candidate entity, context information was included in the feature-value vector, by
taking into account the two tokens preceding and the two tokens following it. Each of these
tokens was represented in the vector by the five features described above. As a result, a total
of 25 (5x5) features are used to form the instance vectors.
The class label assigns a semantic tag to each candidate token. These tags represent the
entity boundaries (whether the candidate token is the start, the end or inside an entity) as
well as the semantic identity of the token. A total of 40,000 tokens were manually tagged
with their class value. Table 1 shows the various values of the class feature, as well as their
frequency among the total number of tokens.

Tag Description Percentage
AE Start of company/organization/bank name 1.4%
ME Middle of company/organization/bank name 0.74%
TE End of company/organization/bank name 1.4%
E Company/organization/bank 1-word name 1.1%
AP Start of monetary amount/price/value 0.88%
MP Middle of monetary amount/price/value 0.63%
TP End of monetary amount/price/value 0.88%
AAM Start of number of stocks/bonds 0.3%
MAM Middle of number of stocks/bonds 0.42%
TAM End of number of stocks/bonds 0.3%
AT Start of percentage value 0.73%
MT Middle of percentage value 0.08%
TT End of percentage value 0.73%
AX Start of temporal expression 1%
MX Middle of temporal expression 0.75%
TX End of temporal expression 1%
X 1-word temporal expression 0.55%
AO Start of stock/bond name 0.16%
MO Middle of stock/bond name 0.17%
TO End of stock/bond name 0.16%
ON 1-word stock/bond name 0.05%
AL Start of location name 0.21%
ML Middle of location name 0.48%
TL End of location name 0.21%
L 1-word location name 0.33%
F 1-word newspaper/journal name 0.14%
AN Start of person name 0.18%
MN Middle of person name 0.02%
TN End of person name 0.18%
N 1-word person name 0.06%

Table 1. Values of the semantic entities class label

 Machine Learning

150

balanced in genre and domain and manually annotated with complete morphological
information. Further (phrase structure) information is obtained automatically.

2. The DELOS Corpus (Kermanidis et al., 2002) is a collection of economic domain texts of
approximately five million words and of varying genre. It has been automatically
annotated from the ground up. Morphological tagging on DELOS was performed by
the analyzer of (Sgarbas et al., 2000). Accuracy in part-of-speech and case tagging
reaches 98% and 94% accuracy respectively. Further (phrase structure) information is
again obtained automatically.

All of the above corpora (including DELOS) are collections of newspaper and journal
articles. More specifically, regarding DELOS, the collection consists of texts taken from the
financial newspaper EXPRESS, reports from the Foundation for Economic and Industrial
Research, research papers from the Athens University of Economics and several reports
from the Bank of Greece. The documents are of varying genre like press reportage, news,
articles, interviews and scientific studies and cover all the basic areas of the economic
domain, i.e. microeconomics, macroeconomics, international economics, finance, business
administration, economic history, economic law, public economics etc. Therefore, it presents
richness in vocabulary, in linguistic structure, in the use of idiomatic expressions and
colloquialisms, which is not encountered in the highly domain- and language-restricted
texts used normally for term extraction (e.g. medical records, technical articles, tourist site
descriptions). To indicate the linguistic complexity of the corpus, we mention that the length
of noun phrases varies from 1 to 53 word tokens.
All the corpora have been phrase-analyzed by the chunker described in detail in (Stamatatos
et al., 2000). Noun, verb, prepositional, adverbial phrases and conjunctions are detected via
multi-pass parsing. From the above phrases, noun and prepositional phrases only are taken
into account for the present task, as they are the only types of phrases that may include
terms. Regarding the phrases of interest, precision and recall reach 85.6% and 94.5% for
noun phrases, and 99.1% and 93.9% for prepositional phrases respectively. The robustness
of the chunker and its independence on extravagant information makes it suitable to deal
with a style-varying and complicated in linguistic structure corpus like DELOS.
It should be noted that phrases are non-overlapping. Embedded phrased are flatly split into
distinct phrases. Nominal modifiers in the genitive case are included in the same phrase
with the noun they modify; nouns joined by a coordinating conjunction are grouped into
one phrase. The chunker identifies basic phrase constructions during the first passes (e.g.
adjective-nouns, article nouns), and combines smaller phrases into lon ger ones in later
passes (e.g. coordination, inclusion of genitive modifiers, compound phrases). As a result,
named entities, proper nouns, compound nominal constructions are identified during
chunking among the rest of the noun phrases.

5. Learning semantic entities
The tagging of semantic entities in written text is an important subtask for information
retrieval and data mining and refers to the task of identifying the entities and assigning
them to the appropriate semantic category. In the present work, each token in the economic
corpus constitutes a candidate semantic entity. Each candidate entity is represented by a
feature-value vector, suitable for learning. The features forming the vector are:
1. The token lemma. In the case where automatic lemmatization was not able to produce

the token lemma, the token itself is the value of this feature.
2. The part-of-speech category of the token.

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

151

3. The morphological tag of the token. The morphological tag is a string of 3 characters
encoding the case, number, and gender of the token, if it is nominal (noun, adjective or
article).

4. The case tag of the token. The case tag is one of three characters denoting the token case.
5. Capitalization. A Boolean feature encodes whether the first letter of the token is

capitalized or not.
For each candidate entity, context information was included in the feature-value vector, by
taking into account the two tokens preceding and the two tokens following it. Each of these
tokens was represented in the vector by the five features described above. As a result, a total
of 25 (5x5) features are used to form the instance vectors.
The class label assigns a semantic tag to each candidate token. These tags represent the
entity boundaries (whether the candidate token is the start, the end or inside an entity) as
well as the semantic identity of the token. A total of 40,000 tokens were manually tagged
with their class value. Table 1 shows the various values of the class feature, as well as their
frequency among the total number of tokens.

Tag Description Percentage
AE Start of company/organization/bank name 1.4%
ME Middle of company/organization/bank name 0.74%
TE End of company/organization/bank name 1.4%
E Company/organization/bank 1-word name 1.1%
AP Start of monetary amount/price/value 0.88%
MP Middle of monetary amount/price/value 0.63%
TP End of monetary amount/price/value 0.88%
AAM Start of number of stocks/bonds 0.3%
MAM Middle of number of stocks/bonds 0.42%
TAM End of number of stocks/bonds 0.3%
AT Start of percentage value 0.73%
MT Middle of percentage value 0.08%
TT End of percentage value 0.73%
AX Start of temporal expression 1%
MX Middle of temporal expression 0.75%
TX End of temporal expression 1%
X 1-word temporal expression 0.55%
AO Start of stock/bond name 0.16%
MO Middle of stock/bond name 0.17%
TO End of stock/bond name 0.16%
ON 1-word stock/bond name 0.05%
AL Start of location name 0.21%
ML Middle of location name 0.48%
TL End of location name 0.21%
L 1-word location name 0.33%
F 1-word newspaper/journal name 0.14%
AN Start of person name 0.18%
MN Middle of person name 0.02%
TN End of person name 0.18%
N 1-word person name 0.06%

Table 1. Values of the semantic entities class label

 Machine Learning

152

Unlike most previous approaches that focus on labelling three or four semantic categories of
named entities, the present work deals with a total of 30 class values plus the non-entity
(NULL) value, as can be seen in the previous table.
Another important piece of information provided disclosed by the previous table is the
imbalance between the populations of the positive instances (entities) in the dataset, that
form only 15% of the total number of instances, and the negative instances (non-entities).
This imbalance leads to serious classification problems when trying to classify instances that
belong to one of the minority classes (Kubat & Matwin, 1997). By removing negative
examples, so that their number reaches that of the positive examples (Laurikkala, 2001), the
imbalance is attacked and the results prove that classification accuracy of the positive
instances improves considerably.

5.1 Experimental setup and results
Instance-based learning (1-NN) was the algorithm selected to classify the candidate semantic
entities. 1-NN was chosen because, due to storing all examples in memory, it is able to deal
competently with exceptions and low-frequency events, which are important in language
learning tasks (Daelemans et al., 1999), and are ignored by other learning algorithms.
Several experiments were conducted for determining the optimal context window size of
the candidate entities. Sizes (-2, +2) - two tokens preceding and two following the candidate
entity - and (-1, +1) - one token preceding and one following the candidate entity - were
experimented with, and comparative performance results were obtained. When decreasing
the size from (-2, +2) to (-1, +1), the number of features forming the instance vectors drops
from 25 to 15. The results are shown in the second and third column of Table 2.
Another set of experiments focused on comparing classification in one stage and in two
stages, i.e. stacking. In the first stage, the Instance-based learner predicts the class labels of
the test instances. In the second stage, the predictions of the first phase are added to the set
of features that are described in the previous section. The total number of features in the
second stage, when experimenting with the (-2, +2) context window, is 30. The results of
learning in two stages with window size (-1, +1) are shown in the fourth column of Table 2.
Comparative experiments were also performed with and without the removal of negative
examples, in order to prove the increase in performance after applying random
undersampling to the data. With random undersampling, random instances of the majority
class are removed from the dataset in order for their number to reach that of the positive
classes. The classification results, after applying the undersampling procedure and for
context window size (-1, +1), are presented in the last column of Table 2. Testing of the
algorithm was performed using 10-fold cross validation.
For a qualitative analysis of the results, a set of graphs follows that groups them together
into clusters. Fig. 2 shows the impact of the selected context window size on the
classification process to the various classes in the initial dataset. The bars represent the
average f-score for every semantic entity type, e.g. Stock/bond name is the average value of
the AO, MO, TO and ON classes. Certain types of entities require a larger window for their
accurate detection, while larger context is misleading for other types. To the former category
belong multi-word entities like stock names, person and location names. Entities that consist
normally of two words at the most, or one word and a symbol (like amounts, prices, etc.)
belong to the second category.
Fig. 3 shows the grouped results for the start, middle, end and 1–word labels in the initial
dataset. For example, the Start bar is the average f-score over all the start labels. The Middle

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

153

class group presents the lowest results, especially when a small context window size is used.
This may be attributed to the fact that tokens in the inside of an entity are normally neither
preceded nor followed by characteristic keywords or symbols. Therefore, their detection is
harder than that of the entity borders, as the environment surrounding the entity helps the
classification decision for the borders.

Class F-score
(-1,+1)

F-score
(-2,+2)

F-score
Stacking

F-score
Undersampling

NULL 0.969 0.96 0.981 0.939
AE 0.728 0.683 0.882 0.899
ME 0.557 0.64 0.831 0.808
TE 0.768 0.74 0.871 0.903
AP 0.851 0.767 0.96 0.96
MP 0.865 0.852 0.957 0.963
TP 0.84 0.774 0.932 0.932
E 0.667 0.621 0.721 0.803
AAM 0.754 0.675 0.895 0.895
MAM 0.769 0.708 0.944 0.911
TAM 0.611 0.643 0.865 0.838
AO 0.353 0.465 0.81 0.85
MO 0.194 0.293 0.55 0.5
TO 0.143 0.35 0.629 0.611
AT 0.911 0.802 0.985 0.98
MT 0.588 0.857 0.952 0.952
TT 0.939 0.818 0.954 0.96
AX 0.585 0.558 0.755 0.806
TX 0.588 0.492 0.736 0.774
AL 0.421 0.449 0.651 0.571
ML 0.059 0.17 0.562 0.632
TL 0.278 0.293 0.524 0.465
X 0.452 0.457 0.567 0.694
F 0.889 0.947 0.944 1
AN 0.286 0.364 0.65 0.756
TN 0.378 0.632 0.65 0.579
MX 0.524 0.561 0.802 0.8
MN 0 0 0 0
ON 0 0 0 0
N 0.667 0.571 0.533 0.571
L 0.519 0.506 0.55 0.565

Table 2. Detailed experimental results

As can be seen in Table 2, classification for certain types reaches a poor score. Looking more
closely at Table 1, this can be attributed without a doubt to the sparseness that characterizes

 Machine Learning

152

Unlike most previous approaches that focus on labelling three or four semantic categories of
named entities, the present work deals with a total of 30 class values plus the non-entity
(NULL) value, as can be seen in the previous table.
Another important piece of information provided disclosed by the previous table is the
imbalance between the populations of the positive instances (entities) in the dataset, that
form only 15% of the total number of instances, and the negative instances (non-entities).
This imbalance leads to serious classification problems when trying to classify instances that
belong to one of the minority classes (Kubat & Matwin, 1997). By removing negative
examples, so that their number reaches that of the positive examples (Laurikkala, 2001), the
imbalance is attacked and the results prove that classification accuracy of the positive
instances improves considerably.

5.1 Experimental setup and results
Instance-based learning (1-NN) was the algorithm selected to classify the candidate semantic
entities. 1-NN was chosen because, due to storing all examples in memory, it is able to deal
competently with exceptions and low-frequency events, which are important in language
learning tasks (Daelemans et al., 1999), and are ignored by other learning algorithms.
Several experiments were conducted for determining the optimal context window size of
the candidate entities. Sizes (-2, +2) - two tokens preceding and two following the candidate
entity - and (-1, +1) - one token preceding and one following the candidate entity - were
experimented with, and comparative performance results were obtained. When decreasing
the size from (-2, +2) to (-1, +1), the number of features forming the instance vectors drops
from 25 to 15. The results are shown in the second and third column of Table 2.
Another set of experiments focused on comparing classification in one stage and in two
stages, i.e. stacking. In the first stage, the Instance-based learner predicts the class labels of
the test instances. In the second stage, the predictions of the first phase are added to the set
of features that are described in the previous section. The total number of features in the
second stage, when experimenting with the (-2, +2) context window, is 30. The results of
learning in two stages with window size (-1, +1) are shown in the fourth column of Table 2.
Comparative experiments were also performed with and without the removal of negative
examples, in order to prove the increase in performance after applying random
undersampling to the data. With random undersampling, random instances of the majority
class are removed from the dataset in order for their number to reach that of the positive
classes. The classification results, after applying the undersampling procedure and for
context window size (-1, +1), are presented in the last column of Table 2. Testing of the
algorithm was performed using 10-fold cross validation.
For a qualitative analysis of the results, a set of graphs follows that groups them together
into clusters. Fig. 2 shows the impact of the selected context window size on the
classification process to the various classes in the initial dataset. The bars represent the
average f-score for every semantic entity type, e.g. Stock/bond name is the average value of
the AO, MO, TO and ON classes. Certain types of entities require a larger window for their
accurate detection, while larger context is misleading for other types. To the former category
belong multi-word entities like stock names, person and location names. Entities that consist
normally of two words at the most, or one word and a symbol (like amounts, prices, etc.)
belong to the second category.
Fig. 3 shows the grouped results for the start, middle, end and 1–word labels in the initial
dataset. For example, the Start bar is the average f-score over all the start labels. The Middle

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

153

class group presents the lowest results, especially when a small context window size is used.
This may be attributed to the fact that tokens in the inside of an entity are normally neither
preceded nor followed by characteristic keywords or symbols. Therefore, their detection is
harder than that of the entity borders, as the environment surrounding the entity helps the
classification decision for the borders.

Class F-score
(-1,+1)

F-score
(-2,+2)

F-score
Stacking

F-score
Undersampling

NULL 0.969 0.96 0.981 0.939
AE 0.728 0.683 0.882 0.899
ME 0.557 0.64 0.831 0.808
TE 0.768 0.74 0.871 0.903
AP 0.851 0.767 0.96 0.96
MP 0.865 0.852 0.957 0.963
TP 0.84 0.774 0.932 0.932
E 0.667 0.621 0.721 0.803
AAM 0.754 0.675 0.895 0.895
MAM 0.769 0.708 0.944 0.911
TAM 0.611 0.643 0.865 0.838
AO 0.353 0.465 0.81 0.85
MO 0.194 0.293 0.55 0.5
TO 0.143 0.35 0.629 0.611
AT 0.911 0.802 0.985 0.98
MT 0.588 0.857 0.952 0.952
TT 0.939 0.818 0.954 0.96
AX 0.585 0.558 0.755 0.806
TX 0.588 0.492 0.736 0.774
AL 0.421 0.449 0.651 0.571
ML 0.059 0.17 0.562 0.632
TL 0.278 0.293 0.524 0.465
X 0.452 0.457 0.567 0.694
F 0.889 0.947 0.944 1
AN 0.286 0.364 0.65 0.756
TN 0.378 0.632 0.65 0.579
MX 0.524 0.561 0.802 0.8
MN 0 0 0 0
ON 0 0 0 0
N 0.667 0.571 0.533 0.571
L 0.519 0.506 0.55 0.565

Table 2. Detailed experimental results

As can be seen in Table 2, classification for certain types reaches a poor score. Looking more
closely at Table 1, this can be attributed without a doubt to the sparseness that characterizes

 Machine Learning

154

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

Company/Organization/Bank name

Amount/Price/Value

Number of stocks/bonds

Stock/bond name

Percentage value

Temporal expression

Location name

Person name

(-1+1)
(-2+2)

Fig. 2. The impact of the context window size

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Start Middle End 1-word

(-1+1)
(-2+2)

Fig. 3. The average results for the Start, Middle, End and 1-word class groups

these types (multi-word person names, multi-word stock/bond names, multi-word
locations). An interesting exception to this rule is newspaper/journal names, that reach very
high scores, despite their low frequency, because they are normally introduced by specific
words like ‘εφημερίδα’ (newspaper) or ‘περιοδικό’ (journal).
Table 2 also shows the high f-score achieved for the negative (NULL) class compared to that
of the positive classes, due to its high over-representation in the dataset.
The fourth column of Table 2 shows the positive effects of stacking on the task at hand. The
f-score increases up to more than 50% after applying two-phase learning. This improvement
is due to two reasons: first, the sequential nature of the class label tags (start, middle, end).
The class of one entity depends largely on the class of the preceding and the following
entities. Second, the inclusion of the predicted class of the candidate entity (from the

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

155

previous learning stage) in the feature vector of the second stage forces the classifier to focus
on the mistakes it made, and try to correct them. Difficult cases like multi-word locations
and multi-word names are now dealt with satisfactorily.
Random undersampling also proved highly beneficial for the majority of the entity
categories. It forces the learner to pay more attention to the minority classes. The random
nature of the undersampling process is the reason that the results for certain entity types
were not improved, as certain useful negative examples may have been removed.
The positive effects of stacking and undersampling are shown clearly in Figure 4.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Company/Organization/Bank name

Amount/Price/Value

Number of sto
cks/bonds

Stock/bond name

Percentage value

Temporal expression

Location name

Person name

Initial dataset
Stacking
Undersampling

Fig. 4. The average results for all semantic entity types using Stacking and Undersampling.

One-word stock/bond names (ON) occur extremely seldom in the corpus. Person names
consisting of more than two words (MN), are even more rare. The learner has not been able
to detect these classes due to the sparseness.
Given, however, the nature and complexity of the corpus, the low level of pre-processing
(compared to previous approaches that use phrase-chunked input), and the large number of
class labels, the results of Table 2 are very impressive when compared to the ones reported
in the literature.

6. Extracting economic terms
The next step of the procedure is the automatic extraction of economic terms, following the
methodology described in (Thanopoulos et al., 2006). Corpora comparison was employed
for the extraction of economic terms. Corpora comparison detects the difference in statistical
behavior that a term presents in a balanced and in a domain-specific corpus.
Noun and prepositional phrases of the two corpora are selected to constitute candidate
terms, as only these phrase types are likely to contain terms. The occurrences of words and
multi-word units (n-grams), pure as well as nested, are counted. Longer candidate terms are
split into smaller units (tri-grams into bi-grams and uni-grams, bi-grams into uni-grams).

 Machine Learning

154

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

Company/Organization/Bank name

Amount/Price/Value

Number of stocks/bonds

Stock/bond name

Percentage value

Temporal expression

Location name

Person name

(-1+1)
(-2+2)

Fig. 2. The impact of the context window size

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Start Middle End 1-word

(-1+1)
(-2+2)

Fig. 3. The average results for the Start, Middle, End and 1-word class groups

these types (multi-word person names, multi-word stock/bond names, multi-word
locations). An interesting exception to this rule is newspaper/journal names, that reach very
high scores, despite their low frequency, because they are normally introduced by specific
words like ‘εφημερίδα’ (newspaper) or ‘περιοδικό’ (journal).
Table 2 also shows the high f-score achieved for the negative (NULL) class compared to that
of the positive classes, due to its high over-representation in the dataset.
The fourth column of Table 2 shows the positive effects of stacking on the task at hand. The
f-score increases up to more than 50% after applying two-phase learning. This improvement
is due to two reasons: first, the sequential nature of the class label tags (start, middle, end).
The class of one entity depends largely on the class of the preceding and the following
entities. Second, the inclusion of the predicted class of the candidate entity (from the

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

155

previous learning stage) in the feature vector of the second stage forces the classifier to focus
on the mistakes it made, and try to correct them. Difficult cases like multi-word locations
and multi-word names are now dealt with satisfactorily.
Random undersampling also proved highly beneficial for the majority of the entity
categories. It forces the learner to pay more attention to the minority classes. The random
nature of the undersampling process is the reason that the results for certain entity types
were not improved, as certain useful negative examples may have been removed.
The positive effects of stacking and undersampling are shown clearly in Figure 4.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Company/Organization/Bank name

Amount/Price/Value

Number of sto
cks/bonds

Stock/bond name

Percentage value

Temporal expression

Location name

Person name

Initial dataset
Stacking
Undersampling

Fig. 4. The average results for all semantic entity types using Stacking and Undersampling.

One-word stock/bond names (ON) occur extremely seldom in the corpus. Person names
consisting of more than two words (MN), are even more rare. The learner has not been able
to detect these classes due to the sparseness.
Given, however, the nature and complexity of the corpus, the low level of pre-processing
(compared to previous approaches that use phrase-chunked input), and the large number of
class labels, the results of Table 2 are very impressive when compared to the ones reported
in the literature.

6. Extracting economic terms
The next step of the procedure is the automatic extraction of economic terms, following the
methodology described in (Thanopoulos et al., 2006). Corpora comparison was employed
for the extraction of economic terms. Corpora comparison detects the difference in statistical
behavior that a term presents in a balanced and in a domain-specific corpus.
Noun and prepositional phrases of the two corpora are selected to constitute candidate
terms, as only these phrase types are likely to contain terms. The occurrences of words and
multi-word units (n-grams), pure as well as nested, are counted. Longer candidate terms are
split into smaller units (tri-grams into bi-grams and uni-grams, bi-grams into uni-grams).

 Machine Learning

156

Due to the relative freedom in the word ordering in Modern Greek sentences, bi-gram A B
(A and B being the two lemmata forming the bi-gram) is considered to be identical to bi-
gram B A, if the bi-gram is not a semantic entity. Their joint count in the corpora is
calculated and taken into account. The resulting uni-grams and bi-grams are the candidate
terms. The candidate term counts in the corpora are then used in statistical filters.
Statistical filtering is performed in two stages: First the relative frequencies are calculated for
each candidate term. Then, for those candidate terms that present a relative frequency value
greater than 1, the Log Likelihood ratio (LLR) is calculated. The LLR metric detects how
surprising (or not) it is for a candidate term to appear in the domain-specific or in the
balanced corpus (compared to its expected appearance count), and therefore constitute an
economic domain term (or not).

Rank Word Translation Count 1 Count 2 RF LLR
1 εταιρία company 5396 0 1845.9 852.0
2 δρχ drachmas 3003 1 342.5 465.5
3 μετοχή stock 2827 6 74.4 414.0
4 αγορά buy 2330 33 11.9 257.2
5 αύξηση growth, rise 2746 66 7.1 247.6
6 κέρδος profit 1820 15 20.1 228.2
7 τράπεζα bank 1367 11 20.3 171.8
8 επιχείρηση enterprise 1969 56 6.0 162.1
9 κεφάλαιο capital 1325 14 15.6 157.3

10 σημαντικός important 1872 56 5.7 149.3
11 πώληση sale 1203 11 17.9 147.3
12 προϊόν product 1282 16 13.3 146.0
13 όμιλος company, group 1036 5 32.2 140.0
14 Α.Ε. INC 820 0 280.7 126. 4
15 μετοχικός stocking 790 2 54.1 112.8
16 τιμή price 1722 70 4.2 110.9
17 επιτόκιο interest 821 4 31.2 110.0
18 υψηλός high 711 0 243.4 109.2
19 κόστος cost 1031 19 9.0 103.4
20 κλάδος branch 833 7 19.0 103.2

Table 3. The 20 most highly ranked terms

Table 3 shows the relative frequency (RF) and LLR scores of the 20 most highly ranked
economic terms, ordered by their LLR value. Count 1 and Count 2 are the term counts in the
domain-specific and the balanced corpus respectively. An interesting term is ‘υψηλός’, the
ancient Greek form for ‘high’, used today almost exclusively in the context of the degree of
performance, growth, rise, profit, cost, drop (i.e. the appropriate form in economic context),
as opposed to its modern form ‘ψηλός’, which is used in the concept of the degree of actual
height.
A particularity of the present work is that, unlike in most previous approaches to term
extraction, the domain-specific corpus available to us is quite large compared to the

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

157

balanced corpus. As a result, several terms that appear in DELOS do not appear in the
balanced corpus, making it impossible for the LLR statistic to detect them. In other words,
these terms cannot be identified by traditional corpora comparison. Lidstone’s law
(Manning & Schuetze, 1999) was applied to the candidate terms, i.e. each candidate term
count was augmented by a value of λ=0.5 in both corpora. Thereby, terms that actually do
not appear in the balanced corpus at all, end up having a Count 2 = 0.5. This value was
chosen for λ because, due to the small size of the balanced corpus, the probability of coming
across a previously unseen word is significant.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

50 150 250 350 450 550 650

N-best candidate terms

Pr
ec

is
io

n

Strongly Economic Economic

Mostly non-Economic non-Economic

Fig. 5. Precision (y-axis) for the N-best candidate terms (x-axis) that appear in both corpora

As can be seen in Fig. 5, the term extraction methodology reaches a precision of 82% for
the 200 N-best candidate terms. In this figure, strongly economic are terms that are
characteristic of the domain and necessary for understanding domain texts. Economic are
terms that function as economic within a context of this domain, but may also have a
different meaning outside this domain. Mostly non-economic are words that are connected
to the specific domain only indirectly, or more general terms that normally appear outside
the economic domain, but may carry an economic sense in certain limited cases. Non-
economic are terms that never appear in an economic sense or can be related to the domain
in any way.

7. Learning semantic relations
The final step of the proposed methodology focuses on the identification of the taxonomic
relations between the terms that were extracted in the previous phase. From the previous
phase, the 250 most highly ranked terms (according to the LLR metric) were selected, and
each one was paired with the rest. Syntactic and semantic information regarding the term
pair has been encoded in a set of attributes that form a feature-value vector for each pair of

 Machine Learning

156

Due to the relative freedom in the word ordering in Modern Greek sentences, bi-gram A B
(A and B being the two lemmata forming the bi-gram) is considered to be identical to bi-
gram B A, if the bi-gram is not a semantic entity. Their joint count in the corpora is
calculated and taken into account. The resulting uni-grams and bi-grams are the candidate
terms. The candidate term counts in the corpora are then used in statistical filters.
Statistical filtering is performed in two stages: First the relative frequencies are calculated for
each candidate term. Then, for those candidate terms that present a relative frequency value
greater than 1, the Log Likelihood ratio (LLR) is calculated. The LLR metric detects how
surprising (or not) it is for a candidate term to appear in the domain-specific or in the
balanced corpus (compared to its expected appearance count), and therefore constitute an
economic domain term (or not).

Rank Word Translation Count 1 Count 2 RF LLR
1 εταιρία company 5396 0 1845.9 852.0
2 δρχ drachmas 3003 1 342.5 465.5
3 μετοχή stock 2827 6 74.4 414.0
4 αγορά buy 2330 33 11.9 257.2
5 αύξηση growth, rise 2746 66 7.1 247.6
6 κέρδος profit 1820 15 20.1 228.2
7 τράπεζα bank 1367 11 20.3 171.8
8 επιχείρηση enterprise 1969 56 6.0 162.1
9 κεφάλαιο capital 1325 14 15.6 157.3

10 σημαντικός important 1872 56 5.7 149.3
11 πώληση sale 1203 11 17.9 147.3
12 προϊόν product 1282 16 13.3 146.0
13 όμιλος company, group 1036 5 32.2 140.0
14 Α.Ε. INC 820 0 280.7 126. 4
15 μετοχικός stocking 790 2 54.1 112.8
16 τιμή price 1722 70 4.2 110.9
17 επιτόκιο interest 821 4 31.2 110.0
18 υψηλός high 711 0 243.4 109.2
19 κόστος cost 1031 19 9.0 103.4
20 κλάδος branch 833 7 19.0 103.2

Table 3. The 20 most highly ranked terms

Table 3 shows the relative frequency (RF) and LLR scores of the 20 most highly ranked
economic terms, ordered by their LLR value. Count 1 and Count 2 are the term counts in the
domain-specific and the balanced corpus respectively. An interesting term is ‘υψηλός’, the
ancient Greek form for ‘high’, used today almost exclusively in the context of the degree of
performance, growth, rise, profit, cost, drop (i.e. the appropriate form in economic context),
as opposed to its modern form ‘ψηλός’, which is used in the concept of the degree of actual
height.
A particularity of the present work is that, unlike in most previous approaches to term
extraction, the domain-specific corpus available to us is quite large compared to the

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

157

balanced corpus. As a result, several terms that appear in DELOS do not appear in the
balanced corpus, making it impossible for the LLR statistic to detect them. In other words,
these terms cannot be identified by traditional corpora comparison. Lidstone’s law
(Manning & Schuetze, 1999) was applied to the candidate terms, i.e. each candidate term
count was augmented by a value of λ=0.5 in both corpora. Thereby, terms that actually do
not appear in the balanced corpus at all, end up having a Count 2 = 0.5. This value was
chosen for λ because, due to the small size of the balanced corpus, the probability of coming
across a previously unseen word is significant.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

50 150 250 350 450 550 650

N-best candidate terms

Pr
ec

is
io

n

Strongly Economic Economic

Mostly non-Economic non-Economic

Fig. 5. Precision (y-axis) for the N-best candidate terms (x-axis) that appear in both corpora

As can be seen in Fig. 5, the term extraction methodology reaches a precision of 82% for
the 200 N-best candidate terms. In this figure, strongly economic are terms that are
characteristic of the domain and necessary for understanding domain texts. Economic are
terms that function as economic within a context of this domain, but may also have a
different meaning outside this domain. Mostly non-economic are words that are connected
to the specific domain only indirectly, or more general terms that normally appear outside
the economic domain, but may carry an economic sense in certain limited cases. Non-
economic are terms that never appear in an economic sense or can be related to the domain
in any way.

7. Learning semantic relations
The final step of the proposed methodology focuses on the identification of the taxonomic
relations between the terms that were extracted in the previous phase. From the previous
phase, the 250 most highly ranked terms (according to the LLR metric) were selected, and
each one was paired with the rest. Syntactic and semantic information regarding the term
pair has been encoded in a set of attributes that form a feature-value vector for each pair of

 Machine Learning

158

terms. The proposed syntactic/semantic attributes are empirical and are described in the
next sections. The term lemmata, their frequencies, and their part-of-speech tags were also
included in the feature set. The semantic relations of a total of 6000 term pairs were
manually annotated by economy and finance experts with one of the four class label values:
is-a, part-of, attribute relation and no relation (null).

7.1 Semantic context vectors
The sense of a term is strongly linked to the context the term appears in. To this end, for
each extracted term semantic context vectors have been constructed, that are comprised by
the ten most frequent words the term co occurs with in the domain-specific corpus. A
context window of two words preceding and two words following the term for every
occurrence of the term in the corpus is formed. All non-content words (prepositions, articles,
pronouns, particles, conjunctions) are disregarded, while acronyms, abbreviations, and
certain symbols (e.g. %, €) are taken into account because of their importance for
determining the semantic profile of the term in the given domain. Bi-grams (pairs of the
term with each word within the con-text window) are generated and their frequency is
recorded. The ten words that present the highest bi-gram frequency scores are chosen to
form the context vector of the term.

7.2 Semantic similarity
For each pair of terms, their semantic similarity is calculated, based on their semantic
context vectors. The smaller the distance between the context vectors, the more similar the
terms’ semantics. The value of semantic similarity is an integer with a value ranging from 0
to 10, which denotes the number of common words two context vectors share.

7.3 Semantic diversity
Another important semantic feature that is taken into account is how ‘diverse’ the semantic
properties of a term are, i.e. the number of other terms that a term shares semantic
properties with. This property is important when creating taxonomic hierarchies, because,
the more ‘shared’ the semantic behaviour of a term is, the more likely it is for the term to
have a higher place in the hierarchy. The notion of ‘semantic diversity’ is included in the
feature set by calculating the percentage of the total number of terms whose semantic
similarity with the focus term (one of the two terms whose taxonomic relation is to be
determined) is at least 1.

7.4 Syntactic patterns
Syntactic information, regarding the linguistic patterns that govern the co occurrence of two
terms, is significant for extracting taxonomic information. For languages with a relatively
strict sentence structure, like English, such patterns are easier to detect (Hearst, 1992), and
their impact on taxonomy learning more straightforward.
As mentioned earlier, Modern Greek presents a larger degree of freedom in the ordering of
the constituents of a sentence, due to its rich morphology and its complex declination
system. This freedom makes it difficult to detect syntactic patterns, and, even if they are
detected, their contribution to the present task is not that easily observable.

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

159

However, two Modern Greek syntactic schemata prove very useful for learning taxonomies.
They are the attributive modification schema and the genitive modification schema. The
first, known in many languages, is the pattern where (usually) an adjective modifies the
following noun. The second is typical for Modern Greek, and it is formed by two nominal
expressions, one of which (usually following the other) appears in the genitive case and
modifies the preceding nominal, denoting possession, property, origin, quantity, quality.
The following phrases show examples of the first (example 1) and the second (examples 2, 3
and 4) schemata respectively.

(1) το μετοχικό[ADJ] κεφάλαιο[NOUN]
 the stock capital

(2) η κατάθεση[NOUN] επιταγής [NOUN-GEN]
 the deposit check
 (the deposit of the check)

(3) πρόεδρος[NOUN] του συμβουλίου[NOUN-GEN]
 head the council
 (head of the council)

(4) αύξηση[NOUN] του κεφαλαίου[NOUN-GEN]
 increase the capital
 (capital increase)

Both these schemata enclose the notion of taxonomic relations: hyponymy relations (a check
deposit is a type of deposit, a stock capital is a type of capital), as well as meronymy relations
(the head is part of a council). The fourth example incorporates an attribute relation. The
distinction among the types of relations is not always clear. In the check deposit example,
the deposit may also be considered an attribute of check, constituting thereby an attribute
relation. For each pair of terms, the number of times they occur in one of the two schemata
in the domain-specific corpus is calculated. This information is basically the only language-
dependent feature that is included in the methodology.

7.5 Experimental setup and results
9% of the term pairs belong to the is-a class, 17% belong to the attribute class and only 0.5%
belong to the part-of class. The instances that belong to one of the first three classes are called
positive, while those that belong to the null class are called negative.
Different classifiers lead to different results. Preliminary experiments have been run using
various classification algorithms. C4.5 is Quinlan’s decision tree induction algorithm
without pruning (Quinlan, 1993). Decision trees were chosen because of their high
representational power, which is very significant for understanding the impact of each
feature on the classification accuracy, and because of the knowledge that can be extracted
from the resulting tree itself. The 1-NN instanced-based learning algorithm is chosen to
constitute a reference to a baseline classification performance. SVM is the Support Vector
Machines classifier with a linear kernel. SVM cope well with the sparse data problem, and
also with noise in the data (an inevitable phenomenon due to the automatic nature of the
procedure described so far). A first degree polynomial kernel function was selected and the

 Machine Learning

158

terms. The proposed syntactic/semantic attributes are empirical and are described in the
next sections. The term lemmata, their frequencies, and their part-of-speech tags were also
included in the feature set. The semantic relations of a total of 6000 term pairs were
manually annotated by economy and finance experts with one of the four class label values:
is-a, part-of, attribute relation and no relation (null).

7.1 Semantic context vectors
The sense of a term is strongly linked to the context the term appears in. To this end, for
each extracted term semantic context vectors have been constructed, that are comprised by
the ten most frequent words the term co occurs with in the domain-specific corpus. A
context window of two words preceding and two words following the term for every
occurrence of the term in the corpus is formed. All non-content words (prepositions, articles,
pronouns, particles, conjunctions) are disregarded, while acronyms, abbreviations, and
certain symbols (e.g. %, €) are taken into account because of their importance for
determining the semantic profile of the term in the given domain. Bi-grams (pairs of the
term with each word within the con-text window) are generated and their frequency is
recorded. The ten words that present the highest bi-gram frequency scores are chosen to
form the context vector of the term.

7.2 Semantic similarity
For each pair of terms, their semantic similarity is calculated, based on their semantic
context vectors. The smaller the distance between the context vectors, the more similar the
terms’ semantics. The value of semantic similarity is an integer with a value ranging from 0
to 10, which denotes the number of common words two context vectors share.

7.3 Semantic diversity
Another important semantic feature that is taken into account is how ‘diverse’ the semantic
properties of a term are, i.e. the number of other terms that a term shares semantic
properties with. This property is important when creating taxonomic hierarchies, because,
the more ‘shared’ the semantic behaviour of a term is, the more likely it is for the term to
have a higher place in the hierarchy. The notion of ‘semantic diversity’ is included in the
feature set by calculating the percentage of the total number of terms whose semantic
similarity with the focus term (one of the two terms whose taxonomic relation is to be
determined) is at least 1.

7.4 Syntactic patterns
Syntactic information, regarding the linguistic patterns that govern the co occurrence of two
terms, is significant for extracting taxonomic information. For languages with a relatively
strict sentence structure, like English, such patterns are easier to detect (Hearst, 1992), and
their impact on taxonomy learning more straightforward.
As mentioned earlier, Modern Greek presents a larger degree of freedom in the ordering of
the constituents of a sentence, due to its rich morphology and its complex declination
system. This freedom makes it difficult to detect syntactic patterns, and, even if they are
detected, their contribution to the present task is not that easily observable.

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

159

However, two Modern Greek syntactic schemata prove very useful for learning taxonomies.
They are the attributive modification schema and the genitive modification schema. The
first, known in many languages, is the pattern where (usually) an adjective modifies the
following noun. The second is typical for Modern Greek, and it is formed by two nominal
expressions, one of which (usually following the other) appears in the genitive case and
modifies the preceding nominal, denoting possession, property, origin, quantity, quality.
The following phrases show examples of the first (example 1) and the second (examples 2, 3
and 4) schemata respectively.

(1) το μετοχικό[ADJ] κεφάλαιο[NOUN]
 the stock capital

(2) η κατάθεση[NOUN] επιταγής [NOUN-GEN]
 the deposit check
 (the deposit of the check)

(3) πρόεδρος[NOUN] του συμβουλίου[NOUN-GEN]
 head the council
 (head of the council)

(4) αύξηση[NOUN] του κεφαλαίου[NOUN-GEN]
 increase the capital
 (capital increase)

Both these schemata enclose the notion of taxonomic relations: hyponymy relations (a check
deposit is a type of deposit, a stock capital is a type of capital), as well as meronymy relations
(the head is part of a council). The fourth example incorporates an attribute relation. The
distinction among the types of relations is not always clear. In the check deposit example,
the deposit may also be considered an attribute of check, constituting thereby an attribute
relation. For each pair of terms, the number of times they occur in one of the two schemata
in the domain-specific corpus is calculated. This information is basically the only language-
dependent feature that is included in the methodology.

7.5 Experimental setup and results
9% of the term pairs belong to the is-a class, 17% belong to the attribute class and only 0.5%
belong to the part-of class. The instances that belong to one of the first three classes are called
positive, while those that belong to the null class are called negative.
Different classifiers lead to different results. Preliminary experiments have been run using
various classification algorithms. C4.5 is Quinlan’s decision tree induction algorithm
without pruning (Quinlan, 1993). Decision trees were chosen because of their high
representational power, which is very significant for understanding the impact of each
feature on the classification accuracy, and because of the knowledge that can be extracted
from the resulting tree itself. The 1-NN instanced-based learning algorithm is chosen to
constitute a reference to a baseline classification performance. SVM is the Support Vector
Machines classifier with a linear kernel. SVM cope well with the sparse data problem, and
also with noise in the data (an inevitable phenomenon due to the automatic nature of the
procedure described so far). A first degree polynomial kernel function was selected and the

 Machine Learning

160

Sequential Minimal Optimization algorithm was chosen to train the Support Vector
classifier (Platt, 1998). BN is a Bayesian Network classifier, using a hill climbing search
algorithm, and the conditional probability tables are estimated directly from the data.

 C4.5 1-NN Naïve Bayes SVM BN
Is-a 0.808 0.694 0.419 0.728 0.762

Part-of 0.4 0 0 0 0
Attribute 0.769 0.765 0.77 0.788 0.775

Null 0.938 0.904 0.892 0.907 0.917

Table 4. Class f-score for various classifiers

Table 4 shows the f-score for each class achieved when trying to classify new term pairs
using 10-fold cross validation. The poor results for the part-of relation are attributed mainly
to its extremely rare occurrence in the data. The economic domain is more ‘abstract’ and is
governed to a large extent by other relation types.
To overcome this problem of performance instability among the various classifiers, the
application of ensemble learning is proposed. The combination of various disagreeing
classifiers leads to a resulting classifier with better overall predictions (Dietterich, 2002).
Experiments have been conducted using the aforementioned classifiers in various
combination schemes using bagging, boosting and stacking.
Table 5 shows the results using bagging. Experiments were run using several base classifiers
and several bag sizes as a percentage of the dataset size. A 50% bag size leads to the best
classification results. 50% bag size means that half of the dataset instances were randomly
chosen to form the first training set, another random half is used to form the second training
set etc. After repeating the process ten times (10 iterations), the datasets are used to train the
same base learner. Majority voting determines the class label for the test instances. The best
results are achieved with a decision tree base classifier.

 C4.5 1-NN SVM BN
Is-a 0.856 0.736 0.728 0.766

Part-of 0 0 0 0
Attribute 0.809 0.765 0.786 0.783

Null 0.962 0.912 0.908 0.909

Table 5. Results with bagging

Table 6 shows the results using boosting. Again, various experiments were conducted with
different base learners. The best results are again obtained with a decision tree base learner.
It is interesting to observe the detection of some part-of relations using boosting.
Table 7 shows the results with stacking. Different base classifiers were combined, and their
predictions were given as input to the higher level meta-learner. The combined classifiers
are the 1-NN instance based-learner, the C4.5 decision tree learner, the Naïve Bayes learner,
the Bayes Network classifier and the Support Vector Machine classifier. After running
experiments with several combinations, it became obvious, that the greater the number and
the diversity of the base classifiers, the better the achieved results. Using the same base

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

161

learner combination, numerous experiments were run to compare meta-learners (shown in
Table 7). The best results are achieved using SVM as a meta-learner, but the results are very
satisfactory with the other meta-learners as well. It is interesting to observe that even the
simple lazy meta-learner, IB1, reaches an f-score higher than 81% for all three classes. This is
attributed to the predictive power of the combination of base learners. In other words, the
sophisticated base learners do all the hard work, deal with the difficult cases, and the
remaining work for the meta-learner is simple.

 C4.5 1-NN SVM BN
Is-a 0.772 0.719 0.611 0.826

Part-of 0.286 0 0 0
Attribute 0.762 0.744 0.732 0.798

Null 0.922 0.903 0.92 0.944

Table 6. Results with boosting

Meta-learner C4.5 1-NN Naïve Bayes SVM
Is-a 0.761 0.848 0.827 0.853

Part-of 0 0 0 0
Attribute 0.756 0.818 0.793 0.835

Null 0.94 0.952 0.947 0.957

Table 7. Results with stacking

A further set of experiments was performed, after applying One-sided sampling to the
dataset. Approximately 9% of the negative examples were removed (37.5% of which were
noisy or borderline, and the remaining 62.5% were redundant). The positive effect of
balancing the dataset is clearer especially when experimenting with the ‘simpler’
classification algorithms (IB1or C4.5), as they are more sensitive to class distribution
imbalances, compared to the more ‘sophisticated’ classification schemata (SVM, boosting).
After balancing, both sophisticated learners are able to detect part-of relations. Table 8
shows the classification results for every class.

Meta-learner C4.5 1-NN Naïve Bayes SVM
Is-a 0.805 0.776 0.781 0.789

Part-of 0 0 0.25 0.33
Attribute 0.805 0.71 0.811 0.794

Null 0.931 0.913 0.915 0.927

Table 8. Results with One-sided sampling

Comparing the results with ensemble learning (Tables 5, 6 and 7) and simple learning (Table
4), the positive impact of combining multiple classifiers into a single prediction scheme
becomes apparent. Mistakes made by one single classifier are amended through the iterative

 Machine Learning

160

Sequential Minimal Optimization algorithm was chosen to train the Support Vector
classifier (Platt, 1998). BN is a Bayesian Network classifier, using a hill climbing search
algorithm, and the conditional probability tables are estimated directly from the data.

 C4.5 1-NN Naïve Bayes SVM BN
Is-a 0.808 0.694 0.419 0.728 0.762

Part-of 0.4 0 0 0 0
Attribute 0.769 0.765 0.77 0.788 0.775

Null 0.938 0.904 0.892 0.907 0.917

Table 4. Class f-score for various classifiers

Table 4 shows the f-score for each class achieved when trying to classify new term pairs
using 10-fold cross validation. The poor results for the part-of relation are attributed mainly
to its extremely rare occurrence in the data. The economic domain is more ‘abstract’ and is
governed to a large extent by other relation types.
To overcome this problem of performance instability among the various classifiers, the
application of ensemble learning is proposed. The combination of various disagreeing
classifiers leads to a resulting classifier with better overall predictions (Dietterich, 2002).
Experiments have been conducted using the aforementioned classifiers in various
combination schemes using bagging, boosting and stacking.
Table 5 shows the results using bagging. Experiments were run using several base classifiers
and several bag sizes as a percentage of the dataset size. A 50% bag size leads to the best
classification results. 50% bag size means that half of the dataset instances were randomly
chosen to form the first training set, another random half is used to form the second training
set etc. After repeating the process ten times (10 iterations), the datasets are used to train the
same base learner. Majority voting determines the class label for the test instances. The best
results are achieved with a decision tree base classifier.

 C4.5 1-NN SVM BN
Is-a 0.856 0.736 0.728 0.766

Part-of 0 0 0 0
Attribute 0.809 0.765 0.786 0.783

Null 0.962 0.912 0.908 0.909

Table 5. Results with bagging

Table 6 shows the results using boosting. Again, various experiments were conducted with
different base learners. The best results are again obtained with a decision tree base learner.
It is interesting to observe the detection of some part-of relations using boosting.
Table 7 shows the results with stacking. Different base classifiers were combined, and their
predictions were given as input to the higher level meta-learner. The combined classifiers
are the 1-NN instance based-learner, the C4.5 decision tree learner, the Naïve Bayes learner,
the Bayes Network classifier and the Support Vector Machine classifier. After running
experiments with several combinations, it became obvious, that the greater the number and
the diversity of the base classifiers, the better the achieved results. Using the same base

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

161

learner combination, numerous experiments were run to compare meta-learners (shown in
Table 7). The best results are achieved using SVM as a meta-learner, but the results are very
satisfactory with the other meta-learners as well. It is interesting to observe that even the
simple lazy meta-learner, IB1, reaches an f-score higher than 81% for all three classes. This is
attributed to the predictive power of the combination of base learners. In other words, the
sophisticated base learners do all the hard work, deal with the difficult cases, and the
remaining work for the meta-learner is simple.

 C4.5 1-NN SVM BN
Is-a 0.772 0.719 0.611 0.826

Part-of 0.286 0 0 0
Attribute 0.762 0.744 0.732 0.798

Null 0.922 0.903 0.92 0.944

Table 6. Results with boosting

Meta-learner C4.5 1-NN Naïve Bayes SVM
Is-a 0.761 0.848 0.827 0.853

Part-of 0 0 0 0
Attribute 0.756 0.818 0.793 0.835

Null 0.94 0.952 0.947 0.957

Table 7. Results with stacking

A further set of experiments was performed, after applying One-sided sampling to the
dataset. Approximately 9% of the negative examples were removed (37.5% of which were
noisy or borderline, and the remaining 62.5% were redundant). The positive effect of
balancing the dataset is clearer especially when experimenting with the ‘simpler’
classification algorithms (IB1or C4.5), as they are more sensitive to class distribution
imbalances, compared to the more ‘sophisticated’ classification schemata (SVM, boosting).
After balancing, both sophisticated learners are able to detect part-of relations. Table 8
shows the classification results for every class.

Meta-learner C4.5 1-NN Naïve Bayes SVM
Is-a 0.805 0.776 0.781 0.789

Part-of 0 0 0.25 0.33
Attribute 0.805 0.71 0.811 0.794

Null 0.931 0.913 0.915 0.927

Table 8. Results with One-sided sampling

Comparing the results with ensemble learning (Tables 5, 6 and 7) and simple learning (Table
4), the positive impact of combining multiple classifiers into a single prediction scheme
becomes apparent. Mistakes made by one single classifier are amended through the iterative

 Machine Learning

162

process and the majority voting in bagging, through instance weighting, according to how
difficult an instance is to predict, in boosting, and through combining the strengths of
several distinct classifiers in stacking.
Among the several ensemble schemes, stacking achieves the highest results. As
mentioned earlier, class prediction performance benefits significantly from combining
different base learners, because, roughly speaking, the weaknesses of one classifier are
‘overshadowed’ by the strengths of another, leading to a significant improvement in
overall prediction.
The part-of relation proves to be very problematic, even with meta-learning. This is not
surprising, however, taking into account that only 0.5% of the data instances were labeled as
part-of relations. This rare occurrence leads all learning algorithms to disregard these
instances, except for the unpruned decision tree learner, either as a stand-alone classifier or
as base classifier in a boosting scheme. When no pruning on the decision tree is performed,
overlooking tree paths that might be important for classification is avoided, and, thereby,
even very low frequency events may be taken into account.

8. Discussion and future research
This chapter described the process of extracting economic knowledge automatically from
Modern Greek corpora, using statistical and supervised learning techniques. The
knowledge includes semantic entities, economic terminology, and semantic taxonomic
relations between the extracted terms. The presented methodology makes use of no
external resources in order for it to be easily portable to other domains. The language-
dependent features of the described approach are kept to a minimum, so that it can be
easily adapted to other languages. The lack of sophisticated resources allows for ‘noise’ to
penetrate the dataset, leading to an imbalance between the distribution of the positive
(useful for learning) and the negative (useless and misleading) class instances. Advanced
sampling and ensemble learning techniques were applied, in order to remove noisy and
redundant examples of the majority class, or focus on the interesting, rare instances.
Despite the use of minimal resources and the highly automated nature of the process,
classification performance is very promising, compared to results reported in previous
work.
The extracted relations are useful in many ways. They form a generic semantic thesaurus
that can be further used in several applications. First, the knowledge is important for
economy/finance experts for a better understanding and usage of domain concepts.
Moreover, the thesaurus facilitates intelligent search. Looking for semantically related terms
improves the quality of the search results. The same holds for information retrieval and data
mining applications. Intelligent question/answering systems that take into account terms
that are semantically related to the terms appearing in queries return information that is
more relevant, more accurate and more complete.
The economic domain is governed by semantic relations that are characteristic of the
domain (buy/sell, monetary/percentage, rise/drop relations etc.), and that have been
included under the attribute relation label in this work. A more fine-grained distinction
between these types of attribute relations is a challenging future research direction,

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

163

providing information that is very useful for data mining applications in the particular
domain.
Employing other learning algorithms, that are also able to deal with the class imbalance
barrier, such as neural networks, and discovering the differences in their performance
compared to the algorithms presented in this chapter, promises to be another future
research challenge.
Finally, another future research perspective is building an integrated ontological
thesaurus from the learned taxonomic relations. Organizing the extracted terms into a
hierarchical structure, e.g. a semantic network will render the extracted knowledge even
more useful.

9. References
Breiman, L. (1996). Bagging Predictors. Machine Learning, Vol. 24, pp. 123-140
Ciaramita, M. & Altun, Y. (2005). Named Entity Recognition in Novel Domains with

External Lexical Knowledge. Proceedings of the Workshop on Advances in Structured
Learning for Text and Speech Processing (NIPS)

Cimiano, P.; Hotho, A. & Staab., S. (2004). Comparing Conceptual, Divisive and
Agglomerative Clustering for Learning Taxonomies from Text. Proceedings of the
European Conference on Artificial Intelligence (ECAI), Valencia, Spain

Daelemans, W.; van den Bosch, A. & Zavrel, J. (1999). Forgetting Exceptions is Harmful in
Language Learning. Machine Learning, Vol. 34, pp. 11-41

Degeratu, M. & Hatzivassiloglou, V. (2004). An Automatic Model for Constructing
Domain-Specific Ontology Resources. Proceedings of the International
Conference on Language Resources and Evaluation (LREC), pp. 2001-2004, Lisbon,
Portugal

Dietterich, T. (2002). Ensemble Learning. The Handbook of Brain Theory and Neural Networks.
Second Edition. The MIT Press, Cambridge, Massachusetts, USA

Domingos, P. (1999). Metacost: A General Method for Making Classifiers Cost-sensitive.
Proceedings of the International Conference on Knowledge Discovery and Data Mining,
pp. 155-164, San Diego, California, USA

Drouin, P. (2004). Detection of Domain Specific Terminology Using Corpora Comparison.
Proceedings of the 4th International Conference on Language Resources and Evaluation
(LREC), pp. 79−82, Lisbon, Portugal

Faure, D. & Nedellec., C. (1998). A Corpus-based Conceptual Clustering Method for Verb
Frames and Ontology. Proceedings of the LREC Workshop on Adapting Lexical and
Corpus Resources to Sublanguages and Applications, Granada, Spain

Frantzi, K.; Ananiadou, S. & Mima, H. (2000). Automatic Recognition of Multi-word Terms:
the C-value/NC-value Method. International Journal on Digital Libraries, Vol. 3, No.
2, pp. 117−132

Freund, Y. & Schapire, R. E. (1996). Experiments with a new boosting algorithm.
Proceedings of the International Conference on Machine Learning, pp. 148-156, San
Francisco, USA

Hatzigeorgiu, N.; Gavrilidou, M.; Piperidis, S.; Carayannis, G.; Papakostopoulou, A.;
Spiliotopoulou, A.; Vacalopoulou, A.; Labropoulou, P.; Mantzari, E.; Papageorgiou,

 Machine Learning

162

process and the majority voting in bagging, through instance weighting, according to how
difficult an instance is to predict, in boosting, and through combining the strengths of
several distinct classifiers in stacking.
Among the several ensemble schemes, stacking achieves the highest results. As
mentioned earlier, class prediction performance benefits significantly from combining
different base learners, because, roughly speaking, the weaknesses of one classifier are
‘overshadowed’ by the strengths of another, leading to a significant improvement in
overall prediction.
The part-of relation proves to be very problematic, even with meta-learning. This is not
surprising, however, taking into account that only 0.5% of the data instances were labeled as
part-of relations. This rare occurrence leads all learning algorithms to disregard these
instances, except for the unpruned decision tree learner, either as a stand-alone classifier or
as base classifier in a boosting scheme. When no pruning on the decision tree is performed,
overlooking tree paths that might be important for classification is avoided, and, thereby,
even very low frequency events may be taken into account.

8. Discussion and future research
This chapter described the process of extracting economic knowledge automatically from
Modern Greek corpora, using statistical and supervised learning techniques. The
knowledge includes semantic entities, economic terminology, and semantic taxonomic
relations between the extracted terms. The presented methodology makes use of no
external resources in order for it to be easily portable to other domains. The language-
dependent features of the described approach are kept to a minimum, so that it can be
easily adapted to other languages. The lack of sophisticated resources allows for ‘noise’ to
penetrate the dataset, leading to an imbalance between the distribution of the positive
(useful for learning) and the negative (useless and misleading) class instances. Advanced
sampling and ensemble learning techniques were applied, in order to remove noisy and
redundant examples of the majority class, or focus on the interesting, rare instances.
Despite the use of minimal resources and the highly automated nature of the process,
classification performance is very promising, compared to results reported in previous
work.
The extracted relations are useful in many ways. They form a generic semantic thesaurus
that can be further used in several applications. First, the knowledge is important for
economy/finance experts for a better understanding and usage of domain concepts.
Moreover, the thesaurus facilitates intelligent search. Looking for semantically related terms
improves the quality of the search results. The same holds for information retrieval and data
mining applications. Intelligent question/answering systems that take into account terms
that are semantically related to the terms appearing in queries return information that is
more relevant, more accurate and more complete.
The economic domain is governed by semantic relations that are characteristic of the
domain (buy/sell, monetary/percentage, rise/drop relations etc.), and that have been
included under the attribute relation label in this work. A more fine-grained distinction
between these types of attribute relations is a challenging future research direction,

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

163

providing information that is very useful for data mining applications in the particular
domain.
Employing other learning algorithms, that are also able to deal with the class imbalance
barrier, such as neural networks, and discovering the differences in their performance
compared to the algorithms presented in this chapter, promises to be another future
research challenge.
Finally, another future research perspective is building an integrated ontological
thesaurus from the learned taxonomic relations. Organizing the extracted terms into a
hierarchical structure, e.g. a semantic network will render the extracted knowledge even
more useful.

9. References
Breiman, L. (1996). Bagging Predictors. Machine Learning, Vol. 24, pp. 123-140
Ciaramita, M. & Altun, Y. (2005). Named Entity Recognition in Novel Domains with

External Lexical Knowledge. Proceedings of the Workshop on Advances in Structured
Learning for Text and Speech Processing (NIPS)

Cimiano, P.; Hotho, A. & Staab., S. (2004). Comparing Conceptual, Divisive and
Agglomerative Clustering for Learning Taxonomies from Text. Proceedings of the
European Conference on Artificial Intelligence (ECAI), Valencia, Spain

Daelemans, W.; van den Bosch, A. & Zavrel, J. (1999). Forgetting Exceptions is Harmful in
Language Learning. Machine Learning, Vol. 34, pp. 11-41

Degeratu, M. & Hatzivassiloglou, V. (2004). An Automatic Model for Constructing
Domain-Specific Ontology Resources. Proceedings of the International
Conference on Language Resources and Evaluation (LREC), pp. 2001-2004, Lisbon,
Portugal

Dietterich, T. (2002). Ensemble Learning. The Handbook of Brain Theory and Neural Networks.
Second Edition. The MIT Press, Cambridge, Massachusetts, USA

Domingos, P. (1999). Metacost: A General Method for Making Classifiers Cost-sensitive.
Proceedings of the International Conference on Knowledge Discovery and Data Mining,
pp. 155-164, San Diego, California, USA

Drouin, P. (2004). Detection of Domain Specific Terminology Using Corpora Comparison.
Proceedings of the 4th International Conference on Language Resources and Evaluation
(LREC), pp. 79−82, Lisbon, Portugal

Faure, D. & Nedellec., C. (1998). A Corpus-based Conceptual Clustering Method for Verb
Frames and Ontology. Proceedings of the LREC Workshop on Adapting Lexical and
Corpus Resources to Sublanguages and Applications, Granada, Spain

Frantzi, K.; Ananiadou, S. & Mima, H. (2000). Automatic Recognition of Multi-word Terms:
the C-value/NC-value Method. International Journal on Digital Libraries, Vol. 3, No.
2, pp. 117−132

Freund, Y. & Schapire, R. E. (1996). Experiments with a new boosting algorithm.
Proceedings of the International Conference on Machine Learning, pp. 148-156, San
Francisco, USA

Hatzigeorgiu, N.; Gavrilidou, M.; Piperidis, S.; Carayannis, G.; Papakostopoulou, A.;
Spiliotopoulou, A.; Vacalopoulou, A.; Labropoulou, P.; Mantzari, E.; Papageorgiou,

 Machine Learning

164

H.; & Demiros, I. (2000). Design and Implementation of the online ILSP Greek
Corpus. Proceedings of the 2nd International Conference on Language Resources and
Evaluation (LREC), pp. 1737-1742, Athens, Greece

Hearst, M. A. (1992). Automatic Acquisition of Hyponyms from Large Text Corpora.
Proceedings of the International Conference on Computational Linguistics, pp. 539-545,
Nantes, France

Hendrickx, I. & van den Bosch, A. (2003). Memory-based One-step Named-entity
Recognition: Effects of Seed List Features, Classifier Stacking and Unannotated
Data. Proceedings of the 7th Conference on Computational Natural Language Learning
(CoNLL), Edmonton, Canada

Hulth, A. (2003). Improved Automatic Keyword Extraction Given More Linguistic
Knowledge. Proceedings of the International Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 216-223, Sapporo

Japkowicz, N. (2000). The Class Imbalance Problem: Significance and Strategies.
Proceedings of the International Conference on Artificial Intelligence, Las Vegas,
USA

Kermanidis, K.; Fakotakis, N. & Kokkinakis, G. (2002). DELOS: An Automatically Tagged
Economic Corpus for Modern Greek. Proceedings of the 3rd International Conference on
Language Resources and Evaluation (LREC), pp. 93-100, Las Palmas de Gran Canaria,
Spain

Kilgarriff, A. (2001). Comparing Corpora. International Journal of Corpus Linguistics, Vol. 6,
No. 1, pp. 1-37

Kubat, M. & Matwin, S. (1997). Addressing the Curse of Imbalanced Training Sets.
Proceedings of the International Conference on Machine Learning, pp. 179- 186,
Nashville, Tennessee, USA

Laurikkala, J. (2001). Improving Identification of Difficult Small Classes by Balancing Class
Distribution. Proceedings of the 8th Conference on Artificial Intelligence in Medicine in
Europe, pp. 63-66, Cascais, Portugal

Lendvai, P. (2005). Conceptual Taxonomy Identification in Medical Documents. Proceedings
of the Second International Workshop on Knowledge Discovery and Ontologies, pp. 31-38.
Porto, Portugal

Lewis, D. & Gale, W. (1994). Training Text Classifiers by Uncertainty Sampling. Proceedings
of the International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 3-12, Dublin, Ireland

Maedche, A. & Volz, R. (2001). The Ontology Extraction and Maintenance Framework Text-
To-Onto. Proceedings of the Workshop on Integrating Data Mining and Knowledge
Mining, San Jose, California, USA

Makagonov, P.; Figueroa, A. R.; Sboychakov, K. & Gelbukh, A. (2005). Learning a Domain
Ontology from Hierarchically Structured Texts. Proceedings of the 22nd International
Conference on Machine Learning (ICML), Bonn, Germany

Manning, C. & Schuetze, H. (1999). Foundations of Statistical Natural Language Processing, MIT
Press

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

165

Navigli, R. & Velardi, P. (2004). Learning Domain Ontologies from Document Warehouses
and Dedicated Web Sites. Computational Linguistics, Vol. 30, No. 2, pp. 151−179, MIT
Press, ISSN: 0891-2017

Partners of ESPRIT-291/860. (1986). Unification of the Word Classes of the ESPRIT Project
860. Internal Report BU-WKL-0376.

Pekar, V. & Staab, S. (2002). Taxonomy Learning –Factoring the Structure of a Taxonomy
into a Semantic Classification Decision. Proceedings of the International Conference on
Computational Linguistics, Taipei, Taiwan

Pereira, F.; Tishby, N. & Lee, L. (1993). Distributional Clustering of English Words.
Proceedings of the 31st Annual Meeting of the Association for Computational
Linguistics

Platt, J. (1998). Fast Training of Support Vector Machines using Sequential Minimal
Optimization. Advances in Kernel Methods - Support Vector Learning, B. Schoelkopf, C.
Burges, & A. Smola, Eds. MIT Press.

Provost, F. & Fawcett, T. (2001). Robust classification for imprecise environments. Machine
Learning, Vol. 42, No. 3, pp. 203-231

Quinlan, R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San
Mateo, CA

Radu, F.; Ittycheriah A.; Jing H. & Zhang T. (2003). Named Entity Recognition through
Classifier Combination. Proceedings of the 7th Conference on Computational Natural
Language Learning (CoNLL), pp. 168-171, Edmonton, Canada

Schapire, R. E.; Rochery, M.; Rahim, M. & Gupta, N. (2002). Incorporating Prior Knowledge
into Boosting. Proceedings of the Nineteenth International Conference on Machine
Learning

Sgarbas, K.; Fakotakis, N. & Kokkinakis, G. (2000). A Straightforward Approach to
Morphological Analysis and Synthesis. Proceedings of the Workshop on
Computational Lexicography and Multimedia Dictionaries (COMLEX), pp. 31-34, Kato
Achaia, Greece

Sporleder, C.; van Erp, M.; Porcelijn, T.; van den Bosch, A. & Arntzen, P. (2006).
Identifying Named Entities in Text Databases from the Natural History
Domain. Proceedings of the 5th International Conference on Language Resources and
Evaluation (LREC)

Stamatatos, E.; Fakotakis, N. & Kokkinakis, G. (2000). A Practical Chunker for Unrestricted
Text. Proceedings of the Conference on Natural Language Processing (NLP), pp. 139-150,
Patras, Greece

Thanopoulos, A.; Kermanidis, K. & Fakotakis, N. (2006). Challenges in Extracting
Terminology from Modern Greek Texts. Proceedings of the Workshop on Text-based
Information Retrieval, (TIR), Riva del Garda, Italy

Tsukamoto, K.; Mitsuishi, Y. & Sassano, M. (2002). Learning with Multiple Stacking for
Named Entity Recognition. Proceedings of the 6th Conference on Natural Language
Learning (CoNLL), pp. 1-4,, Taipei, Taiwan

Witschel, H. F. (2005). Using Decision Trees and Text Mining Techniques for Extending
Taxonomies. Proceedings of the Workshop on Learning and Extending Lexical Ontologies
by Using Machine Learning Methods

 Machine Learning

164

H.; & Demiros, I. (2000). Design and Implementation of the online ILSP Greek
Corpus. Proceedings of the 2nd International Conference on Language Resources and
Evaluation (LREC), pp. 1737-1742, Athens, Greece

Hearst, M. A. (1992). Automatic Acquisition of Hyponyms from Large Text Corpora.
Proceedings of the International Conference on Computational Linguistics, pp. 539-545,
Nantes, France

Hendrickx, I. & van den Bosch, A. (2003). Memory-based One-step Named-entity
Recognition: Effects of Seed List Features, Classifier Stacking and Unannotated
Data. Proceedings of the 7th Conference on Computational Natural Language Learning
(CoNLL), Edmonton, Canada

Hulth, A. (2003). Improved Automatic Keyword Extraction Given More Linguistic
Knowledge. Proceedings of the International Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 216-223, Sapporo

Japkowicz, N. (2000). The Class Imbalance Problem: Significance and Strategies.
Proceedings of the International Conference on Artificial Intelligence, Las Vegas,
USA

Kermanidis, K.; Fakotakis, N. & Kokkinakis, G. (2002). DELOS: An Automatically Tagged
Economic Corpus for Modern Greek. Proceedings of the 3rd International Conference on
Language Resources and Evaluation (LREC), pp. 93-100, Las Palmas de Gran Canaria,
Spain

Kilgarriff, A. (2001). Comparing Corpora. International Journal of Corpus Linguistics, Vol. 6,
No. 1, pp. 1-37

Kubat, M. & Matwin, S. (1997). Addressing the Curse of Imbalanced Training Sets.
Proceedings of the International Conference on Machine Learning, pp. 179- 186,
Nashville, Tennessee, USA

Laurikkala, J. (2001). Improving Identification of Difficult Small Classes by Balancing Class
Distribution. Proceedings of the 8th Conference on Artificial Intelligence in Medicine in
Europe, pp. 63-66, Cascais, Portugal

Lendvai, P. (2005). Conceptual Taxonomy Identification in Medical Documents. Proceedings
of the Second International Workshop on Knowledge Discovery and Ontologies, pp. 31-38.
Porto, Portugal

Lewis, D. & Gale, W. (1994). Training Text Classifiers by Uncertainty Sampling. Proceedings
of the International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 3-12, Dublin, Ireland

Maedche, A. & Volz, R. (2001). The Ontology Extraction and Maintenance Framework Text-
To-Onto. Proceedings of the Workshop on Integrating Data Mining and Knowledge
Mining, San Jose, California, USA

Makagonov, P.; Figueroa, A. R.; Sboychakov, K. & Gelbukh, A. (2005). Learning a Domain
Ontology from Hierarchically Structured Texts. Proceedings of the 22nd International
Conference on Machine Learning (ICML), Bonn, Germany

Manning, C. & Schuetze, H. (1999). Foundations of Statistical Natural Language Processing, MIT
Press

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help

165

Navigli, R. & Velardi, P. (2004). Learning Domain Ontologies from Document Warehouses
and Dedicated Web Sites. Computational Linguistics, Vol. 30, No. 2, pp. 151−179, MIT
Press, ISSN: 0891-2017

Partners of ESPRIT-291/860. (1986). Unification of the Word Classes of the ESPRIT Project
860. Internal Report BU-WKL-0376.

Pekar, V. & Staab, S. (2002). Taxonomy Learning –Factoring the Structure of a Taxonomy
into a Semantic Classification Decision. Proceedings of the International Conference on
Computational Linguistics, Taipei, Taiwan

Pereira, F.; Tishby, N. & Lee, L. (1993). Distributional Clustering of English Words.
Proceedings of the 31st Annual Meeting of the Association for Computational
Linguistics

Platt, J. (1998). Fast Training of Support Vector Machines using Sequential Minimal
Optimization. Advances in Kernel Methods - Support Vector Learning, B. Schoelkopf, C.
Burges, & A. Smola, Eds. MIT Press.

Provost, F. & Fawcett, T. (2001). Robust classification for imprecise environments. Machine
Learning, Vol. 42, No. 3, pp. 203-231

Quinlan, R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San
Mateo, CA

Radu, F.; Ittycheriah A.; Jing H. & Zhang T. (2003). Named Entity Recognition through
Classifier Combination. Proceedings of the 7th Conference on Computational Natural
Language Learning (CoNLL), pp. 168-171, Edmonton, Canada

Schapire, R. E.; Rochery, M.; Rahim, M. & Gupta, N. (2002). Incorporating Prior Knowledge
into Boosting. Proceedings of the Nineteenth International Conference on Machine
Learning

Sgarbas, K.; Fakotakis, N. & Kokkinakis, G. (2000). A Straightforward Approach to
Morphological Analysis and Synthesis. Proceedings of the Workshop on
Computational Lexicography and Multimedia Dictionaries (COMLEX), pp. 31-34, Kato
Achaia, Greece

Sporleder, C.; van Erp, M.; Porcelijn, T.; van den Bosch, A. & Arntzen, P. (2006).
Identifying Named Entities in Text Databases from the Natural History
Domain. Proceedings of the 5th International Conference on Language Resources and
Evaluation (LREC)

Stamatatos, E.; Fakotakis, N. & Kokkinakis, G. (2000). A Practical Chunker for Unrestricted
Text. Proceedings of the Conference on Natural Language Processing (NLP), pp. 139-150,
Patras, Greece

Thanopoulos, A.; Kermanidis, K. & Fakotakis, N. (2006). Challenges in Extracting
Terminology from Modern Greek Texts. Proceedings of the Workshop on Text-based
Information Retrieval, (TIR), Riva del Garda, Italy

Tsukamoto, K.; Mitsuishi, Y. & Sassano, M. (2002). Learning with Multiple Stacking for
Named Entity Recognition. Proceedings of the 6th Conference on Natural Language
Learning (CoNLL), pp. 1-4,, Taipei, Taiwan

Witschel, H. F. (2005). Using Decision Trees and Text Mining Techniques for Extending
Taxonomies. Proceedings of the Workshop on Learning and Extending Lexical Ontologies
by Using Machine Learning Methods

 Machine Learning

166

Wu. C.; Jan, S.; Tsai, T. & Hsu, W. (2006). On Using Ensemble Methods for Chinese Named
Entity Recognition. Proceedings of the 5th SIGHAN Workshop on Chinese Language
Processing, pp. 142-145, Sydney, Australia

8

Machine Learning Methods for Spoken Dialogue
Simulation and Optimization

Olivier Pietquin
Ecole Supérieure d’Electricité (Supélec)

France

1. Introduction
Computers and electronic devices are becoming more and more present in our day-to-day
life. This can of course be partly explained by their ability to ease the achievement of
complex and boring tasks, the important decrease of prices or the new entertainment styles
they offer. Yet, this real incursion in everybody’s life would not have been possible without
an important improvement of Human-Computer Interfaces (HCI). This is why HCI are now
widely studied and become a major trend of research among the scientific community.
Designing “user-friendly” interfaces usually requires multidisciplinary skills in fields such
as computer science, ergonomics, psychology, signal processing etc. In this chapter, we
argue that machine learning methods can help in designing efficient speech-based human-
computer interfaces.
Speech is often considered as the most convenient and natural way for humans to
communicate and interact with each other. For this reason, speech and natural language
processing have been intensively studied for more than 60 years. It has now reached a
maturity level that should enable the design of efficient voice-based interfaces such as
Spoken Dialogue Systems (SDS). Still, designing and optimizing a SDS is not only a matter
of putting together speech and language processing systems such as Automatic Speech
Recognition (ASR) (Rabiner & Juang 1993), Spoken Language Understanding (SLU) (Allen
1998), Natural Language Generation (NLG) (Reiter & Dale 2000), and Text-to-Speech (TTS)
synthesis (Dutoit 1997) systems. It also requires the development of dialogue strategies
taking at least into account the performances of these subsystems (and others), the nature of
the task (e.g. form filling (Pietquin & Dutoit 2006a), tutoring (Graesser et al 2001), robot
control, or database querying (Pietquin 2006b)), and the user’s behaviour (e.g.
cooperativeness, expertise (Pietquin 2004)). The great variability of these factors makes rapid
design of dialogue strategies and reusability across tasks of previous work very complex.
For these reasons, human experts are generally in charge of tailoring dialogue strategies
which is costly and time-consuming. In addition, there is also no objective way to compare
strategies designed by different experts or to objectively qualify their performance. Like for
most software engineering tasks, such a design is a cyclic process. Strategy hand-coding,
prototype releases and user tests are required making this process expensive and time-
consuming.
In the purpose of obtaining automatic data-driven methods and objective performances
measures for SDS strategy optimisation, statistical learning of optimal dialogue strategies

 Machine Learning

166

Wu. C.; Jan, S.; Tsai, T. & Hsu, W. (2006). On Using Ensemble Methods for Chinese Named
Entity Recognition. Proceedings of the 5th SIGHAN Workshop on Chinese Language
Processing, pp. 142-145, Sydney, Australia

8

Machine Learning Methods for Spoken Dialogue
Simulation and Optimization

Olivier Pietquin
Ecole Supérieure d’Electricité (Supélec)

France

1. Introduction
Computers and electronic devices are becoming more and more present in our day-to-day
life. This can of course be partly explained by their ability to ease the achievement of
complex and boring tasks, the important decrease of prices or the new entertainment styles
they offer. Yet, this real incursion in everybody’s life would not have been possible without
an important improvement of Human-Computer Interfaces (HCI). This is why HCI are now
widely studied and become a major trend of research among the scientific community.
Designing “user-friendly” interfaces usually requires multidisciplinary skills in fields such
as computer science, ergonomics, psychology, signal processing etc. In this chapter, we
argue that machine learning methods can help in designing efficient speech-based human-
computer interfaces.
Speech is often considered as the most convenient and natural way for humans to
communicate and interact with each other. For this reason, speech and natural language
processing have been intensively studied for more than 60 years. It has now reached a
maturity level that should enable the design of efficient voice-based interfaces such as
Spoken Dialogue Systems (SDS). Still, designing and optimizing a SDS is not only a matter
of putting together speech and language processing systems such as Automatic Speech
Recognition (ASR) (Rabiner & Juang 1993), Spoken Language Understanding (SLU) (Allen
1998), Natural Language Generation (NLG) (Reiter & Dale 2000), and Text-to-Speech (TTS)
synthesis (Dutoit 1997) systems. It also requires the development of dialogue strategies
taking at least into account the performances of these subsystems (and others), the nature of
the task (e.g. form filling (Pietquin & Dutoit 2006a), tutoring (Graesser et al 2001), robot
control, or database querying (Pietquin 2006b)), and the user’s behaviour (e.g.
cooperativeness, expertise (Pietquin 2004)). The great variability of these factors makes rapid
design of dialogue strategies and reusability across tasks of previous work very complex.
For these reasons, human experts are generally in charge of tailoring dialogue strategies
which is costly and time-consuming. In addition, there is also no objective way to compare
strategies designed by different experts or to objectively qualify their performance. Like for
most software engineering tasks, such a design is a cyclic process. Strategy hand-coding,
prototype releases and user tests are required making this process expensive and time-
consuming.
In the purpose of obtaining automatic data-driven methods and objective performances
measures for SDS strategy optimisation, statistical learning of optimal dialogue strategies

 Machine Learning

168

became a leading domain of research (Lemon & Pietquin, 2007). The goal of such
approaches is to reduce the number of design cycles (Fig.1).

Strategy
Hand-Coding

Protype
Release

User
Tests

Strategy
Hand-Coding

Protype
Release

User
Tests

Strategy
Optimization

Protype
Release

User
Tests

Fig. 1.Optimization for minimizing the number of design cycles

Supervised learning for such an optimization problem would require examples of ideal
(sub)strategies which are typically unknown. Indeed, no one can actually provide an
example of what would have objectively been the perfect sequencing of exchanges after
having participated to a dialogue. Humans have a greater propensity to criticize what is
wrong than to provide positive proposals. In this context, reinforcement learning using
Markov Decision Processes (MDPs) (Levin et al 1998, Singh et al 1999, Scheffler & Young
2001, Pietquin & Dutoit 2006a, Frampton & Lemon 2006) and Partially Observable MDP
(POMDPs) (Poupart et al 2005, Young 2006) has become a particular focus.
Such machine learning methods are very data demanding and sufficient amounts of
annotated dialogue data are often not available for training. Different standard methods
have therefore been investigated to deal with the data sparsity that can be split into two
classes: statistical generation of new data by means of simulation (Schatzmann et al, 2007a)
or generalization to unseen situations (Henderson et al, 2005).
In this chapter, we propose to provide an overview of the state of the art in machine
learning for spoken dialogue systems optimization. This will be illustrated on a simple train
ticket booking application.

2. Definitions and formalisms
2.1 Definitions
In this text, a dialogue will be describing an interaction between two agents based on
sequential turn taking. We will only treat the special case of goal-directed dialogs where both
agents cooperate in order to achieve an aim (or accomplish a task), like obtaining a train
ticket for example. Social dialogues are out of the scope of this chapter. We will consider
man-machine dialogs where one of the agents is a human user while the other is a computer
(or system). In the particular case of a speech-based communication, the computer
implements a Spoken Dialogue System (SDS). When one of the agents is an SDS, the dialogue
consists of a sequence of utterances exchanged at each turn. A spoken utterance is the acoustic
realisation of the intentions or concepts (or dialog acts, communicative acts) one of the agents
wants to communicate to the other and is expressed as a word sequence. The amount of time
between one communication and the other can be of variable length and is called a turn.

2.2 Formal description of man-machine spoken dialog
So as to use statistical machine learning for SDS strategy optimization, one needs to describe
a spoken dialogue in terms of a finite number of variables. A man-machine spoken dialog
will therefore be considered as a sequential (turn-taking) process in which a human user

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

169

and a Dialog Manager (DM) communicate using spoken utterances passing through speech
and language processing modules (Fig.2). A Knowledge Base (KB) is usually connected to
the DM and contains information about the task addressed by the system (i.e. a list of
songs).

In
p
u
t

P
rocessin

g

O
u
tp
u
t

G
en
eration

DM

Knowledge
Base

Sp
ee
ch

W
or
ds

In
te
nt
io
ns

NLG

TTS

NLU

ASR

st+1st

+

+

syst ut

wtlt

CLASR

CLNLU

mt

otat

ct

gt,kt

Noise
nt

Noise
nt

Fig. 2. Man-Machine Spoken Communication

The DM implements the SDS strategy or policy π defining a mapping between the DM
internal state and dialogue acts (the way to build the DM internal state will be discussed
later). It thus takes decisions about what to say at a given time. Dialogue acts can be of
different kinds: providing information to the user, asking for more information, closing the
dialogue, etc. The DM decisions (so its policy) are of course of a major importance since they
make the interaction going in one direction or another. Adopting the system’s point of view,
the information exchange typically starts at turn t with the generation of a communicative
act at by the DM. This act is generated according to the DM’s strategy πt and internal state st
at turn t, and has to be transformed in a spoken output. A Natural Language Generation
(NLG) module converts this act into a linguistic representation lt (generally a text) which in
turn serves as an input to a Text-to-Speech (TTS) system. The output of the TTS module is a
spoken utterance syst addressed to the user. From this, the human user produces a new
spoken utterance ut taking into account his/her understanding of syst but also to his/her
background knowledge kt (about the task, the interaction history, the world in general) and
finally to the goal gt s/he is pursuing while interacting with the system. Both utterances syst
and ut can be mixed with some additional environmental noise nt. This potentially noisy
user utterance is then processed by an ASR system which output is a sequence of words wt
as well as a confidence level CLASR associated to this result. The sequence wt is usually taken
out of a so called “Nbest list” ranking the best hypotheses the system can make about what
the user said given the speech signal. The confidence level is usually a number between 0
and 1 providing information about the confidence the systems in the result of its processing.

 Machine Learning

168

became a leading domain of research (Lemon & Pietquin, 2007). The goal of such
approaches is to reduce the number of design cycles (Fig.1).

Strategy
Hand-Coding

Protype
Release

User
Tests

Strategy
Hand-Coding

Protype
Release

User
Tests

Strategy
Optimization

Protype
Release

User
Tests

Fig. 1.Optimization for minimizing the number of design cycles

Supervised learning for such an optimization problem would require examples of ideal
(sub)strategies which are typically unknown. Indeed, no one can actually provide an
example of what would have objectively been the perfect sequencing of exchanges after
having participated to a dialogue. Humans have a greater propensity to criticize what is
wrong than to provide positive proposals. In this context, reinforcement learning using
Markov Decision Processes (MDPs) (Levin et al 1998, Singh et al 1999, Scheffler & Young
2001, Pietquin & Dutoit 2006a, Frampton & Lemon 2006) and Partially Observable MDP
(POMDPs) (Poupart et al 2005, Young 2006) has become a particular focus.
Such machine learning methods are very data demanding and sufficient amounts of
annotated dialogue data are often not available for training. Different standard methods
have therefore been investigated to deal with the data sparsity that can be split into two
classes: statistical generation of new data by means of simulation (Schatzmann et al, 2007a)
or generalization to unseen situations (Henderson et al, 2005).
In this chapter, we propose to provide an overview of the state of the art in machine
learning for spoken dialogue systems optimization. This will be illustrated on a simple train
ticket booking application.

2. Definitions and formalisms
2.1 Definitions
In this text, a dialogue will be describing an interaction between two agents based on
sequential turn taking. We will only treat the special case of goal-directed dialogs where both
agents cooperate in order to achieve an aim (or accomplish a task), like obtaining a train
ticket for example. Social dialogues are out of the scope of this chapter. We will consider
man-machine dialogs where one of the agents is a human user while the other is a computer
(or system). In the particular case of a speech-based communication, the computer
implements a Spoken Dialogue System (SDS). When one of the agents is an SDS, the dialogue
consists of a sequence of utterances exchanged at each turn. A spoken utterance is the acoustic
realisation of the intentions or concepts (or dialog acts, communicative acts) one of the agents
wants to communicate to the other and is expressed as a word sequence. The amount of time
between one communication and the other can be of variable length and is called a turn.

2.2 Formal description of man-machine spoken dialog
So as to use statistical machine learning for SDS strategy optimization, one needs to describe
a spoken dialogue in terms of a finite number of variables. A man-machine spoken dialog
will therefore be considered as a sequential (turn-taking) process in which a human user

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

169

and a Dialog Manager (DM) communicate using spoken utterances passing through speech
and language processing modules (Fig.2). A Knowledge Base (KB) is usually connected to
the DM and contains information about the task addressed by the system (i.e. a list of
songs).

In
p
u
t

P
rocessin

g

O
u
tp
u
t

G
en
eration

DM

Knowledge
Base

Sp
ee
ch

W
or
ds

In
te
nt
io
ns

NLG

TTS

NLU

ASR

st+1st

+

+

syst ut

wtlt

CLASR

CLNLU

mt

otat

ct

gt,kt

Noise
nt

Noise
nt

Fig. 2. Man-Machine Spoken Communication

The DM implements the SDS strategy or policy π defining a mapping between the DM
internal state and dialogue acts (the way to build the DM internal state will be discussed
later). It thus takes decisions about what to say at a given time. Dialogue acts can be of
different kinds: providing information to the user, asking for more information, closing the
dialogue, etc. The DM decisions (so its policy) are of course of a major importance since they
make the interaction going in one direction or another. Adopting the system’s point of view,
the information exchange typically starts at turn t with the generation of a communicative
act at by the DM. This act is generated according to the DM’s strategy πt and internal state st
at turn t, and has to be transformed in a spoken output. A Natural Language Generation
(NLG) module converts this act into a linguistic representation lt (generally a text) which in
turn serves as an input to a Text-to-Speech (TTS) system. The output of the TTS module is a
spoken utterance syst addressed to the user. From this, the human user produces a new
spoken utterance ut taking into account his/her understanding of syst but also to his/her
background knowledge kt (about the task, the interaction history, the world in general) and
finally to the goal gt s/he is pursuing while interacting with the system. Both utterances syst
and ut can be mixed with some additional environmental noise nt. This potentially noisy
user utterance is then processed by an ASR system which output is a sequence of words wt
as well as a confidence level CLASR associated to this result. The sequence wt is usually taken
out of a so called “Nbest list” ranking the best hypotheses the system can make about what
the user said given the speech signal. The confidence level is usually a number between 0
and 1 providing information about the confidence the systems in the result of its processing.

 Machine Learning

170

It can also be a real number, depending on the system. Finally, the Natural Language
Understanding (NLU) module generates a set of concepts (or communicative acts) ct also
picked from a “Nbest list” derived from wt and again with a confidence level CLNLU. The
observation ot passed to the DM is actually the set {ct, CLASR, CLNLU}. From this observation,
a new internal state is computed by the DM which will be used to generate a new dialog act
at+1. A new cycle is then started again until the end of the dialogue. This can occur when the
user reached his/her goal or whenever the user or the system wants to stop the interaction
for any reason (dissatisfaction, looping dialogue etc.)

2.3 Reinforcement learning and Markov decision processes
From the former description of a spoken dialogue system, it is clear that optimizing a SDS is
about implementing an optimal strategy into the dialogue manager. Adopting a machine
learning point of view, automatic optimization of a strategy is addressed by Reinforcement
Learning (RL). The general purpose of a RL agent is to optimally control a stochastic
dynamic system. The control problem is then described in terms of states, actions and
rewards. In this framework, an artificial agent tries to learn an optimal control policy
through real interactions with the system. It observes the state s of the system through an
observation o and chooses an action a to apply on it accordingly to a current internal policy
π mapping states to actions. A feedback signal r is provided to the agent after each
interaction as a reward information, which is a local hint about the quality of the control.
This reward is used by the agent to incrementally learn the optimal policy, simply by
maximizing a function of the cumulative rewards.

Fig. 3. Reinforcement Learning paradigm

This can be put into the formalism of Markov Decision Processes (MDP), where a discrete-
time system interacting with its stochastic environment through actions is described by a
finite or infinite number of states {si} in which a given number of actions {aj} can be
performed. To each state-action pair is associated a transition probability T giving the
probability of stepping from state s at time t to state s’ at time t+1 after having performed
action a when in state s. To this transition is also associated a reinforcement signal (or
reward) rt+1 describing how good was the result of action a when performed in state s.
Formally, an MDP is thus completely defined by a 4-tuple {S, A, T, R} where S is the state
space, A is the action set, T is a transition probability distribution over the state space and R
is the expected reward distribution. The couple {T, R} defines the dynamics of the system:

Environment

Agent

π st

at

rt+1

ot+1

ot

rt

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

171

 ()aassssP ttt
a
ss ==== + ,|'T ' 1 (1)

 []',,|R ' ssaassrE tttt
a
ss ==== ++ 11 (2)

These expressions assume that the Markov property is met, which means that the system’s
functioning is fully defined by its one-step dynamics and that its behavior from state s will
be identical whatever the path followed before reaching s. To control a system described as
an MDP (choosing actions to perform in each state), one would need a strategy or policy π
mapping states to actions: π(s) = P(a|s) (or π(s) = a if the strategy is deterministic).
In this framework, a RL agent is a system aiming at optimally mapping states to actions, that
is finding the best strategy π* so as to maximize, for each state, an overall return R which is a
function (most often a discounted return is used i.e. a weighted sum of immediate rewards)
of all the immediate rewards rt.

 () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
π==γ= ∑

∞

=

π
tt0t

0t

t sassrEsR ,| (3)

 () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
π==γ=π ∑

∞

=π
tt0t

0t

t sassrEs ,|maxarg* (4)

where γ is a discount factor (0 < γ ≤ 1). If the probabilities of equations (1) and (2) are known,
an analytical solution can be computed by resolving the Bellman equations using dynamic
programming (Bertsekas 1995), otherwise the system has to learn the optimal strategy by a
trial-and-error process.
To do so, a standard approach is to model the knowledge of the agent as a so-called Q-
function mapping state-action pairs to an estimate of the expected cumulative reward. The
optimal Q-function maps each state-action pair to its maximum expected cumulative
rewards and the role of the agent can therefore be summarized as learning this function
through interactions.

(5)

Different techniques are described in the literature and in the following the Watkin’s Q(λ)
algorithm (Watkin 1989) will be used. This algorithm performs the following update after
each interaction:

(6)

where α is a learning rate (0 < α ≤ 1). This algorithm has been proven to converge towards
the optimal solution.

 Machine Learning

170

It can also be a real number, depending on the system. Finally, the Natural Language
Understanding (NLU) module generates a set of concepts (or communicative acts) ct also
picked from a “Nbest list” derived from wt and again with a confidence level CLNLU. The
observation ot passed to the DM is actually the set {ct, CLASR, CLNLU}. From this observation,
a new internal state is computed by the DM which will be used to generate a new dialog act
at+1. A new cycle is then started again until the end of the dialogue. This can occur when the
user reached his/her goal or whenever the user or the system wants to stop the interaction
for any reason (dissatisfaction, looping dialogue etc.)

2.3 Reinforcement learning and Markov decision processes
From the former description of a spoken dialogue system, it is clear that optimizing a SDS is
about implementing an optimal strategy into the dialogue manager. Adopting a machine
learning point of view, automatic optimization of a strategy is addressed by Reinforcement
Learning (RL). The general purpose of a RL agent is to optimally control a stochastic
dynamic system. The control problem is then described in terms of states, actions and
rewards. In this framework, an artificial agent tries to learn an optimal control policy
through real interactions with the system. It observes the state s of the system through an
observation o and chooses an action a to apply on it accordingly to a current internal policy
π mapping states to actions. A feedback signal r is provided to the agent after each
interaction as a reward information, which is a local hint about the quality of the control.
This reward is used by the agent to incrementally learn the optimal policy, simply by
maximizing a function of the cumulative rewards.

Fig. 3. Reinforcement Learning paradigm

This can be put into the formalism of Markov Decision Processes (MDP), where a discrete-
time system interacting with its stochastic environment through actions is described by a
finite or infinite number of states {si} in which a given number of actions {aj} can be
performed. To each state-action pair is associated a transition probability T giving the
probability of stepping from state s at time t to state s’ at time t+1 after having performed
action a when in state s. To this transition is also associated a reinforcement signal (or
reward) rt+1 describing how good was the result of action a when performed in state s.
Formally, an MDP is thus completely defined by a 4-tuple {S, A, T, R} where S is the state
space, A is the action set, T is a transition probability distribution over the state space and R
is the expected reward distribution. The couple {T, R} defines the dynamics of the system:

Environment

Agent

π st

at

rt+1

ot+1

ot

rt

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

171

 ()aassssP ttt
a
ss ==== + ,|'T ' 1 (1)

 []',,|R ' ssaassrE tttt
a
ss ==== ++ 11 (2)

These expressions assume that the Markov property is met, which means that the system’s
functioning is fully defined by its one-step dynamics and that its behavior from state s will
be identical whatever the path followed before reaching s. To control a system described as
an MDP (choosing actions to perform in each state), one would need a strategy or policy π
mapping states to actions: π(s) = P(a|s) (or π(s) = a if the strategy is deterministic).
In this framework, a RL agent is a system aiming at optimally mapping states to actions, that
is finding the best strategy π* so as to maximize, for each state, an overall return R which is a
function (most often a discounted return is used i.e. a weighted sum of immediate rewards)
of all the immediate rewards rt.

 () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
π==γ= ∑

∞

=

π
tt0t

0t

t sassrEsR ,| (3)

 () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
π==γ=π ∑

∞

=π
tt0t

0t

t sassrEs ,|maxarg* (4)

where γ is a discount factor (0 < γ ≤ 1). If the probabilities of equations (1) and (2) are known,
an analytical solution can be computed by resolving the Bellman equations using dynamic
programming (Bertsekas 1995), otherwise the system has to learn the optimal strategy by a
trial-and-error process.
To do so, a standard approach is to model the knowledge of the agent as a so-called Q-
function mapping state-action pairs to an estimate of the expected cumulative reward. The
optimal Q-function maps each state-action pair to its maximum expected cumulative
rewards and the role of the agent can therefore be summarized as learning this function
through interactions.

(5)

Different techniques are described in the literature and in the following the Watkin’s Q(λ)
algorithm (Watkin 1989) will be used. This algorithm performs the following update after
each interaction:

(6)

where α is a learning rate (0 < α ≤ 1). This algorithm has been proven to converge towards
the optimal solution.

 Machine Learning

172

3. Human-machine dialogue and Markov decision process
A first requirement to use machine learning methods such as reinforcement learning for SDS
optimization is to describe a man-machine dialogue in terms of random variables and
probabilities. To do so, given the description of section 2.2, we adopt the dialogue manager
point of view from which the interaction can probabilistically be described by the joint
probability of the signals at, ot and st+1 given the history of the interaction (Pietquin 2005):

() ()

() ()������� �������� �� …������� �������� �� …

�������� ��������� �� ……

DM
000111

tEnvironmen
000111

ModelTask
00011110001111

nsansansaPnsansansaoP

nsansansaosPnsansansaosP

ttttttttttttt

tttttttttttttttt

,,,,,,,,|,,,,,,,,,|

,,,,,,,,,,|,,,,,,,,|,,

−−−−−−

−−−+−−−+

⋅

⋅=

 (7)

In (7), the task model term aims at describing the way the dialogue manager builds its
internal state thanks to the perceived observation, the second term stands for the
environment’s response to the dialogue manager’s stimulation, and the last stands for the
dialogue manager decision process or strategy.

3.1 Markov property and random noise
As said in section 2.3, the Markov property has to be met so as to apply standard
reinforcement learning methods for strategy optimization. In the case of a SDS, the Markov
property implies that the dialogue manager choice about the communicative act at to choose
at time t and the according transition probability for stepping to internal state st+1 at time t+1
are only a function of the state st at time t and not of the history of interactions. It can easily
be met by a judicious choice of the DM state representation, which should embed enough
information about the history of the interaction into the current state description. Such a state
representation is said informational.
This can be easily illustrated on a simple train ticket booking system. Using such a system, a
customer can book a ticket by providing orally information about the cities of departure and
arrival and a desired time of departure. Three bits of information (sometimes called
attributes) have therefore to be transferred from the human user (or caller) to the system. The
problem can be seen as filling a 3-slot form. From this, a very simple way to build the state
space is to represent the dialogue state as a vector of three Boolean values (e.g. [dep arr
time]) set to true if the corresponding attribute is considered as transferred to the system and
to false otherwise. Table 1 shows an ideal dialogue for such an application with the
associated dialogue state evolution.

Speaker Spoken Utterance Dialogue state
System Hello, how may I help you? [false false false]
User I’d like to go to Edinburgh.
System What’s your departure city? [false true false]
User I want to leave from Glasgow.
System When do you want to go from Glasgow to

Edinburgh?
[true true false]

User On Saturday morning.
System Ok, seats are available in train n° xxx … [true true true]

Table 1. Ideal dialogue in a train ticket booking application

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

173

To assume the Markov property is met using this state representation, one have make the
assumption that the system adopts the same behaviour whatever the order in which the
slots where filled (and by the way, whatever the values of the attributes). The Markov
assumption is also made about the environment; that is the user behaves the same whatever
the filling order as well. These are of course strong assumptions but we will see later that
they lead to satisfactory results.
Finally, most often the noise is considered as being random so as to have independence
between nt and nt-1. Eq. (5) then simplifies as follow:

 () () () ()
DMt.EnvironmenModelTask

11 ttttttttttttttttt nsaPnsaoPnsaosPnsaosP ,|,,|,,,|,|,, ⋅⋅= ++ (8)

3.2 Dialogue management as an MDP
From paragraph 2.2, the observation ot can be regarded as the result of the processing of the
DM dialog act at by its environment. This point of view helps putting dialogue management
optimization into the MDP framework. As depicted on Fig. 2, a task-oriented (or goal-
directed) man-machine dialogue can be regarded as a turn-taking process in which a user
and a dialogue manager exchange information through different channels processing speech
inputs and outputs (ASR, TTS ...). The dialogue manager’s action (or dialogue act) selection
strategy has to be optimized; the dialogue manager should thus be the learning agent.

Reinforcement
Learning

Agent

Environment

O
utput

Processing

Input
ProcessingKB

at
ot

rt

Fig. 4. Dialogue management as an MDP

The environment modeled by the RL agent as an MDP includes everything but the dialogue
manager (see Fig. 4), i.e. the human user, the communication channels (ASR, TTS …), and
any external information source (database, sensors etc.). In this context, at each turn t the
dialogue manager has to choose an action at according to its interaction strategy so as to
complete the task it has been designed for. The RL agent has therefore to choose an action
among greetings, spoken utterances (constraining questions, confirmations, relaxation, data
presentation etc.), database queries, dialogue closure etc. They result in a response from the
DM environment (user speech input, database records etc.), considered as an observation ot,
which usually leads to a DM internal state update according to the task model (Eq. 8).

3.3 Reward function
To entirely fit to the Reinforcement Learning formalism, the previous description is still
missing a reward signal rt. Different ideas could lead to the building of this signal such as the

 Machine Learning

172

3. Human-machine dialogue and Markov decision process
A first requirement to use machine learning methods such as reinforcement learning for SDS
optimization is to describe a man-machine dialogue in terms of random variables and
probabilities. To do so, given the description of section 2.2, we adopt the dialogue manager
point of view from which the interaction can probabilistically be described by the joint
probability of the signals at, ot and st+1 given the history of the interaction (Pietquin 2005):

() ()

() ()������� �������� �� …������� �������� �� …

�������� ��������� �� ……

DM
000111

tEnvironmen
000111

ModelTask
00011110001111

nsansansaPnsansansaoP

nsansansaosPnsansansaosP

ttttttttttttt

tttttttttttttttt

,,,,,,,,|,,,,,,,,,|

,,,,,,,,,,|,,,,,,,,|,,

−−−−−−

−−−+−−−+

⋅

⋅=

 (7)

In (7), the task model term aims at describing the way the dialogue manager builds its
internal state thanks to the perceived observation, the second term stands for the
environment’s response to the dialogue manager’s stimulation, and the last stands for the
dialogue manager decision process or strategy.

3.1 Markov property and random noise
As said in section 2.3, the Markov property has to be met so as to apply standard
reinforcement learning methods for strategy optimization. In the case of a SDS, the Markov
property implies that the dialogue manager choice about the communicative act at to choose
at time t and the according transition probability for stepping to internal state st+1 at time t+1
are only a function of the state st at time t and not of the history of interactions. It can easily
be met by a judicious choice of the DM state representation, which should embed enough
information about the history of the interaction into the current state description. Such a state
representation is said informational.
This can be easily illustrated on a simple train ticket booking system. Using such a system, a
customer can book a ticket by providing orally information about the cities of departure and
arrival and a desired time of departure. Three bits of information (sometimes called
attributes) have therefore to be transferred from the human user (or caller) to the system. The
problem can be seen as filling a 3-slot form. From this, a very simple way to build the state
space is to represent the dialogue state as a vector of three Boolean values (e.g. [dep arr
time]) set to true if the corresponding attribute is considered as transferred to the system and
to false otherwise. Table 1 shows an ideal dialogue for such an application with the
associated dialogue state evolution.

Speaker Spoken Utterance Dialogue state
System Hello, how may I help you? [false false false]
User I’d like to go to Edinburgh.
System What’s your departure city? [false true false]
User I want to leave from Glasgow.
System When do you want to go from Glasgow to

Edinburgh?
[true true false]

User On Saturday morning.
System Ok, seats are available in train n° xxx … [true true true]

Table 1. Ideal dialogue in a train ticket booking application

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

173

To assume the Markov property is met using this state representation, one have make the
assumption that the system adopts the same behaviour whatever the order in which the
slots where filled (and by the way, whatever the values of the attributes). The Markov
assumption is also made about the environment; that is the user behaves the same whatever
the filling order as well. These are of course strong assumptions but we will see later that
they lead to satisfactory results.
Finally, most often the noise is considered as being random so as to have independence
between nt and nt-1. Eq. (5) then simplifies as follow:

 () () () ()
DMt.EnvironmenModelTask

11 ttttttttttttttttt nsaPnsaoPnsaosPnsaosP ,|,,|,,,|,|,, ⋅⋅= ++ (8)

3.2 Dialogue management as an MDP
From paragraph 2.2, the observation ot can be regarded as the result of the processing of the
DM dialog act at by its environment. This point of view helps putting dialogue management
optimization into the MDP framework. As depicted on Fig. 2, a task-oriented (or goal-
directed) man-machine dialogue can be regarded as a turn-taking process in which a user
and a dialogue manager exchange information through different channels processing speech
inputs and outputs (ASR, TTS ...). The dialogue manager’s action (or dialogue act) selection
strategy has to be optimized; the dialogue manager should thus be the learning agent.

Reinforcement
Learning

Agent

Environment

O
utput

Processing

Input
ProcessingKB

at
ot

rt

Fig. 4. Dialogue management as an MDP

The environment modeled by the RL agent as an MDP includes everything but the dialogue
manager (see Fig. 4), i.e. the human user, the communication channels (ASR, TTS …), and
any external information source (database, sensors etc.). In this context, at each turn t the
dialogue manager has to choose an action at according to its interaction strategy so as to
complete the task it has been designed for. The RL agent has therefore to choose an action
among greetings, spoken utterances (constraining questions, confirmations, relaxation, data
presentation etc.), database queries, dialogue closure etc. They result in a response from the
DM environment (user speech input, database records etc.), considered as an observation ot,
which usually leads to a DM internal state update according to the task model (Eq. 8).

3.3 Reward function
To entirely fit to the Reinforcement Learning formalism, the previous description is still
missing a reward signal rt. Different ideas could lead to the building of this signal such as the

 Machine Learning

174

amount of money saved by using a SDS instead of having human operators or the number
of people hanging off before the end of the interaction etc. Singh et al in 1999 proposed to
use the contribution of an action to the user’s satisfaction. Although this seems very
subjective, some studies have shown that such a reward could be approximated by a linear
combination of the task completion (TC) and objective measures ci related to the system
performances. It is the PARADISE paradigm proposed in Walker et al 1997:

 () ()∑ ⋅−⋅=
i

iit cTCr NwNα , (9)

where N is a Z-score normalization function that normalises the results to have mean 0 and
standard deviation 1 and wi are non-zero weights. Each weight (α and wi) thus expresses the
relative importance of each term of the sum in the performance of the system. There are
various ways to associate an objective measure to the task completion. For example the
kappa (κ) coefficient (Carletta 1996) is defined as:

() ()

()EP
EPAP

−
−

=
1

κ , (10)

where P(A) is the proportion of correct interpretations of user’s utterances by the system
and P(E) is the proportion of correct interpretations occurring by chance. One can see that κ
= 1 when the system performs perfect interpretation (P(A) = 1) and κ = 0 when the all the
correct interpretations were obtained by chance (P(A) = P(E)).
The weights α and wi are obtain by asking a large number of users to use a prototype system
and to answer a satisfaction survey containing around 9 statements on a five-point Likert
scale. The overall satisfaction is computed as the mean value of collected ratings. The
objective costs ci are measured during the interaction. A Multivariate Linear Regression is
then applied using the results of the survey as the dependent variable and the weights as
independent variables. In practice, the significant performance measures ci are mainly the
duration of the dialogue and the ASR and NLU performances.

3.4 Partial observability
When a direct mapping between states and observations exists, building the task model (eq.
8) is straightforward. Yet, it is rarely the case that the observations can directly be translated
into dialogue states. Indeed, the real dialogue state (which we have chosen informational) at
time t is related to the information the user intended to transmit to the system until time t
during the interaction. The statistical speech recognition and understanding systems
processing the user speech inputs are error prone and it can occur that the observation
doesn’t contain only the information meant by the user but a probability distribution over a
set of possible bits of information. Indeed, as said before, the output of a speech recognition
system can be a list of N word sequences (named N-best list), each of them being associated
with a confidence level. This can be considered as a probability of the word sequence being
correct given the spoken utterance (and maybe the context). This N-bests list serves as an
input to the natural language understanding module which in turn provides a list of concept
sequences associated to confidence levels.
This is typically what happens in partially observable environments where a probability
distribution is drawn over possible states given the observations. An observation model is

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

175

therefore usually required. It is what we have called the task model in eq. 8 which can be a
real probability distribution. For this reason, emerging research is focused on the
optimization of spoken dialogue systems in the framework of Partially Observable Markov
Decision Processes (POMDPs) (Poupart et al 2005, Young 2006)

4. Learning dialogue policies using simulation
Using the framework described previously, it is theoretically possible to automatically learn
spoken dialogue policies allowing natural conversation between human users and
computers. This learning process should be realised online, through real interactions with
users. One could even imagine building the reinforcement signal from direct queries to the
user about his/her satisfaction after each interaction (Fig. 5).

Spoken
Dialogue
System

Strategy

Interaction

Satisfaction

Fig. 5. Ideal learning process

For several reasons, direct learning through interactions is made difficult. First, a human
user would probably react badly to some of the exploratory actions the system would
choose since they might be completely incoherent. Anyway a very large number of
interactions are required (typically tens of thousands of dialogues for standard dialogue
systems) to train such a system. This is why data driven learning as been proposed so as to
take advantage of existing databases for bootstrapping the learning process. Two methods
were initially investigated: learning the state transition probabilities and the reward
distribution from data (Singh et al, 1999) or learning parameters of a simulation environment
mainly reproducing the behaviour of the user (Levin et al 2000). The second method is today
preferred (Fig. 6). Indeed, whatever the data set available, it is unlikely that it contains every
possible state transitions and it allows exploring the entire spaces. Dialogue simulation is
therefore necessary for expanding the existing data sets and learning optimal policies.
Another track of research is dealing with generalization to unseen situation. In this case,
instead of simulating unseen situations, machine learning generalization methods are used
to compute a Q-function over the entire state space with only a finite set of samples
(Henderson et al 2005).
Most often, the dialogue is simulated at the intention level rather than at the word sequence
or speech signal level, as it would be in the real world. An exception can be found in (Lopez
Cozar et al 2003). Here, we regard an intention as the minimal unit of information that a
dialogue participant can express independently. Intentions are closely related to concepts,
speech acts or dialogue acts. For example, the sentence "I'd like go to Edinburgh" is based on
the concept go(Edinburgh). It is considered as unnecessary to model environment behavior
at a lower level, because strategy optimization is a high level concept. Additionally, concept-
based communication allows error modeling of all the parts of the system, including natural

 Machine Learning

174

amount of money saved by using a SDS instead of having human operators or the number
of people hanging off before the end of the interaction etc. Singh et al in 1999 proposed to
use the contribution of an action to the user’s satisfaction. Although this seems very
subjective, some studies have shown that such a reward could be approximated by a linear
combination of the task completion (TC) and objective measures ci related to the system
performances. It is the PARADISE paradigm proposed in Walker et al 1997:

 () ()∑ ⋅−⋅=
i

iit cTCr NwNα , (9)

where N is a Z-score normalization function that normalises the results to have mean 0 and
standard deviation 1 and wi are non-zero weights. Each weight (α and wi) thus expresses the
relative importance of each term of the sum in the performance of the system. There are
various ways to associate an objective measure to the task completion. For example the
kappa (κ) coefficient (Carletta 1996) is defined as:

() ()

()EP
EPAP

−
−

=
1

κ , (10)

where P(A) is the proportion of correct interpretations of user’s utterances by the system
and P(E) is the proportion of correct interpretations occurring by chance. One can see that κ
= 1 when the system performs perfect interpretation (P(A) = 1) and κ = 0 when the all the
correct interpretations were obtained by chance (P(A) = P(E)).
The weights α and wi are obtain by asking a large number of users to use a prototype system
and to answer a satisfaction survey containing around 9 statements on a five-point Likert
scale. The overall satisfaction is computed as the mean value of collected ratings. The
objective costs ci are measured during the interaction. A Multivariate Linear Regression is
then applied using the results of the survey as the dependent variable and the weights as
independent variables. In practice, the significant performance measures ci are mainly the
duration of the dialogue and the ASR and NLU performances.

3.4 Partial observability
When a direct mapping between states and observations exists, building the task model (eq.
8) is straightforward. Yet, it is rarely the case that the observations can directly be translated
into dialogue states. Indeed, the real dialogue state (which we have chosen informational) at
time t is related to the information the user intended to transmit to the system until time t
during the interaction. The statistical speech recognition and understanding systems
processing the user speech inputs are error prone and it can occur that the observation
doesn’t contain only the information meant by the user but a probability distribution over a
set of possible bits of information. Indeed, as said before, the output of a speech recognition
system can be a list of N word sequences (named N-best list), each of them being associated
with a confidence level. This can be considered as a probability of the word sequence being
correct given the spoken utterance (and maybe the context). This N-bests list serves as an
input to the natural language understanding module which in turn provides a list of concept
sequences associated to confidence levels.
This is typically what happens in partially observable environments where a probability
distribution is drawn over possible states given the observations. An observation model is

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

175

therefore usually required. It is what we have called the task model in eq. 8 which can be a
real probability distribution. For this reason, emerging research is focused on the
optimization of spoken dialogue systems in the framework of Partially Observable Markov
Decision Processes (POMDPs) (Poupart et al 2005, Young 2006)

4. Learning dialogue policies using simulation
Using the framework described previously, it is theoretically possible to automatically learn
spoken dialogue policies allowing natural conversation between human users and
computers. This learning process should be realised online, through real interactions with
users. One could even imagine building the reinforcement signal from direct queries to the
user about his/her satisfaction after each interaction (Fig. 5).

Spoken
Dialogue
System

Strategy

Interaction

Satisfaction

Fig. 5. Ideal learning process

For several reasons, direct learning through interactions is made difficult. First, a human
user would probably react badly to some of the exploratory actions the system would
choose since they might be completely incoherent. Anyway a very large number of
interactions are required (typically tens of thousands of dialogues for standard dialogue
systems) to train such a system. This is why data driven learning as been proposed so as to
take advantage of existing databases for bootstrapping the learning process. Two methods
were initially investigated: learning the state transition probabilities and the reward
distribution from data (Singh et al, 1999) or learning parameters of a simulation environment
mainly reproducing the behaviour of the user (Levin et al 2000). The second method is today
preferred (Fig. 6). Indeed, whatever the data set available, it is unlikely that it contains every
possible state transitions and it allows exploring the entire spaces. Dialogue simulation is
therefore necessary for expanding the existing data sets and learning optimal policies.
Another track of research is dealing with generalization to unseen situation. In this case,
instead of simulating unseen situations, machine learning generalization methods are used
to compute a Q-function over the entire state space with only a finite set of samples
(Henderson et al 2005).
Most often, the dialogue is simulated at the intention level rather than at the word sequence
or speech signal level, as it would be in the real world. An exception can be found in (Lopez
Cozar et al 2003). Here, we regard an intention as the minimal unit of information that a
dialogue participant can express independently. Intentions are closely related to concepts,
speech acts or dialogue acts. For example, the sentence "I'd like go to Edinburgh" is based on
the concept go(Edinburgh). It is considered as unnecessary to model environment behavior
at a lower level, because strategy optimization is a high level concept. Additionally, concept-
based communication allows error modeling of all the parts of the system, including natural

 Machine Learning

176

language understanding (Pietquin & Renals 2002, Pietquin & Dutoit 2006b). More
pragmatically, it is simpler to automatically generate concepts compared with word
sequences (and certainly speech signals), as a large number of utterances can express the
same intention while it should not influence the dialogue manager strategy. Table 2
describes such a simulation process. The intentions have been expanded in the last column
for comprehensiveness purposes. The signals column refers to notations of section 2.2.

Signals Intentions Expanded Intentions

sys0 greeting Hello! How may I help you?
u0 arr_city = ‘Paris’ I’d like to go to Paris.
sys1 const(arr_time) When do you prefer to arrive?
u1 arr_time = ‘1.00 PM’ I want to arrive around 1 PM.
sys2 rel(arr_time) Don’t you prefer to arrive later?
u2 rel = false No.
sys3 conf(arr_city) Can you confirm you want to go to Paris?
u3 conf = true Yes !
… … …
… … …

Table 2. Simulated dialogue at the intention level (‘const’ stands for constraining question,
‘rel’ for relaxation and ‘conf’ for confirmation)

This approach requires modelling the environment of the dialogue manager as a stochastic
system and to learn the parameters of this model from data. It has been a topic of research
since the early 2000’s (Levin et al 2000, Scheffler & Young 2001, Pietquin 2004). Most of the
research is now focused on simulating the user (Georgila et al 2005, Pietquin 2006a,
Schatzmann et al 2007a) and assessing the quality of a user model for training a
reinforcement learning agent is an important track (Schatzmann et al 2005, Rieser & Lemon
2006, Georgila et al 2006). Modelling the errors introduced by the ASR and NLU systems is
also a major topic of research (Scheffler & Young 2001, Lopez Cozar et al 2003, Pietquin &
Beaufort 2005, Pietquin & Dutoit 2006b).

Spoken
Dialogue
System

Strategy

Interactions

Data User
Model

Tests

Si
m

ula
tio

ns

rt
Fig. 6. Learning via simulation

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

177

4.1 Probabilistic user simulation
According to the conventions of Fig. 2 and omitting the t indices, the user behavior is ruled
by the following joined probability that can be factored and simplified:

() () () ()

() () ()
OutputUser onModificati Goal UpdateKnowledge

OutputUser onModificati Goal UpdateKnowledge

,,,| |,,|

,,,,,| ,,,,|,,,|,,,,,

nsyskguPkgPnssyskP

nsasyskguPnsasyskgPnsasyskPnsasyskguP

⋅⋅=

⋅⋅=

These terms emphasize on the relation existing between the user’s utterance production
process and his/her goal and knowledge, themselves linked together. The knowledge can
be modified during the interaction through the speech outputs produced by the system. Yet,
this modification of the knowledge is incremental (it is an update) and takes into account the
last system utterance (which might be misunderstood, and especially in presence of noise)
and the previous user’s knowledge state. This can be written as follow with k- standing for
kt-1:

() () ()
() () |,,|

 ,,|,,,|,,|

∑
∑

−

−

−−

−−

⋅=

⋅=

k

k

skPnsyskkP

nssyskPnssyskkPnssyskP

The parameter of this model can be learnt from data. In (Pietquin & Dutoit, 2006b), this
model serves as a basis to define a Dynamic Bayesian Network (DBN) (Fig. 7). This allows
using standard DBN tools to simulate a user model and to learn the parameters from data.
Although the user’s knowledge k− is not directly dependent of the system state s, we kept
this dependency in our description so as to be able to introduce a mechanism for user
knowledge inference from system state because it is supposed to contain information about
the history of the dialogue. This mechanism can actually be used to introduce grounding
(Clarck et Shaefler, 1989) subdialogs in the interaction so as to obtain a good connection
between the user’s understanding of the interaction and the system view of the same
interaction (Pietquin, 2007).

U

K

Sys

UC

As

V

G

K-

t t-1

Fig. 7. DBN-based user model

 Machine Learning

176

language understanding (Pietquin & Renals 2002, Pietquin & Dutoit 2006b). More
pragmatically, it is simpler to automatically generate concepts compared with word
sequences (and certainly speech signals), as a large number of utterances can express the
same intention while it should not influence the dialogue manager strategy. Table 2
describes such a simulation process. The intentions have been expanded in the last column
for comprehensiveness purposes. The signals column refers to notations of section 2.2.

Signals Intentions Expanded Intentions

sys0 greeting Hello! How may I help you?
u0 arr_city = ‘Paris’ I’d like to go to Paris.
sys1 const(arr_time) When do you prefer to arrive?
u1 arr_time = ‘1.00 PM’ I want to arrive around 1 PM.
sys2 rel(arr_time) Don’t you prefer to arrive later?
u2 rel = false No.
sys3 conf(arr_city) Can you confirm you want to go to Paris?
u3 conf = true Yes !
… … …
… … …

Table 2. Simulated dialogue at the intention level (‘const’ stands for constraining question,
‘rel’ for relaxation and ‘conf’ for confirmation)

This approach requires modelling the environment of the dialogue manager as a stochastic
system and to learn the parameters of this model from data. It has been a topic of research
since the early 2000’s (Levin et al 2000, Scheffler & Young 2001, Pietquin 2004). Most of the
research is now focused on simulating the user (Georgila et al 2005, Pietquin 2006a,
Schatzmann et al 2007a) and assessing the quality of a user model for training a
reinforcement learning agent is an important track (Schatzmann et al 2005, Rieser & Lemon
2006, Georgila et al 2006). Modelling the errors introduced by the ASR and NLU systems is
also a major topic of research (Scheffler & Young 2001, Lopez Cozar et al 2003, Pietquin &
Beaufort 2005, Pietquin & Dutoit 2006b).

Spoken
Dialogue
System

Strategy

Interactions

Data User
Model

Tests

Si
m

ula
tio

ns

rt
Fig. 6. Learning via simulation

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

177

4.1 Probabilistic user simulation
According to the conventions of Fig. 2 and omitting the t indices, the user behavior is ruled
by the following joined probability that can be factored and simplified:

() () () ()

() () ()
OutputUser onModificati Goal UpdateKnowledge

OutputUser onModificati Goal UpdateKnowledge

,,,| |,,|

,,,,,| ,,,,|,,,|,,,,,

nsyskguPkgPnssyskP

nsasyskguPnsasyskgPnsasyskPnsasyskguP

⋅⋅=

⋅⋅=

These terms emphasize on the relation existing between the user’s utterance production
process and his/her goal and knowledge, themselves linked together. The knowledge can
be modified during the interaction through the speech outputs produced by the system. Yet,
this modification of the knowledge is incremental (it is an update) and takes into account the
last system utterance (which might be misunderstood, and especially in presence of noise)
and the previous user’s knowledge state. This can be written as follow with k- standing for
kt-1:

() () ()
() () |,,|

 ,,|,,,|,,|

∑
∑

−

−

−−

−−

⋅=

⋅=

k

k

skPnsyskkP

nssyskPnssyskkPnssyskP

The parameter of this model can be learnt from data. In (Pietquin & Dutoit, 2006b), this
model serves as a basis to define a Dynamic Bayesian Network (DBN) (Fig. 7). This allows
using standard DBN tools to simulate a user model and to learn the parameters from data.
Although the user’s knowledge k− is not directly dependent of the system state s, we kept
this dependency in our description so as to be able to introduce a mechanism for user
knowledge inference from system state because it is supposed to contain information about
the history of the dialogue. This mechanism can actually be used to introduce grounding
(Clarck et Shaefler, 1989) subdialogs in the interaction so as to obtain a good connection
between the user’s understanding of the interaction and the system view of the same
interaction (Pietquin, 2007).

U

K

Sys

UC

As

V

G

K-

t t-1

Fig. 7. DBN-based user model

 Machine Learning

178

4.2 Attribute-Value variable representation
It is quite unclear how to model each variable present in this description (such as ut, syst, gt
etc.) for computer-based HMD simulation. As said before, it is often argued that intention-
based communication is sufficient to internally model dialogs. Variables can then be
regarded as finite sets of abstract concepts, related to the specific task, that have to be
manipulated along the interactions by the SDS and the user. For this reason, we opted for a
variable representation based on Attribute-Value (AV) pairs. This representation allows
very high-level considerations (attributes are regarded as concepts) while values (particular
values for the concepts) allow to some extent to come back to lower levels of
communication. This variable description is founded on an Attribute-Value-Matrix (AVM)
representation of the task (Walker et al, 1999)
Each communicative act is then symbolized by a set of AV pairs. From now on, we will
denote A the set of possible attributes (concepts) according to the task, and by V the set of all
possible values. The system utterances sys are then modeled as sets of AV pairs in which the
attribute set will be denoted Sys={sysσ} ⊂ A and the set of possible values for each attribute
sysσ will be denoted Vσ = { σ

iv } ⊂ V. The system utterance attribute set contains a special
attribute AS which values define the type of the embedded act. Allowed types can be
constraining questions, relaxing prompts, greeting prompts, assertions, confirmation
queries, etc. The user’s utterance u is modeled as a set of AV pairs (transmitted to the ASR
model) in which attributes belong to U = {uυ} ⊂ A and the set of possible values for uυ is Vυ =
{ υ

iv } ⊂ V. The user’s utterance attribute set contains a special attribute CU which value is a
Boolean indicating whether the user wants to close the dialog or not. The ASR process
results in an error-prone set of AV pairs w which is in turn processed and possibly modified
by the NLU model. This process provides a new AV pair set c, which is part of the
observation o. The user’s goal G = {[gγ, γ

igv]} and the user’s knowledge K = {[kκ, κ
ikv]} are

also AV pair sets where gγ and kκ are attributes and where γ
igv and κ

ikv are values.

5. Experiment
This model was developed in the aim of being used in an optimal dialog strategy learning
process. We therefore show here a use case of dialog simulation for Reinforcement-Learning
(RL) agent training on a simple form-filling dialog task. To do so, a reward function (or
reinforcement signal) rt has to be defined. This reward provides information about the
quality of each DM decision of performing an action a when in state s at time t. It is
generally considered that the contribution of each action to the user’s satisfaction is the most
suitable reward function (Singh et al, 1999). According to (Walker et al, 1997), the major
contributors to user’s satisfaction are the dialog time duration (which can be approximated
by the number of dialog turns N), the ASR performances (which we will approximate by a
confidence level CL as in (Pietquin & Renals, 2002) and the task completion (TC). For this
reason, we chose a reward function of the form:

 NwCLwTCwr NCLTCt ⋅−⋅+⋅=
where wx are positive tunable weights.

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

179

The task is a simplified version of a train ticket booking system that aims at delivering
train tickets corresponding to a particular travel. Users are invited to provide information
about the departure city (over 50 possible options) and time (over 24 possible options) as
well as the destination city and time. The desired class (2 options) is also requested. Table
3 shows the task structure, the user’s goal structure (AV pairs) and the knowledge
structure which will be simply a set of counters associated to each goal AV pair and
incremented each time the user answers to a question related to a given attribute during
the dialog. The task completion is therefore measured as a ratio between the common
values in the goal and the values retrieved by the system after the dialog session. The
simulation environment includes the DBN user model, and an ASR model like in
(Pietquin & Renals, 2002).
The RL paradigm requires the definition of a state space. It will be defined by a set of state
variables which are 5 Booleans (one for each attribute in the task) set to true when the
corresponding value is known, 5 status Booleans set to true if the corresponding value is
confirmed and 5 binary values indicating whether the Confidence Level (CL) associated to
the corresponding value is high or low. Every combination is not possible and the state space
size is therefore of 52 states. The DM will be allowed 5 action types: greeting, open question
(about more than 1 attribute), closed question (about only 1 attribute), explicit confirmation,
closing.

Task User Goal (G) Knowledge
(K)

Attributes (A) #V Att. Value Count init

dep 50 gdep Glasgow kdep 0
dest 50 gdest Edinburgh kdest 0
t_dep 24 gt_dep 8 kt_dep 0
t_dest 24 gt_dest 12 kt_dest 0
class 2 gclass 1 kclass 0

Table 3. AV representation of the task

Performance
NU TC

5.39 0.81

Strategy
greet constQ openQ expC close

1.0 0.85 1.23 1.31 1.0

Table 4. Experimental results

 Machine Learning

178

4.2 Attribute-Value variable representation
It is quite unclear how to model each variable present in this description (such as ut, syst, gt
etc.) for computer-based HMD simulation. As said before, it is often argued that intention-
based communication is sufficient to internally model dialogs. Variables can then be
regarded as finite sets of abstract concepts, related to the specific task, that have to be
manipulated along the interactions by the SDS and the user. For this reason, we opted for a
variable representation based on Attribute-Value (AV) pairs. This representation allows
very high-level considerations (attributes are regarded as concepts) while values (particular
values for the concepts) allow to some extent to come back to lower levels of
communication. This variable description is founded on an Attribute-Value-Matrix (AVM)
representation of the task (Walker et al, 1999)
Each communicative act is then symbolized by a set of AV pairs. From now on, we will
denote A the set of possible attributes (concepts) according to the task, and by V the set of all
possible values. The system utterances sys are then modeled as sets of AV pairs in which the
attribute set will be denoted Sys={sysσ} ⊂ A and the set of possible values for each attribute
sysσ will be denoted Vσ = { σ

iv } ⊂ V. The system utterance attribute set contains a special
attribute AS which values define the type of the embedded act. Allowed types can be
constraining questions, relaxing prompts, greeting prompts, assertions, confirmation
queries, etc. The user’s utterance u is modeled as a set of AV pairs (transmitted to the ASR
model) in which attributes belong to U = {uυ} ⊂ A and the set of possible values for uυ is Vυ =
{ υ

iv } ⊂ V. The user’s utterance attribute set contains a special attribute CU which value is a
Boolean indicating whether the user wants to close the dialog or not. The ASR process
results in an error-prone set of AV pairs w which is in turn processed and possibly modified
by the NLU model. This process provides a new AV pair set c, which is part of the
observation o. The user’s goal G = {[gγ, γ

igv]} and the user’s knowledge K = {[kκ, κ
ikv]} are

also AV pair sets where gγ and kκ are attributes and where γ
igv and κ

ikv are values.

5. Experiment
This model was developed in the aim of being used in an optimal dialog strategy learning
process. We therefore show here a use case of dialog simulation for Reinforcement-Learning
(RL) agent training on a simple form-filling dialog task. To do so, a reward function (or
reinforcement signal) rt has to be defined. This reward provides information about the
quality of each DM decision of performing an action a when in state s at time t. It is
generally considered that the contribution of each action to the user’s satisfaction is the most
suitable reward function (Singh et al, 1999). According to (Walker et al, 1997), the major
contributors to user’s satisfaction are the dialog time duration (which can be approximated
by the number of dialog turns N), the ASR performances (which we will approximate by a
confidence level CL as in (Pietquin & Renals, 2002) and the task completion (TC). For this
reason, we chose a reward function of the form:

 NwCLwTCwr NCLTCt ⋅−⋅+⋅=
where wx are positive tunable weights.

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

179

The task is a simplified version of a train ticket booking system that aims at delivering
train tickets corresponding to a particular travel. Users are invited to provide information
about the departure city (over 50 possible options) and time (over 24 possible options) as
well as the destination city and time. The desired class (2 options) is also requested. Table
3 shows the task structure, the user’s goal structure (AV pairs) and the knowledge
structure which will be simply a set of counters associated to each goal AV pair and
incremented each time the user answers to a question related to a given attribute during
the dialog. The task completion is therefore measured as a ratio between the common
values in the goal and the values retrieved by the system after the dialog session. The
simulation environment includes the DBN user model, and an ASR model like in
(Pietquin & Renals, 2002).
The RL paradigm requires the definition of a state space. It will be defined by a set of state
variables which are 5 Booleans (one for each attribute in the task) set to true when the
corresponding value is known, 5 status Booleans set to true if the corresponding value is
confirmed and 5 binary values indicating whether the Confidence Level (CL) associated to
the corresponding value is high or low. Every combination is not possible and the state space
size is therefore of 52 states. The DM will be allowed 5 action types: greeting, open question
(about more than 1 attribute), closed question (about only 1 attribute), explicit confirmation,
closing.

Task User Goal (G) Knowledge
(K)

Attributes (A) #V Att. Value Count init

dep 50 gdep Glasgow kdep 0
dest 50 gdest Edinburgh kdest 0
t_dep 24 gt_dep 8 kt_dep 0
t_dest 24 gt_dest 12 kt_dest 0
class 2 gclass 1 kclass 0

Table 3. AV representation of the task

Performance
NU TC

5.39 0.81

Strategy
greet constQ openQ expC close

1.0 0.85 1.23 1.31 1.0

Table 4. Experimental results

 Machine Learning

180

The results of the learning process on 105 dialogs shown in Table 4 can be interpreted as
follow. This experiment shows that, in our model, the user’s satisfaction relies as much on
the duration time as on the task completion. Thus dialogues are short, but task completion is
not optimal since one attribute is often missing in the presented data (one of the cities in
general). There are more open-ended questions than constraining questions. Actually,
constraining questions are present because sometimes only one argument is missing and
there is no need of an open-ended question to retrieve it. Yet, there are explicit
confirmations because the task completion is a factor of user satisfaction. It actually
illustrates well the trade-off between task completion and time duration. This behaviour can
be tuned by changing the parameters of our user model for example.

6. Conclusion
In this chapter, a formal probabilistic description of human-machine dialogues was
described. This description allowed putting the optimization of spoken dialogue
strategies in the framework of reinforcement learning. Reinforcement learning designates
a very data-demanding class of machine learning methods. This is a major problem for
SDS optimization since collecting and annotating data is very difficult. To solve this
problem of data sparsity, dialogue simulation techniques are commonly used. A specific
simulation framework based on a probabilistic description of the user’s behavior has been
described. It can easily be translated into a dynamic Bayesian network and use the
standard parameter learning and inference tools. The reinforcement learning framework
also requires the definition of a reward function associating a numerical number to each
system action. To do so, the PARADISE framework using multivariate regression has
been described. To summarize, this chapter has shown that a large number of machine
learning methods can be used in the context of spoken dialogue optimization. Among
these techniques, reinforcement learning, Bayesian inference and multivariate regression
are very common.

7. Future works
Statistical machine learning for spoken dialogue strategies optimization is an emerging area
of research and lots of issues still remain. One of the first, which is common to a lot of
reinforcement learning applications, is to find tractable algorithms for real size dialogue
systems. The standard RL algorithms are indeed suitable for small tasks such as described in
section 5. Yet real applications can exhibit up to several million of states, possibly with
continuous observations (Williams et al 2005). Supervised learning (Henderson et al 2005)
and hierarchical learning (Cuayáhuitl et al 2007) have been recently proposed to tackle this
problem.
In this chapter, we have essentially considered the problem of completely observable
systems. But as said in paragraph 3.4, a spoken dialogue system should be considered as
partially observable, because of error prone speech processing sub-systems. Research on
POMDP for SDS optimization are reported in (Poupart et al 2005, Young 2006), yet a lot of
work is still necessary to anchor SDS in real life.

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

181

Spoken dialogue simulation is also the topic of ongoing research. Different approaches are
being studied such as the recently proposed agenda-based user model (Schatzmann et al
2007b) that can be trained by an Expectation-Maximisation algorithm from data, or user
models based on dynamic Bayesian networks (Pietquin & Dutoit 2006a) such as those
presented in this chapter. One of the major argument against the current simulation
methods is the lack of assessment methods even though some work can be cited
(Schatzmann et al 2005, Georgila et al 2006, Rieser & Lemon 2006).
On another hand, it might be interesting to see how to use learned strategies to help human
developers to design optimal strategies. Indeed, the solution may be in computer-aided
design more than fully automated design (Pietquin & Dutoit 2003).
The ultimate aim of this research area is to design a complete data-driven dialogue system
using an end-to-end probabilistic framework, from speech recognition to speech synthesis
systems automatically trained on real data, is probably the next step (Lemon & Pietquin
2007).

8. Acknowledgement
The research presented in this chapter has been funded by the ‘First Europe’ program of the
Belgian Walloon Region, the SIMILAR European Network of Excellence and the French
Lorraine Region.

9. References
Allen, J. (1994) Natural Language Understanding, Benjamin Cummings, 1987, Second Edition,

1994.
Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Athena Scientific, 3rd

edition.
Carletta J. (1996), Assessing Agreement on Classification Tasks: the Kappa Statistic.

Computational Linguistics, 22(2), 1996, 249-254.
Clarck H. and Schaefer E., “Contributing to discourse,” Cognitive Science, vol. 13, pp. 259–

294, 1989.
Cuayáhuitl, H.; Renals, S.; Lemon, O. and Shimodaira, H. (2007) Hierarchical Dialogue

Optimization Using Semi-Markov Decision Processes, in Proceedings of
International Conference on Speech Communication (Interspeech’07), Anvers
(Belgium), 2007.

Dutoit, T., An Introduction to Text-To-Speech Synthesis. Kluwer Academic Publishers,
Dordrecht, ISBN 0-7923-4498-7, 1997.

Frampton, M. & Lemon O. (2006). Learning more effective dialogue strategies using limited
dialogue move features, in Proceedings of ACM, 2006.

Georgila, K.; Henderson, J. and Lemon, O. (2005). Learning User Simulations for
Information State Update Dialogue Systems, in Proceedings of International
Conference on Speech Communication (Interspeech’05), Lisbon (Portugal) 2005.

Georgila, K.; Henderson, J. and Lemon, O. (2006) User simulation for spoken dialogue
systems: Learning and evaluation, in Proceedings of International Conference on Speech
Communication (Interspeech’06), Pittsburgh, 2006.

 Machine Learning

180

The results of the learning process on 105 dialogs shown in Table 4 can be interpreted as
follow. This experiment shows that, in our model, the user’s satisfaction relies as much on
the duration time as on the task completion. Thus dialogues are short, but task completion is
not optimal since one attribute is often missing in the presented data (one of the cities in
general). There are more open-ended questions than constraining questions. Actually,
constraining questions are present because sometimes only one argument is missing and
there is no need of an open-ended question to retrieve it. Yet, there are explicit
confirmations because the task completion is a factor of user satisfaction. It actually
illustrates well the trade-off between task completion and time duration. This behaviour can
be tuned by changing the parameters of our user model for example.

6. Conclusion
In this chapter, a formal probabilistic description of human-machine dialogues was
described. This description allowed putting the optimization of spoken dialogue
strategies in the framework of reinforcement learning. Reinforcement learning designates
a very data-demanding class of machine learning methods. This is a major problem for
SDS optimization since collecting and annotating data is very difficult. To solve this
problem of data sparsity, dialogue simulation techniques are commonly used. A specific
simulation framework based on a probabilistic description of the user’s behavior has been
described. It can easily be translated into a dynamic Bayesian network and use the
standard parameter learning and inference tools. The reinforcement learning framework
also requires the definition of a reward function associating a numerical number to each
system action. To do so, the PARADISE framework using multivariate regression has
been described. To summarize, this chapter has shown that a large number of machine
learning methods can be used in the context of spoken dialogue optimization. Among
these techniques, reinforcement learning, Bayesian inference and multivariate regression
are very common.

7. Future works
Statistical machine learning for spoken dialogue strategies optimization is an emerging area
of research and lots of issues still remain. One of the first, which is common to a lot of
reinforcement learning applications, is to find tractable algorithms for real size dialogue
systems. The standard RL algorithms are indeed suitable for small tasks such as described in
section 5. Yet real applications can exhibit up to several million of states, possibly with
continuous observations (Williams et al 2005). Supervised learning (Henderson et al 2005)
and hierarchical learning (Cuayáhuitl et al 2007) have been recently proposed to tackle this
problem.
In this chapter, we have essentially considered the problem of completely observable
systems. But as said in paragraph 3.4, a spoken dialogue system should be considered as
partially observable, because of error prone speech processing sub-systems. Research on
POMDP for SDS optimization are reported in (Poupart et al 2005, Young 2006), yet a lot of
work is still necessary to anchor SDS in real life.

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

181

Spoken dialogue simulation is also the topic of ongoing research. Different approaches are
being studied such as the recently proposed agenda-based user model (Schatzmann et al
2007b) that can be trained by an Expectation-Maximisation algorithm from data, or user
models based on dynamic Bayesian networks (Pietquin & Dutoit 2006a) such as those
presented in this chapter. One of the major argument against the current simulation
methods is the lack of assessment methods even though some work can be cited
(Schatzmann et al 2005, Georgila et al 2006, Rieser & Lemon 2006).
On another hand, it might be interesting to see how to use learned strategies to help human
developers to design optimal strategies. Indeed, the solution may be in computer-aided
design more than fully automated design (Pietquin & Dutoit 2003).
The ultimate aim of this research area is to design a complete data-driven dialogue system
using an end-to-end probabilistic framework, from speech recognition to speech synthesis
systems automatically trained on real data, is probably the next step (Lemon & Pietquin
2007).

8. Acknowledgement
The research presented in this chapter has been funded by the ‘First Europe’ program of the
Belgian Walloon Region, the SIMILAR European Network of Excellence and the French
Lorraine Region.

9. References
Allen, J. (1994) Natural Language Understanding, Benjamin Cummings, 1987, Second Edition,

1994.
Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Athena Scientific, 3rd

edition.
Carletta J. (1996), Assessing Agreement on Classification Tasks: the Kappa Statistic.

Computational Linguistics, 22(2), 1996, 249-254.
Clarck H. and Schaefer E., “Contributing to discourse,” Cognitive Science, vol. 13, pp. 259–

294, 1989.
Cuayáhuitl, H.; Renals, S.; Lemon, O. and Shimodaira, H. (2007) Hierarchical Dialogue

Optimization Using Semi-Markov Decision Processes, in Proceedings of
International Conference on Speech Communication (Interspeech’07), Anvers
(Belgium), 2007.

Dutoit, T., An Introduction to Text-To-Speech Synthesis. Kluwer Academic Publishers,
Dordrecht, ISBN 0-7923-4498-7, 1997.

Frampton, M. & Lemon O. (2006). Learning more effective dialogue strategies using limited
dialogue move features, in Proceedings of ACM, 2006.

Georgila, K.; Henderson, J. and Lemon, O. (2005). Learning User Simulations for
Information State Update Dialogue Systems, in Proceedings of International
Conference on Speech Communication (Interspeech’05), Lisbon (Portugal) 2005.

Georgila, K.; Henderson, J. and Lemon, O. (2006) User simulation for spoken dialogue
systems: Learning and evaluation, in Proceedings of International Conference on Speech
Communication (Interspeech’06), Pittsburgh, 2006.

 Machine Learning

182

Graesser, A.; VanLehn, K.; Rosé, C.; Jordan, P. & Harter, D. (2001) Intelligent Tutoring
Systems with Conversational Dialogue. in AI Magazine vol. 22(4) , 2001, pp. 39-
52.

Henderson, J.; Lemon, O. and Georgila, K. (2005) Hybrid Reinforcement/Supervised
Learning for Dialogue Policies from COMMUNICATOR data, in Proceedings of the
IJCAI workshop on Knowledge and Reasoning in Practical Dialogue Systems, 2005, pp.
68–75.

Lemon, O. & Pietquin, O. (2007). Machine learning for spoken dialogue systems, in
Proceedings of the European Conference on Speech Communication and Technologies
(Interspeech’07), Anvers (Belgium), August 2007.

Levin, E.; Pieraccini, R. & Eckert, W. (1997). Learning dialogue strategies within the Markov
decision process framework, in Proceedings of the International Workshop on Automatic
Speech Recognition and Understanding (ASRU’97), December 1997.

Levin, E.; Pieraccini, R. and Eckert, W. (2000). A stochastic model of human-machine
interaction for learning dialog strategies, in IEEE Transactions on Speech and Audio
Processing, vol. 8, no. 1, pp. 11–23, 2000.

Lopez-Cozar, R.; de la Torre, A.; Segura, J. and Rubio, A. (2003) Assesment of dialogue
systems by means of a new simulation technique, in Speech Communication, vol. 40,
no. 3, pp. 387–407, May 2003.

Pietquin, O. and Renals, S. (2002). Asr system modelling for automatic evaluation and
optimization of dialogue systems, in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP’02), Orlando, (USA, FL), May
2002.

Pietquin, O. and Dutoit, T. (2003). Aided Design of Finite-State Dialogue Management
Systems, in Proceedings of the IEEE International Conference on Multimedia and Expo
(ICME 2003), Baltimore (USA, MA), 2003.

Pietquin, O. (2004). A Framework for Unsupervised Learning of Dialogue Strategies, Presses
Universitaires de Louvain, ISBN : 2-930344-63-6, 2004.

Pietquin, O. (2005). A probabilistic description of man-machine spoken communication, in
Proceedings of the IEEE International Conference on Multimedia and Expo (ICME’05),
Amsterdam (The Netherlands), July 2005.

Pietquin, O., Beaufort, R. (2005). Comparing ASR Modeling Methods for Spoken Dialogue
Simulation and Optimal Strategy Learning. In Proceedings of Interspeech/Eurospeech
2005, Lisbon, Portugal (2005)

Pietquin, O. (2006a) Consistent goal-directed user model for realistic man-machine task-
oriented spoken dialogue simulation, in Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME’06), Toronto, Canada, July 2006.

Pietquin, O. (2006b). Machine learning for spoken dialogue management : an experiment
with speech-based database querying, in Artificial Intelligence : Methodology, Systems
and Applications, J. Euzenat and J. Domingue, Eds., vol. 4183 of Lecture Notes in
Artificial Intelligence, pp. 172–180. Springer Verlag, 2006.

Pietquin, O. & Dutoit, T. (2006a). A probabilistic framework for dialog simulation and
optimal strategy learning, in IEEE Transactions on Audio, Speech and Language
Processing, vol. 14, no. 2, pp. 589–599, March 2006.

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

183

Pietquin, O. and Dutoit, T. (2006b). Dynamic Bayesian networks for NLU simulation with
applications to dialog optimal strategy learning, in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP’06), May
2006.

Pietquin, O. (2007), Learning to Ground in Spoken Dialogue Systems. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
2007), IV:165-168, Hawaii (USA), 2007

Poupart, P.; Williams, J. & Young, S. (2006). Partially observable Markov decision processes
with continuous observations for dialogue management, in Proceedings of the
SigDial Workshop (SigDial’06), 2006.

Rabiner, L. & Juang, B.H. (1993). Fundamentals of Speech Recognition, Prentice Hall, Signal
Processing Series, 1993.

Reiter, E. & Dale, R. (2000) Building Natural Language Generation Systems, Cambridge
University Press, Cambridge, 2000.

Rieser, V. and Lemon, O. (2006) Cluster-based user simulations for learning dialogue
strategies and the super evaluation metric, in Proceedings of Interspeech/ICSLP,
2006.

Schatzmann, J.; Georgila, K. and Young, S. (2005) Quantitative evaluation of user simulation
techniques for spoken dialogue systems, in Proceedings of the SIGdial’05 Workshop,
September 2005.

Schatzmann, J.; Weilhammer, K.; Stuttle, M. and Young, S. (2007a) A survey of statistical
user simulation techniques for reinforcement-learning of dialogue management
strategies, in Knowledge Engineering Review 21(2): 97-126, 2007.

Schatzmann, J.; Thomson, B. and Young., S. (2007b). Statistical User Simulation with a
Hidden Agenda. In Proceedings of the 8th SigDIAL Workshop, Antwerp, 2007.

Scheffler, K. & Young, S. (2001). Corpus-based dialogue simulation for automatic strategy
learning and evaluation, in Proc. NAACL Workshop on Adaptation in Dialogue
Systems, 2001.

Singh, S.; Kearns, M.; Litman, D. & Walker, M. (1999), Reinforcement learning for spoken
dialogue systems, in Proceedings of NIPS’99, 1999.

Young, S. (2006). Using POMDPs for dialog management, in Proceedings of the 1st IEEE/ACL
Workshop on Spoken Language Technologies (SLT’06), 2006.

Young, S.; Schatzmann, J.; Weilhammer, K. & Ye, H. (2007). The hidden information state
approach to dialog management, in Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP’07), April 2007.

Walker, M.; Litman, D.; Kamm, C. & Abella, A. (1997). PARADISE: A Framework for
Evaluating Spoken Dialogue Agents. in Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics, Madrid, Spain (1997) 271-280.

Watkins, C. (1989). Learning from delayed rewards. PhD thesis, Psychology Department,
Cambridge University, Cambridge, England, 1989.

Williams, J. & Young, S. (2005). Scaling up POMDPs for dialogue management: the
summary POMDP method, in Proceedings of the IEEE workshop on Automatic Speech
Recognition and Understanding (ASRU’05), 2005.

 Machine Learning

182

Graesser, A.; VanLehn, K.; Rosé, C.; Jordan, P. & Harter, D. (2001) Intelligent Tutoring
Systems with Conversational Dialogue. in AI Magazine vol. 22(4) , 2001, pp. 39-
52.

Henderson, J.; Lemon, O. and Georgila, K. (2005) Hybrid Reinforcement/Supervised
Learning for Dialogue Policies from COMMUNICATOR data, in Proceedings of the
IJCAI workshop on Knowledge and Reasoning in Practical Dialogue Systems, 2005, pp.
68–75.

Lemon, O. & Pietquin, O. (2007). Machine learning for spoken dialogue systems, in
Proceedings of the European Conference on Speech Communication and Technologies
(Interspeech’07), Anvers (Belgium), August 2007.

Levin, E.; Pieraccini, R. & Eckert, W. (1997). Learning dialogue strategies within the Markov
decision process framework, in Proceedings of the International Workshop on Automatic
Speech Recognition and Understanding (ASRU’97), December 1997.

Levin, E.; Pieraccini, R. and Eckert, W. (2000). A stochastic model of human-machine
interaction for learning dialog strategies, in IEEE Transactions on Speech and Audio
Processing, vol. 8, no. 1, pp. 11–23, 2000.

Lopez-Cozar, R.; de la Torre, A.; Segura, J. and Rubio, A. (2003) Assesment of dialogue
systems by means of a new simulation technique, in Speech Communication, vol. 40,
no. 3, pp. 387–407, May 2003.

Pietquin, O. and Renals, S. (2002). Asr system modelling for automatic evaluation and
optimization of dialogue systems, in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP’02), Orlando, (USA, FL), May
2002.

Pietquin, O. and Dutoit, T. (2003). Aided Design of Finite-State Dialogue Management
Systems, in Proceedings of the IEEE International Conference on Multimedia and Expo
(ICME 2003), Baltimore (USA, MA), 2003.

Pietquin, O. (2004). A Framework for Unsupervised Learning of Dialogue Strategies, Presses
Universitaires de Louvain, ISBN : 2-930344-63-6, 2004.

Pietquin, O. (2005). A probabilistic description of man-machine spoken communication, in
Proceedings of the IEEE International Conference on Multimedia and Expo (ICME’05),
Amsterdam (The Netherlands), July 2005.

Pietquin, O., Beaufort, R. (2005). Comparing ASR Modeling Methods for Spoken Dialogue
Simulation and Optimal Strategy Learning. In Proceedings of Interspeech/Eurospeech
2005, Lisbon, Portugal (2005)

Pietquin, O. (2006a) Consistent goal-directed user model for realistic man-machine task-
oriented spoken dialogue simulation, in Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME’06), Toronto, Canada, July 2006.

Pietquin, O. (2006b). Machine learning for spoken dialogue management : an experiment
with speech-based database querying, in Artificial Intelligence : Methodology, Systems
and Applications, J. Euzenat and J. Domingue, Eds., vol. 4183 of Lecture Notes in
Artificial Intelligence, pp. 172–180. Springer Verlag, 2006.

Pietquin, O. & Dutoit, T. (2006a). A probabilistic framework for dialog simulation and
optimal strategy learning, in IEEE Transactions on Audio, Speech and Language
Processing, vol. 14, no. 2, pp. 589–599, March 2006.

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

183

Pietquin, O. and Dutoit, T. (2006b). Dynamic Bayesian networks for NLU simulation with
applications to dialog optimal strategy learning, in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP’06), May
2006.

Pietquin, O. (2007), Learning to Ground in Spoken Dialogue Systems. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
2007), IV:165-168, Hawaii (USA), 2007

Poupart, P.; Williams, J. & Young, S. (2006). Partially observable Markov decision processes
with continuous observations for dialogue management, in Proceedings of the
SigDial Workshop (SigDial’06), 2006.

Rabiner, L. & Juang, B.H. (1993). Fundamentals of Speech Recognition, Prentice Hall, Signal
Processing Series, 1993.

Reiter, E. & Dale, R. (2000) Building Natural Language Generation Systems, Cambridge
University Press, Cambridge, 2000.

Rieser, V. and Lemon, O. (2006) Cluster-based user simulations for learning dialogue
strategies and the super evaluation metric, in Proceedings of Interspeech/ICSLP,
2006.

Schatzmann, J.; Georgila, K. and Young, S. (2005) Quantitative evaluation of user simulation
techniques for spoken dialogue systems, in Proceedings of the SIGdial’05 Workshop,
September 2005.

Schatzmann, J.; Weilhammer, K.; Stuttle, M. and Young, S. (2007a) A survey of statistical
user simulation techniques for reinforcement-learning of dialogue management
strategies, in Knowledge Engineering Review 21(2): 97-126, 2007.

Schatzmann, J.; Thomson, B. and Young., S. (2007b). Statistical User Simulation with a
Hidden Agenda. In Proceedings of the 8th SigDIAL Workshop, Antwerp, 2007.

Scheffler, K. & Young, S. (2001). Corpus-based dialogue simulation for automatic strategy
learning and evaluation, in Proc. NAACL Workshop on Adaptation in Dialogue
Systems, 2001.

Singh, S.; Kearns, M.; Litman, D. & Walker, M. (1999), Reinforcement learning for spoken
dialogue systems, in Proceedings of NIPS’99, 1999.

Young, S. (2006). Using POMDPs for dialog management, in Proceedings of the 1st IEEE/ACL
Workshop on Spoken Language Technologies (SLT’06), 2006.

Young, S.; Schatzmann, J.; Weilhammer, K. & Ye, H. (2007). The hidden information state
approach to dialog management, in Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP’07), April 2007.

Walker, M.; Litman, D.; Kamm, C. & Abella, A. (1997). PARADISE: A Framework for
Evaluating Spoken Dialogue Agents. in Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics, Madrid, Spain (1997) 271-280.

Watkins, C. (1989). Learning from delayed rewards. PhD thesis, Psychology Department,
Cambridge University, Cambridge, England, 1989.

Williams, J. & Young, S. (2005). Scaling up POMDPs for dialogue management: the
summary POMDP method, in Proceedings of the IEEE workshop on Automatic Speech
Recognition and Understanding (ASRU’05), 2005.

 Machine Learning

184

Williams, J.; Poupart, P. and Young, S. (2005). Partially Observable Markov Decision
Processes with Continuous Observations for Dialogue Management, in Proceedings
of the 6th SigDial Workshop, Lisbon (Portugal), 2005.

9

Hardening Email Security via
Bayesian Additive Regression Trees

Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang and Suku Nair
SMU HACNet Lab, Southern Methodist University Dallas, TX,

USA

1. Introduction
The changeable structures and variability of email attacks render current email filtering
solutions useless. Consequently, the need for new techniques to harden the protection of
users' security and privacy becomes a necessity. The variety of email attacks, namely spam,
damages networks' infrastructure and exposes users to new attack vectors daily. Spam is
unsolicited email which targets users with different types of commercial messages or
advertisements. Porn-related content that contains explicit material or commercials of
exploited children is a major trend in these messages as well. The waste of network
bandwidth due to the numerous number of spam messages sent and the requirement of
complex hardware, software, network resources, and human power are other problems
associated with these attacks. Recently, security researchers have noticed an increase in
malicious content delivered by these messages, which arises security concerns due to their
attack potential. More seriously, phishing attacks have been on the rise for the past couple of
years. Phishing is the act of sending a forged e-mail to a recipient, falsely mimicking a
legitimate establishment in an attempt to scam the recipient into divulging private
information such as credit card numbers or bank account passwords (James, 2005). Recently
phishing attacks have become a major concern to financial institutions and law enforcement
due to the heavy monetary losses involved. According to a survey by Gartner group, in 2006
approximately 3.25 million victims were spoofed by phishing attacks and in 2007 the
number increased by almost 1.3 million victims. Furthermore, in 2007, monetary losses,
related to phishing attacks, were estimated by $3.2 billion. All the aforementioned concerns
raise the need for new detection mechanisms to subvert email attacks in their various forms.
Despite the abundance of applications available for phishing detection, unlike spam
classification, there are only few studies that compare machine learning techniques in
predicting phishing emails (Abu-Nimeh et al., 2007). We describe a new version of Bayesian
Additive Regression Trees (BART) and apply it to phishing detection. A phishing dataset is
constructed from 1409 raw phishing emails and 5152 legitimate emails, where 71 features
(variables) are used in classifiers' training and testing. The variables consist of both textual
and structural features that are extracted from raw emails. The performance of six classifiers,
on this dataset, is compared using the area under the curve (AUC) (Huang & Ling, 2005).
The classifiers include Logistic Regression (LR), Classification and Regression Trees (CART),
Bayesian Additive Regression Trees (BART), Support Vector Machines (SVM), Random

 Machine Learning

184

Williams, J.; Poupart, P. and Young, S. (2005). Partially Observable Markov Decision
Processes with Continuous Observations for Dialogue Management, in Proceedings
of the 6th SigDial Workshop, Lisbon (Portugal), 2005.

9

Hardening Email Security via
Bayesian Additive Regression Trees

Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang and Suku Nair
SMU HACNet Lab, Southern Methodist University Dallas, TX,

USA

1. Introduction
The changeable structures and variability of email attacks render current email filtering
solutions useless. Consequently, the need for new techniques to harden the protection of
users' security and privacy becomes a necessity. The variety of email attacks, namely spam,
damages networks' infrastructure and exposes users to new attack vectors daily. Spam is
unsolicited email which targets users with different types of commercial messages or
advertisements. Porn-related content that contains explicit material or commercials of
exploited children is a major trend in these messages as well. The waste of network
bandwidth due to the numerous number of spam messages sent and the requirement of
complex hardware, software, network resources, and human power are other problems
associated with these attacks. Recently, security researchers have noticed an increase in
malicious content delivered by these messages, which arises security concerns due to their
attack potential. More seriously, phishing attacks have been on the rise for the past couple of
years. Phishing is the act of sending a forged e-mail to a recipient, falsely mimicking a
legitimate establishment in an attempt to scam the recipient into divulging private
information such as credit card numbers or bank account passwords (James, 2005). Recently
phishing attacks have become a major concern to financial institutions and law enforcement
due to the heavy monetary losses involved. According to a survey by Gartner group, in 2006
approximately 3.25 million victims were spoofed by phishing attacks and in 2007 the
number increased by almost 1.3 million victims. Furthermore, in 2007, monetary losses,
related to phishing attacks, were estimated by $3.2 billion. All the aforementioned concerns
raise the need for new detection mechanisms to subvert email attacks in their various forms.
Despite the abundance of applications available for phishing detection, unlike spam
classification, there are only few studies that compare machine learning techniques in
predicting phishing emails (Abu-Nimeh et al., 2007). We describe a new version of Bayesian
Additive Regression Trees (BART) and apply it to phishing detection. A phishing dataset is
constructed from 1409 raw phishing emails and 5152 legitimate emails, where 71 features
(variables) are used in classifiers' training and testing. The variables consist of both textual
and structural features that are extracted from raw emails. The performance of six classifiers,
on this dataset, is compared using the area under the curve (AUC) (Huang & Ling, 2005).
The classifiers include Logistic Regression (LR), Classification and Regression Trees (CART),
Bayesian Additive Regression Trees (BART), Support Vector Machines (SVM), Random

 Machine Learning

186

Forests (RF), and Neural Networks (NNet). In addition to the AUC, additional measures are
used to gauge the classifiers' performance, such as the error rate, false positive, and false
negative rates.

1.1 Motivation to Bayesian methodology
We start by providing a discussion on Bayesian learning and the reasons behind choosing
BART among another classifiers, then we illustrate the technical details of BART. BART is a
Bayesian approach, thus it inherits all the advantages from Bayesian learning. There are
various advantages of Bayesian learning when compared to other statistical approaches. As
opposed to the frequentist approach for defining the probability of an uncertain event, here
one needs a record of past information of an event. Yet, if this information is not available,
then the frequentist approach cannot be used to define the degree of belief in the uncertain
event. On the other hand, the Bayesian approach allows us to reason about beliefs under
conditions of uncertainty. Thus, it helps in modeling uncertainty in a probabilistic way
(Neal, 1995). In addition, Bayesian inference is regarded as a good approach to tackle the
problem of data modeling (Kandola, 2001). A model is designed for a particular application
and adapted according to the data while the data arrives from the application. The model
then provides a representation of the prior beliefs about the application and the information
derived from the data (Bishop, 1995).
Another advantage of the Bayesian approach is that one does not need to update the model
entirely when acquiring new knowledge. Yet, the new data can be used to update the
current model instead of re-fitting the entire model. This feature comes handy especially in
phishing detection since phishing attacks change frequently and vastly to lure filters and
detection mechanisms. Assuming that one needs to re-fit the entire model when new batch
of emails arrives, the procedure becomes very computationally extensive and time
consuming, thus impractical.
Furthermore, BART is a model-based Bayesian approach. As opposed to to those algorithm-
based learning methods, model-based approaches can provide full and accurate assessment
of uncertainty in predictions, while remaining highly competitive in terms of predictive
accuracy. In addition, model-based approaches are considered non-greedy, hence opposed
to selecting the best solution at the time being and not worrying about the future (i.e.
whether the solution is efficient or not), the solution is interchangeable accordingly. Also,
model-based approaches are non-adhoc, hence the provided solution is not only selected to
a particular problem; however, it can be used as a general case.

1.2 Why Bayesian additive regression trees?
BART automatically selects variables from a large pool of input predictors, while searching
for models with highest posterior probabilities for future prediction, via a backfitting
Markov chain Monte Carlo (MCMC) algorithm (see section 3.1 for further details).
Compared to other Bayesian methods, such as Naive Bayes and Bayesian Networks, the
latter approaches require variable selection to be done separately, otherwise they use all the
variables supplied for training, thus the performance of the classifier will be very poor. Also,
it is well known that variable selection in a high dimensional space is a very difficult
problem that often requires intensive computations. As we mentioned earlier, phishing
emails change regularly and vastly to lure detection mechanisms and the variables may
change over time as well. Yet, the above nice feature of BART comes handy when training

Hardening Email Security via Bayesian Additive Regression Trees

187

on newly arriving emails on a regular basis. With no additional requirements to perform
variable selection, BART simultaneously accomplishes variable selection during the training
phase.
In addition, in phishing detection hundreds of potential features are extracted from raw
emails. Only an unknown subset of them are useful for prediction and others are irrelevant.
Blindly including all the variables in the step of training often leads to overfitting, and hence
predicting new attacks may be poor. However, with the automatic variable selection feature
in BART this problem is solved.
Further, many other Bayesian learning approaches require very careful prior specification,
and hence extra effort and operational cost in training models. However, BART, as shown in
(Chipman et al., 2006), appears to be relatively insensitive to small changes in the prior
specification and the choice of the number of trees. According to (Chipman et al., 2006), the
default priors work very well, which enables BART to be an objective and automatic
training procedure. This is desirable in situations in which there is no prior information
available or no human intervention is preferred.
Furthermore, BART is a class of Bayesian additive models with multivariate components of
binary trees. Using binary trees as model components makes BART more exible in practice,
as opposed to common regression approaches, since the structure of binary trees has been
proved to approximate well nonlinear and nonsmooth functional forms in many
applications (Hastie et al., 2001).
Also, BART uses a sum-of-trees-model which is more exible than any single tree model that
can hardly account for additive effects. Each tree component is regarded as a weak learner,
which explains a small and different part of the unknown relationship between the input
and output. In addition, multivariate components of BART can easily incorporate high-
order interaction effects among three or more input variables, which can be dificult to
capture by other additive models.
Moreover, the rich structure of BART leads to its excellent learning ability, even in the
presence of a very complicated structure embedded in data. Since phishing emails look very
similar to legitimate emails, actually they are duplicates of legitimate emails with some
changes, learning is a challenging problem and perhaps involves discovering an elaborate
and subtle relationship from data.

2. Related work
(Chandrasekaran et al., 2006) proposed a technique to classify phishing based on structural
properties of phishing emails. They used a total of 25 features mixed between style markers
(e.g. the words suspended, account, and security) and structural attributes, such as the
structure of the subject line of the email and the structure of the greeting in the body. They
tested 200 emails (100 phishing and 100 legitimate). They applied simulated annealing as an
algorithm for feature selection. After a feature set was chosen, they used information gain
(IG) to rank these features based on their relevance. They applied one-class SVM to classify
phishing emails based on the selected features. Their results claim a detection rate of 95% of
phishing emails with a low false positive rate.
(Fette et al., 2007) compared a number of commonly-used learning methods through their
performance in phishing detection on a past phishing data set, and finally Random Forests
were implemented in their algorithm PILFER. Their methods can be used to detect phishing
websites as well. They tested 860 phishing emails and 6950 legitimate emails. The proposed

 Machine Learning

186

Forests (RF), and Neural Networks (NNet). In addition to the AUC, additional measures are
used to gauge the classifiers' performance, such as the error rate, false positive, and false
negative rates.

1.1 Motivation to Bayesian methodology
We start by providing a discussion on Bayesian learning and the reasons behind choosing
BART among another classifiers, then we illustrate the technical details of BART. BART is a
Bayesian approach, thus it inherits all the advantages from Bayesian learning. There are
various advantages of Bayesian learning when compared to other statistical approaches. As
opposed to the frequentist approach for defining the probability of an uncertain event, here
one needs a record of past information of an event. Yet, if this information is not available,
then the frequentist approach cannot be used to define the degree of belief in the uncertain
event. On the other hand, the Bayesian approach allows us to reason about beliefs under
conditions of uncertainty. Thus, it helps in modeling uncertainty in a probabilistic way
(Neal, 1995). In addition, Bayesian inference is regarded as a good approach to tackle the
problem of data modeling (Kandola, 2001). A model is designed for a particular application
and adapted according to the data while the data arrives from the application. The model
then provides a representation of the prior beliefs about the application and the information
derived from the data (Bishop, 1995).
Another advantage of the Bayesian approach is that one does not need to update the model
entirely when acquiring new knowledge. Yet, the new data can be used to update the
current model instead of re-fitting the entire model. This feature comes handy especially in
phishing detection since phishing attacks change frequently and vastly to lure filters and
detection mechanisms. Assuming that one needs to re-fit the entire model when new batch
of emails arrives, the procedure becomes very computationally extensive and time
consuming, thus impractical.
Furthermore, BART is a model-based Bayesian approach. As opposed to to those algorithm-
based learning methods, model-based approaches can provide full and accurate assessment
of uncertainty in predictions, while remaining highly competitive in terms of predictive
accuracy. In addition, model-based approaches are considered non-greedy, hence opposed
to selecting the best solution at the time being and not worrying about the future (i.e.
whether the solution is efficient or not), the solution is interchangeable accordingly. Also,
model-based approaches are non-adhoc, hence the provided solution is not only selected to
a particular problem; however, it can be used as a general case.

1.2 Why Bayesian additive regression trees?
BART automatically selects variables from a large pool of input predictors, while searching
for models with highest posterior probabilities for future prediction, via a backfitting
Markov chain Monte Carlo (MCMC) algorithm (see section 3.1 for further details).
Compared to other Bayesian methods, such as Naive Bayes and Bayesian Networks, the
latter approaches require variable selection to be done separately, otherwise they use all the
variables supplied for training, thus the performance of the classifier will be very poor. Also,
it is well known that variable selection in a high dimensional space is a very difficult
problem that often requires intensive computations. As we mentioned earlier, phishing
emails change regularly and vastly to lure detection mechanisms and the variables may
change over time as well. Yet, the above nice feature of BART comes handy when training

Hardening Email Security via Bayesian Additive Regression Trees

187

on newly arriving emails on a regular basis. With no additional requirements to perform
variable selection, BART simultaneously accomplishes variable selection during the training
phase.
In addition, in phishing detection hundreds of potential features are extracted from raw
emails. Only an unknown subset of them are useful for prediction and others are irrelevant.
Blindly including all the variables in the step of training often leads to overfitting, and hence
predicting new attacks may be poor. However, with the automatic variable selection feature
in BART this problem is solved.
Further, many other Bayesian learning approaches require very careful prior specification,
and hence extra effort and operational cost in training models. However, BART, as shown in
(Chipman et al., 2006), appears to be relatively insensitive to small changes in the prior
specification and the choice of the number of trees. According to (Chipman et al., 2006), the
default priors work very well, which enables BART to be an objective and automatic
training procedure. This is desirable in situations in which there is no prior information
available or no human intervention is preferred.
Furthermore, BART is a class of Bayesian additive models with multivariate components of
binary trees. Using binary trees as model components makes BART more exible in practice,
as opposed to common regression approaches, since the structure of binary trees has been
proved to approximate well nonlinear and nonsmooth functional forms in many
applications (Hastie et al., 2001).
Also, BART uses a sum-of-trees-model which is more exible than any single tree model that
can hardly account for additive effects. Each tree component is regarded as a weak learner,
which explains a small and different part of the unknown relationship between the input
and output. In addition, multivariate components of BART can easily incorporate high-
order interaction effects among three or more input variables, which can be dificult to
capture by other additive models.
Moreover, the rich structure of BART leads to its excellent learning ability, even in the
presence of a very complicated structure embedded in data. Since phishing emails look very
similar to legitimate emails, actually they are duplicates of legitimate emails with some
changes, learning is a challenging problem and perhaps involves discovering an elaborate
and subtle relationship from data.

2. Related work
(Chandrasekaran et al., 2006) proposed a technique to classify phishing based on structural
properties of phishing emails. They used a total of 25 features mixed between style markers
(e.g. the words suspended, account, and security) and structural attributes, such as the
structure of the subject line of the email and the structure of the greeting in the body. They
tested 200 emails (100 phishing and 100 legitimate). They applied simulated annealing as an
algorithm for feature selection. After a feature set was chosen, they used information gain
(IG) to rank these features based on their relevance. They applied one-class SVM to classify
phishing emails based on the selected features. Their results claim a detection rate of 95% of
phishing emails with a low false positive rate.
(Fette et al., 2007) compared a number of commonly-used learning methods through their
performance in phishing detection on a past phishing data set, and finally Random Forests
were implemented in their algorithm PILFER. Their methods can be used to detect phishing
websites as well. They tested 860 phishing emails and 6950 legitimate emails. The proposed

 Machine Learning

188

method detected correctly 96% of the phishing emails with a false positive rate of 0.1%. They
used ten features handpicked for training and their phishing dataset was collected in 2002
and 2003. As pointed out by the authors themselves, their implementation is not optimal
and further work in this area is warranted.
(Abu-Nimeh et al., 2007) compared six machine learning techniques to classify phishing
emails. Their phishing corpus consisted of a total of 2889 emails and they used 43 features
(variables). They showed that, by merely using a bag-of-words approach, the studied
classifiers could successfully predict more than 92% of the phishing emails. In addition, the
study showed that Random Forests achieved the maximum predictive accuracy and Logistic
Regression achieved the minimum false positives on the studied corpus.

3. Machine learning approaches for binary classification
In the literature, there exist several machine learning techniques for binary classification,
e.g., logistic regression, neural networks (NNet), binary trees and their derivatives,
discriminant analysis (DA), Bayesian networks (BN), nearest neighbor (NN), support vector
machines (SVM), boosting, bagging, etc. The interested reader can refer to (Hastie et al.,
2001) and the references therein for a detailed overview. Here we describe the application of
Bayesian Additive Regression Trees (BART) for learning from data, combined with a probit
setup for binary responses, to detect phishing emails.
Most of the machine learning algorithms discussed here are categorized as supervised
machine learning, where an algorithm (classifier) is used to map inputs to desired outputs
using a specific function. In classification problems a classifier tries to learn several features
(variables or inputs) to predict an output (response). Specifically in phishing classification, a
classifier will try to classify an email to phishing or legitimate (response) by learning certain
characteristics (features) in the email.
Applying any supervised machine learning algorithm to phishing detection consists of two
steps: training and classification. During the training step a set of compiled phishing and
non-phishing messages (with known status) is provided as training dataset to the classifier.
Emails are first transformed into a representation that is understood by the algorithms.
Specifically, raw emails are converted to vectors using the vector space model (VSM) (Salton
& McGill, 1983), where the vector represents a set of features that each phishing and non-
phishing email carries. Then the learning algorithm is run over the training data to create a
classifier. The classification step follows the training (learning) phase. During classification,
the classifier is applied to the vector representation of real data (i.e. test dataset) to produce
a prediction, based on learned experience.

3.1 Bayesian additive regression trees
Bayesian Additive Regression Trees (BART) is a new learning technique, proposed by
(Chipman et al., 2006), to discover the unknown relationship between a continuous output
and a dimensional vector of inputs. The original model of BART was not designed for
classification problems, therefore, a modified version, hereafter CBART, which is applicable
to classification problems in general and phishing classification in particular is used. Note
that BART is a learner to predict quantitative outcomes from observations via regression.
There is a distinction between regression and classification problems. Regression is the
process of predicting quantitative outputs. However, when predicting qualitative

Hardening Email Security via Bayesian Additive Regression Trees

189

(categorical) outputs this is called a classification problem. Phishing prediction is a binary
classification problem, since we measure two outputs of email either phishing =1 or
legitimate =0 (Hastie et al., 2001).
BART discovers the unknown relationship f between a continuous output Y and a p
dimensional vector of inputs x = (x1, ..., xp). Assume Y = f(x) + ε, where ε ~N(0, 2) is the
random error. Motivated by ensemble methods in general, and boosting algorithms in
particular, the basic idea of BART is to model or at least approximate f(x) by a sum of
regression trees,

(1)

each gi denotes a binary tree with arbitrary structure, and contributes a small amount to the
overall model as a weak learner, when m is chosen large. An example of a binary tree
structure is given in Figure 1, in which a is the root node, c is an internal node, and b, d and e
are three terminal nodes that are associated with parameter μ1, μ2 and μ3, respectively. Also,
each of the interior (i.e., non-terminal) nodes is associated with a binary splitting rule based
on some x variable. By moving downwards from the root, an observation with given x will
be assigned to a unique terminal node, according to the splitting rules associated with the
nodes included in its path. In consequence, the corresponding parameter of the terminal
node will be the value of g for this observation.

Fig. 1. A binary tree structure

Let Ti be the ith binary tree in the model (1), consisting of a set of decision rules (associated
with its interior nodes) and a set of terminal nodes, for i = 1, ..., m. Let Mi be the vector
containing all terminal node parameters of Ti such that M = {M1, ..., } and bi is the number
of terminal nodes that Ti has. Now we can explicitly write

 (2)

Figure 2 depicts an example of a binary tree in the BART model. Note that the BART
contains multiple binary trees, since it is an additive model. Each node in the tree represents
a feature in the dataset and the terminal nodes represent the probability that a specific email
is phishing, given that it contains certain features. For example, if an email contains HTML
code, contains javascript, and the javascript contains form validation, then the probability
that this email is phishing is 80% (refer to Figure 2). These features are discussed in more
details in Section 4.1.1.
BART is fully model-based and Bayesian in the sense that a prior is specified, a likelihood is
defined using the data, and then a sequence of draws from the posterior using Markov chain
Monte Carlo (MCMC) is obtained. Specifically, a prior distribution is needed for T, M, and ,
respectively. Each draw represents a fitted model f * of the form (1).

 Machine Learning

188

method detected correctly 96% of the phishing emails with a false positive rate of 0.1%. They
used ten features handpicked for training and their phishing dataset was collected in 2002
and 2003. As pointed out by the authors themselves, their implementation is not optimal
and further work in this area is warranted.
(Abu-Nimeh et al., 2007) compared six machine learning techniques to classify phishing
emails. Their phishing corpus consisted of a total of 2889 emails and they used 43 features
(variables). They showed that, by merely using a bag-of-words approach, the studied
classifiers could successfully predict more than 92% of the phishing emails. In addition, the
study showed that Random Forests achieved the maximum predictive accuracy and Logistic
Regression achieved the minimum false positives on the studied corpus.

3. Machine learning approaches for binary classification
In the literature, there exist several machine learning techniques for binary classification,
e.g., logistic regression, neural networks (NNet), binary trees and their derivatives,
discriminant analysis (DA), Bayesian networks (BN), nearest neighbor (NN), support vector
machines (SVM), boosting, bagging, etc. The interested reader can refer to (Hastie et al.,
2001) and the references therein for a detailed overview. Here we describe the application of
Bayesian Additive Regression Trees (BART) for learning from data, combined with a probit
setup for binary responses, to detect phishing emails.
Most of the machine learning algorithms discussed here are categorized as supervised
machine learning, where an algorithm (classifier) is used to map inputs to desired outputs
using a specific function. In classification problems a classifier tries to learn several features
(variables or inputs) to predict an output (response). Specifically in phishing classification, a
classifier will try to classify an email to phishing or legitimate (response) by learning certain
characteristics (features) in the email.
Applying any supervised machine learning algorithm to phishing detection consists of two
steps: training and classification. During the training step a set of compiled phishing and
non-phishing messages (with known status) is provided as training dataset to the classifier.
Emails are first transformed into a representation that is understood by the algorithms.
Specifically, raw emails are converted to vectors using the vector space model (VSM) (Salton
& McGill, 1983), where the vector represents a set of features that each phishing and non-
phishing email carries. Then the learning algorithm is run over the training data to create a
classifier. The classification step follows the training (learning) phase. During classification,
the classifier is applied to the vector representation of real data (i.e. test dataset) to produce
a prediction, based on learned experience.

3.1 Bayesian additive regression trees
Bayesian Additive Regression Trees (BART) is a new learning technique, proposed by
(Chipman et al., 2006), to discover the unknown relationship between a continuous output
and a dimensional vector of inputs. The original model of BART was not designed for
classification problems, therefore, a modified version, hereafter CBART, which is applicable
to classification problems in general and phishing classification in particular is used. Note
that BART is a learner to predict quantitative outcomes from observations via regression.
There is a distinction between regression and classification problems. Regression is the
process of predicting quantitative outputs. However, when predicting qualitative

Hardening Email Security via Bayesian Additive Regression Trees

189

(categorical) outputs this is called a classification problem. Phishing prediction is a binary
classification problem, since we measure two outputs of email either phishing =1 or
legitimate =0 (Hastie et al., 2001).
BART discovers the unknown relationship f between a continuous output Y and a p
dimensional vector of inputs x = (x1, ..., xp). Assume Y = f(x) + ε, where ε ~N(0, 2) is the
random error. Motivated by ensemble methods in general, and boosting algorithms in
particular, the basic idea of BART is to model or at least approximate f(x) by a sum of
regression trees,

(1)

each gi denotes a binary tree with arbitrary structure, and contributes a small amount to the
overall model as a weak learner, when m is chosen large. An example of a binary tree
structure is given in Figure 1, in which a is the root node, c is an internal node, and b, d and e
are three terminal nodes that are associated with parameter μ1, μ2 and μ3, respectively. Also,
each of the interior (i.e., non-terminal) nodes is associated with a binary splitting rule based
on some x variable. By moving downwards from the root, an observation with given x will
be assigned to a unique terminal node, according to the splitting rules associated with the
nodes included in its path. In consequence, the corresponding parameter of the terminal
node will be the value of g for this observation.

Fig. 1. A binary tree structure

Let Ti be the ith binary tree in the model (1), consisting of a set of decision rules (associated
with its interior nodes) and a set of terminal nodes, for i = 1, ..., m. Let Mi be the vector
containing all terminal node parameters of Ti such that M = {M1, ..., } and bi is the number
of terminal nodes that Ti has. Now we can explicitly write

 (2)

Figure 2 depicts an example of a binary tree in the BART model. Note that the BART
contains multiple binary trees, since it is an additive model. Each node in the tree represents
a feature in the dataset and the terminal nodes represent the probability that a specific email
is phishing, given that it contains certain features. For example, if an email contains HTML
code, contains javascript, and the javascript contains form validation, then the probability
that this email is phishing is 80% (refer to Figure 2). These features are discussed in more
details in Section 4.1.1.
BART is fully model-based and Bayesian in the sense that a prior is specified, a likelihood is
defined using the data, and then a sequence of draws from the posterior using Markov chain
Monte Carlo (MCMC) is obtained. Specifically, a prior distribution is needed for T, M, and ,
respectively. Each draw represents a fitted model f * of the form (1).

 Machine Learning

190

To specify a prior distribution P(T) on T, one needs three pieces of information; (i)
determining how likely a node will be split when a tree is created; (ii) determining which
variable will be chosen to split the node; (iii) determining the rule that will be used for
splitting. The main goal here is to generate small trees or “weak learners”, hence each tree
plays a small share in the overall fit, but when combined all produce a powerful
“committee”.
For the prior distribution on terminal node parameters P(μ), the parameters of the terminal
nodes are assumed independent a priori, hence the prior mean . Lastly,
for the variance of noise 2, a prior P() is needed. The parameters of the prior on can be
specified from a least square linear regression of Y on the original x's.
Now given the prior distributions a backfitting MCMC Gibbs sampler is used to sample from
the posterior distribution as shown below.
Repeat i = 1 to I (say I = 1000, where I is the number of simulations):
• Sample Tj conditional on Y, all Ts but Tj , all μs, and .
• Sample Mj given all Ts, all Ms but Mj, and .
• Repeat the above steps m times for j = 1, ., m, where j is the total number of trees

available.
• Sample given Y and all Ts, all Ms and .

Fig. 2. Example of a binary tree.

Since this is a Markov chain, simulation i depends on simulation i - 1. The MCMC
simulation changes tree structures based on a stochastic tree generating process. The
structures can be changed by randomly using any of the following four actions. Grow can be
applied to grow a new pair of terminal nodes from a terminal node and make it become an

Hardening Email Security via Bayesian Additive Regression Trees

191

interior one. Prune can be applied to prune a pair of terminal nodes and make their parent
node become a terminal one. Change is to change a splitting rule of a non-terminal node.
Swap is to swap rules between a parent node and a child. By these changes, MCMC
generates different tree structures and chooses the tree structure that provides the “best”
sum-of-trees model according to posterior probabilities of trees.
It is worth mentioning that BART has several appealing features, which make it competitive
compared to other learning methods and motivate our study as well. Rather than using a
single regression tree, BART uses a sum- of-trees model that can account for additive effects.
Also, the binary tree structure helps in approximating well nonlinear and non-smooth
relationships (Hastie et al., 2001). Furthermore, BART can conduct automatic variable
selection of inputs while searching for models with highest posterior probabilities during
MCMC simulation. In addition, by applying Bayesian learning, BART can use newly coming
data to update the current model instead of re-fitting the entire model.
Despite the advantages mentioned earlier, it is well known that a Bayesian approach usually
brings heavy computation time due to its nature. Predicting the posterior probabilities via
MCMC is usually time consuming and requires complex computations.

3.1.1 BART for classification (CBART)
As mentioned in Section 3.1, BART requires the output variable to be continuous, instead of
binary. Let Y = 1 if an email is phishing; otherwise Y = 0. To use BART with binary outputs,
we introduce a latent variable Z in connection with Y in spirit of (Albert & Chib, 1993), by
defining

(3)

where f(x) is the sum-of-trees model in (1). Note here, we fix at 1, due to the simple binary
nature of Y . This yields the probit link function between the phishing probability p and f(x),

 (4)

where Φ(⋅) is the cumulative density function of N(0, 1).
Under the above setup of the latent variable Z, we can use BART to learn f(x) from data,
after appropriately modifying the prior distribution on M and the MCMC algorithm
proposed in (Chipman et al., 2006) for posterior computation. Then we can estimate Y = 1 if
the fitted f *(x) > 0, otherwise estimate Y = 0. Further, we can obtain the estimate of p
through equation (4).
Before we describe the algorithm, let T denote a binary tree consisting of a set of interior
node decision rules and a set of terminal nodes, and let M = {μ1, μ2, ..., μb} denote a set of
parameter values associated with each of the b terminal nodes of T. Now we explicitly
denote the ith component of the model gi(x) by gi(x; Ti,Mi). Also, let T(j) be the set of all trees
in the sum (1) except Tj , and M(j) the associated terminal node parameters. Let y denote the
observed phishing status of emails in the training data. The algorithm will generate draws
from the posterior distribution

 (5)

 Machine Learning

190

To specify a prior distribution P(T) on T, one needs three pieces of information; (i)
determining how likely a node will be split when a tree is created; (ii) determining which
variable will be chosen to split the node; (iii) determining the rule that will be used for
splitting. The main goal here is to generate small trees or “weak learners”, hence each tree
plays a small share in the overall fit, but when combined all produce a powerful
“committee”.
For the prior distribution on terminal node parameters P(μ), the parameters of the terminal
nodes are assumed independent a priori, hence the prior mean . Lastly,
for the variance of noise 2, a prior P() is needed. The parameters of the prior on can be
specified from a least square linear regression of Y on the original x's.
Now given the prior distributions a backfitting MCMC Gibbs sampler is used to sample from
the posterior distribution as shown below.
Repeat i = 1 to I (say I = 1000, where I is the number of simulations):
• Sample Tj conditional on Y, all Ts but Tj , all μs, and .
• Sample Mj given all Ts, all Ms but Mj, and .
• Repeat the above steps m times for j = 1, ., m, where j is the total number of trees

available.
• Sample given Y and all Ts, all Ms and .

Fig. 2. Example of a binary tree.

Since this is a Markov chain, simulation i depends on simulation i - 1. The MCMC
simulation changes tree structures based on a stochastic tree generating process. The
structures can be changed by randomly using any of the following four actions. Grow can be
applied to grow a new pair of terminal nodes from a terminal node and make it become an

Hardening Email Security via Bayesian Additive Regression Trees

191

interior one. Prune can be applied to prune a pair of terminal nodes and make their parent
node become a terminal one. Change is to change a splitting rule of a non-terminal node.
Swap is to swap rules between a parent node and a child. By these changes, MCMC
generates different tree structures and chooses the tree structure that provides the “best”
sum-of-trees model according to posterior probabilities of trees.
It is worth mentioning that BART has several appealing features, which make it competitive
compared to other learning methods and motivate our study as well. Rather than using a
single regression tree, BART uses a sum- of-trees model that can account for additive effects.
Also, the binary tree structure helps in approximating well nonlinear and non-smooth
relationships (Hastie et al., 2001). Furthermore, BART can conduct automatic variable
selection of inputs while searching for models with highest posterior probabilities during
MCMC simulation. In addition, by applying Bayesian learning, BART can use newly coming
data to update the current model instead of re-fitting the entire model.
Despite the advantages mentioned earlier, it is well known that a Bayesian approach usually
brings heavy computation time due to its nature. Predicting the posterior probabilities via
MCMC is usually time consuming and requires complex computations.

3.1.1 BART for classification (CBART)
As mentioned in Section 3.1, BART requires the output variable to be continuous, instead of
binary. Let Y = 1 if an email is phishing; otherwise Y = 0. To use BART with binary outputs,
we introduce a latent variable Z in connection with Y in spirit of (Albert & Chib, 1993), by
defining

(3)

where f(x) is the sum-of-trees model in (1). Note here, we fix at 1, due to the simple binary
nature of Y . This yields the probit link function between the phishing probability p and f(x),

 (4)

where Φ(⋅) is the cumulative density function of N(0, 1).
Under the above setup of the latent variable Z, we can use BART to learn f(x) from data,
after appropriately modifying the prior distribution on M and the MCMC algorithm
proposed in (Chipman et al., 2006) for posterior computation. Then we can estimate Y = 1 if
the fitted f *(x) > 0, otherwise estimate Y = 0. Further, we can obtain the estimate of p
through equation (4).
Before we describe the algorithm, let T denote a binary tree consisting of a set of interior
node decision rules and a set of terminal nodes, and let M = {μ1, μ2, ..., μb} denote a set of
parameter values associated with each of the b terminal nodes of T. Now we explicitly
denote the ith component of the model gi(x) by gi(x; Ti,Mi). Also, let T(j) be the set of all trees
in the sum (1) except Tj , and M(j) the associated terminal node parameters. Let y denote the
observed phishing status of emails in the training data. The algorithm will generate draws
from the posterior distribution

 (5)

 Machine Learning

192

rather than drawing from

in the original algorithm. A typical draw from the new posterior (5) entails m successive
draws of tree component(Tj ,Mj) conditionally on (T(j),M(j),Z):

(6)

followed by a draw of Z from the full conditional:

 (7)

Note that there is no need to draw in our new algorithm since it is set to 1.
We proceed to discuss how to implement (6) and (7). First, we claim that the first step is
essentially the same as in the original algorithm. This is because in (6), no extra information
is given by y when Z is given, since y can be completely determined by Z through (3). Hence
we can remove the redundant y in (6), and use the original algorithm (substitute y by Z and
set = 1) to draw from (6). Since Z is latent, we need an extra step to draw values of Z from
(7). It can be verified that for the jth email in the training data, Zj │(T1,M1), ..., (Tm,Mm), y is
distributed as N(Σ gi(x; Ti,Mi), 1) truncated at the left by 0 if yj = 1, and distributed as
N(Σ gi(x; Ti,Mi), 1) truncated at the right by 0 if yj = 0. Thus, drawing from (7) can be
easily done by drawing values from the normal distributions and then truncating them by 0
either from the right or from the left based on the value of y.
As shown above, BART is well suited for binary classification, under the probit setup with
the use of the latent variable. In this case, it is even easier than before because is no longer
an unknown parameter and the draws of Z are extremely easy to obtain.
We now briey discuss how to use BART for prediction. In an MCMC run, we can simply
pick up the “best” f * (according to posterior probabilities or Bayes factor or other criteria)
from the sequence of visited models, and save it for future prediction. Note that the selected
f * perhaps involves a much less number of input variables than p since BART automatically
screens input variables. This would allow prediction for a new email to be quickly done
since much less information needs to be extracted from the email. A better way is to use the
posterior mean of f for prediction, approximated by averaging the f * over the multiple
draws from (5), and further gauge the uncertainty of our prediction by the variation across
the draws. However, this involves saving multiple models in a physical place for future use.
A more realistic approach is to use the best B fitted models for prediction that account for
the 95% posterior probabilities over the space of sum-of-tree models. Usually, B is a number
less than 20 and again, when predicting a new email is or not, a much less number of input
variables than p are expected to be used (Abu-Nimeh et al., 2008).

3.2 Classification and regression trees
CART or Classification and Regression Trees (Breiman et al., 1984) is a model that describes
the conditional distribution of y given x. The model consists of two components; a tree T

Hardening Email Security via Bayesian Additive Regression Trees

193

with b terminal nodes, and a parameter vector Θ = (θ1, θ2, ... , θb) where θi is associated with
the ith terminal node. The model can be considered a classification tree if the response y is
discrete or a regression tree if y is continuous. A binary tree is used to partition the predictor
space recursively into distinct homogenous regions, where the terminal nodes of the tree
correspond to the distinct regions. The binary tree structure can approximate well non-
standard relationships (e.g. non-linear and non-smooth). In addition, the partition is
determined by splitting rules associated with the internal nodes of the binary tree. Should
the splitting variable be continuous, a splitting rule in the form {xi ∈ C} and {xi ∉ C} is
assigned to the left and the right of the split node respectively. However, should the
splitting variable be discrete, a splitting rule in the form {xi ≤ s} and {xi > s} is assigned to the
right and the left of the splitting node respectively (Chipman et al., 1998).
CART is exible in practice in the sense that it can easily model nonlinear or nonsmooth
relationships. It has the ability of interpreting interactions among predictors. It also has
great interpretability due to its binary structure. However, CART has several drawbacks
such as it tends to overfit the data. In addition, since one big tree is grown, it is hard to
account for additive effects.

3.3 Logistic regression
Logistic regression is the most widely used statistical model in many fields for binary data
(0/1 response) prediction, due to its simplicity and great interpretability. As a member of
generalized linear models it typically uses the logit function. That is

where x is a vector of p predictors x = (x1, x2, ... , xp), y is the binary response variable, and β
is a p × 1 vector of regression parameters.
Logistic regression performs well when the relationship in the data is approximately linear.
However, it performs poorly if complex nonlinear relationships exist between the variables.
In addition, it requires more statistical assumptions before being applied than other
techniques. Also, the prediction rate gets affected if there is missing data in the data set.

3.4 Neural networks
A neural network is structured as a set of interconnected identical units (neurons). The
interconnections are used to send signals from one neuron to the other. In addition, the
interconnections have weights to enhance the delivery among neurons (Marques de Sa,
2001). The neurons are not powerful by themselves, however, when connected to others
they can perform complex computations. Weights on the interconnections are updated
when the network is trained, hence significant interconnection play more role during the
testing phase. Figure 3 depicts an example of neural network. The neural network in the
figure consists of one input layer, one hidden layer, and one output layer. Since
interconnections do not loop back or skip other neurons, the network is called feedforward.
The power of neural networks comes from the nonlinearity of the hidden neurons. In
consequence, it is signi_cant to introduce nonlinearity in the network to be able to learn
complex mappings. The commonly used function in neural network research is the sigmoid
function, which has the form (Massey et al., 2003)

 Machine Learning

192

rather than drawing from

in the original algorithm. A typical draw from the new posterior (5) entails m successive
draws of tree component(Tj ,Mj) conditionally on (T(j),M(j),Z):

(6)

followed by a draw of Z from the full conditional:

 (7)

Note that there is no need to draw in our new algorithm since it is set to 1.
We proceed to discuss how to implement (6) and (7). First, we claim that the first step is
essentially the same as in the original algorithm. This is because in (6), no extra information
is given by y when Z is given, since y can be completely determined by Z through (3). Hence
we can remove the redundant y in (6), and use the original algorithm (substitute y by Z and
set = 1) to draw from (6). Since Z is latent, we need an extra step to draw values of Z from
(7). It can be verified that for the jth email in the training data, Zj │(T1,M1), ..., (Tm,Mm), y is
distributed as N(Σ gi(x; Ti,Mi), 1) truncated at the left by 0 if yj = 1, and distributed as
N(Σ gi(x; Ti,Mi), 1) truncated at the right by 0 if yj = 0. Thus, drawing from (7) can be
easily done by drawing values from the normal distributions and then truncating them by 0
either from the right or from the left based on the value of y.
As shown above, BART is well suited for binary classification, under the probit setup with
the use of the latent variable. In this case, it is even easier than before because is no longer
an unknown parameter and the draws of Z are extremely easy to obtain.
We now briey discuss how to use BART for prediction. In an MCMC run, we can simply
pick up the “best” f * (according to posterior probabilities or Bayes factor or other criteria)
from the sequence of visited models, and save it for future prediction. Note that the selected
f * perhaps involves a much less number of input variables than p since BART automatically
screens input variables. This would allow prediction for a new email to be quickly done
since much less information needs to be extracted from the email. A better way is to use the
posterior mean of f for prediction, approximated by averaging the f * over the multiple
draws from (5), and further gauge the uncertainty of our prediction by the variation across
the draws. However, this involves saving multiple models in a physical place for future use.
A more realistic approach is to use the best B fitted models for prediction that account for
the 95% posterior probabilities over the space of sum-of-tree models. Usually, B is a number
less than 20 and again, when predicting a new email is or not, a much less number of input
variables than p are expected to be used (Abu-Nimeh et al., 2008).

3.2 Classification and regression trees
CART or Classification and Regression Trees (Breiman et al., 1984) is a model that describes
the conditional distribution of y given x. The model consists of two components; a tree T

Hardening Email Security via Bayesian Additive Regression Trees

193

with b terminal nodes, and a parameter vector Θ = (θ1, θ2, ... , θb) where θi is associated with
the ith terminal node. The model can be considered a classification tree if the response y is
discrete or a regression tree if y is continuous. A binary tree is used to partition the predictor
space recursively into distinct homogenous regions, where the terminal nodes of the tree
correspond to the distinct regions. The binary tree structure can approximate well non-
standard relationships (e.g. non-linear and non-smooth). In addition, the partition is
determined by splitting rules associated with the internal nodes of the binary tree. Should
the splitting variable be continuous, a splitting rule in the form {xi ∈ C} and {xi ∉ C} is
assigned to the left and the right of the split node respectively. However, should the
splitting variable be discrete, a splitting rule in the form {xi ≤ s} and {xi > s} is assigned to the
right and the left of the splitting node respectively (Chipman et al., 1998).
CART is exible in practice in the sense that it can easily model nonlinear or nonsmooth
relationships. It has the ability of interpreting interactions among predictors. It also has
great interpretability due to its binary structure. However, CART has several drawbacks
such as it tends to overfit the data. In addition, since one big tree is grown, it is hard to
account for additive effects.

3.3 Logistic regression
Logistic regression is the most widely used statistical model in many fields for binary data
(0/1 response) prediction, due to its simplicity and great interpretability. As a member of
generalized linear models it typically uses the logit function. That is

where x is a vector of p predictors x = (x1, x2, ... , xp), y is the binary response variable, and β
is a p × 1 vector of regression parameters.
Logistic regression performs well when the relationship in the data is approximately linear.
However, it performs poorly if complex nonlinear relationships exist between the variables.
In addition, it requires more statistical assumptions before being applied than other
techniques. Also, the prediction rate gets affected if there is missing data in the data set.

3.4 Neural networks
A neural network is structured as a set of interconnected identical units (neurons). The
interconnections are used to send signals from one neuron to the other. In addition, the
interconnections have weights to enhance the delivery among neurons (Marques de Sa,
2001). The neurons are not powerful by themselves, however, when connected to others
they can perform complex computations. Weights on the interconnections are updated
when the network is trained, hence significant interconnection play more role during the
testing phase. Figure 3 depicts an example of neural network. The neural network in the
figure consists of one input layer, one hidden layer, and one output layer. Since
interconnections do not loop back or skip other neurons, the network is called feedforward.
The power of neural networks comes from the nonlinearity of the hidden neurons. In
consequence, it is signi_cant to introduce nonlinearity in the network to be able to learn
complex mappings. The commonly used function in neural network research is the sigmoid
function, which has the form (Massey et al., 2003)

 Machine Learning

194

Although competitive in learning ability, the fitting of neural network models requires some
experience, since multiple local minima are standard and delicate regularization is required.

Fig. 3. Neural Network.

3.5 Random forests
Random forests are classi_ers that combine many tree predictors, where each tree depends
on the values of a random vector sampled independently. Furthermore, all trees in the forest
have the same distribution (Breiman, 2001). In order to construct a tree we assume that n is
the number of training observations and p is the number of variables (features) in a training
set. In order to determine the decision node at a tree we choose k << p as the number of
variables to be selected. We select a bootstrap sample from the n observations in the training
set and use the rest of the observations to estimate the error of the tree in the testing phase.
Thus, we randomly choose k variables as a decision at a certain node in the tree and
calculate the best split based on the k variables in the training set. Trees are always grown
and never pruned compared to other tree algorithms.
Random forests can handle large numbers of variables in a data set. Also, during the forest
building process they generate an internal unbiased estimate of the generalization error. In
addition, they can estimate missing data well. A major drawback of random forests is the
lack of reproducibility, as the process of building the forest is random. Further, interpreting
the final model and subsequent results is difficult, as it contains many independent
decisions trees.

3.6 Support vector machines
Support Vector Machines (SVM) are one of the most popular classifiers these days. The idea
here is to find the optimal separating hyperplane between two classes by maximizing the
margin between the classes closest points. Assume that we have a linear discriminating
function and two linearly separable classes with target values +1 and -1. A discriminating
hyperplane will satisfy:

Now the distance of any point x to a hyperplane is │ w’xi+w0 │ / ║ w ║ and the distance to
the origin is │ w0 │ / ║ w ║. As shown in Figure 4 the points lying on the boundaries are

Hardening Email Security via Bayesian Additive Regression Trees

195

called support vectors, and the middle of the margin is the optimal separating hyperplane
that maximizes the margin of separation (Marques de Sa, 2001).
Though SVMs are very powerful and commonly used in classification, they suffer from
several drawbacks. They require high computations to train the data. Also, they are
sensitive to noisy data and hence prone to overfitting.

Fig. 4. Support Vector Machines.

4. Quantitative evaluation
4.1 Phishing dataset
The phishing dataset constitutes of 6561 raw emails. The total number of phishing emails in
the dataset is 1409 emails. These emails are donated by (Nazario, 2007) covering many of the
new trends in phishing and collected between August 7, 2006 and August 7, 2007. The total
number of legitimate email is 5152 emails. These emails are a combination of financial-
related and other regular communication emails. The financial-related emails are received
from financial institutions such as Bank of America, eBay, PayPal, American Express, Chase,
Amazon, AT&T, and many others. As shown in Table 1, the percentage of these emails is 3%
of the complete dataset. The other part of the legitimate set is collected from the authors'
mailboxes. These emails represent regular communications, emails about conferences and
academic events, and emails from several mailing lists.

Table 1. Corpus description.

4.1.1 Data standardization, cleansing, and transformation
The analysis of emails consists of two steps: First, textual analysis, where text mining is
performed on all emails. In order to get consistent results from the analysis, one needs to
standardize the studied data. Therefore, we convert all emails into XML documents after
stripping all HTML tags and email header information. Figure 5 shows an example of a
phishing email after the conversions. Text mining is performed using the text-miner
software kit (TMSK) provided by (Weiss et al., 2004). Second, structural analysis. In this step

 Machine Learning

194

Although competitive in learning ability, the fitting of neural network models requires some
experience, since multiple local minima are standard and delicate regularization is required.

Fig. 3. Neural Network.

3.5 Random forests
Random forests are classi_ers that combine many tree predictors, where each tree depends
on the values of a random vector sampled independently. Furthermore, all trees in the forest
have the same distribution (Breiman, 2001). In order to construct a tree we assume that n is
the number of training observations and p is the number of variables (features) in a training
set. In order to determine the decision node at a tree we choose k << p as the number of
variables to be selected. We select a bootstrap sample from the n observations in the training
set and use the rest of the observations to estimate the error of the tree in the testing phase.
Thus, we randomly choose k variables as a decision at a certain node in the tree and
calculate the best split based on the k variables in the training set. Trees are always grown
and never pruned compared to other tree algorithms.
Random forests can handle large numbers of variables in a data set. Also, during the forest
building process they generate an internal unbiased estimate of the generalization error. In
addition, they can estimate missing data well. A major drawback of random forests is the
lack of reproducibility, as the process of building the forest is random. Further, interpreting
the final model and subsequent results is difficult, as it contains many independent
decisions trees.

3.6 Support vector machines
Support Vector Machines (SVM) are one of the most popular classifiers these days. The idea
here is to find the optimal separating hyperplane between two classes by maximizing the
margin between the classes closest points. Assume that we have a linear discriminating
function and two linearly separable classes with target values +1 and -1. A discriminating
hyperplane will satisfy:

Now the distance of any point x to a hyperplane is │ w’xi+w0 │ / ║ w ║ and the distance to
the origin is │ w0 │ / ║ w ║. As shown in Figure 4 the points lying on the boundaries are

Hardening Email Security via Bayesian Additive Regression Trees

195

called support vectors, and the middle of the margin is the optimal separating hyperplane
that maximizes the margin of separation (Marques de Sa, 2001).
Though SVMs are very powerful and commonly used in classification, they suffer from
several drawbacks. They require high computations to train the data. Also, they are
sensitive to noisy data and hence prone to overfitting.

Fig. 4. Support Vector Machines.

4. Quantitative evaluation
4.1 Phishing dataset
The phishing dataset constitutes of 6561 raw emails. The total number of phishing emails in
the dataset is 1409 emails. These emails are donated by (Nazario, 2007) covering many of the
new trends in phishing and collected between August 7, 2006 and August 7, 2007. The total
number of legitimate email is 5152 emails. These emails are a combination of financial-
related and other regular communication emails. The financial-related emails are received
from financial institutions such as Bank of America, eBay, PayPal, American Express, Chase,
Amazon, AT&T, and many others. As shown in Table 1, the percentage of these emails is 3%
of the complete dataset. The other part of the legitimate set is collected from the authors'
mailboxes. These emails represent regular communications, emails about conferences and
academic events, and emails from several mailing lists.

Table 1. Corpus description.

4.1.1 Data standardization, cleansing, and transformation
The analysis of emails consists of two steps: First, textual analysis, where text mining is
performed on all emails. In order to get consistent results from the analysis, one needs to
standardize the studied data. Therefore, we convert all emails into XML documents after
stripping all HTML tags and email header information. Figure 5 shows an example of a
phishing email after the conversions. Text mining is performed using the text-miner
software kit (TMSK) provided by (Weiss et al., 2004). Second, structural analysis. In this step

 Machine Learning

196

we analyze the structure of emails. Specifically, we analyze links, images, forms, javascript
code and other components in the emails.

Fig. 5. Phishing email after conversion to XML.

Afterwards, each email is converted into a vector x = 〈x1, x2, ..., xp〉, where x1, ..., xp are the
values corre- sponding to a specific feature we are interested in studying (Salton & McGill,
1983). Our dataset consists of 70 continuous and binary features (variables) and one binary
response variable, which indicates that email is phishing=1 or legitimate=0. The first 60
features represent the frequency of the most frequent terms that appear in phishing emails.
Choosing words (terms) as features is widely applied in the text mining literature and is
referred to as “bag-of-words”. In Table 2 we list both textual and structural features used in
the dataset. As shown in Figure 6, we start by striping all attachments from emails in order to
facilitate the analysis of emails. The following subsections illustrate the textual and
structural analysis in further details.

4.1.2 Textual analysis
As we mentioned earlier we start by stripping all attachments from email messages. Then, we
extract the header information of all emails keeping the email body. Afterwards, we extract
the html tags and elements from the body of the emails, leaving out the body as plain text.
Now, we standardize all emails in a form of XML documents. The <DOC> </DOC> tags
indicate the beginning and ending of a document respectively. The <BODY> </BODY> tags
indicate the starting and ending of an email body respectively. The <TOPICS> </TOPICS>
tags indicate the class of the email, whether it is phish or legit (see Figure 5).

Hardening Email Security via Bayesian Additive Regression Trees

197

Table 2. Feature description.

Fig. 6. Building the phishing dataset.

Thus, we filter out stopwords from the text of the body. We use a list of 816 commonly used
English stopwords. Lastly, we find the most frequent terms using TF/IDF (Term Frequency
Inverse Document Frequency) and choose the top 60 most frequent terms that appear in

 Machine Learning

196

we analyze the structure of emails. Specifically, we analyze links, images, forms, javascript
code and other components in the emails.

Fig. 5. Phishing email after conversion to XML.

Afterwards, each email is converted into a vector x = 〈x1, x2, ..., xp〉, where x1, ..., xp are the
values corre- sponding to a specific feature we are interested in studying (Salton & McGill,
1983). Our dataset consists of 70 continuous and binary features (variables) and one binary
response variable, which indicates that email is phishing=1 or legitimate=0. The first 60
features represent the frequency of the most frequent terms that appear in phishing emails.
Choosing words (terms) as features is widely applied in the text mining literature and is
referred to as “bag-of-words”. In Table 2 we list both textual and structural features used in
the dataset. As shown in Figure 6, we start by striping all attachments from emails in order to
facilitate the analysis of emails. The following subsections illustrate the textual and
structural analysis in further details.

4.1.2 Textual analysis
As we mentioned earlier we start by stripping all attachments from email messages. Then, we
extract the header information of all emails keeping the email body. Afterwards, we extract
the html tags and elements from the body of the emails, leaving out the body as plain text.
Now, we standardize all emails in a form of XML documents. The <DOC> </DOC> tags
indicate the beginning and ending of a document respectively. The <BODY> </BODY> tags
indicate the starting and ending of an email body respectively. The <TOPICS> </TOPICS>
tags indicate the class of the email, whether it is phish or legit (see Figure 5).

Hardening Email Security via Bayesian Additive Regression Trees

197

Table 2. Feature description.

Fig. 6. Building the phishing dataset.

Thus, we filter out stopwords from the text of the body. We use a list of 816 commonly used
English stopwords. Lastly, we find the most frequent terms using TF/IDF (Term Frequency
Inverse Document Frequency) and choose the top 60 most frequent terms that appear in

 Machine Learning

198

phishing emails. TF/IDF calculates the number of times a word appears in a document
multiplied by a (monotone) function of the inverse of the number of documents in which the
word appears. In consequence, terms that appear often in a document and do not appear in
many documents have a higher weight (Berry, 2004).

4.1.3 Structural analysis
Textual analysis generates the first 60 features in the dataset and the last 10 features are
generated using structural analysis. Unlike textual analysis, here we only strip the
attachments of emails keeping HTML tags and elements for further analysis. First, we
perform HTML analysis, in which we analyze form tags, javascript tags, and image tags.
Legitimate emails rarely contain form tags that validate the user input. Phishing emails, on
the other hand, use this techniques to validate victims' credentials before submitting them to
the phishing site. In consequence, if an email contains a form tag, then the corresponding
feature in the dataset is set to 1, otherwise it is set to 0. Figure 7 shows an example of a
Federal Credit Union phish which contains a form tag.

Fig. 7. Form validation in phishing email.

Similarly, legitimate emails rarely contain javascript, however, phishers use javascript to
validate users input or display certain elements depending on the user input. If the email
contains javascript, then the corresponding feature in the dataset is set to 1, otherwise it is
set to 0. Figure 8 shows an example of javascript that is used by a phisher to validate the
victims account number.

Fig. 8. Javascript to validate account number.

Spammers have used images that link to external servers in their emails, also dubbed as Web
beacons, to verify active victims who preview or open spam emails. Phishers also have been
following the same technique to verify active victims and also to link to pictures from
legitimate sites. We analyze emails that contain image tags that link to external servers. If the

Hardening Email Security via Bayesian Additive Regression Trees

199

email contains such an image, then the corresponding feature in the dataset is set to 1,
otherwise it is set to 0. Figure 9 shows an example of a image tag with an external link.

Fig. 9. Image linking to an external server.

The second part in structural analysis involves the link analysis process. Here we analyze
links in emails. It is well known that phishers use several techniques to spoof links in emails
and in webpages as well to trick users into clicking on these links. When analyzing links we
look for link mismatch, URL contains IP address, URL uses non-standard ports, the
maximum total number of dots in a link, total number of links in an email, URL redirection,
and URL encoding. In what follows we describe these steps in more details.
When identifying a link mismatch we compare links that are displayed to the user with their
actual destination address in the <a href> tag. If there is a mismatch between the
displayed link and the actual destination in any link in the email, then the corresponding
feature in the dataset is set to 1, otherwise, it is set to 0. Figure 10 shows an example of a
PayPal phish, in which the phisher displays a legitimate Paypal URL to the victim; however,
the actual link redirects to a Paypal phish.

Fig. 10. URL mismatch in link.

A commonly used technique, but easily detected even by naive users, is the use of IP
addresses in URLs (i.e. unresolved domain names). This has been and is still seen in many
phishing emails. It is unlikely to see unresolved domain names in legitimate emails;
however, phishers use this technique frequently, as it is more convenient and easier to setup
a phishing site. If the email contains a URL with an unresolved name, then the
corresponding feature in the dataset is set to 1, otherwise, it is set to 0. Phishers often trick
victims by displaying a legitimate URL and hiding the unresolved address of the phishing
site in the <a href> tag as shown in the example in Figure 10.
Since phishing sites are sometimes hosted at compromised sites or botnets, they use non-
standard port numbers in URLs to redirect the victim's traffic. For example instead of using
port 80 for http or port 443 for https traffic, they use different port numbers. If the email
contains a URL that redirects to a non-standard port number, then the corresponding
feature in the dataset is set to 1, otherwise it is set to 0. Figure 11 shows an example of a
phishing URL using a non-standard port number.

Fig. 11. Phishing URL using non-standard port number.

We count the number of links in an email. Usually, phishing emails contain more links
compared to legitimate ones. This is a commonly used technique in spam detection, where
messages that contain a number of links more than a certain threshold are filtered as spam.

 Machine Learning

198

phishing emails. TF/IDF calculates the number of times a word appears in a document
multiplied by a (monotone) function of the inverse of the number of documents in which the
word appears. In consequence, terms that appear often in a document and do not appear in
many documents have a higher weight (Berry, 2004).

4.1.3 Structural analysis
Textual analysis generates the first 60 features in the dataset and the last 10 features are
generated using structural analysis. Unlike textual analysis, here we only strip the
attachments of emails keeping HTML tags and elements for further analysis. First, we
perform HTML analysis, in which we analyze form tags, javascript tags, and image tags.
Legitimate emails rarely contain form tags that validate the user input. Phishing emails, on
the other hand, use this techniques to validate victims' credentials before submitting them to
the phishing site. In consequence, if an email contains a form tag, then the corresponding
feature in the dataset is set to 1, otherwise it is set to 0. Figure 7 shows an example of a
Federal Credit Union phish which contains a form tag.

Fig. 7. Form validation in phishing email.

Similarly, legitimate emails rarely contain javascript, however, phishers use javascript to
validate users input or display certain elements depending on the user input. If the email
contains javascript, then the corresponding feature in the dataset is set to 1, otherwise it is
set to 0. Figure 8 shows an example of javascript that is used by a phisher to validate the
victims account number.

Fig. 8. Javascript to validate account number.

Spammers have used images that link to external servers in their emails, also dubbed as Web
beacons, to verify active victims who preview or open spam emails. Phishers also have been
following the same technique to verify active victims and also to link to pictures from
legitimate sites. We analyze emails that contain image tags that link to external servers. If the

Hardening Email Security via Bayesian Additive Regression Trees

199

email contains such an image, then the corresponding feature in the dataset is set to 1,
otherwise it is set to 0. Figure 9 shows an example of a image tag with an external link.

Fig. 9. Image linking to an external server.

The second part in structural analysis involves the link analysis process. Here we analyze
links in emails. It is well known that phishers use several techniques to spoof links in emails
and in webpages as well to trick users into clicking on these links. When analyzing links we
look for link mismatch, URL contains IP address, URL uses non-standard ports, the
maximum total number of dots in a link, total number of links in an email, URL redirection,
and URL encoding. In what follows we describe these steps in more details.
When identifying a link mismatch we compare links that are displayed to the user with their
actual destination address in the <a href> tag. If there is a mismatch between the
displayed link and the actual destination in any link in the email, then the corresponding
feature in the dataset is set to 1, otherwise, it is set to 0. Figure 10 shows an example of a
PayPal phish, in which the phisher displays a legitimate Paypal URL to the victim; however,
the actual link redirects to a Paypal phish.

Fig. 10. URL mismatch in link.

A commonly used technique, but easily detected even by naive users, is the use of IP
addresses in URLs (i.e. unresolved domain names). This has been and is still seen in many
phishing emails. It is unlikely to see unresolved domain names in legitimate emails;
however, phishers use this technique frequently, as it is more convenient and easier to setup
a phishing site. If the email contains a URL with an unresolved name, then the
corresponding feature in the dataset is set to 1, otherwise, it is set to 0. Phishers often trick
victims by displaying a legitimate URL and hiding the unresolved address of the phishing
site in the <a href> tag as shown in the example in Figure 10.
Since phishing sites are sometimes hosted at compromised sites or botnets, they use non-
standard port numbers in URLs to redirect the victim's traffic. For example instead of using
port 80 for http or port 443 for https traffic, they use different port numbers. If the email
contains a URL that redirects to a non-standard port number, then the corresponding
feature in the dataset is set to 1, otherwise it is set to 0. Figure 11 shows an example of a
phishing URL using a non-standard port number.

Fig. 11. Phishing URL using non-standard port number.

We count the number of links in an email. Usually, phishing emails contain more links
compared to legitimate ones. This is a commonly used technique in spam detection, where
messages that contain a number of links more than a certain threshold are filtered as spam.

 Machine Learning

200

However, since phishing emails are usually duplicate copies of legitimate ones, this feature
might not help in distinguishing phishing from financial-related legitimate emails; however,
it helps in distinguishing phishing from other regular legitimate messages.
Since phishing URLs usually contain multiple sub-domains so the URL looks legitimate, the
number of dots separating sub-domains, domains, and TLDs in the URLs are usually more
than those in legitimate URLs. Therefore, in each email we find the link that has the
maximum number of dots. The maximum total number of dots in a link in an email thus is
used as a feature in the dataset. Figure 12 shows an example of a Nationwide spoof link.
Note the dots separating different domains and sub-domains.

Fig. 12. Number of dots in a Nationwide spoof URL.

Phishers usually use open redirectors to trick victims when they see legitimate site names in
the URL. Specifically, they target open redirectors in well known sites such as aol.com,
yahoo.com, and google.com. This technique comes handy when combined with other
techniques, especially URL encoding, as naive users will not be able to translate the
encoding in the URL. Figure 13 shows an example of an AOL open redirector.

Fig. 13. Open redirector at AOL.

The last technique that we analyze here is URL encoding. URL encoding is used to transfer
characters that have a special meaning in HTML during http requests. The basic idea is to
replace the character with the “%” symbol, followed by the two-digit hexadecimal
representation of the ISO-Latin code for the character. Phishers have been using this
approach to mask spoofed URL and hide the phony addresses of these sites. However, they
encode not only special characters in the URL, but also the complete URL. As we mentioned
earlier, when this approach is combined with other techniques, it makes the probability of
success for the attack higher, as the spoofed URL looks more legitimate to the naive user.
Figure 14 shows an example of URL encoding combined with URL redirection.

Fig. 14. URL encoding combined with URL redirection.

Figure 6 depicts a block diagram of the approach used in building the dataset. It shows both
textual and structural analysis and the procedures involved therein.

4.2 Evaluation metrics
We use the area under the receiver operating characteristic (ROC) curve (AUC) to measure
and compare the performance of classifiers. According to (Huang & Ling, 2005), AUC is a
better measure than accuracy when comparing the performance of classifiers. The ROC
curve plots false positives (FP) vs. true positives (TP) using various threshold values. It
compares the classifiers' performance across the entire range of class distributions and error
costs (Huang & Ling, 2005).
Let NL denote the total number of legitimate emails, and NP denote the total number of
phishing emails. Now, let nL→L be the number of legitimate messages classified as legitimate,

Hardening Email Security via Bayesian Additive Regression Trees

201

nL→P be the number of legitimate messages misclassified as phishing, nP→L be the number of
phishing messages misclassified as legitimate, and nP→P be the number of phishing messages
classified as phishing. False positives are legitimate emails that are classified as phishing,
hence the false positive rate (FP) is denoted as:

(8)

True positives are phishing emails that are classified as phishing, hence the true positive rate
(TP) is denoted as:

(9)

False negatives are phishing emails that are classified as legitimate, hence the false negative
rate (FN) is denoted as:

(10)

True negatives are legitimate emails that are classified as legitimate, hence the true negative
rate (TN) is denoted as:

(11)

Further we evaluate the predictive accuracy of classifiers, by applying the weighted error
(WErr) measure proposed in (Sakkis et al., 2003) and (Zhang et al., 2004). We test the
classifiers using λ = 1 that is when legitimate and phishing emails are weighed equally.
Hence the weighted accuracy (WAcc), which is 1 - WErr(λ), can be calculated as follows

(12)

In addition, we use several other measures to evaluate the performance of classifiers. We use
the phishing recall(r), phishing precision(p), and phishing f1 measures. According to (Sakkis et
al., 2003), spam recall measures the percentage of spam messages that the filter manages to
block (filter's effectiveness). Spam precision measures the degree to which the blocked
messages are indeed spam (filter's safety). F-measure is the weighted harmonic mean of
precision and recall. Here we use f1 when recall and precision are evenly weighted. For the
above measures, the following equations hold

(13)

(14)

 Machine Learning

200

However, since phishing emails are usually duplicate copies of legitimate ones, this feature
might not help in distinguishing phishing from financial-related legitimate emails; however,
it helps in distinguishing phishing from other regular legitimate messages.
Since phishing URLs usually contain multiple sub-domains so the URL looks legitimate, the
number of dots separating sub-domains, domains, and TLDs in the URLs are usually more
than those in legitimate URLs. Therefore, in each email we find the link that has the
maximum number of dots. The maximum total number of dots in a link in an email thus is
used as a feature in the dataset. Figure 12 shows an example of a Nationwide spoof link.
Note the dots separating different domains and sub-domains.

Fig. 12. Number of dots in a Nationwide spoof URL.

Phishers usually use open redirectors to trick victims when they see legitimate site names in
the URL. Specifically, they target open redirectors in well known sites such as aol.com,
yahoo.com, and google.com. This technique comes handy when combined with other
techniques, especially URL encoding, as naive users will not be able to translate the
encoding in the URL. Figure 13 shows an example of an AOL open redirector.

Fig. 13. Open redirector at AOL.

The last technique that we analyze here is URL encoding. URL encoding is used to transfer
characters that have a special meaning in HTML during http requests. The basic idea is to
replace the character with the “%” symbol, followed by the two-digit hexadecimal
representation of the ISO-Latin code for the character. Phishers have been using this
approach to mask spoofed URL and hide the phony addresses of these sites. However, they
encode not only special characters in the URL, but also the complete URL. As we mentioned
earlier, when this approach is combined with other techniques, it makes the probability of
success for the attack higher, as the spoofed URL looks more legitimate to the naive user.
Figure 14 shows an example of URL encoding combined with URL redirection.

Fig. 14. URL encoding combined with URL redirection.

Figure 6 depicts a block diagram of the approach used in building the dataset. It shows both
textual and structural analysis and the procedures involved therein.

4.2 Evaluation metrics
We use the area under the receiver operating characteristic (ROC) curve (AUC) to measure
and compare the performance of classifiers. According to (Huang & Ling, 2005), AUC is a
better measure than accuracy when comparing the performance of classifiers. The ROC
curve plots false positives (FP) vs. true positives (TP) using various threshold values. It
compares the classifiers' performance across the entire range of class distributions and error
costs (Huang & Ling, 2005).
Let NL denote the total number of legitimate emails, and NP denote the total number of
phishing emails. Now, let nL→L be the number of legitimate messages classified as legitimate,

Hardening Email Security via Bayesian Additive Regression Trees

201

nL→P be the number of legitimate messages misclassified as phishing, nP→L be the number of
phishing messages misclassified as legitimate, and nP→P be the number of phishing messages
classified as phishing. False positives are legitimate emails that are classified as phishing,
hence the false positive rate (FP) is denoted as:

(8)

True positives are phishing emails that are classified as phishing, hence the true positive rate
(TP) is denoted as:

(9)

False negatives are phishing emails that are classified as legitimate, hence the false negative
rate (FN) is denoted as:

(10)

True negatives are legitimate emails that are classified as legitimate, hence the true negative
rate (TN) is denoted as:

(11)

Further we evaluate the predictive accuracy of classifiers, by applying the weighted error
(WErr) measure proposed in (Sakkis et al., 2003) and (Zhang et al., 2004). We test the
classifiers using λ = 1 that is when legitimate and phishing emails are weighed equally.
Hence the weighted accuracy (WAcc), which is 1 - WErr(λ), can be calculated as follows

(12)

In addition, we use several other measures to evaluate the performance of classifiers. We use
the phishing recall(r), phishing precision(p), and phishing f1 measures. According to (Sakkis et
al., 2003), spam recall measures the percentage of spam messages that the filter manages to
block (filter's effectiveness). Spam precision measures the degree to which the blocked
messages are indeed spam (filter's safety). F-measure is the weighted harmonic mean of
precision and recall. Here we use f1 when recall and precision are evenly weighted. For the
above measures, the following equations hold

(13)

(14)

 Machine Learning

202

(15)

We use the AUC as the primary measure, as it allows us to gauge the trade off between the
FP and TP rates at different cut-off points. Although the error rate WErr (or accuracy) has
been widely used in comparing classifiers’ performance, it has been criticized as it highly
depends on the probability of the threshold chosen to approximate the positive classes. Here
we note that we assign new classes to the positive class if the probability of the class is
greater than or equal to 0.5 (threshold=0.5). In addition, in (Huang & Ling, 2005) the authors
prove theoretically and empirically that AUC is more accurate than accuracy to evaluate
classi_ers' performance. Moreover, although classifiers might have different error rates,
these rates may not be statistically significantly different. Therefore, we use the Wilcoxon
signed-ranks test (Wilcoxon, 1945) to compare the error rates of classifiers and find whether
the di_erences among these accuracies is significant or not (Demšar, 2006).

4.3 Experimental studies
We optimize the classifiers’ performance by testing them using different input parameters.
In order to find the maximum AUC, we test the classifiers using the complete dataset
applying different input parameters. Also, we apply 10-fold-cross-validation and average the
estimates of all 10 folds (sub-samples) to evaluate the average error rate for each of the
classifiers, using the 70 features and 6561 emails. We do not perform any preliminary
variable selection since most classifiers discussed here can perform automatic variable
selection. To be fair, we use L1-SVM and penalized LR, where variable selection is
performed automatically.
We test NNet using different numbers of units in the hidden layer (i.e. different sizes (s))
ranging from 5 to 35. Further, we apply different weight decays (w) on the interconnections,
ranging from 0.1 to 2.5. We find that a NNet with s = 35 and w = 0.7 achieves the maximum
AUC of 98.80%.
RF is optimized by choosing the number of trees used. Specifically, the number of trees we
consider in this experiment is between 30 and 500. When using 50 trees on our dataset, RF
achieves the maximum AUC of 95.48%.
We use the L1-SVM C-Classification machine with radial basis function (RBF) kernels. L1-
SVM can automatically select input variables by suppressing parameters of irrelevant
variables to zero. To achieve the maximum AUC over different parameter values, we
consider cost of constraints violation values (i.e. the “c” constant of the regularization term
in the Lagrange formulation) between 1 and 16, and values of the γ parameter in the kernels
between 1 ×10-8 and 2. We find that γ= 0.1 and c = 12 achieve the maximum AUC of 97.18%.
In LR we use penalized LR and apply different values of the lambda regularization
parameter under the L2 norm, ranging from 1 × 10-8 to 0.01. In our dataset λ = 1 × 10-4

achieves the maximum AUC of 54.45%.
We use two BART models; the first is the original model and as usual, we refer to this as
“BART”. The second model is the one we modify so as to be applicable to classification,
referred to as “CBART”. We test both models using different numbers of trees ranging from
30 to 300. Also, we apply different power parameters for the tree prior, to specify the depth
of the tree, ranging from 0.1 to 2.5. We find that BART with 300 trees and power = 2.5
achieves the maximum AUC of 97.31%. However, CBART achieves the maximum AUC of
99.19% when using 100 trees and power = 1.

Hardening Email Security via Bayesian Additive Regression Trees

203

4.4 Experimental results
In this section we present the experimental results be measuring the AUC using the
complete dataset. In addition, we compare the precision, recall, f1, and WErr measures using
the optimum parameters achieved from the previous section. Figure 15 illustrates the ROCs
for all classifiers.

Fig. 15. ROC for all classifiers using the complete dataset.

Table 3 illustrates the AUC, FP, FN, presicion, recall, f1, and WErr for all classi_ers. Note that
the FPrate = 1 - precision and the FNrate = 1 - recall.

Table 3. Classifiers AUC, WErr, precision, recall, f1, false positive, false negative.

In Table 4, we compare p-value of the error rate for each subsample among the 10
subsamples in cross validation by applying the Wilcoxon signed-rank test. Since CBART has
a comparable error rate to that of RF, SVM, and NNet, we merely compare these three
classifiers.

Table 4. Comparing the p-value using the Wilcoxon-signed ranked test

4.5 Discussion
Here we investigate the application of a modified version of BART for phishing detection.
The results demonstrate that CBART outperforms other classifiers on the phishing dataset,

 Machine Learning

202

(15)

We use the AUC as the primary measure, as it allows us to gauge the trade off between the
FP and TP rates at different cut-off points. Although the error rate WErr (or accuracy) has
been widely used in comparing classifiers’ performance, it has been criticized as it highly
depends on the probability of the threshold chosen to approximate the positive classes. Here
we note that we assign new classes to the positive class if the probability of the class is
greater than or equal to 0.5 (threshold=0.5). In addition, in (Huang & Ling, 2005) the authors
prove theoretically and empirically that AUC is more accurate than accuracy to evaluate
classi_ers' performance. Moreover, although classifiers might have different error rates,
these rates may not be statistically significantly different. Therefore, we use the Wilcoxon
signed-ranks test (Wilcoxon, 1945) to compare the error rates of classifiers and find whether
the di_erences among these accuracies is significant or not (Demšar, 2006).

4.3 Experimental studies
We optimize the classifiers’ performance by testing them using different input parameters.
In order to find the maximum AUC, we test the classifiers using the complete dataset
applying different input parameters. Also, we apply 10-fold-cross-validation and average the
estimates of all 10 folds (sub-samples) to evaluate the average error rate for each of the
classifiers, using the 70 features and 6561 emails. We do not perform any preliminary
variable selection since most classifiers discussed here can perform automatic variable
selection. To be fair, we use L1-SVM and penalized LR, where variable selection is
performed automatically.
We test NNet using different numbers of units in the hidden layer (i.e. different sizes (s))
ranging from 5 to 35. Further, we apply different weight decays (w) on the interconnections,
ranging from 0.1 to 2.5. We find that a NNet with s = 35 and w = 0.7 achieves the maximum
AUC of 98.80%.
RF is optimized by choosing the number of trees used. Specifically, the number of trees we
consider in this experiment is between 30 and 500. When using 50 trees on our dataset, RF
achieves the maximum AUC of 95.48%.
We use the L1-SVM C-Classification machine with radial basis function (RBF) kernels. L1-
SVM can automatically select input variables by suppressing parameters of irrelevant
variables to zero. To achieve the maximum AUC over different parameter values, we
consider cost of constraints violation values (i.e. the “c” constant of the regularization term
in the Lagrange formulation) between 1 and 16, and values of the γ parameter in the kernels
between 1 ×10-8 and 2. We find that γ= 0.1 and c = 12 achieve the maximum AUC of 97.18%.
In LR we use penalized LR and apply different values of the lambda regularization
parameter under the L2 norm, ranging from 1 × 10-8 to 0.01. In our dataset λ = 1 × 10-4

achieves the maximum AUC of 54.45%.
We use two BART models; the first is the original model and as usual, we refer to this as
“BART”. The second model is the one we modify so as to be applicable to classification,
referred to as “CBART”. We test both models using different numbers of trees ranging from
30 to 300. Also, we apply different power parameters for the tree prior, to specify the depth
of the tree, ranging from 0.1 to 2.5. We find that BART with 300 trees and power = 2.5
achieves the maximum AUC of 97.31%. However, CBART achieves the maximum AUC of
99.19% when using 100 trees and power = 1.

Hardening Email Security via Bayesian Additive Regression Trees

203

4.4 Experimental results
In this section we present the experimental results be measuring the AUC using the
complete dataset. In addition, we compare the precision, recall, f1, and WErr measures using
the optimum parameters achieved from the previous section. Figure 15 illustrates the ROCs
for all classifiers.

Fig. 15. ROC for all classifiers using the complete dataset.

Table 3 illustrates the AUC, FP, FN, presicion, recall, f1, and WErr for all classi_ers. Note that
the FPrate = 1 - precision and the FNrate = 1 - recall.

Table 3. Classifiers AUC, WErr, precision, recall, f1, false positive, false negative.

In Table 4, we compare p-value of the error rate for each subsample among the 10
subsamples in cross validation by applying the Wilcoxon signed-rank test. Since CBART has
a comparable error rate to that of RF, SVM, and NNet, we merely compare these three
classifiers.

Table 4. Comparing the p-value using the Wilcoxon-signed ranked test

4.5 Discussion
Here we investigate the application of a modified version of BART for phishing detection.
The results demonstrate that CBART outperforms other classifiers on the phishing dataset,

 Machine Learning

204

achieving the maximum AUC of 99.19%. The results show that CBART has the highest
AUC, followed by NNet with 98.80%, BART with 97.31%, SVM with 97.18%, CART with
96.06%, RF with 95.48%, and LR with 54.45% respectively. Apparently the AUC for CBART
has improved by 1.88% compared to the original BART model.
The results show that CBART's error rate is comparable to other classifiers (merely RF, SVM,
and NNet). When the error rates for the 10 subsamples are compared using the Wilcoxon-
singed ranked test, the p-value of the tests for SVM and NNet are greater than 0.05, which is
an indication that the difference in the results is not statistically significantly different (see
Table 4). However, for RF, the p-value is less than 0.05, which is an indication that the error
rates may be statistically significantly different. Table 3 illustrates that the AUC for CBART is
greater than RF by approximately 4%, therefore, we conclude that CBART's performance is
better than RF.
SVM achieves the minimum error rate (maximum accuracy) of 2.39%, followed by RF with
3.68%, NNet with 4.31%, CBART with 4.41%, BART with 4.74%, LR with 5.34%, and CART
with 7% respectively. Note that the accuracy of CBART has improved, insignificantly
though, by 0.33%.
CBART achieves the minimum FP rate of 2.98%, followed by RF with 4.24%, SVM with
5.43%, NNet with 6.16%, BART with 6.18%, LR with 7.29%, and CART with 11.55%. The
minimum FN rate is achieved by CBART with 11.14%, followed by RF with 13.20%, SVM
with 13.77%, NNet 14.32%, BART 16.48%, LR 18.38%, and CART 22.10% respectively.
It is well known that LR performs very well when the relationship underlying data is linear.
We believe that the comparatively low predictive accuracy of LR is an indication of a non-
linear relationship among the features and the response in the dataset.
With its superior classification performance, relatively high predictive accuracy, relatively
low FP rate, and distinguished features, CBART proves to be a competitive and a practical
method for phishing detection.

5. Conclusions
A modified version of Bayesian Additive Regression Trees (CBART) proved to be suitable as
a phishing detection technique. The performance of CBART was compared against well-
known classification methods on a phishing dataset with both textual and structural
features.
The results showed that CBART is a promising technique for phishing detection and it has
several features that make it competitive. Further, the results demonstrated that the
performance of the modified BART model outperforms other well-known classifiers and
comparatively achieves low error rate and false positives. CBART outperformed all the
other classifiers and achieved the maximum AUC of 99.19% on the phishing dataset we
built, decreasing by 1.88% compared to AUC of BART prior to the modification. SVM
achieved the minimum error rate of 2.39% leaving behind, RF with 3.68% and NNet with
4.31% followed by CBART with 4.41%. In addition, CBART achieved the minimum FP rate
of 2.98% followed by RF with 4.25%, SVM with 5.43%, NNet with 6.16%, and BART with
6.18%.
Automatic variable selection in BART motivates future work to explore BART as a variable
selection technique. This includes comparing its performance to other well known variable
selection methods.

Hardening Email Security via Bayesian Additive Regression Trees

205

6. References
Abu-Nimeh, S., Nappa, D., Wang, X., & Nair, S. (2007). A comparison of machine learning

techniques for phishing detection. eCrime '07: Proceedings of the anti-phishing working
groups 2nd annual eCrime researchers summit (pp. 60-69). New York, NY, USA: ACM.

Abu-Nimeh, S., Nappa, D., Wang, X., & Nair, S. (2008). Bayesian additive regression trees-
based spam detection for enhanced email privacy. ARES '08: Proceedings of the 3rd
International Conference on Availability, Reliability and Security (pp. 1044-1051).

Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response
data. Journal of the American Statistical Association, 88, 669-679.

Berry, M. W. (Ed.). (2004). Survey of text mining: Clustering, classification, and retrieval.
Springer.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University Press.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression

trees. Chapman & Hall/CRC.
Chandrasekaran, M., Narayanan, K., & Upadhyaya, S. (2006). Phishing email detection

based on structural properties. NYS Cyber Security Conference.
Chipman, H. A., George, E. I., & McCulloch, R. E. (1998). Bayesian CART model search.

Journal of the American Statistical Association, 93, 935-947.
Chipman, H. A., George, E. I., & McCulloch, R. E. (2006). BART: Bayesian Additive

Regression Trees.
http://faculty.chicagogsb.edu/robert.mcculloch/research/code/BART-7-05.pdf.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7, 1-30.

Fette, I., Sadeh, N., & Tomasic, A. (2007). Learning to detect phishing emails. WWW '07:
Proceedings of the 16th international conference on World Wide Web (pp. 649-656). New
York, NY, USA: ACM Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning data mining,
inference, and prediction. Springer Series in Statistics. Springer.

Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms.
IEEE Transactions on Knowledge and Data Engineering, 17.

James, L. (2005). Phishing exposed. Syngress.
Kandola, J. S. (2001). Interpretable modelling with sparse kernels. Doctoral dissertation,

University of Southampton.
Marques de Sa, J. P. (2001). Pattern recognition: Concepts, methods and applications. Springer.
Massey, B., Thomure, M., Budrevich, R., & Long, S. (2003). Learning spam: Simple

techniques for freely-available software. USENIX Annual Technical Conference,
FREENIX Track (pp. 63-76).

Nazario, J. (2007). Phishing corpus. http://monkey.org/~jose/phishing/phishing3.mbox.
Neal, R. M. (1995). Bayesian learning for neural networks. Springer-Verlag Publishers.
Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C., &

Stamatopoulos, P. (2003). A memory-based approach to anti-spam filtering for
mailing lists. Information Retrieval, 6, 49-73.

Salton, G., & McGill, M. (1983). Introduction to modern information retrieval. McGraw-Hill.
Weiss, S., Indurkhya, N., Zhang, T., & Damerau, F. (2004). Text mining: Predictive
methods for analyzing unstructured information. Springer.

 Machine Learning

204

achieving the maximum AUC of 99.19%. The results show that CBART has the highest
AUC, followed by NNet with 98.80%, BART with 97.31%, SVM with 97.18%, CART with
96.06%, RF with 95.48%, and LR with 54.45% respectively. Apparently the AUC for CBART
has improved by 1.88% compared to the original BART model.
The results show that CBART's error rate is comparable to other classifiers (merely RF, SVM,
and NNet). When the error rates for the 10 subsamples are compared using the Wilcoxon-
singed ranked test, the p-value of the tests for SVM and NNet are greater than 0.05, which is
an indication that the difference in the results is not statistically significantly different (see
Table 4). However, for RF, the p-value is less than 0.05, which is an indication that the error
rates may be statistically significantly different. Table 3 illustrates that the AUC for CBART is
greater than RF by approximately 4%, therefore, we conclude that CBART's performance is
better than RF.
SVM achieves the minimum error rate (maximum accuracy) of 2.39%, followed by RF with
3.68%, NNet with 4.31%, CBART with 4.41%, BART with 4.74%, LR with 5.34%, and CART
with 7% respectively. Note that the accuracy of CBART has improved, insignificantly
though, by 0.33%.
CBART achieves the minimum FP rate of 2.98%, followed by RF with 4.24%, SVM with
5.43%, NNet with 6.16%, BART with 6.18%, LR with 7.29%, and CART with 11.55%. The
minimum FN rate is achieved by CBART with 11.14%, followed by RF with 13.20%, SVM
with 13.77%, NNet 14.32%, BART 16.48%, LR 18.38%, and CART 22.10% respectively.
It is well known that LR performs very well when the relationship underlying data is linear.
We believe that the comparatively low predictive accuracy of LR is an indication of a non-
linear relationship among the features and the response in the dataset.
With its superior classification performance, relatively high predictive accuracy, relatively
low FP rate, and distinguished features, CBART proves to be a competitive and a practical
method for phishing detection.

5. Conclusions
A modified version of Bayesian Additive Regression Trees (CBART) proved to be suitable as
a phishing detection technique. The performance of CBART was compared against well-
known classification methods on a phishing dataset with both textual and structural
features.
The results showed that CBART is a promising technique for phishing detection and it has
several features that make it competitive. Further, the results demonstrated that the
performance of the modified BART model outperforms other well-known classifiers and
comparatively achieves low error rate and false positives. CBART outperformed all the
other classifiers and achieved the maximum AUC of 99.19% on the phishing dataset we
built, decreasing by 1.88% compared to AUC of BART prior to the modification. SVM
achieved the minimum error rate of 2.39% leaving behind, RF with 3.68% and NNet with
4.31% followed by CBART with 4.41%. In addition, CBART achieved the minimum FP rate
of 2.98% followed by RF with 4.25%, SVM with 5.43%, NNet with 6.16%, and BART with
6.18%.
Automatic variable selection in BART motivates future work to explore BART as a variable
selection technique. This includes comparing its performance to other well known variable
selection methods.

Hardening Email Security via Bayesian Additive Regression Trees

205

6. References
Abu-Nimeh, S., Nappa, D., Wang, X., & Nair, S. (2007). A comparison of machine learning

techniques for phishing detection. eCrime '07: Proceedings of the anti-phishing working
groups 2nd annual eCrime researchers summit (pp. 60-69). New York, NY, USA: ACM.

Abu-Nimeh, S., Nappa, D., Wang, X., & Nair, S. (2008). Bayesian additive regression trees-
based spam detection for enhanced email privacy. ARES '08: Proceedings of the 3rd
International Conference on Availability, Reliability and Security (pp. 1044-1051).

Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response
data. Journal of the American Statistical Association, 88, 669-679.

Berry, M. W. (Ed.). (2004). Survey of text mining: Clustering, classification, and retrieval.
Springer.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University Press.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression

trees. Chapman & Hall/CRC.
Chandrasekaran, M., Narayanan, K., & Upadhyaya, S. (2006). Phishing email detection

based on structural properties. NYS Cyber Security Conference.
Chipman, H. A., George, E. I., & McCulloch, R. E. (1998). Bayesian CART model search.

Journal of the American Statistical Association, 93, 935-947.
Chipman, H. A., George, E. I., & McCulloch, R. E. (2006). BART: Bayesian Additive

Regression Trees.
http://faculty.chicagogsb.edu/robert.mcculloch/research/code/BART-7-05.pdf.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7, 1-30.

Fette, I., Sadeh, N., & Tomasic, A. (2007). Learning to detect phishing emails. WWW '07:
Proceedings of the 16th international conference on World Wide Web (pp. 649-656). New
York, NY, USA: ACM Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning data mining,
inference, and prediction. Springer Series in Statistics. Springer.

Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms.
IEEE Transactions on Knowledge and Data Engineering, 17.

James, L. (2005). Phishing exposed. Syngress.
Kandola, J. S. (2001). Interpretable modelling with sparse kernels. Doctoral dissertation,

University of Southampton.
Marques de Sa, J. P. (2001). Pattern recognition: Concepts, methods and applications. Springer.
Massey, B., Thomure, M., Budrevich, R., & Long, S. (2003). Learning spam: Simple

techniques for freely-available software. USENIX Annual Technical Conference,
FREENIX Track (pp. 63-76).

Nazario, J. (2007). Phishing corpus. http://monkey.org/~jose/phishing/phishing3.mbox.
Neal, R. M. (1995). Bayesian learning for neural networks. Springer-Verlag Publishers.
Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C., &

Stamatopoulos, P. (2003). A memory-based approach to anti-spam filtering for
mailing lists. Information Retrieval, 6, 49-73.

Salton, G., & McGill, M. (1983). Introduction to modern information retrieval. McGraw-Hill.
Weiss, S., Indurkhya, N., Zhang, T., & Damerau, F. (2004). Text mining: Predictive
methods for analyzing unstructured information. Springer.

 Machine Learning

206

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80-83.
Zhang, L., Zhu, J., & Yao, T. (2004). An evaluation of statistical spam filtering techniques.

ACM Transactions on Asian Language Information Processing (TALIP), 3, 243-269.
10

Learning Optimal Web Service Selections
in Dynamic Environments when

Many Quality-of-Service Criteria Matter
Stéphane Dehousse1, Stéphane Faulkner2, Caroline Herssens3,

Ivan J. Jureta4 and Marcos Saerens5

1,2,4PReCISE Research Center (University of Namur), Namur,
3PReCISE Research Center(University of Louvain), Louvain-la-Neuve,

5ISYS Research Unit (University of Louvain), Louvain-la-Neuve,
Belgium

1. Introduction
The emergence of the World Wide Web has lead to growing needs for interacting
components capable of achieving – together – complex requests on the Web. Service
oriented Systems (SoS) are a response to this issue, given available standards for describing
individual services and interaction between them, and the attention to interoperability
combined with an uptake in industry. A service is a self-describing and self-contained
modular application designed to execute a well-delimited task, and that can be described,
published, located, and invoked over a network (McIlraith & Martin, 2003; Papazoglou &
Georgakopoulos, 2003). A web service is a service made available on the Internet via tailored
technologies such as WSDL, SOAP or UDDI (Walsh, 2002). To fulfill elaborate requests that
involve many execution steps, web services participate in web services compositions. To
optimize such compositions, each step of the execution is achieved by the most competitive
available web service. The most competitive web service is the one who performs the given
task while fulfilling its functional requirements and providing the best observed values of
quality of service (QoS).
QoS are the nonfunctional properties of a web service and refer to concerns such as
availability, reliability, cost or security (Menascé, 2002). The selection of all web services that
can participate in a composition (i.e., web services that will perform at least one step of the
execution) is under the responsibility of the service composer. To achieve QoS-aware service
selection, we rely on a Multi-Criteria Randomized Reinforcement Learning approach
(MCRRL). MCRRL authorizes automated continuous optimization of service monitoring
and leads the system to respond to the variation of the availability of web services without
human involvement.
This paper focuses on the composition of services under the constraint of openness, resource
distribution, and adaptability to changing web service availability w.r.t. multiple criteria. To
enable such system characteristics, a fit between the system architecture and services
composition behavior is needed, that is: (1) To support openness, few assumptions can be

 Machine Learning

206

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80-83.
Zhang, L., Zhu, J., & Yao, T. (2004). An evaluation of statistical spam filtering techniques.

ACM Transactions on Asian Language Information Processing (TALIP), 3, 243-269.
10

Learning Optimal Web Service Selections
in Dynamic Environments when

Many Quality-of-Service Criteria Matter
Stéphane Dehousse1, Stéphane Faulkner2, Caroline Herssens3,

Ivan J. Jureta4 and Marcos Saerens5

1,2,4PReCISE Research Center (University of Namur), Namur,
3PReCISE Research Center(University of Louvain), Louvain-la-Neuve,

5ISYS Research Unit (University of Louvain), Louvain-la-Neuve,
Belgium

1. Introduction
The emergence of the World Wide Web has lead to growing needs for interacting
components capable of achieving – together – complex requests on the Web. Service
oriented Systems (SoS) are a response to this issue, given available standards for describing
individual services and interaction between them, and the attention to interoperability
combined with an uptake in industry. A service is a self-describing and self-contained
modular application designed to execute a well-delimited task, and that can be described,
published, located, and invoked over a network (McIlraith & Martin, 2003; Papazoglou &
Georgakopoulos, 2003). A web service is a service made available on the Internet via tailored
technologies such as WSDL, SOAP or UDDI (Walsh, 2002). To fulfill elaborate requests that
involve many execution steps, web services participate in web services compositions. To
optimize such compositions, each step of the execution is achieved by the most competitive
available web service. The most competitive web service is the one who performs the given
task while fulfilling its functional requirements and providing the best observed values of
quality of service (QoS).
QoS are the nonfunctional properties of a web service and refer to concerns such as
availability, reliability, cost or security (Menascé, 2002). The selection of all web services that
can participate in a composition (i.e., web services that will perform at least one step of the
execution) is under the responsibility of the service composer. To achieve QoS-aware service
selection, we rely on a Multi-Criteria Randomized Reinforcement Learning approach
(MCRRL). MCRRL authorizes automated continuous optimization of service monitoring
and leads the system to respond to the variation of the availability of web services without
human involvement.
This paper focuses on the composition of services under the constraint of openness, resource
distribution, and adaptability to changing web service availability w.r.t. multiple criteria. To
enable such system characteristics, a fit between the system architecture and services
composition behavior is needed, that is: (1) To support openness, few assumptions can be

 Machine Learning

208

made about the behavior of the web services that may participate in compositions. It thus
seems reasonable to expect services composition responsibility not to be placed on any web
service: the architecture ought to integrate a special set of web services, the service
composers, that coordinate services composition. (2) To allow the distribution of web
services, no explicit constraints should be placed on the origin of entering services. (3) To
enable adaptability, composer behavior should be specified along with the architecture. (4)
Since there is no guarantee that web services will execute tasks at performance levels
advertised by the providers, composition should be grounded in empirically observed
service performance and such observations executed by the composers. (5) The variety of
stakeholder expectations requires services composition to be driven by multiple criteria. (6)
To ensure continuous adaptability at runtime, composition within the architecture should
involve continual observation of service performance, the use of available information to
account for service behavior and exploration of new options to avoid excessive reliance on
historical information.
Contributions. We provide a complete composition process involving several steps: (1) The
service user requests a service that involves several tasks that can be fulfilled by different
web services. These tasks and all possible execution paths are described on on a statechart.
(2) The service composer observes available web services and rejects those that can not
achieve one of the existing task of the statechart. It then builds the resulting execution plan
as a Directed Acyclic Hypergraph, on which it represents all services available for each task.
(3) The service requester expresses its quality expectations with the help of our QoS model.
(4) The composer rejects services that do no meet quality requirements and scores each
candidate web service with our proposed QoS aggregation model to get a multi criteria
measure of their performance. (5) This value is the one that the service composer maximizes
in our RRL algorithm. The result of the computation gives us web services to select to get
the most competitive composite web service.
Organization. We present our conceptual foundations for the remaining of the paper in
Section 2. That section covers the case study used throughout this paper and our
composition model with its statechart representation and its Directed Acyclic Hypergraph
derivation. It also proposes our QoS model applied by the service user to specify its
priorities and preferences about QoS. Section 3 presents how multiple quality criteria are
aggregated into a single measure of performance. The method is illustrated with the
previously introduced case study. Section 4 introduces our Reinforcement Learning solution
to the composition problem by liken it to the task allocation problem. Section 5 presents
experiments that we made on our Multi-Criteria Randomized Reinforcement Learning
proposal. Section 6 outlines the related work. Finally Section 7 concludes this paper and
exposes our future work.

2. Baseline
This section presents the different conceptual elements used through the paper. Our case
study is introduced in Subsection 2.1. Our services composition model is proposed in
Subsection 2.2 and involves two steps. The first is to define the possible composition process
with a statechart as described in Subsection 2.2.1. We illustrate the statechart representation
with the composition of web services introduced in the case study. The second is to
represent candidate services for each elementary task of the whole composition. This
representation is derived from statecharts with Directed Acyclic Hypergraph. The

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

209

procedure for doing so is explained and illustrated with our case study in Subsection 2.2.2.
We present in Subsection 2.3 the QoS model dedicated to the service user to make its
particular requirements about its QoS priorities and preferences.

2.1 Case study
To illustrate our selection of services entering in a composition, we propose a case study
subsequently used throughout the paper. The European Space Agency's (ESA) program on
Earth observation allows researchers to access and use infrastructure operated and data
collected by the agency.1 Our case study focuses on the information provided by the MERIS
instrument on the Envisat ESA satellite. MERIS is a programmable, medium-spectral
resolution imaging spectrometer operating in the solar reflective spectral range. MERIS is
used in observing ocean color and biology, vegetation and atmosphere and in particular
clouds and precipitation. In relation to MERIS, web services are made available by the ESA
for access to the data the instrument sends and access and use of the associated computing
resources.

Fig. 1. Graphical user interface of the ENVISAT/MERIS MGVI web service

1http://gpod.eo.esa.int

 Machine Learning

208

made about the behavior of the web services that may participate in compositions. It thus
seems reasonable to expect services composition responsibility not to be placed on any web
service: the architecture ought to integrate a special set of web services, the service
composers, that coordinate services composition. (2) To allow the distribution of web
services, no explicit constraints should be placed on the origin of entering services. (3) To
enable adaptability, composer behavior should be specified along with the architecture. (4)
Since there is no guarantee that web services will execute tasks at performance levels
advertised by the providers, composition should be grounded in empirically observed
service performance and such observations executed by the composers. (5) The variety of
stakeholder expectations requires services composition to be driven by multiple criteria. (6)
To ensure continuous adaptability at runtime, composition within the architecture should
involve continual observation of service performance, the use of available information to
account for service behavior and exploration of new options to avoid excessive reliance on
historical information.
Contributions. We provide a complete composition process involving several steps: (1) The
service user requests a service that involves several tasks that can be fulfilled by different
web services. These tasks and all possible execution paths are described on on a statechart.
(2) The service composer observes available web services and rejects those that can not
achieve one of the existing task of the statechart. It then builds the resulting execution plan
as a Directed Acyclic Hypergraph, on which it represents all services available for each task.
(3) The service requester expresses its quality expectations with the help of our QoS model.
(4) The composer rejects services that do no meet quality requirements and scores each
candidate web service with our proposed QoS aggregation model to get a multi criteria
measure of their performance. (5) This value is the one that the service composer maximizes
in our RRL algorithm. The result of the computation gives us web services to select to get
the most competitive composite web service.
Organization. We present our conceptual foundations for the remaining of the paper in
Section 2. That section covers the case study used throughout this paper and our
composition model with its statechart representation and its Directed Acyclic Hypergraph
derivation. It also proposes our QoS model applied by the service user to specify its
priorities and preferences about QoS. Section 3 presents how multiple quality criteria are
aggregated into a single measure of performance. The method is illustrated with the
previously introduced case study. Section 4 introduces our Reinforcement Learning solution
to the composition problem by liken it to the task allocation problem. Section 5 presents
experiments that we made on our Multi-Criteria Randomized Reinforcement Learning
proposal. Section 6 outlines the related work. Finally Section 7 concludes this paper and
exposes our future work.

2. Baseline
This section presents the different conceptual elements used through the paper. Our case
study is introduced in Subsection 2.1. Our services composition model is proposed in
Subsection 2.2 and involves two steps. The first is to define the possible composition process
with a statechart as described in Subsection 2.2.1. We illustrate the statechart representation
with the composition of web services introduced in the case study. The second is to
represent candidate services for each elementary task of the whole composition. This
representation is derived from statecharts with Directed Acyclic Hypergraph. The

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

209

procedure for doing so is explained and illustrated with our case study in Subsection 2.2.2.
We present in Subsection 2.3 the QoS model dedicated to the service user to make its
particular requirements about its QoS priorities and preferences.

2.1 Case study
To illustrate our selection of services entering in a composition, we propose a case study
subsequently used throughout the paper. The European Space Agency's (ESA) program on
Earth observation allows researchers to access and use infrastructure operated and data
collected by the agency.1 Our case study focuses on the information provided by the MERIS
instrument on the Envisat ESA satellite. MERIS is a programmable, medium-spectral
resolution imaging spectrometer operating in the solar reflective spectral range. MERIS is
used in observing ocean color and biology, vegetation and atmosphere and in particular
clouds and precipitation. In relation to MERIS, web services are made available by the ESA
for access to the data the instrument sends and access and use of the associated computing
resources.

Fig. 1. Graphical user interface of the ENVISAT/MERIS MGVI web service

1http://gpod.eo.esa.int

 Machine Learning

210

Among available functionalities delivered by these web services, we focus our attention to
services enabling to extract the vegetation index, or more precisely, the Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR) from MERIS data. The graphical interface
used to determine the requested information for the vegetation index on a given region is
illustrated in Figure 1. The graphical output produced for the world-wide map is given in
Figure 2.
Two main services allow the extraction of such data, one processing the information for the
world-wide map and the other computing information for a given area of the world. The
graphical user interface of the service providing regional data differs from the world wide
one with a bounding box enabling to select an area on the map. World-wide data is much
often requested than data for a given region of the world, so World-wide data can be more
rapidly retrieved than the regional. Moreover, some services authorize the extraction of
regional data from world-wide data.

Fig. 2. Output provided by the world-wide vegetation service

2.2 Web services composition model
Service requests pointed out that various criteria can be used in specifying a service request;
namely, QoS concepts cover deadline, reputation, monetary cost, and explicit requester
preferences. Reputation and trust receive considerable attention in the literature (e.g.,
(Maximilien & Singh, 2005; Zacharia & Maes, 2000)). In AOSS, the ideas underlying
Maximilien and Singh's approach (Maximilien & Singh, 2005) can be followed, with two
caveats: they use “trust” to select services from a pool of competing services and exploit user-
generated opinions to calculate reputation, whereas herein WS are selected automatically and
reputation can be generated by comparing WS behavior observed by the composer and the
advertised behavior of the WS. The following is one way to define reputation in AOSS.2

2Reputation is used here instead of trust since no user opinions are accounted for.

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

211

Definition 1. Reputation iwa
kR

,
 of a WS iw over the QoS aggregated score k is:

() ⎥⎦
⎤

⎢⎣
⎡ −

−
−∑)ˆ(2

1=

, ˆ
1

1=
i
kvtimei

k
Adv
k

n

i

iwa
k vv

n
R δ

where ()time returns the time of observation (a natural, 1 for the most recent observed

value, ˆ() > 1i
ktime v for all other) and δ is the dampening factor for the given quality (can be

used with ()time to give less weight to older observations). We assume that the advertised

quality for iw is 1 1 1 1(, , ,), , (, , ,)Adv Adv
r r r rp d v u p d v u〈 〉… , and that n observations ˆ ,1i

kv i n≤ ≤

have been made over a quality parameter k .
It is apparent that many other criteria can be accounted for when selecting among
alternative WS compositions. Decision making in presence of multiple criteria does not
require full specification of all possible criteria for each WS---instead, it is up to the requester
to choose what criteria to specify. The algorithm thus optimizes a single normalized variable
(i.e., taking values in the interval [0,1]). An aggregation function for the criteria relevant to
the service requester is applied, so that the result of the function is what the algorithm will
optimize. The process providing the aggregation function is presented in Section 3.

2.2.1 Statechart representation
A services composition is a succession of elementary tasks, whose exution fulfills a complex
request. We assume the request describes a process to execute. Individual web services are
combined together according to their functional specifications. Compositions support
alternative possibilities and concurrency of elementary tasks. Similarly to Zeng and
colleagues, our service process is defined as a statechart (Zeng et al., 2003). Statecharts offer
well defined syntax and semantics so that rigorous analysis can be performed with formal
tools to check specification concordance between services. Another advantage is that they
incorporate flow constructs established in process modeling languages (i.e, sequence,
concurrency, conditional branching, structured loops, and inter-thread synchronization).
Consequently, standardized process modeling languages, such as, e.g., BPMN (OMG,
2006a), can be used to specify the process model when selecting services that will enter in
the composition. Statecharts offer the possibility to model alternatives and a composite task
can be achieved by different paths in the statechart. Such paths are named execution paths ant
their definition in relation to statecharts is given in Definition 2.2.1. The statechart is a useful
representation of a process that a WS composition needs to execute, most selection
algorithms cannot process a statechart in its usual form. Instead, a statechart is mapped onto
a Directed Acyclic Hypergraph (DAH), using Definition 2.2.1 and the technique for
constructing DAH, described below.
 (Adapted from (Zeng et al., 2003)) An execution path of a statechart is a sequence of states

1 2[, , ,]nt t t… , such that 1t is the initial state, nt the final state, and for every state
(1 < <)it i n , the following holds:

• it is a direct successor of one of the states in 1 1[, ,]it t −… .
• it is not a direct successor of any of the states in 1[, ,]i nt t+ … .

 Machine Learning

210

Among available functionalities delivered by these web services, we focus our attention to
services enabling to extract the vegetation index, or more precisely, the Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR) from MERIS data. The graphical interface
used to determine the requested information for the vegetation index on a given region is
illustrated in Figure 1. The graphical output produced for the world-wide map is given in
Figure 2.
Two main services allow the extraction of such data, one processing the information for the
world-wide map and the other computing information for a given area of the world. The
graphical user interface of the service providing regional data differs from the world wide
one with a bounding box enabling to select an area on the map. World-wide data is much
often requested than data for a given region of the world, so World-wide data can be more
rapidly retrieved than the regional. Moreover, some services authorize the extraction of
regional data from world-wide data.

Fig. 2. Output provided by the world-wide vegetation service

2.2 Web services composition model
Service requests pointed out that various criteria can be used in specifying a service request;
namely, QoS concepts cover deadline, reputation, monetary cost, and explicit requester
preferences. Reputation and trust receive considerable attention in the literature (e.g.,
(Maximilien & Singh, 2005; Zacharia & Maes, 2000)). In AOSS, the ideas underlying
Maximilien and Singh's approach (Maximilien & Singh, 2005) can be followed, with two
caveats: they use “trust” to select services from a pool of competing services and exploit user-
generated opinions to calculate reputation, whereas herein WS are selected automatically and
reputation can be generated by comparing WS behavior observed by the composer and the
advertised behavior of the WS. The following is one way to define reputation in AOSS.2

2Reputation is used here instead of trust since no user opinions are accounted for.

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

211

Definition 1. Reputation iwa
kR

,
 of a WS iw over the QoS aggregated score k is:

() ⎥⎦
⎤

⎢⎣
⎡ −

−
−∑)ˆ(2

1=

, ˆ
1

1=
i
kvtimei

k
Adv
k

n

i

iwa
k vv

n
R δ

where ()time returns the time of observation (a natural, 1 for the most recent observed

value, ˆ() > 1i
ktime v for all other) and δ is the dampening factor for the given quality (can be

used with ()time to give less weight to older observations). We assume that the advertised

quality for iw is 1 1 1 1(, , ,), , (, , ,)Adv Adv
r r r rp d v u p d v u〈 〉… , and that n observations ˆ ,1i

kv i n≤ ≤

have been made over a quality parameter k .
It is apparent that many other criteria can be accounted for when selecting among
alternative WS compositions. Decision making in presence of multiple criteria does not
require full specification of all possible criteria for each WS---instead, it is up to the requester
to choose what criteria to specify. The algorithm thus optimizes a single normalized variable
(i.e., taking values in the interval [0,1]). An aggregation function for the criteria relevant to
the service requester is applied, so that the result of the function is what the algorithm will
optimize. The process providing the aggregation function is presented in Section 3.

2.2.1 Statechart representation
A services composition is a succession of elementary tasks, whose exution fulfills a complex
request. We assume the request describes a process to execute. Individual web services are
combined together according to their functional specifications. Compositions support
alternative possibilities and concurrency of elementary tasks. Similarly to Zeng and
colleagues, our service process is defined as a statechart (Zeng et al., 2003). Statecharts offer
well defined syntax and semantics so that rigorous analysis can be performed with formal
tools to check specification concordance between services. Another advantage is that they
incorporate flow constructs established in process modeling languages (i.e, sequence,
concurrency, conditional branching, structured loops, and inter-thread synchronization).
Consequently, standardized process modeling languages, such as, e.g., BPMN (OMG,
2006a), can be used to specify the process model when selecting services that will enter in
the composition. Statecharts offer the possibility to model alternatives and a composite task
can be achieved by different paths in the statechart. Such paths are named execution paths ant
their definition in relation to statecharts is given in Definition 2.2.1. The statechart is a useful
representation of a process that a WS composition needs to execute, most selection
algorithms cannot process a statechart in its usual form. Instead, a statechart is mapped onto
a Directed Acyclic Hypergraph (DAH), using Definition 2.2.1 and the technique for
constructing DAH, described below.
 (Adapted from (Zeng et al., 2003)) An execution path of a statechart is a sequence of states

1 2[, , ,]nt t t… , such that 1t is the initial state, nt the final state, and for every state
(1 < <)it i n , the following holds:

• it is a direct successor of one of the states in 1 1[, ,]it t −… .
• it is not a direct successor of any of the states in 1[, ,]i nt t+ … .

 Machine Learning

212

• There is no state jt in 1 1[, ,]it t −… such that jt and it belong to two alternative branches
of the statechart.

Fig. 3. Statechart representation of the composite service

We concentrate our efforts here on the description of elementary tasks of a composite
service processing the FAPAR for a given region of the world. Two main paths of tasks
allow to achieve this composite service. Besides elementary tasks stepping in both paths, the
first path uses services allowing to process data for a given region of the world while the
second path process the world-wide data and restrains the information to the given area.
The composite service and its elementary tasks are illustrated with the corresponding
statechart in Figure 2.2.1.

2.2.2 Directed acyclic hypergraph instantiation
It is apparent that an acyclic statechart has a finite number of execution paths. If the
statechart is not acyclic, it must be “unfolded” (Zeng et al., 2003): logs of past executions
need to be examined in order to determine the average number of times that each cycle is
taken. The states between the start and end of a cycle are then duplicated as many times as
the cycle is taken on average. Assuming for simplicity here that the statechart is acyclic, an
execution path can be represented as a Directed Acyclic Hypergraph.
Given a set of distinct execution paths 1, ,{[, ,]}k n kt t… (k is the index for execution paths),
the Directed Acyclic Hypergraph (DAH) is obtained as follows:
• DAH has an edge for every pair (,)task WS which indicates the allocation of WS to the

given task. DAH thus has as many edges as there are possible allocations of WS to
tasks.

• DAH has a node for every state of the task allocation problem. Such a state exists
between any two sequentially ordered tasks of the task allocation problem (i.e., a node
connecting two sets of edges in the DAH, whereby the two tasks associated to the two
sets of edges are to be executed in a sequence).

Note that: (i) the DAH shows all alternative allocations and all alternative execution paths
for a given statechart; (ii) conditional branchings in a statechart are represented with
multiple execution paths.
Available web services for fulfilling individual tasks of our composite service proposed in
Figure 2.2.1 need to be represented in a DAH to apply our selection approach. Each state of
the statechart will become a node in the DAH with an additional starting node depicting the
initial state. The resulting DAH is available in Figure 3 with each edge standing for a service
able to fulfill the task specified in the outgoing node of the edge. Several services provided
by the ESA are able to fulfill each individual tasks of the composite service providing the
FAPAR index. The DAH representation gather web services which can be used at different
steps of the execution.

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

213

Fig. 4. DAH representation of the composite service

2.3 Specification of user priorities and preferences
We suggest a QoS model that enables the user to express accurately its needs about quality
properties of its required service. To account for various aspects of user expectations, this
model must include advanced concepts such as priorities over quality characteristics or
preferences on offered values. To enable specifying these concepts, the model contains
modeling constructs dedicated to various facets of user expectations.
Among multiple available QoS models (D’Ambrogio, 2006; Keller & Ludwig, 2003; Zhou et
al., 2004), we base our model on the UML QoS Profile. The original UML QoS Framework
metamodel, introduced by the Object Management Group (OMG, 2006b), includes modeling
constructs for the description of QoS considerations. It has some advantages over other
models: it is based on the Unified Modeling Language (UML); it is a standard provided by
the Object Management Group (OMG); it is a metamodel that can be instantiated in respect
to users needs; and it covers numerous modeling constructs and allows to add some
extensions. This model with our extensions are shown in Figure 2.3.
In that metamodel, a QoS Characteristic is a description for some quality consideration, such
as e.g., latency, availability, reliability or capability. Extensions and specializations of such
elements are available with the sub-parent self-relation. A characteristic has the ability to be
derived into various other characteristics as suggested by the templates-derivations self-
relation. A QoS Dimension specifies a measure that quantifies a QoS Characteristic. The unit
attribute specifies the unit for the value dimension. QoS Values are instantiations of QoS
Dimensions that define specific values for dimensions depending on the value definitions
given in QoS DimensionSlots. A QoS DimensionSlot represents the value of QoSValue. It can
be either a primitive QoS Dimension or a referenced value of another QoSValue. While
constraints usually combine functional and non-functional considerations about the system,
QoS Context is used to describe the context in which quality expression are involved. A
context includes several QoS Characteristics and model elements. The aim of QoS Constraints
is to restrict values of QoS Characteristics. Constraints describe limitations on characteristics
of modeling elements identified by application requirements and architectural decisions.
In comparison with the original OMG metamodel, we make some additional assumptions:
• In the OMG standard, QoS Characteristics are quantified by means of one or several QoS

Dimensions. We assume that the value of a QoS Dimension can similarly be calculated
with quantitative measures of other QoS Dimensions. This assumption is expressed in
the metamodel in Figure 2.3 through the Compose-Composed by relationship of the QoS
Dimension metaclass.

 Machine Learning

212

• There is no state jt in 1 1[, ,]it t −… such that jt and it belong to two alternative branches
of the statechart.

Fig. 3. Statechart representation of the composite service

We concentrate our efforts here on the description of elementary tasks of a composite
service processing the FAPAR for a given region of the world. Two main paths of tasks
allow to achieve this composite service. Besides elementary tasks stepping in both paths, the
first path uses services allowing to process data for a given region of the world while the
second path process the world-wide data and restrains the information to the given area.
The composite service and its elementary tasks are illustrated with the corresponding
statechart in Figure 2.2.1.

2.2.2 Directed acyclic hypergraph instantiation
It is apparent that an acyclic statechart has a finite number of execution paths. If the
statechart is not acyclic, it must be “unfolded” (Zeng et al., 2003): logs of past executions
need to be examined in order to determine the average number of times that each cycle is
taken. The states between the start and end of a cycle are then duplicated as many times as
the cycle is taken on average. Assuming for simplicity here that the statechart is acyclic, an
execution path can be represented as a Directed Acyclic Hypergraph.
Given a set of distinct execution paths 1, ,{[, ,]}k n kt t… (k is the index for execution paths),
the Directed Acyclic Hypergraph (DAH) is obtained as follows:
• DAH has an edge for every pair (,)task WS which indicates the allocation of WS to the

given task. DAH thus has as many edges as there are possible allocations of WS to
tasks.

• DAH has a node for every state of the task allocation problem. Such a state exists
between any two sequentially ordered tasks of the task allocation problem (i.e., a node
connecting two sets of edges in the DAH, whereby the two tasks associated to the two
sets of edges are to be executed in a sequence).

Note that: (i) the DAH shows all alternative allocations and all alternative execution paths
for a given statechart; (ii) conditional branchings in a statechart are represented with
multiple execution paths.
Available web services for fulfilling individual tasks of our composite service proposed in
Figure 2.2.1 need to be represented in a DAH to apply our selection approach. Each state of
the statechart will become a node in the DAH with an additional starting node depicting the
initial state. The resulting DAH is available in Figure 3 with each edge standing for a service
able to fulfill the task specified in the outgoing node of the edge. Several services provided
by the ESA are able to fulfill each individual tasks of the composite service providing the
FAPAR index. The DAH representation gather web services which can be used at different
steps of the execution.

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

213

Fig. 4. DAH representation of the composite service

2.3 Specification of user priorities and preferences
We suggest a QoS model that enables the user to express accurately its needs about quality
properties of its required service. To account for various aspects of user expectations, this
model must include advanced concepts such as priorities over quality characteristics or
preferences on offered values. To enable specifying these concepts, the model contains
modeling constructs dedicated to various facets of user expectations.
Among multiple available QoS models (D’Ambrogio, 2006; Keller & Ludwig, 2003; Zhou et
al., 2004), we base our model on the UML QoS Profile. The original UML QoS Framework
metamodel, introduced by the Object Management Group (OMG, 2006b), includes modeling
constructs for the description of QoS considerations. It has some advantages over other
models: it is based on the Unified Modeling Language (UML); it is a standard provided by
the Object Management Group (OMG); it is a metamodel that can be instantiated in respect
to users needs; and it covers numerous modeling constructs and allows to add some
extensions. This model with our extensions are shown in Figure 2.3.
In that metamodel, a QoS Characteristic is a description for some quality consideration, such
as e.g., latency, availability, reliability or capability. Extensions and specializations of such
elements are available with the sub-parent self-relation. A characteristic has the ability to be
derived into various other characteristics as suggested by the templates-derivations self-
relation. A QoS Dimension specifies a measure that quantifies a QoS Characteristic. The unit
attribute specifies the unit for the value dimension. QoS Values are instantiations of QoS
Dimensions that define specific values for dimensions depending on the value definitions
given in QoS DimensionSlots. A QoS DimensionSlot represents the value of QoSValue. It can
be either a primitive QoS Dimension or a referenced value of another QoSValue. While
constraints usually combine functional and non-functional considerations about the system,
QoS Context is used to describe the context in which quality expression are involved. A
context includes several QoS Characteristics and model elements. The aim of QoS Constraints
is to restrict values of QoS Characteristics. Constraints describe limitations on characteristics
of modeling elements identified by application requirements and architectural decisions.
In comparison with the original OMG metamodel, we make some additional assumptions:
• In the OMG standard, QoS Characteristics are quantified by means of one or several QoS

Dimensions. We assume that the value of a QoS Dimension can similarly be calculated
with quantitative measures of other QoS Dimensions. This assumption is expressed in
the metamodel in Figure 2.3 through the Compose-Composed by relationship of the QoS
Dimension metaclass.

 Machine Learning

214

Fig. 5. UML metaclasses to user modeling

• We allow the user to express its priorities over QoS Characteristics and over QoS
Dimensions by means of, respectively, QoS Charact Priority and QoS Dim Priority
metaclasses whose are specializations of the QoS Priority metaclass. Its attribute rules
concerns QoS Characteristics or QoS Dimensions involved in the priority and the
direction of the priority while the attribute strength indicates the relative importance of
the priority. QoS Priority Condition indicates conditions that need to hold in order for the
priority to become applicable.

• To enable the user to express its preferences over values of QoS Characteristics and QoS
Dimensions, we add a specific metaclass: QoS Preference. Preferences over values are
defined with some attributes: direction states if the value has to be minimized or
maximized; max value indicates the maximal value expected by the user and defines its
preference.

Fig. 6. User specifications

To illustrate our scoring model, we suppose a service requester who wishes to use our
composite service processing FAPAR for a given area of the world while optimizing the
following QoS Characteristics: availability, cost, latency, reliability, reputation and security.
Some of these quality considerations are not directly quantifiable, and are measured with
help of multiple QoS Dimensions (e.g.: latency is quantified by network time and execution
time), others are measured with a single QoS Dimension (e.g.: the availability is a measure

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

215

provided in %). All these information are specified by the service requester with the help of
our proposed QoS model. Parts of the complete specification of the user are illustrated in
Figure 2.3.

3. QoS scoring of services
In order to select web services that will fulfill the different elementary tasks of the
composition, the service composer must decide between them. Because web services
represented in the DAH meet functional requirements, their discrimination will be made on
their quality properties. To account for multiple quality properties in the reinforcement
learning composition process, QoS need to be adequately aggregated. We explain in this
section how the composer give an aggregated QoS score to each available service of the
composition with help of Multi-Criteria Decision Making (MCDM) techniques. The QoS
score is calculated by considering quality requirements expressed by the service user. To
express such requirements, that must be interpretable by the service composer, the user
needs an appropriate quality model. We present our QoS model and illustrate its utilization
with the earth observation composite service of the ESA introduced in Subsection 2.2.
The service composer uses information specified with the QoS model in combination with
Multi-Criteria Decision Making (MCDM) techniques to establish an aggregated measure of
quality properties on all available services. This measure must be calculated for each service
candidate of the composition. However multiple execution paths are available in the DAH
representation of the composite service and, these paths can be subject to major variations in
quality performance. In our ESA case study, we observed that services used to generate
world-wide data are slower than services providing regional data but are also more reliable.
Anyway, scores of services need to be comparable to service candidates on all paths of the
composition. To achieve this global measurement, the scoring will be established by
pairwise comparisons on all services suitable for any tasks of the composition.
The scoring process involves the following steps: (1) apply hard constraints on services, to
restrict the set of services upon whose MCDM calculation will be made. (2) establish the
hierarchy of quality properties with information related to characteristics and dimensions
decomposition, each property being considered as a criterion of the MCDM model.
Moreover, two distinct hierarchies are build, the first dedicated to benefits, i.e.: criteria to
maximize, the second dedicated to costs, i.e.: criteria to minimize. (3) fix the priorities of
quality properties by applying the Analytic Hierarchy Process (AHP) on both hierarchies.
(4) give a score to each service alternative for both benefits and costs hierarchies. This step is
done with the Simple Additive Weighting (SAW) process, which gives us the opportunity to
score alternatives with few information given on criteria. (5) for each alternative, the ratio
benefits/costs is computed by service composer and a score is linked to each available
service.

3.1 Fixing hard constraints
Hard constraints on quality properties (i.e.: QoS Characteristics or QoS Dimensions) are
defined by the user to restrict the set of accepted services. These are specified with the QoS
Constraint metaclass and fix thresholds to values of a QoS Dimension. While the service
composer assigns best available services to the service requester, services that do not fulfill
thresholds values for the different QoS Dimensions taken into account are considered

 Machine Learning

214

Fig. 5. UML metaclasses to user modeling

• We allow the user to express its priorities over QoS Characteristics and over QoS
Dimensions by means of, respectively, QoS Charact Priority and QoS Dim Priority
metaclasses whose are specializations of the QoS Priority metaclass. Its attribute rules
concerns QoS Characteristics or QoS Dimensions involved in the priority and the
direction of the priority while the attribute strength indicates the relative importance of
the priority. QoS Priority Condition indicates conditions that need to hold in order for the
priority to become applicable.

• To enable the user to express its preferences over values of QoS Characteristics and QoS
Dimensions, we add a specific metaclass: QoS Preference. Preferences over values are
defined with some attributes: direction states if the value has to be minimized or
maximized; max value indicates the maximal value expected by the user and defines its
preference.

Fig. 6. User specifications

To illustrate our scoring model, we suppose a service requester who wishes to use our
composite service processing FAPAR for a given area of the world while optimizing the
following QoS Characteristics: availability, cost, latency, reliability, reputation and security.
Some of these quality considerations are not directly quantifiable, and are measured with
help of multiple QoS Dimensions (e.g.: latency is quantified by network time and execution
time), others are measured with a single QoS Dimension (e.g.: the availability is a measure

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

215

provided in %). All these information are specified by the service requester with the help of
our proposed QoS model. Parts of the complete specification of the user are illustrated in
Figure 2.3.

3. QoS scoring of services
In order to select web services that will fulfill the different elementary tasks of the
composition, the service composer must decide between them. Because web services
represented in the DAH meet functional requirements, their discrimination will be made on
their quality properties. To account for multiple quality properties in the reinforcement
learning composition process, QoS need to be adequately aggregated. We explain in this
section how the composer give an aggregated QoS score to each available service of the
composition with help of Multi-Criteria Decision Making (MCDM) techniques. The QoS
score is calculated by considering quality requirements expressed by the service user. To
express such requirements, that must be interpretable by the service composer, the user
needs an appropriate quality model. We present our QoS model and illustrate its utilization
with the earth observation composite service of the ESA introduced in Subsection 2.2.
The service composer uses information specified with the QoS model in combination with
Multi-Criteria Decision Making (MCDM) techniques to establish an aggregated measure of
quality properties on all available services. This measure must be calculated for each service
candidate of the composition. However multiple execution paths are available in the DAH
representation of the composite service and, these paths can be subject to major variations in
quality performance. In our ESA case study, we observed that services used to generate
world-wide data are slower than services providing regional data but are also more reliable.
Anyway, scores of services need to be comparable to service candidates on all paths of the
composition. To achieve this global measurement, the scoring will be established by
pairwise comparisons on all services suitable for any tasks of the composition.
The scoring process involves the following steps: (1) apply hard constraints on services, to
restrict the set of services upon whose MCDM calculation will be made. (2) establish the
hierarchy of quality properties with information related to characteristics and dimensions
decomposition, each property being considered as a criterion of the MCDM model.
Moreover, two distinct hierarchies are build, the first dedicated to benefits, i.e.: criteria to
maximize, the second dedicated to costs, i.e.: criteria to minimize. (3) fix the priorities of
quality properties by applying the Analytic Hierarchy Process (AHP) on both hierarchies.
(4) give a score to each service alternative for both benefits and costs hierarchies. This step is
done with the Simple Additive Weighting (SAW) process, which gives us the opportunity to
score alternatives with few information given on criteria. (5) for each alternative, the ratio
benefits/costs is computed by service composer and a score is linked to each available
service.

3.1 Fixing hard constraints
Hard constraints on quality properties (i.e.: QoS Characteristics or QoS Dimensions) are
defined by the user to restrict the set of accepted services. These are specified with the QoS
Constraint metaclass and fix thresholds to values of a QoS Dimension. While the service
composer assigns best available services to the service requester, services that do not fulfill
thresholds values for the different QoS Dimensions taken into account are considered

 Machine Learning

216

irrelevant. Constraints allow us to decrease the number of alternative services to consider
when applying MCDM - all services that do not satisfy the constraints are not considered for
comparison.
The complete specification made by the service requester with the QoS model is transmitted
to the service composer that will process all steps of the selection. The composer starts by
rejecting services that do not fulfill hard constraints. For example, in specification given in
Figure 2.3, the composer restrains available services to those that have an Availability higher
than 80%.

3.2 Characteristics and dimensions hierarchies
Decomposition of QoS Characteristics into QoS Dimensions and QoS Dimensions into others
QoS Dimensions may be used by the service composer to build a complete hierarchy of QoS
properties. This information is expressed with help of the relations Type - Typed between the
QoS Characteristic and the QoS Dimension metaclasses and Compose - Composed by defined
over the QoS Dimension metaclass. The hierarchy established by the service composer
allows to bind weights to QoS properties at different levels. This way, their relative
importance is aggregated in accordance with the QoS properties that these quantify. To
account for measurement of QoS Characteristics by QoS Dimensions and quantification of
QoS Dimensions, we classify them into two separate hierarchies. The first is dedicated to
benefits, all quality properties that have to be maximized: availability, reliability, reputation,
etc. The second is designed for costs, involving quality properties to minimize: execution
time, failures, cost, etc. Modality (maximize or minimize) of QoS properties is defined with
the attribute direction of the QoS Value class. These two hierarchies are linked to the same
global optimization goal. This top-down organization clearly indicates the contributions of
lower levels of quality properties to upper ones. The final hierarchy obtained takes the form
of a tree.
The second step of the service composer is to establish benefits and costs hierarchies with
the information provided by the service requester. The hierarchy corresponding to
expectations formulated by the requester for the ESA composite service is illustrated in
Figure 3.2.

Fig. 7. Benefits and costs hierarchies

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

217

3.3 Priorities over criteria
Priorities information is used to bind weights to QoS Characteristics and QoS Dimensions,
reflecting their respective relative importance. These weights are defined using QoS
Priorities specifications given by the service user and are linked to the corresponding QoS
properties. Once the hierarchy is established, the relative importance of each QoS property
has to be fixed with a weight reflecting its contribution to the main optimization goal. These
weights must be fixed independently for benefits criteria and for costs criteria to consider
separately positive and negative QoS properties. To fix weights on such hierarchies, we use
the Analytic Hierarchy Process (AHP) (Saaty, 1980). The Analytic Hierarchy Process fixes
weights to criteria with help of comparison matrices provided for each level of criteria. For a
same level, each criterion is compared with other criteria of its level on a scale fixed between
1/9 and 9. Each matrix is build with QoS Priority specifications: rules express direction of
pairwise comparisons of criteria and strength fixes the value chosen by the user on the scale
for the comparison. Next, weights of QoS properties are obtained with the computation of
the right eigenvector of the matrix. The eigenvector is computed by raising the pairwise
matrix to powers that are successively squared each time. The rows sums are then calculated
and normalized. The computation is stopped when the difference between these sums in
two consecutive calculations is smaller than a prescribed value. The service composer
adopts a top-down approach, the weights of each level being multiplied by the weight of the
quality property of its upper level to determine its relative importance on the whole
hierarchy. This process is performed on both sides of the tree, for positive and negative
quality properties.
The third step of the composer is to fix weights for each level of criteria with the AHP
method. With the information provided by QoS Priority instance in Figure 2.3, the service
composer is able to build a comparison matrix for dimensions quantifying the Latency. In the
case or our composite service computing the FAPAR index for a given area of the world, the
service requester favors the Execution time rather than the Network time. In fact, Execution time
is the main bottleneck of the service execution due to huge quantity of data processed. This

matrix is 1 4
1/ 4 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

. The composer computes its eigenvector to obtain weights for this level,

in the example: 0.2 for Network Time and 0.8 for Execution Time. These weights are multiplied
by weights of upper levels to determine weights of the whole hierarchy that are illustrated
in Figure 3.2.

3.4 QoS scoring with user preferences
Preferences information specified by the user on QoS Values is used by the service composer
to compute the score of the service. We use this information to determine what values are
preferred for a given QoS Characteristic or QoS Dimension. The priorities of quality
properties have been fixed with weights reflecting their relative importance. Preferences on
values allow us to discriminate services on a given criterion. To quantify these preferences,
we rely on a specific class of MCDM methods: scoring methods (Figueira et al., 2005) and
more specifically the Simple Additive Weighting (SAW) method (Hwang & Yoon, 1981).
This method is based on the weighted average. An evaluation score is calculated for each
alternative by multiplying the scaled value given to the alternative of that attribute with the
weights given by the AHP method. Next, these products are summed for all criteria
involved in the decision making process. Each service alternative is evaluated on both
hierarchies, i.e.: benefits and costs, with the following formula:

 Machine Learning

216

irrelevant. Constraints allow us to decrease the number of alternative services to consider
when applying MCDM - all services that do not satisfy the constraints are not considered for
comparison.
The complete specification made by the service requester with the QoS model is transmitted
to the service composer that will process all steps of the selection. The composer starts by
rejecting services that do not fulfill hard constraints. For example, in specification given in
Figure 2.3, the composer restrains available services to those that have an Availability higher
than 80%.

3.2 Characteristics and dimensions hierarchies
Decomposition of QoS Characteristics into QoS Dimensions and QoS Dimensions into others
QoS Dimensions may be used by the service composer to build a complete hierarchy of QoS
properties. This information is expressed with help of the relations Type - Typed between the
QoS Characteristic and the QoS Dimension metaclasses and Compose - Composed by defined
over the QoS Dimension metaclass. The hierarchy established by the service composer
allows to bind weights to QoS properties at different levels. This way, their relative
importance is aggregated in accordance with the QoS properties that these quantify. To
account for measurement of QoS Characteristics by QoS Dimensions and quantification of
QoS Dimensions, we classify them into two separate hierarchies. The first is dedicated to
benefits, all quality properties that have to be maximized: availability, reliability, reputation,
etc. The second is designed for costs, involving quality properties to minimize: execution
time, failures, cost, etc. Modality (maximize or minimize) of QoS properties is defined with
the attribute direction of the QoS Value class. These two hierarchies are linked to the same
global optimization goal. This top-down organization clearly indicates the contributions of
lower levels of quality properties to upper ones. The final hierarchy obtained takes the form
of a tree.
The second step of the service composer is to establish benefits and costs hierarchies with
the information provided by the service requester. The hierarchy corresponding to
expectations formulated by the requester for the ESA composite service is illustrated in
Figure 3.2.

Fig. 7. Benefits and costs hierarchies

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

217

3.3 Priorities over criteria
Priorities information is used to bind weights to QoS Characteristics and QoS Dimensions,
reflecting their respective relative importance. These weights are defined using QoS
Priorities specifications given by the service user and are linked to the corresponding QoS
properties. Once the hierarchy is established, the relative importance of each QoS property
has to be fixed with a weight reflecting its contribution to the main optimization goal. These
weights must be fixed independently for benefits criteria and for costs criteria to consider
separately positive and negative QoS properties. To fix weights on such hierarchies, we use
the Analytic Hierarchy Process (AHP) (Saaty, 1980). The Analytic Hierarchy Process fixes
weights to criteria with help of comparison matrices provided for each level of criteria. For a
same level, each criterion is compared with other criteria of its level on a scale fixed between
1/9 and 9. Each matrix is build with QoS Priority specifications: rules express direction of
pairwise comparisons of criteria and strength fixes the value chosen by the user on the scale
for the comparison. Next, weights of QoS properties are obtained with the computation of
the right eigenvector of the matrix. The eigenvector is computed by raising the pairwise
matrix to powers that are successively squared each time. The rows sums are then calculated
and normalized. The computation is stopped when the difference between these sums in
two consecutive calculations is smaller than a prescribed value. The service composer
adopts a top-down approach, the weights of each level being multiplied by the weight of the
quality property of its upper level to determine its relative importance on the whole
hierarchy. This process is performed on both sides of the tree, for positive and negative
quality properties.
The third step of the composer is to fix weights for each level of criteria with the AHP
method. With the information provided by QoS Priority instance in Figure 2.3, the service
composer is able to build a comparison matrix for dimensions quantifying the Latency. In the
case or our composite service computing the FAPAR index for a given area of the world, the
service requester favors the Execution time rather than the Network time. In fact, Execution time
is the main bottleneck of the service execution due to huge quantity of data processed. This

matrix is 1 4
1/ 4 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

. The composer computes its eigenvector to obtain weights for this level,

in the example: 0.2 for Network Time and 0.8 for Execution Time. These weights are multiplied
by weights of upper levels to determine weights of the whole hierarchy that are illustrated
in Figure 3.2.

3.4 QoS scoring with user preferences
Preferences information specified by the user on QoS Values is used by the service composer
to compute the score of the service. We use this information to determine what values are
preferred for a given QoS Characteristic or QoS Dimension. The priorities of quality
properties have been fixed with weights reflecting their relative importance. Preferences on
values allow us to discriminate services on a given criterion. To quantify these preferences,
we rely on a specific class of MCDM methods: scoring methods (Figueira et al., 2005) and
more specifically the Simple Additive Weighting (SAW) method (Hwang & Yoon, 1981).
This method is based on the weighted average. An evaluation score is calculated for each
alternative by multiplying the scaled value given to the alternative of that attribute with the
weights given by the AHP method. Next, these products are summed for all criteria
involved in the decision making process. Each service alternative is evaluated on both
hierarchies, i.e.: benefits and costs, with the following formula:

 Machine Learning

218

 *=u i uis w x×∑ (1)

 Where iw is the weight of the QoS property i get with the AHP method and *
uix is the

scaled score of the service alternative u on the QoS property i.
The scores for the QoS properties are measured with different scales, i.e.: percentage,
second, level, etc. Such measurement scales must be standardized to a common
dimensionless unit before applying the SAW method. The scaling of a service alternative for
a given QoS property is evaluated with the following formula:

 max
i

ui
ui x

xx =* (2)

where *
uix is the scaled score of the service alternative u on the QoS property i . uix is the

score of the service alternative u on the QoS property i expressed with its original unit. max
ix

is the maximal possible score on the QoS property i. This maximal score is expressed by the
user with help of the max value attribute of the QoS Preference class illustrated in Figure 2.3.
When the unit of the QoS Property is a percentage, the maximal value is systematically
equal to 100. If the unit is a time period as second, the user defines himself the maximal
value. So, the scaled scores will reflect the preferences of the user with means of the relative
importance of the maximal value by contrast to observed values.
Once weights reflecting the relative importance of each QoS property have been fixed, the
fourth step of the service composer is to define the score of each alternative for both benefits
and costs hierarchies with user preferences. It uses the SAW method and begins by scaling
the score of all alternatives on all QoS properties involved in the selection process. For
example, in Figure 2.3, the max value proposed by the service user for the Network time is
20 sec. With a service alternative offering a Network Time of 13 sec, the scaled score of this
service for the Network Time QoS property is 65%. This score is then multiplied by 0,13333,
the weight of the Network Time. This process is summed for all QoS properties considered
and repeated for all existing service alternatives on both hierarchies.

3.5 Benefits/costs analysis
Scores of services alternatives get with the SAW method on both hierarchies define the
relative performance of services on positive properties (benefits) and negative properties
(costs). Benefits should be maximized while costs have to be minimized, to aggregate both
considerations into a single measure of performance, the AHP MCDM method proposes to
execute the benefits/costs ratio (Figueira et al., 2005). The benefits/costs ratio is evaluated
with the following formula:

 costs
u

benefits
u

u s
sr = (3)

where ur is the final score of the service alternative u. benefits
us is the score of the service u on

the benefits hierarchy and costs
us is the score of the service a on the costs hierarchy.

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

219

The last step of the composer is then to compute the benefits/costs ratio of each alternative
as suggested by some AHP variations. E.g.: if a service alternative has a score of 0,8126 for
its benefits hierarchy and a score of 0,7270 for its costs hierarchy, the final score of its service

is
0,8126 = 1,1177
0,7270

. The respective score of each service is then linked to reflect its relative

performance.

4. Web services composition with randomized RL algorithm
An important issue is the selection of WS that are to participate in performing the process
described in the composition model. This problem is referred to as the task allocation
problem in the remainder.
Reinforcement Learning (RL) (see, e.g., (Sutton & Barto, 1998) for an introduction) is a
particularly attractive approach to allocating tasks to WS. RL is a collection of methods for
approximating optimal solutions to stochastic sequential decision problems (Sutton & Barto,
1998). An RL system does not require a teacher to specify correct actions. Instead, the
learning agent tries different actions and observes the consequences to determine which are
best. More specifically, in the RL framework, a learning agent interacts with an environment
over some discrete time scale = 0,1, 2,3t , At each time step t , the environment is in
some state, tk . The agent chooses an action, tu , which causes the environment to transition
to state 1tk + and to emit a feedback, 1tr+ , called ``reward''. A reward may be positive or
negative, but must be bounded and it informs the agent on the performance of the selected
actions. The next state and reward depend only on the preceding state and action, but they
may depend on it in a stochastic fashion. The objective of reinforcement learning is to use
observed rewards to learn an optimal (or nearly optimal) mapping from states to actions,
which is called an optimal policy, Π . An optimal policy is a policy that maximizes the
expected total reward (see, § 4.2, Eq. 5). More precisely, the objective is to choose action tu ,
for all 0t ≤ , so as to maximize the expected return. Using the terminology of this paper, RL
can be said to refer to trial-and-error methods in which the composer learns to make good
allocations of WS to tasks through a sequence of " interactions" . In task allocation, an
interaction consists of the following:
1. The composer identifies the task to which a WS is to be allocated.
2. The composer chooses the WS to allocate to the task.
3. The composer receives a reward after the WS executes the task. Based on the reward,

the composer learns whether the allocation of the given WS to the task is appropriate or
not.

4. The composer moves to the next task to execute (i.e., the next interaction takes place).
One advantage of RL over, e.g., queuing-theoretic algorithms (e.g., (Urgaonkar et al., 2005)),
is that the procedure for allocating WS to tasks is continually rebuilt at runtime: i.e., the
composition procedure changes as the observed outcomes of prior composition choices
become available. The WS composer tries various allocations of WS to tasks, and learns from
the consequences of each allocation. Another advantage is that RL does not require an
explicit and detailed model of either the computing system whose operation it manages, nor
of the external process that generates the composition model. Finally, being grounded in
Markov Decision Processes, the RL is a sequential decision theory that properly treats the

 Machine Learning

218

 *=u i uis w x×∑ (1)

 Where iw is the weight of the QoS property i get with the AHP method and *
uix is the

scaled score of the service alternative u on the QoS property i.
The scores for the QoS properties are measured with different scales, i.e.: percentage,
second, level, etc. Such measurement scales must be standardized to a common
dimensionless unit before applying the SAW method. The scaling of a service alternative for
a given QoS property is evaluated with the following formula:

 max
i

ui
ui x

xx =* (2)

where *
uix is the scaled score of the service alternative u on the QoS property i . uix is the

score of the service alternative u on the QoS property i expressed with its original unit. max
ix

is the maximal possible score on the QoS property i. This maximal score is expressed by the
user with help of the max value attribute of the QoS Preference class illustrated in Figure 2.3.
When the unit of the QoS Property is a percentage, the maximal value is systematically
equal to 100. If the unit is a time period as second, the user defines himself the maximal
value. So, the scaled scores will reflect the preferences of the user with means of the relative
importance of the maximal value by contrast to observed values.
Once weights reflecting the relative importance of each QoS property have been fixed, the
fourth step of the service composer is to define the score of each alternative for both benefits
and costs hierarchies with user preferences. It uses the SAW method and begins by scaling
the score of all alternatives on all QoS properties involved in the selection process. For
example, in Figure 2.3, the max value proposed by the service user for the Network time is
20 sec. With a service alternative offering a Network Time of 13 sec, the scaled score of this
service for the Network Time QoS property is 65%. This score is then multiplied by 0,13333,
the weight of the Network Time. This process is summed for all QoS properties considered
and repeated for all existing service alternatives on both hierarchies.

3.5 Benefits/costs analysis
Scores of services alternatives get with the SAW method on both hierarchies define the
relative performance of services on positive properties (benefits) and negative properties
(costs). Benefits should be maximized while costs have to be minimized, to aggregate both
considerations into a single measure of performance, the AHP MCDM method proposes to
execute the benefits/costs ratio (Figueira et al., 2005). The benefits/costs ratio is evaluated
with the following formula:

 costs
u

benefits
u

u s
sr = (3)

where ur is the final score of the service alternative u. benefits
us is the score of the service u on

the benefits hierarchy and costs
us is the score of the service a on the costs hierarchy.

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

219

The last step of the composer is then to compute the benefits/costs ratio of each alternative
as suggested by some AHP variations. E.g.: if a service alternative has a score of 0,8126 for
its benefits hierarchy and a score of 0,7270 for its costs hierarchy, the final score of its service

is
0,8126 = 1,1177
0,7270

. The respective score of each service is then linked to reflect its relative

performance.

4. Web services composition with randomized RL algorithm
An important issue is the selection of WS that are to participate in performing the process
described in the composition model. This problem is referred to as the task allocation
problem in the remainder.
Reinforcement Learning (RL) (see, e.g., (Sutton & Barto, 1998) for an introduction) is a
particularly attractive approach to allocating tasks to WS. RL is a collection of methods for
approximating optimal solutions to stochastic sequential decision problems (Sutton & Barto,
1998). An RL system does not require a teacher to specify correct actions. Instead, the
learning agent tries different actions and observes the consequences to determine which are
best. More specifically, in the RL framework, a learning agent interacts with an environment
over some discrete time scale = 0,1, 2,3t , At each time step t , the environment is in
some state, tk . The agent chooses an action, tu , which causes the environment to transition
to state 1tk + and to emit a feedback, 1tr+ , called ``reward''. A reward may be positive or
negative, but must be bounded and it informs the agent on the performance of the selected
actions. The next state and reward depend only on the preceding state and action, but they
may depend on it in a stochastic fashion. The objective of reinforcement learning is to use
observed rewards to learn an optimal (or nearly optimal) mapping from states to actions,
which is called an optimal policy, Π . An optimal policy is a policy that maximizes the
expected total reward (see, § 4.2, Eq. 5). More precisely, the objective is to choose action tu ,
for all 0t ≤ , so as to maximize the expected return. Using the terminology of this paper, RL
can be said to refer to trial-and-error methods in which the composer learns to make good
allocations of WS to tasks through a sequence of " interactions" . In task allocation, an
interaction consists of the following:
1. The composer identifies the task to which a WS is to be allocated.
2. The composer chooses the WS to allocate to the task.
3. The composer receives a reward after the WS executes the task. Based on the reward,

the composer learns whether the allocation of the given WS to the task is appropriate or
not.

4. The composer moves to the next task to execute (i.e., the next interaction takes place).
One advantage of RL over, e.g., queuing-theoretic algorithms (e.g., (Urgaonkar et al., 2005)),
is that the procedure for allocating WS to tasks is continually rebuilt at runtime: i.e., the
composition procedure changes as the observed outcomes of prior composition choices
become available. The WS composer tries various allocations of WS to tasks, and learns from
the consequences of each allocation. Another advantage is that RL does not require an
explicit and detailed model of either the computing system whose operation it manages, nor
of the external process that generates the composition model. Finally, being grounded in
Markov Decision Processes, the RL is a sequential decision theory that properly treats the

 Machine Learning

220

possibility that a decision may have delayed consequences, so that the RL can outperform
alternative approaches that treat such cases only approximately, ignore them entirely, or
cast decisions as a series of unrelated optimizations.
One challenge in RL is the tradeoff between exploration and exploitation. Exploration aims to
try new ways of solving the problem, while exploitation aims to capitalize on already well-
established solutions. Exploration is especially relevant when the environment is changing:
good solutions can deteriorate and better solutions can appear over time. In WS
composition, exploitation consists of learning optimal allocations of WS to tasks, and
systematically reusing learned allocations. Without exploration, the WS composer will not
consider allocations different than those which proved optimal in the past. This is not
desirable, since in absence of exploration, the WS composer is unaware of changes in the
availability of WS and appearance of new WS, so that the performance at which the
composition is fulfilled inevitably deteriorates over time in an open and distributed service-
oriented system.
Two forms of exploration can be applied: preliminary and continual online exploration. The
aim with preliminary exploration is to discover the state to reach, and to determine a first
optimal way to reach it. As the composition model specifies the state to reach in WS
composition, continual online exploration is of particular interest: therein, the set of WS that
can be allocated to tasks is continually revised, so that future allocations can be performed
by taking into account the availability of new WS, or the change in availability of WS used in
prior compositions. Preliminary exploration is directed if domain-specific knowledge is used
to guide exploration (e.g., (Thrun, 1992b; Thrun, 1992a; Thrun et al., 2005; Verbeeck, 2004)).
In undirected preliminary exploration, the allocation of new WS to tasks is randomized by
associating a probability distribution to the set of competing WS available for allocation to a
given task.
To avoid domain-specificity in this paper, the RL algorithm in MCRRL relies on undirected
continual exploration. Both exploitation and undirected continual exploration are used in WS
composition: exploitation uses available data to ground the allocation decision in
performance observed during the execution of prior compositions, whereas exploration
introduces new allocation options that cannot be identified from past performance data.
This responds to the first requirement on WS composition procedures (item 1, § 1), namely
that optimal WS compositions will be built and revised at runtime, while accounting for
change in the availability of WS and the appearance of new WS. As shown in the remainder
(see, § 4.1), the WS composition problem can be formulated as a global optimization
problem which follows either a deterministic shortest-path (in case the effects of WS
executions are deterministic) or a stochastic shortest-path formulation. Requirement 4 (§ 1) is
thus also addressed through the use of RL to guide WS composition. Since the RL approach
can be based on observed performance of WS in compositions, and the algorithm in MCRRL
accepts multiple criteria and/or constraints (see, § 3 and § 4.1), requirements 2 and 3 (§ 1)
are fulfilled as well.

4.1 Task-allocation problem
If RL is applied to task allocation, the exploration/ exploitation issue can be addressed by
periodically readjusting the policy for choosing task allocations and re-exploring up-to-now
suboptimal execution paths (Mitchell, 1997; Sutton & Barto, 1998). Such a strategy is,
however, suboptimal because it does not account for exploration. The Randomized

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

221

Reinforcement Learning (RRL) algorithm introduced in (Saerens et al., 2004) is adapted
herein to task allocation in WS composition, allowing the assignment of tasks to WS while:
(i) optimizing criteria, (ii) satisfying the hard constraints, (iii) learning about the
performance of new agents so as to continually adjust task allocation, and (iv) exploring
new options in task allocation. The exploration rate is quantified with the Shannon entropy
associated to the probability distribution of allocating a task to a task specialist. This permits
the continual measurement and control of exploration.
The task-allocation problem that the RRL resolves amounts to the composer determining the
WS to execute the tasks in a given process model. By conceptualizing the process of the
composition model as a DAH (see, § 2.2.2), the task-allocation problem amounts to a
deterministic shortest-path problem in a directed weighted hypergraph. In the hypergraph,
each node is a step in WS composition problem and an edge corresponds to the allocation of a
task kt to a WS ,

WS
k uw , where u ranges over WS that can execute kt according to the criteria

set with the QoS model. Each individual allocation of a task to a WS incurs a cost ,(,)WS
k k uc t w ,

whereby this " cost" is a function of the aggregated criteria (as discussed earlier § 3)
formulated so that the minimization of cost corresponds to the optimization of the
aggregated criteria (i.e., minimization or maximization of aggregation value). For
illustration, consider the DAH representation of our composite ESA service in Figure 3.
The task allocation problem is a global optimization problem: learn the optimal complete
probabilistic allocation that minimizes the expected cumulated cost from the initial node to
the destination node while maintaining a fixed degree of exploration, and under a given set
of hard constraints (specified with the QoS model). At the initial node in the graph (in Fig.3,
blank node), no tasks are allocated, whereas when reaching the destination node (last 'Pd'
node in the same figure), all tasks are allocated.
The remainder of this Section is organized as follows: § 4.2 introduces the notations, the
standard deterministic shortest-path problem, and the management of continual
exploration. § 4.3 introduces the unified framework integrating exploitation and
exploration presented in (Achbany et al., 2005). Finally, § 4.3 describes our procedure for
solving the deterministic shortest-path problem with continual exploration.

4.2 RL formulation of the problem
At a state ik of the task allocation problem, choosing an allocation of ,k li

t (where l ranges
over tasks available in state ik) to ,

WS
k ui
w (i.e., moving from ik to another state) from a set of

potential allocations ()iU k incurs a cost , ,(,)WS
k l k ui i

c t w . Cost is an inverse function of the
aggregated criteria the user wishes to optimize (see, § 3), say r . The cost can be positive
(penalty), negative (reward), and it is assumed that the service graph is acyclic (Christofides,
1975). Task allocation proceeds by comparing WS over estimated r̂ values and the hard
constraints to satisfy (see, s 3.1). The allocation , ,(,)WS

k l k ui i
t w is chosen according to a Task

Allocation policy (TA) Π that maps every state ik to the set ()iU k of admissible allocations
with a certain probability distribution ()ki

uπ , i.e., ()iU k : { (), = 0,1, 2, , }ki
u i nπΠ ≡ … . It is

assumed that: (i) once the action (i.e., allocation of a given task to a WS) has been chosen, the
sate next to ik , denoted 'i

k , is known deterministically, = ()' kii
k f u where f is a one-to-

one mapping from states and actions to a resulting state; (ii) different actions lead to
different states; and (iii) as in (Bertsekas, 2000), there is a special cost-free destination state;

 Machine Learning

220

possibility that a decision may have delayed consequences, so that the RL can outperform
alternative approaches that treat such cases only approximately, ignore them entirely, or
cast decisions as a series of unrelated optimizations.
One challenge in RL is the tradeoff between exploration and exploitation. Exploration aims to
try new ways of solving the problem, while exploitation aims to capitalize on already well-
established solutions. Exploration is especially relevant when the environment is changing:
good solutions can deteriorate and better solutions can appear over time. In WS
composition, exploitation consists of learning optimal allocations of WS to tasks, and
systematically reusing learned allocations. Without exploration, the WS composer will not
consider allocations different than those which proved optimal in the past. This is not
desirable, since in absence of exploration, the WS composer is unaware of changes in the
availability of WS and appearance of new WS, so that the performance at which the
composition is fulfilled inevitably deteriorates over time in an open and distributed service-
oriented system.
Two forms of exploration can be applied: preliminary and continual online exploration. The
aim with preliminary exploration is to discover the state to reach, and to determine a first
optimal way to reach it. As the composition model specifies the state to reach in WS
composition, continual online exploration is of particular interest: therein, the set of WS that
can be allocated to tasks is continually revised, so that future allocations can be performed
by taking into account the availability of new WS, or the change in availability of WS used in
prior compositions. Preliminary exploration is directed if domain-specific knowledge is used
to guide exploration (e.g., (Thrun, 1992b; Thrun, 1992a; Thrun et al., 2005; Verbeeck, 2004)).
In undirected preliminary exploration, the allocation of new WS to tasks is randomized by
associating a probability distribution to the set of competing WS available for allocation to a
given task.
To avoid domain-specificity in this paper, the RL algorithm in MCRRL relies on undirected
continual exploration. Both exploitation and undirected continual exploration are used in WS
composition: exploitation uses available data to ground the allocation decision in
performance observed during the execution of prior compositions, whereas exploration
introduces new allocation options that cannot be identified from past performance data.
This responds to the first requirement on WS composition procedures (item 1, § 1), namely
that optimal WS compositions will be built and revised at runtime, while accounting for
change in the availability of WS and the appearance of new WS. As shown in the remainder
(see, § 4.1), the WS composition problem can be formulated as a global optimization
problem which follows either a deterministic shortest-path (in case the effects of WS
executions are deterministic) or a stochastic shortest-path formulation. Requirement 4 (§ 1) is
thus also addressed through the use of RL to guide WS composition. Since the RL approach
can be based on observed performance of WS in compositions, and the algorithm in MCRRL
accepts multiple criteria and/or constraints (see, § 3 and § 4.1), requirements 2 and 3 (§ 1)
are fulfilled as well.

4.1 Task-allocation problem
If RL is applied to task allocation, the exploration/ exploitation issue can be addressed by
periodically readjusting the policy for choosing task allocations and re-exploring up-to-now
suboptimal execution paths (Mitchell, 1997; Sutton & Barto, 1998). Such a strategy is,
however, suboptimal because it does not account for exploration. The Randomized

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

221

Reinforcement Learning (RRL) algorithm introduced in (Saerens et al., 2004) is adapted
herein to task allocation in WS composition, allowing the assignment of tasks to WS while:
(i) optimizing criteria, (ii) satisfying the hard constraints, (iii) learning about the
performance of new agents so as to continually adjust task allocation, and (iv) exploring
new options in task allocation. The exploration rate is quantified with the Shannon entropy
associated to the probability distribution of allocating a task to a task specialist. This permits
the continual measurement and control of exploration.
The task-allocation problem that the RRL resolves amounts to the composer determining the
WS to execute the tasks in a given process model. By conceptualizing the process of the
composition model as a DAH (see, § 2.2.2), the task-allocation problem amounts to a
deterministic shortest-path problem in a directed weighted hypergraph. In the hypergraph,
each node is a step in WS composition problem and an edge corresponds to the allocation of a
task kt to a WS ,

WS
k uw , where u ranges over WS that can execute kt according to the criteria

set with the QoS model. Each individual allocation of a task to a WS incurs a cost ,(,)WS
k k uc t w ,

whereby this " cost" is a function of the aggregated criteria (as discussed earlier § 3)
formulated so that the minimization of cost corresponds to the optimization of the
aggregated criteria (i.e., minimization or maximization of aggregation value). For
illustration, consider the DAH representation of our composite ESA service in Figure 3.
The task allocation problem is a global optimization problem: learn the optimal complete
probabilistic allocation that minimizes the expected cumulated cost from the initial node to
the destination node while maintaining a fixed degree of exploration, and under a given set
of hard constraints (specified with the QoS model). At the initial node in the graph (in Fig.3,
blank node), no tasks are allocated, whereas when reaching the destination node (last 'Pd'
node in the same figure), all tasks are allocated.
The remainder of this Section is organized as follows: § 4.2 introduces the notations, the
standard deterministic shortest-path problem, and the management of continual
exploration. § 4.3 introduces the unified framework integrating exploitation and
exploration presented in (Achbany et al., 2005). Finally, § 4.3 describes our procedure for
solving the deterministic shortest-path problem with continual exploration.

4.2 RL formulation of the problem
At a state ik of the task allocation problem, choosing an allocation of ,k li

t (where l ranges
over tasks available in state ik) to ,

WS
k ui
w (i.e., moving from ik to another state) from a set of

potential allocations ()iU k incurs a cost , ,(,)WS
k l k ui i

c t w . Cost is an inverse function of the
aggregated criteria the user wishes to optimize (see, § 3), say r . The cost can be positive
(penalty), negative (reward), and it is assumed that the service graph is acyclic (Christofides,
1975). Task allocation proceeds by comparing WS over estimated r̂ values and the hard
constraints to satisfy (see, s 3.1). The allocation , ,(,)WS

k l k ui i
t w is chosen according to a Task

Allocation policy (TA) Π that maps every state ik to the set ()iU k of admissible allocations
with a certain probability distribution ()ki

uπ , i.e., ()iU k : { (), = 0,1, 2, , }ki
u i nπΠ ≡ … . It is

assumed that: (i) once the action (i.e., allocation of a given task to a WS) has been chosen, the
sate next to ik , denoted 'i

k , is known deterministically, = ()' kii
k f u where f is a one-to-

one mapping from states and actions to a resulting state; (ii) different actions lead to
different states; and (iii) as in (Bertsekas, 2000), there is a special cost-free destination state;

 Machine Learning

222

once the composer has reached that state, the task allocation process is complete. Although
the current discussion focuses on the deterministic case, extension to the stochastic case is
discussed elsewhere (Achbany et al., 2005) due to format constraints.
As remind, one of the key features of reinforcement learning is that it explicitly addresses
the exploration/exploitation issue as well as the online estimation of the probability
distributions in an integrated way. Then, the exploration/ exploitation tradeoff is stated as a
global optimization problem: find the exploration strategy that minimizes the expected
cumulated cost, while maintaining fixed degrees of exploration at same nodes. In other
words, exploitation is maximized for constant exploration. To control exploration, entropy is
defined at each state.
The degree of exploration ki

E at state ik is quantified as:

()

= () log ()k k ki i iu U ki

E u uπ π
∈

− ∑ (4)

which is the entropy of the probability distribution of the task allocations in state ik (Cover
& Thomas, 1991; Kapur & Kesavan, 1992). ki

E characterizes the uncertainty about the
allocation of a task to a WS at ik . It is equal to zero when there is no uncertainty at all
(()ki

uπ reduces to a Kronecker delta); it is equal to log()kin , where ki
n is the number of

admissible allocations at node ik , in the case of maximum uncertainty, () = 1/k ki i
u nπ (a

uniform distribution).
The exploration rate 0,1]r

ki
E ∈ is the ratio between the actual value of ki

E and its

maximum value: = / log()r
k k ki i i
E E n .

Fixing the entropy at a state sets the exploration level for the state; increasing the entropy
increases exploration, up to the maximal value in which case there is no more exploitation---
the next action is chosen completely at random (using a uniform distribution) and without
taking the costs into account. Exploration levels of composers can thus be controlled
through exploration rates. Service provision then amounts to minimizing total expected cost

0()V kπ accumulated over all paths from the initial 0k to the final state:

 0
=0

() = (,)i i
i

V k E c k uπ π

∞⎡ ⎤
⎢ ⎥⎣ ⎦
∑ (5)

The expectation Eπ is taken on the policy Π that is, on all the random choices of action iu
in state ik .

4.3 Computation of the Optimal Policy
The composer begins with task allocation from the initial state and chooses from state ki the
allocation of a WS u to a task ,k li

t with a probability distribution ()ki
uπ , which aims to

exploration. The composer then performs the allocation of the task ,k li
t to a WS u and the

associated aggregated quality score, the cost ,(,)WS
k l ui

c t w is incurred and is denoted, for

simplicity (,)ic k u (note that this score may also vary over time in a dynamic environment);
the composer then moves to the new state, 'i

k . This allows the composer to update the

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

223

estimates of the aggregated quality score of the policy, and of the average aggregated
quality value until destination; these estimates will be denoted by (,)ic k i , ()ki

iπ and

()iV k . The RRL for an acyclic graph, where the states are ordered in such a way that there is
no edge going backward (i.e., there exists no edge linking a state 'i

k to a state ik where 'i
k

is a successor state of ik (>' ii
k k), is as follows (a detailed treatment can be found in

(Achbany et al., 2005)):
1. Initialization phase: Set () 0dV k = , which is the expected cost at the destination state.
2. Computation of the TA policy and the expected cost under exploration constraints: For

= (1)i dk k − to the initial state 0k , compute:

()
()

,

,
()

,
()

exp (,) ()
() = ,

exp (,) ()

() = () (,) () for

'
k i i ui

ki ' '
k i 'i i u'u U ki

'
i k i i u i diu U ki

c k u V k
u

c k u V k

V k u c k u V k k k

θ
π

θ

π
∈

∈

⎧ ⎡ ⎤− +⎣ ⎦⎪
⎪ ⎡ ⎤− +⎢ ⎥⎨ ⎣ ⎦
⎪

+ ≠⎡ ⎤⎪ ⎣ ⎦
⎩

∑

∑

 (6)

where , = ()'
i u kk f u ,

,

'
'i u

k = ()'kf u and ki
θ is set in order to respect the prescribed degree of

entropy at each state (see Eq.4 which can be solved by a simple bisection search).
Various approaches can be applied to update the estimated criterion ûr ; e.g., exponential
smoothing leads to:

 (1)u u ur r rα α← + − (7)

where ur is the observed value of the criterion for WS
uw and]0,1[α ∈ is the smoothing

parameter. Alternatively, various stochastic approximation updating rules could also be
used. The composer updates its estimates of the criterion each time a WS performs a task
and the associated cost is updated accordingly.

5. Simulation results

Experimental setup. Task allocation for the service provision problem diplayed in Fig.3 was
performed. A total of three distinct WS were made available for each distinct task. Each ,k uw
is characterized by its actual ur which is an indicator of the WS's performance over the
optimization criterion (see, § 4.2). In this simulation, it will simply be the probability of
successfully performing the task (1 -- probability of failure). In total, 42 WS are available to
the Composer for task allocation. For all WS u , ur takes its value 0,1]∈ ; for 70% of the WS,
the actual ur is hidden (assuming it is unknown to the Composer) and its initial expected
value, ur , is set, by default, to 0.3 (high probability of failure since the behavior of the WS
has never been observed up to now), while actual ur value is available to the Composer for
the remaining 30% (assuming these WS are well known to the Composer). Actual ur is
randomly assigned from the interval [0.5,1.0] following a uniform probability distribution.
It has been further assumed that (,) = ()i u uc t w ln r− , meaning that it is the product of the ur

 Machine Learning

222

once the composer has reached that state, the task allocation process is complete. Although
the current discussion focuses on the deterministic case, extension to the stochastic case is
discussed elsewhere (Achbany et al., 2005) due to format constraints.
As remind, one of the key features of reinforcement learning is that it explicitly addresses
the exploration/exploitation issue as well as the online estimation of the probability
distributions in an integrated way. Then, the exploration/ exploitation tradeoff is stated as a
global optimization problem: find the exploration strategy that minimizes the expected
cumulated cost, while maintaining fixed degrees of exploration at same nodes. In other
words, exploitation is maximized for constant exploration. To control exploration, entropy is
defined at each state.
The degree of exploration ki

E at state ik is quantified as:

()

= () log ()k k ki i iu U ki

E u uπ π
∈

− ∑ (4)

which is the entropy of the probability distribution of the task allocations in state ik (Cover
& Thomas, 1991; Kapur & Kesavan, 1992). ki

E characterizes the uncertainty about the
allocation of a task to a WS at ik . It is equal to zero when there is no uncertainty at all
(()ki

uπ reduces to a Kronecker delta); it is equal to log()kin , where ki
n is the number of

admissible allocations at node ik , in the case of maximum uncertainty, () = 1/k ki i
u nπ (a

uniform distribution).
The exploration rate 0,1]r

ki
E ∈ is the ratio between the actual value of ki

E and its

maximum value: = / log()r
k k ki i i
E E n .

Fixing the entropy at a state sets the exploration level for the state; increasing the entropy
increases exploration, up to the maximal value in which case there is no more exploitation---
the next action is chosen completely at random (using a uniform distribution) and without
taking the costs into account. Exploration levels of composers can thus be controlled
through exploration rates. Service provision then amounts to minimizing total expected cost

0()V kπ accumulated over all paths from the initial 0k to the final state:

 0
=0

() = (,)i i
i

V k E c k uπ π

∞⎡ ⎤
⎢ ⎥⎣ ⎦
∑ (5)

The expectation Eπ is taken on the policy Π that is, on all the random choices of action iu
in state ik .

4.3 Computation of the Optimal Policy
The composer begins with task allocation from the initial state and chooses from state ki the
allocation of a WS u to a task ,k li

t with a probability distribution ()ki
uπ , which aims to

exploration. The composer then performs the allocation of the task ,k li
t to a WS u and the

associated aggregated quality score, the cost ,(,)WS
k l ui

c t w is incurred and is denoted, for

simplicity (,)ic k u (note that this score may also vary over time in a dynamic environment);
the composer then moves to the new state, 'i

k . This allows the composer to update the

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

223

estimates of the aggregated quality score of the policy, and of the average aggregated
quality value until destination; these estimates will be denoted by (,)ic k i , ()ki

iπ and

()iV k . The RRL for an acyclic graph, where the states are ordered in such a way that there is
no edge going backward (i.e., there exists no edge linking a state 'i

k to a state ik where 'i
k

is a successor state of ik (>' ii
k k), is as follows (a detailed treatment can be found in

(Achbany et al., 2005)):
1. Initialization phase: Set () 0dV k = , which is the expected cost at the destination state.
2. Computation of the TA policy and the expected cost under exploration constraints: For

= (1)i dk k − to the initial state 0k , compute:

()
()

,

,
()

,
()

exp (,) ()
() = ,

exp (,) ()

() = () (,) () for

'
k i i ui

ki ' '
k i 'i i u'u U ki

'
i k i i u i diu U ki

c k u V k
u

c k u V k

V k u c k u V k k k

θ
π

θ

π
∈

∈

⎧ ⎡ ⎤− +⎣ ⎦⎪
⎪ ⎡ ⎤− +⎢ ⎥⎨ ⎣ ⎦
⎪

+ ≠⎡ ⎤⎪ ⎣ ⎦
⎩

∑

∑

 (6)

where , = ()'
i u kk f u ,

,

'
'i u

k = ()'kf u and ki
θ is set in order to respect the prescribed degree of

entropy at each state (see Eq.4 which can be solved by a simple bisection search).
Various approaches can be applied to update the estimated criterion ûr ; e.g., exponential
smoothing leads to:

 (1)u u ur r rα α← + − (7)

where ur is the observed value of the criterion for WS
uw and]0,1[α ∈ is the smoothing

parameter. Alternatively, various stochastic approximation updating rules could also be
used. The composer updates its estimates of the criterion each time a WS performs a task
and the associated cost is updated accordingly.

5. Simulation results

Experimental setup. Task allocation for the service provision problem diplayed in Fig.3 was
performed. A total of three distinct WS were made available for each distinct task. Each ,k uw
is characterized by its actual ur which is an indicator of the WS's performance over the
optimization criterion (see, § 4.2). In this simulation, it will simply be the probability of
successfully performing the task (1 -- probability of failure). In total, 42 WS are available to
the Composer for task allocation. For all WS u , ur takes its value 0,1]∈ ; for 70% of the WS,
the actual ur is hidden (assuming it is unknown to the Composer) and its initial expected
value, ur , is set, by default, to 0.3 (high probability of failure since the behavior of the WS
has never been observed up to now), while actual ur value is available to the Composer for
the remaining 30% (assuming these WS are well known to the Composer). Actual ur is
randomly assigned from the interval [0.5,1.0] following a uniform probability distribution.
It has been further assumed that (,) = ()i u uc t w ln r− , meaning that it is the product of the ur

 Machine Learning

224

along a path that is optimized (this is a standard measure of the reliability of a system).
After all tasks are allocated, the selected WS execute their allocated tasks according to their
actual ur value (with failure 1 ur−). The estimated WS criterion ûr is then updated by
exponential smoothing, according to Eq.7. In Eq.7, ur equals 1 if uw is successful at
executing the task it has been allocated, 0 otherwise. Estimated costs are of course updated
in terms of the ur and each time a complete allocation occurs, the probability distributions
of choosing a WS are updated according to Eq.6. 10,000 complete allocations were simulated
for exploration rate 20%.

Fig. 8. Success rate in terms of run number, for an exploration rate of 20%, and for the five
methods (no exploration, actual r known, ε -greedy, naive Boltzmann, RRL).

Results. The RRL is compared to two other standard exploration methods, ε -greedy and
naive Boltzmann (see (Achbany et al., 2005) for details), while tuning their parameters to
ensure the same exploration level as for RRL. The success rate is defined as the proportion of
services that are successfully completed (i.e., all tasks composing the service are allocated
and executed successfully) and is displayed in Fig. 4 in terms of the run number (one run
corresponding to one complete assignment of tasks, criterion estimation and probability
distribution update). Fig. 4 shows the RRL behaves as expected. Its performance converges
almost to the success rate of the RRL in which all actual r are known from the outset (i.e.,
need not be estimated)---and indicate that exploration clearly helps by outperforming the
allocation system without exploration (which has a constant 75% success rate). Fig.5
compares the three exploration methods by plotting the average absolute difference
between actual ur and estimated ur criterion values for a 30% exploration rate. Exploration
is therefore clearly helpful when the environment changes with the appearance of new
agents---i.e., exploration is useful for directing Composer behavior in dynamic, changing,
and open architectures, i.e., in the SCA.

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

225

Fig. 9. Average absolute difference between actual (r) and estimated (r) criterion values in
terms of run number, for three exploration methods (ε -greedy, naive Boltzmann, RRL).

6. Related work
Various possibilities for representation of web services composition have already been
addressed. Jaeger et al. use composition patterns (sequence, loop, xor, and, or , etc.) to
represent structural elements of the composition. Hamadi (Hamadi & Benatallah, 2003) and
Benetallah and Fu et al. (Fu et al., 2006) approaches refer both to Petri nets for modeling web
services control flow. Rather than using such patterns and their associated aggregation
rules, we choose, as Zeng et al. (Zeng et al., 2003b; Zeng et al., 2004), Benatallah and Dumas
(Benatallah et al., 2002) and Zhang et al. (Zhang et al., 2007), to control services composition
with the help of statecharts.
While statecharts and their associated formal semantic are used to represent the different
tasks entering in the composition, Directed Acyclic Graph (DAG) (Gu & Nahrstedt, 2002) are
used to represent alternative web services allowing to fulfill these tasks. Zeng (Zeng et al.,
2004) proposes to model alternatives with multiple execution paths derived from statecharts
possibilities. We choose to represent our composition possibilities with a Directed Acyclic
Hypergraph (DAH) where nodes represent functional steps of execution and edges are web
services alternatives to fulfill a given task.
Our selection of services that will enter in the services composition is based on their
quality properties, i.e., their QoS. To lead the selection from the requester view, we
provide him a QoS model enabling to specify its expectations about quality behavior. This
behavior is expressed by relationships between characteristics and dimensions, priorities
between quality properties and preferences over values. The preference over values has
already been addressed in other approaches under the form of a direction attribute
indicating if a property has to be maximized or minimized (Jaeger et al., 2004; Liu et al.,

 Machine Learning

224

along a path that is optimized (this is a standard measure of the reliability of a system).
After all tasks are allocated, the selected WS execute their allocated tasks according to their
actual ur value (with failure 1 ur−). The estimated WS criterion ûr is then updated by
exponential smoothing, according to Eq.7. In Eq.7, ur equals 1 if uw is successful at
executing the task it has been allocated, 0 otherwise. Estimated costs are of course updated
in terms of the ur and each time a complete allocation occurs, the probability distributions
of choosing a WS are updated according to Eq.6. 10,000 complete allocations were simulated
for exploration rate 20%.

Fig. 8. Success rate in terms of run number, for an exploration rate of 20%, and for the five
methods (no exploration, actual r known, ε -greedy, naive Boltzmann, RRL).

Results. The RRL is compared to two other standard exploration methods, ε -greedy and
naive Boltzmann (see (Achbany et al., 2005) for details), while tuning their parameters to
ensure the same exploration level as for RRL. The success rate is defined as the proportion of
services that are successfully completed (i.e., all tasks composing the service are allocated
and executed successfully) and is displayed in Fig. 4 in terms of the run number (one run
corresponding to one complete assignment of tasks, criterion estimation and probability
distribution update). Fig. 4 shows the RRL behaves as expected. Its performance converges
almost to the success rate of the RRL in which all actual r are known from the outset (i.e.,
need not be estimated)---and indicate that exploration clearly helps by outperforming the
allocation system without exploration (which has a constant 75% success rate). Fig.5
compares the three exploration methods by plotting the average absolute difference
between actual ur and estimated ur criterion values for a 30% exploration rate. Exploration
is therefore clearly helpful when the environment changes with the appearance of new
agents---i.e., exploration is useful for directing Composer behavior in dynamic, changing,
and open architectures, i.e., in the SCA.

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

225

Fig. 9. Average absolute difference between actual (r) and estimated (r) criterion values in
terms of run number, for three exploration methods (ε -greedy, naive Boltzmann, RRL).

6. Related work
Various possibilities for representation of web services composition have already been
addressed. Jaeger et al. use composition patterns (sequence, loop, xor, and, or , etc.) to
represent structural elements of the composition. Hamadi (Hamadi & Benatallah, 2003) and
Benetallah and Fu et al. (Fu et al., 2006) approaches refer both to Petri nets for modeling web
services control flow. Rather than using such patterns and their associated aggregation
rules, we choose, as Zeng et al. (Zeng et al., 2003b; Zeng et al., 2004), Benatallah and Dumas
(Benatallah et al., 2002) and Zhang et al. (Zhang et al., 2007), to control services composition
with the help of statecharts.
While statecharts and their associated formal semantic are used to represent the different
tasks entering in the composition, Directed Acyclic Graph (DAG) (Gu & Nahrstedt, 2002) are
used to represent alternative web services allowing to fulfill these tasks. Zeng (Zeng et al.,
2004) proposes to model alternatives with multiple execution paths derived from statecharts
possibilities. We choose to represent our composition possibilities with a Directed Acyclic
Hypergraph (DAH) where nodes represent functional steps of execution and edges are web
services alternatives to fulfill a given task.
Our selection of services that will enter in the services composition is based on their
quality properties, i.e., their QoS. To lead the selection from the requester view, we
provide him a QoS model enabling to specify its expectations about quality behavior. This
behavior is expressed by relationships between characteristics and dimensions, priorities
between quality properties and preferences over values. The preference over values has
already been addressed in other approaches under the form of a direction attribute
indicating if a property has to be maximized or minimized (Jaeger et al., 2004; Liu et al.,

 Machine Learning

226

2004; Naumann et al., 1999; Zeng et al., 2004). Our preference structure offers more
information, we allow the user to specify conditions and indifference thresholds. The
priority relationship is defined in some proposals with means of a weight attribute
associated to quality properties (Jaeger et al., 2004; Zeng et al., 2004). Our model
authorizes weights binded to quality properties at different levels and we define a method
to fix adequately these weights.
Most QoS composition approaches aim at summing QoS values of services entering in the
composition rather than computing their individual performance (Cardoso et al., 2004;
Cheng et al., 2006; Jaeger et al., 2005; Yu & Lin, 2004; Yu & Lin, 2005; Zeng et al., 2003b;
Zhang et al., 2007). In our MCRRL proposal, we focus on the individual evaluation of each
web service candidate to the whole composition. Rather than using Reinforcement
Learning computation, Zeng and colleagues (Zeng et al., 2003b) proceed to finding
optimal WS compositions through linear programming techniques. In contrast to RL, their
approach considers each WS composition as a new problem to solve, so that there is no
learning. Canfora and colleagues (Canfora et al., 2004) use genetic algorithms, avoiding
thus the need for a linear objective function and/or linear constraints in the search for the
optimal WS composition (required for the linear programming approach (Zeng et al.,
2003b)). MCRRL improves responsiveness of the system to varying availability and
appearance of new WS because of exploration. MCRRL allows the execution of potentially
complex processes, permits concurrency, while assuming that the set of available WS is
changing. One distinctive characteristic the composer's behavior suggested in the present
paper is that the MCRRL accounts for a vector of criteria when allocating tasks, including
QoS, service provision deadline, provision cost, explicit user preferences, and agent
reputation. Feedback mechanisms are also used by Maximilien and Singh (Maximilien &
Singh, 2005) that propose service selection driven by trust values assigned to individual
services. Trust is extracted from user-generated reports of past service performance (as
usual in reputation systems) over qualities defined by a system-specific QoS ontology.
Level of trust depends on the degree to which reputation and quality levels advertised by
the provider match. Similar approaches have been proposed, yet fail to address service
selection in open, distributed MAS architecture, furthermore without dynamic allocation
so that autonomic requirements are not fulfilled. By basing selection on trust only and
generating levels of trust from advertised and user-observed behavior, Maximilien and
Singh's approach involves learning driven by exploitation of historical information,
without exploration.

7. Conclusions and future work
This paper advocates that WS compositions optimal w.r.t. a set of criteria need to be learned
at runtime and revised as new WS appear and availability of old WS changes, whereby the
learning should be based on observed WS performance, and not the performance values
advertised by the service providers. To enable such learning, a selection procedure is
needed which both exploits the data on observed WS performance in the past, and explores
new composition options to avoid excessive reliance on past data.
As a response, this paper proposes the Multi-Criteria Randomized Reinforcement Learning
(MCRRL) approach to WS composition. MCRRL combines a generic service request and the

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

227

Randomized Reinforcement Learning (RRL), a reinforcement learning algorithm. The SR
model describes the process to execute by the WS composition and the criteria and
constraints to meet when executing it. The RRL selects the WS for performing tasks specified
in the service request. The algorithm decides on the WS to select among competing WS
based on multiple criteria, while both exploiting available WS performance data and
exploring new composition options.
MCRRL responds to four common requirements when defining a task allocation
procedure for WS composition. First, the RRL uses both exploitation and undirected
continual exploration in WS composition: exploitation uses available data to ground the
allocation decision in performance observed during the execution of prior compositions,
whereas exploration introduces new allocation options that cannot be identified from past
performance data. Optimal WS compositions are thus identified revised at runtime.
Second, the generic SR model combined with the optimization approach in the RRL allow
many criteria for comparing alternative task allocations. Third, the comparison over
various criteria relies on observed performance over the given criteria, instead of vales
advertised by service providers. Finally, the algorithm can be extended to allow
underterministic outcomes of WS executions (as explained elsewhere (Achbany et al.,
2005)).
Since undirected exploration may be costly in actual applications, future work will
investigate the performance of MCRRL within realistic applications, so that the approach
can be optimized for practical settings.

8. Acknowledgments
We are grateful to Emmanuel Mathot of the European Space Agency, who provided precise
information about the GPOD project and assisted our efforts in describing quality
information of services related to the GPOD project.

9. References
Achbany, Y.; Fouss, F.; Yen, L.; Pirotte, A. & Saerens, M. (2005) Tuning Continual

Exploration in Reinforcement Learning. Technical report,
http://www.isys.ucl.ac.be/staff/francois/Articles/ Achbany2005a.pdf.

Benatallah, B.; Sheng, Q. Z.; Ngu, A. H. & Dumas M. (2002) Declarative Composition and
Peer-to-Peer Provisioning of Dynamic Web Services. Proceedings of the International
Conference on Data Engineering, pages 0297, Los Alamitos, CA, USA.

Bertsekas, D. P. (2000) Dynamic programming and optimal control. Athena sientific.
Canfora, G.; Di Penta, M.; Esposito, R. & Villani, M.-L. (2004) A Lightweight Approach for

QoS-Aware Service Composition. Proceedings of the 2nd International Conference on
Service Oriented Computing (ICSOC'04), pages 36-47.

Cardoso, J.; Sheth, A. P.; Miller, J. A.; Arnold, J. & Kochut, K. (2004) Quality of service for
workflows and web service processes. J. Web Sem., 1(3):281-308.

Chen , Y.P.; Zeng-Zhi, L.; Qin-Xue, J. & Chuang, W. (2006) Study on QoS Driven Web
Services Composition. Frontiers of WWW Research and Development - APWeb 2006,
:702--707.

 Machine Learning

226

2004; Naumann et al., 1999; Zeng et al., 2004). Our preference structure offers more
information, we allow the user to specify conditions and indifference thresholds. The
priority relationship is defined in some proposals with means of a weight attribute
associated to quality properties (Jaeger et al., 2004; Zeng et al., 2004). Our model
authorizes weights binded to quality properties at different levels and we define a method
to fix adequately these weights.
Most QoS composition approaches aim at summing QoS values of services entering in the
composition rather than computing their individual performance (Cardoso et al., 2004;
Cheng et al., 2006; Jaeger et al., 2005; Yu & Lin, 2004; Yu & Lin, 2005; Zeng et al., 2003b;
Zhang et al., 2007). In our MCRRL proposal, we focus on the individual evaluation of each
web service candidate to the whole composition. Rather than using Reinforcement
Learning computation, Zeng and colleagues (Zeng et al., 2003b) proceed to finding
optimal WS compositions through linear programming techniques. In contrast to RL, their
approach considers each WS composition as a new problem to solve, so that there is no
learning. Canfora and colleagues (Canfora et al., 2004) use genetic algorithms, avoiding
thus the need for a linear objective function and/or linear constraints in the search for the
optimal WS composition (required for the linear programming approach (Zeng et al.,
2003b)). MCRRL improves responsiveness of the system to varying availability and
appearance of new WS because of exploration. MCRRL allows the execution of potentially
complex processes, permits concurrency, while assuming that the set of available WS is
changing. One distinctive characteristic the composer's behavior suggested in the present
paper is that the MCRRL accounts for a vector of criteria when allocating tasks, including
QoS, service provision deadline, provision cost, explicit user preferences, and agent
reputation. Feedback mechanisms are also used by Maximilien and Singh (Maximilien &
Singh, 2005) that propose service selection driven by trust values assigned to individual
services. Trust is extracted from user-generated reports of past service performance (as
usual in reputation systems) over qualities defined by a system-specific QoS ontology.
Level of trust depends on the degree to which reputation and quality levels advertised by
the provider match. Similar approaches have been proposed, yet fail to address service
selection in open, distributed MAS architecture, furthermore without dynamic allocation
so that autonomic requirements are not fulfilled. By basing selection on trust only and
generating levels of trust from advertised and user-observed behavior, Maximilien and
Singh's approach involves learning driven by exploitation of historical information,
without exploration.

7. Conclusions and future work
This paper advocates that WS compositions optimal w.r.t. a set of criteria need to be learned
at runtime and revised as new WS appear and availability of old WS changes, whereby the
learning should be based on observed WS performance, and not the performance values
advertised by the service providers. To enable such learning, a selection procedure is
needed which both exploits the data on observed WS performance in the past, and explores
new composition options to avoid excessive reliance on past data.
As a response, this paper proposes the Multi-Criteria Randomized Reinforcement Learning
(MCRRL) approach to WS composition. MCRRL combines a generic service request and the

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

227

Randomized Reinforcement Learning (RRL), a reinforcement learning algorithm. The SR
model describes the process to execute by the WS composition and the criteria and
constraints to meet when executing it. The RRL selects the WS for performing tasks specified
in the service request. The algorithm decides on the WS to select among competing WS
based on multiple criteria, while both exploiting available WS performance data and
exploring new composition options.
MCRRL responds to four common requirements when defining a task allocation
procedure for WS composition. First, the RRL uses both exploitation and undirected
continual exploration in WS composition: exploitation uses available data to ground the
allocation decision in performance observed during the execution of prior compositions,
whereas exploration introduces new allocation options that cannot be identified from past
performance data. Optimal WS compositions are thus identified revised at runtime.
Second, the generic SR model combined with the optimization approach in the RRL allow
many criteria for comparing alternative task allocations. Third, the comparison over
various criteria relies on observed performance over the given criteria, instead of vales
advertised by service providers. Finally, the algorithm can be extended to allow
underterministic outcomes of WS executions (as explained elsewhere (Achbany et al.,
2005)).
Since undirected exploration may be costly in actual applications, future work will
investigate the performance of MCRRL within realistic applications, so that the approach
can be optimized for practical settings.

8. Acknowledgments
We are grateful to Emmanuel Mathot of the European Space Agency, who provided precise
information about the GPOD project and assisted our efforts in describing quality
information of services related to the GPOD project.

9. References
Achbany, Y.; Fouss, F.; Yen, L.; Pirotte, A. & Saerens, M. (2005) Tuning Continual

Exploration in Reinforcement Learning. Technical report,
http://www.isys.ucl.ac.be/staff/francois/Articles/ Achbany2005a.pdf.

Benatallah, B.; Sheng, Q. Z.; Ngu, A. H. & Dumas M. (2002) Declarative Composition and
Peer-to-Peer Provisioning of Dynamic Web Services. Proceedings of the International
Conference on Data Engineering, pages 0297, Los Alamitos, CA, USA.

Bertsekas, D. P. (2000) Dynamic programming and optimal control. Athena sientific.
Canfora, G.; Di Penta, M.; Esposito, R. & Villani, M.-L. (2004) A Lightweight Approach for

QoS-Aware Service Composition. Proceedings of the 2nd International Conference on
Service Oriented Computing (ICSOC'04), pages 36-47.

Cardoso, J.; Sheth, A. P.; Miller, J. A.; Arnold, J. & Kochut, K. (2004) Quality of service for
workflows and web service processes. J. Web Sem., 1(3):281-308.

Chen , Y.P.; Zeng-Zhi, L.; Qin-Xue, J. & Chuang, W. (2006) Study on QoS Driven Web
Services Composition. Frontiers of WWW Research and Development - APWeb 2006,
:702--707.

 Machine Learning

228

Christofides, N. (1975) Graph theory: An algorithmic approach. Academic Press.
Cover, T. M. & Thomas, J. A. (1991) Elements of information theory. John Wiley and Sons.
D'Ambrogio, A. (2006) A Model-driven WSDL Extension for Describing the QoS ofWeb

Services. ICWS '06: Proceedings of the IEEE International Conference on Web
Services (ICWS'06), pages 789--796, Washington, DC, USA, 2006, IEEE
Computer Society.

Figueira, J.; Greco, S. & Ehrgott, M. (2005) Multiple Criteria Decision Analysis: State of the Art
Surveys. Springer Verlag, Boston, Dordrecht, London.

Fu, Y.; Zhijiang, D. & Xudong, H. (2006) Modeling, validating and automating composition
of web services. ICWE '06: Proceedings of the 6th international conference on Web
engineering, pages 217--224, New York, NY, USA, 2006. ACM.

Gu, X. & Nahrstedt, K. (2002) A scalable QoS-aware service aggregation model for peer-to-
peer computing grids. Proceedings of the IEEE HPDC-11, 2002.

Hamadi, R. & Benatallah, B. (2003) A Petri net-based model for web service
composition. ADC '03: Proceedings of the 14th Australasian database conference,
pages 191--200, Darlinghurst, Australia, Australia, 2003. Australian Computer
Society, Inc.

Hwang, C.L. & Yoon, K. (1981) Multiple attribute decision making : Methods and applications.
Springer-Verlag, 1981.

Jaeger, M. C.; Rojec-Goldmann, R. & Muhl, G. (2004) QoS Aggregation for Web Service
Composition using Workflow Patterns. edoc, 00:149-159.

Jaeger, M. C.; Rojec-Goldmann, R. & Muhl, G. (2005) QoS Aggregation in Web Service
Compositions. EEE '05: Proceedings of the 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE'05), pages 181--185, Washington, DC,
USA, 2005. IEEE Computer Society.

Kapur, J. N. & Kesavan, H. K. (1992) Entropy optimization principles with applications.
Academic Press, 1992.

Keller, A. & Ludwig, H. (2003) The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. J. Netw. Syst. Manage., 11(1):57--81.

Liu, Y.; Ngu, A. H. & Zeng, L. Z. (2004) QoS Computation and Policing in Dynamic Web
Service Selection. pages 66--73, New York, NY, USA, ACM Press.

Maximilien, E. M. & Singh, M. P. (2005) Multiagent System for Dynamic Web Services
Selection. Proceedings of the Int. Conf. Auton. Agents and Multi-Agent Syst., 2005.

McIlraith, S. A. & Martin, D. L. (2003) Bringing Semantics to Web Services. IEEE Intelligent
Systems, 18(1):90--93.

Menascé, D. A. (2002) QoS Issues in Web Services. IEEE Internet Computing, 6(6):72--75,
2002.

Mitchell, T. M. (1997) Machine learning. McGraw-Hill Compagnies, 1997.
Naumann, F.; Leser, U. & Freytag, J. C. (1999) Quality-driven Integration of Heterogenous

Information Systems. Proceedings of the International Conference on Very Large
Databases (VLDB), pages 447-458, Edinburgh, UK, 1999.

OMG / Business Process Management Initiative. Business Process Modeling Notation
Specification. Final Adopted Specification dtc/06-02-01, 2006.Technical report,
Object Management Group / Business Process Management Initiative., 2006.

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

229

OMG. UML Profile for Modeling QoS and Fault Tolerance Characteristics and Mechanisms.
Technical report, Object Management Group, 2006.

OMG. UML Profile for Modeling QoS and Fault Tolerance Characteristics and Mechanisms.
Technical report, Object Management Group, 2006.

Papazoglou, M. P. & Georgakopoulos, D. (2003) Service-oriented computing. Commun.
ACM, 46(10).

Saaty, T.L. (1980) The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allocation.
McGraw-Hill, New york.

Saerens, M.; Souchon, N.; Renders, J. M. & Decaestecker, C. (2004) Decision-making under
uncertainty about the class priors. Submitted for publication.

Sutton, R.S. & Barto, A.G. (1998) Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.

Thrun, S. (1992) The Role of Exploration in Learning Control. In D.A. White and D.A. Sofge,
editors, Handbook for Intelligent Control: Neural, Fuzzy and Adaptive Approaches. Van
Nostrand Reinhold, Florence, Kentucky 41022.

Thrun, S.; Burgard, W. & Fox, D. (2005) Probabilistic Robotics. MIT Press.
Thrun, S. (1992) Efficient Exploration In Reinforcement Learning. Technical report,

Pittsburgh, PA, USA.
Urgaonkar, B.; Pacifici, G.; Shenoy, P.; Spreitzer, M. & Tantawi, A. (2005) An analytical

model for multi-tier internet services and its applications. SIGMETRICS Perform.
Eval. Rev., 33(1):291--302.

Verbeeck, K. (2004) Coordinated Exploration in Multi-Agent Reinforcement Learning. PhD
thesis, Vrije Universiteit Brussel, Belgium.

Walsh, A. E. (2002) Uddi, Soap, and Wsdl: The Web Services Specification Reference Book. Prentice
Hall Professional Technical Reference, 2002.

Tao, Y. & Kwei-Jay, L. (2005) Service Selection Algorithms for Composing Complex
Services with Multiple QoS Constraints. Service-Oriented Computing - ICSOC
2005, :130--143.

Tao, Y. & Kwei-Jay, L. (2004) Service Selection Algorithms for Web Services with End-to-
End QoS Constraints. CEC '04: Proceedings of the IEEE International Conference on E-
Commerce Technology (CEC'04), pages 129--136, Washington, DC, USA, 2004. IEEE
Computer Society.

Zacharia, G. & Maes, P. (2000) Trust Management Through Reputation Mechanisms. Applied
Artificial Intelligence, 14:881-907.

Zeng, L.; Benatallah, B.; Dumas, M.; Kalagnanam, J. & Sheng, Q. Z. (2003) Quality Driven
Web Services Composition. Proc. Int. Conf. on World Wide Web (WWW2003), 2003.

Zeng, L.; Benatallah, B.; Ngu, A. H.; Dumas, M.; Kalagnanam, J. & Sheng, H. (2004) QoS-
Aware Middleware for Web Services Composition. IEEE Trans. Softw. Eng.,
30(5):311--327.

Zeng, L; Jeng, J.-J.; Kumaran, S. & Kalagnanam, J. (2003) Reliable Execution Planning and
Exception Handling for Business Process. Technologies for E-Services, pages 119-
130.

 Machine Learning

228

Christofides, N. (1975) Graph theory: An algorithmic approach. Academic Press.
Cover, T. M. & Thomas, J. A. (1991) Elements of information theory. John Wiley and Sons.
D'Ambrogio, A. (2006) A Model-driven WSDL Extension for Describing the QoS ofWeb

Services. ICWS '06: Proceedings of the IEEE International Conference on Web
Services (ICWS'06), pages 789--796, Washington, DC, USA, 2006, IEEE
Computer Society.

Figueira, J.; Greco, S. & Ehrgott, M. (2005) Multiple Criteria Decision Analysis: State of the Art
Surveys. Springer Verlag, Boston, Dordrecht, London.

Fu, Y.; Zhijiang, D. & Xudong, H. (2006) Modeling, validating and automating composition
of web services. ICWE '06: Proceedings of the 6th international conference on Web
engineering, pages 217--224, New York, NY, USA, 2006. ACM.

Gu, X. & Nahrstedt, K. (2002) A scalable QoS-aware service aggregation model for peer-to-
peer computing grids. Proceedings of the IEEE HPDC-11, 2002.

Hamadi, R. & Benatallah, B. (2003) A Petri net-based model for web service
composition. ADC '03: Proceedings of the 14th Australasian database conference,
pages 191--200, Darlinghurst, Australia, Australia, 2003. Australian Computer
Society, Inc.

Hwang, C.L. & Yoon, K. (1981) Multiple attribute decision making : Methods and applications.
Springer-Verlag, 1981.

Jaeger, M. C.; Rojec-Goldmann, R. & Muhl, G. (2004) QoS Aggregation for Web Service
Composition using Workflow Patterns. edoc, 00:149-159.

Jaeger, M. C.; Rojec-Goldmann, R. & Muhl, G. (2005) QoS Aggregation in Web Service
Compositions. EEE '05: Proceedings of the 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE'05), pages 181--185, Washington, DC,
USA, 2005. IEEE Computer Society.

Kapur, J. N. & Kesavan, H. K. (1992) Entropy optimization principles with applications.
Academic Press, 1992.

Keller, A. & Ludwig, H. (2003) The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. J. Netw. Syst. Manage., 11(1):57--81.

Liu, Y.; Ngu, A. H. & Zeng, L. Z. (2004) QoS Computation and Policing in Dynamic Web
Service Selection. pages 66--73, New York, NY, USA, ACM Press.

Maximilien, E. M. & Singh, M. P. (2005) Multiagent System for Dynamic Web Services
Selection. Proceedings of the Int. Conf. Auton. Agents and Multi-Agent Syst., 2005.

McIlraith, S. A. & Martin, D. L. (2003) Bringing Semantics to Web Services. IEEE Intelligent
Systems, 18(1):90--93.

Menascé, D. A. (2002) QoS Issues in Web Services. IEEE Internet Computing, 6(6):72--75,
2002.

Mitchell, T. M. (1997) Machine learning. McGraw-Hill Compagnies, 1997.
Naumann, F.; Leser, U. & Freytag, J. C. (1999) Quality-driven Integration of Heterogenous

Information Systems. Proceedings of the International Conference on Very Large
Databases (VLDB), pages 447-458, Edinburgh, UK, 1999.

OMG / Business Process Management Initiative. Business Process Modeling Notation
Specification. Final Adopted Specification dtc/06-02-01, 2006.Technical report,
Object Management Group / Business Process Management Initiative., 2006.

Learning Optimal Web Service Selections in Dynamic Environments when
Many Quality-of-Service Criteria Matter

229

OMG. UML Profile for Modeling QoS and Fault Tolerance Characteristics and Mechanisms.
Technical report, Object Management Group, 2006.

OMG. UML Profile for Modeling QoS and Fault Tolerance Characteristics and Mechanisms.
Technical report, Object Management Group, 2006.

Papazoglou, M. P. & Georgakopoulos, D. (2003) Service-oriented computing. Commun.
ACM, 46(10).

Saaty, T.L. (1980) The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allocation.
McGraw-Hill, New york.

Saerens, M.; Souchon, N.; Renders, J. M. & Decaestecker, C. (2004) Decision-making under
uncertainty about the class priors. Submitted for publication.

Sutton, R.S. & Barto, A.G. (1998) Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.

Thrun, S. (1992) The Role of Exploration in Learning Control. In D.A. White and D.A. Sofge,
editors, Handbook for Intelligent Control: Neural, Fuzzy and Adaptive Approaches. Van
Nostrand Reinhold, Florence, Kentucky 41022.

Thrun, S.; Burgard, W. & Fox, D. (2005) Probabilistic Robotics. MIT Press.
Thrun, S. (1992) Efficient Exploration In Reinforcement Learning. Technical report,

Pittsburgh, PA, USA.
Urgaonkar, B.; Pacifici, G.; Shenoy, P.; Spreitzer, M. & Tantawi, A. (2005) An analytical

model for multi-tier internet services and its applications. SIGMETRICS Perform.
Eval. Rev., 33(1):291--302.

Verbeeck, K. (2004) Coordinated Exploration in Multi-Agent Reinforcement Learning. PhD
thesis, Vrije Universiteit Brussel, Belgium.

Walsh, A. E. (2002) Uddi, Soap, and Wsdl: The Web Services Specification Reference Book. Prentice
Hall Professional Technical Reference, 2002.

Tao, Y. & Kwei-Jay, L. (2005) Service Selection Algorithms for Composing Complex
Services with Multiple QoS Constraints. Service-Oriented Computing - ICSOC
2005, :130--143.

Tao, Y. & Kwei-Jay, L. (2004) Service Selection Algorithms for Web Services with End-to-
End QoS Constraints. CEC '04: Proceedings of the IEEE International Conference on E-
Commerce Technology (CEC'04), pages 129--136, Washington, DC, USA, 2004. IEEE
Computer Society.

Zacharia, G. & Maes, P. (2000) Trust Management Through Reputation Mechanisms. Applied
Artificial Intelligence, 14:881-907.

Zeng, L.; Benatallah, B.; Dumas, M.; Kalagnanam, J. & Sheng, Q. Z. (2003) Quality Driven
Web Services Composition. Proc. Int. Conf. on World Wide Web (WWW2003), 2003.

Zeng, L.; Benatallah, B.; Ngu, A. H.; Dumas, M.; Kalagnanam, J. & Sheng, H. (2004) QoS-
Aware Middleware for Web Services Composition. IEEE Trans. Softw. Eng.,
30(5):311--327.

Zeng, L; Jeng, J.-J.; Kumaran, S. & Kalagnanam, J. (2003) Reliable Execution Planning and
Exception Handling for Business Process. Technologies for E-Services, pages 119-
130.

 Machine Learning

230

Zhang, C.; Chang, R. N.; Perng, C.-S.; So, E.; Tang, C. & Tao, T. (2007) QoS-Aware
Optimization of Composite-Service Fulfillment Policy. Services Computing, 2007.
SCC 2007. IEEE International Conference on, :11--19.

Zhou, C.; Chia, L.-T. & Lee, B.-S. (2004) DAML-QoS Ontology for Web Services. ICWS '04:
Proceedings of the IEEE International Conference on Web Services (ICWS'04), pages 472,
Washington, DC, USA, 2004. IEEE Computer Society.

11

Model Selection for Ranking SVM Using
Regularization Path

Karina Zapien1, Gilles Gasso1, Thomas Gärtner2 and Stéphane Canu1
1 LITIS EA 4108 - INSA de Rouen

2 Fraunhofer IAIS,
1France

2Germany

1. Introduction
This chapter deals with supervised learning problems under the ranking framework.
Ranking algorithms are typically introduced as a tool for personalizing the order in which
document recommendations or search results - in the web, for example - are presented. That
is, the more important a result is to the user, the earlier it should be listed. To this end, two
possible settings can be considered :
i. the algorithm tries to interactively rearrange the results of one search such that relevant

results come the closer to the top the more (implicit) feedback the user provides,
ii. the algorithm tries to generalize over several queries and presents the results of one

search in an order depending on the feedback obtained from previous searches.
The first setting deals with an active learning while the second setting deals with a passive
supervised learning. This kind of problems have gain major attention given the nowadays
amount of available informations. This is without doubt a challenging task in the medium
and large scale context.
Several methods have been proposed to solve these problems. For the passive setting, the
Rankboost algorithm (Freund et al. (2003)) is an adaptation from the Adaboost algorithm to
the ranking problem. This is a boosting algorithm which works by iteratively building a
linear combination of several “weak” algorithms to form a more accurate algorithm. The
Pranking algorithm (Crammer & Singer (2001)) is an online version of the weighted
algorithm. The SVRank and RankSVMalgorithms are the adaptation of the Support Vector
machines for classification and regression, respectively, while the MPRank (Cortes et al.
(2007)) is a magnitude-preserving algorithm, which searches not only to keep the relative
position of each sample but also to preserve the distance given by the correct ordering. This
last algorithm has as well the form of a regularization problem as the two previous with a
different cost function.
Later, the Ranking SVM (RankSVM) algorithm was proposed by Herbrich et al. (2000) and
Joachims (2002) as an optimization problem with constraints given by the induced graph of
the ordered queries’ results. This algorithm forms part of the family of kernel algorithms of
the SVM type (Boser et al. (1992); Schölkopf & Smola (2002)).
Kernel methods like the SVM or the ranking SVM solve optimization problems of the form

 Machine Learning

230

Zhang, C.; Chang, R. N.; Perng, C.-S.; So, E.; Tang, C. & Tao, T. (2007) QoS-Aware
Optimization of Composite-Service Fulfillment Policy. Services Computing, 2007.
SCC 2007. IEEE International Conference on, :11--19.

Zhou, C.; Chia, L.-T. & Lee, B.-S. (2004) DAML-QoS Ontology for Web Services. ICWS '04:
Proceedings of the IEEE International Conference on Web Services (ICWS'04), pages 472,
Washington, DC, USA, 2004. IEEE Computer Society.

11

Model Selection for Ranking SVM Using
Regularization Path

Karina Zapien1, Gilles Gasso1, Thomas Gärtner2 and Stéphane Canu1
1 LITIS EA 4108 - INSA de Rouen

2 Fraunhofer IAIS,
1France

2Germany

1. Introduction
This chapter deals with supervised learning problems under the ranking framework.
Ranking algorithms are typically introduced as a tool for personalizing the order in which
document recommendations or search results - in the web, for example - are presented. That
is, the more important a result is to the user, the earlier it should be listed. To this end, two
possible settings can be considered :
i. the algorithm tries to interactively rearrange the results of one search such that relevant

results come the closer to the top the more (implicit) feedback the user provides,
ii. the algorithm tries to generalize over several queries and presents the results of one

search in an order depending on the feedback obtained from previous searches.
The first setting deals with an active learning while the second setting deals with a passive
supervised learning. This kind of problems have gain major attention given the nowadays
amount of available informations. This is without doubt a challenging task in the medium
and large scale context.
Several methods have been proposed to solve these problems. For the passive setting, the
Rankboost algorithm (Freund et al. (2003)) is an adaptation from the Adaboost algorithm to
the ranking problem. This is a boosting algorithm which works by iteratively building a
linear combination of several “weak” algorithms to form a more accurate algorithm. The
Pranking algorithm (Crammer & Singer (2001)) is an online version of the weighted
algorithm. The SVRank and RankSVMalgorithms are the adaptation of the Support Vector
machines for classification and regression, respectively, while the MPRank (Cortes et al.
(2007)) is a magnitude-preserving algorithm, which searches not only to keep the relative
position of each sample but also to preserve the distance given by the correct ordering. This
last algorithm has as well the form of a regularization problem as the two previous with a
different cost function.
Later, the Ranking SVM (RankSVM) algorithm was proposed by Herbrich et al. (2000) and
Joachims (2002) as an optimization problem with constraints given by the induced graph of
the ordered queries’ results. This algorithm forms part of the family of kernel algorithms of
the SVM type (Boser et al. (1992); Schölkopf & Smola (2002)).
Kernel methods like the SVM or the ranking SVM solve optimization problems of the form

 Machine Learning

232

(1)

where V : H → R+ is a loss function, λ ∈ R+ is a regularization parameter, Ω: H → R+ is the
regularizer (which allows to enforce some nice properties as smoothness or simplicity of f)
and H represents the hypothesis space. Usually H is chosen as a reproducing kernel Hilbert
space. Although a key bottleneck for applying such algorithms in the real-world is choosing
λ, research often ignores this. As empirical results, however, strongly depend on the chosen
λ, runtime intensive repeated cross-validations have to be performed. Hence, in this chapter
we concentrate on speeding up and automating this choice by building on the regularization
path for SVMs (Hastie et al. (2004)).

2. Piecewise linear solutions
This framework is a kind of a more generic regularized optimization problems, already
studied for regularization problems (Rosset & Zhu (2007)) and for parametric quadratic
programming (Markowitz (1959)) for portfolio optimization. We are interested by the
efficient computation of the regularization path. Hence, let us define first this notion.
Definition 2.1 (Regularization path)
The regularization path of Problem (1) is the set of all solutions obtained when varying λ over R+ i.e.

Path = {fλ, with λ ∈ [0,+∞]}.
As one can see, with this definition, the pursued policy can have a high computational price.
In order to gain in efficiency, the family of piecewise linear solution path is of particular
interest. To highlight this fact, we consider the following definition.
Definition 2.2 (piecewise linear solution path)
The solution path is said to be piecewise linear when there exists a strictly decreasing (or increasing)
sequence λt, t = 1, . . . , N such that :

 (2)

where ht, t = 1, . . . , N denotes a sequence of functions in H.
With such property, it is easy to efficiently generate the whole path of solution. Indeed, in
such case, one only needs the sequence λt and the corresponding ht. Any other functions in-
between can be simply obtained by linear interpolation. Hence, owing to such property, the
computational cost of obtaining the whole path of solution may be of the order of a single
solution computation.
The question induced by this remark is to find which kind of objective functions makes the
solution path piecewise linear. In Rosset and Zhu (2007), the necessary conditions were
given for Problem (1) to admit a linear solution path. The main result is summarized by the
theorem below.
Theorem 1
Assume the loss V(f) and the regularizer Ω(f) are convex functions. If one objective function (either
V(f) or Ω(f)) is piecewise linear and the other one piecewise quadratic then the solution path of the
Problem (1) is piecewise linear.

Model Selection for Ranking SVM Using Regularization Path

233

Proof Assume V(f) and Ω(f)) are twice differentiable in a neighborhood of solution of (1)
corresponding to λt. Let also λ = λt +δλ and its related solution fλ . Consider finally J(f) = V(fλ)
+λ Ω(fλ). The optimality conditions associated to and fλ are respectively

 (3)

 (4)

where ∇f J(f) represents the functional derivative of J in H. For small values of δλ we can
consider the following second order Taylor expansion of (4) around

with Using it we have the following limit

that gives

The piecewise behavior is possible if is constant. To fulfill this condition, it requires

 (independence with respect to λ) and to be constant. The latter
condition is satisfied as the loss or the regularizer are assumed linear or quadratic. These
requirements achieve the proof.
In fact, similar to SVM classification, it turns out that as a function of λ is piecewise linear
and hence forms a regularization path. Indeed, in the RankSVM algorithm, the loss function
V(f) is the hinge loss (which is a L1 type-function) and the regularizer Ω(f) is chosen as a
quadratic or L1 function (see Figure 1). These choices therefore fulfill the requirements of the
theorem.

Fig. 1. Illustration of the typical choices of loss function and regularizer in SVM framework.
Left) Hinge loss, Right) Square regularizer.

 Machine Learning

232

(1)

where V : H → R+ is a loss function, λ ∈ R+ is a regularization parameter, Ω: H → R+ is the
regularizer (which allows to enforce some nice properties as smoothness or simplicity of f)
and H represents the hypothesis space. Usually H is chosen as a reproducing kernel Hilbert
space. Although a key bottleneck for applying such algorithms in the real-world is choosing
λ, research often ignores this. As empirical results, however, strongly depend on the chosen
λ, runtime intensive repeated cross-validations have to be performed. Hence, in this chapter
we concentrate on speeding up and automating this choice by building on the regularization
path for SVMs (Hastie et al. (2004)).

2. Piecewise linear solutions
This framework is a kind of a more generic regularized optimization problems, already
studied for regularization problems (Rosset & Zhu (2007)) and for parametric quadratic
programming (Markowitz (1959)) for portfolio optimization. We are interested by the
efficient computation of the regularization path. Hence, let us define first this notion.
Definition 2.1 (Regularization path)
The regularization path of Problem (1) is the set of all solutions obtained when varying λ over R+ i.e.

Path = {fλ, with λ ∈ [0,+∞]}.
As one can see, with this definition, the pursued policy can have a high computational price.
In order to gain in efficiency, the family of piecewise linear solution path is of particular
interest. To highlight this fact, we consider the following definition.
Definition 2.2 (piecewise linear solution path)
The solution path is said to be piecewise linear when there exists a strictly decreasing (or increasing)
sequence λt, t = 1, . . . , N such that :

 (2)

where ht, t = 1, . . . , N denotes a sequence of functions in H.
With such property, it is easy to efficiently generate the whole path of solution. Indeed, in
such case, one only needs the sequence λt and the corresponding ht. Any other functions in-
between can be simply obtained by linear interpolation. Hence, owing to such property, the
computational cost of obtaining the whole path of solution may be of the order of a single
solution computation.
The question induced by this remark is to find which kind of objective functions makes the
solution path piecewise linear. In Rosset and Zhu (2007), the necessary conditions were
given for Problem (1) to admit a linear solution path. The main result is summarized by the
theorem below.
Theorem 1
Assume the loss V(f) and the regularizer Ω(f) are convex functions. If one objective function (either
V(f) or Ω(f)) is piecewise linear and the other one piecewise quadratic then the solution path of the
Problem (1) is piecewise linear.

Model Selection for Ranking SVM Using Regularization Path

233

Proof Assume V(f) and Ω(f)) are twice differentiable in a neighborhood of solution of (1)
corresponding to λt. Let also λ = λt +δλ and its related solution fλ . Consider finally J(f) = V(fλ)
+λ Ω(fλ). The optimality conditions associated to and fλ are respectively

 (3)

 (4)

where ∇f J(f) represents the functional derivative of J in H. For small values of δλ we can
consider the following second order Taylor expansion of (4) around

with Using it we have the following limit

that gives

The piecewise behavior is possible if is constant. To fulfill this condition, it requires

 (independence with respect to λ) and to be constant. The latter
condition is satisfied as the loss or the regularizer are assumed linear or quadratic. These
requirements achieve the proof.
In fact, similar to SVM classification, it turns out that as a function of λ is piecewise linear
and hence forms a regularization path. Indeed, in the RankSVM algorithm, the loss function
V(f) is the hinge loss (which is a L1 type-function) and the regularizer Ω(f) is chosen as a
quadratic or L1 function (see Figure 1). These choices therefore fulfill the requirements of the
theorem.

Fig. 1. Illustration of the typical choices of loss function and regularizer in SVM framework.
Left) Hinge loss, Right) Square regularizer.

 Machine Learning

234

As in SVM classification, the breakpoints of this path correspond to certain events
(described in more detail in Section 5). Points of the regularization path which are not
breakpoints can not be distinguished in terms of margin-errors of the training data. To
choose a particular regularization parameter, and hence a particular solution to the ranking
problem, we evaluate on a validation set for each breakpoint of the regularization path.
Before delving into the details of solution path computation, the next two sections present
the ranking SVM algorithm.

3. Ranking SVM
For clarity and simplification sakes, let consider the example of web pages search in ranking
problems like (i) and (ii) from the introduction. To this purpose, we consider a set of query-
document samples x = (q, d) ∈ X, together with a label y that induces a relative order or
preference between the documents d accordingly to a query q. Each query induces a directed
acyclic graph (X, E), with E ⊆ X2 (See Figure 2).

Fig. 2. Induced graph from ranking constraints for a particular query

For (i) the set of web pages forms the vertex set X of the digraph and we are also given some
further information about the web pages (like a bag-of-words representation). For (ii) each
vertex of the graph is a pair containing a query (q ∈ Q) and a document (d ∈ D). Hence, the

vertex set is X � Q × D and edges of the form ((q, d), (q, d′)) ∈ E with d, d′ ∈ D;

q ∈ Q represent that d was more relevant than d′ for an user asking query q. In addition one
typically assumes some joint representations of queries and web pages.
The beauty of these problems is that classification and ordinal regression problems can be
written as a ranking problem, therefore, the ranking SVM framework can be as well used for
this kind of problems. The exact decision frontier can be calculated via a ROC curve, for
example.
In both cases, ranking algorithms aim to find an ordering (permutation) of the vertex
π : X → where n = |X| and = {1, . . . , n} such that the more relevant a document is,
the higher it is placed after the permutation, while as few as possible preferences are
violated by the permutation.
Ranking SVM approaches such learning problems by solving the following primal
optimization problem :

Model Selection for Ranking SVM Using Regularization Path

235

(5)

Here, H is a reproducing kernel Hilbert space (RKHS), λ ∈ R+ is a regularization parameter,
and the square norm in the Hilbert space serves as the regularizer. As in SVM for
classification, the slack variables ξvu, (u, v) ∈ E traduce the cost related to the violation of the
constraints (u, v). The final permutation π is then obtained by sorting X according to f and
resolving ties randomly.
Now, to easy the notation, let k : X × X → R be the reproducing kernel of H and denote the

vertex by xi such that X = {xi | i ∈ }. The set of violated constraints is {(xi, xj) ∈ E | π(xi) <
π(xj)}. The decision function will have the form with βi ∈ R. With

slight abuse of notation we write k(x) = (k(x, x1), k(x, x2), ..., k(x, xn))T. Using this notation, a
ranking problem (5) with m preferences can be written as :

(6)

with K = [Kij
 = k(xi, xj)] ∈ Rn×n the Gram matrix and β = [β1 ... βn]T.

The complexity of the problem comes from the fact that the number of such preference
constraints m is of order the square of the training set size that is m = O(n2). The Lagrangian
L of problem (6) is given by :

with αi ≥ 0, γi

 ≥ 0. A matrix P ∈ Rm×n can be defined with entries

(7)

so that the Lagrangian can be expressed as :

with α ≥ 0, γ ≥ 0 (the vectors α and γ contain respectively the Lagrange parameters αi and γi).
Using the Karush-Kuhn-Tucker (KKT) conditions, we obtain:

 Machine Learning

234

As in SVM classification, the breakpoints of this path correspond to certain events
(described in more detail in Section 5). Points of the regularization path which are not
breakpoints can not be distinguished in terms of margin-errors of the training data. To
choose a particular regularization parameter, and hence a particular solution to the ranking
problem, we evaluate on a validation set for each breakpoint of the regularization path.
Before delving into the details of solution path computation, the next two sections present
the ranking SVM algorithm.

3. Ranking SVM
For clarity and simplification sakes, let consider the example of web pages search in ranking
problems like (i) and (ii) from the introduction. To this purpose, we consider a set of query-
document samples x = (q, d) ∈ X, together with a label y that induces a relative order or
preference between the documents d accordingly to a query q. Each query induces a directed
acyclic graph (X, E), with E ⊆ X2 (See Figure 2).

Fig. 2. Induced graph from ranking constraints for a particular query

For (i) the set of web pages forms the vertex set X of the digraph and we are also given some
further information about the web pages (like a bag-of-words representation). For (ii) each
vertex of the graph is a pair containing a query (q ∈ Q) and a document (d ∈ D). Hence, the

vertex set is X � Q × D and edges of the form ((q, d), (q, d′)) ∈ E with d, d′ ∈ D;

q ∈ Q represent that d was more relevant than d′ for an user asking query q. In addition one
typically assumes some joint representations of queries and web pages.
The beauty of these problems is that classification and ordinal regression problems can be
written as a ranking problem, therefore, the ranking SVM framework can be as well used for
this kind of problems. The exact decision frontier can be calculated via a ROC curve, for
example.
In both cases, ranking algorithms aim to find an ordering (permutation) of the vertex
π : X → where n = |X| and = {1, . . . , n} such that the more relevant a document is,
the higher it is placed after the permutation, while as few as possible preferences are
violated by the permutation.
Ranking SVM approaches such learning problems by solving the following primal
optimization problem :

Model Selection for Ranking SVM Using Regularization Path

235

(5)

Here, H is a reproducing kernel Hilbert space (RKHS), λ ∈ R+ is a regularization parameter,
and the square norm in the Hilbert space serves as the regularizer. As in SVM for
classification, the slack variables ξvu, (u, v) ∈ E traduce the cost related to the violation of the
constraints (u, v). The final permutation π is then obtained by sorting X according to f and
resolving ties randomly.
Now, to easy the notation, let k : X × X → R be the reproducing kernel of H and denote the

vertex by xi such that X = {xi | i ∈ }. The set of violated constraints is {(xi, xj) ∈ E | π(xi) <
π(xj)}. The decision function will have the form with βi ∈ R. With

slight abuse of notation we write k(x) = (k(x, x1), k(x, x2), ..., k(x, xn))T. Using this notation, a
ranking problem (5) with m preferences can be written as :

(6)

with K = [Kij
 = k(xi, xj)] ∈ Rn×n the Gram matrix and β = [β1 ... βn]T.

The complexity of the problem comes from the fact that the number of such preference
constraints m is of order the square of the training set size that is m = O(n2). The Lagrangian
L of problem (6) is given by :

with αi ≥ 0, γi

 ≥ 0. A matrix P ∈ Rm×n can be defined with entries

(7)

so that the Lagrangian can be expressed as :

with α ≥ 0, γ ≥ 0 (the vectors α and γ contain respectively the Lagrange parameters αi and γi).
Using the Karush-Kuhn-Tucker (KKT) conditions, we obtain:

 Machine Learning

236

These equations result in conditions, so that

Finally, the dual of Problem (6) is:

(8)

4. RankSVM singularity
As mentioned in the introduction, the Ranking SVM optimization problem induces a
directed graph for each query. This structure constraints an edge for each relationship of
relevance between samples that has to be satisfied. These constraints include as well all
transitive relationships that could in fact be induced by other ones. This redundancy in the
constraints setting cause the Hessian matrix in Problem (8) to be singular.
This issue can be overcome by designing for each query a sample as the maximum of all his
rank for this query, so that edges from the chosen sample will be added to the other
samples. For the immediate upper level, all samples in it will be joint to the maximum of the
previous rank and so on. The obtained graph would look as in Figure (3).

Fig. 3. New graph that will generate a non singular Hessian on the dual problem

The advantage of this new formulation is that the number of constraints is significantly
smaller than in the original RankSVMalgorithm. The first one can be of order O(n2), while
the second one is of order O(n) This will lead to a smaller problem and faster training time
with a consistent problem equivalence.

5. Regularization path for ranking SVM
Following the arguments developed in Rosset and Zhu (2007), it can be shown that the
solution (λ) of the above dual problem is a piecewise linear function of λ. Hence the

Model Selection for Ranking SVM Using Regularization Path

237

problem admits a piecewise linear regularization path. A regularization path has
breakpoints λ1 > λ2 > . . . such that for an interval [λt+1, λt] (i.e., with no breakpoint) the
optimal solutions (λ) and (λ) can easily be obtained for all λ ∈ [λt+1, λt].
Following the work of Hastie et al. (2004) we now derive the regularization path of ranking
SVM. For given λ, and to simplify the notations, let f(x) and α be the decision function and
the optimal solution for Problems (6) and (8), respectively (i.e. (x) ≡ f(x) and (λ) ≡ α).
Then, the following partition derived from the KKT optimality conditions can be made :

The set I0
 represents the satisfied constraints whereas I1

 is devoted to the violated

constraints and Iα includes the “margin constraints”.

Similarly, we will denote by αt and f t(x) the optimal solution of the dual Problem (6) for the
regularization parameter λt. Note that we assume the above sets induced by the
solution of the optimization problem for λt remain unchanged for

. Hence, α i ∈ Iα depends linearly on λ, This
can be seen by writing f (x) as follows :

(9)

where the last line is true as for all is the submatrix of P containing the
rows corresponding to and all columns. For all i ∈ we have that

 leading to

Therefore

 (10)

This equation is valid for all pairs in for fixed sets . It can be simplified
by transposing Eq. (10) and using Eq. (7) in it, getting :

(11)

 Machine Learning

236

These equations result in conditions, so that

Finally, the dual of Problem (6) is:

(8)

4. RankSVM singularity
As mentioned in the introduction, the Ranking SVM optimization problem induces a
directed graph for each query. This structure constraints an edge for each relationship of
relevance between samples that has to be satisfied. These constraints include as well all
transitive relationships that could in fact be induced by other ones. This redundancy in the
constraints setting cause the Hessian matrix in Problem (8) to be singular.
This issue can be overcome by designing for each query a sample as the maximum of all his
rank for this query, so that edges from the chosen sample will be added to the other
samples. For the immediate upper level, all samples in it will be joint to the maximum of the
previous rank and so on. The obtained graph would look as in Figure (3).

Fig. 3. New graph that will generate a non singular Hessian on the dual problem

The advantage of this new formulation is that the number of constraints is significantly
smaller than in the original RankSVMalgorithm. The first one can be of order O(n2), while
the second one is of order O(n) This will lead to a smaller problem and faster training time
with a consistent problem equivalence.

5. Regularization path for ranking SVM
Following the arguments developed in Rosset and Zhu (2007), it can be shown that the
solution (λ) of the above dual problem is a piecewise linear function of λ. Hence the

Model Selection for Ranking SVM Using Regularization Path

237

problem admits a piecewise linear regularization path. A regularization path has
breakpoints λ1 > λ2 > . . . such that for an interval [λt+1, λt] (i.e., with no breakpoint) the
optimal solutions (λ) and (λ) can easily be obtained for all λ ∈ [λt+1, λt].
Following the work of Hastie et al. (2004) we now derive the regularization path of ranking
SVM. For given λ, and to simplify the notations, let f(x) and α be the decision function and
the optimal solution for Problems (6) and (8), respectively (i.e. (x) ≡ f(x) and (λ) ≡ α).
Then, the following partition derived from the KKT optimality conditions can be made :

The set I0
 represents the satisfied constraints whereas I1

 is devoted to the violated

constraints and Iα includes the “margin constraints”.

Similarly, we will denote by αt and f t(x) the optimal solution of the dual Problem (6) for the
regularization parameter λt. Note that we assume the above sets induced by the
solution of the optimization problem for λt remain unchanged for

. Hence, α i ∈ Iα depends linearly on λ, This
can be seen by writing f (x) as follows :

(9)

where the last line is true as for all is the submatrix of P containing the
rows corresponding to and all columns. For all i ∈ we have that

 leading to

Therefore

 (10)

This equation is valid for all pairs in for fixed sets . It can be simplified
by transposing Eq. (10) and using Eq. (7) in it, getting :

(11)

 Machine Learning

238

If we define a vector of ones of size | |, then it can finally
be seen that αi, i ∈ changes piecewise linearly in λ as follows :

 (12)

For all λ ∈ [λt+1, λt], the optimal solution α (and consequently the decision function f(x)) can
be easily obtained until the sets change, i.e., an event occurs. From any optimal solution
α for λ, the corresponding sets Iα, I0, and I1 can be deduced and thereon the successive
solutions for different λ.

5.1 Initialization
If λ is very large, β = 0 minimizes Problem (6). This implies that ξi

 = 1, ∀i and because of the
strict complementary and KKT conditions, γi

 = 0 ⇒ αi = 1. To have at least one element in Iα,

we need a pair that verifies 1. We know that
 and therefore α = 1I solves , for all pairs, the equation

Hence, initially all pairs will be in I1 and, as initial λ value, we take

The set Iα will contain the pairs which maximize the value of λ0.

5.2 Event detection
At step t the optimal solution αt defines a partition Iα, I1, I0. If these sets remain fixed for all
λ in a given range then the optimal solution α(λ) is a linear function of λ. If an event occurs,
i.e., the sets change, then the linear equation has to be readjusted. Two types of events have
to be determined:
- a pair in Iα goes to I1 or I0
- a pair in I1 or I0 goes to Iα.

5.2.1 Pair in Iα goes to I1 or I0

This event can be determined by analyzing at which value of λ the corresponding αi turns
zero or one. Eq. (12) is used and the following systems are solved for λi :

 (13)

 (14)

Using these last equations, the exact values for λi that produces an event on pairs in
Iα moving to I0 ∪ I1 can be determined.

Model Selection for Ranking SVM Using Regularization Path

239

5.2.2 Pair in I1 or I0 goes to Iα

To detect this event, note that Equation (11) can also be written as follows :

(15)

Plugging Eq. (15) in Eq. (9), we can write f(x) in a convenient manner:

If we let

then

(16)

An event on pair (ki, li) ∈ I0 ∪ I1 � Iα means that and can be detected
by using Equation (16). The corresponding λi that generates this event is calculated as
follows:

(17)

Finally, λt+1 will be the largest resulting λi
 < λt from Equations (13), (14) and (17). In a cross

validation framework, model selection can be done by learning the parameters in the
training sets, an estimation of the generalization error (or ranking accuracy) can be taken by
applying each model to the validation set.
The path computation is summarized by the pseudo-code of Algorithm 1.

5.3 Remarks and comments
Here we discuss briefly some issues of the algorithm related to the piecewise variation, the
numerical complexity and how to address the emptiness of the set Iα.
On the functional piecewise variation
Let the function g = λf corresponding to the regularization parameter λ. In a similar manner,
consider the function gt = λtf t which corresponds to the solution for the value λt. From Eq.
(16), one derives easily the relation g = gt +(λ−λt)ht. Therefore, we recover the piecewise
linear variation stated in theorem 1. This linear variation formally concerns the function g
instead of f. However the parameters α involved in f evolves linearly with λ.
On the numerical complexity
The numerical complexity of the algorithm can be analyzed as follows. We assume the
whole matrix P K PT is available beforehand as it can be built and stored at the beginning of

 Machine Learning

238

If we define a vector of ones of size | |, then it can finally
be seen that αi, i ∈ changes piecewise linearly in λ as follows :

 (12)

For all λ ∈ [λt+1, λt], the optimal solution α (and consequently the decision function f(x)) can
be easily obtained until the sets change, i.e., an event occurs. From any optimal solution
α for λ, the corresponding sets Iα, I0, and I1 can be deduced and thereon the successive
solutions for different λ.

5.1 Initialization
If λ is very large, β = 0 minimizes Problem (6). This implies that ξi

 = 1, ∀i and because of the
strict complementary and KKT conditions, γi

 = 0 ⇒ αi = 1. To have at least one element in Iα,

we need a pair that verifies 1. We know that
 and therefore α = 1I solves , for all pairs, the equation

Hence, initially all pairs will be in I1 and, as initial λ value, we take

The set Iα will contain the pairs which maximize the value of λ0.

5.2 Event detection
At step t the optimal solution αt defines a partition Iα, I1, I0. If these sets remain fixed for all
λ in a given range then the optimal solution α(λ) is a linear function of λ. If an event occurs,
i.e., the sets change, then the linear equation has to be readjusted. Two types of events have
to be determined:
- a pair in Iα goes to I1 or I0
- a pair in I1 or I0 goes to Iα.

5.2.1 Pair in Iα goes to I1 or I0

This event can be determined by analyzing at which value of λ the corresponding αi turns
zero or one. Eq. (12) is used and the following systems are solved for λi :

 (13)

 (14)

Using these last equations, the exact values for λi that produces an event on pairs in
Iα moving to I0 ∪ I1 can be determined.

Model Selection for Ranking SVM Using Regularization Path

239

5.2.2 Pair in I1 or I0 goes to Iα

To detect this event, note that Equation (11) can also be written as follows :

(15)

Plugging Eq. (15) in Eq. (9), we can write f(x) in a convenient manner:

If we let

then

(16)

An event on pair (ki, li) ∈ I0 ∪ I1 � Iα means that and can be detected
by using Equation (16). The corresponding λi that generates this event is calculated as
follows:

(17)

Finally, λt+1 will be the largest resulting λi
 < λt from Equations (13), (14) and (17). In a cross

validation framework, model selection can be done by learning the parameters in the
training sets, an estimation of the generalization error (or ranking accuracy) can be taken by
applying each model to the validation set.
The path computation is summarized by the pseudo-code of Algorithm 1.

5.3 Remarks and comments
Here we discuss briefly some issues of the algorithm related to the piecewise variation, the
numerical complexity and how to address the emptiness of the set Iα.
On the functional piecewise variation
Let the function g = λf corresponding to the regularization parameter λ. In a similar manner,
consider the function gt = λtf t which corresponds to the solution for the value λt. From Eq.
(16), one derives easily the relation g = gt +(λ−λt)ht. Therefore, we recover the piecewise
linear variation stated in theorem 1. This linear variation formally concerns the function g
instead of f. However the parameters α involved in f evolves linearly with λ.
On the numerical complexity
The numerical complexity of the algorithm can be analyzed as follows. We assume the
whole matrix P K PT is available beforehand as it can be built and stored at the beginning of

 Machine Learning

240

the algorithm and this computation requires O(mn2) operations from the knowledge of the
matrices P and K. At each iteration, solving the linear system (11) involves a cost of order
O(|Iα|3). The calculation of all next values λt+1 (using Eq. 13-14 and 17) has a numerical

complexity of O(m|Iα|) whereas the detection of the next event is of order O(m). Let
 the evaluation of the preference , i ∈ . According to (16),

the update of all yi is O(m). We can note that the computational complexity is essentially
related to the cardinality of Iα|. The cubic complexity of the linear system can be decreased
to square complexity using a Sherman-Morrison rule to update the inverse of the matrix

 or a Choleski update procedure. The exact complexity of the algorithm is hard to
predict since the total number of events needed for exploring entirely the regularization
path is data-dependent and the mean size of |Iα| is difficult to guess beforehand. However,
the total complexity is few multiples of the cost for solving directly the dual problem (8).
On the emptiness of Iα

It may happen during the algorithm that the set Iα becomes empty. In such situation, a
new initialization of the algorithm is needed. We apply the procedure developed in
Subsection 5.1 except the fact we consider solely the pairs in I1 keeping unchanged the set

I0.

Model Selection for Ranking SVM Using Regularization Path

241

6. Experimental results
Several datasets where used to measure the accuracy and time to process the regularization
path for the RankSVM algorithm. Firstly, a toy example generated from Gaussian
distributions (Hastie et al. (2001)) was applied. Some invetisgations on real life datasets
taken from the UCI repository1 are further presented.
The mixtures dataset of Hastie et al. (2004) was originally designed for binary classification
with instances xi and corresponding labels yi ∈ {±1}. However, it can be viewed as a ranking
problem with E = {(xi, xj) | yi > yj}. It contains 100 positive and 100 negative points which
would induce 10000 constraints. The regularization path was run on this dataset and a
decision function was taken on zero. This decision boundary can still be improved by
observing the generated ROC curve at each level. Figure (4) illustrates the decision function

 (a) Initialization (b) Solution after some iterations

 (c) Solution after more iterations (d) Solution for the smallest λ

Fig. 4. Illustration of the regularization path for the mixture dataset, all red points must be
ranked higher than the blue points. As λ decreases, the margin gets smaller and the distance
between pairs tends to be larger than one.

1 http ://archive.ics.uci.edu/ml/datasets.html

 Machine Learning

240

the algorithm and this computation requires O(mn2) operations from the knowledge of the
matrices P and K. At each iteration, solving the linear system (11) involves a cost of order
O(|Iα|3). The calculation of all next values λt+1 (using Eq. 13-14 and 17) has a numerical

complexity of O(m|Iα|) whereas the detection of the next event is of order O(m). Let
 the evaluation of the preference , i ∈ . According to (16),

the update of all yi is O(m). We can note that the computational complexity is essentially
related to the cardinality of Iα|. The cubic complexity of the linear system can be decreased
to square complexity using a Sherman-Morrison rule to update the inverse of the matrix

 or a Choleski update procedure. The exact complexity of the algorithm is hard to
predict since the total number of events needed for exploring entirely the regularization
path is data-dependent and the mean size of |Iα| is difficult to guess beforehand. However,
the total complexity is few multiples of the cost for solving directly the dual problem (8).
On the emptiness of Iα

It may happen during the algorithm that the set Iα becomes empty. In such situation, a
new initialization of the algorithm is needed. We apply the procedure developed in
Subsection 5.1 except the fact we consider solely the pairs in I1 keeping unchanged the set

I0.

Model Selection for Ranking SVM Using Regularization Path

241

6. Experimental results
Several datasets where used to measure the accuracy and time to process the regularization
path for the RankSVM algorithm. Firstly, a toy example generated from Gaussian
distributions (Hastie et al. (2001)) was applied. Some invetisgations on real life datasets
taken from the UCI repository1 are further presented.
The mixtures dataset of Hastie et al. (2004) was originally designed for binary classification
with instances xi and corresponding labels yi ∈ {±1}. However, it can be viewed as a ranking
problem with E = {(xi, xj) | yi > yj}. It contains 100 positive and 100 negative points which
would induce 10000 constraints. The regularization path was run on this dataset and a
decision function was taken on zero. This decision boundary can still be improved by
observing the generated ROC curve at each level. Figure (4) illustrates the decision function

 (a) Initialization (b) Solution after some iterations

 (c) Solution after more iterations (d) Solution for the smallest λ

Fig. 4. Illustration of the regularization path for the mixture dataset, all red points must be
ranked higher than the blue points. As λ decreases, the margin gets smaller and the distance
between pairs tends to be larger than one.

1 http ://archive.ics.uci.edu/ml/datasets.html

 Machine Learning

242

for different breakpoints of the regularization path. The initial solution (a) is poor but after
some iterations the results are improved as shown in subfigure (b). The most interesting
solution is illustrated on subfigure (c) where almost constraints are satisfied.
The others datasets are regression problems and can also be viewed as ranking problems by
letting E = {(xi, xj) | yi > yj}.
The number of induced constraints on the complete dataset and those obtained after
following the graph design in Figure (3) are compared in Table 1.
For the experiments, a training, a validation and a test sets where built, being the last two of
about half the size of the training set each. The number of involved features, training and
test instances, and training and test constraints are summarized in Table 2.
Finally, the experiment was run 10 times, the error is measured as the percentage of
misclassified samples. The size of A tells the number of support vectors and finally the time,
is the average time (in seconds) to train a regularization path. The results are gathered in
Table 3. We can see that the computation cost needed to obtain all possible soultions and
their evaluation on test samples (in order to pick up the best one) is fairly cheaper making
the approach particularly interesting.

7. Conclusions
Regularization parameter search for the ranking SVM can be efficiently done by calculating
the regularization path. This approach calculates efficiently the optimal solution for all
possible regularization parameters by solving (in practice) small linear problems. This
approach has the advantage of overcoming local minimum of the regularization function.
These advantages make the parameter selection considerably less time consuming and the
obtained optimal solution for each model more robust.

Table 1. Number of training instances under the original RankSVM and the ones obtained
after the graph reformulation

Table 2. Summary of the features of the training, validation and test sets

Model Selection for Ranking SVM Using Regularization Path

243

Table 3. Obtained results by running the regularization path on the datasets described in
Table 1. The results are averaged over 10 trials.

The numerical complexity of the algorithm depends on the number of iterations needed to
explore the overall solution path and the mean size of Iα. At each iteration, a linear
system is solved to get η which has complexity O(|Iα|2). Empirically we observed that
the number of iterations is typically only 2-3 times larger than the number of training
pairs
Another key point is the determination of kernel hyper-parameter. This problem was not
tackled here. However, one can seek to combine our regularisation path with the kernel
parameter path developed in Gang Wang and Lochovsky (2007).

8. References
Boser, B. E., Guyon, I., and Vapnik, V. (1992). A training algorithm for optimal margin

classifiers. In Computational Learing Theory, pages 144–152.
Cortes, C., Mohri, M., and Rastogi, A. (2007). An alternative ranking problem for search

engines. In Demetrescu, C., editor, WEA, volume 4525 of Lecture Notes in Computer
Science, pages 1–22. Springer.

Crammer, K. and Singer, Y. (2001). Pranking with ranking.
Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. (2003). An efficient boosting algorithm for

combining preferences. J. Mach. Learn. Res., 4 :933–969.
Gang Wang, D.-Y. Y. and Lochovsky, F. H. (2007). A kernel path algorithm for support

vector machines. In Proceedings of ICML’2007.
Hastie, T., Rosset, S., Tibshirani, R., and Zhu, J. (2004). The entire regularization path for the

support vector machine. Journal of Machine Learning Research, 5 :1391–1415.
Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning : Data

Mining, Inference and Prediction. Springer Verlag, New York.
Herbrich, R., Graepel, T., and Obermayer, K. (2000). Large margin rank boundaries for

ordinal regression. In Smola, A., Bartlett, P., Schölkopf, B., and Schuurmans, D.,
editors, Advances in Large Margin Classifiers, pages 115–132, Cambridge, MA. MIT
Press.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), pages 133– 142.

Markowitz, H. M. (1959). Portfolio selection : Efficient diversification of investments. John Wiley
and Sons, Inc.

 Machine Learning

242

for different breakpoints of the regularization path. The initial solution (a) is poor but after
some iterations the results are improved as shown in subfigure (b). The most interesting
solution is illustrated on subfigure (c) where almost constraints are satisfied.
The others datasets are regression problems and can also be viewed as ranking problems by
letting E = {(xi, xj) | yi > yj}.
The number of induced constraints on the complete dataset and those obtained after
following the graph design in Figure (3) are compared in Table 1.
For the experiments, a training, a validation and a test sets where built, being the last two of
about half the size of the training set each. The number of involved features, training and
test instances, and training and test constraints are summarized in Table 2.
Finally, the experiment was run 10 times, the error is measured as the percentage of
misclassified samples. The size of A tells the number of support vectors and finally the time,
is the average time (in seconds) to train a regularization path. The results are gathered in
Table 3. We can see that the computation cost needed to obtain all possible soultions and
their evaluation on test samples (in order to pick up the best one) is fairly cheaper making
the approach particularly interesting.

7. Conclusions
Regularization parameter search for the ranking SVM can be efficiently done by calculating
the regularization path. This approach calculates efficiently the optimal solution for all
possible regularization parameters by solving (in practice) small linear problems. This
approach has the advantage of overcoming local minimum of the regularization function.
These advantages make the parameter selection considerably less time consuming and the
obtained optimal solution for each model more robust.

Table 1. Number of training instances under the original RankSVM and the ones obtained
after the graph reformulation

Table 2. Summary of the features of the training, validation and test sets

Model Selection for Ranking SVM Using Regularization Path

243

Table 3. Obtained results by running the regularization path on the datasets described in
Table 1. The results are averaged over 10 trials.

The numerical complexity of the algorithm depends on the number of iterations needed to
explore the overall solution path and the mean size of Iα. At each iteration, a linear
system is solved to get η which has complexity O(|Iα|2). Empirically we observed that
the number of iterations is typically only 2-3 times larger than the number of training
pairs
Another key point is the determination of kernel hyper-parameter. This problem was not
tackled here. However, one can seek to combine our regularisation path with the kernel
parameter path developed in Gang Wang and Lochovsky (2007).

8. References
Boser, B. E., Guyon, I., and Vapnik, V. (1992). A training algorithm for optimal margin

classifiers. In Computational Learing Theory, pages 144–152.
Cortes, C., Mohri, M., and Rastogi, A. (2007). An alternative ranking problem for search

engines. In Demetrescu, C., editor, WEA, volume 4525 of Lecture Notes in Computer
Science, pages 1–22. Springer.

Crammer, K. and Singer, Y. (2001). Pranking with ranking.
Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. (2003). An efficient boosting algorithm for

combining preferences. J. Mach. Learn. Res., 4 :933–969.
Gang Wang, D.-Y. Y. and Lochovsky, F. H. (2007). A kernel path algorithm for support

vector machines. In Proceedings of ICML’2007.
Hastie, T., Rosset, S., Tibshirani, R., and Zhu, J. (2004). The entire regularization path for the

support vector machine. Journal of Machine Learning Research, 5 :1391–1415.
Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning : Data

Mining, Inference and Prediction. Springer Verlag, New York.
Herbrich, R., Graepel, T., and Obermayer, K. (2000). Large margin rank boundaries for

ordinal regression. In Smola, A., Bartlett, P., Schölkopf, B., and Schuurmans, D.,
editors, Advances in Large Margin Classifiers, pages 115–132, Cambridge, MA. MIT
Press.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), pages 133– 142.

Markowitz, H. M. (1959). Portfolio selection : Efficient diversification of investments. John Wiley
and Sons, Inc.

 Machine Learning

244

Rosset, S. and Zhu, J. (2007). Piecewise linear regularized solution paths. Annals of Statistics,
35(3) :1012–1030.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels. MIT Press.

12

Generation of Facial Expression Map using
Supervised and Unsupervised Learning

Masaki Ishii1, Kazuhito Sato1, Hirokazu Madokoro1 and Makoto Nishida2
1Akita Prefectural University,

2Akita University
Japan

1. Introduction
Recently, studies of human face recognition have been conducted vigorously (Fasel &
Luettin, 2003; Yang et al., 2002; Pantic & Rothkrantz, 2000a; Zhao et al., 2000; Hasegawa et
al., 1997; Akamatsu, 1997). Such studies are aimed at the implementation of an intelligent
man-machine interface. Especially, studies of facial expression recognition for human-
machine emotional communication are attracting attention (Fasel & Luettin, 2003; Pantic &
Rothkrantz, 2000a; Tian et al., 2001; Pantic & Rothkrantz, 2000b; Lyons et al., 1999; Lyons et
al., 1998; Zhang et al., 1998).
The shape (static diversity) and motion (dynamic diversity) of facial components such as the
eyebrows, eyes, nose, and mouth manifest expressions. Considering facial expressions from
the perspective of static diversity because facial configurations differ among people, it is
presumed that a facial expression pattern appearing on a face when facial expression is
manifested includes person-specific features. In addition, from the viewpoint of dynamic
diversity, because the dynamic change of facial expression originates in a person-specific
facial expression pattern, it is presumed that the displacement vector of facial components
has person-specific features. The properties of the human face described above reveal the
following tasks.
The first task is to generalize a facial expression recognition model. Numerous conventional
approaches have attempted generalization of a facial expression recognition model. They
use the distance of motion of feature points set on a face and the motion vectors of facial
muscle movements in its arbitrary regions as feature values. Typically, such methods assign
that information to so-called Action Units (AUs) of a Facial Action Coding System (FACS)
(Ekman & Friesen, 1978). In fact, AUs are described qualitatively. Therefore, no objective
criteria pertain to the setting positions of feature points and regions. They all depend on a
particular researcher’s experience. However, features representing facial expressions are
presumed to differ among subjects. Accordingly, a huge effort is necessary to link
quantitative features with qualitative AUs for each subject and to derive universal features
therefrom. It is also suspected that a generalized facial expression recognition model that is
applicable to all subjects would disregard person-specific features of facial expressions that are
borne originally by each subject. For all the reasons described above, it is an important task to
establish a method to extract person-specific features using a common approach to every
subject, and to build a facial expression recognition model that incorporates these features.

 Machine Learning

244

Rosset, S. and Zhu, J. (2007). Piecewise linear regularized solution paths. Annals of Statistics,
35(3) :1012–1030.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels. MIT Press.

12

Generation of Facial Expression Map using
Supervised and Unsupervised Learning

Masaki Ishii1, Kazuhito Sato1, Hirokazu Madokoro1 and Makoto Nishida2
1Akita Prefectural University,

2Akita University
Japan

1. Introduction
Recently, studies of human face recognition have been conducted vigorously (Fasel &
Luettin, 2003; Yang et al., 2002; Pantic & Rothkrantz, 2000a; Zhao et al., 2000; Hasegawa et
al., 1997; Akamatsu, 1997). Such studies are aimed at the implementation of an intelligent
man-machine interface. Especially, studies of facial expression recognition for human-
machine emotional communication are attracting attention (Fasel & Luettin, 2003; Pantic &
Rothkrantz, 2000a; Tian et al., 2001; Pantic & Rothkrantz, 2000b; Lyons et al., 1999; Lyons et
al., 1998; Zhang et al., 1998).
The shape (static diversity) and motion (dynamic diversity) of facial components such as the
eyebrows, eyes, nose, and mouth manifest expressions. Considering facial expressions from
the perspective of static diversity because facial configurations differ among people, it is
presumed that a facial expression pattern appearing on a face when facial expression is
manifested includes person-specific features. In addition, from the viewpoint of dynamic
diversity, because the dynamic change of facial expression originates in a person-specific
facial expression pattern, it is presumed that the displacement vector of facial components
has person-specific features. The properties of the human face described above reveal the
following tasks.
The first task is to generalize a facial expression recognition model. Numerous conventional
approaches have attempted generalization of a facial expression recognition model. They
use the distance of motion of feature points set on a face and the motion vectors of facial
muscle movements in its arbitrary regions as feature values. Typically, such methods assign
that information to so-called Action Units (AUs) of a Facial Action Coding System (FACS)
(Ekman & Friesen, 1978). In fact, AUs are described qualitatively. Therefore, no objective
criteria pertain to the setting positions of feature points and regions. They all depend on a
particular researcher’s experience. However, features representing facial expressions are
presumed to differ among subjects. Accordingly, a huge effort is necessary to link
quantitative features with qualitative AUs for each subject and to derive universal features
therefrom. It is also suspected that a generalized facial expression recognition model that is
applicable to all subjects would disregard person-specific features of facial expressions that are
borne originally by each subject. For all the reasons described above, it is an important task to
establish a method to extract person-specific features using a common approach to every
subject, and to build a facial expression recognition model that incorporates these features.

 Machine Learning

246

The second task is to verify the validity of categorizing emotions into six basic emotions:
anger, sadness, disgust, happiness, surprise, and fear. In general, facial expressions rarely
appear as a pure and solitary basic emotion, but they often appear as a mixture of various
emotions. Moreover, the variety of motions of facial parts and forms is not unique; motions
are diverse patterns of facial expression. Facial expressions are presumed to be classifiable
into categories whose number is determined as optimal for each subject. Consequently, the
categorization of facial expressions is attributed to a problem of classification into an
unknown number of categories. Accordingly, it is necessary to establish a method for
determining the optimal number of categories for each subject.
An ideal facial expression recognition system is expected to be capable of categorizing facial
expressions into as many types as possible. For that purpose, it is desirable that a facial
expression pattern be categorized with its operator’s subjectivity excluded, and that the
operator be able to attribute emotions uniquely to the categories. That is, because an
emotion in one universal category might yield different patterns of facial expression in each
subject, a system is expected to be capable of varying criteria for facial expression
categorization according to the subjective interpretation of an operator.
For this chapter, we assume categorization of facial expression as a classification problem
into an unknown number of categories. We propose a generation method of a person-
specific Facial Expression Map (FEMap) using the Self-Organizing Maps (SOM) (Kohonen,
1995) of unsupervised learning and Counter Propagation Networks (CPN) (Nielsen, 1987) of
supervised learning together. The proposed method consists of an extraction phase of
person-specific facial expression categories using a SOM and a generation phase of an
FEMap using a CPN. During the first phase, we particularly examine the unsupervised
learning function and data compression function using the SOM of a narrow mapping
space. The topological change of a face pattern in the expressional process of facial
expression is learned hierarchically using the SOM of a narrow mapping space. The number
of person-specific facial expression categories is generated along with the representative
images of each category. Next, psychological significance based on a neutral expression and
those of six basic emotions (anger, sadness, disgust, happiness, surprise, and fear) is
assigned to each category. In the latter phase, we specifically address the supervised
learning function and data extension function using the CPN of a large mapping space. The
categories and the representative images described above are learned using the CPN of a
large mapping space; a category map that expresses the topological characteristics of facial
expression is generated. This study defines this category map as an FEMap. Experimental
results for six subjects illustrate that the proposed method can generate a person-specific
FEMap based on topological characteristics of facial expression appearing on face images.

2. Algorithms of SOM and CPN
2.1 Self-Organizing Maps (SOM)
The SOM is a learning algorithm that models the self-organizing and adaptive learning
capabilities of a human brain (Kohonen, 1995). A SOM comprises two layers: an input layer,
to which training data are supplied; and a Kohonen layer, in which self-mapping is
performed by competitive learning. The learning algorithm of a SOM is described below.
1. Let wi,j(t) be a weight from an input layer unit i to a Kohonen layer unit j at time t.

Actually, wi,j is initialized using random numbers.

Generation of Facial Expression Map using Supervised and Unsupervised Learning

247

2. Let xi(t) be input data to the input layer unit i at time t; calculate the Euclidean distance
dj between xi(t) and wi,j(t) using (1).

 () ()()2

,
1

I

j i i j
i

d x t w t
=

= −∑ (1)

3. Search for a Kohonen layer unit to minimize dj, which is designated as a winner unit.
4. Update the weight wi,j(t) of a Kohonen layer unit contained in the neighborhood region

of the winner unit Nc(t) using (2), where α(t) is a learning coefficient.

 () () () () ()(), , ,1i j i j i i jw t w t t x t w tα+ = + − (2)

5. Repeat processes 2)–4) up to the maximum iteration of learning.

2.2 Counter Propagation Networks (CPN)
The CPN is a learning algorithm that combines the Grossberg learning rule with the SOM
(Nielsen, 1987). A CPN comprises three layers: an input layer to which training data are
supplied; a Kohonen layer in which self-mapping is performed by competitive learning;
and a Grossberg layer, which labels the Kohonen layer by the counter propagation of
teaching signals. A CPN is useful for automatically determining the label of a Kohonen
layer when a category in which training data will belong is predetermined. This labeled
Kohonen layer is designated as a category map. The learning algorithm of a CPN is
described below.
1. Let win,m(t) and wjn,m(t) respectively indicate weights to a Kohonen layer unit (n, m) at

time t from an input layer unit i and from a Grossberg layer unit j. In fact, win,m and wjn,m
are initialized using random numbers.

2. Let xi(t) be input data to the input layer unit i at time t, and calculate the Euclidean
distance dn,m between xi(t) and win,m(t) using (3).

 () ()()2

, ,
1

I
i

n m i n m
i

d x t w t
=

= −∑ (3)

3. Search for a Kohonen layer unit to minimize dn,m, which is designated as a winner unit.
4. Update weights win,m(t) and wjn,m(t) of a Kohonen layer unit contained in the

neighborhood region of the winner unit Nc(t) using (4) and (5), where α(t), β(t) are
learning coefficients, and tj(t) is a teaching signal to the Grossberg layer unit j.

 () () () () ()(), , ,1i i i
n m n m i n mw t w t t x t w tα+ = + − (4)

 () () () () ()(), , ,1j j j
n m n m j n mw t w t t t t w tβ+ = + − (5)

5. Repeat processes 2)–4) up to the maximum iteration of learning.
6. After learning is completed, compare weights wjn,m observed from each unit of the

Kohonen layer; and let the teaching signal of the Grossberg layer with the maximum
value be the label of the unit.

 Machine Learning

246

The second task is to verify the validity of categorizing emotions into six basic emotions:
anger, sadness, disgust, happiness, surprise, and fear. In general, facial expressions rarely
appear as a pure and solitary basic emotion, but they often appear as a mixture of various
emotions. Moreover, the variety of motions of facial parts and forms is not unique; motions
are diverse patterns of facial expression. Facial expressions are presumed to be classifiable
into categories whose number is determined as optimal for each subject. Consequently, the
categorization of facial expressions is attributed to a problem of classification into an
unknown number of categories. Accordingly, it is necessary to establish a method for
determining the optimal number of categories for each subject.
An ideal facial expression recognition system is expected to be capable of categorizing facial
expressions into as many types as possible. For that purpose, it is desirable that a facial
expression pattern be categorized with its operator’s subjectivity excluded, and that the
operator be able to attribute emotions uniquely to the categories. That is, because an
emotion in one universal category might yield different patterns of facial expression in each
subject, a system is expected to be capable of varying criteria for facial expression
categorization according to the subjective interpretation of an operator.
For this chapter, we assume categorization of facial expression as a classification problem
into an unknown number of categories. We propose a generation method of a person-
specific Facial Expression Map (FEMap) using the Self-Organizing Maps (SOM) (Kohonen,
1995) of unsupervised learning and Counter Propagation Networks (CPN) (Nielsen, 1987) of
supervised learning together. The proposed method consists of an extraction phase of
person-specific facial expression categories using a SOM and a generation phase of an
FEMap using a CPN. During the first phase, we particularly examine the unsupervised
learning function and data compression function using the SOM of a narrow mapping
space. The topological change of a face pattern in the expressional process of facial
expression is learned hierarchically using the SOM of a narrow mapping space. The number
of person-specific facial expression categories is generated along with the representative
images of each category. Next, psychological significance based on a neutral expression and
those of six basic emotions (anger, sadness, disgust, happiness, surprise, and fear) is
assigned to each category. In the latter phase, we specifically address the supervised
learning function and data extension function using the CPN of a large mapping space. The
categories and the representative images described above are learned using the CPN of a
large mapping space; a category map that expresses the topological characteristics of facial
expression is generated. This study defines this category map as an FEMap. Experimental
results for six subjects illustrate that the proposed method can generate a person-specific
FEMap based on topological characteristics of facial expression appearing on face images.

2. Algorithms of SOM and CPN
2.1 Self-Organizing Maps (SOM)
The SOM is a learning algorithm that models the self-organizing and adaptive learning
capabilities of a human brain (Kohonen, 1995). A SOM comprises two layers: an input layer,
to which training data are supplied; and a Kohonen layer, in which self-mapping is
performed by competitive learning. The learning algorithm of a SOM is described below.
1. Let wi,j(t) be a weight from an input layer unit i to a Kohonen layer unit j at time t.

Actually, wi,j is initialized using random numbers.

Generation of Facial Expression Map using Supervised and Unsupervised Learning

247

2. Let xi(t) be input data to the input layer unit i at time t; calculate the Euclidean distance
dj between xi(t) and wi,j(t) using (1).

 () ()()2

,
1

I

j i i j
i

d x t w t
=

= −∑ (1)

3. Search for a Kohonen layer unit to minimize dj, which is designated as a winner unit.
4. Update the weight wi,j(t) of a Kohonen layer unit contained in the neighborhood region

of the winner unit Nc(t) using (2), where α(t) is a learning coefficient.

 () () () () ()(), , ,1i j i j i i jw t w t t x t w tα+ = + − (2)

5. Repeat processes 2)–4) up to the maximum iteration of learning.

2.2 Counter Propagation Networks (CPN)
The CPN is a learning algorithm that combines the Grossberg learning rule with the SOM
(Nielsen, 1987). A CPN comprises three layers: an input layer to which training data are
supplied; a Kohonen layer in which self-mapping is performed by competitive learning;
and a Grossberg layer, which labels the Kohonen layer by the counter propagation of
teaching signals. A CPN is useful for automatically determining the label of a Kohonen
layer when a category in which training data will belong is predetermined. This labeled
Kohonen layer is designated as a category map. The learning algorithm of a CPN is
described below.
1. Let win,m(t) and wjn,m(t) respectively indicate weights to a Kohonen layer unit (n, m) at

time t from an input layer unit i and from a Grossberg layer unit j. In fact, win,m and wjn,m
are initialized using random numbers.

2. Let xi(t) be input data to the input layer unit i at time t, and calculate the Euclidean
distance dn,m between xi(t) and win,m(t) using (3).

 () ()()2

, ,
1

I
i

n m i n m
i

d x t w t
=

= −∑ (3)

3. Search for a Kohonen layer unit to minimize dn,m, which is designated as a winner unit.
4. Update weights win,m(t) and wjn,m(t) of a Kohonen layer unit contained in the

neighborhood region of the winner unit Nc(t) using (4) and (5), where α(t), β(t) are
learning coefficients, and tj(t) is a teaching signal to the Grossberg layer unit j.

 () () () () ()(), , ,1i i i
n m n m i n mw t w t t x t w tα+ = + − (4)

 () () () () ()(), , ,1j j j
n m n m j n mw t w t t t t w tβ+ = + − (5)

5. Repeat processes 2)–4) up to the maximum iteration of learning.
6. After learning is completed, compare weights wjn,m observed from each unit of the

Kohonen layer; and let the teaching signal of the Grossberg layer with the maximum
value be the label of the unit.

 Machine Learning

248

3. Proposed method
Figure 1 depicts the procedure used for the proposed method. The proposed method
consists of two steps: extraction of person-specific facial expression categories using a SOM
and generation of FEMap using a CPN. The proposed method is explained in detail below.

Step1: SOM (Extraction of facial expression categories)

Step2: CPN (Generation of Facial Expression Map)

Facial Expression Map

Facial Expression Images

Assignment of emotion category by visual check (Six Basic Emotions and Neutral).

Facial Expression Categories Representative Images

SOM Learning

CPN Learning

Teach Signals Input Images

Fig. 1. Flow chart of proposal method.

3.1 Extraction of person-specific facial expression categories with SOM
The proposed method was used in an attempt to extract a person-specific facial expression
category hierarchically using a SOM with a narrow mapping space. A SOM is an
unsupervised learning algorithm; it classifies given facial expression images in a self-
organized manner based on their topological characteristics. For that reason, it is suitable for
classification problems with an unknown number of categories. Moreover, a SOM
compresses the topological information of facial expression images using a narrow mapping
space and performs classification based on features that roughly divide the training data.
We speculate that repeating these hierarchically renders the classified amount of change of
facial expression patterns comparable; thereby, a person-specific facial expression category
can be extracted. Figure 2 depicts the extraction procedure of a facial expression category.
Details of the process are explained below.
1. Expression images described in Section 4 were used as training data. The following

processing was performed for each facial expression. The number of training data is
assumed as N frames.

2. The facial expression topological characteristics of the training data were learned using
the 1-D SOM of the Kohonen layer consisting of five units (Fig. 2(a)). The brightness
value of images was used as input data because the brightness distribution represents
the topological structure of the facial expression. The unit number of the input layer
corresponds to the input image size.

Generation of Facial Expression Map using Supervised and Unsupervised Learning

249

3. The weight of the Kohonen layer Wi,j(0 ≤ Wi,j ≤ 1) was converted to a value of 0–255 after
the end of learning; visualized images were generated (Fig. 2(b)), where n1 − n5 are the
numbers of training data classified into each unit.

(a) Structure of SOM.

← Kohonen Layer

Weight (Wi,j)

← Input Layer

1 2 3 4 5

Input Data (N)

Input Data (N1) Input Data (N2)

0 1 2 3 4

SOM 0

SOM 1.0 SOM 1.1

n5n4n3n2n1
Classification

Result
Correlation
Coefficient

N2N1
New Training

Data

Visualized
Image (Wi,j)

54321Unit No.

n5n4n3n2n1
Classification

Result
Correlation
Coefficient

N2N1
New Training

Data

Visualized
Image (Wi,j)

54321Unit No.

(b) Learning with SOM and setup of new
training data.

* N = n1 + n2 + n3 + n4 + n5

* N1 = n1 + n2 , N2 = n3 + n4 + n5

0.9853 0.9786 0.9794 0.9866

Unit No.

40 (5 units×8)Representative Images
8 (*)Extracted categories
40 (5 units×8)Representative Images
8 (*)Extracted categories

3.2 3.3

(c) Hierarchical learning with SOM.

**

**

**

**

** ** **

**

4.0 4.1 4.2 4.3

2.3

3.0 3.1

2.2

1.1

2.0 2.1

1.0

SOM 0

(d) Generation of binary-tree structure.
Fig. 2. Extraction procedure of facial expression category.

4. Five visualized images can be considered as representative vectors of the training data
classified into each unit (n1 − n5). Therefore, the images of five units were verified
visually. All images were regarded as belonging to one category; processing was
terminated if they were considered to represent the same facial expression. Subsequent
processing was continued if multiple facial expressions were found to be mixed in the
visualized images.

5. The correlation coefficient of weight Wi,j between each adjacent unit in the Kohonen
layer was calculated. The Kohonen layer was then divided into two borders between
the unit pair where the coefficient was minimal because the input group categorized
into both sides of the border was presumed to have a large difference in topological
characteristics; the weight of an adjacent unit pair would be updated by the
neighborhood learning of the SOM to a similar value (Fig. 2(b)).

6. The groups of training data categorized into both sides of the divided Kohonen layers
(N1 and N2, where N = N1 + N2) can be considered as two independent sub-problems
(Fig. 2(b)). Actually, N1 and N2 were used as new training data, and processes 2)–5)
were repeated recursively (Fig. 2(c)).

 Machine Learning

248

3. Proposed method
Figure 1 depicts the procedure used for the proposed method. The proposed method
consists of two steps: extraction of person-specific facial expression categories using a SOM
and generation of FEMap using a CPN. The proposed method is explained in detail below.

Step1: SOM (Extraction of facial expression categories)

Step2: CPN (Generation of Facial Expression Map)

Facial Expression Map

Facial Expression Images

Assignment of emotion category by visual check (Six Basic Emotions and Neutral).

Facial Expression Categories Representative Images

SOM Learning

CPN Learning

Teach Signals Input Images

Fig. 1. Flow chart of proposal method.

3.1 Extraction of person-specific facial expression categories with SOM
The proposed method was used in an attempt to extract a person-specific facial expression
category hierarchically using a SOM with a narrow mapping space. A SOM is an
unsupervised learning algorithm; it classifies given facial expression images in a self-
organized manner based on their topological characteristics. For that reason, it is suitable for
classification problems with an unknown number of categories. Moreover, a SOM
compresses the topological information of facial expression images using a narrow mapping
space and performs classification based on features that roughly divide the training data.
We speculate that repeating these hierarchically renders the classified amount of change of
facial expression patterns comparable; thereby, a person-specific facial expression category
can be extracted. Figure 2 depicts the extraction procedure of a facial expression category.
Details of the process are explained below.
1. Expression images described in Section 4 were used as training data. The following

processing was performed for each facial expression. The number of training data is
assumed as N frames.

2. The facial expression topological characteristics of the training data were learned using
the 1-D SOM of the Kohonen layer consisting of five units (Fig. 2(a)). The brightness
value of images was used as input data because the brightness distribution represents
the topological structure of the facial expression. The unit number of the input layer
corresponds to the input image size.

Generation of Facial Expression Map using Supervised and Unsupervised Learning

249

3. The weight of the Kohonen layer Wi,j(0 ≤ Wi,j ≤ 1) was converted to a value of 0–255 after
the end of learning; visualized images were generated (Fig. 2(b)), where n1 − n5 are the
numbers of training data classified into each unit.

(a) Structure of SOM.

← Kohonen Layer

Weight (Wi,j)

← Input Layer

1 2 3 4 5

Input Data (N)

Input Data (N1) Input Data (N2)

0 1 2 3 4

SOM 0

SOM 1.0 SOM 1.1

n5n4n3n2n1
Classification

Result
Correlation
Coefficient

N2N1
New Training

Data

Visualized
Image (Wi,j)

54321Unit No.

n5n4n3n2n1
Classification

Result
Correlation
Coefficient

N2N1
New Training

Data

Visualized
Image (Wi,j)

54321Unit No.

(b) Learning with SOM and setup of new
training data.

* N = n1 + n2 + n3 + n4 + n5

* N1 = n1 + n2 , N2 = n3 + n4 + n5

0.9853 0.9786 0.9794 0.9866

Unit No.

40 (5 units×8)Representative Images
8 (*)Extracted categories
40 (5 units×8)Representative Images
8 (*)Extracted categories

3.2 3.3

(c) Hierarchical learning with SOM.

**

**

**

**

** ** **

**

4.0 4.1 4.2 4.3

2.3

3.0 3.1

2.2

1.1

2.0 2.1

1.0

SOM 0

(d) Generation of binary-tree structure.
Fig. 2. Extraction procedure of facial expression category.

4. Five visualized images can be considered as representative vectors of the training data
classified into each unit (n1 − n5). Therefore, the images of five units were verified
visually. All images were regarded as belonging to one category; processing was
terminated if they were considered to represent the same facial expression. Subsequent
processing was continued if multiple facial expressions were found to be mixed in the
visualized images.

5. The correlation coefficient of weight Wi,j between each adjacent unit in the Kohonen
layer was calculated. The Kohonen layer was then divided into two borders between
the unit pair where the coefficient was minimal because the input group categorized
into both sides of the border was presumed to have a large difference in topological
characteristics; the weight of an adjacent unit pair would be updated by the
neighborhood learning of the SOM to a similar value (Fig. 2(b)).

6. The groups of training data categorized into both sides of the divided Kohonen layers
(N1 and N2, where N = N1 + N2) can be considered as two independent sub-problems
(Fig. 2(b)). Actually, N1 and N2 were used as new training data, and processes 2)–5)
were repeated recursively (Fig. 2(c)).

 Machine Learning

250

7. By repeating the processes described above, a hierarchical structure of the SOM (binary-
tree structure) was generated (Fig. 2(d)). The lowermost layer of the hierarchical
structure was defined as a facial expression category and five visualized images were
defined as representative images of each category. Then the photographer of the facial
expression images performed visual confirmation to each facial expression category and
inferred their associated emotion categories.

The proposed method set the iterations of learning as 200,000 times. The radius of the
neighborhood region Nc(t) was fixed as the first neighborhood of the winner unit. The
learning coefficient α(t) was defined to decrease linearly from the initial value of 0.5–0.02 for
learning iterations of 100,000 times; then subsequently to 0 at an iteration of learning of
200,000 times. The updating ratio of weights was set to 1 for the winner unit, and to 0.5 for
its neighborhood units.

3.2 Generation of facial expression map with CPN
It is considered that recognition to a natural facial expression requires generation of a facial
expression pattern (mixed facial expression) that interpolates each emotion category. The
proposed method used the representative image obtained in Section 3.1 as training data and
carried out data expansion of facial expression patterns among emotion categories using
CPN with a large mapping space. The reason for adopting CPN, a supervised learning
algorithm, is that the teaching signal of training data is known by processing in Section 3.1.
The mapping space of CPN has a greater number of units than the number of training data;
in addition, it has a toroidal structure because it is presumed that a large mapping space
allows CPN to perform data expansion based on the similarity and continuity of training
data. Figure 3 depicts the FEMap generation procedure. The processing details are described
below.
1. The categories and representative images obtained in Section 3.1 were used as teaching

signals and input data, which were then adopted as CPN training data.
2. The facial expression topological characteristics of an input group were learned using

CPN with a two-dimensional Kohonen layer of 30 × 30 units and a Grossberg layer
having as many units as the categories obtained in Section 3.1. The brightness values of
the representative images were used as input data. Teaching signals to the Grossberg
layer were set to 1 for units representing categories and 0 for the rest. The unit number
of the input layer corresponded to the input image size.

3. The process described above was repeated until the maximum iterations of learning.
4. The weights (Wg) of the Grossberg layer were compared for each unit of the Kohonen

layer after learning completion; an emotion category of the greatest value was used as
the unit label.

5. A category map generated by the process described above was defined as a person-
specific FEMap.

The proposed method set the iterations of learning as 20,000 times. The radius of the
neighborhood region Nc(t) was defined to decrease linearly from the initial value of the 14th
to the first neighborhood of the winner unit at an iteration of learning of 10,000 times, and to
be fixed at the first neighborhood of the winner unit for the subsequent 10,000 iterations.
The learning coefficients α(t) and β(t) were defined to decrease linearly from the initial value
of 0.5–0.02 at an iteration of learning of 10,000 times; then subsequently to 0 at an iteration of
learning of 20,000 times. The updating ratio of weights was set to 1 for the winner unit, and
to 0.5 for its neighboring units.

Generation of Facial Expression Map using Supervised and Unsupervised Learning

251

Input Data (Representative
Images extracted in Section 3.1.)

Teach Signal (Facial Expression
Category extracted in Section 3.1.)

← Input Layer

← Grossberg Layer
← Wg

← Kohonen
Layer

○ ○ ○ ○ ○

○

○

○ ○

○ ○ ○

○ ○ ○

○

○

○

○ ○ ○

○

○

○ ○

○

○ ○ ○

○ ○

○ ○

○

○ ○ ○ ○ ○ ○

Category Map
(Facial Expression Map)

SadnessSadness

SurpriseSurprise

HappinessHappiness

NeutralNeutral

AngerAnger

FearFear

DisgustDisgust

NeutralNeutral

Fig. 3. Generation procedure of FEMap.

4. Facial expression images
Examples of facial expression images used in this study are presented in Fig. 4. This paper
presents a discussion of six basic facial expressions and a neutral facial expression that six
subjects manifested intentionally. Each subject’s front face image was photographed under
normal indoor conditions (lighting by fluorescent lamps) with the head enclosed inside the
frame. Basic facial expressions were obtained as motion videos including a process in which
a neutral facial expression and facial expressions were manifested five times respectively by
turns for each facial expression. Neutral facial expressions were obtained as a motion video
for about 10 s. The motion videos were converted into static images (10 frame/s, 8 bit gray,
320×240 pixels). Regions containing facial components, i.e., eyebrows, eyes, nose, and
mouth, were extracted from each frame and used as training data. Table 1 presents the
number of frames of all subjects’ training data.

F

E

D

IDNe.Fe.Su.Ha.Di.Sa.An.

C

Ha.Di.Sa.An.

B

A

Ne.Fe.Su.ID

F

E

D

IDNe.Fe.Su.Ha.Di.Sa.An.

C

Ha.Di.Sa.An.

B

A

Ne.Fe.Su.ID

Fig. 4. Examples of facial expression images (ID, Subject; An., Anger; Sa., Sadness; Di.,
Disgust; Ha., Happiness; Su., Surprise; Fe., Fear; Ne., Neutral).

Open facial expression databases are generally used in conventional studies (Pantic et al.,
2005; Gross, 2005). These databases contain a few images per expression and subject. For this
study, we obtained facial expression images of ourselves because the proposed method

 Machine Learning

250

7. By repeating the processes described above, a hierarchical structure of the SOM (binary-
tree structure) was generated (Fig. 2(d)). The lowermost layer of the hierarchical
structure was defined as a facial expression category and five visualized images were
defined as representative images of each category. Then the photographer of the facial
expression images performed visual confirmation to each facial expression category and
inferred their associated emotion categories.

The proposed method set the iterations of learning as 200,000 times. The radius of the
neighborhood region Nc(t) was fixed as the first neighborhood of the winner unit. The
learning coefficient α(t) was defined to decrease linearly from the initial value of 0.5–0.02 for
learning iterations of 100,000 times; then subsequently to 0 at an iteration of learning of
200,000 times. The updating ratio of weights was set to 1 for the winner unit, and to 0.5 for
its neighborhood units.

3.2 Generation of facial expression map with CPN
It is considered that recognition to a natural facial expression requires generation of a facial
expression pattern (mixed facial expression) that interpolates each emotion category. The
proposed method used the representative image obtained in Section 3.1 as training data and
carried out data expansion of facial expression patterns among emotion categories using
CPN with a large mapping space. The reason for adopting CPN, a supervised learning
algorithm, is that the teaching signal of training data is known by processing in Section 3.1.
The mapping space of CPN has a greater number of units than the number of training data;
in addition, it has a toroidal structure because it is presumed that a large mapping space
allows CPN to perform data expansion based on the similarity and continuity of training
data. Figure 3 depicts the FEMap generation procedure. The processing details are described
below.
1. The categories and representative images obtained in Section 3.1 were used as teaching

signals and input data, which were then adopted as CPN training data.
2. The facial expression topological characteristics of an input group were learned using

CPN with a two-dimensional Kohonen layer of 30 × 30 units and a Grossberg layer
having as many units as the categories obtained in Section 3.1. The brightness values of
the representative images were used as input data. Teaching signals to the Grossberg
layer were set to 1 for units representing categories and 0 for the rest. The unit number
of the input layer corresponded to the input image size.

3. The process described above was repeated until the maximum iterations of learning.
4. The weights (Wg) of the Grossberg layer were compared for each unit of the Kohonen

layer after learning completion; an emotion category of the greatest value was used as
the unit label.

5. A category map generated by the process described above was defined as a person-
specific FEMap.

The proposed method set the iterations of learning as 20,000 times. The radius of the
neighborhood region Nc(t) was defined to decrease linearly from the initial value of the 14th
to the first neighborhood of the winner unit at an iteration of learning of 10,000 times, and to
be fixed at the first neighborhood of the winner unit for the subsequent 10,000 iterations.
The learning coefficients α(t) and β(t) were defined to decrease linearly from the initial value
of 0.5–0.02 at an iteration of learning of 10,000 times; then subsequently to 0 at an iteration of
learning of 20,000 times. The updating ratio of weights was set to 1 for the winner unit, and
to 0.5 for its neighboring units.

Generation of Facial Expression Map using Supervised and Unsupervised Learning

251

Input Data (Representative
Images extracted in Section 3.1.)

Teach Signal (Facial Expression
Category extracted in Section 3.1.)

← Input Layer

← Grossberg Layer
← Wg

← Kohonen
Layer

○ ○ ○ ○ ○

○

○

○ ○

○ ○ ○

○ ○ ○

○

○

○

○ ○ ○

○

○

○ ○

○

○ ○ ○

○ ○

○ ○

○

○ ○ ○ ○ ○ ○

Category Map
(Facial Expression Map)

SadnessSadness

SurpriseSurprise

HappinessHappiness

NeutralNeutral

AngerAnger

FearFear

DisgustDisgust

NeutralNeutral

Fig. 3. Generation procedure of FEMap.

4. Facial expression images
Examples of facial expression images used in this study are presented in Fig. 4. This paper
presents a discussion of six basic facial expressions and a neutral facial expression that six
subjects manifested intentionally. Each subject’s front face image was photographed under
normal indoor conditions (lighting by fluorescent lamps) with the head enclosed inside the
frame. Basic facial expressions were obtained as motion videos including a process in which
a neutral facial expression and facial expressions were manifested five times respectively by
turns for each facial expression. Neutral facial expressions were obtained as a motion video
for about 10 s. The motion videos were converted into static images (10 frame/s, 8 bit gray,
320×240 pixels). Regions containing facial components, i.e., eyebrows, eyes, nose, and
mouth, were extracted from each frame and used as training data. Table 1 presents the
number of frames of all subjects’ training data.

F

E

D

IDNe.Fe.Su.Ha.Di.Sa.An.

C

Ha.Di.Sa.An.

B

A

Ne.Fe.Su.ID

F

E

D

IDNe.Fe.Su.Ha.Di.Sa.An.

C

Ha.Di.Sa.An.

B

A

Ne.Fe.Su.ID

Fig. 4. Examples of facial expression images (ID, Subject; An., Anger; Sa., Sadness; Di.,
Disgust; Ha., Happiness; Su., Surprise; Fe., Fear; Ne., Neutral).

Open facial expression databases are generally used in conventional studies (Pantic et al.,
2005; Gross, 2005). These databases contain a few images per expression and subject. For this
study, we obtained facial expression images of ourselves because the proposed method

 Machine Learning

252

extracts person-specific facial expression categories and the representative images of each
category from large quantities of data.

ID An. Sa. Di. Ha. Su. Fe. Ne. Total

A 136 198 143 169 127 140 100 1013
B 152 136 153 162 154 190 100 1047
C 192 173 154 158 153 156 100 1086
D 152 158 178 177 158 170 100 1093
E 95 113 108 112 109 108 100 745
F 165 197 198 163 165 167 100 1155

Table 1. Numbers of frames of all subjects' training data.

5. Results and discussion
5.1 Extraction of person-specific facial expression categories
Figure 5 shows binary-tree structures generated with the proposed method applied to six
subjects. Table 2 shows quantities of categories of facial expressions and representative
images extracted from Fig. 5. Figure 5 shows that the binary-tree structure differs for each
subject. Table 2 presents that the number of categories for each facial expression also differs
for each subject.

(a) Subject A. (b) Subject B. (c) Subject C.

Ne.2 Su. Fe. Di.

Ha. An.

Sa. Ne.1

Ha. Ne.1 Su. An. Ne.2 Di.
Fe.

Sa.

Ne.2 Sa. Ne.4

Ha.1 Ne.6 Su.

Fe.1

Ha.2 Ne.1 Di.

Ne.3 An.

Ha.3

Fe.2 Ne.5

Sa.1

Su. Di. Fe.

Ne.1 Ha.

Ne.2 Sa.2 Ne.3 An.

Ne.1 Ha. An.

Ne.2 Su. Fe.

Ne.3

Di. Sa.

Ha.1 Di. Ne.3

Sa. Ne.2 Su.

Ne.1

Ne.4 Ha.2 Ne.5 Ha.3

An. Ne.6 Ne.7 Fe.

(d) Subject D. (e) Subject E. (f) Subject F.

Fig. 5. Binary-tree structures generated with the proposed method.

Generation of Facial Expression Map using Supervised and Unsupervised Learning

253

ID An. Sa. Di. Ha. Su. Fe. Ne. Extracted
Categories

Representative
Images

A 1 1 1 1 1 1 2 8 40 (5 units * 8)
B 1 1 1 1 1 - 2 7 35 (5 units * 7)
C 1 1 1 3 1 2 6 15 75 (5 units * 15)
D 1 1 1 3 1 1 7 15 75 (5 units * 15)
E 1 2 1 1 1 1 3 10 50 (5 units * 10)
F 1 1 1 1 1 1 3 9 45 (5 units * 9)

Table 2. Numbers of facial expression categories and representative images.

For Subject A, 8 categories are generated and 40 representative images are extracted. In fact,
Subject A presented stable facial expression patterns within training data, and his six basic
emotions were generated as one category each. A neutral expression was generated as two
categories.
On the other hand, 15 categories were generated and 75 representative images were
extracted for Subject D. Regarding happiness, three categories were generated from her one
facial expression. Figure 6 shows representative images of happiness of Subject D, which
reveals that three types of categories representing happiness were generated: (a) eyes are
closed and the mouth is opened (showing teeth), (b) smiling, and (c) mouth is opened
widely. These images suggest that the facial expression for the happiness of Subject D had
multiple facial expression patterns, which were learned as different facial expression
topological characteristics, and which were categorized into different categories in the
binary-tree structure of SOM.

(b) Smiling.

(a) Eyes are closed and mouth is opened
(showing teeth).

(c) Mouth is opened widely.

Ha.1 Di. Ne.3

Sa. Ne.2 Su.

Ne.1

Ne.4 Ha.2 Ne.5 Ha.3

An. Ne.6 Ne.7 Fe.

(a) (b) (c)

Fig. 6. Representative images of happiness of Subject D (Detail of Fig. 5(d)).

For Subject B, 7 categories were generated and 35 representative images were extracted.
Regarding disgust and fear, both were classified into a single category (Fig. 7). Comparison
of disgust and fear as facial expressions of Subject B shown in Fig. 4 suggests similarities in
the patterns of facial expression and the consequent difficulty in visual distinction between

 Machine Learning

252

extracts person-specific facial expression categories and the representative images of each
category from large quantities of data.

ID An. Sa. Di. Ha. Su. Fe. Ne. Total

A 136 198 143 169 127 140 100 1013
B 152 136 153 162 154 190 100 1047
C 192 173 154 158 153 156 100 1086
D 152 158 178 177 158 170 100 1093
E 95 113 108 112 109 108 100 745
F 165 197 198 163 165 167 100 1155

Table 1. Numbers of frames of all subjects' training data.

5. Results and discussion
5.1 Extraction of person-specific facial expression categories
Figure 5 shows binary-tree structures generated with the proposed method applied to six
subjects. Table 2 shows quantities of categories of facial expressions and representative
images extracted from Fig. 5. Figure 5 shows that the binary-tree structure differs for each
subject. Table 2 presents that the number of categories for each facial expression also differs
for each subject.

(a) Subject A. (b) Subject B. (c) Subject C.

Ne.2 Su. Fe. Di.

Ha. An.

Sa. Ne.1

Ha. Ne.1 Su. An. Ne.2 Di.
Fe.

Sa.

Ne.2 Sa. Ne.4

Ha.1 Ne.6 Su.

Fe.1

Ha.2 Ne.1 Di.

Ne.3 An.

Ha.3

Fe.2 Ne.5

Sa.1

Su. Di. Fe.

Ne.1 Ha.

Ne.2 Sa.2 Ne.3 An.

Ne.1 Ha. An.

Ne.2 Su. Fe.

Ne.3

Di. Sa.

Ha.1 Di. Ne.3

Sa. Ne.2 Su.

Ne.1

Ne.4 Ha.2 Ne.5 Ha.3

An. Ne.6 Ne.7 Fe.

(d) Subject D. (e) Subject E. (f) Subject F.

Fig. 5. Binary-tree structures generated with the proposed method.

Generation of Facial Expression Map using Supervised and Unsupervised Learning

253

ID An. Sa. Di. Ha. Su. Fe. Ne. Extracted
Categories

Representative
Images

A 1 1 1 1 1 1 2 8 40 (5 units * 8)
B 1 1 1 1 1 - 2 7 35 (5 units * 7)
C 1 1 1 3 1 2 6 15 75 (5 units * 15)
D 1 1 1 3 1 1 7 15 75 (5 units * 15)
E 1 2 1 1 1 1 3 10 50 (5 units * 10)
F 1 1 1 1 1 1 3 9 45 (5 units * 9)

Table 2. Numbers of facial expression categories and representative images.

For Subject A, 8 categories are generated and 40 representative images are extracted. In fact,
Subject A presented stable facial expression patterns within training data, and his six basic
emotions were generated as one category each. A neutral expression was generated as two
categories.
On the other hand, 15 categories were generated and 75 representative images were
extracted for Subject D. Regarding happiness, three categories were generated from her one
facial expression. Figure 6 shows representative images of happiness of Subject D, which
reveals that three types of categories representing happiness were generated: (a) eyes are
closed and the mouth is opened (showing teeth), (b) smiling, and (c) mouth is opened
widely. These images suggest that the facial expression for the happiness of Subject D had
multiple facial expression patterns, which were learned as different facial expression
topological characteristics, and which were categorized into different categories in the
binary-tree structure of SOM.

(b) Smiling.

(a) Eyes are closed and mouth is opened
(showing teeth).

(c) Mouth is opened widely.

Ha.1 Di. Ne.3

Sa. Ne.2 Su.

Ne.1

Ne.4 Ha.2 Ne.5 Ha.3

An. Ne.6 Ne.7 Fe.

(a) (b) (c)

Fig. 6. Representative images of happiness of Subject D (Detail of Fig. 5(d)).

For Subject B, 7 categories were generated and 35 representative images were extracted.
Regarding disgust and fear, both were classified into a single category (Fig. 7). Comparison
of disgust and fear as facial expressions of Subject B shown in Fig. 4 suggests similarities in
the patterns of facial expression and the consequent difficulty in visual distinction between

 Machine Learning

254

both, which indicates that the binary-tree structure of SOM generated the facial expression
of similar topological characteristics as one category.
The following were revealed. The proposed method enables classification of multiple facial
expression patterns into separate different categories even if they are of the same facial
expression. On the other hand, visually similar facial expressions are classifiable into one
category.

Ha. Ne.1 Su. An. Ne.2 Di.
Fe.

Sa.

Fig. 7. Representative images of “disgust” and “fear” (Subject B, Detail of Fig. 5(b)).

Psychological significance is assigned to every category obtained with the binary-tree
structure in this study. The operator might also assign importance to categories that are
selected according to personal subjectivity. Moreover, intentional further hierarchization
permits us to subdivide categories (subdivision of facial expression categorization). For
example, Fig. 8 shows the subdivision result of the surprise category related to Subject E.
The fourth layer, Fig. 8(a), was defined as a surprise category. Classification based on local
and small changes of a facial expression pattern was performed by further intentional
hierarchization: eyebrows are raised greatly (Fig. 8(b)), eyebrows are raised slightly (Fig.
8(c)), the mouth is opened narrowly (Figs. 8(d) and 8(f)), and the mouth is opened widely
(Figs. 8(e) and 8(g)).

(c) Eyebrows are raised slightly.(b) Eyebrows are raised greatly.

(a) Category defined as Surprise.

(d) Mouth are opened narrowly.

(e) Mouth is opened widely.

(f) Mouth is opened narrowly.

(g) Mouth is opened widely.

Su. (a)

Ne.1 Ha.

(b) (c)

(d) (e) (f) (g)

(d) Mouth is opened narrowly.

Fig. 8. Subdivision of a surprise category of Subject E (Detail of Fig. 5(e)).

Generation of Facial Expression Map using Supervised and Unsupervised Learning

255

5.2 Generation of facial expression map
The categories and representative images extracted in Section 5.1 were used respectively as
teacher signals and input data of the CPN; the FEMaps shown in Fig. 9 were generated
using the proposed method. Units with a round mark in the figures denote winner units
when training data were input into the CPN after learning. These figures suggest that the
area size of facial expression categories (number of labels) on FEMaps differs for each
subject. Even within one subject, differences are apparent in the number of labels for each
facial expression category.

○ ○ ○ ○ ○

○

○

○ ○

○ ○ ○

○ ○ ○

○

○

○

○ ○ ○

○

○

○ ○

○

○ ○ ○

○ ○

○ ○

○

○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○

 ○

○ ○

 ○ ○

 ○ ○

 ○ ○

 ○ ○

 ○

○ ○

 ○

 ○

 ○

 ○

 ○

 ○

 ○

 ○

 ○

 ○ ○ ○

○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○

 ○

○

 ○ ○

 ○ ○ ○ ○ ○

 ○ ○ ○

 ○

 ○ ○

 ○ ○ ○ ○ ○ ○

○ ○ ○ ○

 ○ ○

○ ○

 ○ ○ ○

○ ○

 ○ ○

○ ○ ○ ○ ○

 ○

 ○

 ○

 ○

 ○ ○ ○ ○

○ ○ ○ ○

 ○ ○

 ○ ○ ○ ○ ○

 ○

 ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○

 ○ ○

○ ○

 ○ ○

○ ○ ○ ○

 ○ ○

 ○

 ○ ○

 ○

○ ○ ○

 ○ ○

○ ○ ○

 ○ ○ ○

○ ○ ○

 ○

 ○

 ○ ○

 ○ ○ ○ ○

 ○ ○

○ ○ ○

 ○

○ ○ ○

 ○

 ○

 ○

○ ○ ○ ○

 ○ ○

 ○ ○ ○ ○ ○

○ ○ ○ ○ ○

 ○ ○ ○ ○ ○

 ○

 ○ ○

 ○ ○

 ○ ○ ○

 ○

 ○

 ○

○ ○ ○ ○

 ○

 ○

○ ○ ○ ○

 ○ ○ ○

○ ○ ○

 ○ ○

 ○

 ○ ○

○ ○

 ○

 ○

 ○ ○

○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○

○ ○

 ○

○

 ○ ○

 ○

 ○

○ ○

 ○ ○ ○

 ○

 ○ ○

 ○ ○

○ ○ ○

 ○

 ○

○ ○ ○

 ○ ○

 ○

 ○ ○

○ ○

 ○ ○ ○ ○ ○

Ne.2

Ne.1

Ha.

Sa.

Di.

Su.

Fe.

An.

Ne.1

Ne.2
An.

Ha.

Sa.
Di.

Su.
Ne.2

Ne.4

Ha.1Ne.6

Fe.1

Ha.2
Ne.1

Ne.3

Ha.3

Fe.2

Ne.5

An.

Sa.

Di.

Su.

Ha.1

Ne.3

Ne.2

Ne.1

Ne.4

Ha.2

Ne.5

Ha.3

Ne.6

Ne.7

An.

Sa.

Di.

Su.

Fe.

Sa.1

Ne.1

Ne.2

Sa.2

Ne.3

An.

Ha.
Di.

Su.

Fe.

Ne.1

Ne.2

Ne.3

An.

Ha.
Sa.

Di.Su.

Fe.

(a) Subject A (b) Subject B (c) Subject C

(d) Subject D (e) Subject E (f) Subject F

An. Sa. Di. Ha. Su. Fe. Ne.

Fig. 9. FEMaps generated with the proposed method.

The percentages of the number of labels for each subject are listed in Table 3. Sadness and
disgust occupy 4.1% and 25.2%, respectively, for Subject A. Even though training data of the
same number for both categories (five images per category) are being used, great differences
are apparent in the number of labels. Figure 9(a) portrays that winner units of training data
for sadness are crowded, whereas those for disgust are dispersed widely, which are
presumed to suggest the following Regarding sadness, the topological characteristics of
training data are very similar compared to other facial expressions that the facial expression
pattern changes little. However, for disgust, differences in the topological characteristics of
training data are so large that the facial expression pattern changes greatly. For Subject D,
the facial expression of happiness, for which three categories were generated, changes
greatly (15.6%), although that of surprise shows little change (3.0%). For Subject F, the facial
expression of fear changes greatly (20.2%), whereas that of disgust shows little change

 Machine Learning

254

both, which indicates that the binary-tree structure of SOM generated the facial expression
of similar topological characteristics as one category.
The following were revealed. The proposed method enables classification of multiple facial
expression patterns into separate different categories even if they are of the same facial
expression. On the other hand, visually similar facial expressions are classifiable into one
category.

Ha. Ne.1 Su. An. Ne.2 Di.
Fe.

Sa.

Fig. 7. Representative images of “disgust” and “fear” (Subject B, Detail of Fig. 5(b)).

Psychological significance is assigned to every category obtained with the binary-tree
structure in this study. The operator might also assign importance to categories that are
selected according to personal subjectivity. Moreover, intentional further hierarchization
permits us to subdivide categories (subdivision of facial expression categorization). For
example, Fig. 8 shows the subdivision result of the surprise category related to Subject E.
The fourth layer, Fig. 8(a), was defined as a surprise category. Classification based on local
and small changes of a facial expression pattern was performed by further intentional
hierarchization: eyebrows are raised greatly (Fig. 8(b)), eyebrows are raised slightly (Fig.
8(c)), the mouth is opened narrowly (Figs. 8(d) and 8(f)), and the mouth is opened widely
(Figs. 8(e) and 8(g)).

(c) Eyebrows are raised slightly.(b) Eyebrows are raised greatly.

(a) Category defined as Surprise.

(d) Mouth are opened narrowly.

(e) Mouth is opened widely.

(f) Mouth is opened narrowly.

(g) Mouth is opened widely.

Su. (a)

Ne.1 Ha.

(b) (c)

(d) (e) (f) (g)

(d) Mouth is opened narrowly.

Fig. 8. Subdivision of a surprise category of Subject E (Detail of Fig. 5(e)).

Generation of Facial Expression Map using Supervised and Unsupervised Learning

255

5.2 Generation of facial expression map
The categories and representative images extracted in Section 5.1 were used respectively as
teacher signals and input data of the CPN; the FEMaps shown in Fig. 9 were generated
using the proposed method. Units with a round mark in the figures denote winner units
when training data were input into the CPN after learning. These figures suggest that the
area size of facial expression categories (number of labels) on FEMaps differs for each
subject. Even within one subject, differences are apparent in the number of labels for each
facial expression category.

○ ○ ○ ○ ○

○

○

○ ○

○ ○ ○

○ ○ ○

○

○

○

○ ○ ○

○

○

○ ○

○

○ ○ ○

○ ○

○ ○

○

○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○

 ○

○ ○

 ○ ○

 ○ ○

 ○ ○

 ○ ○

 ○

○ ○

 ○

 ○

 ○

 ○

 ○

 ○

 ○

 ○

 ○

 ○ ○ ○

○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○

 ○

○

 ○ ○

 ○ ○ ○ ○ ○

 ○ ○ ○

 ○

 ○ ○

 ○ ○ ○ ○ ○ ○

○ ○ ○ ○

 ○ ○

○ ○

 ○ ○ ○

○ ○

 ○ ○

○ ○ ○ ○ ○

 ○

 ○

 ○

 ○

 ○ ○ ○ ○

○ ○ ○ ○

 ○ ○

 ○ ○ ○ ○ ○

 ○

 ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○

 ○ ○

○ ○

 ○ ○

○ ○ ○ ○

 ○ ○

 ○

 ○ ○

 ○

○ ○ ○

 ○ ○

○ ○ ○

 ○ ○ ○

○ ○ ○

 ○

 ○

 ○ ○

 ○ ○ ○ ○

 ○ ○

○ ○ ○

 ○

○ ○ ○

 ○

 ○

 ○

○ ○ ○ ○

 ○ ○

 ○ ○ ○ ○ ○

○ ○ ○ ○ ○

 ○ ○ ○ ○ ○

 ○

 ○ ○

 ○ ○

 ○ ○ ○

 ○

 ○

 ○

○ ○ ○ ○

 ○

 ○

○ ○ ○ ○

 ○ ○ ○

○ ○ ○

 ○ ○

 ○

 ○ ○

○ ○

 ○

 ○

 ○ ○

○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○

○ ○

 ○

○

 ○ ○

 ○

 ○

○ ○

 ○ ○ ○

 ○

 ○ ○

 ○ ○

○ ○ ○

 ○

 ○

○ ○ ○

 ○ ○

 ○

 ○ ○

○ ○

 ○ ○ ○ ○ ○

Ne.2

Ne.1

Ha.

Sa.

Di.

Su.

Fe.

An.

Ne.1

Ne.2
An.

Ha.

Sa.
Di.

Su.
Ne.2

Ne.4

Ha.1Ne.6

Fe.1

Ha.2
Ne.1

Ne.3

Ha.3

Fe.2

Ne.5

An.

Sa.

Di.

Su.

Ha.1

Ne.3

Ne.2

Ne.1

Ne.4

Ha.2

Ne.5

Ha.3

Ne.6

Ne.7

An.

Sa.

Di.

Su.

Fe.

Sa.1

Ne.1

Ne.2

Sa.2

Ne.3

An.

Ha.
Di.

Su.

Fe.

Ne.1

Ne.2

Ne.3

An.

Ha.
Sa.

Di.Su.

Fe.

(a) Subject A (b) Subject B (c) Subject C

(d) Subject D (e) Subject E (f) Subject F

An. Sa. Di. Ha. Su. Fe. Ne.

Fig. 9. FEMaps generated with the proposed method.

The percentages of the number of labels for each subject are listed in Table 3. Sadness and
disgust occupy 4.1% and 25.2%, respectively, for Subject A. Even though training data of the
same number for both categories (five images per category) are being used, great differences
are apparent in the number of labels. Figure 9(a) portrays that winner units of training data
for sadness are crowded, whereas those for disgust are dispersed widely, which are
presumed to suggest the following Regarding sadness, the topological characteristics of
training data are very similar compared to other facial expressions that the facial expression
pattern changes little. However, for disgust, differences in the topological characteristics of
training data are so large that the facial expression pattern changes greatly. For Subject D,
the facial expression of happiness, for which three categories were generated, changes
greatly (15.6%), although that of surprise shows little change (3.0%). For Subject F, the facial
expression of fear changes greatly (20.2%), whereas that of disgust shows little change

 Machine Learning

256

(3.3%). These results suggest that the number of labels on an FEMap express the extent of
difference of topological characteristics within a category, i.e., expressiveness of person-
specific facial expressions.
Figure 10 portrays a magnified view of a part of surprise in the FEMap of Subject E, with the
weights of each unit visualized. Units with the white frame in the figure denote winner
units when training data were input into the CPN after learning. This figure suggests that
facial expressions whose patterns differ slightly are generated in the neighborhood of five
winner units. These results suggest that data expansion is performed based on the similarity
and continuity of training data, and that more facial expression patterns such as mixed facial
expressions between categories can be generated in the CPN mapping space.

ID An.(%) Sa. (%) Di. (%) Ha. (%) Su. (%) Fe. (%) Ne. (%)
A 17.7 4.1 25.2 7.2 9.4 11.9 24.4
B 18.0 11.7 9.2 13.3 14.8 - 33.0
C 6.3 6.6 7.1 17.1 5.0 10.7 47.2
D 9.1 6.8 9.2 15.6 3.0 11.0 45.3
E 11.6 16.2 11.6 9.4 8.0 15.7 27.6
F 9.1 13.9 3.3 12.8 7.1 20.2 33.6

Table 3. Percentages of number of labels in the FEMap.

 ○ ○ ○ ○ ○

 ○

 ○ ○

 ○ ○

 ○ ○ ○

 ○

 ○

 ○

○ ○ ○ ○

 ○

 ○

○ ○ ○ ○

 ○ ○ ○

○ ○ ○

 ○ ○

 ○

 ○ ○

○ ○

 ○

 ○

 ○ ○

○ ○ ○ ○ ○ ○ ○

 ○ ○ ○ ○ ○

 ○

 ○ ○

 ○ ○

 ○ ○ ○

 ○

 ○

 ○

○ ○ ○ ○

 ○

 ○

○ ○ ○ ○

 ○ ○ ○

○ ○ ○

 ○ ○

 ○

 ○ ○

○ ○

 ○

 ○

 ○ ○

○ ○ ○ ○ ○ ○ ○

15 unit

8 unit Su.Sa.

Fe.An.

Fig. 10. Magnified view of a part of surprise in the FEMap of Subject E (Detail of Fig. 9(e)).

6. Conclusion
On the assumption that facial expression is a problem of classification into an unknown
number of categories, this chapter describes an investigation of a generation method of a
person-specific FEMap. The essential results obtained in this study are the following.
Hierarchical use of SOM with a narrow mapping space enables extraction of person-specific
facial expression categories and representative images for each category. Psychological
significance is assigned to every category obtained with the binary-tree structure in this
study. The operator might also give special importance to categories selected according to
personal subjectivity. Moreover, intentional further hierarchization of a binary-tree structure
permits the additional subdivision of facial expression categorization.

Generation of Facial Expression Map using Supervised and Unsupervised Learning

257

The categories and category representative images obtained from the binary-tree structure
were used as training data of a CPN with a large mapping space. Results revealed that data
expansion is performed based on the similarity and continuity of training data, and that
more facial expression patterns such as mixed facial expressions between categories can be
generated in the CPN mapping space. It is expected that the use of an FEMap generated
using the proposed method can be useful as a classifier in facial expression recognition that
contributes to improvement in generalization capability.
This chapter specifically described a generation method of an FEMap and used facial
expression images obtained during the same period. However, it is difficult to obtain all of a
subject’s facial expression patterns at one time; in addition, faces age with time. In future
studies, we intend to take aging of a facial expression pattern into consideration, and study
an automatic FEMap updating method using additional learning functions.

7. Acknowledgments
This work was supported in part by Ministry of Education, Culture, Sports, Science and
Technology (MEXT) Grants-in-Aid for Young Scientists (B): No. 18700192 and No. 20700174.
This chapter is based on “Generation of Facial Expression Map based on Topological
Characteristics of Face Images,” by M. Ishii, K. Sato, H. Madokoro and M. Nishida, which
appeared in the Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, (SMC 2007), Montreal, Quebec, Canada, October 2007. © 2007 IEEE.

8. References
Akamatsu, S. (1997). Computer Recognition of Human Face –A Survey-, IEICE trans.

Information and systems, Pt.2 (Japanese Edition), Vol.J80-D-II, No.8, pp.2031-2046.
Ekman, P. & Friesen, W.V. (1978). Facial Action Coding System, Consulting Psychologist Press.
Fasel, B., & Luettin, J. (2003). Automatic Facial Expression Analysis: A Survey, Pattern

Recognition, Vol.36, pp.259-275.
Gross, R. (2005). Face Databases, Handbook of Face Recognition, S.Li and A.Jain, ed., Springer-

Verlag.
Hasegawa, O.; Morishima, S. & Kaneko, M. (1997). Processing of Facial Information by

Computer, IEICE trans. Information and systems, Pt.2 (Japanese Edition), Vol.J80-D-II,
No.8, pp.2047-2065.

Kohonen, T. (1995). Self-Organizing Maps, Springer Series in Information Sciences.
Lyons, M.J.; Budynek, J. & Akamatsu, S. (1999). Automatic Classification of Single Facial

Images, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.21, No.12, pp.1357-
1362.

Lyons, M.J.; Akamatsu, S., Kamachi, M. & Gyoba, J. (1998). Coding Facial Expressions with
GaborWavelets, Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pp.200-
205.

Nielsen, R.H. (1987). Counterpropagation Networks, Applied Optics, vol.26, No.23, pp.4979-
4984.

Pantic, M.; Valstar, M.F., Rademaker, R. & Maat, L. (2005). Webbased Database for Facial
Expression Analysis, Proc. IEEE Int. Conf. Multimedia and Expo, pp.317-321.

 Machine Learning

256

(3.3%). These results suggest that the number of labels on an FEMap express the extent of
difference of topological characteristics within a category, i.e., expressiveness of person-
specific facial expressions.
Figure 10 portrays a magnified view of a part of surprise in the FEMap of Subject E, with the
weights of each unit visualized. Units with the white frame in the figure denote winner
units when training data were input into the CPN after learning. This figure suggests that
facial expressions whose patterns differ slightly are generated in the neighborhood of five
winner units. These results suggest that data expansion is performed based on the similarity
and continuity of training data, and that more facial expression patterns such as mixed facial
expressions between categories can be generated in the CPN mapping space.

ID An.(%) Sa. (%) Di. (%) Ha. (%) Su. (%) Fe. (%) Ne. (%)
A 17.7 4.1 25.2 7.2 9.4 11.9 24.4
B 18.0 11.7 9.2 13.3 14.8 - 33.0
C 6.3 6.6 7.1 17.1 5.0 10.7 47.2
D 9.1 6.8 9.2 15.6 3.0 11.0 45.3
E 11.6 16.2 11.6 9.4 8.0 15.7 27.6
F 9.1 13.9 3.3 12.8 7.1 20.2 33.6

Table 3. Percentages of number of labels in the FEMap.

 ○ ○ ○ ○ ○

 ○

 ○ ○

 ○ ○

 ○ ○ ○

 ○

 ○

 ○

○ ○ ○ ○

 ○

 ○

○ ○ ○ ○

 ○ ○ ○

○ ○ ○

 ○ ○

 ○

 ○ ○

○ ○

 ○

 ○

 ○ ○

○ ○ ○ ○ ○ ○ ○

 ○ ○ ○ ○ ○

 ○

 ○ ○

 ○ ○

 ○ ○ ○

 ○

 ○

 ○

○ ○ ○ ○

 ○

 ○

○ ○ ○ ○

 ○ ○ ○

○ ○ ○

 ○ ○

 ○

 ○ ○

○ ○

 ○

 ○

 ○ ○

○ ○ ○ ○ ○ ○ ○

15 unit

8 unit Su.Sa.

Fe.An.

Fig. 10. Magnified view of a part of surprise in the FEMap of Subject E (Detail of Fig. 9(e)).

6. Conclusion
On the assumption that facial expression is a problem of classification into an unknown
number of categories, this chapter describes an investigation of a generation method of a
person-specific FEMap. The essential results obtained in this study are the following.
Hierarchical use of SOM with a narrow mapping space enables extraction of person-specific
facial expression categories and representative images for each category. Psychological
significance is assigned to every category obtained with the binary-tree structure in this
study. The operator might also give special importance to categories selected according to
personal subjectivity. Moreover, intentional further hierarchization of a binary-tree structure
permits the additional subdivision of facial expression categorization.

Generation of Facial Expression Map using Supervised and Unsupervised Learning

257

The categories and category representative images obtained from the binary-tree structure
were used as training data of a CPN with a large mapping space. Results revealed that data
expansion is performed based on the similarity and continuity of training data, and that
more facial expression patterns such as mixed facial expressions between categories can be
generated in the CPN mapping space. It is expected that the use of an FEMap generated
using the proposed method can be useful as a classifier in facial expression recognition that
contributes to improvement in generalization capability.
This chapter specifically described a generation method of an FEMap and used facial
expression images obtained during the same period. However, it is difficult to obtain all of a
subject’s facial expression patterns at one time; in addition, faces age with time. In future
studies, we intend to take aging of a facial expression pattern into consideration, and study
an automatic FEMap updating method using additional learning functions.

7. Acknowledgments
This work was supported in part by Ministry of Education, Culture, Sports, Science and
Technology (MEXT) Grants-in-Aid for Young Scientists (B): No. 18700192 and No. 20700174.
This chapter is based on “Generation of Facial Expression Map based on Topological
Characteristics of Face Images,” by M. Ishii, K. Sato, H. Madokoro and M. Nishida, which
appeared in the Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, (SMC 2007), Montreal, Quebec, Canada, October 2007. © 2007 IEEE.

8. References
Akamatsu, S. (1997). Computer Recognition of Human Face –A Survey-, IEICE trans.

Information and systems, Pt.2 (Japanese Edition), Vol.J80-D-II, No.8, pp.2031-2046.
Ekman, P. & Friesen, W.V. (1978). Facial Action Coding System, Consulting Psychologist Press.
Fasel, B., & Luettin, J. (2003). Automatic Facial Expression Analysis: A Survey, Pattern

Recognition, Vol.36, pp.259-275.
Gross, R. (2005). Face Databases, Handbook of Face Recognition, S.Li and A.Jain, ed., Springer-

Verlag.
Hasegawa, O.; Morishima, S. & Kaneko, M. (1997). Processing of Facial Information by

Computer, IEICE trans. Information and systems, Pt.2 (Japanese Edition), Vol.J80-D-II,
No.8, pp.2047-2065.

Kohonen, T. (1995). Self-Organizing Maps, Springer Series in Information Sciences.
Lyons, M.J.; Budynek, J. & Akamatsu, S. (1999). Automatic Classification of Single Facial

Images, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.21, No.12, pp.1357-
1362.

Lyons, M.J.; Akamatsu, S., Kamachi, M. & Gyoba, J. (1998). Coding Facial Expressions with
GaborWavelets, Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pp.200-
205.

Nielsen, R.H. (1987). Counterpropagation Networks, Applied Optics, vol.26, No.23, pp.4979-
4984.

Pantic, M.; Valstar, M.F., Rademaker, R. & Maat, L. (2005). Webbased Database for Facial
Expression Analysis, Proc. IEEE Int. Conf. Multimedia and Expo, pp.317-321.

 Machine Learning

258

Pantic, M. & Rothkrantz, L.J.M. (2000a). Automatic Analysis of Facial Expressions: The State
of the Art, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.22, No.12,
pp.1424-1445.

Pantic, M. & Rothkrantz, L.J.M. (2000b). Expert System for Automatic Analysis of Facial
Expression, Image and Vision Computing, Vol.18, No.11, pp.881-905.

Tian, Y.L.; Kanade, T. & Cohn, J.F. (2001). Recognizing Action Units for Facial Expression
Analysis, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.23, No.2, pp.97-
116.

Yang, M.; Kriegman, D.J. & Ahuja, N. (2002). Detecting Faces in Images: A Survey, IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol.24, No.1, pp.34-58.

Zhang, Z.; Lyons, M., Schuster, M. & Akamatsu, S. (1998). Comparison Between Geometry-
Based and Gabor-Wavelet-Based Facial Expression Recognition Using Multi-Layer
Perceptron, Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pp.454-459.

Zhao, W.; Chellappa, R., Rosenfeld, A. & Phillips, P.J. (2000). Face Recognition: A Literature
Survey, Technical Report 00-948, University of Maryland.

13

Linear Subspace Learning for
Facial Expression Analysis

Caifeng Shan
Philips Research
The Netherlands

1. Introduction
Facial expression, resulting from movements of the facial muscles, is one of the most
powerful, natural, and immediate means for human beings to communicate their emotions
and intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was
the first to describe in detail the specific facial expressions associated with emotions in
animals and humans; he argued that all mammals show emotions reliably in their faces.
Psychological studies (Mehrabian, 1968; Ambady & Rosenthal, 1992) indicate that facial
expressions, with other non-verbal cues, play a major and fundamental role in face-to-face
communication.

Fig. 1. Facial expressions of George W. Bush.

Machine analysis of facial expressions, enabling computers to analyze and interpret facial
expressions as humans do, has many important applications including intelligent human-
computer interaction, computer animation, surveillance and security, medical diagnosis,
law enforcement, and awareness system (Shan, 2007). Driven by its potential applications
and theoretical interests of cognitive and psychological scientists, automatic facial
expression analysis has attracted much attention in last two decades (Pantic & Rothkrantz,
2000a; Fasel & Luettin, 2003; Tian et al, 2005; Pantic & Bartlett, 2007). It has been studied in
multiple disciplines such as psychology, cognitive science, computer vision, pattern

 Machine Learning

258

Pantic, M. & Rothkrantz, L.J.M. (2000a). Automatic Analysis of Facial Expressions: The State
of the Art, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.22, No.12,
pp.1424-1445.

Pantic, M. & Rothkrantz, L.J.M. (2000b). Expert System for Automatic Analysis of Facial
Expression, Image and Vision Computing, Vol.18, No.11, pp.881-905.

Tian, Y.L.; Kanade, T. & Cohn, J.F. (2001). Recognizing Action Units for Facial Expression
Analysis, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.23, No.2, pp.97-
116.

Yang, M.; Kriegman, D.J. & Ahuja, N. (2002). Detecting Faces in Images: A Survey, IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol.24, No.1, pp.34-58.

Zhang, Z.; Lyons, M., Schuster, M. & Akamatsu, S. (1998). Comparison Between Geometry-
Based and Gabor-Wavelet-Based Facial Expression Recognition Using Multi-Layer
Perceptron, Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pp.454-459.

Zhao, W.; Chellappa, R., Rosenfeld, A. & Phillips, P.J. (2000). Face Recognition: A Literature
Survey, Technical Report 00-948, University of Maryland.

13

Linear Subspace Learning for
Facial Expression Analysis

Caifeng Shan
Philips Research
The Netherlands

1. Introduction
Facial expression, resulting from movements of the facial muscles, is one of the most
powerful, natural, and immediate means for human beings to communicate their emotions
and intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was
the first to describe in detail the specific facial expressions associated with emotions in
animals and humans; he argued that all mammals show emotions reliably in their faces.
Psychological studies (Mehrabian, 1968; Ambady & Rosenthal, 1992) indicate that facial
expressions, with other non-verbal cues, play a major and fundamental role in face-to-face
communication.

Fig. 1. Facial expressions of George W. Bush.

Machine analysis of facial expressions, enabling computers to analyze and interpret facial
expressions as humans do, has many important applications including intelligent human-
computer interaction, computer animation, surveillance and security, medical diagnosis,
law enforcement, and awareness system (Shan, 2007). Driven by its potential applications
and theoretical interests of cognitive and psychological scientists, automatic facial
expression analysis has attracted much attention in last two decades (Pantic & Rothkrantz,
2000a; Fasel & Luettin, 2003; Tian et al, 2005; Pantic & Bartlett, 2007). It has been studied in
multiple disciplines such as psychology, cognitive science, computer vision, pattern

 Machine Learning

260

recognition, and human-computer interaction. Although much progress has been made, it is
still difficult to design and develop an automated system capable of detecting and
interpreting human facial expressions with high accuracy, due to their subtlety, complexity
and variability.
Many machine learning techniques have been introduced for facial expression analysis, such
as Neural Networks (Tian et al, 2001), Bayesian Networks (Cohen et al, 2003b), and Support
Vector Machines (SVM) (Bartlett et al, 2005), to name just a few. Meanwhile, appearance-
based statistical subspace learning has been shown to be an effective approach to modeling
facial expression space for classification. This is because that despite a facial image space
being commonly of a very high dimension, the underlying facial expression space is usually
a sub-manifold of much lower dimensionality embedded in the ambient space. Subspace
learning is a natural approach to resolve this problem. Traditionally, linear subspace
methods including Principal Component Analysis (PCA) (Turk & Pentland, 1991), Linear
Discriminant Analysis (LDA) (Belhumeur et al, 1997), and Independent Component
Analysis (ICA) (Bartlett et al, 2002) have been used to discover both facial identity and
expression manifold structures. For example, Lyons et al (1999) adopted PCA based LDA
with the Gabor wavelet representation to classify facial images, and Donato et al (1999)
explored PCA, LDA, and ICA for facial action classification.
Recently a number of nonlinear techniques have been proposed to learn the structure of a
manifold, e.g., Isomap (Tenenbaum et al, 2000), Local Linear Embedding (LLE) (Roweis &
Saul, 2000; Saul & Roweis, 2003), and Laplacian Eigenmaps (Belkin & Niyogi, 2001, 2003).
These methods have been shown to be effective in discovering the underlying manifold.
However, they are unsupervised in nature and fail to discover the discriminant structure in
the data. Moreover, these techniques yield maps that are defined only on the training data,
and it is unclear how to evaluate the maps for new test data. So they may not be suitable for
pattern recognition tasks such as facial expression recognition. To address this problem,
some linear approximations to these nonlinear manifold learning methods have been
proposed to provide an explicit mapping from the input space to the reduced space (He &
Niyogi, 2003; Kokiopoulou & Saad, 2005). He and Niyogi (2003) developed a linear subspace
technique, known as Locality Preserving Projections (LPP), which builds a graph model that
reflects the intrinsic geometric structure of the given data space, and finds a projection that
respects this graph structure. LPP can be regarded as a linear approximation to Laplacian
Eigenmaps; it can easily map any new data to the reduced space by using a transformation
matrix. By incorporating the priori class information into LPP, we presented a Supervised
LPP (SLPP) approach to enhance discriminant analysis on a manifold structure (Shan et al,
2005a). Cai et al (2006) further introduced a Orthogonal LPP (OLPP) approach to produce
orthogonal basis vectors, which potentially have more discriminating power.
Orthogonal Neighborhood Preserving Projections (ONPP) is another interesting linear
subspace technique proposed recently (Kokiopoulou & Saad, 2005, 2007). ONPP aims to
preserve the intrinsic geometry of the local neighborhoods; it can be regarded as a linear
approximation to LLE. ONPP constructs a weighted k-nearest neighbor graph which models
explicitly the data topology, and, similarly to LLE, the weights are decided in a data-driven
fashion to capture the geometry of local neighborhoods. In contrast to LLE, ONPP computes
an explicit linear mapping from the input space to the reduced space. ONPP can be
performed in either an unsupervised or a supervised setting. More recently Cai et al (2007)
introduced a linear subspace method called Locality Sensitive Discriminant Analysis

Linear Subspace Learning for Facial Expression Analysis

261

(LSDA), which finds a projection that maximizes the margin between data points from
different classes at each local area. LSDA constructs a nearest neighbor graph to model the
geometrical structure of the underlying manifold, and then split it into within-class graph
and between-class graph by using the class labels. LPP, ONPP, LSDA are all linear subspace
learning techniques which aim at preserving locality of data samples, relying on a nearest
neighbor graph to capture the data topology. However, they adopt totally different objective
functions, so potentially they will provide different subspace learning power.
As different linear subspace techniques have been developed, the researchers are therefore
confronted with a choice of algorithms with significantly different strengthes. However, to
our best knowledge, there is no comprehensive comparative study on these linear subspace
methods using the same data and experimental settings, although they were individually
evaluated. In particular, for the task of facial expression analysis, it is necessary and
important to identify the most effective linear subspace technique for facial expression
representation and classification. In this chapter, we investigate and evaluate a number of
linear subspace techniques for modeling facial expression subspace. Specifically we compare
LPP and its variants SLPP and OLPP, ONPP, LSDA with the traditional PCA and LDA
using different facial representations on several public databases. We find in our extensive
study that the supervised LPP provides the best results in learning facial expression
subspace, resulting in superior facial expression recognition performance. A short version of
our work was presented in (Shan et al, 2006a).
The remainder of this chapter is organized as follows. We first survey the state of the art of
facial expression analysis with machine learning (Section 2). Different linear subspace
techniques compared in this chapter are described in Section 3. We present extensive
experiments on different databases in Section 4, and finally Section 5 concludes the chapter.

2. State of the art
After Suwa et al (1978) made an early attempt to automatically analyze facial expressions
from image sequences, machine analysis of facial expressions has received much attention in
last two decades (Pantic & Rothkrantz, 2000a; Fasel & Luettin, 2003; Tian et al, 2005; Pantic
& Bartlett, 2007). In this section, we review the state of the art on applying machine learning
techniques for facial expression analysis.
Facial expressions can be described at different levels. Two mainstream description methods
are facial affect (emotion) and facial muscle action (action unit) (Pantic & Bartlett, 2007).
Most of facial expression analysis systems developed so far target facial affect analysis,
attempting to analyze a set of prototypic emotional facial expressions (Pantic & Rothkrantz,
2000a, 2003). To describe subtle facial changes, Facial Action Coding System (FACS) (Ekman
et al, 2002) has been used for manually labeling of facial actions. FACS associates facial
changes with actions of the muscles that produce them. It defines 44 different action units
(AUs). Another possible descriptor is the bipolar dimensions of Valence and Arousal (Russell,
1994). Valence describes the pleasantness, with positive (pleasant) on one end (e.g.
happiness), and negative (unpleasant) on the other (e.g. disgust). The other dimension is
arousal or activation, for example, sadness has low arousal, whereas surprise has a high
arousal level.
The general approach to automatic facial expression analysis consists of three steps: face
acquisition, facial data extraction & representation, and facial expression recognition. In the
following sections, we discuss these steps respectively.

 Machine Learning

260

recognition, and human-computer interaction. Although much progress has been made, it is
still difficult to design and develop an automated system capable of detecting and
interpreting human facial expressions with high accuracy, due to their subtlety, complexity
and variability.
Many machine learning techniques have been introduced for facial expression analysis, such
as Neural Networks (Tian et al, 2001), Bayesian Networks (Cohen et al, 2003b), and Support
Vector Machines (SVM) (Bartlett et al, 2005), to name just a few. Meanwhile, appearance-
based statistical subspace learning has been shown to be an effective approach to modeling
facial expression space for classification. This is because that despite a facial image space
being commonly of a very high dimension, the underlying facial expression space is usually
a sub-manifold of much lower dimensionality embedded in the ambient space. Subspace
learning is a natural approach to resolve this problem. Traditionally, linear subspace
methods including Principal Component Analysis (PCA) (Turk & Pentland, 1991), Linear
Discriminant Analysis (LDA) (Belhumeur et al, 1997), and Independent Component
Analysis (ICA) (Bartlett et al, 2002) have been used to discover both facial identity and
expression manifold structures. For example, Lyons et al (1999) adopted PCA based LDA
with the Gabor wavelet representation to classify facial images, and Donato et al (1999)
explored PCA, LDA, and ICA for facial action classification.
Recently a number of nonlinear techniques have been proposed to learn the structure of a
manifold, e.g., Isomap (Tenenbaum et al, 2000), Local Linear Embedding (LLE) (Roweis &
Saul, 2000; Saul & Roweis, 2003), and Laplacian Eigenmaps (Belkin & Niyogi, 2001, 2003).
These methods have been shown to be effective in discovering the underlying manifold.
However, they are unsupervised in nature and fail to discover the discriminant structure in
the data. Moreover, these techniques yield maps that are defined only on the training data,
and it is unclear how to evaluate the maps for new test data. So they may not be suitable for
pattern recognition tasks such as facial expression recognition. To address this problem,
some linear approximations to these nonlinear manifold learning methods have been
proposed to provide an explicit mapping from the input space to the reduced space (He &
Niyogi, 2003; Kokiopoulou & Saad, 2005). He and Niyogi (2003) developed a linear subspace
technique, known as Locality Preserving Projections (LPP), which builds a graph model that
reflects the intrinsic geometric structure of the given data space, and finds a projection that
respects this graph structure. LPP can be regarded as a linear approximation to Laplacian
Eigenmaps; it can easily map any new data to the reduced space by using a transformation
matrix. By incorporating the priori class information into LPP, we presented a Supervised
LPP (SLPP) approach to enhance discriminant analysis on a manifold structure (Shan et al,
2005a). Cai et al (2006) further introduced a Orthogonal LPP (OLPP) approach to produce
orthogonal basis vectors, which potentially have more discriminating power.
Orthogonal Neighborhood Preserving Projections (ONPP) is another interesting linear
subspace technique proposed recently (Kokiopoulou & Saad, 2005, 2007). ONPP aims to
preserve the intrinsic geometry of the local neighborhoods; it can be regarded as a linear
approximation to LLE. ONPP constructs a weighted k-nearest neighbor graph which models
explicitly the data topology, and, similarly to LLE, the weights are decided in a data-driven
fashion to capture the geometry of local neighborhoods. In contrast to LLE, ONPP computes
an explicit linear mapping from the input space to the reduced space. ONPP can be
performed in either an unsupervised or a supervised setting. More recently Cai et al (2007)
introduced a linear subspace method called Locality Sensitive Discriminant Analysis

Linear Subspace Learning for Facial Expression Analysis

261

(LSDA), which finds a projection that maximizes the margin between data points from
different classes at each local area. LSDA constructs a nearest neighbor graph to model the
geometrical structure of the underlying manifold, and then split it into within-class graph
and between-class graph by using the class labels. LPP, ONPP, LSDA are all linear subspace
learning techniques which aim at preserving locality of data samples, relying on a nearest
neighbor graph to capture the data topology. However, they adopt totally different objective
functions, so potentially they will provide different subspace learning power.
As different linear subspace techniques have been developed, the researchers are therefore
confronted with a choice of algorithms with significantly different strengthes. However, to
our best knowledge, there is no comprehensive comparative study on these linear subspace
methods using the same data and experimental settings, although they were individually
evaluated. In particular, for the task of facial expression analysis, it is necessary and
important to identify the most effective linear subspace technique for facial expression
representation and classification. In this chapter, we investigate and evaluate a number of
linear subspace techniques for modeling facial expression subspace. Specifically we compare
LPP and its variants SLPP and OLPP, ONPP, LSDA with the traditional PCA and LDA
using different facial representations on several public databases. We find in our extensive
study that the supervised LPP provides the best results in learning facial expression
subspace, resulting in superior facial expression recognition performance. A short version of
our work was presented in (Shan et al, 2006a).
The remainder of this chapter is organized as follows. We first survey the state of the art of
facial expression analysis with machine learning (Section 2). Different linear subspace
techniques compared in this chapter are described in Section 3. We present extensive
experiments on different databases in Section 4, and finally Section 5 concludes the chapter.

2. State of the art
After Suwa et al (1978) made an early attempt to automatically analyze facial expressions
from image sequences, machine analysis of facial expressions has received much attention in
last two decades (Pantic & Rothkrantz, 2000a; Fasel & Luettin, 2003; Tian et al, 2005; Pantic
& Bartlett, 2007). In this section, we review the state of the art on applying machine learning
techniques for facial expression analysis.
Facial expressions can be described at different levels. Two mainstream description methods
are facial affect (emotion) and facial muscle action (action unit) (Pantic & Bartlett, 2007).
Most of facial expression analysis systems developed so far target facial affect analysis,
attempting to analyze a set of prototypic emotional facial expressions (Pantic & Rothkrantz,
2000a, 2003). To describe subtle facial changes, Facial Action Coding System (FACS) (Ekman
et al, 2002) has been used for manually labeling of facial actions. FACS associates facial
changes with actions of the muscles that produce them. It defines 44 different action units
(AUs). Another possible descriptor is the bipolar dimensions of Valence and Arousal (Russell,
1994). Valence describes the pleasantness, with positive (pleasant) on one end (e.g.
happiness), and negative (unpleasant) on the other (e.g. disgust). The other dimension is
arousal or activation, for example, sadness has low arousal, whereas surprise has a high
arousal level.
The general approach to automatic facial expression analysis consists of three steps: face
acquisition, facial data extraction & representation, and facial expression recognition. In the
following sections, we discuss these steps respectively.

 Machine Learning

262

2.1 Face acquisition
Face acquisition is a pre-processing stage to automatically detect or locate the face region in
the input images or sequences. Numerous techniques have been proposed for face detection
(Yang et al, 2002), due to its practical importance in many computer vision applications.
Most of existing methods emphasize statistical learning techniques and use appearance
features. The real-time face detection scheme proposed by Viola and Jones (2001) is arguably
the most commonly employed face detector, which consists of a cascade of classifiers trained
by AdaBoost employing Harr-wavelet features. AdaBoost (Freund & Schapire, 1997;
Schapire & Singer, 1999) is one of the most successful machine learning techniques applied
in computer vision area, which provides a simple yet effective approach for stagewise
learning of a nonlinear classification function. AdaBoost learns a small number of weak
classifiers whose performance are just better than random guessing, and boosts them
iteratively into a strong classifier of higher accuracy. Lienhart et al (2003) later made some
extensions to this face detector. Many other machine learning techniques such as Neural
Networks and SVM have also been introduced for face detection; details can be found in
(Yang et al, 2002).
Most of face detectors can only detect faces in frontal or near-frontal view. To handle large
head motion in video sequences, head tracking and head pose estimation can be adopted.
The tasks of head tracking and pose estimation can be performed sequentially or jointly.
Different approaches have been developed for head pose estimation (Murphy-Chutorian &
Trivedi, 2008). Given the success of frontal face detectors, a natural extension is to estimate
head pose by training multiple face detectors, each to specific a different discrete pose. For
example, cascade AdaBoost detectors have been extended for pose estimation (Jones &
Viola, 2003). Recently manifold learning approaches have been adopted to seek low-
dimensional manifolds that model the continuous variation in head pose; new images can
then be embedded into these manifolds for pose estimation. Nonlinear methods such as
Isomap, LLE, and Laplacian Eigenmaps or their linear approximations have been exploited
for pose estimation (Fu & Huang, 2006; Balasubramanian et al, 2008).

2.2 Facial feature extraction & representation
Facial feature extraction and representation is to derive a set of features from original face
images which are used for representing faces. Two types of features, geometric features and
appearance features, are usually considered for facial representation. Geometric features
deal with the shape and locations of facial components (including mouth, eyes, brows, and
nose), which are extracted to represent the face geometry (Zhang et al, 1998; Pantic &
Rothkrantz, 2000b; Tian et al, 2001; Kaliouby & Robinson, 2004; Zhang & Ji, 2005; Pantic &
Bartlett, 2007). Appearance features present the appearance changes (skin texture) of the
face (including wrinkles, bulges and furrows), which are extracted by applying image filters
to either the whole face or specific facial regions (Lyons et al, 1999; Donato et al, 1999;
Bartlett et al, 2003; Shan et al, 2005c; Littlewort et al, 2006; Gritti et al, 2008). The geometric
features based facial representations commonly require accurate and reliable facial feature
detection and tracking, which is difficult to accommodate in real-world unconstrained
scenarios, e.g., under head pose variation. In contrast, appearance features suffer less from
issues of initialization and tracking errors, and can encode changes in skin texture that are
critical for facial expression modeling. However, most of the existing appearance-based
facial representations still require face registration based on facial feature detection, e.g., eye
detection.

Linear Subspace Learning for Facial Expression Analysis

263

Machine learning techniques have been exploited to select the most effective features for
facial representation. Donato et al (1999) compared different techniques to extract facial
features, which include PCA, LDA, LDA, Local Feature Analysis, and local principal
components. The experimental results provide evidence for the importance of using local
filters and statistical independence for facial representation. Bartlett et al (2003, 2005)
presented to select a subset of Gabor filters using AdaBoost. Similarly, Wang et al (2004)
learned a subst of Harr features using Adaboost. Whitehill and Omlin (2006) compared
Gabor filters, Harr-like filters, and the edge-oriented histogram for AU recognition, and
found that AdaBoost performs better with Harr-like filters, while SVMs perform better with
Gabor filters. Valstar and Pantic (2006) recently presented a fully automatic AU detection
system that can recognize AU temporal segments using a subset of most informative spatio-
temporal features selected by AdaBoost. In our previous work (Shan et al, 2005b; Shan &
Gritti, 2008), we also adopted boost learning to learn discriminative Local Binary Patterns
features for facial expression recognition.

2.3 Facial expression recognition
The last stage is to classify different expressions based on the extracted facial features. Facial
expression recognition can be generally divided into image-based or sequence-based. The
image-based approaches use features extracted from a single image to recognize the
expression of that image, while the sequence-based methods aim to capture the temporal
pattern in a sequence to recognize the expression for one or more images. Different machine
learning techniques have been proposed, such as Neural Network (Zhang et al, 1998; Tian et
al, 2001), SVM (Bartlett et al, 2005, 2003), Bayesian Network (Cohen et al, 2003b,a), and rule-
based classifiers (Pantic & Rothkrantz, 2000b) for image-based expression recognition, or
Hidden Markov Model (HMM) (Cohen et al, 2003b; Yeasin et al, 2004) and Dynamic
Bayesian Network (DBN) (Kaliouby & Robinson, 2004; Zhang & Ji, 2005) for sequence-based
expression recognition.
Pantic and Rothkrantz (2000b) performed facial expression recognition by comparing the
AU-coded description of an observed expression against rule descriptors of six basic
emotions. Recently they further adopted the rule-based reasoning to recognize action units
and their combination (Pantic & Rothkrantz, 2004). Tian et al (2001) used a three-layer
Neural Network with one hidden layer to recognize AUs by a standard back-propagation
method. Cohen et al (2003b) adopted Bayesian network classifiers to classify a frame in
video sequences to one of the basic facial expressions. They compared Naive-Bayes
classifiers where the features are assumed to be either Gaussian or Cauchy distributed, and
Gaussian Tree-Augmented Naive Bayes classifiers. Because it is difficult to collect a large
amount of training data, Cohen et al (2004) further proposed to use unlabeled data together
with labeled data using Bayesian networks. As a powerful discriminative machine learning
technique, SVM has been widely adopted for facial expression recognition. Recently Bartlett
et al (2005) performed comparison of AdaBoost, SVM, and LDA, and best results were
obtained by selecting a subset of Gabor filters using AdaBoost and then training SVM on the
outputs of the selected filters. This strategy is also adopted in (Tong et al, 2006; Valstar &
Pantic, 2006).
Psychological experiments (Bassili, 1979) suggest that the dynamics of facial expressions are
crucial for successful interpretation of facial expressions. HMMs have been exploited to
capture temporal behaviors exhibited by facial expressions (Oliver et al, 2000; Cohen et al,

 Machine Learning

262

2.1 Face acquisition
Face acquisition is a pre-processing stage to automatically detect or locate the face region in
the input images or sequences. Numerous techniques have been proposed for face detection
(Yang et al, 2002), due to its practical importance in many computer vision applications.
Most of existing methods emphasize statistical learning techniques and use appearance
features. The real-time face detection scheme proposed by Viola and Jones (2001) is arguably
the most commonly employed face detector, which consists of a cascade of classifiers trained
by AdaBoost employing Harr-wavelet features. AdaBoost (Freund & Schapire, 1997;
Schapire & Singer, 1999) is one of the most successful machine learning techniques applied
in computer vision area, which provides a simple yet effective approach for stagewise
learning of a nonlinear classification function. AdaBoost learns a small number of weak
classifiers whose performance are just better than random guessing, and boosts them
iteratively into a strong classifier of higher accuracy. Lienhart et al (2003) later made some
extensions to this face detector. Many other machine learning techniques such as Neural
Networks and SVM have also been introduced for face detection; details can be found in
(Yang et al, 2002).
Most of face detectors can only detect faces in frontal or near-frontal view. To handle large
head motion in video sequences, head tracking and head pose estimation can be adopted.
The tasks of head tracking and pose estimation can be performed sequentially or jointly.
Different approaches have been developed for head pose estimation (Murphy-Chutorian &
Trivedi, 2008). Given the success of frontal face detectors, a natural extension is to estimate
head pose by training multiple face detectors, each to specific a different discrete pose. For
example, cascade AdaBoost detectors have been extended for pose estimation (Jones &
Viola, 2003). Recently manifold learning approaches have been adopted to seek low-
dimensional manifolds that model the continuous variation in head pose; new images can
then be embedded into these manifolds for pose estimation. Nonlinear methods such as
Isomap, LLE, and Laplacian Eigenmaps or their linear approximations have been exploited
for pose estimation (Fu & Huang, 2006; Balasubramanian et al, 2008).

2.2 Facial feature extraction & representation
Facial feature extraction and representation is to derive a set of features from original face
images which are used for representing faces. Two types of features, geometric features and
appearance features, are usually considered for facial representation. Geometric features
deal with the shape and locations of facial components (including mouth, eyes, brows, and
nose), which are extracted to represent the face geometry (Zhang et al, 1998; Pantic &
Rothkrantz, 2000b; Tian et al, 2001; Kaliouby & Robinson, 2004; Zhang & Ji, 2005; Pantic &
Bartlett, 2007). Appearance features present the appearance changes (skin texture) of the
face (including wrinkles, bulges and furrows), which are extracted by applying image filters
to either the whole face or specific facial regions (Lyons et al, 1999; Donato et al, 1999;
Bartlett et al, 2003; Shan et al, 2005c; Littlewort et al, 2006; Gritti et al, 2008). The geometric
features based facial representations commonly require accurate and reliable facial feature
detection and tracking, which is difficult to accommodate in real-world unconstrained
scenarios, e.g., under head pose variation. In contrast, appearance features suffer less from
issues of initialization and tracking errors, and can encode changes in skin texture that are
critical for facial expression modeling. However, most of the existing appearance-based
facial representations still require face registration based on facial feature detection, e.g., eye
detection.

Linear Subspace Learning for Facial Expression Analysis

263

Machine learning techniques have been exploited to select the most effective features for
facial representation. Donato et al (1999) compared different techniques to extract facial
features, which include PCA, LDA, LDA, Local Feature Analysis, and local principal
components. The experimental results provide evidence for the importance of using local
filters and statistical independence for facial representation. Bartlett et al (2003, 2005)
presented to select a subset of Gabor filters using AdaBoost. Similarly, Wang et al (2004)
learned a subst of Harr features using Adaboost. Whitehill and Omlin (2006) compared
Gabor filters, Harr-like filters, and the edge-oriented histogram for AU recognition, and
found that AdaBoost performs better with Harr-like filters, while SVMs perform better with
Gabor filters. Valstar and Pantic (2006) recently presented a fully automatic AU detection
system that can recognize AU temporal segments using a subset of most informative spatio-
temporal features selected by AdaBoost. In our previous work (Shan et al, 2005b; Shan &
Gritti, 2008), we also adopted boost learning to learn discriminative Local Binary Patterns
features for facial expression recognition.

2.3 Facial expression recognition
The last stage is to classify different expressions based on the extracted facial features. Facial
expression recognition can be generally divided into image-based or sequence-based. The
image-based approaches use features extracted from a single image to recognize the
expression of that image, while the sequence-based methods aim to capture the temporal
pattern in a sequence to recognize the expression for one or more images. Different machine
learning techniques have been proposed, such as Neural Network (Zhang et al, 1998; Tian et
al, 2001), SVM (Bartlett et al, 2005, 2003), Bayesian Network (Cohen et al, 2003b,a), and rule-
based classifiers (Pantic & Rothkrantz, 2000b) for image-based expression recognition, or
Hidden Markov Model (HMM) (Cohen et al, 2003b; Yeasin et al, 2004) and Dynamic
Bayesian Network (DBN) (Kaliouby & Robinson, 2004; Zhang & Ji, 2005) for sequence-based
expression recognition.
Pantic and Rothkrantz (2000b) performed facial expression recognition by comparing the
AU-coded description of an observed expression against rule descriptors of six basic
emotions. Recently they further adopted the rule-based reasoning to recognize action units
and their combination (Pantic & Rothkrantz, 2004). Tian et al (2001) used a three-layer
Neural Network with one hidden layer to recognize AUs by a standard back-propagation
method. Cohen et al (2003b) adopted Bayesian network classifiers to classify a frame in
video sequences to one of the basic facial expressions. They compared Naive-Bayes
classifiers where the features are assumed to be either Gaussian or Cauchy distributed, and
Gaussian Tree-Augmented Naive Bayes classifiers. Because it is difficult to collect a large
amount of training data, Cohen et al (2004) further proposed to use unlabeled data together
with labeled data using Bayesian networks. As a powerful discriminative machine learning
technique, SVM has been widely adopted for facial expression recognition. Recently Bartlett
et al (2005) performed comparison of AdaBoost, SVM, and LDA, and best results were
obtained by selecting a subset of Gabor filters using AdaBoost and then training SVM on the
outputs of the selected filters. This strategy is also adopted in (Tong et al, 2006; Valstar &
Pantic, 2006).
Psychological experiments (Bassili, 1979) suggest that the dynamics of facial expressions are
crucial for successful interpretation of facial expressions. HMMs have been exploited to
capture temporal behaviors exhibited by facial expressions (Oliver et al, 2000; Cohen et al,

 Machine Learning

264

2003b; Yeasin et al, 2004). Cohen et al (2003b) proposed a multi-level HMM classifier, which
allows not only to perform expression classification in a video segment, but also to
automatically segment an arbitrary long video sequence to the different expressions
segments without resorting to heuristic methods of segmentation. DBNs are graphical
probabilistic models which encode dependencies among sets of random variables evolving
in time. HMM is the simplest kind of DBNs. Zhang and Ji (2005) explored the use of
multisensory information fusion technique with DBNs for modeling and understanding the
temporal behaviors of facial expressions in image sequences. Kaliouby and Robinson (2004)
proposed a system for inferring complex mental states from videos of facial expressions and
head gestures in real-time. Their system was built on a multi-level DBN classifier which
models complex mental states as a number of interacting facial and head displays. Facial
expression dynamics can also be captured in low dimensional manifolds embedded in the
input image space. Chang et al (2003, 2004) made attempts to learn the structure of the
expression manifold. In our previous work (Shan et al, 2005a, 2006b), we presented to model
facial expression dynamics by discovering the underlying low-dimensional manifold.

3. Linear subspace methods
The goal of subspace learning (or dimensionality reduction) is to map the data set in the
high dimensional space to the lower dimensional space such that certain properties are
preserved. Examples of properties to be preserved include the global geometry and
neighborhood information. Usually the property preserved is quantified by an objective
function and the dimensionality reduction problem is formulated as an optimization
problem. The generic problem of linear dimensionality reduction is the following. Given a
multi-dimensional data set x1,x2, ... ,xm in Rn, find a transformation matrix W that maps these
m points to y1,y2, ... ,ym in Rl(l n), such that yi represent xi, where yi =WT

 xi. In this section, we
briefly review the existing linear subspace methods PCA, LDA, LPP, ONPP, LSDA, and
their variants.

3.1 Principle Component Analysis (PCA)
Two of the most popular techniques for linear subspace learning are PCA and LDA. PCA
(Turk & Pentland, 1991) is an eigenvector method designed to model linear variation in
high-dimensional data. PCA aims at preserving the global variance by finding a set of
mutual orthogonal basis functions that capture the directions of maximum variance in the
data.
Let w denote a transformation vector, the objective function is as follows:

(1)

The solution w0, ... ,wl-1 is an orthonormal set of vectors representing the eigenvector of the
data’s covariance matrix associated with the l largest eigenvalues.

3.2 Linear Discriminant Analysis (LDA)
While PCA is an unsupervised method and seeks directions that are efficient for
representation, LDA (Belhumeur et al, 1997) is a supervised approach and seeks directions

Linear Subspace Learning for Facial Expression Analysis

265

that are efficient for discrimination. LDA searches for the projection axes on which the data
points of different classes are far from each other while requiring data points of the same
class to be close to each other.
Suppose the data samples belong to c classes, The objective function is as follows:

 (2)

 (3)

(4)

where m is the mean of all the samples, ni is the number of samples in the ith class, m(i) is the
average vector of the ith class, and

is the jth sample in the ith class.

3.3 Locality Preserving Projections (LPP)
LPP (He & Niyogi, 2003) seeks to preserve the intrinsic geometry of the data by preserving
locality. To derive the optimal projections preserving locality, LPP employs the same
objective function with Laplacian Eigenmaps:

(5)

where Si j evaluates a local structure of the data space, and is defined as:

(6)

or in a simpler form as

(7)

where “close” can be defined as ║xi−xj║2 < ε , where ε is a small constant, or xi is among k
nearest neighbors of x j or x j is among k nearest neighbors of xi. The objective function with
symmetric weights Si j(Si j = Sji) incurs a heavy penalty if neighboring points xi and x j are
mapped far apart. Minimizing their distance is therefore an attempt to ensure that if xi and xj

are “close”, yi(= wT
 xi) and yj(= wT

 x j) are also “close”. The objective function of Eqn. (5) can
be reduced to:

(8)

 Machine Learning

264

2003b; Yeasin et al, 2004). Cohen et al (2003b) proposed a multi-level HMM classifier, which
allows not only to perform expression classification in a video segment, but also to
automatically segment an arbitrary long video sequence to the different expressions
segments without resorting to heuristic methods of segmentation. DBNs are graphical
probabilistic models which encode dependencies among sets of random variables evolving
in time. HMM is the simplest kind of DBNs. Zhang and Ji (2005) explored the use of
multisensory information fusion technique with DBNs for modeling and understanding the
temporal behaviors of facial expressions in image sequences. Kaliouby and Robinson (2004)
proposed a system for inferring complex mental states from videos of facial expressions and
head gestures in real-time. Their system was built on a multi-level DBN classifier which
models complex mental states as a number of interacting facial and head displays. Facial
expression dynamics can also be captured in low dimensional manifolds embedded in the
input image space. Chang et al (2003, 2004) made attempts to learn the structure of the
expression manifold. In our previous work (Shan et al, 2005a, 2006b), we presented to model
facial expression dynamics by discovering the underlying low-dimensional manifold.

3. Linear subspace methods
The goal of subspace learning (or dimensionality reduction) is to map the data set in the
high dimensional space to the lower dimensional space such that certain properties are
preserved. Examples of properties to be preserved include the global geometry and
neighborhood information. Usually the property preserved is quantified by an objective
function and the dimensionality reduction problem is formulated as an optimization
problem. The generic problem of linear dimensionality reduction is the following. Given a
multi-dimensional data set x1,x2, ... ,xm in Rn, find a transformation matrix W that maps these
m points to y1,y2, ... ,ym in Rl(l n), such that yi represent xi, where yi =WT

 xi. In this section, we
briefly review the existing linear subspace methods PCA, LDA, LPP, ONPP, LSDA, and
their variants.

3.1 Principle Component Analysis (PCA)
Two of the most popular techniques for linear subspace learning are PCA and LDA. PCA
(Turk & Pentland, 1991) is an eigenvector method designed to model linear variation in
high-dimensional data. PCA aims at preserving the global variance by finding a set of
mutual orthogonal basis functions that capture the directions of maximum variance in the
data.
Let w denote a transformation vector, the objective function is as follows:

(1)

The solution w0, ... ,wl-1 is an orthonormal set of vectors representing the eigenvector of the
data’s covariance matrix associated with the l largest eigenvalues.

3.2 Linear Discriminant Analysis (LDA)
While PCA is an unsupervised method and seeks directions that are efficient for
representation, LDA (Belhumeur et al, 1997) is a supervised approach and seeks directions

Linear Subspace Learning for Facial Expression Analysis

265

that are efficient for discrimination. LDA searches for the projection axes on which the data
points of different classes are far from each other while requiring data points of the same
class to be close to each other.
Suppose the data samples belong to c classes, The objective function is as follows:

 (2)

 (3)

(4)

where m is the mean of all the samples, ni is the number of samples in the ith class, m(i) is the
average vector of the ith class, and

is the jth sample in the ith class.

3.3 Locality Preserving Projections (LPP)
LPP (He & Niyogi, 2003) seeks to preserve the intrinsic geometry of the data by preserving
locality. To derive the optimal projections preserving locality, LPP employs the same
objective function with Laplacian Eigenmaps:

(5)

where Si j evaluates a local structure of the data space, and is defined as:

(6)

or in a simpler form as

(7)

where “close” can be defined as ║xi−xj║2 < ε , where ε is a small constant, or xi is among k
nearest neighbors of x j or x j is among k nearest neighbors of xi. The objective function with
symmetric weights Si j(Si j = Sji) incurs a heavy penalty if neighboring points xi and x j are
mapped far apart. Minimizing their distance is therefore an attempt to ensure that if xi and xj

are “close”, yi(= wT
 xi) and yj(= wT

 x j) are also “close”. The objective function of Eqn. (5) can
be reduced to:

(8)

 Machine Learning

266

where X = [x1,x2, ... ,xm] and D is a diagonal matrix whose entries are column (or row, since S
is symmetric) sums of S, Dii = ∑j Sji. L = D–S is a Laplacian matrix. D measures the local
density on the data points. The bigger the value Dii is (corresponding to yi), the more
important is yi. Therefore, a constraint is imposed as follows:

 (9)

The transformation vector w that minimizes the objective function is given by the minimum
eigenvalue solution to the following generalized eigenvalue problem:

 (10)

Suppose a set of vectors w0, ... ,wl-1 is the solution, ordered according to their eigenvalues, λ0,
... ,λl–1, the transformation matrix is derived as W =[w0,w1, ... ,wl–1].

3.3.1 Supervised Locality Preserving Projections (SLPP)
When the class information is available, LPP can be performed in a supervised manner. We
introduced a Supervised LPP to encode more discriminative power than the original LPP for
improving classification capacity (Shan et al, 2005a). SLPP preserves the class information
when constructing a neighborhood graph such that the local neighborhood of a sample xi

from class c is composed of samples belonging to class c only. This can be achieved by
increasing the distances between samples belonging to different classes, but leaving them
unchanged if they are from the same class. Let Dis(i, j) denote the distance between xi and x j,
the distance after incorporating the class information is then

 (11)

where M = maxi, j Dis(i, j), and δ (i, j) = 1 if xi and xj belong to different classes, and 0
otherwise. In this way, distances between samples in different classes will be larger than the
maximum distance in the entire data set, so neighbors of a sample will always be picked
from the same class. SLPP preserves both local structure and class information in the
embedding, so that it better describes the intrinsic structure of a data space containing
multiple classes.

3.3.2 Orthogonal Locality Preserving Projections (OLPP)
The basis vectors derived by LPP can be regarded as the eigenvectors of the matrix
(XDXT)-1XLXT

 corresponding to the smallest eigenvalues. Since (XDXT)-1XLXT is not
symmetric in general, these basis vectors are non-orthogonal. Cai et al (2006) presented
Orthogonal LPP to enforce the mapping to be orthogonal. The orthogonal basis vectors
{w0,w1, ... ,wl-1} are computed as follows.
• Compute w0 as the eigenvector of (XDXT)-1XLXT

 associated with the smallest
eigenvalue.

• Compute wk as the eigenvector of

(12)

Linear Subspace Learning for Facial Expression Analysis

267

associated with the smallest eigenvalue, where

 (13)

 (14)

OLPP can be applied under supervised or unsupervised mode. In this chapter, for facial
expression analysis, OLPP is performed in the supervised manner as described in Section
3.3.1.

3.4 Orthogonal Neighborhood Preserving Projections (ONPP)
ONPP (Kokiopoulou & Saad, 2005, 2007) seeks an orthogonal mapping of a given data set so
as to best preserve the local geometry. The first step of ONPP, identical with that of LLE,
builds an affinity matrix by computing optimal weights which reconstruct each sample by a
linear combination of its k nearest neighbors. The reconstruction errors are measured by
minimizing

(15)

The weights vi j represent the linear coefficient for reconstructing the sample xi from its
neighbors {x j}. The following constraints are imposed on the weights:
1. vi j = 0, if xj is not one of the k nearest neighbors of xi.
2. ∑j vi j = 1, that is xi is approximated by a convex combination of its neighbors.
In the second step, ONPP derives an explicit linear mapping from the input space to the
reduced space. ONPP imposes a constraint that each data sample yi in the reduced space is
reconstructed from its k nearest neighbors by the same weights used in the input space, so it
employs the same objective function with LLE:

(16)

where the weights vi j are fixed. The optimization problem can be reduced to

(17)

where M = (I–VT
)(I–V). By imposing an additional constraint that the columns of W are

orthogonal, the solution to the above optimization problem is the eigenvectors associated
with the d smallest eigenvalues of the matrix

 (18)

 Machine Learning

266

where X = [x1,x2, ... ,xm] and D is a diagonal matrix whose entries are column (or row, since S
is symmetric) sums of S, Dii = ∑j Sji. L = D–S is a Laplacian matrix. D measures the local
density on the data points. The bigger the value Dii is (corresponding to yi), the more
important is yi. Therefore, a constraint is imposed as follows:

 (9)

The transformation vector w that minimizes the objective function is given by the minimum
eigenvalue solution to the following generalized eigenvalue problem:

 (10)

Suppose a set of vectors w0, ... ,wl-1 is the solution, ordered according to their eigenvalues, λ0,
... ,λl–1, the transformation matrix is derived as W =[w0,w1, ... ,wl–1].

3.3.1 Supervised Locality Preserving Projections (SLPP)
When the class information is available, LPP can be performed in a supervised manner. We
introduced a Supervised LPP to encode more discriminative power than the original LPP for
improving classification capacity (Shan et al, 2005a). SLPP preserves the class information
when constructing a neighborhood graph such that the local neighborhood of a sample xi

from class c is composed of samples belonging to class c only. This can be achieved by
increasing the distances between samples belonging to different classes, but leaving them
unchanged if they are from the same class. Let Dis(i, j) denote the distance between xi and x j,
the distance after incorporating the class information is then

 (11)

where M = maxi, j Dis(i, j), and δ (i, j) = 1 if xi and xj belong to different classes, and 0
otherwise. In this way, distances between samples in different classes will be larger than the
maximum distance in the entire data set, so neighbors of a sample will always be picked
from the same class. SLPP preserves both local structure and class information in the
embedding, so that it better describes the intrinsic structure of a data space containing
multiple classes.

3.3.2 Orthogonal Locality Preserving Projections (OLPP)
The basis vectors derived by LPP can be regarded as the eigenvectors of the matrix
(XDXT)-1XLXT

 corresponding to the smallest eigenvalues. Since (XDXT)-1XLXT is not
symmetric in general, these basis vectors are non-orthogonal. Cai et al (2006) presented
Orthogonal LPP to enforce the mapping to be orthogonal. The orthogonal basis vectors
{w0,w1, ... ,wl-1} are computed as follows.
• Compute w0 as the eigenvector of (XDXT)-1XLXT

 associated with the smallest
eigenvalue.

• Compute wk as the eigenvector of

(12)

Linear Subspace Learning for Facial Expression Analysis

267

associated with the smallest eigenvalue, where

 (13)

 (14)

OLPP can be applied under supervised or unsupervised mode. In this chapter, for facial
expression analysis, OLPP is performed in the supervised manner as described in Section
3.3.1.

3.4 Orthogonal Neighborhood Preserving Projections (ONPP)
ONPP (Kokiopoulou & Saad, 2005, 2007) seeks an orthogonal mapping of a given data set so
as to best preserve the local geometry. The first step of ONPP, identical with that of LLE,
builds an affinity matrix by computing optimal weights which reconstruct each sample by a
linear combination of its k nearest neighbors. The reconstruction errors are measured by
minimizing

(15)

The weights vi j represent the linear coefficient for reconstructing the sample xi from its
neighbors {x j}. The following constraints are imposed on the weights:
1. vi j = 0, if xj is not one of the k nearest neighbors of xi.
2. ∑j vi j = 1, that is xi is approximated by a convex combination of its neighbors.
In the second step, ONPP derives an explicit linear mapping from the input space to the
reduced space. ONPP imposes a constraint that each data sample yi in the reduced space is
reconstructed from its k nearest neighbors by the same weights used in the input space, so it
employs the same objective function with LLE:

(16)

where the weights vi j are fixed. The optimization problem can be reduced to

(17)

where M = (I–VT
)(I–V). By imposing an additional constraint that the columns of W are

orthogonal, the solution to the above optimization problem is the eigenvectors associated
with the d smallest eigenvalues of the matrix

 (18)

 Machine Learning

268

ONPP can be performed in either an unsupervised or a supervised setting. In the supervised
ONPP, when building the data graph, an edge exists between xi and x j if and only if xi and xj
belong to the same class. This means that the adjacent data samples in the nearest neighbor
graph belong to the same class. So there is no need to set parameter k in the supervised
ONPP.

3.5 Locality Sensitive Discriminant Analysis (LSDA)
Given a data set, LSDA (Cai et al, 2007) constructs two graphs, within-class graph Gw and
between-class graph Gb, in order to discover both geometrical and discriminant structure of
the data. For each data sample xi, let N(xi) be the set of its k nearest neighbors. N(xi) can be
naturally split into two subsets, Nb(xi) and Nw(xi). Nw(xi) contains the neighbors sharing the
same label with xi, while Nb(xi) contains neighbors have different labels. Let Sw and Sb be the
weight matrices of Gw and Gb respectively, which can be defined as follows

(19)

(20)

To derive the optimal projections, LSDA optimizes the following objective functions

(21)

(22)

Similar to Eqn (8), the objective function (21) can be reduced to

(23)

where Dw is a diagonal matrix, and its entries Dw,ii = ∑j Sw, ji. Similarly, the objective function
(22) can be reduced to

(24)

Similar to LPP, a constraint is imposed as follows:

 (25)

The transformation vector w that minimizes the objective function is given by the maximum
eigenvalue solution to the generalized eigenvalue problem:

Linear Subspace Learning for Facial Expression Analysis

269

 (26)

In practice, the dimension of the feature space (n) is often much larger than the number of
samples in a training set (m), which brings problems to LDA, LPP, ONPP, and LSDA. To
overcome this problem, the data set is first projected into a lower dimensional space using PCA.

4. Experiments
In this section, we evaluate the above linear subspace methods for facial expression analysis
with the same data and experimental settings. We use implementations of LPP, SLPP, OLPP,
ONPP and LSDA provided by the authors.
Psychophysical studies indicate that basic emotions have corresponding universal facial
expressions across all cultures (Ekman & Friesen, 1976). This is reflected by most current
facial expression recognition systems that attempt to recognize a set of prototypic emotional
expressions including disgust, fear, joy, surprise, sadness and anger (Lyons et al, 1999;
Cohen et al, 2003b; Tian, 2004; Bartlett et al, 2005). In this study, we also focus on these
prototypic emotional expressions. We conducted experiments on three public databases: the
Cohn-Kanade Facial Expression Database (Kanade et al, 2000), the MMI Facial Expression
Database (Pantic et al, 2005), and the JAFFE Database (Lyons et al, 1999), which are the most
commonly used databases in the current facial-expression-research community.
In all experiments, we normalized the original face images to a fixed distance between the
two eyes. Facial images of 110×150 pixels, with 256 gray levels per pixel, were cropped from
original frames based on the two eyes location. No further alignment of facial features such
as alignment of mouth (Zhang et al, 1998), or removal of illumination changes (Tian, 2004)
was performed in our experiments. Fig. 2 shows an example of the original image and the
cropped face image.

Fig. 2. The original face image and the cropped image.

4.1 Facial representation
To perform facial expression analysis, it is necessary to derive an effective facial
representation from original face images. Gabor-wavelet representations have been widely
adopted to describe appearance changes of faces (Tian, 2004; Bartlett et al, 2005). However,
the computation of Gabor features is both time and memory intensive. In our previous work
(Shan et al, 2005c), we proposed Local Binary Patterns (LBP) features as low-cost
discriminant appearance features for facial expression analysis. The LBP operator, originally
introduced by Ojala et al (2002) for texture analysis, labels the pixels of an image by
thresholding a neighborhood of each pixel with the center value and considering the results

 Machine Learning

268

ONPP can be performed in either an unsupervised or a supervised setting. In the supervised
ONPP, when building the data graph, an edge exists between xi and x j if and only if xi and xj
belong to the same class. This means that the adjacent data samples in the nearest neighbor
graph belong to the same class. So there is no need to set parameter k in the supervised
ONPP.

3.5 Locality Sensitive Discriminant Analysis (LSDA)
Given a data set, LSDA (Cai et al, 2007) constructs two graphs, within-class graph Gw and
between-class graph Gb, in order to discover both geometrical and discriminant structure of
the data. For each data sample xi, let N(xi) be the set of its k nearest neighbors. N(xi) can be
naturally split into two subsets, Nb(xi) and Nw(xi). Nw(xi) contains the neighbors sharing the
same label with xi, while Nb(xi) contains neighbors have different labels. Let Sw and Sb be the
weight matrices of Gw and Gb respectively, which can be defined as follows

(19)

(20)

To derive the optimal projections, LSDA optimizes the following objective functions

(21)

(22)

Similar to Eqn (8), the objective function (21) can be reduced to

(23)

where Dw is a diagonal matrix, and its entries Dw,ii = ∑j Sw, ji. Similarly, the objective function
(22) can be reduced to

(24)

Similar to LPP, a constraint is imposed as follows:

 (25)

The transformation vector w that minimizes the objective function is given by the maximum
eigenvalue solution to the generalized eigenvalue problem:

Linear Subspace Learning for Facial Expression Analysis

269

 (26)

In practice, the dimension of the feature space (n) is often much larger than the number of
samples in a training set (m), which brings problems to LDA, LPP, ONPP, and LSDA. To
overcome this problem, the data set is first projected into a lower dimensional space using PCA.

4. Experiments
In this section, we evaluate the above linear subspace methods for facial expression analysis
with the same data and experimental settings. We use implementations of LPP, SLPP, OLPP,
ONPP and LSDA provided by the authors.
Psychophysical studies indicate that basic emotions have corresponding universal facial
expressions across all cultures (Ekman & Friesen, 1976). This is reflected by most current
facial expression recognition systems that attempt to recognize a set of prototypic emotional
expressions including disgust, fear, joy, surprise, sadness and anger (Lyons et al, 1999;
Cohen et al, 2003b; Tian, 2004; Bartlett et al, 2005). In this study, we also focus on these
prototypic emotional expressions. We conducted experiments on three public databases: the
Cohn-Kanade Facial Expression Database (Kanade et al, 2000), the MMI Facial Expression
Database (Pantic et al, 2005), and the JAFFE Database (Lyons et al, 1999), which are the most
commonly used databases in the current facial-expression-research community.
In all experiments, we normalized the original face images to a fixed distance between the
two eyes. Facial images of 110×150 pixels, with 256 gray levels per pixel, were cropped from
original frames based on the two eyes location. No further alignment of facial features such
as alignment of mouth (Zhang et al, 1998), or removal of illumination changes (Tian, 2004)
was performed in our experiments. Fig. 2 shows an example of the original image and the
cropped face image.

Fig. 2. The original face image and the cropped image.

4.1 Facial representation
To perform facial expression analysis, it is necessary to derive an effective facial
representation from original face images. Gabor-wavelet representations have been widely
adopted to describe appearance changes of faces (Tian, 2004; Bartlett et al, 2005). However,
the computation of Gabor features is both time and memory intensive. In our previous work
(Shan et al, 2005c), we proposed Local Binary Patterns (LBP) features as low-cost
discriminant appearance features for facial expression analysis. The LBP operator, originally
introduced by Ojala et al (2002) for texture analysis, labels the pixels of an image by
thresholding a neighborhood of each pixel with the center value and considering the results

 Machine Learning

270

as a binary number. The histogram of the labels computed over a region can be used as a
texture descriptor. The most important properties of the LBP operator are its tolerance
against illumination changes and its computational simplicity. LBP features recently have
been exploited for face detection and recognition (Ahonen et al, 2004).
In the existing work (Ahonen et al, 2004; Shan et al, 2005c), the face image is equally divided
into small regions from which LBP histograms are extracted and concatenated into a single
feature histogram (as shown in Fig. 3). However, this LBP feature extraction scheme suffers
from fixed LBP feature size and positions. By shifting and scaling a sub-window over face
images, many more LBP histograms could be obtained, which yields a more complete
description of face images. To minimize the large number of LBP histograms necessarily
introduced by shifting and scaling a sub-window, we proposed to learn the most effective
LBP histograms using AdaBoost (Shan et al, 2005b). The boosted LBP features provides a
compact and discriminant facial representation. Fig. 4 shows examples of the selected
subregions (LBP histograms) for each basic emotional expression. It is observed that the
selected sub-regions have variable sizes and positions.

Fig. 3. A face image is divided into small regions from which LBP histograms are extracted
and concatenated into a single, spatially enhanced feature histogram.

In this study, three facial representations were considered: raw gray-scale image (IMG), LBP
features extracted from equally divided sub-regions (LBP), and Boosted LBP features
(BLBP). On IMG features, for computational efficiency, we down-sampled the face images to
55×75 pixels, and represented each image as a 4,125(55×75)-dimensional vector. For LBP
features, as shown in Fig. 3, we divided facial images into 42 sub-regions; the 59-bin
operator (Ojala et al, 2002) was applied to each sub-region. So each image was represented
by a LBP histogram with length of 2,478(59×42). For BLBP features, by shifting and scaling a
sub-window, 16,640 sub-regions, i.e., 16,640 LBP histograms, were extracted from each face
image; AdaBoost was then used to select the most discriminative LBP histograms. AdaBoost
training continued until the classifier output distribution for the positive and negative
samples were completely separated.

Fig. 4. Examples of the selected sub-regions (LBP histograms) for each of the six basic
emotions in the Cohn-Kanade Database (from left to right: Anger, Disgust, Fear, Joy,
Sadness, and Surprise).

Linear Subspace Learning for Facial Expression Analysis

271

4.2 Cohn-Kanade database
The Cohn-Kanade Database (Kanade et al, 2000) consists of 100 university students in age
from 18 to 30 years, of which 65% were female, 15% were African-American, and 3% were
Asian or Latino. Subjects were instructed to perform a series of 23 facial displays, six of
which were prototypic emotions. Image sequences from neutral face to target display were
digitized into 640×490 pixel arrays. Fig. 5 shows some sample images from the database.

Fig. 5. The sample face expression images from the Cohn-Kanade Database.

In our experiments, 320 image sequences were selected from the database. The only
selection criterion is that a sequence can be labeled as one of the six basic emotions. The
sequences come from 96 subjects, with 1 to 6 emotions per subject. Two data sets were
constructed: (1) S1: the three peak frames (typical expression at apex) of each sequence were
used for 6-class expression analysis, resulting in 960 images (108 Anger, 120 Disgust, 99
Fear, 282 Joy, 126 Sadness, and 225 Surprise); (2) S2: the neutral face of each sequence was
further included for 7-class expression analysis, resulting in 1,280 images (960 emotional
images plus 320 neutral faces).

4.2.1 Comparative evaluation on subspace learning
As presented in (Shan et al, 2006a), we observed in our experiments on all databases that
ONPP and the supervised ONPP achieve comparable performance in expression subspace
learning and expression recognition. It seems that the label information used in the
supervised ONPP does not provide it with more discriminative power than ONPP for facial
expression analysis. Therefore, in this chapter, we focus on the evaluation of the supervised
ONPP. We also found in our experiments that the supervised OLPP provides similar results
with SLPP, so we mainly focus on the evaluation of SLPP in this chapter.
The 2D visualization of embedded subspaces of data set S1 is shown in Fig. 6. In the six
methods compared, PCA and LPP are unsupervised techniques, while LDA, SLPP, ONPP,
and LSDA perform in a supervised manner. It is evident that the classes of different
expressions are heavily overlapped in 2D subspaces generated by unsupervised methods
PCA and LPP (with all three facial representations), therefore are poorly represented. The

 Machine Learning

270

as a binary number. The histogram of the labels computed over a region can be used as a
texture descriptor. The most important properties of the LBP operator are its tolerance
against illumination changes and its computational simplicity. LBP features recently have
been exploited for face detection and recognition (Ahonen et al, 2004).
In the existing work (Ahonen et al, 2004; Shan et al, 2005c), the face image is equally divided
into small regions from which LBP histograms are extracted and concatenated into a single
feature histogram (as shown in Fig. 3). However, this LBP feature extraction scheme suffers
from fixed LBP feature size and positions. By shifting and scaling a sub-window over face
images, many more LBP histograms could be obtained, which yields a more complete
description of face images. To minimize the large number of LBP histograms necessarily
introduced by shifting and scaling a sub-window, we proposed to learn the most effective
LBP histograms using AdaBoost (Shan et al, 2005b). The boosted LBP features provides a
compact and discriminant facial representation. Fig. 4 shows examples of the selected
subregions (LBP histograms) for each basic emotional expression. It is observed that the
selected sub-regions have variable sizes and positions.

Fig. 3. A face image is divided into small regions from which LBP histograms are extracted
and concatenated into a single, spatially enhanced feature histogram.

In this study, three facial representations were considered: raw gray-scale image (IMG), LBP
features extracted from equally divided sub-regions (LBP), and Boosted LBP features
(BLBP). On IMG features, for computational efficiency, we down-sampled the face images to
55×75 pixels, and represented each image as a 4,125(55×75)-dimensional vector. For LBP
features, as shown in Fig. 3, we divided facial images into 42 sub-regions; the 59-bin
operator (Ojala et al, 2002) was applied to each sub-region. So each image was represented
by a LBP histogram with length of 2,478(59×42). For BLBP features, by shifting and scaling a
sub-window, 16,640 sub-regions, i.e., 16,640 LBP histograms, were extracted from each face
image; AdaBoost was then used to select the most discriminative LBP histograms. AdaBoost
training continued until the classifier output distribution for the positive and negative
samples were completely separated.

Fig. 4. Examples of the selected sub-regions (LBP histograms) for each of the six basic
emotions in the Cohn-Kanade Database (from left to right: Anger, Disgust, Fear, Joy,
Sadness, and Surprise).

Linear Subspace Learning for Facial Expression Analysis

271

4.2 Cohn-Kanade database
The Cohn-Kanade Database (Kanade et al, 2000) consists of 100 university students in age
from 18 to 30 years, of which 65% were female, 15% were African-American, and 3% were
Asian or Latino. Subjects were instructed to perform a series of 23 facial displays, six of
which were prototypic emotions. Image sequences from neutral face to target display were
digitized into 640×490 pixel arrays. Fig. 5 shows some sample images from the database.

Fig. 5. The sample face expression images from the Cohn-Kanade Database.

In our experiments, 320 image sequences were selected from the database. The only
selection criterion is that a sequence can be labeled as one of the six basic emotions. The
sequences come from 96 subjects, with 1 to 6 emotions per subject. Two data sets were
constructed: (1) S1: the three peak frames (typical expression at apex) of each sequence were
used for 6-class expression analysis, resulting in 960 images (108 Anger, 120 Disgust, 99
Fear, 282 Joy, 126 Sadness, and 225 Surprise); (2) S2: the neutral face of each sequence was
further included for 7-class expression analysis, resulting in 1,280 images (960 emotional
images plus 320 neutral faces).

4.2.1 Comparative evaluation on subspace learning
As presented in (Shan et al, 2006a), we observed in our experiments on all databases that
ONPP and the supervised ONPP achieve comparable performance in expression subspace
learning and expression recognition. It seems that the label information used in the
supervised ONPP does not provide it with more discriminative power than ONPP for facial
expression analysis. Therefore, in this chapter, we focus on the evaluation of the supervised
ONPP. We also found in our experiments that the supervised OLPP provides similar results
with SLPP, so we mainly focus on the evaluation of SLPP in this chapter.
The 2D visualization of embedded subspaces of data set S1 is shown in Fig. 6. In the six
methods compared, PCA and LPP are unsupervised techniques, while LDA, SLPP, ONPP,
and LSDA perform in a supervised manner. It is evident that the classes of different
expressions are heavily overlapped in 2D subspaces generated by unsupervised methods
PCA and LPP (with all three facial representations), therefore are poorly represented. The

 Machine Learning

272

Fig. 6. (Best viewed in color) Images of data set S1 are mapped into 2D embedding spaces.
Different expressions are color coded as: Anger (red), Disgust (yellow), Fear (blue), Joy
(magenta), Sadness (cyan), and Surprise (green).

projections of PCA are spread out since PCA aims at maximizing the variance. In the cases
of LPP, although it preserves local neighborhood information, as expression images contain
complex variations and significant overlapping among different classes, it is difficult for

Linear Subspace Learning for Facial Expression Analysis

273

LPP to yield meaningful projections in the absence of class information. For supervised
methods, it is surprising to observe that different expressions are still heavily overlapped in
the 2D subspace derived by ONPP. In contrast, the supervised methods LDA, SLPP and
LSDA yield much meaningful projections since images of the same class are mapped close
to each other. SLPP provides evidently best projections since different classes are well
separated and the clusters appear cohesive. This is because SLPP preserves the locality and
class information simultaneously in the projections. On the other hand, LDA discovers only
the Euclidean structure therefore fails to capture accurately any underlying nonlinear
manifold that expression images lie on, resulting in its discriminating power being limited.
LSDA obtains better projections than LDA as the clusters of different expressions are more
cohesive. On comparing facial representation, BLBP provides evidently the best
performance with projected classes more cohesive and clearly separable in the SLPP
subspace, while IMG is worst.
Fig. 7 shows the embedded OLPP subspace of data set S1.We can see that OLPP provides
much similar projections to SLPP. The results obtained by SLPP and OLPP reflect human
observation that Joy and Surprise can be clearly separated, but Anger, Disgust, Fear and
Sadness are easily confused. This reenforces the findings in other published work (Tian,
2004; Cohen et al, 2003a).

Fig. 7. (Best viewed in color) Images of data set S1 are mapped into 2D embedding spaces of
OLPP.

For a quantitative evaluation of the derived subspaces, following the methodology in (Li et
al, 2003), we investigate the histogram distribution of within-class pattern distance and
between-class pattern distance of different techniques. The former is the distance between
expression patterns of the same expression class, while the latter is the distance between
expression patterns belonging to different expression classes. Obviously, for a good
representation, the within-class distance distribution should be dense, close to the origin,
having a high peak value, and well-separated from the between-class distance
distribution.We plot in Fig. 8 the results of different methods on S1. It is observed that SLPP
consistently provides the best distributions for different facial representations, while those
of PCA, LPP, and ONPP are worst. The average within-class distance dw and between-class
distance db are shown in Table 1. To ensure the distance measures from different methods
are comparable, we compute a normalized difference between the within- and between-
class distances of each method as which can be regarded as a relative measure
on how widely the within-class patterns are separated from the between-class patterns. A
high value of this measure indicates success. It is evident in Table 1 that SLPP has the best
separating power whilst PCA, LPP and ONPP are the poorest. The separating power of

 Machine Learning

272

Fig. 6. (Best viewed in color) Images of data set S1 are mapped into 2D embedding spaces.
Different expressions are color coded as: Anger (red), Disgust (yellow), Fear (blue), Joy
(magenta), Sadness (cyan), and Surprise (green).

projections of PCA are spread out since PCA aims at maximizing the variance. In the cases
of LPP, although it preserves local neighborhood information, as expression images contain
complex variations and significant overlapping among different classes, it is difficult for

Linear Subspace Learning for Facial Expression Analysis

273

LPP to yield meaningful projections in the absence of class information. For supervised
methods, it is surprising to observe that different expressions are still heavily overlapped in
the 2D subspace derived by ONPP. In contrast, the supervised methods LDA, SLPP and
LSDA yield much meaningful projections since images of the same class are mapped close
to each other. SLPP provides evidently best projections since different classes are well
separated and the clusters appear cohesive. This is because SLPP preserves the locality and
class information simultaneously in the projections. On the other hand, LDA discovers only
the Euclidean structure therefore fails to capture accurately any underlying nonlinear
manifold that expression images lie on, resulting in its discriminating power being limited.
LSDA obtains better projections than LDA as the clusters of different expressions are more
cohesive. On comparing facial representation, BLBP provides evidently the best
performance with projected classes more cohesive and clearly separable in the SLPP
subspace, while IMG is worst.
Fig. 7 shows the embedded OLPP subspace of data set S1.We can see that OLPP provides
much similar projections to SLPP. The results obtained by SLPP and OLPP reflect human
observation that Joy and Surprise can be clearly separated, but Anger, Disgust, Fear and
Sadness are easily confused. This reenforces the findings in other published work (Tian,
2004; Cohen et al, 2003a).

Fig. 7. (Best viewed in color) Images of data set S1 are mapped into 2D embedding spaces of
OLPP.

For a quantitative evaluation of the derived subspaces, following the methodology in (Li et
al, 2003), we investigate the histogram distribution of within-class pattern distance and
between-class pattern distance of different techniques. The former is the distance between
expression patterns of the same expression class, while the latter is the distance between
expression patterns belonging to different expression classes. Obviously, for a good
representation, the within-class distance distribution should be dense, close to the origin,
having a high peak value, and well-separated from the between-class distance
distribution.We plot in Fig. 8 the results of different methods on S1. It is observed that SLPP
consistently provides the best distributions for different facial representations, while those
of PCA, LPP, and ONPP are worst. The average within-class distance dw and between-class
distance db are shown in Table 1. To ensure the distance measures from different methods
are comparable, we compute a normalized difference between the within- and between-
class distances of each method as which can be regarded as a relative measure
on how widely the within-class patterns are separated from the between-class patterns. A
high value of this measure indicates success. It is evident in Table 1 that SLPP has the best
separating power whilst PCA, LPP and ONPP are the poorest. The separating power of

 Machine Learning

274

LDA and LSDA is inferior to that of SLPP, but always outperform those of PCA, LPP, and
ONPP. Both Fig. 8 and Table 1 reinforce the observation in Fig. 6.

Table 1. The average within-class and between-class distance and their normalization
difference values on data set S1.

The 2D visualization of embedded subspaces of data set S2 with different subspace
techniques and facial representations is shown in Fig. 9. We observe similar results to those
obtained in 6-class problem. SLPP outperforms the other methods in derive the meaningful
projections. Different expressions are heavily overlapped in 2D subspaces generated by
PCA, LPP, and ONPP, and the discriminating power of LDA is also limited.We further
show in Fig. 10 the embedded OLPP subspace of data set S2, and also observe that OLPP
provides much similar projections to SLPP. Notice that in the SLPP and OLPP subspaces,
after including neutral faces, Anger, Disgust, Fear, Sadness, and Neutral are easily confused,
while Joy and Surprise still can be clearly separated.

4.2.2 Comparative evaluation on expression recognition
To further compare these methods, we also performed facial expression recognition in the
derived subspaces. We adopted the k nearest-neighbor classifier for its simplicity. The
Euclidean metric was used as the distance measure. The number of nearest neighbors was
set according to the size of the training set. To evaluate the algorithms’ generalization
ability, we adopted a 10-fold cross-validation test scheme.
That is, we divided the data set randomly into ten groups of roughly equal numbers of
subjects, from which the data from nine groups were used for training and the left group
was used for testing. The process was repeated ten times for each group in turn to be tested.
We reported the average recognition results (with the standard deviation) here.
The recognition performance of subspace learning techniques varies with the dimensionality
of subspace (note that the dimension of the reduced LDA subspace is at most c–1, where c is
the number of classes). Moreover, the graph-based techniques rely on the parameter k, the
number of nearest neighbors used when building the graph; how to set the parameter is still
an open problem. In our cross-validation experiments, we tested different combinations of
the parameter k with the subspace dimensionality, and the best performance obtained are
shown in Tables 2 and 3. It is observed that the supervised approaches perform robustly
better than the unsupervised methods. For unsupervised methods, PCA performs better
than LPP, with all three facial representations. For supervised methods, it is evident that
SLPP has a clear margin of superiority over LDA (12-38% better), ONPP (25-64% better), and
LSDA (6-13% better). Both LSDA and LDA perform better than ONPP, and LSDA
outperforms LDA. On comparing the standard deviation of 10-fold cross validation, SLPP

Linear Subspace Learning for Facial Expression Analysis

275

Fig. 8. (Best viewed in color) Histogram distribution of within-class pattern distance (solid
red lines) and between-class pattern distances (dotted blue line) on data set S1

always produces the smallest deviation (one exception with IMG on S2). This demonstrates
that SLPP is much more robust than other methods. The recognition results reinforce our
early observations shown in Fig. 6, Fig. 8 and Table 1. To clearly compare recognition rates
of different methods with different facial representations, we plot the bar graphes of

 Machine Learning

274

LDA and LSDA is inferior to that of SLPP, but always outperform those of PCA, LPP, and
ONPP. Both Fig. 8 and Table 1 reinforce the observation in Fig. 6.

Table 1. The average within-class and between-class distance and their normalization
difference values on data set S1.

The 2D visualization of embedded subspaces of data set S2 with different subspace
techniques and facial representations is shown in Fig. 9. We observe similar results to those
obtained in 6-class problem. SLPP outperforms the other methods in derive the meaningful
projections. Different expressions are heavily overlapped in 2D subspaces generated by
PCA, LPP, and ONPP, and the discriminating power of LDA is also limited.We further
show in Fig. 10 the embedded OLPP subspace of data set S2, and also observe that OLPP
provides much similar projections to SLPP. Notice that in the SLPP and OLPP subspaces,
after including neutral faces, Anger, Disgust, Fear, Sadness, and Neutral are easily confused,
while Joy and Surprise still can be clearly separated.

4.2.2 Comparative evaluation on expression recognition
To further compare these methods, we also performed facial expression recognition in the
derived subspaces. We adopted the k nearest-neighbor classifier for its simplicity. The
Euclidean metric was used as the distance measure. The number of nearest neighbors was
set according to the size of the training set. To evaluate the algorithms’ generalization
ability, we adopted a 10-fold cross-validation test scheme.
That is, we divided the data set randomly into ten groups of roughly equal numbers of
subjects, from which the data from nine groups were used for training and the left group
was used for testing. The process was repeated ten times for each group in turn to be tested.
We reported the average recognition results (with the standard deviation) here.
The recognition performance of subspace learning techniques varies with the dimensionality
of subspace (note that the dimension of the reduced LDA subspace is at most c–1, where c is
the number of classes). Moreover, the graph-based techniques rely on the parameter k, the
number of nearest neighbors used when building the graph; how to set the parameter is still
an open problem. In our cross-validation experiments, we tested different combinations of
the parameter k with the subspace dimensionality, and the best performance obtained are
shown in Tables 2 and 3. It is observed that the supervised approaches perform robustly
better than the unsupervised methods. For unsupervised methods, PCA performs better
than LPP, with all three facial representations. For supervised methods, it is evident that
SLPP has a clear margin of superiority over LDA (12-38% better), ONPP (25-64% better), and
LSDA (6-13% better). Both LSDA and LDA perform better than ONPP, and LSDA
outperforms LDA. On comparing the standard deviation of 10-fold cross validation, SLPP

Linear Subspace Learning for Facial Expression Analysis

275

Fig. 8. (Best viewed in color) Histogram distribution of within-class pattern distance (solid
red lines) and between-class pattern distances (dotted blue line) on data set S1

always produces the smallest deviation (one exception with IMG on S2). This demonstrates
that SLPP is much more robust than other methods. The recognition results reinforce our
early observations shown in Fig. 6, Fig. 8 and Table 1. To clearly compare recognition rates
of different methods with different facial representations, we plot the bar graphes of

 Machine Learning

276

Fig. 9. (Best viewed in color) Images of data set S2 are mapped into 2D embedding spaces.
Neutral expression is color coded as black.

recognition rates in Fig. 11. On comparing feature representations, it is clearly observed that
BLBP features perform consistently better than LBP and IMG features. LBP outperforms
IMG most of the time except with LPP, IMG has a slight advantage over LBP.

Linear Subspace Learning for Facial Expression Analysis

277

Fig. 10. (Best viewed in color) Images of data set S2 are mapped into 2D embedding spaces
of OLPP.

Table 2. Averaged recognition rates (with the standard deviation) of 6-class facial expression
recognition on data set S1.

Table 3. Averaged recognition rates (with the standard deviation) of 7-class facial expression
recognition on data set S2.

Fig. 11. Comparison of recognition rates using different subspace methods with different
features. Left: data set S1; Right: data set S2.
We show in Fig. 12 the averaged recognition rates versus dimensionality reduction by
different subspace schemes using BLBP features. As the dimension of the reduced subspace
of LDA is at most c–1, we plot only the best achieved recognition rate by LDA across the
various values of the dimension of subspace.We observe that SLPP outperforms other
methods. The performance difference between SLPP and LDA is conspicuous when the
dimension of subspace is small. But when the dimension increases, their performances
become rather similar. The performances of PCA, LPP, and ONPP is inferior to that of LDA

 Machine Learning

276

Fig. 9. (Best viewed in color) Images of data set S2 are mapped into 2D embedding spaces.
Neutral expression is color coded as black.

recognition rates in Fig. 11. On comparing feature representations, it is clearly observed that
BLBP features perform consistently better than LBP and IMG features. LBP outperforms
IMG most of the time except with LPP, IMG has a slight advantage over LBP.

Linear Subspace Learning for Facial Expression Analysis

277

Fig. 10. (Best viewed in color) Images of data set S2 are mapped into 2D embedding spaces
of OLPP.

Table 2. Averaged recognition rates (with the standard deviation) of 6-class facial expression
recognition on data set S1.

Table 3. Averaged recognition rates (with the standard deviation) of 7-class facial expression
recognition on data set S2.

Fig. 11. Comparison of recognition rates using different subspace methods with different
features. Left: data set S1; Right: data set S2.
We show in Fig. 12 the averaged recognition rates versus dimensionality reduction by
different subspace schemes using BLBP features. As the dimension of the reduced subspace
of LDA is at most c–1, we plot only the best achieved recognition rate by LDA across the
various values of the dimension of subspace.We observe that SLPP outperforms other
methods. The performance difference between SLPP and LDA is conspicuous when the
dimension of subspace is small. But when the dimension increases, their performances
become rather similar. The performances of PCA, LPP, and ONPP is inferior to that of LDA

 Machine Learning

278

consistently across all values of the subspace dimension. LSDA has similar trend with SLPP,
but much worse performance. The performance of PCA and ONPP eventually become
stable and similar when the dimension increase. On the other hand, the performance of LPP
degrades when the dimension increases, and is the worst overall.
The best result of 94.7% in 6-class facial expression recognition, achieved by BLBP based
SLPP, is to our best knowledge the best recognition rate reported so far on the database in
the published literature. Previously Tian (2004) achieved 94% performance using Neural
Networks with combined geometric features and Gaborwavelet features. With regard to 7-
class facial expression recognition, BLBP based SLPP achieves the best performance of
92.0%, which is also very encouraging given that previously published 7-class recognition
performance on this database were 81- 83% (Cohen et al, 2003a). The confusion matrix of 7-
class facial expression in data set S2 is shown in Table 4, which shows that most confusion
occurs between Anger, Fear, Sadness, and Neutral.

Fig. 12. (Best viewed in color) Averaged recognition accuracy versus dimensionality
reduction (with BLBP features). Left: data set S1; Right: data set S2.

Table 4. Confusion matrix of 7-class expression recognition on data set S2.

4.3 MMI database
The MMI Database (Pantic et al, 2005) includes more than 20 subjects of both sexes (44%
female), ranging in age from 19 to 62, having either a European, Asian, or South American
ethnic background. Subjects were instructed to display 79 series of facial expressions that
included a single AU or a combination of AUs, or a prototypic emotion. Image sequences
have neutral faces at the beginning and at the end, and were digitized into 720×576 pixels.
Some sample images from the database are shown in Fig. 13. As can be seen, the subjects

Linear Subspace Learning for Facial Expression Analysis

279

displayed facial expressions with and without glasses, which make facial expression
analysis more difficult.

Fig. 13. The sample face expression images from the MMI Database.

In our experiments, 96 image sequences were selected from the MMI Database. The only
selection criterion is that a sequence can be labeled as one of the six basic emotions. The
sequences come from 20 subjects, with 1 to 6 emotions per subject.
The neutral face and three peak frames of each sequence (384 images in total) were used to
form data set S3 for 7-class expression analysis.

4.3.1 Comparative evaluation on subspace learning
The 2D visualization of embedded subspaces of data set S3 is shown in Fig. 14. We observe
similar results to those obtained in the Cohn-Kanade Database. SLPP consistently has the
best performance, and different facial expressions are well clustered and represented in the
derived 2D subspaces. In contrast, different expressions are heavily overlapped in 2D
subspaces generated by PCA, LPP, and ONPP. The LDA and LSDA projections can not
represent different facial expressions clearly, either. Notice also that in the SLPP subspaces,
Anger, Disgust, Fear, Sadness, and Neutral are easily confused, while Joy and Surprise can
be clearly separated.

 Machine Learning

278

consistently across all values of the subspace dimension. LSDA has similar trend with SLPP,
but much worse performance. The performance of PCA and ONPP eventually become
stable and similar when the dimension increase. On the other hand, the performance of LPP
degrades when the dimension increases, and is the worst overall.
The best result of 94.7% in 6-class facial expression recognition, achieved by BLBP based
SLPP, is to our best knowledge the best recognition rate reported so far on the database in
the published literature. Previously Tian (2004) achieved 94% performance using Neural
Networks with combined geometric features and Gaborwavelet features. With regard to 7-
class facial expression recognition, BLBP based SLPP achieves the best performance of
92.0%, which is also very encouraging given that previously published 7-class recognition
performance on this database were 81- 83% (Cohen et al, 2003a). The confusion matrix of 7-
class facial expression in data set S2 is shown in Table 4, which shows that most confusion
occurs between Anger, Fear, Sadness, and Neutral.

Fig. 12. (Best viewed in color) Averaged recognition accuracy versus dimensionality
reduction (with BLBP features). Left: data set S1; Right: data set S2.

Table 4. Confusion matrix of 7-class expression recognition on data set S2.

4.3 MMI database
The MMI Database (Pantic et al, 2005) includes more than 20 subjects of both sexes (44%
female), ranging in age from 19 to 62, having either a European, Asian, or South American
ethnic background. Subjects were instructed to display 79 series of facial expressions that
included a single AU or a combination of AUs, or a prototypic emotion. Image sequences
have neutral faces at the beginning and at the end, and were digitized into 720×576 pixels.
Some sample images from the database are shown in Fig. 13. As can be seen, the subjects

Linear Subspace Learning for Facial Expression Analysis

279

displayed facial expressions with and without glasses, which make facial expression
analysis more difficult.

Fig. 13. The sample face expression images from the MMI Database.

In our experiments, 96 image sequences were selected from the MMI Database. The only
selection criterion is that a sequence can be labeled as one of the six basic emotions. The
sequences come from 20 subjects, with 1 to 6 emotions per subject.
The neutral face and three peak frames of each sequence (384 images in total) were used to
form data set S3 for 7-class expression analysis.

4.3.1 Comparative evaluation on subspace learning
The 2D visualization of embedded subspaces of data set S3 is shown in Fig. 14. We observe
similar results to those obtained in the Cohn-Kanade Database. SLPP consistently has the
best performance, and different facial expressions are well clustered and represented in the
derived 2D subspaces. In contrast, different expressions are heavily overlapped in 2D
subspaces generated by PCA, LPP, and ONPP. The LDA and LSDA projections can not
represent different facial expressions clearly, either. Notice also that in the SLPP subspaces,
Anger, Disgust, Fear, Sadness, and Neutral are easily confused, while Joy and Surprise can
be clearly separated.

 Machine Learning

280

Fig. 14. (Best viewed in color) Images of data set S3 are mapped into 2D embedding spaces.

4.3.2 Comparative evaluation on expression recognition
We report the average recognition results in Table 5. We observe similar recognition results
to that in the Cohn-Kanade Database. With regard to unsupervised methods, PCA
outperforms LPP with all three facial representations. For supervised methods, it is seen that

Linear Subspace Learning for Facial Expression Analysis

281

SLPP has a clear margin of superiority over LDA (19-50% better), ONPP (28-52% better) and
LSDA (16-33% better). We further plot the bar graphes of recognition rates in the left side of
Fig. 15, which demonstrate that BLBP features perform better than LBP and IMG features
(except with LPP and LSDA), while LBP features have better or comparable performance
with IMG features.

Table 5. Averaged recognition rates (with the standard deviation) of 7-class facial expression
recognition on data set S3.

Fig. 15. (Best viewed in color) (Left) Comparison of recognition rates on data set S3; (Right)
Averaged recognition accuracy versus dimensionality reduction (with BLBP features) on
data set S3.

We show in the right side of Fig. 15 the averaged recognition rates with respect to the
reduced dimension of different subspace techniques using BLBP features. We observe that
SLPP performs much better than LDA when the reduced dimension is small, but their
performance become similar, and SLPP is even inferior to LDA when the subspace
dimension increases. LSDA provides consistently worse performance than LDA. The
performances of PCA and ONPP are similar and stable consistently. In contrast, the
performance of LPP degrades when the dimension increases, and is the worst overall. The
plot in the right side of Fig. 15 is overall consistent with that of the Cohn-Kanade Database
shown in Fig. 12.

4.4 JAFFE database
The JAFFE Database (Lyons et al, 1999) consists of 213 images of Japanese female facial
expression. Ten expressers posed 3 or 4 examples for each of the seven basic expressions (six
emotions plus neutral face). The image size is 256×256 pixels. Fig. 16 shows some sample
images from the database.
In our experiments, all 213 images of the JAFFE database were used to form data set S4 for
7-class facial expression analysis.

 Machine Learning

280

Fig. 14. (Best viewed in color) Images of data set S3 are mapped into 2D embedding spaces.

4.3.2 Comparative evaluation on expression recognition
We report the average recognition results in Table 5. We observe similar recognition results
to that in the Cohn-Kanade Database. With regard to unsupervised methods, PCA
outperforms LPP with all three facial representations. For supervised methods, it is seen that

Linear Subspace Learning for Facial Expression Analysis

281

SLPP has a clear margin of superiority over LDA (19-50% better), ONPP (28-52% better) and
LSDA (16-33% better). We further plot the bar graphes of recognition rates in the left side of
Fig. 15, which demonstrate that BLBP features perform better than LBP and IMG features
(except with LPP and LSDA), while LBP features have better or comparable performance
with IMG features.

Table 5. Averaged recognition rates (with the standard deviation) of 7-class facial expression
recognition on data set S3.

Fig. 15. (Best viewed in color) (Left) Comparison of recognition rates on data set S3; (Right)
Averaged recognition accuracy versus dimensionality reduction (with BLBP features) on
data set S3.

We show in the right side of Fig. 15 the averaged recognition rates with respect to the
reduced dimension of different subspace techniques using BLBP features. We observe that
SLPP performs much better than LDA when the reduced dimension is small, but their
performance become similar, and SLPP is even inferior to LDA when the subspace
dimension increases. LSDA provides consistently worse performance than LDA. The
performances of PCA and ONPP are similar and stable consistently. In contrast, the
performance of LPP degrades when the dimension increases, and is the worst overall. The
plot in the right side of Fig. 15 is overall consistent with that of the Cohn-Kanade Database
shown in Fig. 12.

4.4 JAFFE database
The JAFFE Database (Lyons et al, 1999) consists of 213 images of Japanese female facial
expression. Ten expressers posed 3 or 4 examples for each of the seven basic expressions (six
emotions plus neutral face). The image size is 256×256 pixels. Fig. 16 shows some sample
images from the database.
In our experiments, all 213 images of the JAFFE database were used to form data set S4 for
7-class facial expression analysis.

 Machine Learning

282

Fig. 16. The sample face expression images from the JAFFE Database.

4.4.1 Comparative evaluation on subspace learning
The 2D visualization of embedded subspaces of data set S4 is shown in Fig. 17. Once again
we observe that SLPP provides the best projections, in which different facial expressions are
well separated. Similar to those in the Cohn-Kanade Database and the MMI Database, PCA,
LPP, and ONPP do not provide meaningful projections, as different expressions are heavily
overlapped in their 2D subspaces.

4.4.2 Comparative evaluation on expression recognition
The facial expression recognition results are reported in Table 6. We once again observe that
SLPP outperform other subspace techniques with a clear margin of superiority, e.g., 14-38%
better than LDA, 11-46% better than ONPP, and 22-38% better than LSDA. In this data set,
LDA and ONPP have parallel performance, and are all superior to PCA and LPP. LPP still
provides the worst results. The bar graphes of recognition rates is plotted in the left side of
Fig. 18, which once again demonstrate that BLBP features provide the best performance, and
LBP features perform better or comparably to IMG features.
Recognition performance on data set S4 is much poorer than that on data sets S1, S2, and
S3, and this is possibly because that there are fewer images in the data set resulting in a poor
sampling of the underlying latent space. The effect of the small training set size may be also
reflected on the standard deviation of 10-fold crossvalidation, as the standard deviations on
data set S4 are larger than those of data sets S1, S2, and S1, and the standard deviations of
S3 are larger than those of S1 and S2 as well. So the recognition performance of linear
subspace methods on the small training sets is not robust and reliable.

Linear Subspace Learning for Facial Expression Analysis

283

Fig. 17. (Best viewed in color) Images of data set S4 are mapped into 2D embedding spaces.
We also plot in the right side of Fig. 18 the averaged recognition rates of different subspace
techniques as the function of the reduced dimension when using BLBP features. It is
observed the performances of SLPP and LDA become comparable when the reduced
dimension increases. On the other hand, ONPP and PCA have similar performance. The
plots for S4 shows greater variations compared to those of S1 and S2 (shown in Fig. 12).
This may also be due to the small size of the training set.

 Machine Learning

282

Fig. 16. The sample face expression images from the JAFFE Database.

4.4.1 Comparative evaluation on subspace learning
The 2D visualization of embedded subspaces of data set S4 is shown in Fig. 17. Once again
we observe that SLPP provides the best projections, in which different facial expressions are
well separated. Similar to those in the Cohn-Kanade Database and the MMI Database, PCA,
LPP, and ONPP do not provide meaningful projections, as different expressions are heavily
overlapped in their 2D subspaces.

4.4.2 Comparative evaluation on expression recognition
The facial expression recognition results are reported in Table 6. We once again observe that
SLPP outperform other subspace techniques with a clear margin of superiority, e.g., 14-38%
better than LDA, 11-46% better than ONPP, and 22-38% better than LSDA. In this data set,
LDA and ONPP have parallel performance, and are all superior to PCA and LPP. LPP still
provides the worst results. The bar graphes of recognition rates is plotted in the left side of
Fig. 18, which once again demonstrate that BLBP features provide the best performance, and
LBP features perform better or comparably to IMG features.
Recognition performance on data set S4 is much poorer than that on data sets S1, S2, and
S3, and this is possibly because that there are fewer images in the data set resulting in a poor
sampling of the underlying latent space. The effect of the small training set size may be also
reflected on the standard deviation of 10-fold crossvalidation, as the standard deviations on
data set S4 are larger than those of data sets S1, S2, and S1, and the standard deviations of
S3 are larger than those of S1 and S2 as well. So the recognition performance of linear
subspace methods on the small training sets is not robust and reliable.

Linear Subspace Learning for Facial Expression Analysis

283

Fig. 17. (Best viewed in color) Images of data set S4 are mapped into 2D embedding spaces.
We also plot in the right side of Fig. 18 the averaged recognition rates of different subspace
techniques as the function of the reduced dimension when using BLBP features. It is
observed the performances of SLPP and LDA become comparable when the reduced
dimension increases. On the other hand, ONPP and PCA have similar performance. The
plots for S4 shows greater variations compared to those of S1 and S2 (shown in Fig. 12).
This may also be due to the small size of the training set.

 Machine Learning

284

Table 6. Averaged recognition rates (with the standard deviation) of 7-class facial expression
recognition on data set S4.

Fig. 18. (Best viewed in color) (Left) Comparison of recognition rates on data set S4; (Right)
Averaged recognition accuracy versus dimensionality reduction (with BLBP features) on
data set S4.

5. Conclusions and discussions
In this chapter, we review and evaluate a number of linear subspace methods in the context
of automatic facial expression analysis, which included recently proposed LPP, SLPP, OLPP,
ONPP, LSDA, and the traditional PCA and LDA. These techniques are compared using
different facial feature representations on several databases. Our experiments demonstrate
that the supervised LPP performs best in modeling the underlying facial expression
subspace resulting in the best expression recognition performance. We believe that this
study is helpful and necessary for further research in linear subspace methods and facial
expression analysis.
It is believed that images of facial expressions lies on a non-linear low-dimensional
manifold. Therefore, although linear subspace learning methods have been shown to be
effective , non-linear manifold learning could potentially perform better for modeling facial
expression space. For future work, we would expect to see research on discriminant non-
linear manifold learning techniques for facial expression analysis.

6. Acknowledgments
We sincerely thank Prof. Jeffery Cohn, Dr. Maja Pantic, and Dr. Michael J. Lyons for
granting access to the Cohn-Kanade database, the MMI database, and the JAFFE database
respectively. We also thank E. Kokiopoulou for providing the source code of ONPP.

Linear Subspace Learning for Facial Expression Analysis

285

7. References
Ahonen T, Hadid A, Pietik¨ainen M (2004) Face recognition with local binary patterns. In:

European Conference on Computer Vision (ECCV), pp 469–481
Ambady N, Rosenthal R (1992) Thin slices of expressive behaviour as predictors of

interpersonal consequences: A meta-analysis. Psychological Bulletin 111(2):256–274
Balasubramanian VN, Krishna S, Panchanathan S (2008) Person-independent head pose

estimation using biased manifold embedding. EURASIP Journal of Advances in
Signal Processing 8(1)

Bartlett M, Littlewort G, Fasel I, Movellan R (2003) Real time face detection and facial
expression recognition: Development and application to human computer
interaction. In: IEEE Conference on Computer Vision and Pattern Recognition
Workshop, pp 53–53

Bartlett MS, Movellan JR, Sejnowski TJ (2002) Face recognition by independent component
analysis. IEEE Transactions on Neural Networks 13(6):1450–1464

Bartlett MS, Littlewort G, Frank M, Lainscsek C, Fasel I, Movellan J (2005) Recognizing facial
expression: Machine learning and application to spotaneous behavior. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp 568–573

Bassili JN (1979) Emotion recognition: The role of facial movement and the relative
importance of upper and lower area of the face. Journal of Personality and Social
Psychology 37(11):2049–2058

Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: Recognition
using class specific linear projection. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19(7):711–720

Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and
clustering. In: Advances in Neural Information Processing Systems (NIPS), pp 585–
591

Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation 15(6):1373–1396

Cai D, He X, Han J, Zhang H (2006) Orthogonal laplacianfaces for face recognition. IEEE
Transactions on Image Processing 15(11):3608–3614

Cai D, He X, Zhou K, Han J, Bao H (2007) Locality sensitive discriminant analysis. In:
International Joint Conference on Artificial Intelligence (IJCAI), pp 708–713

Chang Y, Hu C, TurkM(2003) Mainfold of facial expression. In: IEEE International
Workshop on Analysis and Modeling of Faces and Gestures (AMFG), pp 28–35

Chang Y, Hu C, Turk M (2004) Probabilistic expression analysis on manifolds. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp 520– 527

Cohen I, Sebe N, Cozman F, Cirelo M, Huang T (2003a) Learning baysian network classifiers
for facial expression recognition using both labeled and unlabeled data. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)

Cohen I, Sebe N, Garg A, Chen L, Huang TS (2003b) Facial expression recognition from
video sequences: Temporal and static modeling. Computer Vision and Image
Understanding 91:160–187

Cohen I, Cozman F, Sebe N, Cirelo M, Huang TS (2004) Semisupervised learning of
classifiers: Theory, algorithms, and their application to human-computer
interaction. IEEE Transactions on Pattern Analysis and Machine Intelligence
26(12):1553–1566

 Machine Learning

284

Table 6. Averaged recognition rates (with the standard deviation) of 7-class facial expression
recognition on data set S4.

Fig. 18. (Best viewed in color) (Left) Comparison of recognition rates on data set S4; (Right)
Averaged recognition accuracy versus dimensionality reduction (with BLBP features) on
data set S4.

5. Conclusions and discussions
In this chapter, we review and evaluate a number of linear subspace methods in the context
of automatic facial expression analysis, which included recently proposed LPP, SLPP, OLPP,
ONPP, LSDA, and the traditional PCA and LDA. These techniques are compared using
different facial feature representations on several databases. Our experiments demonstrate
that the supervised LPP performs best in modeling the underlying facial expression
subspace resulting in the best expression recognition performance. We believe that this
study is helpful and necessary for further research in linear subspace methods and facial
expression analysis.
It is believed that images of facial expressions lies on a non-linear low-dimensional
manifold. Therefore, although linear subspace learning methods have been shown to be
effective , non-linear manifold learning could potentially perform better for modeling facial
expression space. For future work, we would expect to see research on discriminant non-
linear manifold learning techniques for facial expression analysis.

6. Acknowledgments
We sincerely thank Prof. Jeffery Cohn, Dr. Maja Pantic, and Dr. Michael J. Lyons for
granting access to the Cohn-Kanade database, the MMI database, and the JAFFE database
respectively. We also thank E. Kokiopoulou for providing the source code of ONPP.

Linear Subspace Learning for Facial Expression Analysis

285

7. References
Ahonen T, Hadid A, Pietik¨ainen M (2004) Face recognition with local binary patterns. In:

European Conference on Computer Vision (ECCV), pp 469–481
Ambady N, Rosenthal R (1992) Thin slices of expressive behaviour as predictors of

interpersonal consequences: A meta-analysis. Psychological Bulletin 111(2):256–274
Balasubramanian VN, Krishna S, Panchanathan S (2008) Person-independent head pose

estimation using biased manifold embedding. EURASIP Journal of Advances in
Signal Processing 8(1)

Bartlett M, Littlewort G, Fasel I, Movellan R (2003) Real time face detection and facial
expression recognition: Development and application to human computer
interaction. In: IEEE Conference on Computer Vision and Pattern Recognition
Workshop, pp 53–53

Bartlett MS, Movellan JR, Sejnowski TJ (2002) Face recognition by independent component
analysis. IEEE Transactions on Neural Networks 13(6):1450–1464

Bartlett MS, Littlewort G, Frank M, Lainscsek C, Fasel I, Movellan J (2005) Recognizing facial
expression: Machine learning and application to spotaneous behavior. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp 568–573

Bassili JN (1979) Emotion recognition: The role of facial movement and the relative
importance of upper and lower area of the face. Journal of Personality and Social
Psychology 37(11):2049–2058

Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: Recognition
using class specific linear projection. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19(7):711–720

Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and
clustering. In: Advances in Neural Information Processing Systems (NIPS), pp 585–
591

Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation 15(6):1373–1396

Cai D, He X, Han J, Zhang H (2006) Orthogonal laplacianfaces for face recognition. IEEE
Transactions on Image Processing 15(11):3608–3614

Cai D, He X, Zhou K, Han J, Bao H (2007) Locality sensitive discriminant analysis. In:
International Joint Conference on Artificial Intelligence (IJCAI), pp 708–713

Chang Y, Hu C, TurkM(2003) Mainfold of facial expression. In: IEEE International
Workshop on Analysis and Modeling of Faces and Gestures (AMFG), pp 28–35

Chang Y, Hu C, Turk M (2004) Probabilistic expression analysis on manifolds. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp 520– 527

Cohen I, Sebe N, Cozman F, Cirelo M, Huang T (2003a) Learning baysian network classifiers
for facial expression recognition using both labeled and unlabeled data. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)

Cohen I, Sebe N, Garg A, Chen L, Huang TS (2003b) Facial expression recognition from
video sequences: Temporal and static modeling. Computer Vision and Image
Understanding 91:160–187

Cohen I, Cozman F, Sebe N, Cirelo M, Huang TS (2004) Semisupervised learning of
classifiers: Theory, algorithms, and their application to human-computer
interaction. IEEE Transactions on Pattern Analysis and Machine Intelligence
26(12):1553–1566

 Machine Learning

286

Darwin C (1872) The Expression of the Emotions in Man and Animals. John Murray,
London

Donato G, Bartlett M, Hager J, Ekman P, Sejnowski T (1999) Classifying facial actions. IEEE
Transactions on Pattern Analysis and Machine Intelligence 21(10):974–989

Ekman P, Friesen W (1976) Pictures of Facial Affect. Consulting Psychologists
Ekman P, Friesen WV, Hager JC (2002) The Facial Action Coding System: A Technique for

the Measurement of Facial Movement. San Francisco: Consulting Psychologist
Fasel B, Luettin J (2003) Automatic facial expression analysis: a survey. Pattern Recognition

36:259–275
Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of Computer and System Sciences 55(1):119–139
Fu Y, Huang TS (2006) Graph embedded analysis for head pose estimation. In: IEEE

International Conference on Automatic Face & Gesture Recognition (FG), pp 3–8
Gritti T, Shan C, Jeanne V, Braspenning R (2008) Local features based facial expression

recognition with face registration errors. In: IEEE International Conference on
Automatic Face & Gesture Recognition (FG), Amsterdam, The Netherlands

He X, Niyogi P (2003) Locality preserving projections. In: Advances in Neural Information
Processing Systems (NIPS)

Jones M, Viola P (2003) Fast multi-view face detection. Tech. Rep. 096, MERL
Kaliouby RE, Robinson P (2004) Real-time inference of complex mental states from facial

expressions and head gestures. In: IEEE Conference on Computer Vision and
Pattern Recognition Workshop, pp 154–154

Kanade T, Cohn J, Tian Y (2000) Comprehensive database for facial expression analysis. In:
IEEE International Conference on Automatic Face& Gesture Recognition (FG), pp
46–53

Kokiopoulou E, Saad Y (2005) Orthogonal neighborhood preserving projections. In: IEEE
International Conference on Data Mining (ICDM)

Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: A
projection-based dimensionality reduction technique. IEEE Transactions on Pattern
Analysis and Machine Intelligence 29(12):2143–2156

Li Y, Gong S, Liddell H (2003) Constructing facial identity surfaces for recognition.
International Journal of Computer Vision 53(1):71–92

Lienhart R, Kuranov D, Pisarevsky V (2003) Empirical analysis of detection cascades of
boosted classifiers for rapid object detection. In: DAGM’03, 25th Pattern
Recognition Symposium, Madgeburg, Germany, pp 297–304

Littlewort G, Bartlett M, Fasel I, Susskind J, Movellan J (2006) Dynamics of facial expression
extracted automatically from video. Image and Vision Computing 24(6):615–625

Lyons MJ, Budynek J, Akamatsu S (1999) Automatic classification of single facial images.
IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12):1357–1362

Mehrabian A (1968) Communication without words. Psychology Today 2(4):53–56
Murphy-Chutorian E, Trivedi M (2008) Head pose estimation in computer vision: A survey.

IEEE Transactions on Pattern Analysis and Machine Intelligence
Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant

texture classification with local binary patterns. IEEE Transactions on Pattern
Analysis and Machine Intelligence 24(7):971–987

Linear Subspace Learning for Facial Expression Analysis

287

Oliver N, Pentland A, Berard F (2000) Lafter: a real-time face and lips tracker with facial
expression recognition. Pattern Recognition 33:1369–1382

Pantic M, Bartlett MS (2007) Machine analysis of facial expressions. In: Kurihara K (ed) Face
Recognition, Advanced Robotics Systems, Vienna, Austria, pp 377– 416

Pantic M, Rothkrantz L (2000a) Automatic analysis of facial expressions: the state of art.
IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12):1424–1445

Pantic M, Rothkrantz L (2000b) Expert system for automatic analysis of facial expression.
Image and Vision Computing 18(11):881–905

Pantic M, Rothkrantz L (2003) Toward an affect-sensitive multimodal humancomputer
interaction. In: Proceeding of the IEEE, vol 91, pp 1370–1390

Pantic M, Rothkrantz LJM (2004) Facial action recognition for facial expression analysis from
static face images. IEEE Transactions on Systems, Man, and Cybernetics 34(3):1449–
1461

Pantic M, Valstar M, Rademaker R, Maat L (2005) Web-based database for facial expression
analysis. In: IEEE International Conference on Multimedia and Expo (ICME), pp
317–321

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding.
Science 290:2323–2326

Russell JA (1994) Is there univeral recognition of emotion from facial expression.
Psychological Bulletin 115(1):102–141

Saul LK, Roweis ST (2003) Think globally, fit locally: Unsupervised learning of low
dimensional manifolds. Journal of Machine Learning Research 4:119–155

Schapire RE, Singer Y (1999) Improved boosting algorithms using confidencerated
predictions. Maching Learning 37(3):297–336

Shan C (2007) Inferring facial and body language. PhD thesis, Queen Mary, University of
London

Shan C, Gritti T (2008) Learning discriminative lbp-histogram bins for facial expression
recognition. In: British Machine Vision Conference (BMVC), Leeds, UK

Shan C, Gong S, McOwan PW (2005a) Appearance manifold of facial expression. In: Sebe N,
Lew MS, Huang TS (eds) Computer Vision in Human-Computer Interaction,
Lecture Notes in Computer Science, vol 3723, Springer, pp 221–230

Shan C, Gong S, McOwan PW (2005b) Conditional mutual information based boosting for
facial expression recognition. In: British Machine Vision Conference (BMVC),
Oxford, UK, vol 1, pp 399–408

Shan C, Gong S, McOwan PW (2005c) Robust facial expression recognition using local
binary patterns. In: IEEE International Conference on Image Processing (ICIP),
Genoa, Italy, vol 2, pp 370–373

Shan C, Gong S, McOwan PW (2006a) A comprehensive empirical study on linear subspace
methods for facial expression analysis. In: IEEE Conference on Computer Vision
and Pattern Recognition Workshop, New York, USA, pp 153–158

Shan C, Gong S, McOwan PW (2006b) Dynamic facial expression recognition using a
bayesian temporal manifold model. In: British Machine Vision Conference (BMVC),
Edinburgh, UK, vol 1, pp 297–306

Suwa M, Sugie N, Fujimora K (1978) A preliminary note on pattern recognition of human
emotional expression. In: International Joint Conference on Pattern Recognition, pp
408–410

 Machine Learning

286

Darwin C (1872) The Expression of the Emotions in Man and Animals. John Murray,
London

Donato G, Bartlett M, Hager J, Ekman P, Sejnowski T (1999) Classifying facial actions. IEEE
Transactions on Pattern Analysis and Machine Intelligence 21(10):974–989

Ekman P, Friesen W (1976) Pictures of Facial Affect. Consulting Psychologists
Ekman P, Friesen WV, Hager JC (2002) The Facial Action Coding System: A Technique for

the Measurement of Facial Movement. San Francisco: Consulting Psychologist
Fasel B, Luettin J (2003) Automatic facial expression analysis: a survey. Pattern Recognition

36:259–275
Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of Computer and System Sciences 55(1):119–139
Fu Y, Huang TS (2006) Graph embedded analysis for head pose estimation. In: IEEE

International Conference on Automatic Face & Gesture Recognition (FG), pp 3–8
Gritti T, Shan C, Jeanne V, Braspenning R (2008) Local features based facial expression

recognition with face registration errors. In: IEEE International Conference on
Automatic Face & Gesture Recognition (FG), Amsterdam, The Netherlands

He X, Niyogi P (2003) Locality preserving projections. In: Advances in Neural Information
Processing Systems (NIPS)

Jones M, Viola P (2003) Fast multi-view face detection. Tech. Rep. 096, MERL
Kaliouby RE, Robinson P (2004) Real-time inference of complex mental states from facial

expressions and head gestures. In: IEEE Conference on Computer Vision and
Pattern Recognition Workshop, pp 154–154

Kanade T, Cohn J, Tian Y (2000) Comprehensive database for facial expression analysis. In:
IEEE International Conference on Automatic Face& Gesture Recognition (FG), pp
46–53

Kokiopoulou E, Saad Y (2005) Orthogonal neighborhood preserving projections. In: IEEE
International Conference on Data Mining (ICDM)

Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: A
projection-based dimensionality reduction technique. IEEE Transactions on Pattern
Analysis and Machine Intelligence 29(12):2143–2156

Li Y, Gong S, Liddell H (2003) Constructing facial identity surfaces for recognition.
International Journal of Computer Vision 53(1):71–92

Lienhart R, Kuranov D, Pisarevsky V (2003) Empirical analysis of detection cascades of
boosted classifiers for rapid object detection. In: DAGM’03, 25th Pattern
Recognition Symposium, Madgeburg, Germany, pp 297–304

Littlewort G, Bartlett M, Fasel I, Susskind J, Movellan J (2006) Dynamics of facial expression
extracted automatically from video. Image and Vision Computing 24(6):615–625

Lyons MJ, Budynek J, Akamatsu S (1999) Automatic classification of single facial images.
IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12):1357–1362

Mehrabian A (1968) Communication without words. Psychology Today 2(4):53–56
Murphy-Chutorian E, Trivedi M (2008) Head pose estimation in computer vision: A survey.

IEEE Transactions on Pattern Analysis and Machine Intelligence
Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant

texture classification with local binary patterns. IEEE Transactions on Pattern
Analysis and Machine Intelligence 24(7):971–987

Linear Subspace Learning for Facial Expression Analysis

287

Oliver N, Pentland A, Berard F (2000) Lafter: a real-time face and lips tracker with facial
expression recognition. Pattern Recognition 33:1369–1382

Pantic M, Bartlett MS (2007) Machine analysis of facial expressions. In: Kurihara K (ed) Face
Recognition, Advanced Robotics Systems, Vienna, Austria, pp 377– 416

Pantic M, Rothkrantz L (2000a) Automatic analysis of facial expressions: the state of art.
IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12):1424–1445

Pantic M, Rothkrantz L (2000b) Expert system for automatic analysis of facial expression.
Image and Vision Computing 18(11):881–905

Pantic M, Rothkrantz L (2003) Toward an affect-sensitive multimodal humancomputer
interaction. In: Proceeding of the IEEE, vol 91, pp 1370–1390

Pantic M, Rothkrantz LJM (2004) Facial action recognition for facial expression analysis from
static face images. IEEE Transactions on Systems, Man, and Cybernetics 34(3):1449–
1461

Pantic M, Valstar M, Rademaker R, Maat L (2005) Web-based database for facial expression
analysis. In: IEEE International Conference on Multimedia and Expo (ICME), pp
317–321

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding.
Science 290:2323–2326

Russell JA (1994) Is there univeral recognition of emotion from facial expression.
Psychological Bulletin 115(1):102–141

Saul LK, Roweis ST (2003) Think globally, fit locally: Unsupervised learning of low
dimensional manifolds. Journal of Machine Learning Research 4:119–155

Schapire RE, Singer Y (1999) Improved boosting algorithms using confidencerated
predictions. Maching Learning 37(3):297–336

Shan C (2007) Inferring facial and body language. PhD thesis, Queen Mary, University of
London

Shan C, Gritti T (2008) Learning discriminative lbp-histogram bins for facial expression
recognition. In: British Machine Vision Conference (BMVC), Leeds, UK

Shan C, Gong S, McOwan PW (2005a) Appearance manifold of facial expression. In: Sebe N,
Lew MS, Huang TS (eds) Computer Vision in Human-Computer Interaction,
Lecture Notes in Computer Science, vol 3723, Springer, pp 221–230

Shan C, Gong S, McOwan PW (2005b) Conditional mutual information based boosting for
facial expression recognition. In: British Machine Vision Conference (BMVC),
Oxford, UK, vol 1, pp 399–408

Shan C, Gong S, McOwan PW (2005c) Robust facial expression recognition using local
binary patterns. In: IEEE International Conference on Image Processing (ICIP),
Genoa, Italy, vol 2, pp 370–373

Shan C, Gong S, McOwan PW (2006a) A comprehensive empirical study on linear subspace
methods for facial expression analysis. In: IEEE Conference on Computer Vision
and Pattern Recognition Workshop, New York, USA, pp 153–158

Shan C, Gong S, McOwan PW (2006b) Dynamic facial expression recognition using a
bayesian temporal manifold model. In: British Machine Vision Conference (BMVC),
Edinburgh, UK, vol 1, pp 297–306

Suwa M, Sugie N, Fujimora K (1978) A preliminary note on pattern recognition of human
emotional expression. In: International Joint Conference on Pattern Recognition, pp
408–410

 Machine Learning

288

Tenenbaum JB, Silva V, Langford JC (2000) A global geometric framework for nonlinear
dimensionality reduction. Science 290:2319–2323

Tian Y (2004) Evaluation of face resolution for expression analysis. In: International
Workshop on Face Processing in Video, pp 82–82

Tian Y, Kanade T, Cohn J (2001) Recognizing action units for facial expression analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence 23(2):97– 115

Tian Y, Kanade T, Cohn J (2005) Handbook of Face Recognition, Springer, chap 11. Facial
Expression Analysis

Tong Y, Liao W, Ji Q (2006) Inferring facial action units with causal relations. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp 1623–1630

Turk M, Pentland AP (1991) Face recognition using eigenfaces. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)

Valstar M, Pantic M (2006) Fully automatic facial action unit detection and temporal
analysis. In: IEEE Conference on Computer Vision and Pattern Recognition
Workshop, p 149

Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 511–518

Wang Y, Ai H, Wu B, Huang C (2004) Real time facial expression recognition with adaboost.
In: International Conference on Pattern Recognition (ICPR), pp 926– 929

Whitehill J, Omlin C (2006) Harr features for facs au recognition. In: IEEE International
Conference on Automatic Face & Gesture Recognition (FG), pp 97–101

Yang MH, Kriegman DJ, Ahuja N (2002) Detecting faces in images: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(1):34–58

Yeasin M, Bullot B, Sharma R (2004) From facial expression to level of interests: A spatio-
temporal approach. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp 922–927

Zhang Y, Ji Q (2005) Active and dynamic information fusion for facial expression
understanding from image sequences. IEEE Transactions on Pattern Analysis and
Machine Intelligence 27(5):1–16

Zhang Z, Lyons MJ, Schuster M, Akamatsu S (1998) Comparison between geometry-based
and gabor-wavelets-based facial expression recognition using multi-layer
perceptron. In: IEEE International Conference on Automatic Face & Gesture
Recognition (FG), pp 454–461

14

Resampling Methods for Unsupervised
Learning from Sample Data

Ulrich Möller
Leibniz Institute for Natural Product Research and Infection Biology –

Hans Knöll Institute,
Germany

1. Introduction
Two important tasks of machine learning are the statistical learning from sample data (SL)
and the unsupervised learning from unlabelled data (UL) (Hastie et al., 2001; Theodoridis &
Koutroumbas, 2006). The synthesis of the two parts – the unsupervised statistical learning
(USL) – is frequently used in the cyclic process of inductive and deductive scientific
inference. This applies especially to those fields of science where promising, testable
hypotheses are unlikely to be obtained based on manual work, the use of human senses or
intuition. Instead, huge and complex experimental data have to be analyzed by using
machine learning (USL) methods to generate valuable hypotheses. A typical example is the
field of functional genomics (Kell & Oliver, 2004).
When machine learning methods are used for the generation of hypotheses, human
intelligence is replaced by artificial intelligence and the proper functioning of is this type of
‘intelligence’ has to be validated. This chapter is focused on the validation of cluster analysis
which is an important element of USL.
It is assumed that the data set is a sample from a mixture population which is statistically
modeled as a mixture distribution. Cluster analysis is used to ‘learn’ the number and
characteristics of the components of the mixture distribution (Hastie et al., 2001). For this
purpose, similar elements of the sample are assigned to groups (clusters).
Ideally, a cluster represents all of the elements drawn from one population of the mixture.
However, clustering results often contain errors due to lacking robustness of the algorithms.
Rather different partitions may result even for samples with small differences. That is, the
obtained clusters have a random character. In this case, the generalization from clusters of a
sample to the underlying populations is inappropriate. If a hypothesis derived from such
clustering results is used to design an experiment, the outcome of this experiment will
hardly lead to a model with a high predictive power. Thus, a new study has to be performed
to find a better hypothesis. Even a single cycle of hypothesis generation and hypothesis
testing can be time-consuming and expensive (e.g., a gene expression study in cancer
research, with 200 patients, lasts more than a year and costs more than 100.000 dollars).
Therefore, it is desirable to increase the efficiency and effectiveness of the scientific progress
by using suitable validation tools.
An approach for the statistical validation of clustering results is data resampling
(Lunneborg, 2000). It can be seen as a special Monte Carlo method that is, as a method for

 Machine Learning

288

Tenenbaum JB, Silva V, Langford JC (2000) A global geometric framework for nonlinear
dimensionality reduction. Science 290:2319–2323

Tian Y (2004) Evaluation of face resolution for expression analysis. In: International
Workshop on Face Processing in Video, pp 82–82

Tian Y, Kanade T, Cohn J (2001) Recognizing action units for facial expression analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence 23(2):97– 115

Tian Y, Kanade T, Cohn J (2005) Handbook of Face Recognition, Springer, chap 11. Facial
Expression Analysis

Tong Y, Liao W, Ji Q (2006) Inferring facial action units with causal relations. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp 1623–1630

Turk M, Pentland AP (1991) Face recognition using eigenfaces. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)

Valstar M, Pantic M (2006) Fully automatic facial action unit detection and temporal
analysis. In: IEEE Conference on Computer Vision and Pattern Recognition
Workshop, p 149

Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 511–518

Wang Y, Ai H, Wu B, Huang C (2004) Real time facial expression recognition with adaboost.
In: International Conference on Pattern Recognition (ICPR), pp 926– 929

Whitehill J, Omlin C (2006) Harr features for facs au recognition. In: IEEE International
Conference on Automatic Face & Gesture Recognition (FG), pp 97–101

Yang MH, Kriegman DJ, Ahuja N (2002) Detecting faces in images: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(1):34–58

Yeasin M, Bullot B, Sharma R (2004) From facial expression to level of interests: A spatio-
temporal approach. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp 922–927

Zhang Y, Ji Q (2005) Active and dynamic information fusion for facial expression
understanding from image sequences. IEEE Transactions on Pattern Analysis and
Machine Intelligence 27(5):1–16

Zhang Z, Lyons MJ, Schuster M, Akamatsu S (1998) Comparison between geometry-based
and gabor-wavelets-based facial expression recognition using multi-layer
perceptron. In: IEEE International Conference on Automatic Face & Gesture
Recognition (FG), pp 454–461

14

Resampling Methods for Unsupervised
Learning from Sample Data

Ulrich Möller
Leibniz Institute for Natural Product Research and Infection Biology –

Hans Knöll Institute,
Germany

1. Introduction
Two important tasks of machine learning are the statistical learning from sample data (SL)
and the unsupervised learning from unlabelled data (UL) (Hastie et al., 2001; Theodoridis &
Koutroumbas, 2006). The synthesis of the two parts – the unsupervised statistical learning
(USL) – is frequently used in the cyclic process of inductive and deductive scientific
inference. This applies especially to those fields of science where promising, testable
hypotheses are unlikely to be obtained based on manual work, the use of human senses or
intuition. Instead, huge and complex experimental data have to be analyzed by using
machine learning (USL) methods to generate valuable hypotheses. A typical example is the
field of functional genomics (Kell & Oliver, 2004).
When machine learning methods are used for the generation of hypotheses, human
intelligence is replaced by artificial intelligence and the proper functioning of is this type of
‘intelligence’ has to be validated. This chapter is focused on the validation of cluster analysis
which is an important element of USL.
It is assumed that the data set is a sample from a mixture population which is statistically
modeled as a mixture distribution. Cluster analysis is used to ‘learn’ the number and
characteristics of the components of the mixture distribution (Hastie et al., 2001). For this
purpose, similar elements of the sample are assigned to groups (clusters).
Ideally, a cluster represents all of the elements drawn from one population of the mixture.
However, clustering results often contain errors due to lacking robustness of the algorithms.
Rather different partitions may result even for samples with small differences. That is, the
obtained clusters have a random character. In this case, the generalization from clusters of a
sample to the underlying populations is inappropriate. If a hypothesis derived from such
clustering results is used to design an experiment, the outcome of this experiment will
hardly lead to a model with a high predictive power. Thus, a new study has to be performed
to find a better hypothesis. Even a single cycle of hypothesis generation and hypothesis
testing can be time-consuming and expensive (e.g., a gene expression study in cancer
research, with 200 patients, lasts more than a year and costs more than 100.000 dollars).
Therefore, it is desirable to increase the efficiency and effectiveness of the scientific progress
by using suitable validation tools.
An approach for the statistical validation of clustering results is data resampling
(Lunneborg, 2000). It can be seen as a special Monte Carlo method that is, as a method for

 Machine Learning

290

finding solutions to statistical problems by simulation (Borgelt & Kruse, 2006). The choice of
a suitable resampling method for any cluster validation task is not trivial. On the one hand,
such a method is expected to simulate random samples that have the same structure that
underlies the original sample – even though the true structure is unknown. On the other
hand, it is undesired that the method introduces any additional structure into the simulated
data, because this kind of error can not be recognized from the clustering results in the
absence of the ground truth.
Once, clustering results (partitions) have been generated for a set of resamples, three steps
are usually performed. i) The stability of the partitions under the influence of resampling is
calculated. When desired, stability scores can be obtained also for single clusters and
individual assignments of data points to clusters. ii) A consensus partition is determined that
best possible represents the characteristics which are common to the resample partitions. iii)
The number of clusters is estimated, typically based on the maximization of a partition
stability score. For methods that can be used to perform the steps i) to iii) see, for example,
(Strehl & Gosh, 2002; Topchy et al., 2005; Fred & Jain, 2006 and Ayad & Kamel, 2008).
Resampling-based cluster validation is not yet common standard. In many software tools for
cluster analysis, resampling methods are missing. Some new methods were published only
recently. The choice of the appropriate resampling technique depends on the data
properties, the goal and constraints of the study and on the clustering methods used. The
purpose of this contribution is to review available techniques, to summarize existing
benchmark results and to give recommendations for the selection and use of the methods.
Furthermore, a new method called nearest neighbor resampling is presented.
In statistics resampling schemes are subdivided into parametric and non-parametric
methods. The use of parametric methods for cluster validation will be briefly characterized
in section 2. In section 3 non-parametric methods will be reviewed. Section 4 is a summary
of benchmarking tests of different resampling techniques. Section 5 refers to results of the
new resampling method previously described in section 3.5. Finally, section 6 contains a
discussion of the described methods and conclusions for their future application.

2. Parametric resampling
Parametric resampling is also known as parametric bootstrapping. Methods of this type are
used to fit a parametric model to the data. That is, the hypothesis is made that the data
follow a theoretical distribution and certain parameters of this distribution (mean, variance
etc.) are estimated. Then resample data sets are sampled from the distribution with the
parameter values set to the obtained estimates. In cluster analysis a mixture distribution P =
ΣiεiPi is assumed, where Pi, i = 1,…,C, are the C distributions generating C “true” clusters
respectively, and εi is the probability that a sample point from Pi is drawn.
In principle, this approach has attractive properties. Examples for the validation of
clustering results obtained from gene expression data are contained in (McLachlan & Khan,
2004). However, there exist also arguments against the use of parametric resampling for
cluster validation. One argument concerns the lack of justification for the (more or less
arbitrary) selection of a particular theoretical distribution as a model for real data with an
unknown distribution (Yu et al. 1999; Lunneborg, 2000). Hennig (2007) argued that
parametric bootstrapping does not suggest itself for the aim of cluster validation, because
parametric methods discover structures generated by the assumed model much better than
patterns in real data for which the model does not hold. This could lead to overoptimistic

Resampling Methods for Unsupervised Learning from Sample Data

291

assessments of the stability of clustering structures. If the original sample has clearly more
dimensions than data points, model fitting may be impaired by the “curse of
dimensionality”. Further arguments can be found in (Tseng & Wong, 2005). In the sequel,
we consider non-parametric resampling methods that may be used in cluster analysis.

3. Non-parametric resampling
3.1 Sampling from a sample
Several methods can be referred to as re-sampling in the literal sense according to the
common (non-statistical) definition of the word sample 1. In such methods the data points of
a resample are drawn from the set of data points contained in the original sample.
Bootstrapping. The non-parametric version of bootstrapping is usually described as
“drawing with replacement”. That is, each bootstrap sample is obtained by drawing N data
points randomly and with replacement from the original sample, where N is the number of
data points in this sample. If the population size Np is finite and relatively small compared
to N, (i.e., NP / N < 20), another procedure is conventionally used (see Lunneborg, 2000).
This procedure guarantees that the empirical distribution of the union of all bootstrap
resamples agrees accurately with the empirical distribution of the original sample. In any
case some original data points are likely represented more than once in a bootstrap sample,
while accordingly, other original points are missing in the resample.
It has been shown that for increasing values of N, the percentage of original data which are
not contained in a bootstrap sample converges to about 37%. If this information loss is
considered to large for an adequate recognition of the data structure, the bootstrap scheme
could be applied to M randomly selected points of the sample X (M < N), while the
resample is completed by the N−M points of X not used for the bootstrapping. This
modification would allow to control the degree of information loss associated with the
bootstrap scheme (Möller & Radke, 2006a). Moreover, this resampling version could be
performed by using random numbers Mr for the generation of r = 1, 2, … bootstrap samples
with reasonable boundaries of the interval from which the values Mr are drawn. This
selection could make the results less depending on the heuristic choice of parameter M.
Subsampling. The original data set X is used to draw random subsets Yr ⊂ X, r = 1, 2,… The
size of a drawn subset, S = card(Yr), is a control parameter. Usually, S is fixed for all
subsamples to be used in an application. If S is not much smaller than the original sample
size N, clustering results of different subsamples may be very similar and not informative.
The choice of S clearly smaller than N can be recommended if the information retained on
average in a subsample is sufficient to obtain reasonable estimates of the unknown
underlying distribution. Resampling-based clustering methods have been introduced
including the subsampling of 70% (Tseng & Wong, 2005), 80% (Monti et al., 2003) and 90%
(Fred & Jain, 2006) of the data. It may not be easy to select an optimal subsample size in a
particular application. To avoid an inappropriate choice for this parameter, the subsample
size could be varied from subsample to subsample. For example, the subsample size is
uniformly drawn from an interval that represents 75-90% of the size of the original sample.

1 A sample of things is a number of them that are chosen at random out of a larger group
and then used to test ideas or to provide information about the whole group (Collins
Cobuild Dictionary, 1987).

 Machine Learning

290

finding solutions to statistical problems by simulation (Borgelt & Kruse, 2006). The choice of
a suitable resampling method for any cluster validation task is not trivial. On the one hand,
such a method is expected to simulate random samples that have the same structure that
underlies the original sample – even though the true structure is unknown. On the other
hand, it is undesired that the method introduces any additional structure into the simulated
data, because this kind of error can not be recognized from the clustering results in the
absence of the ground truth.
Once, clustering results (partitions) have been generated for a set of resamples, three steps
are usually performed. i) The stability of the partitions under the influence of resampling is
calculated. When desired, stability scores can be obtained also for single clusters and
individual assignments of data points to clusters. ii) A consensus partition is determined that
best possible represents the characteristics which are common to the resample partitions. iii)
The number of clusters is estimated, typically based on the maximization of a partition
stability score. For methods that can be used to perform the steps i) to iii) see, for example,
(Strehl & Gosh, 2002; Topchy et al., 2005; Fred & Jain, 2006 and Ayad & Kamel, 2008).
Resampling-based cluster validation is not yet common standard. In many software tools for
cluster analysis, resampling methods are missing. Some new methods were published only
recently. The choice of the appropriate resampling technique depends on the data
properties, the goal and constraints of the study and on the clustering methods used. The
purpose of this contribution is to review available techniques, to summarize existing
benchmark results and to give recommendations for the selection and use of the methods.
Furthermore, a new method called nearest neighbor resampling is presented.
In statistics resampling schemes are subdivided into parametric and non-parametric
methods. The use of parametric methods for cluster validation will be briefly characterized
in section 2. In section 3 non-parametric methods will be reviewed. Section 4 is a summary
of benchmarking tests of different resampling techniques. Section 5 refers to results of the
new resampling method previously described in section 3.5. Finally, section 6 contains a
discussion of the described methods and conclusions for their future application.

2. Parametric resampling
Parametric resampling is also known as parametric bootstrapping. Methods of this type are
used to fit a parametric model to the data. That is, the hypothesis is made that the data
follow a theoretical distribution and certain parameters of this distribution (mean, variance
etc.) are estimated. Then resample data sets are sampled from the distribution with the
parameter values set to the obtained estimates. In cluster analysis a mixture distribution P =
ΣiεiPi is assumed, where Pi, i = 1,…,C, are the C distributions generating C “true” clusters
respectively, and εi is the probability that a sample point from Pi is drawn.
In principle, this approach has attractive properties. Examples for the validation of
clustering results obtained from gene expression data are contained in (McLachlan & Khan,
2004). However, there exist also arguments against the use of parametric resampling for
cluster validation. One argument concerns the lack of justification for the (more or less
arbitrary) selection of a particular theoretical distribution as a model for real data with an
unknown distribution (Yu et al. 1999; Lunneborg, 2000). Hennig (2007) argued that
parametric bootstrapping does not suggest itself for the aim of cluster validation, because
parametric methods discover structures generated by the assumed model much better than
patterns in real data for which the model does not hold. This could lead to overoptimistic

Resampling Methods for Unsupervised Learning from Sample Data

291

assessments of the stability of clustering structures. If the original sample has clearly more
dimensions than data points, model fitting may be impaired by the “curse of
dimensionality”. Further arguments can be found in (Tseng & Wong, 2005). In the sequel,
we consider non-parametric resampling methods that may be used in cluster analysis.

3. Non-parametric resampling
3.1 Sampling from a sample
Several methods can be referred to as re-sampling in the literal sense according to the
common (non-statistical) definition of the word sample 1. In such methods the data points of
a resample are drawn from the set of data points contained in the original sample.
Bootstrapping. The non-parametric version of bootstrapping is usually described as
“drawing with replacement”. That is, each bootstrap sample is obtained by drawing N data
points randomly and with replacement from the original sample, where N is the number of
data points in this sample. If the population size Np is finite and relatively small compared
to N, (i.e., NP / N < 20), another procedure is conventionally used (see Lunneborg, 2000).
This procedure guarantees that the empirical distribution of the union of all bootstrap
resamples agrees accurately with the empirical distribution of the original sample. In any
case some original data points are likely represented more than once in a bootstrap sample,
while accordingly, other original points are missing in the resample.
It has been shown that for increasing values of N, the percentage of original data which are
not contained in a bootstrap sample converges to about 37%. If this information loss is
considered to large for an adequate recognition of the data structure, the bootstrap scheme
could be applied to M randomly selected points of the sample X (M < N), while the
resample is completed by the N−M points of X not used for the bootstrapping. This
modification would allow to control the degree of information loss associated with the
bootstrap scheme (Möller & Radke, 2006a). Moreover, this resampling version could be
performed by using random numbers Mr for the generation of r = 1, 2, … bootstrap samples
with reasonable boundaries of the interval from which the values Mr are drawn. This
selection could make the results less depending on the heuristic choice of parameter M.
Subsampling. The original data set X is used to draw random subsets Yr ⊂ X, r = 1, 2,… The
size of a drawn subset, S = card(Yr), is a control parameter. Usually, S is fixed for all
subsamples to be used in an application. If S is not much smaller than the original sample
size N, clustering results of different subsamples may be very similar and not informative.
The choice of S clearly smaller than N can be recommended if the information retained on
average in a subsample is sufficient to obtain reasonable estimates of the unknown
underlying distribution. Resampling-based clustering methods have been introduced
including the subsampling of 70% (Tseng & Wong, 2005), 80% (Monti et al., 2003) and 90%
(Fred & Jain, 2006) of the data. It may not be easy to select an optimal subsample size in a
particular application. To avoid an inappropriate choice for this parameter, the subsample
size could be varied from subsample to subsample. For example, the subsample size is
uniformly drawn from an interval that represents 75-90% of the size of the original sample.

1 A sample of things is a number of them that are chosen at random out of a larger group
and then used to test ideas or to provide information about the whole group (Collins
Cobuild Dictionary, 1987).

 Machine Learning

292

An alternative way, without an explicit specification of the subsampling size, would be to
generate a bootstrap sample and to discard the identically replicated points (Hennig, 2007).
Subdivision. The original sample X is split into two disjoint subsets Y ∪ Z = X. Clustering is
used to generate the partitions πY and πZ, from Y and Z, respectively. In addition, a classifier
CY is build from the subset Y and the label set πY. Then CY is applied to the subset Z
providing the partition πYZ. Finally, the predictability of πZ based on πYZ is assessed. For the
success of this strategy it has to be ensured that in general each subset Y and Z contain
sufficient information about the underlying distribution necessary to infer a reasonable
model from the data. Dudoit and Fridlyand (2003) presented an example, where the
‘training’ set Y and the ‘test’ set Z consist respectively of 2/3 and 1/3 of the original sample.

3.2 Jittering
Real data samples contain random measurement errors. Even if the same objects were
observed multiple times under the same experimental conditions, the data are likely to be
different. These differences can be simulated by generating copies of the original sample
and adding random values to each of these data sets. The normal distribution with zero
mean is traditionally used for this purpose. If estimates of the measurement error exist,
these information can be utilized to define the parameters of the error distribution.
Otherwise, heuristic rules can be applied.
Hennig (2007) defined such a resampling scheme as follows. 1) For all p dimensions of the
original sample data X = (x1,…, xN), compute the N−1 differences dij between neighboring
data values in dimension p: for i = 1,…, N−1, j = 1,…, p, dij is the difference between the (i+1)-
th and the i-th order statistic of the j-th dimension. For j = 1,…, p, let qj be the empirical
quantile of the dij, where q is a tuning constant. 2) Draw noise en, n = 1,…, N, independent
and identically distributed from a normal distribution with a zero mean and a diagonal
matrix as covariance matrix with diagonal elements σ12 = q12,…, σp2 = qp2 and compute the
resample points yn = xn + en for n = 1,…, N. (For an example see section 4).

3.3 Combination of bootstrapping and jittering
When using the (non-parametric) bootstrapping scheme, about one third of the resample
points will be identical replicates of original sample points. Each group of such identical
points could be seen as a mini-cluster. The occurrence of these artificial clusters, generated
by a statistical analysis tool, may induce inappropriate models of the true data structure. In
particular, when clustering the resample data, the artificially replicated data points may be
misinterpreted as true clusters (Monti et al., 2003). Moreover, for some implementations of
clustering and multidimensional scaling methods the identical bootstrap replicates may
cause numerical problems. Hennig (2007) proposed the combination of bootstrapping and
jittering as a way to avoid or to reduce these problems.

3.4 Perturbation
Data sets for applications of statistical machine learning are usually generated with a
precision that is high enough to measure intra-population variability. Therefore, any data
point of a sample is likely to be different from any data point of another (disjoint) sample −
even if the measurement error was zero. This type of inter-sample differences is not
realistically simulated when using the above non-parametric methods. (Sampling from a
sample provides highly overlapping data sets that all consist of random selections from the

Resampling Methods for Unsupervised Learning from Sample Data

293

same set of original points, while jittering leads to data sets that simulate differences
comparable to those caused by measurement errors.) Another resampling strategy may be
desired for a better (non-parametric) simulation of inter-sample differences due to intra-
population variability. Estimates of intra-population variability that could be used for such a
simulation are usually unavailable prior to cluster analysis. Under these circumstances, a
simple simulation is the addition of random values onto the data. Here this approach is
called ‘perturbation’.
Let X ∈ℜN×p be the original p-dimensional sample consisting of N data points. Then for r = 1,
2, …, resample r is obtained as follows. Yr = X + ξr, where ξr ∈ℜN×p is a sample of size N
from a p-dimensional distribution. The parameters of this distribution, such as variance, can
be specified based on an estimate obtained from the original sample. For example, the
random variable ξ may be selected to have a normal distribution with zero mean vector and
c⋅σ ∈ℜp, where c denotes a constant, σ = (σ1,…, σp) is an empirical estimate of the variability
of the data. Bittner et al. (1999), chose c = 0.15 and σ being the median standard deviation of
the entire sample. Möller and Radke (2006a) used several values of c equal to 0.01, 0.05 and
0.1, where σ represented the standard deviation from the grand mean of the data.
Perturbation and jittering are conceptually similar resampling techniques. However, their
implementation may differ quantitatively in the values of statistical parameters used to
simulate intra-population variability and measurement error based on external knowledge,
estimates or assumptions.

3.5 Nearest neighbor resampling
The perturbation technique has two shortcomings in a cluster validation study. First, the
method will induce inappropriate inter-resample differences if the true intra-population
variability differs between several populations of the mixture population. The reason is that
the random values used to perturb every data point are drawn from the same distribution.
Therefore, the data points originally drawn from some populations are perturbed too
strongly or too weakly or both types of error may occur simultaneously. Second, even if the
intra-population variability is constant across all populations within the mixture, it is
difficult to adjust the parameter(s) of the distribution used for drawing the random values.
An overestimation of the proper perturbation strength would have the consequence that
true data structures which are present in the original sample may not be retained in any
resample. Otherwise, an underestimation of the perturbation strength would lead to very
similar resamples and spurious, high cluster stability. To avoid false interpretations of a
perturbation-based clustering study, it may be appropriate to repeat the analysis with
different values of the perturbation strength (e.g., Möller & Radke, 2006a). A non-parametric
resampling approach where the choice of the perturbation strength is less critical is nearest
neighbor resampling (NNR).
The idea behind NNR can be explained as follows. A high intra-population variability is
characterized by a wide distribution and a low probability of drawing a point from the
respective part of the hyperspace. Accordingly, the distances between sample points in this
part of the hyperspace are high. For low intra-population variability the opposite is true.
Clearly, if two or more populations of a mixture population have overlapping distributions,
the total probability is increased and sample points will have decreased inter-point distances
compared to those obtained from any single population. The relationship between
population variability and inter-point distances can be utilized to simulate random samples,

 Machine Learning

292

An alternative way, without an explicit specification of the subsampling size, would be to
generate a bootstrap sample and to discard the identically replicated points (Hennig, 2007).
Subdivision. The original sample X is split into two disjoint subsets Y ∪ Z = X. Clustering is
used to generate the partitions πY and πZ, from Y and Z, respectively. In addition, a classifier
CY is build from the subset Y and the label set πY. Then CY is applied to the subset Z
providing the partition πYZ. Finally, the predictability of πZ based on πYZ is assessed. For the
success of this strategy it has to be ensured that in general each subset Y and Z contain
sufficient information about the underlying distribution necessary to infer a reasonable
model from the data. Dudoit and Fridlyand (2003) presented an example, where the
‘training’ set Y and the ‘test’ set Z consist respectively of 2/3 and 1/3 of the original sample.

3.2 Jittering
Real data samples contain random measurement errors. Even if the same objects were
observed multiple times under the same experimental conditions, the data are likely to be
different. These differences can be simulated by generating copies of the original sample
and adding random values to each of these data sets. The normal distribution with zero
mean is traditionally used for this purpose. If estimates of the measurement error exist,
these information can be utilized to define the parameters of the error distribution.
Otherwise, heuristic rules can be applied.
Hennig (2007) defined such a resampling scheme as follows. 1) For all p dimensions of the
original sample data X = (x1,…, xN), compute the N−1 differences dij between neighboring
data values in dimension p: for i = 1,…, N−1, j = 1,…, p, dij is the difference between the (i+1)-
th and the i-th order statistic of the j-th dimension. For j = 1,…, p, let qj be the empirical
quantile of the dij, where q is a tuning constant. 2) Draw noise en, n = 1,…, N, independent
and identically distributed from a normal distribution with a zero mean and a diagonal
matrix as covariance matrix with diagonal elements σ12 = q12,…, σp2 = qp2 and compute the
resample points yn = xn + en for n = 1,…, N. (For an example see section 4).

3.3 Combination of bootstrapping and jittering
When using the (non-parametric) bootstrapping scheme, about one third of the resample
points will be identical replicates of original sample points. Each group of such identical
points could be seen as a mini-cluster. The occurrence of these artificial clusters, generated
by a statistical analysis tool, may induce inappropriate models of the true data structure. In
particular, when clustering the resample data, the artificially replicated data points may be
misinterpreted as true clusters (Monti et al., 2003). Moreover, for some implementations of
clustering and multidimensional scaling methods the identical bootstrap replicates may
cause numerical problems. Hennig (2007) proposed the combination of bootstrapping and
jittering as a way to avoid or to reduce these problems.

3.4 Perturbation
Data sets for applications of statistical machine learning are usually generated with a
precision that is high enough to measure intra-population variability. Therefore, any data
point of a sample is likely to be different from any data point of another (disjoint) sample −
even if the measurement error was zero. This type of inter-sample differences is not
realistically simulated when using the above non-parametric methods. (Sampling from a
sample provides highly overlapping data sets that all consist of random selections from the

Resampling Methods for Unsupervised Learning from Sample Data

293

same set of original points, while jittering leads to data sets that simulate differences
comparable to those caused by measurement errors.) Another resampling strategy may be
desired for a better (non-parametric) simulation of inter-sample differences due to intra-
population variability. Estimates of intra-population variability that could be used for such a
simulation are usually unavailable prior to cluster analysis. Under these circumstances, a
simple simulation is the addition of random values onto the data. Here this approach is
called ‘perturbation’.
Let X ∈ℜN×p be the original p-dimensional sample consisting of N data points. Then for r = 1,
2, …, resample r is obtained as follows. Yr = X + ξr, where ξr ∈ℜN×p is a sample of size N
from a p-dimensional distribution. The parameters of this distribution, such as variance, can
be specified based on an estimate obtained from the original sample. For example, the
random variable ξ may be selected to have a normal distribution with zero mean vector and
c⋅σ ∈ℜp, where c denotes a constant, σ = (σ1,…, σp) is an empirical estimate of the variability
of the data. Bittner et al. (1999), chose c = 0.15 and σ being the median standard deviation of
the entire sample. Möller and Radke (2006a) used several values of c equal to 0.01, 0.05 and
0.1, where σ represented the standard deviation from the grand mean of the data.
Perturbation and jittering are conceptually similar resampling techniques. However, their
implementation may differ quantitatively in the values of statistical parameters used to
simulate intra-population variability and measurement error based on external knowledge,
estimates or assumptions.

3.5 Nearest neighbor resampling
The perturbation technique has two shortcomings in a cluster validation study. First, the
method will induce inappropriate inter-resample differences if the true intra-population
variability differs between several populations of the mixture population. The reason is that
the random values used to perturb every data point are drawn from the same distribution.
Therefore, the data points originally drawn from some populations are perturbed too
strongly or too weakly or both types of error may occur simultaneously. Second, even if the
intra-population variability is constant across all populations within the mixture, it is
difficult to adjust the parameter(s) of the distribution used for drawing the random values.
An overestimation of the proper perturbation strength would have the consequence that
true data structures which are present in the original sample may not be retained in any
resample. Otherwise, an underestimation of the perturbation strength would lead to very
similar resamples and spurious, high cluster stability. To avoid false interpretations of a
perturbation-based clustering study, it may be appropriate to repeat the analysis with
different values of the perturbation strength (e.g., Möller & Radke, 2006a). A non-parametric
resampling approach where the choice of the perturbation strength is less critical is nearest
neighbor resampling (NNR).
The idea behind NNR can be explained as follows. A high intra-population variability is
characterized by a wide distribution and a low probability of drawing a point from the
respective part of the hyperspace. Accordingly, the distances between sample points in this
part of the hyperspace are high. For low intra-population variability the opposite is true.
Clearly, if two or more populations of a mixture population have overlapping distributions,
the total probability is increased and sample points will have decreased inter-point distances
compared to those obtained from any single population. The relationship between
population variability and inter-point distances can be utilized to simulate random samples,

 Machine Learning

294

where the advantages of a perturbation approach are utilized and knowledge, estimates or
assumptions about the distributions of existing populations are not required.
Here we consider the following strategy for NNR. 1) For each original sample point xn, n =
1,…, N, an estimate of the inter-point distances in the neighborhood of xn is obtained. This
neighborhood is defined by the k nearest neighbors of xn according to a user-selected metric.
2) The direction vector for the perturbation of xnr with respect to xn is selected. 3) Resample
point xnr is generated by adding a random vector to xn with the direction as selected in step
two and the vector length being a function of the estimated inter-point distances in the
neighborhood of xn. The rationale underlying the choice of a k-NN approach is the same as
in supervised learning. Most of the k nearest neighbors of data point xn are assumed to
belong to the same class (population) as xn. Therefore, the neighboring points of xn are
assumed to provide an estimate of intra-population variability. Below, two versions of NNR
are described.
Nearest neighbor resampling 1 (NNR1). (Möller & Radke, 2006b)
0. Let X = (x1,…, xN) ⊂ ℜp be the original sample. Chose k ≥ 2 and a metric for calculating

the distance between elements of X.
1. For each sample point xn, n = 1,…, N, determine Yn, that is, the set containing xn and its k

nearest neighbors. Calculate dn, the mean of the distances between each member and
the center (mean) of the set Yn.

2. For each resample r, r = 1, 2, …, and each sample point xn, n = 1,…, N, perform the
following steps.

3. Chose a random direction vector ξnr in the p-dimensional data space (i.e., ξnr is a p-
dimensional random variable uniformly distributed over the hyper-rectangle [−1, 1]p).

4. Rescale the direction vector ξnr to have the vector length equal to dn (calculated in step
1).

5. Generate point n of resample r: xnr = xn + ξnr.
The fixed point-wise perturbation strength (dn) has been selected to ensure an effective
perturbation of each sample point (i.e., to avoid spurious high cluster stability). The method
NNR1 can be used to simulate random samples from an unknown mixture population with
different intra-population variability and a diagonal matrix as covariance matrix of each
population. However, the latter assumption may be too strong for a number of real data
sets. For example, the NNR1 method may simulate resample clusters with a hyper-globular
shape also in cases where the corresponding clusters in the original sample have a hyper-
ellipsoidal shape. (This is a consequence of the fixed perturbation strength in conjunction
with the uniformly distributed direction vector.)
Therefore, the user should have other choices for calculating the amount and direction of the
perturbation. Experiments have shown that the unintentional generation of artificial outliers
by the resampling method may prevent reasonable clustering results of the resamples, while
the original sample may have been clustered appropriately. For example, in some cases the
fuzzy C-means (FCM) clustering algorithm provided ‘missing clusters’ for NNR1-type
resamples, but not for the original sample (data not shown). Missing clusters were
introduced in (Möller, 2007) as being inappropriate clustering results of the FCM. As a
conclusion, another method, NNR2, was developed for the analysis of high-dimensional
data sets. In NNR2, a data point can be ‘shifted’ only towards and not beyond one of its
nearest neighbors (i.e., into a region of the feature space that actually contains some data).

Resampling Methods for Unsupervised Learning from Sample Data

295

Furthermore, the mean-based estimate dn in step 2 of the NNR1 method could be biased if
the neighbors of xn contain outliers or if they contain data points which have been drawn
from a population different than the one from which xn has been drawn. This source of bias
can be reduced or avoided by using a robust estimate of the typical inter-point distance such
as the median.
Nearest neighbor resampling 2 (NNR2).
0. Let X = (x1,…, xN) ⊂ ℜp be the original sample. Chose k ≥ 2, two constants c1 ≥ 0 and c2 >

c1 for a data-specific calibration of the perturbation strength and a metric for calculating
the distance between elements of X.

1. For each sample point xn, n = 1,…, N, determine the k nearest neighbors of xn and
calculate dn, the median distance between all pairs of these k neighbors.

2. For each resample r, r = 1, 2, …, and each sample point xn, n = 1,…, N, perform the
following steps.

3. Chose one of the k nearest neighbors of xn at random. This data point is denoted by xm.
The direction vector from xn to xm is used as the direction vector ξnr for the perturbation
of the sample point xn to generate the resample point xnr.

4. Draw the value cnr from the uniform distribution over the interval [c1, c2]. Calculate the
distance dnm between the sample points xn and xm. If dnm is larger than dn, set the amount
of perturbation |ξnr|= cnr⋅dn, otherwise set |ξnr| = cnr⋅dnm, where |.|denotes the vector
length. Briefly, |ξnr|= cnr ⋅ min(dn, dnm).

5. Generate point n of resample r: xnr = xn + ξnr.
The NNR2 method restricts the positions of simulated (resample) points to the set of points
that lie on the lines interconnecting an original sample point and its k nearest neighbors.
Real samples are not constrained in this way. However, the application of this constraint
leads to the simulation of resample points that cover only those regions of the feature space
which are actually occupied by observed data. NNR2 has two advantages in cluster
validation studies. Artificial outliers and resulting biases of resample clusterings can be
largely avoided. More importantly, there may be data structures which are recognized from
a clustering of the original sample, but are no longer separable after a perturbation like that
in section 3.4 or that induced by the NNR1 method. The constrained perturbation by the
NNR2 method is likely to simulate samples in which such (weakly separable) structures are
preserved.
NNR2-type perturbation can be calibrated by adjusting the parameters k, c1 and c2. A higher
maximal perturbation strength is achieved by increasing the values of k and/or c2. When
choosing c2 = 1 the maximum amount of perturbation for each point equals the median
distance between the k nearest neighbors of the respective point. The minimum amount of
perturbation of each point can be adjusted by choosing c1 > 0.

3.6 Outlier simulation
Real data sets may contain outliers – even though the data has been processed by a method
for the detection and removal of outliers. Therefore, it is desirable to know how robust the
result of a clustering algorithm is with respect to the presence of outliers. This knowledge
can then be used to select a robust result among a number of candidate results obtained by
different clustering algorithms or the same algorithm with different settings of a control
parameter (especially, the number of clusters).

 Machine Learning

294

where the advantages of a perturbation approach are utilized and knowledge, estimates or
assumptions about the distributions of existing populations are not required.
Here we consider the following strategy for NNR. 1) For each original sample point xn, n =
1,…, N, an estimate of the inter-point distances in the neighborhood of xn is obtained. This
neighborhood is defined by the k nearest neighbors of xn according to a user-selected metric.
2) The direction vector for the perturbation of xnr with respect to xn is selected. 3) Resample
point xnr is generated by adding a random vector to xn with the direction as selected in step
two and the vector length being a function of the estimated inter-point distances in the
neighborhood of xn. The rationale underlying the choice of a k-NN approach is the same as
in supervised learning. Most of the k nearest neighbors of data point xn are assumed to
belong to the same class (population) as xn. Therefore, the neighboring points of xn are
assumed to provide an estimate of intra-population variability. Below, two versions of NNR
are described.
Nearest neighbor resampling 1 (NNR1). (Möller & Radke, 2006b)
0. Let X = (x1,…, xN) ⊂ ℜp be the original sample. Chose k ≥ 2 and a metric for calculating

the distance between elements of X.
1. For each sample point xn, n = 1,…, N, determine Yn, that is, the set containing xn and its k

nearest neighbors. Calculate dn, the mean of the distances between each member and
the center (mean) of the set Yn.

2. For each resample r, r = 1, 2, …, and each sample point xn, n = 1,…, N, perform the
following steps.

3. Chose a random direction vector ξnr in the p-dimensional data space (i.e., ξnr is a p-
dimensional random variable uniformly distributed over the hyper-rectangle [−1, 1]p).

4. Rescale the direction vector ξnr to have the vector length equal to dn (calculated in step
1).

5. Generate point n of resample r: xnr = xn + ξnr.
The fixed point-wise perturbation strength (dn) has been selected to ensure an effective
perturbation of each sample point (i.e., to avoid spurious high cluster stability). The method
NNR1 can be used to simulate random samples from an unknown mixture population with
different intra-population variability and a diagonal matrix as covariance matrix of each
population. However, the latter assumption may be too strong for a number of real data
sets. For example, the NNR1 method may simulate resample clusters with a hyper-globular
shape also in cases where the corresponding clusters in the original sample have a hyper-
ellipsoidal shape. (This is a consequence of the fixed perturbation strength in conjunction
with the uniformly distributed direction vector.)
Therefore, the user should have other choices for calculating the amount and direction of the
perturbation. Experiments have shown that the unintentional generation of artificial outliers
by the resampling method may prevent reasonable clustering results of the resamples, while
the original sample may have been clustered appropriately. For example, in some cases the
fuzzy C-means (FCM) clustering algorithm provided ‘missing clusters’ for NNR1-type
resamples, but not for the original sample (data not shown). Missing clusters were
introduced in (Möller, 2007) as being inappropriate clustering results of the FCM. As a
conclusion, another method, NNR2, was developed for the analysis of high-dimensional
data sets. In NNR2, a data point can be ‘shifted’ only towards and not beyond one of its
nearest neighbors (i.e., into a region of the feature space that actually contains some data).

Resampling Methods for Unsupervised Learning from Sample Data

295

Furthermore, the mean-based estimate dn in step 2 of the NNR1 method could be biased if
the neighbors of xn contain outliers or if they contain data points which have been drawn
from a population different than the one from which xn has been drawn. This source of bias
can be reduced or avoided by using a robust estimate of the typical inter-point distance such
as the median.
Nearest neighbor resampling 2 (NNR2).
0. Let X = (x1,…, xN) ⊂ ℜp be the original sample. Chose k ≥ 2, two constants c1 ≥ 0 and c2 >

c1 for a data-specific calibration of the perturbation strength and a metric for calculating
the distance between elements of X.

1. For each sample point xn, n = 1,…, N, determine the k nearest neighbors of xn and
calculate dn, the median distance between all pairs of these k neighbors.

2. For each resample r, r = 1, 2, …, and each sample point xn, n = 1,…, N, perform the
following steps.

3. Chose one of the k nearest neighbors of xn at random. This data point is denoted by xm.
The direction vector from xn to xm is used as the direction vector ξnr for the perturbation
of the sample point xn to generate the resample point xnr.

4. Draw the value cnr from the uniform distribution over the interval [c1, c2]. Calculate the
distance dnm between the sample points xn and xm. If dnm is larger than dn, set the amount
of perturbation |ξnr|= cnr⋅dn, otherwise set |ξnr| = cnr⋅dnm, where |.|denotes the vector
length. Briefly, |ξnr|= cnr ⋅ min(dn, dnm).

5. Generate point n of resample r: xnr = xn + ξnr.
The NNR2 method restricts the positions of simulated (resample) points to the set of points
that lie on the lines interconnecting an original sample point and its k nearest neighbors.
Real samples are not constrained in this way. However, the application of this constraint
leads to the simulation of resample points that cover only those regions of the feature space
which are actually occupied by observed data. NNR2 has two advantages in cluster
validation studies. Artificial outliers and resulting biases of resample clusterings can be
largely avoided. More importantly, there may be data structures which are recognized from
a clustering of the original sample, but are no longer separable after a perturbation like that
in section 3.4 or that induced by the NNR1 method. The constrained perturbation by the
NNR2 method is likely to simulate samples in which such (weakly separable) structures are
preserved.
NNR2-type perturbation can be calibrated by adjusting the parameters k, c1 and c2. A higher
maximal perturbation strength is achieved by increasing the values of k and/or c2. When
choosing c2 = 1 the maximum amount of perturbation for each point equals the median
distance between the k nearest neighbors of the respective point. The minimum amount of
perturbation of each point can be adjusted by choosing c1 > 0.

3.6 Outlier simulation
Real data sets may contain outliers – even though the data has been processed by a method
for the detection and removal of outliers. Therefore, it is desirable to know how robust the
result of a clustering algorithm is with respect to the presence of outliers. This knowledge
can then be used to select a robust result among a number of candidate results obtained by
different clustering algorithms or the same algorithm with different settings of a control
parameter (especially, the number of clusters).

 Machine Learning

296

For the investigation of cluster stability with respect to outliers Hennig (2007) proposed the
replacement of a subset of data points by noise, where “noise points should be allowed to lie
far away from the bulk (or bulks) of the data, but it may also be interesting to have noise
points in between the clusters, possibly weakening their separation”. The author cited
Donoho’s and Huber’s concept of the finite sample replacement breakdown point as a
related methodological basis.
Replacing points by noise. Choose M, the number of data points to be replaced by noise,
where 1 ≤ M < N with N being the size of the original sample X. Select a noise distribution
and replace M elements of X by points drawn from the noise distribution. For example, the
uniform distribution on a hyperrectangle [-c, c]p ⊂ ℜp , C > 1, may be used, where X had
been transformed before the replacement to have a zero mean vector and the identity matrix
as covariance matrix.
Addition of noise points. The replacement of original points by noise causes a loss of
information which may impair the modeling of the data structure based on a resample
clustering. Therefore, an alternative method is proposed here. The M points drawn from the
noise distribution could also be added to the data set (i.e., without eliminating any original
point). The artificial increase of the resample size in comparison to the original sample size
may be less problematic for the purpose of cluster validation than it could be for other
resampling applications. It is also possible to find a balance between the artificial increase of
the resample size and the information loss: MR points are replaced, while MA points are
added, where MR + MA = M. Reasonable choices for MR and MA may have to be sought
experimentally by the user.

3.7 Feature resampling
Data randomization schemes can also be applied to the set of features used to characterize
the population. Such methods will be subsumed below under the term ‘feature resampling’.
Two of the subsequently described methods (feature subsampling and leave on feature out)
leave the information about one or more features unused when generating a resample.
These methods may be useful if the number of features p is larger than the number of data
points N, where the N points in the p-dimensional coordinate system actually span a data
space with less than p (i.e., at most N−1) dimensions. An example is the clustering of
biological tissues based on gene expression data, where often 40 ≤ N ≤ 300 and p ≥ 1000 (cf.
Monti et al. 2007). In such cases the clustering may become a more effective (because
redundant information are eliminated) and the computational effort of the clustering would
decrease (owing to the dimension reduction).
Feature subsampling. For r = 1, 2, …, select a subset of sr features randomly from the entire
set of p features (1 ≤ sr < p). Resample r is obtained by extracting the data of the original
sample for the selected features only. The value of sr can be fixed for generating all
resamples (e.g., Smolkin & Gosh, 2003). Alternatively, sr can be a random variable. Yu et al.
(2007) defined the value of sr to be uniformly distributed over the integer range between
0.75p and 0.85p.
Feature multiscale bootstrapping. There exists a version of bootstrapping which is similar
to feature subsampling with variable subsampling size. In this method bootstrap resamples
of a variable size M ≤ N are drawn from the original sample. This method has been applied
to the set of features (gene expression values) when clustering tumor samples (Suzuki &
Shimodaira, 2004). An implementation of the method is available in the free statistical
software R (Suzuki & Shimodaira, 2006).

Resampling Methods for Unsupervised Learning from Sample Data

297

Leave one feature out. Generate a set of i = 1,…, p resamples, where p is the number of all
features. Resample i contains the original data of all features except feature i. If the number
of features is large, the p resamples are relatively similar. Accordingly, a resample clustering
is likely to generate p similar partitions and a cluster stability assessment of these partitions
may not be informative. A cluster validation approach developed for ‘leave one feature out’
resamples is the ‘figure of merit’ (FOM), motivated by Efron’s jackknife approach. The FOM
quantifies how well the data clustering based on all features except feature i can predict the
clustering based on only the data of feature i. For the details see (Yeung et al., 2001).
Feature mapping. Several methods exist for the mapping of a data set into a lower-
dimensional space. Among these methods randomized maps suggest themselves for the
application to resampling-based cluster validation due to their attractive properties. First,
these projections generate random variations of the input data, where the strength of
variation can be adjusted almost arbitrarily. Second, some characteristics of the data in the
original space, such as the distances between points, are approximately preserved in the
projected space (i.e., metric distortions are bounded according to the Johnson-Lindenstrauss
theory). Third, the number of dimensions of the projected space can be slightly or
considerably smaller than the number of dimensions of the original space. The
dimensionality of the projected subspace in which a limited distortion can be obtained
depends only on the cardinality of the data and the magnitude of the admissible distortion.
For details see (Bertoni & Valentini, 2006). For potential users an implementation of some of
these methods is available in the free statistical software R (Valentini, 2006).
Feature weighting. The features to be included into a resample data set can also be
randomly weighted. When using continuous positive weights, the information of every
feature is included at a certain degree. The lognormal distribution with the mean μ = −log2
and the variance σ2 = 2*log2 can be used for the drawing of the weights. The method can be
interpreted as an alternative approach to bootstrapping. The use of the lognormal
distribution can be motivated based on relationships of this distribution with the Poisson
distribution and the binomial distribution, where the latter is the underlying distribution of
a drawing with replacement. The authors of this method (Gana Dresen et al., 2008) called
their approach resampling based on continuous weights.

4. Results of benchmarking studies
The performance of the above resampling methods is not easily predicted based on a
theoretical analysis. Therefore, empirical comparisons of different methods provide useful
information for the selection of a method in future applications. This section is a summary
of main results reported in five studies which included benchmarking tests of different
resampling schemes in a clustering context. In the next section these results will be
discussed aiming at general suggestions for the use and choice of resampling methods
applied to cluster validation.
In the sequel, the term bootstrapping always refers to its non-parametric version. The
bootstrap scheme (drawing with replacement) was always applied to the full original
sample. To keep the reported information concise the following symbols will be used.
Symbols / abbreviations
N number of observations (data points) in an original sample
p number of dimensions (i.e., features used to describe the members of a population)
R number of resamples generated by using one of the resampling schemes

 Machine Learning

296

For the investigation of cluster stability with respect to outliers Hennig (2007) proposed the
replacement of a subset of data points by noise, where “noise points should be allowed to lie
far away from the bulk (or bulks) of the data, but it may also be interesting to have noise
points in between the clusters, possibly weakening their separation”. The author cited
Donoho’s and Huber’s concept of the finite sample replacement breakdown point as a
related methodological basis.
Replacing points by noise. Choose M, the number of data points to be replaced by noise,
where 1 ≤ M < N with N being the size of the original sample X. Select a noise distribution
and replace M elements of X by points drawn from the noise distribution. For example, the
uniform distribution on a hyperrectangle [-c, c]p ⊂ ℜp , C > 1, may be used, where X had
been transformed before the replacement to have a zero mean vector and the identity matrix
as covariance matrix.
Addition of noise points. The replacement of original points by noise causes a loss of
information which may impair the modeling of the data structure based on a resample
clustering. Therefore, an alternative method is proposed here. The M points drawn from the
noise distribution could also be added to the data set (i.e., without eliminating any original
point). The artificial increase of the resample size in comparison to the original sample size
may be less problematic for the purpose of cluster validation than it could be for other
resampling applications. It is also possible to find a balance between the artificial increase of
the resample size and the information loss: MR points are replaced, while MA points are
added, where MR + MA = M. Reasonable choices for MR and MA may have to be sought
experimentally by the user.

3.7 Feature resampling
Data randomization schemes can also be applied to the set of features used to characterize
the population. Such methods will be subsumed below under the term ‘feature resampling’.
Two of the subsequently described methods (feature subsampling and leave on feature out)
leave the information about one or more features unused when generating a resample.
These methods may be useful if the number of features p is larger than the number of data
points N, where the N points in the p-dimensional coordinate system actually span a data
space with less than p (i.e., at most N−1) dimensions. An example is the clustering of
biological tissues based on gene expression data, where often 40 ≤ N ≤ 300 and p ≥ 1000 (cf.
Monti et al. 2007). In such cases the clustering may become a more effective (because
redundant information are eliminated) and the computational effort of the clustering would
decrease (owing to the dimension reduction).
Feature subsampling. For r = 1, 2, …, select a subset of sr features randomly from the entire
set of p features (1 ≤ sr < p). Resample r is obtained by extracting the data of the original
sample for the selected features only. The value of sr can be fixed for generating all
resamples (e.g., Smolkin & Gosh, 2003). Alternatively, sr can be a random variable. Yu et al.
(2007) defined the value of sr to be uniformly distributed over the integer range between
0.75p and 0.85p.
Feature multiscale bootstrapping. There exists a version of bootstrapping which is similar
to feature subsampling with variable subsampling size. In this method bootstrap resamples
of a variable size M ≤ N are drawn from the original sample. This method has been applied
to the set of features (gene expression values) when clustering tumor samples (Suzuki &
Shimodaira, 2004). An implementation of the method is available in the free statistical
software R (Suzuki & Shimodaira, 2006).

Resampling Methods for Unsupervised Learning from Sample Data

297

Leave one feature out. Generate a set of i = 1,…, p resamples, where p is the number of all
features. Resample i contains the original data of all features except feature i. If the number
of features is large, the p resamples are relatively similar. Accordingly, a resample clustering
is likely to generate p similar partitions and a cluster stability assessment of these partitions
may not be informative. A cluster validation approach developed for ‘leave one feature out’
resamples is the ‘figure of merit’ (FOM), motivated by Efron’s jackknife approach. The FOM
quantifies how well the data clustering based on all features except feature i can predict the
clustering based on only the data of feature i. For the details see (Yeung et al., 2001).
Feature mapping. Several methods exist for the mapping of a data set into a lower-
dimensional space. Among these methods randomized maps suggest themselves for the
application to resampling-based cluster validation due to their attractive properties. First,
these projections generate random variations of the input data, where the strength of
variation can be adjusted almost arbitrarily. Second, some characteristics of the data in the
original space, such as the distances between points, are approximately preserved in the
projected space (i.e., metric distortions are bounded according to the Johnson-Lindenstrauss
theory). Third, the number of dimensions of the projected space can be slightly or
considerably smaller than the number of dimensions of the original space. The
dimensionality of the projected subspace in which a limited distortion can be obtained
depends only on the cardinality of the data and the magnitude of the admissible distortion.
For details see (Bertoni & Valentini, 2006). For potential users an implementation of some of
these methods is available in the free statistical software R (Valentini, 2006).
Feature weighting. The features to be included into a resample data set can also be
randomly weighted. When using continuous positive weights, the information of every
feature is included at a certain degree. The lognormal distribution with the mean μ = −log2
and the variance σ2 = 2*log2 can be used for the drawing of the weights. The method can be
interpreted as an alternative approach to bootstrapping. The use of the lognormal
distribution can be motivated based on relationships of this distribution with the Poisson
distribution and the binomial distribution, where the latter is the underlying distribution of
a drawing with replacement. The authors of this method (Gana Dresen et al., 2008) called
their approach resampling based on continuous weights.

4. Results of benchmarking studies
The performance of the above resampling methods is not easily predicted based on a
theoretical analysis. Therefore, empirical comparisons of different methods provide useful
information for the selection of a method in future applications. This section is a summary
of main results reported in five studies which included benchmarking tests of different
resampling schemes in a clustering context. In the next section these results will be
discussed aiming at general suggestions for the use and choice of resampling methods
applied to cluster validation.
In the sequel, the term bootstrapping always refers to its non-parametric version. The
bootstrap scheme (drawing with replacement) was always applied to the full original
sample. To keep the reported information concise the following symbols will be used.
Symbols / abbreviations
N number of observations (data points) in an original sample
p number of dimensions (i.e., features used to describe the members of a population)
R number of resamples generated by using one of the resampling schemes

 Machine Learning

298

S subsampling size (percentage of data randomly drawn from the original data sample)
KR number of clusters generated when clustering each resample data set
K number of clusters of a consensus partition obtained from the set of resample partitions
Kt true (known) number of classes (populations) represented by a benchmarking data set
Minaei-Bidgoli et al. (2004) compared bootstrapping and subsampling for five
benchmarking data sets with N >> p. The number of resamples R varied from 5 to 1000 and
S ∈ [5%, 75%]. All resample partitions were obtained by using the K-means clustering
algorithm. Resampling performance was measured based on the misassignment (error)
obtained for the clustering partitions in comparison to the a priori known class structure of
benchmark data sets. The error rate was always calculated for a partition representing the
consensus of the R resample partitions. Four different methods from the literature were
used providing four consensus partitions in each case. While the generation of resample
partitions was repeated for different pre-specified values of the number of clusters (KR = [2,
20], KR > Kt), each consensus partitions was calculated to have exactly the true number of
clusters (K = Kt). The error was calculated after finding the optimal assignment between the
obtained consensus clusters and the known classes. All experiments were repeated at least
10 times and average errors were reported for some of the best parameter settings of the
entire procedure (resampling, resample clustering and consensus clustering).
The error rates obtained for bootstrapping and subsampling were similar. Because the
results for subsampling were based on only 5 to 75% of the data sets (parameter S), the
authors considered subsampling as a flexible method that can be used to reduce the
computational cost in many data mining tasks.
Möller & Radke (2006) compared bootstrapping, subsampling (S = 80%) and perturbation
(with three values of the perturbation strength, see section 3.4). R = 20 was fixed in all
experiments. Resampling performance was measured based on the rate of false estimates of
the number of clusters obtained for the set of the R resample partitions. For each data set 458
estimates of the number of clusters were obtained, resulting from the application of 12
clustering techniques and 41 cluster validity indices. The clustering methods included
different hierarchical agglomeration schemes and different metrics, a so-called K-medoid
clustering and two versions of fuzzy C-means clustering. Only those of the 458 results were
used for the final interpretation where the correct (a priori known) number of clusters was
obtained for the original sample as well as for the majority of the resamples. (These
constraints were used to exclude errors due to poor original sampling, poor cluster analysis
and/or poor configuration of the resampling scheme.) The following data were analyzed:
five realizations of each of the stochastic models 2, 3, 4, 6 and 7 described in (Dudoit and
Fridlyand, 2003), three microarray data sets with the 200 most differentially expressed genes
(Leukemia, CNS and Novartis data described in Monti et al., 2003), the data sets Iris, Liver,
Thyroid and Wine from the UCI repository (Asuncion & Newman, 2007), and a data set of
functional magnetic resonance imaging data. Data sets with N >> p as well as N << p were
included.
In general, the error rates obtained for the perturbation technique were smaller than the
error rates for subsampling. Both perturbation and subsampling led to clearly smaller error
rates than bootstrapping. The same ranking was obtained when considering all (about
15.000) estimates of the number of clusters without applying the mentioned constraints. The
occurrence of false estimates even for a perturbation with 1% noise indicated that the small
errors obtained for the perturbation scheme are not spurious results (i.e., the perturbation

Resampling Methods for Unsupervised Learning from Sample Data

299

was effective). The authors concluded that the increased errors for subsampling and
bootstrapping may have been a consequence of the information loss (i.e., 20% and about
37% of the original sample were not used for the generation of a resample in the
subsampling and bootstrapping schemes, respectively). The authors further concluded that
resampling schemes without this information loss are more useful in cluster validation
studies, in particular, when the original samples have a small size.
Hennig (2007) compared bootstrapping, subsampling (S = 50%), the replacement of sample
points by noise (M = 0.05N, c = 3 and M = 0.2N, c = 4, see section 3.6), two versions of
jittering (parameter q was set respectively to the 0.1- and 0.25-quantiles of the values dij, see
section 3.2), and the combination of bootstrapping and jittering (q = 0.1). R = 20 was fixed in
all experiments. Resampling performance was measured based on several types of results.
First, cluster stability was assessed by calculating the agreement between the partition
generated from each resample and the partition obtained for the original sample (The
agreement between clusters of two partitions was measured by the Jaccard index (cf.
Theodoridis & Koutroumbas, 2006).) Second, for model data with true cluster memberships,
it was measured how well the clustering of an original sample represented the model
structure. (The Jaccard index was applied to the cluster memberships of each original
sample and the true cluster memberships.) Third, the correlation between the two
aforementioned types of results was calculated. Different clustering methods were used,
namely, a method called normal mixture plus noise, K-means, 10% trimmed K-means and
average linkage hierarchical agglomeration. 50 original samples were generated for each of
two stochastic models (Kt = {3, 6}, N >> p). One model included outliers. One biological data
set (N = 366, p = 306) was analyzed that was known to contain substructure – without exact
knowledge about the ‘true’ cluster composition.
Due to the choice of the analysis design, three types of results were distinguished. 1)
partitions of original samples with a fairly good representation of the model structure and a
stable clustering of the resample data that corresponded to this model structure, 2)
partitions of original samples with a relatively poor representation of the model structure
and an unstable clustering of the resample data and 3) partitions of original samples with a
relatively poor representation of the model structure and, nevertheless, a stable clustering of
the resample data. The results of the types 1 and 2 are desirable, because they permit
appropriate conclusions about the performance of clustering of unknown data based on
resample cluster stability scores. Results of type 3 are problematic. If the original sample
does not adequately represent the true population structure, also the clustering of this
sample may not represent the true structure. Even though it is desirable to obtain an
indication of the poor modeling result, namely, an unstable clustering for the resample data.
Otherwise, this kind of inappropriate modeling cannot be distinguished from proper
clustering models when the true population is unknown.
Based on all results, subsampling was considered as being the best method, followed by the
combination of bootstrapping/jittering and bootstrapping alone. The replacement of data
points by noise was also useful in a number of case, including some cases where the other
methods did not perform well (i.e., they provided a number of type-3 results). Jittering
showed generally a poor performance (i.e., a relatively large fraction of type-3 results for
most of the data sets and clustering algorithms). The author concluded that a good strategy
in practice can be the use of one of the schemes bootstrapping, bootstrapping/jittering and
subsampling together with one scheme for replacing data by noise.

 Machine Learning

298

S subsampling size (percentage of data randomly drawn from the original data sample)
KR number of clusters generated when clustering each resample data set
K number of clusters of a consensus partition obtained from the set of resample partitions
Kt true (known) number of classes (populations) represented by a benchmarking data set
Minaei-Bidgoli et al. (2004) compared bootstrapping and subsampling for five
benchmarking data sets with N >> p. The number of resamples R varied from 5 to 1000 and
S ∈ [5%, 75%]. All resample partitions were obtained by using the K-means clustering
algorithm. Resampling performance was measured based on the misassignment (error)
obtained for the clustering partitions in comparison to the a priori known class structure of
benchmark data sets. The error rate was always calculated for a partition representing the
consensus of the R resample partitions. Four different methods from the literature were
used providing four consensus partitions in each case. While the generation of resample
partitions was repeated for different pre-specified values of the number of clusters (KR = [2,
20], KR > Kt), each consensus partitions was calculated to have exactly the true number of
clusters (K = Kt). The error was calculated after finding the optimal assignment between the
obtained consensus clusters and the known classes. All experiments were repeated at least
10 times and average errors were reported for some of the best parameter settings of the
entire procedure (resampling, resample clustering and consensus clustering).
The error rates obtained for bootstrapping and subsampling were similar. Because the
results for subsampling were based on only 5 to 75% of the data sets (parameter S), the
authors considered subsampling as a flexible method that can be used to reduce the
computational cost in many data mining tasks.
Möller & Radke (2006) compared bootstrapping, subsampling (S = 80%) and perturbation
(with three values of the perturbation strength, see section 3.4). R = 20 was fixed in all
experiments. Resampling performance was measured based on the rate of false estimates of
the number of clusters obtained for the set of the R resample partitions. For each data set 458
estimates of the number of clusters were obtained, resulting from the application of 12
clustering techniques and 41 cluster validity indices. The clustering methods included
different hierarchical agglomeration schemes and different metrics, a so-called K-medoid
clustering and two versions of fuzzy C-means clustering. Only those of the 458 results were
used for the final interpretation where the correct (a priori known) number of clusters was
obtained for the original sample as well as for the majority of the resamples. (These
constraints were used to exclude errors due to poor original sampling, poor cluster analysis
and/or poor configuration of the resampling scheme.) The following data were analyzed:
five realizations of each of the stochastic models 2, 3, 4, 6 and 7 described in (Dudoit and
Fridlyand, 2003), three microarray data sets with the 200 most differentially expressed genes
(Leukemia, CNS and Novartis data described in Monti et al., 2003), the data sets Iris, Liver,
Thyroid and Wine from the UCI repository (Asuncion & Newman, 2007), and a data set of
functional magnetic resonance imaging data. Data sets with N >> p as well as N << p were
included.
In general, the error rates obtained for the perturbation technique were smaller than the
error rates for subsampling. Both perturbation and subsampling led to clearly smaller error
rates than bootstrapping. The same ranking was obtained when considering all (about
15.000) estimates of the number of clusters without applying the mentioned constraints. The
occurrence of false estimates even for a perturbation with 1% noise indicated that the small
errors obtained for the perturbation scheme are not spurious results (i.e., the perturbation

Resampling Methods for Unsupervised Learning from Sample Data

299

was effective). The authors concluded that the increased errors for subsampling and
bootstrapping may have been a consequence of the information loss (i.e., 20% and about
37% of the original sample were not used for the generation of a resample in the
subsampling and bootstrapping schemes, respectively). The authors further concluded that
resampling schemes without this information loss are more useful in cluster validation
studies, in particular, when the original samples have a small size.
Hennig (2007) compared bootstrapping, subsampling (S = 50%), the replacement of sample
points by noise (M = 0.05N, c = 3 and M = 0.2N, c = 4, see section 3.6), two versions of
jittering (parameter q was set respectively to the 0.1- and 0.25-quantiles of the values dij, see
section 3.2), and the combination of bootstrapping and jittering (q = 0.1). R = 20 was fixed in
all experiments. Resampling performance was measured based on several types of results.
First, cluster stability was assessed by calculating the agreement between the partition
generated from each resample and the partition obtained for the original sample (The
agreement between clusters of two partitions was measured by the Jaccard index (cf.
Theodoridis & Koutroumbas, 2006).) Second, for model data with true cluster memberships,
it was measured how well the clustering of an original sample represented the model
structure. (The Jaccard index was applied to the cluster memberships of each original
sample and the true cluster memberships.) Third, the correlation between the two
aforementioned types of results was calculated. Different clustering methods were used,
namely, a method called normal mixture plus noise, K-means, 10% trimmed K-means and
average linkage hierarchical agglomeration. 50 original samples were generated for each of
two stochastic models (Kt = {3, 6}, N >> p). One model included outliers. One biological data
set (N = 366, p = 306) was analyzed that was known to contain substructure – without exact
knowledge about the ‘true’ cluster composition.
Due to the choice of the analysis design, three types of results were distinguished. 1)
partitions of original samples with a fairly good representation of the model structure and a
stable clustering of the resample data that corresponded to this model structure, 2)
partitions of original samples with a relatively poor representation of the model structure
and an unstable clustering of the resample data and 3) partitions of original samples with a
relatively poor representation of the model structure and, nevertheless, a stable clustering of
the resample data. The results of the types 1 and 2 are desirable, because they permit
appropriate conclusions about the performance of clustering of unknown data based on
resample cluster stability scores. Results of type 3 are problematic. If the original sample
does not adequately represent the true population structure, also the clustering of this
sample may not represent the true structure. Even though it is desirable to obtain an
indication of the poor modeling result, namely, an unstable clustering for the resample data.
Otherwise, this kind of inappropriate modeling cannot be distinguished from proper
clustering models when the true population is unknown.
Based on all results, subsampling was considered as being the best method, followed by the
combination of bootstrapping/jittering and bootstrapping alone. The replacement of data
points by noise was also useful in a number of case, including some cases where the other
methods did not perform well (i.e., they provided a number of type-3 results). Jittering
showed generally a poor performance (i.e., a relatively large fraction of type-3 results for
most of the data sets and clustering algorithms). The author concluded that a good strategy
in practice can be the use of one of the schemes bootstrapping, bootstrapping/jittering and
subsampling together with one scheme for replacing data by noise.

 Machine Learning

300

Gana Dresen et al. (2008) compared bootstrapping and feature weighting. R = 1000 was fixed
in all experiments. Resampling performance was measured based on the stability of branches
of cluster trees (dendrograms) obtained from hierarchical agglomerative clustering of the
resample data sets. Furthermore, a majority consensus tree was generated from the resample
cluster trees and this consensus tree was compared with the cluster tree obtained from the
original sample (based on the Rand index; cf. (Theodoridis & Koutroumbas, 2006)). For the
comparison, gene expression data from 24 chromosomes (p = 8 to 648 probe sets) of N = 20
tumor patients were used. For a subset of the data, knowledge about actual clustering
structure was available. A data set containing p = 7 features of N = 22 primates was also
analyzed. In addition, it was investigated how well groups of simulated differentially
expressed genes can be robustly detected based on bootstrapping and feature weighting.
In a number of cases bootstrapping and feature weighting showed comparable performance.
However, in several cases bootstrapping led to inappropriate consensus cluster trees. That
is, the structure was inappropriate, many spurious singleton clusters were obtained and
especially the false clusters proved to be stable under the bootstrap procedure. The authors
concluded that resampling with continuous weights is strongly recommended because it
performed at least as well as bootstrapping and in some cases it surpassed bootstrapping. In
particular, feature weighting was more appropriate than bootstrapping to cluster small size
samples.
 Möller and Radke (2006b) reported results of estimating the number of clusters based on
two different approaches, denoted here by A and B. In approach A (Monti et al., 2003)
resampling is performed by subsampling (S = 80%). In approach B (Möller & Radke, 2006b)
nearest neighbor resampling (NNR1) was used. Approach B led to better results than A on
high-dimensional gene expression benchmark data (N << p). In particular, a fairly good
recovery of known tumor classes was possible based on just R = 10 nearest neighbor
resamples in approach B, while approach A led to similar or worse results based on R = 200
or R = 500 subsamples (with R depending on the clustering algorithm). These results
indicated the usefulness of nearest neighbor resampling; however, the performance
differences may partly be attributable to the different methods selected in the approaches A
and B, respectively, for clustering and for estimating the number of clusters.

5. Results of nearest neighbor resampling
Results of a direct benchmarking of NNR and other resampling methods are currently not
available. However, several cluster validation results based on NNR have been obtained.
Ulbrich (2006) used the NNR1 algorithm to identify robust and prognostic gene expression
patterns by clustering of tumor patients. Guthke et al. (2007) performed clustering to find
co-expression patterns of genes for the subsequent utilization in systems biology. They
showed that the NNR1-based cluster stability analysis can be used to complement and
confirm the results of a different quality assessment, namely the vote of so-called cluster
validity indices (Bezdek and Pal, 1998).
The use of the NNR2 method has provided strong indications that (estrogen receptor
positive) breast cancer can be robustly subdivided into three, perhaps four, classes which
are represented by different prognostic gene expression profiles. This result has been
consistently obtained for gene expression data and survival time data generated in four
different studies based on two different DNA microarray platforms and including the data
from more than 700 tumor patients (Iffert, 2007).
In combination with methods presented by Fred and Jain (2006), the NNR2 algorithm was
recently applied to the gene expression benchmark data sets of known tumor classes

Resampling Methods for Unsupervised Learning from Sample Data

301

published by Monti et al. (2003). In several cases the obtained class recovery scores were
higher than those obtained by Monti et al. based on subsampling and those obtained by Yu
et al. (2007) who analyzed the same data based on feature subsampling (Möller, 2008).
However, the cluster analysis methods used in these studies were also different.

6. Discussion and conclusions
Bootstrapping (drawing with replacement) is perhaps the most widely known and
recommended resampling approach, because it is a standard approach in for statistical
inference methods (Efron & Tibshirani, 1993). If the sample size is large and the true
distribution is well represented by the data, bootstrapping may also be useful for the
validation of clustering results. That is, other resampling schemes may not lead to more
accurate results (cf. Minaei-Bidgoli et al., 2004). Under these circumstances the user may
prefer bootstrapping, because no control parameter has to be set.
However, as shown in complementary investigations (section 4), for statistical cluster
validation it is recommended to prefer other methods than bootstrapping. When the sample
size is large, subsampling is likely to perform as well as bootstrapping (Minaei-Bidgoli et al.,
2004; Hennig, 2007) or even better (Möller & Radke, 2006a), where the clustering of
subsamples requires a lower computing effort. If the clustering result is to be used as the
basis for a classifier of unknown samples, the subdivision scheme (e.g., Dudoit & Fridlyand,
2003) may be the best choice, because it is focused on minimizing the prediction error, while
subsampling results are commonly used for assessing cluster stability (e.g., Tseng and
Wong, 2005; Fred & Jain, 2006). When the sample size was small, perturbation and
resampling with continuous weights have been shown to outperform bootstrapping (Radke
& Möller, 2006a; Gana Dresen et al., 2008).
If the sample size is small, a further decrease by drawing subsamples prevents the
“learning” of a good model from the resample data. In this case, perturbation methods are
more suitable than sampling from a sample (Radke & Möller, 2006a). However, the user
should be aware that this type of perturbation works best only if all populations of the
hypothesized mixture population have equal variability. Furthermore, this method requires
an estimate or guess of the proper perturbation strength. Therefore, it may be recommended
to search for stable clusters by using different values of the perturbation strength. This could
increase the confidence in the validity of the obtained clusters and their completeness with
respect to the true structures.
Nearest neighbor resampling (NNR) is an attractive alternative to the perturbation described
in section 3.4. In the absence of prior knowledge, the parameter setting for the NNR2 method
is less critical than the specification of a global perturbation strength. According to the
author’s knowledge, the NNR methods were described here for the first time in detail.
Especially, the NNR2 method has provided promising results when clustering data with
complex structures (see section 5). Therefore, based on practical experience, the author
recommends the NNR approach for applications of unsupervised machine learning. Even
though, more comprehensive simulations and benchmarking studies with other methods are
desired know the performance of the NNR approach in a more general context.
Feature resampling may be a way to bypass some of the problems associated with the above
resampling schemes. However, the successful use of some of these techniques is limited to
applications where the assumptions underlying these techniques are fulfilled. This
argument applies, for example, to feature subsampling and leave one feature out which involve

 Machine Learning

300

Gana Dresen et al. (2008) compared bootstrapping and feature weighting. R = 1000 was fixed
in all experiments. Resampling performance was measured based on the stability of branches
of cluster trees (dendrograms) obtained from hierarchical agglomerative clustering of the
resample data sets. Furthermore, a majority consensus tree was generated from the resample
cluster trees and this consensus tree was compared with the cluster tree obtained from the
original sample (based on the Rand index; cf. (Theodoridis & Koutroumbas, 2006)). For the
comparison, gene expression data from 24 chromosomes (p = 8 to 648 probe sets) of N = 20
tumor patients were used. For a subset of the data, knowledge about actual clustering
structure was available. A data set containing p = 7 features of N = 22 primates was also
analyzed. In addition, it was investigated how well groups of simulated differentially
expressed genes can be robustly detected based on bootstrapping and feature weighting.
In a number of cases bootstrapping and feature weighting showed comparable performance.
However, in several cases bootstrapping led to inappropriate consensus cluster trees. That
is, the structure was inappropriate, many spurious singleton clusters were obtained and
especially the false clusters proved to be stable under the bootstrap procedure. The authors
concluded that resampling with continuous weights is strongly recommended because it
performed at least as well as bootstrapping and in some cases it surpassed bootstrapping. In
particular, feature weighting was more appropriate than bootstrapping to cluster small size
samples.
 Möller and Radke (2006b) reported results of estimating the number of clusters based on
two different approaches, denoted here by A and B. In approach A (Monti et al., 2003)
resampling is performed by subsampling (S = 80%). In approach B (Möller & Radke, 2006b)
nearest neighbor resampling (NNR1) was used. Approach B led to better results than A on
high-dimensional gene expression benchmark data (N << p). In particular, a fairly good
recovery of known tumor classes was possible based on just R = 10 nearest neighbor
resamples in approach B, while approach A led to similar or worse results based on R = 200
or R = 500 subsamples (with R depending on the clustering algorithm). These results
indicated the usefulness of nearest neighbor resampling; however, the performance
differences may partly be attributable to the different methods selected in the approaches A
and B, respectively, for clustering and for estimating the number of clusters.

5. Results of nearest neighbor resampling
Results of a direct benchmarking of NNR and other resampling methods are currently not
available. However, several cluster validation results based on NNR have been obtained.
Ulbrich (2006) used the NNR1 algorithm to identify robust and prognostic gene expression
patterns by clustering of tumor patients. Guthke et al. (2007) performed clustering to find
co-expression patterns of genes for the subsequent utilization in systems biology. They
showed that the NNR1-based cluster stability analysis can be used to complement and
confirm the results of a different quality assessment, namely the vote of so-called cluster
validity indices (Bezdek and Pal, 1998).
The use of the NNR2 method has provided strong indications that (estrogen receptor
positive) breast cancer can be robustly subdivided into three, perhaps four, classes which
are represented by different prognostic gene expression profiles. This result has been
consistently obtained for gene expression data and survival time data generated in four
different studies based on two different DNA microarray platforms and including the data
from more than 700 tumor patients (Iffert, 2007).
In combination with methods presented by Fred and Jain (2006), the NNR2 algorithm was
recently applied to the gene expression benchmark data sets of known tumor classes

Resampling Methods for Unsupervised Learning from Sample Data

301

published by Monti et al. (2003). In several cases the obtained class recovery scores were
higher than those obtained by Monti et al. based on subsampling and those obtained by Yu
et al. (2007) who analyzed the same data based on feature subsampling (Möller, 2008).
However, the cluster analysis methods used in these studies were also different.

6. Discussion and conclusions
Bootstrapping (drawing with replacement) is perhaps the most widely known and
recommended resampling approach, because it is a standard approach in for statistical
inference methods (Efron & Tibshirani, 1993). If the sample size is large and the true
distribution is well represented by the data, bootstrapping may also be useful for the
validation of clustering results. That is, other resampling schemes may not lead to more
accurate results (cf. Minaei-Bidgoli et al., 2004). Under these circumstances the user may
prefer bootstrapping, because no control parameter has to be set.
However, as shown in complementary investigations (section 4), for statistical cluster
validation it is recommended to prefer other methods than bootstrapping. When the sample
size is large, subsampling is likely to perform as well as bootstrapping (Minaei-Bidgoli et al.,
2004; Hennig, 2007) or even better (Möller & Radke, 2006a), where the clustering of
subsamples requires a lower computing effort. If the clustering result is to be used as the
basis for a classifier of unknown samples, the subdivision scheme (e.g., Dudoit & Fridlyand,
2003) may be the best choice, because it is focused on minimizing the prediction error, while
subsampling results are commonly used for assessing cluster stability (e.g., Tseng and
Wong, 2005; Fred & Jain, 2006). When the sample size was small, perturbation and
resampling with continuous weights have been shown to outperform bootstrapping (Radke
& Möller, 2006a; Gana Dresen et al., 2008).
If the sample size is small, a further decrease by drawing subsamples prevents the
“learning” of a good model from the resample data. In this case, perturbation methods are
more suitable than sampling from a sample (Radke & Möller, 2006a). However, the user
should be aware that this type of perturbation works best only if all populations of the
hypothesized mixture population have equal variability. Furthermore, this method requires
an estimate or guess of the proper perturbation strength. Therefore, it may be recommended
to search for stable clusters by using different values of the perturbation strength. This could
increase the confidence in the validity of the obtained clusters and their completeness with
respect to the true structures.
Nearest neighbor resampling (NNR) is an attractive alternative to the perturbation described
in section 3.4. In the absence of prior knowledge, the parameter setting for the NNR2 method
is less critical than the specification of a global perturbation strength. According to the
author’s knowledge, the NNR methods were described here for the first time in detail.
Especially, the NNR2 method has provided promising results when clustering data with
complex structures (see section 5). Therefore, based on practical experience, the author
recommends the NNR approach for applications of unsupervised machine learning. Even
though, more comprehensive simulations and benchmarking studies with other methods are
desired know the performance of the NNR approach in a more general context.
Feature resampling may be a way to bypass some of the problems associated with the above
resampling schemes. However, the successful use of some of these techniques is limited to
applications where the assumptions underlying these techniques are fulfilled. This
argument applies, for example, to feature subsampling and leave one feature out which involve

 Machine Learning

302

a loss of original information (cf. Yeung et al., 2001). Feature mapping (Bertoni & Valentini,
2006) appears to be a promising approach due to the combination of dimension reduction
and the distance–preserving character of the mapping. It would be interesting to have
empirical results indicating the relative merits of this kind of mapping in comparison to
several other methods presented above. Another promising method is resampling with
continuous weights (Gana Dresen et al., 2008). As stated by the authors it would be interesting
to investigate the performance of this method in combination with other clustering
algorithms than the hierarchical ones used.
The resampling methods for the simulation of measurement errors (jittering) and outliers are
useful if the user wants to confirm the robustness of the final clustering result with respect
to these factors of influence. However, robust results of such an analysis are only a pre-
condition for a good clustering model. The fact that clusters are stable under jittering and
the insertion of artificial outliers must not be interpreted over-optimistically as the
indication of a real mixture population.
Hennig (2007) argued that “Generally, large stability values do not necessarily indicate valid
clusters, but small stability values are informative. Either they correspond to meaningless
clusters (in terms of the true underlying models), or they indicate inherent instabilities in
clusters or clustering methods.” Following this view, any stable cluster and any good
prediction based on the subdivision approach (section 3.1) may have to be verified by
repeating the cluster analysis with an increasing amount of (random) change made to the
data. One criterion for stopping these repetitions is that some clusters ‘disappear’ under the
influence of resampling, while other clusters can still be recovered. This observation would
not be expected in the absence of any true structure. Another termination criterion is
fulfilled if the clustering structures ‘disappear’ only if the amount of random change has
become clearly larger compared to the effect of the measurement error. This fact may be
deducible even if the measurement error can only be roughly estimated.
An inevitable decision that has to be made by the user is the selection of the number of
resamples, R. A proper value of R depends on both the structure of the investigated data
and the resampling method used. In fact, compact and well separated clusters would be
robustly detected based on fewer resamples than overlapping, noisy clusters. In addition,
the more original sample information is utilized for generating each resample, the fewer
resamples are likely to be required. For example, R = 10,..., 30 resamples obtained from NNR
methods have been sufficient to robustly recover clustering structures of small high-
dimensional samples (Ulbrich, 2006; Iffert, 2007; Möller & Radke, 2006b). In contrast, R =
100,…, 1000 resamples have often been used for the cluster validation based on
bootstrapping or subsampling (cf. section 4). If the information loss of the mapping from the
original sample to the resample exceeds a data specific-threshold, the lack of information in
the individual resamples may not be compensable by any increase in the number of
resamples.
Computerized observation techniques in an increasing number of research areas generate
high-dimensional data (e.g., DNA microarray data, spectral data with a high frequency
resolution and complex image and video data). High-dimensional data sets are more likely
than others to provide clusterings which are not significant and meaningful. Especially in
those cases, but also when clustering any other sample data, the use of resampling methods
is recommend as a valuable aid for a statistical model quality assessment.
The above description and review of resampling schemes and their performance as well as
the presentation of a new approach (NNR) may help users to select an appropriate method
in future studies.

Resampling Methods for Unsupervised Learning from Sample Data

303

8. Acknowledgement
This study was supported by the HKI Jena and the International Leibniz Research School for
Microbial and Biomolecular Interactions (ILRS) Jena (http://www.ilrs. hki-jena.de).

9. References
Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository [http://www.ics.

uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, School
of Information and Computer Science.

Ayad, H.G. & Kamel, M.S. (2008). Cumulative voting consensus method for partitions with
variable number of clusters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 30, No. 1, 160-173

Bertoni, A. & Valentini, G. (2006). Randomized maps for assessing the reliability of patients
clusters in DNA microarray data analyses. Artificial Intelligence in Medicine, Vol. 37,
85-109

Bezdek, J.C. & Pal, N.R. (1998). Some new indexes of cluster validity, IEEE Transactions on
Systems, Man and Cybernetics – Part B, Vol. 28, 301-315

Bittner, M. & 27 co-authors (2000). Molecular classification of cutaneous malignant
melanoma by gene expression profiling. Nature, Vol. 406, 536-540

Borgelt, C. & Kruse, R. Finding the number of fuzzy clusters by resampling. Proceedings of
the IEEE Int. Conf. on Fuzzy Systems, pp. 48-54, ISBN: 0-7803-9488-7, Vancouver,
Canada, Sept. 2006, IEEE Press, Piscataway, NJ, USA

Dudoit, S. & Fridlyand J. (2003). A prediction-based resampling method for estimating the
number of clusters in a dataset. Genome Biology 3:7, Online ISSN 1465-6914

Efron, B. & Tibshirani, R.J. (1993). An introduction to the bootstrap. Chapman & Hall/CRC,
ISBN 0-412-04231-2

Fred, A. & Jain, A.K. (2006). Learning pairwise similarity. Proceedings of the Int. Conf. on
Pattern Recognition (ICPR), pp. 892-895, ISBN 0-7695-2521-0, Hong-Kong, August
2006, IEEE Computer Society Press

Gana Dresen, I.M.; Boes, T.; Huesing, J.; Neuhaeuser, M. & Joeckel, K.-H. (2008). New
resampling method for evaluating stability of clusters. BMC Bioinformatics, 9:42,
doi:10.1186/1471-2105-9-42

Guthke, R.; Kniemeyer, O.; Albrecht, D.; Brakhage, A.A. & Möller, U. (2007). Discovery of
Gene Regulatory Networks in Aspergillus fumigatus, In: Knowledge discovery and
emergent complexity in bioinformatics, Tuyls, K. et al. (Ed.), Lecture Notes in
Bioinformatics 4366, 22-41, Springer, ISBN 978-3-540-71036-3, Berlin/Heidelberg

Hastie, T.; Tibshirani, R. & Friedman, J. (2001). The Elements of Statistical Learning. Springer,
ISBN 978-0-387-95284-0

Hennig, C. (2007). Cluster-wise assessment of cluster stability. Computational Statistics and
Data Analysis Vol. 52, 258-271

Iffert, W. (2007). Investigations for the prognosis of diseases by simultaneous analysis of
gene expression data and survival time data. (in German), Diploma Thesis in
Bioinformatics, August 2007, Friedrich Schiller University, Jena, Germany

Kell, D.B. & Oliver, S.G. (2004). Here is the evidence, now what is the hypothesis? The
complementary roles of inductive and hypothesis-driven science in the post-
genomic era. BioEssays, Vol. 26, 99-105

Lunneborg, C.E. (2000). Data Analysis by Resampling. Concepts and Applications, Duxbury
Press, ISBN 0-534-22110-6, Pacific Grove, CA, USA

 Machine Learning

302

a loss of original information (cf. Yeung et al., 2001). Feature mapping (Bertoni & Valentini,
2006) appears to be a promising approach due to the combination of dimension reduction
and the distance–preserving character of the mapping. It would be interesting to have
empirical results indicating the relative merits of this kind of mapping in comparison to
several other methods presented above. Another promising method is resampling with
continuous weights (Gana Dresen et al., 2008). As stated by the authors it would be interesting
to investigate the performance of this method in combination with other clustering
algorithms than the hierarchical ones used.
The resampling methods for the simulation of measurement errors (jittering) and outliers are
useful if the user wants to confirm the robustness of the final clustering result with respect
to these factors of influence. However, robust results of such an analysis are only a pre-
condition for a good clustering model. The fact that clusters are stable under jittering and
the insertion of artificial outliers must not be interpreted over-optimistically as the
indication of a real mixture population.
Hennig (2007) argued that “Generally, large stability values do not necessarily indicate valid
clusters, but small stability values are informative. Either they correspond to meaningless
clusters (in terms of the true underlying models), or they indicate inherent instabilities in
clusters or clustering methods.” Following this view, any stable cluster and any good
prediction based on the subdivision approach (section 3.1) may have to be verified by
repeating the cluster analysis with an increasing amount of (random) change made to the
data. One criterion for stopping these repetitions is that some clusters ‘disappear’ under the
influence of resampling, while other clusters can still be recovered. This observation would
not be expected in the absence of any true structure. Another termination criterion is
fulfilled if the clustering structures ‘disappear’ only if the amount of random change has
become clearly larger compared to the effect of the measurement error. This fact may be
deducible even if the measurement error can only be roughly estimated.
An inevitable decision that has to be made by the user is the selection of the number of
resamples, R. A proper value of R depends on both the structure of the investigated data
and the resampling method used. In fact, compact and well separated clusters would be
robustly detected based on fewer resamples than overlapping, noisy clusters. In addition,
the more original sample information is utilized for generating each resample, the fewer
resamples are likely to be required. For example, R = 10,..., 30 resamples obtained from NNR
methods have been sufficient to robustly recover clustering structures of small high-
dimensional samples (Ulbrich, 2006; Iffert, 2007; Möller & Radke, 2006b). In contrast, R =
100,…, 1000 resamples have often been used for the cluster validation based on
bootstrapping or subsampling (cf. section 4). If the information loss of the mapping from the
original sample to the resample exceeds a data specific-threshold, the lack of information in
the individual resamples may not be compensable by any increase in the number of
resamples.
Computerized observation techniques in an increasing number of research areas generate
high-dimensional data (e.g., DNA microarray data, spectral data with a high frequency
resolution and complex image and video data). High-dimensional data sets are more likely
than others to provide clusterings which are not significant and meaningful. Especially in
those cases, but also when clustering any other sample data, the use of resampling methods
is recommend as a valuable aid for a statistical model quality assessment.
The above description and review of resampling schemes and their performance as well as
the presentation of a new approach (NNR) may help users to select an appropriate method
in future studies.

Resampling Methods for Unsupervised Learning from Sample Data

303

8. Acknowledgement
This study was supported by the HKI Jena and the International Leibniz Research School for
Microbial and Biomolecular Interactions (ILRS) Jena (http://www.ilrs. hki-jena.de).

9. References
Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository [http://www.ics.

uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, School
of Information and Computer Science.

Ayad, H.G. & Kamel, M.S. (2008). Cumulative voting consensus method for partitions with
variable number of clusters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 30, No. 1, 160-173

Bertoni, A. & Valentini, G. (2006). Randomized maps for assessing the reliability of patients
clusters in DNA microarray data analyses. Artificial Intelligence in Medicine, Vol. 37,
85-109

Bezdek, J.C. & Pal, N.R. (1998). Some new indexes of cluster validity, IEEE Transactions on
Systems, Man and Cybernetics – Part B, Vol. 28, 301-315

Bittner, M. & 27 co-authors (2000). Molecular classification of cutaneous malignant
melanoma by gene expression profiling. Nature, Vol. 406, 536-540

Borgelt, C. & Kruse, R. Finding the number of fuzzy clusters by resampling. Proceedings of
the IEEE Int. Conf. on Fuzzy Systems, pp. 48-54, ISBN: 0-7803-9488-7, Vancouver,
Canada, Sept. 2006, IEEE Press, Piscataway, NJ, USA

Dudoit, S. & Fridlyand J. (2003). A prediction-based resampling method for estimating the
number of clusters in a dataset. Genome Biology 3:7, Online ISSN 1465-6914

Efron, B. & Tibshirani, R.J. (1993). An introduction to the bootstrap. Chapman & Hall/CRC,
ISBN 0-412-04231-2

Fred, A. & Jain, A.K. (2006). Learning pairwise similarity. Proceedings of the Int. Conf. on
Pattern Recognition (ICPR), pp. 892-895, ISBN 0-7695-2521-0, Hong-Kong, August
2006, IEEE Computer Society Press

Gana Dresen, I.M.; Boes, T.; Huesing, J.; Neuhaeuser, M. & Joeckel, K.-H. (2008). New
resampling method for evaluating stability of clusters. BMC Bioinformatics, 9:42,
doi:10.1186/1471-2105-9-42

Guthke, R.; Kniemeyer, O.; Albrecht, D.; Brakhage, A.A. & Möller, U. (2007). Discovery of
Gene Regulatory Networks in Aspergillus fumigatus, In: Knowledge discovery and
emergent complexity in bioinformatics, Tuyls, K. et al. (Ed.), Lecture Notes in
Bioinformatics 4366, 22-41, Springer, ISBN 978-3-540-71036-3, Berlin/Heidelberg

Hastie, T.; Tibshirani, R. & Friedman, J. (2001). The Elements of Statistical Learning. Springer,
ISBN 978-0-387-95284-0

Hennig, C. (2007). Cluster-wise assessment of cluster stability. Computational Statistics and
Data Analysis Vol. 52, 258-271

Iffert, W. (2007). Investigations for the prognosis of diseases by simultaneous analysis of
gene expression data and survival time data. (in German), Diploma Thesis in
Bioinformatics, August 2007, Friedrich Schiller University, Jena, Germany

Kell, D.B. & Oliver, S.G. (2004). Here is the evidence, now what is the hypothesis? The
complementary roles of inductive and hypothesis-driven science in the post-
genomic era. BioEssays, Vol. 26, 99-105

Lunneborg, C.E. (2000). Data Analysis by Resampling. Concepts and Applications, Duxbury
Press, ISBN 0-534-22110-6, Pacific Grove, CA, USA

 Machine Learning

304

McLachlan, G.J. & Khan, N. (2004). On a resampling approach for tests on the number of
clusters with mixture model-based clustering of tissue samples. Journal of
Multivariate Analysis, Vol. 90, 90-105

Minaei-Bidgoli, B.; Topchy, A. & Punch, W.F. (2004). A comparison of resampling methods
for clustering ensembles. Proceedings of the International Conference on Machine
Learning; Models, Technologies and Applications (MLMTA), pp. 939-945, Las Vegas,
Nevada, June 2004

Möller, U. & Radke, D. (2006a). Performance of data resampling methods for robust class
discovery based on clustering. Intelligent Data Analysis Vol. 10, No. 2, 139-162

Möller, U. & Radke, D. (2006b). A cluster validity approach based on nearest neighbor
resampling, Proceedings of the Int. Conf. on Pattern Recognition (ICPR), pp. 892-895,
ISBN 0-7695-2521-0, Hong-Kong, August 2006, IEEE Computer Society Press

Möller, U. (2007). Missing clusters indicate poor estimates or guesses of a proper fuzzy
exponent. In: Applications of Fuzzy Sets Theory, Masulli, F.; Mitra, S.; Pasi, G. (Ed.),
Lecture Notes in Artificial Intelligence 4578, 161-169, Springer, ISBN 978-3-540-73399-
7, Berlin-Heidelberg

Möller, U. (2008). Methods for robust class discovery in gene expression profiles of tissue
samples. Poster presentation at the conference Bioinformatics Research and
Development (BIRD), July 2008, Vienna, Austria

Monti, S.; Tamayo, P.; Mesirov, J. & Golub, T. (2003). Consensus clustering: A resampling-
based method for class discovery and visualization of gene expression microarray
data. Machine Learning, Vol. 52, 91−118

Smolkin, M. & Ghosh, D. (2003). Cluster stability scores for microarray data in cancer
studies. BMC Bioinformatics, 4:36, www.biomedcentral.com/1471-2105/4/36

Strehl, A. & Gosh, J. (2002). Cluster ensembles: A knowledge reuse framework for
combining multiple partitions, J. of Machine Learning Research, Vol. 3, 583–617

Suzuki, R. & Shimodaira, H. (2004). An application of multiscale bootstrap resampling to
hierarchical clustering of microarray data: How accurate are these clusters?
Proceedings of the Int. Conf. on Genome Informatics (GIW), p. P034

Suzuki, R. & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in
hierarchical clustering. Bioinformatics, Vol. 22, No. 12, 1540-1542

Theodoridis S. & Koutroumbas, K. (2006). Pattern recognition. 3rd ed., Academic Press, ISBN
0-12-369531-7, San Diego

Topchy, A.; Jain, A.K. & Punch, W. (2005). Clustering ensembles: models of consensus and
weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
27, No. 12, 1866-1881

Tseng, G.C. & Wong, W.H. (2005). Tight clustering: a resampling-based approach for
identifying stable and tight patterns in data. Biometrics, Vol. 61, 10-16

Ulbrich, B. (2006). Improvements of tumor classification based on molecular-biological
patterns by using new methods of unsupervised learning. (in German), Diploma
Thesis in Bioinformatics, August 2007, Friedrich Schiller University, Jena, Germany

Valentini, G. (2006). Clusterv: a tool for assessing the reliability of clusters discovered in
DNA microarray data. Bioinformatics, Vol. 22 No. 3, 369-370

Yeung, K.Y.; Haynor, D.R. & Ruzzo, W.L. (2001). Validating clustering for gene expression
data. Bioinformatics, Vol. 17, No. 4, 309-318

Yu, Z.; Wong, H.-S. & Wang, H. (2007). Graph-based consensus clustering for class
discovery from gene expression data. Bioinformatics, Vol. 23, No. 21, 2888-2896

15

3D Shape Classification and Retrieval Using
Heterogenous Features

and Supervised Learning
Hamid Laga

Tokyo Institute of Technology
Japan

1. Introduction
Content-based 3D model retrieval (CB3DMR) aims at augmenting the text-based search
with the ability to search 3D data collections by using examples, sketches, as well as
geometric and structural features. In recent years there is an increasing demand on such
tools as 3D graphics technology is becoming widely accessible and a large amount of 3D
contents is being created and shared.
Usually an algorithm for 3D model classification and retrieval requires: (1) an efficient
representation of the 3D data that is suited for search, and (2) a good similarity function in
order to measure distances between entities in the feature space. The first step involves
feature extraction, feature selection strategy to keep only the most relevant features, and a
method for encoding the features as real-valued vectors called shape descriptors. Shape
descriptors provide a numerical representation of the salient features of the data. They
should be an abstraction of the semantics of the shape and shape category. Many descriptors
have been proposed for content-based 3D model classification and retrieval but none of
them has achieved high-level performance on all shape classes. For instance:
• Global geometric features, which are easy to compute and compare, are poor in terms of

discrimination power since they are unable to capture the intra-class shape variability.
Alternatively, local features, such as spin images (Johnson, 1997) and shape contexts
(M.Kortgen et al., 2003) are more effective for intraclass retrieval. However, their
extraction and comparison are expensive in terms of computation and storage
requirements. A key observation is that many of these features are redundant and only
a small subset of them, called representative feature set, is really discriminative. Thus,
there is a need for selecting automatically the optimal set of features. The selected set
should be specific to each class of shapes, and adapted to different types of user queries
and data classifications.

• Geometry-based features, such as Light Fields (LFD) (Chen et al., 2003) and spherical
harmonic (Funkhouser et al., 2003) descriptors, represent shapes with their global
geometric characteristics. On the other hand, graph-based descriptors, such as Reeb-
graphs and skeleton representations (Hilaga et al., 2001; T.Tung & F.Schmitt, 2005),
encode the structural characteristics of the shape, and therefore are more suitable for
indexing articulated shapes. Consequently, there is a need for combining heterogeneous

 Machine Learning

304

McLachlan, G.J. & Khan, N. (2004). On a resampling approach for tests on the number of
clusters with mixture model-based clustering of tissue samples. Journal of
Multivariate Analysis, Vol. 90, 90-105

Minaei-Bidgoli, B.; Topchy, A. & Punch, W.F. (2004). A comparison of resampling methods
for clustering ensembles. Proceedings of the International Conference on Machine
Learning; Models, Technologies and Applications (MLMTA), pp. 939-945, Las Vegas,
Nevada, June 2004

Möller, U. & Radke, D. (2006a). Performance of data resampling methods for robust class
discovery based on clustering. Intelligent Data Analysis Vol. 10, No. 2, 139-162

Möller, U. & Radke, D. (2006b). A cluster validity approach based on nearest neighbor
resampling, Proceedings of the Int. Conf. on Pattern Recognition (ICPR), pp. 892-895,
ISBN 0-7695-2521-0, Hong-Kong, August 2006, IEEE Computer Society Press

Möller, U. (2007). Missing clusters indicate poor estimates or guesses of a proper fuzzy
exponent. In: Applications of Fuzzy Sets Theory, Masulli, F.; Mitra, S.; Pasi, G. (Ed.),
Lecture Notes in Artificial Intelligence 4578, 161-169, Springer, ISBN 978-3-540-73399-
7, Berlin-Heidelberg

Möller, U. (2008). Methods for robust class discovery in gene expression profiles of tissue
samples. Poster presentation at the conference Bioinformatics Research and
Development (BIRD), July 2008, Vienna, Austria

Monti, S.; Tamayo, P.; Mesirov, J. & Golub, T. (2003). Consensus clustering: A resampling-
based method for class discovery and visualization of gene expression microarray
data. Machine Learning, Vol. 52, 91−118

Smolkin, M. & Ghosh, D. (2003). Cluster stability scores for microarray data in cancer
studies. BMC Bioinformatics, 4:36, www.biomedcentral.com/1471-2105/4/36

Strehl, A. & Gosh, J. (2002). Cluster ensembles: A knowledge reuse framework for
combining multiple partitions, J. of Machine Learning Research, Vol. 3, 583–617

Suzuki, R. & Shimodaira, H. (2004). An application of multiscale bootstrap resampling to
hierarchical clustering of microarray data: How accurate are these clusters?
Proceedings of the Int. Conf. on Genome Informatics (GIW), p. P034

Suzuki, R. & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in
hierarchical clustering. Bioinformatics, Vol. 22, No. 12, 1540-1542

Theodoridis S. & Koutroumbas, K. (2006). Pattern recognition. 3rd ed., Academic Press, ISBN
0-12-369531-7, San Diego

Topchy, A.; Jain, A.K. & Punch, W. (2005). Clustering ensembles: models of consensus and
weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
27, No. 12, 1866-1881

Tseng, G.C. & Wong, W.H. (2005). Tight clustering: a resampling-based approach for
identifying stable and tight patterns in data. Biometrics, Vol. 61, 10-16

Ulbrich, B. (2006). Improvements of tumor classification based on molecular-biological
patterns by using new methods of unsupervised learning. (in German), Diploma
Thesis in Bioinformatics, August 2007, Friedrich Schiller University, Jena, Germany

Valentini, G. (2006). Clusterv: a tool for assessing the reliability of clusters discovered in
DNA microarray data. Bioinformatics, Vol. 22 No. 3, 369-370

Yeung, K.Y.; Haynor, D.R. & Ruzzo, W.L. (2001). Validating clustering for gene expression
data. Bioinformatics, Vol. 17, No. 4, 309-318

Yu, Z.; Wong, H.-S. & Wang, H. (2007). Graph-based consensus clustering for class
discovery from gene expression data. Bioinformatics, Vol. 23, No. 21, 2888-2896

15

3D Shape Classification and Retrieval Using
Heterogenous Features

and Supervised Learning
Hamid Laga

Tokyo Institute of Technology
Japan

1. Introduction
Content-based 3D model retrieval (CB3DMR) aims at augmenting the text-based search
with the ability to search 3D data collections by using examples, sketches, as well as
geometric and structural features. In recent years there is an increasing demand on such
tools as 3D graphics technology is becoming widely accessible and a large amount of 3D
contents is being created and shared.
Usually an algorithm for 3D model classification and retrieval requires: (1) an efficient
representation of the 3D data that is suited for search, and (2) a good similarity function in
order to measure distances between entities in the feature space. The first step involves
feature extraction, feature selection strategy to keep only the most relevant features, and a
method for encoding the features as real-valued vectors called shape descriptors. Shape
descriptors provide a numerical representation of the salient features of the data. They
should be an abstraction of the semantics of the shape and shape category. Many descriptors
have been proposed for content-based 3D model classification and retrieval but none of
them has achieved high-level performance on all shape classes. For instance:
• Global geometric features, which are easy to compute and compare, are poor in terms of

discrimination power since they are unable to capture the intra-class shape variability.
Alternatively, local features, such as spin images (Johnson, 1997) and shape contexts
(M.Kortgen et al., 2003) are more effective for intraclass retrieval. However, their
extraction and comparison are expensive in terms of computation and storage
requirements. A key observation is that many of these features are redundant and only
a small subset of them, called representative feature set, is really discriminative. Thus,
there is a need for selecting automatically the optimal set of features. The selected set
should be specific to each class of shapes, and adapted to different types of user queries
and data classifications.

• Geometry-based features, such as Light Fields (LFD) (Chen et al., 2003) and spherical
harmonic (Funkhouser et al., 2003) descriptors, represent shapes with their global
geometric characteristics. On the other hand, graph-based descriptors, such as Reeb-
graphs and skeleton representations (Hilaga et al., 2001; T.Tung & F.Schmitt, 2005),
encode the structural characteristics of the shape, and therefore are more suitable for
indexing articulated shapes. Consequently, there is a need for combining heterogeneous

 Machine Learning

306

features in order to achieve best performance. By heterogeneous we mean features of
different types and scales.

From the machine learning point-of-view, efficient selection and combination of
heterogeneous features for classification and retrieval poses many challenges. The first issue
is how to choose among a large set of features, a subset that allows to achieve high-level
performance. The second issue is the feature normalization problem. Heterogenous features
are often of different scales. Therefore, incorporating them directly into the similarity
function will result in low retrieval performance as higher scale features will influence more
the similarity. This issue is related to the feature weighting strategy.
The goal of this chapter is to develop an effective 3D shape classification and retrieval
method that uses discriminative shape features automatically selected from a large set of
heterogeneous features. The construction of the representative set can be regarded as a
machine learning task. Particularly, supervised learning allows to capture the high-level
semantic concepts of the data using low-level geometric features. Our key idea is to use a
large set of local and global features, eventually not orthogonal, then use a supervised
learning algorithm to select only the most efficient ones. We experimented with AdaBoost
which provides a mean for feature selection and classifier combination. Boosting, like many
machine-learning methods, is entirely data-driven in the sense that the classifier it generates
is derived exclusively from the evidence present in the training data itself (Schapire, 2003).
Moreover, allowing redundancy and overlapping in the feature set has been proven to be
very efficient in recognition and classifications tasks than orthogonal features (Tieu & Viola,
2004). Specifically, we make the following contributions:
• An algorithm for learning the discriminative features of a class of shapes from a

training set. The algorithm allows also to quantify the discrimination ability of a shape
feature with respect to the underlying classification. Features of high discrimination
ability of each class of shapes will be used for processing unseen objects (classification
of the query, and retrieving the most similar shapes to the query).

• A method for matching shapes using only the most relevant features to each class of
shapes. This approach can be used with either a flat or a hierarchical classification of the
data resulting in a multi-scale organization of the feature space.

• The ability to use heterogeneous features for classification is a major deviation from
previous work.

The remainder of this paper is organized as follows: the next section reviews the related
work. Section 2.3 gives and overview of the proposed framework and outlines the main
contributions. In Section 3 we describe the type of 3D shape descriptors we will use in this
chapter. Section 4 details the developed algorithm for feature selection and combination in
the case of a binary classification (Section 4.1), and its generalization to a multi-class
problem (Section 4.2). In Section 5 we detail the query processing method for classification
and retrieval. Experimental results and evaluations are given in Section 6. Section 7
concludes the paper and outlines the major issues for future work.

2. Related work
3D shape analysis, classification and retrieval received significant attention in recent years.
In the following we review the most relevant techniques to our work. For more details, we
refer the reader to the recent surveys of the topic (Lew et al., 2006; Tangelder & Veltkamp,
2004; Iyer et al., 2005).

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

307

2.1 Descriptors for 3D model retrieval
For efficient comparison and similarity estimation, 3D models can be represented with a set
of meaningful descriptors that encode the salient geometric and topological characteristics
of their shapes. The database objects are then ranked according to their distance to the
descriptors of the query model. These descriptors are either global, local, or structural.
Structural descriptors such as Reeb graphes (Hilaga et al., 2001; T.Tung & F.Schmitt, 2005)
aim at encoding the topological structure of the shape. They can be used for global matching
as well as partial matching (Biasotti et al., 2006).
Global descriptors describe an entire 3D shape with one single feature vector. In this family,
the Light Fields (LFD) (Chen et al., 2003) are reported to be the most effective (Shilane et al.,
2004). (Funkhouser et al., 2003) map a 3D shape to unit spheres and use spherical harmonics
(SH) to analyze the shape function. Spherical harmonics can achieve rotation invariance by
taking only the power spectrum of the harmonic representation, and therefore, discarding
the rotation dependent information (Kazhdan et al., 2003). (Novotni & Klein, 2003) use 3D
Zernike moments (ZD) as a natural extension of SH. (Laga et al., 2006) introduced flat
octahedron parameterization and spherical wavelet descriptors to eliminate the singularities
that appear in the two poles when using latitude-longitude parameterization, and therefore,
achieve a fully rotation invariant description of the 3D shapes. Recently, (Reuter et al., 2006)
introduced the notion of shape DNA as fingerprints for shape matching. The fingerprints
are computed from the spectra of the Laplace-Beltrami operators. They are invariant under
similarity transformations and are very efficient in matching 2D and 3D manifold shapes.
However, it is not clear how they can be extended to polygon soup models.
Global descriptors are very compact, easy to compute, and efficient for broad classification
of 3D shapes. However, they cannot capture the variability of the shapes and their subtle
details necessary for intra-class retrieval. Local feature-based methods can overcome these
limitations by computing a large set of features at different scales and locations on the 3D
model. Spin images (Johnson, 1997) and shape contexts (M.Kortgen et al., 2003) have been
used for shape retrieval as well as for matching and registering 3D scans. Local features are
very efficient to discriminate objects within the same class. However, similarity estimation
requires combinatorial comparison, making them not suitable for realtime applications such
as retrieval.

2.2 Feature selection and relevance feedback
3D model retrieval by matching low level features does not fully reflect the semantics of the
data. For instance, most of the previous techniques cannot distinguish between a flying bird
and a commercial airplane. This is commonly known as the semantic gap. Recent progress in
pattern recognition suggested the use of supervised learning to narrow the semantic gap.
This allows the automatic selection of salient features of a single 3D model within a class of
shapes, and also the use of the results of classification to improve the performance of
retrieval algorithms.
The basic learning approach is the Nearest Neighbor classifier. It has been used for the
classification of 3D protein databases (Ankerst et al., 1999), and also 3D engineering parts (Ip
et al., 2003).
Hou et al. (2005) introduced a semi-supervised semantic clustering method based on
Support Vector Machines (SVM) to organize 3D models semantically. The query model is
first labeled with some semantic concepts such that it can be assigned to a single cluster.

 Machine Learning

306

features in order to achieve best performance. By heterogeneous we mean features of
different types and scales.

From the machine learning point-of-view, efficient selection and combination of
heterogeneous features for classification and retrieval poses many challenges. The first issue
is how to choose among a large set of features, a subset that allows to achieve high-level
performance. The second issue is the feature normalization problem. Heterogenous features
are often of different scales. Therefore, incorporating them directly into the similarity
function will result in low retrieval performance as higher scale features will influence more
the similarity. This issue is related to the feature weighting strategy.
The goal of this chapter is to develop an effective 3D shape classification and retrieval
method that uses discriminative shape features automatically selected from a large set of
heterogeneous features. The construction of the representative set can be regarded as a
machine learning task. Particularly, supervised learning allows to capture the high-level
semantic concepts of the data using low-level geometric features. Our key idea is to use a
large set of local and global features, eventually not orthogonal, then use a supervised
learning algorithm to select only the most efficient ones. We experimented with AdaBoost
which provides a mean for feature selection and classifier combination. Boosting, like many
machine-learning methods, is entirely data-driven in the sense that the classifier it generates
is derived exclusively from the evidence present in the training data itself (Schapire, 2003).
Moreover, allowing redundancy and overlapping in the feature set has been proven to be
very efficient in recognition and classifications tasks than orthogonal features (Tieu & Viola,
2004). Specifically, we make the following contributions:
• An algorithm for learning the discriminative features of a class of shapes from a

training set. The algorithm allows also to quantify the discrimination ability of a shape
feature with respect to the underlying classification. Features of high discrimination
ability of each class of shapes will be used for processing unseen objects (classification
of the query, and retrieving the most similar shapes to the query).

• A method for matching shapes using only the most relevant features to each class of
shapes. This approach can be used with either a flat or a hierarchical classification of the
data resulting in a multi-scale organization of the feature space.

• The ability to use heterogeneous features for classification is a major deviation from
previous work.

The remainder of this paper is organized as follows: the next section reviews the related
work. Section 2.3 gives and overview of the proposed framework and outlines the main
contributions. In Section 3 we describe the type of 3D shape descriptors we will use in this
chapter. Section 4 details the developed algorithm for feature selection and combination in
the case of a binary classification (Section 4.1), and its generalization to a multi-class
problem (Section 4.2). In Section 5 we detail the query processing method for classification
and retrieval. Experimental results and evaluations are given in Section 6. Section 7
concludes the paper and outlines the major issues for future work.

2. Related work
3D shape analysis, classification and retrieval received significant attention in recent years.
In the following we review the most relevant techniques to our work. For more details, we
refer the reader to the recent surveys of the topic (Lew et al., 2006; Tangelder & Veltkamp,
2004; Iyer et al., 2005).

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

307

2.1 Descriptors for 3D model retrieval
For efficient comparison and similarity estimation, 3D models can be represented with a set
of meaningful descriptors that encode the salient geometric and topological characteristics
of their shapes. The database objects are then ranked according to their distance to the
descriptors of the query model. These descriptors are either global, local, or structural.
Structural descriptors such as Reeb graphes (Hilaga et al., 2001; T.Tung & F.Schmitt, 2005)
aim at encoding the topological structure of the shape. They can be used for global matching
as well as partial matching (Biasotti et al., 2006).
Global descriptors describe an entire 3D shape with one single feature vector. In this family,
the Light Fields (LFD) (Chen et al., 2003) are reported to be the most effective (Shilane et al.,
2004). (Funkhouser et al., 2003) map a 3D shape to unit spheres and use spherical harmonics
(SH) to analyze the shape function. Spherical harmonics can achieve rotation invariance by
taking only the power spectrum of the harmonic representation, and therefore, discarding
the rotation dependent information (Kazhdan et al., 2003). (Novotni & Klein, 2003) use 3D
Zernike moments (ZD) as a natural extension of SH. (Laga et al., 2006) introduced flat
octahedron parameterization and spherical wavelet descriptors to eliminate the singularities
that appear in the two poles when using latitude-longitude parameterization, and therefore,
achieve a fully rotation invariant description of the 3D shapes. Recently, (Reuter et al., 2006)
introduced the notion of shape DNA as fingerprints for shape matching. The fingerprints
are computed from the spectra of the Laplace-Beltrami operators. They are invariant under
similarity transformations and are very efficient in matching 2D and 3D manifold shapes.
However, it is not clear how they can be extended to polygon soup models.
Global descriptors are very compact, easy to compute, and efficient for broad classification
of 3D shapes. However, they cannot capture the variability of the shapes and their subtle
details necessary for intra-class retrieval. Local feature-based methods can overcome these
limitations by computing a large set of features at different scales and locations on the 3D
model. Spin images (Johnson, 1997) and shape contexts (M.Kortgen et al., 2003) have been
used for shape retrieval as well as for matching and registering 3D scans. Local features are
very efficient to discriminate objects within the same class. However, similarity estimation
requires combinatorial comparison, making them not suitable for realtime applications such
as retrieval.

2.2 Feature selection and relevance feedback
3D model retrieval by matching low level features does not fully reflect the semantics of the
data. For instance, most of the previous techniques cannot distinguish between a flying bird
and a commercial airplane. This is commonly known as the semantic gap. Recent progress in
pattern recognition suggested the use of supervised learning to narrow the semantic gap.
This allows the automatic selection of salient features of a single 3D model within a class of
shapes, and also the use of the results of classification to improve the performance of
retrieval algorithms.
The basic learning approach is the Nearest Neighbor classifier. It has been used for the
classification of 3D protein databases (Ankerst et al., 1999), and also 3D engineering parts (Ip
et al., 2003).
Hou et al. (2005) introduced a semi-supervised semantic clustering method based on
Support Vector Machines (SVM) to organize 3D models semantically. The query model is
first labeled with some semantic concepts such that it can be assigned to a single cluster.

 Machine Learning

308

Then the search is conducted only in the corresponding cluster. Supervised learning and
ground-truth data are used to learn the patterns of each semantic cluster off-line. Later,
(Hou & Ramani, 2006) combine both semantic concepts and visual content in a unified
framework using a probability-based classifier. They use a linear combination of several
classifiers, one per descriptor. The individual classifiers are trained in a supervised manner,
and output an estimate of the probability of data being classified to a specific class. The
output of the training stage is used to estimate the optimal weights of the combination
model. The retrieval is performed in two stages; first they begin by estimating the
conditional probability of each class of shapes given the query. Then they perform shape
search inside each candidate class. The new similarity measure is a unified distance that
integrates the probability estimation from the classifiers, a combination of classifiers learned
off-line, and a shape similarity distance. This is the closest work to ours. In this approach
features and type of classifiers are set manually. In our case, we aim at selecting
automatically the most salient features.
(Shilane & Funkhouser, 2006) investigated on how to select local descriptors from a query
shape that are most distinctive and therefore most relevant for retrieval. Their approach
uses supervised learning to predict the retrieval performance of each feature, and select only
a small set of the most effective ones to be used during the retrieval. (Funkhouser & Shilane,
2006) introduced priority-driven search for partial matching of 3D shapes. The algorithm
produces a ranked list of c-best target objects sorted by how well any subset of k features on
the query matches features on the target object. As reported by the authors, the timing
results is dominated by the number of features for each target object and the number of
scales for each feature. The algorithm we propose can deal with large set of features while
maintaining the processing time at interactive rates.
The approach most similar to our own is that of (Tieu and Viola, 2004) where they applied
the AdaBoost algorithm (Schapire, 2003) to online learning of the similarity of a given query
to the target objects in image retrieval. It has been recently extended to learn the intrinsic
features for boosting 3D face recognition (Xu et al., 2006). AdaBoost enables the use of a very
large set of features while keeping the processing time at the run-time very attractive. We
improve over this approach in two important ways. First we investigate the application of
AdaBoost to the general problem of 3D model retrieval. Second, we learn, off-line, the
optimal salient and discriminative set of features for each class of shapes with respect to
objects in the entire database. These improvements allow our 3D model retrieval algorithm
to achieve high-level performance in terms of retrieval efficiency and computation time.

2.3 Overview
Figure 1 gives an overview of our approach. At the training stage a strong classifier is
learned using AdaBoost. The classifier returns the likelihood that a given 3D model O
belongs to a class of shapes C. First a large set of features are extracted from every model in
the database. Then a set of binary classifiers are trained using AdaBoost. Each binary
classifier learns one class of shapes and its optimal set of salient features. Finally, the binary
classifiers are combined into one multi-class classifier. In our implementation we
experimented with the Light Field Descriptors (LFD) (Chen et al., 2003) (100 descriptors per-
shape), the Gaussian Euclidean Distance transform (GEDT) (Shilane et al., 2004) (32

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

309

descriptors per-shape, each descriptor is computed on a concentric sphere of radius r, 0 ≤ r ≤
1), and a combination of the two descriptors which will be referred by LFD-GEDT.
At the run-time, given a query model Q, a ranked list of k–best matches is produced in a
two-stage process that involves classification and search. First, a large set of features are
computed from the query model Q, in the same manner as for the database models. Then in
the classification stage, a set of highly relevant classes to Q is found. Each binary classifier Ci

decides wether the class Ci is relevant to the query Q or not. In the retrieval stage, the
similarity between Q and the models in every relevant class Ci is estimated and a ranked list
of the best matches is returned.

Fig. 1. Overview of AdaBoost-based 3D model classification and retrieval. At the training
stage a strong classifier is learned using AdaBoost. The strong classifier is based on a
combination of the most discriminative features of the shape. At the run-time, a query is
first classified into a set of candidate classes, then the search for the best matches is
performed inside the candidate classes.

The key step in this process is the way we predict the saliency of each feature with respect to
a class of shapes in the training set. More formally, the saliency of a feature with respect
to a class of shapes C is the ability of this feature to discriminate the shapes of class C from
the shapes of other classes in the database. Mathematically, given the binary classifier
trained with the feature , the saliency of is directly related to the overall classification
error of on the data set. However, none of the existing classifiers that are based on a
single feature can achieve zero classification error. Therefore none of the features is
sufficiently salient. AdaBoost provides a way for combining weak classifiers and shape
features, eventually of different types and saliency degrees, into a single strong classifier
with high classification performance. There are several advantages of this approach:

 Machine Learning

308

Then the search is conducted only in the corresponding cluster. Supervised learning and
ground-truth data are used to learn the patterns of each semantic cluster off-line. Later,
(Hou & Ramani, 2006) combine both semantic concepts and visual content in a unified
framework using a probability-based classifier. They use a linear combination of several
classifiers, one per descriptor. The individual classifiers are trained in a supervised manner,
and output an estimate of the probability of data being classified to a specific class. The
output of the training stage is used to estimate the optimal weights of the combination
model. The retrieval is performed in two stages; first they begin by estimating the
conditional probability of each class of shapes given the query. Then they perform shape
search inside each candidate class. The new similarity measure is a unified distance that
integrates the probability estimation from the classifiers, a combination of classifiers learned
off-line, and a shape similarity distance. This is the closest work to ours. In this approach
features and type of classifiers are set manually. In our case, we aim at selecting
automatically the most salient features.
(Shilane & Funkhouser, 2006) investigated on how to select local descriptors from a query
shape that are most distinctive and therefore most relevant for retrieval. Their approach
uses supervised learning to predict the retrieval performance of each feature, and select only
a small set of the most effective ones to be used during the retrieval. (Funkhouser & Shilane,
2006) introduced priority-driven search for partial matching of 3D shapes. The algorithm
produces a ranked list of c-best target objects sorted by how well any subset of k features on
the query matches features on the target object. As reported by the authors, the timing
results is dominated by the number of features for each target object and the number of
scales for each feature. The algorithm we propose can deal with large set of features while
maintaining the processing time at interactive rates.
The approach most similar to our own is that of (Tieu and Viola, 2004) where they applied
the AdaBoost algorithm (Schapire, 2003) to online learning of the similarity of a given query
to the target objects in image retrieval. It has been recently extended to learn the intrinsic
features for boosting 3D face recognition (Xu et al., 2006). AdaBoost enables the use of a very
large set of features while keeping the processing time at the run-time very attractive. We
improve over this approach in two important ways. First we investigate the application of
AdaBoost to the general problem of 3D model retrieval. Second, we learn, off-line, the
optimal salient and discriminative set of features for each class of shapes with respect to
objects in the entire database. These improvements allow our 3D model retrieval algorithm
to achieve high-level performance in terms of retrieval efficiency and computation time.

2.3 Overview
Figure 1 gives an overview of our approach. At the training stage a strong classifier is
learned using AdaBoost. The classifier returns the likelihood that a given 3D model O
belongs to a class of shapes C. First a large set of features are extracted from every model in
the database. Then a set of binary classifiers are trained using AdaBoost. Each binary
classifier learns one class of shapes and its optimal set of salient features. Finally, the binary
classifiers are combined into one multi-class classifier. In our implementation we
experimented with the Light Field Descriptors (LFD) (Chen et al., 2003) (100 descriptors per-
shape), the Gaussian Euclidean Distance transform (GEDT) (Shilane et al., 2004) (32

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

309

descriptors per-shape, each descriptor is computed on a concentric sphere of radius r, 0 ≤ r ≤
1), and a combination of the two descriptors which will be referred by LFD-GEDT.
At the run-time, given a query model Q, a ranked list of k–best matches is produced in a
two-stage process that involves classification and search. First, a large set of features are
computed from the query model Q, in the same manner as for the database models. Then in
the classification stage, a set of highly relevant classes to Q is found. Each binary classifier Ci

decides wether the class Ci is relevant to the query Q or not. In the retrieval stage, the
similarity between Q and the models in every relevant class Ci is estimated and a ranked list
of the best matches is returned.

Fig. 1. Overview of AdaBoost-based 3D model classification and retrieval. At the training
stage a strong classifier is learned using AdaBoost. The strong classifier is based on a
combination of the most discriminative features of the shape. At the run-time, a query is
first classified into a set of candidate classes, then the search for the best matches is
performed inside the candidate classes.

The key step in this process is the way we predict the saliency of each feature with respect to
a class of shapes in the training set. More formally, the saliency of a feature with respect
to a class of shapes C is the ability of this feature to discriminate the shapes of class C from
the shapes of other classes in the database. Mathematically, given the binary classifier
trained with the feature , the saliency of is directly related to the overall classification
error of on the data set. However, none of the existing classifiers that are based on a
single feature can achieve zero classification error. Therefore none of the features is
sufficiently salient. AdaBoost provides a way for combining weak classifiers and shape
features, eventually of different types and saliency degrees, into a single strong classifier
with high classification performance. There are several advantages of this approach:

 Machine Learning

310

Although a large set of features is extracted both at the training and online stages, only a
small subset of the features (between 10 to 50) is used during the similarity estimation. This
allows retrieval at interactive rates.
• The algorithm selects automatically the representative set of features for each class of

shapes, and provides a mean for automatic combination of the selected features. This
has potential applications in shape classification and recognition.

• The algorithm provides an automatic way to truncate the list of the k−best matches, i.e,
it provides a mean for saying wether the database contains models which are similar to
a given query or not.

• This approach allows to perform both inter-class and intra-class retrieval.
AdaBoostbased classifier allows to find the relevant classes to the query. Then, in a
second step, the search can be performed inside each relevant class using, eventually,
different types of descriptors.

For feature extraction, we use the Light Field descriptors (LFD) (Chen et al., 2003) and
Gaussian Euclidean Distance Transform (GEDT) (Shilane et al., 2004). However, a further
investigation is required to test the efficiency of other descriptors when boosted, which is
beyond the scope of this paper.

3. 3D shape descriptors
The process starts by computing a large set of features for each model in the training set,
which is the content of the database to search. There are many requirements that the
features should fulfill: (1) compactness, (2) computation speed, and (3) the ability to
discriminate between dissimilar shapes. However, in real applications it is hard to fulfill
these requirements when the goal is to achieve high retrieval accuracy. In fact, compact
features, which are easy to compute, are not discriminative enough to be used for high
accuracy retrieval. We propose to extract a large set of features following the same idea as in
(Tieu & Viola, 2004).
There are many shape descriptors that can be computed from a 3D model. A large set of
Spherical harmonics (Funkhouser & Shilane, 2006) and spherical waveletbased descriptors
(Laga et al., 2006) can be computed by moving the center of the sphere across different
locations on the shape’s surface or on a 3D grid. However, in the literature, it has been
proven that view-based descriptors outperform significantly the spherical descriptors. In
our implementation we considered two shape descriptors evaluated in the Princeton Shape
Benchmark: the Light Fields Descriptor (LFD), and the Gaussian Euclidean Distance
Transform Descriptor (GEDT). For the completeness purpose we give a brief overview of these
descriptors but the reader can find further details in the original paper (Shilane et al., 2004):
• Light Field Descriptor (LFD) (Chen et al., 2003): a view-based descriptor computed

from 100 images rendered from cameras positioned on the vertices of a regular
dodecahedron. Each image is encoded with 35 Zernike moments, and 10 Fourier
coefficients. In this paper we use our own implementation.

• Gaussian Euclidean Distance Transform (GEDT) (Shilane et al., 2004): a 3D function
whose values at each point is given by composition of a Gaussian with the Euclidean
Distance Transform of the surface. It is computed on 64×64×64 axial grid, translated
such as the origin is at the point (32, 32, 32), scaled by a factor of 32, and then

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

311

represented by 32 spherical descriptors representing the intersection of the voxel grid
with concentric spherical shells. Values within each shell were scaled by the square-root
of the corresponding area and represented by their spherical harmonic coefficients up
to order 16.

To evaluate the performance of the feature selection algorithm we will consider also a
combination of the two descriptors, herein after referred by LFD-GEDT. Notice that these
two descriptors are encoding different properties of the shape and may have different
scales. Also, the set of features contains many redundancies: in the case of LFD for example,
two symmetric view points will have the same 2D projection, and close points in the
Euclidean sense will have their associated LFDs very similar. On one hand, this will increase
significantly the storage and computation time required for matching and retrieval.
However, on the other hand, it will guarantee that the feature set can capture the shape
variability. Therefore, we rely on the learning stage to select the salient ones that achieve
best classification and retrieval performance.

4. Supervised classification

The first task in our approach is to build a classifier C that decides wether a given 3D model
O belongs to a class of shapes C or not. The challenge is to define a feature space such that
3D shapes belonging to the same class are mapped into points close to each other in the new
feature space. Clusters in the new space correspond to classes of 3D models. There are many
feature spaces that have been proposed in the literature, but it has been proven that none of
them achieved best performance on all classes of shapes. We propose to follow a machine
learning approach where each classifier is obtained by the mean of training data.

4.1 Boosting the binary classification
A brute force approach for comparing a large set of features is computationally very
expensive, and in the best case, it requires M ×d×N comparisons, where M is the number of
feature vectors used to describe each 3D model, d is the dimension of the feature space, and
N is the number of models in the database.
Previous works consider this problem from the dimensionality reduction point of view.
(Ohbuchi et al., 2007) provide an overview and performance evaluation of six linear and
non-linear dimensionality reduction techniques in the context of 3D model retrieval. They
demonstrated that non-linear techniques improve significantly the retrieval performance.
There have been also a lot of research in classifiers that have a good generalization
performance by maximizing the margin. Speed is the main advantage of boosting over other
classification algorithms such as Support Vector Machines (SVM) (Hou et al., 2005), and
non-linear dimensionality reduction techniques (Ohbuchi et al., 2007; Ohbuchi & Kobayashi,
2006). It can be also used as a feature selection algorithm, and provides a good theoretical
quantification of the upper bound of the error rate, therefore a good generalization
performance.
We use AdaBoost version of boosting. Every weak classifier is based on a single feature of a
3D shape (recall that we have computed a large set of features for each 3D model). The final
strong classifier, a weighted sum of weak classifiers, is based on the most discriminating
features weighted by their discriminant power. The algorithm is summarized in Algorithm 1.

 Machine Learning

310

Although a large set of features is extracted both at the training and online stages, only a
small subset of the features (between 10 to 50) is used during the similarity estimation. This
allows retrieval at interactive rates.
• The algorithm selects automatically the representative set of features for each class of

shapes, and provides a mean for automatic combination of the selected features. This
has potential applications in shape classification and recognition.

• The algorithm provides an automatic way to truncate the list of the k−best matches, i.e,
it provides a mean for saying wether the database contains models which are similar to
a given query or not.

• This approach allows to perform both inter-class and intra-class retrieval.
AdaBoostbased classifier allows to find the relevant classes to the query. Then, in a
second step, the search can be performed inside each relevant class using, eventually,
different types of descriptors.

For feature extraction, we use the Light Field descriptors (LFD) (Chen et al., 2003) and
Gaussian Euclidean Distance Transform (GEDT) (Shilane et al., 2004). However, a further
investigation is required to test the efficiency of other descriptors when boosted, which is
beyond the scope of this paper.

3. 3D shape descriptors
The process starts by computing a large set of features for each model in the training set,
which is the content of the database to search. There are many requirements that the
features should fulfill: (1) compactness, (2) computation speed, and (3) the ability to
discriminate between dissimilar shapes. However, in real applications it is hard to fulfill
these requirements when the goal is to achieve high retrieval accuracy. In fact, compact
features, which are easy to compute, are not discriminative enough to be used for high
accuracy retrieval. We propose to extract a large set of features following the same idea as in
(Tieu & Viola, 2004).
There are many shape descriptors that can be computed from a 3D model. A large set of
Spherical harmonics (Funkhouser & Shilane, 2006) and spherical waveletbased descriptors
(Laga et al., 2006) can be computed by moving the center of the sphere across different
locations on the shape’s surface or on a 3D grid. However, in the literature, it has been
proven that view-based descriptors outperform significantly the spherical descriptors. In
our implementation we considered two shape descriptors evaluated in the Princeton Shape
Benchmark: the Light Fields Descriptor (LFD), and the Gaussian Euclidean Distance
Transform Descriptor (GEDT). For the completeness purpose we give a brief overview of these
descriptors but the reader can find further details in the original paper (Shilane et al., 2004):
• Light Field Descriptor (LFD) (Chen et al., 2003): a view-based descriptor computed

from 100 images rendered from cameras positioned on the vertices of a regular
dodecahedron. Each image is encoded with 35 Zernike moments, and 10 Fourier
coefficients. In this paper we use our own implementation.

• Gaussian Euclidean Distance Transform (GEDT) (Shilane et al., 2004): a 3D function
whose values at each point is given by composition of a Gaussian with the Euclidean
Distance Transform of the surface. It is computed on 64×64×64 axial grid, translated
such as the origin is at the point (32, 32, 32), scaled by a factor of 32, and then

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

311

represented by 32 spherical descriptors representing the intersection of the voxel grid
with concentric spherical shells. Values within each shell were scaled by the square-root
of the corresponding area and represented by their spherical harmonic coefficients up
to order 16.

To evaluate the performance of the feature selection algorithm we will consider also a
combination of the two descriptors, herein after referred by LFD-GEDT. Notice that these
two descriptors are encoding different properties of the shape and may have different
scales. Also, the set of features contains many redundancies: in the case of LFD for example,
two symmetric view points will have the same 2D projection, and close points in the
Euclidean sense will have their associated LFDs very similar. On one hand, this will increase
significantly the storage and computation time required for matching and retrieval.
However, on the other hand, it will guarantee that the feature set can capture the shape
variability. Therefore, we rely on the learning stage to select the salient ones that achieve
best classification and retrieval performance.

4. Supervised classification

The first task in our approach is to build a classifier C that decides wether a given 3D model
O belongs to a class of shapes C or not. The challenge is to define a feature space such that
3D shapes belonging to the same class are mapped into points close to each other in the new
feature space. Clusters in the new space correspond to classes of 3D models. There are many
feature spaces that have been proposed in the literature, but it has been proven that none of
them achieved best performance on all classes of shapes. We propose to follow a machine
learning approach where each classifier is obtained by the mean of training data.

4.1 Boosting the binary classification
A brute force approach for comparing a large set of features is computationally very
expensive, and in the best case, it requires M ×d×N comparisons, where M is the number of
feature vectors used to describe each 3D model, d is the dimension of the feature space, and
N is the number of models in the database.
Previous works consider this problem from the dimensionality reduction point of view.
(Ohbuchi et al., 2007) provide an overview and performance evaluation of six linear and
non-linear dimensionality reduction techniques in the context of 3D model retrieval. They
demonstrated that non-linear techniques improve significantly the retrieval performance.
There have been also a lot of research in classifiers that have a good generalization
performance by maximizing the margin. Speed is the main advantage of boosting over other
classification algorithms such as Support Vector Machines (SVM) (Hou et al., 2005), and
non-linear dimensionality reduction techniques (Ohbuchi et al., 2007; Ohbuchi & Kobayashi,
2006). It can be also used as a feature selection algorithm, and provides a good theoretical
quantification of the upper bound of the error rate, therefore a good generalization
performance.
We use AdaBoost version of boosting. Every weak classifier is based on a single feature of a
3D shape (recall that we have computed a large set of features for each 3D model). The final
strong classifier, a weighted sum of weak classifiers, is based on the most discriminating
features weighted by their discriminant power. The algorithm is summarized in Algorithm 1.

 Machine Learning

312

The sample weights , i = 1, . . . , N, t = 1, . . . , T are very important; at step t, the weights of
the samples with high classification error at step t − 1 is increased, while the weights of
samples with smaller classification error is decreased (Algorithm 1). This will let the
classifier at step t focus on difficult samples which have not been correctly classified in the
previous step. The output of the strong classifier can be interpreted as the posterior
probability of a class C given the shape O and it is given by:

(1)

The AdaBoost algorithm requires two parameters to tune: the type of weak classifier, and the
maximum number of iterations. The weak classifier is required to achieve better classification
than random. We experimented with the decision stumps and Least Mean Squares (LMS)
classifier for their simplicity. The parameter T can be set such that E[fC], the upper bound of the
classification error on the training data of the strong classifier fC, is less than a threshold θ. In

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

313

our experiments we found that a value of T between 20 and 50 is sufficient to achieve an upper
bound of the classification error on the training set less than 1.0%.
Building the training set
We use as positive and negative examples for our training set the relevant and nonrelevant
models provided in the Princeton Shape Benchmark (PSB) classification. For example, to
build a strong classifier that learns the decision boundary between the biped human objects
and non-biped human objects, the positive examples are set to all models that belong to the
class biped human, while the negative examples are the remaining models in the database.
The PSB is provided with a train and test classifications. We use the train classification to
train our classification and the test classification to assess the performance of the
classification and retrieval.

4.2 Generalization to multiple classes
Two straightforward extension schemes are the one-vs-all classifier and the pairwise
classifier (Hao & Luo, 2006). The pairwise classifier uses L(L − 1)/2 binary classifiers where L
is the number of classes in the training set, to separate every two classes. A voting scheme at
the end is used to determine the correct classification. With the one-vs-all classifier, L binary
classifiers are trained, each of which is able to distinguish one class from all the others. The
pairwise classifier has a smaller area of confusion in the feature space compared to the one-
vs-all. However, the number of the required binary classifiers increases quadratically with
the number of classes in the database, while the one-vs-all increases linearly.
In our implementation we used a one-vs-all classifier for its simplicity. The output of the
training stage is a set of L binary classifiers, where L is the number of classes in the database.
Given a query model Q each binary classifier will return a vote for a certain class. We use
the positive votes to construct the set of candidate classes to which the query Q may belong.
Notice that when a new 3D model or a new class of models are added to the database, only
the classifier that corresponds to the model’s class that needs training.
It is important to outline that the algorithm is data-driven that is different classifiers are
obtained when given a different classification of the data. This allows to capture the
semantics of the data. Furthermore, existing 3D model collections are often provided with
multiple classifications. We plan in the future to extend the framework to handle
hierarchical classifications of the data.

 Machine Learning

312

The sample weights , i = 1, . . . , N, t = 1, . . . , T are very important; at step t, the weights of
the samples with high classification error at step t − 1 is increased, while the weights of
samples with smaller classification error is decreased (Algorithm 1). This will let the
classifier at step t focus on difficult samples which have not been correctly classified in the
previous step. The output of the strong classifier can be interpreted as the posterior
probability of a class C given the shape O and it is given by:

(1)

The AdaBoost algorithm requires two parameters to tune: the type of weak classifier, and the
maximum number of iterations. The weak classifier is required to achieve better classification
than random. We experimented with the decision stumps and Least Mean Squares (LMS)
classifier for their simplicity. The parameter T can be set such that E[fC], the upper bound of the
classification error on the training data of the strong classifier fC, is less than a threshold θ. In

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

313

our experiments we found that a value of T between 20 and 50 is sufficient to achieve an upper
bound of the classification error on the training set less than 1.0%.
Building the training set
We use as positive and negative examples for our training set the relevant and nonrelevant
models provided in the Princeton Shape Benchmark (PSB) classification. For example, to
build a strong classifier that learns the decision boundary between the biped human objects
and non-biped human objects, the positive examples are set to all models that belong to the
class biped human, while the negative examples are the remaining models in the database.
The PSB is provided with a train and test classifications. We use the train classification to
train our classification and the test classification to assess the performance of the
classification and retrieval.

4.2 Generalization to multiple classes
Two straightforward extension schemes are the one-vs-all classifier and the pairwise
classifier (Hao & Luo, 2006). The pairwise classifier uses L(L − 1)/2 binary classifiers where L
is the number of classes in the training set, to separate every two classes. A voting scheme at
the end is used to determine the correct classification. With the one-vs-all classifier, L binary
classifiers are trained, each of which is able to distinguish one class from all the others. The
pairwise classifier has a smaller area of confusion in the feature space compared to the one-
vs-all. However, the number of the required binary classifiers increases quadratically with
the number of classes in the database, while the one-vs-all increases linearly.
In our implementation we used a one-vs-all classifier for its simplicity. The output of the
training stage is a set of L binary classifiers, where L is the number of classes in the database.
Given a query model Q each binary classifier will return a vote for a certain class. We use
the positive votes to construct the set of candidate classes to which the query Q may belong.
Notice that when a new 3D model or a new class of models are added to the database, only
the classifier that corresponds to the model’s class that needs training.
It is important to outline that the algorithm is data-driven that is different classifiers are
obtained when given a different classification of the data. This allows to capture the
semantics of the data. Furthermore, existing 3D model collections are often provided with
multiple classifications. We plan in the future to extend the framework to handle
hierarchical classifications of the data.

 Machine Learning

314

4.3 Interpretation of the selected features
Boosting algorithm can be used as a feature selection and combination technique. Each
iteration learns a new weak classifier that is based on the most discriminative feature
according to the probability distribution of the training data. In the case of LFD, the selected
feature is the descriptor of a 2D projection of the 3D model. Therefore, by adopting a
Boosting approach we provide a tool for best view selection and view ordering based on
their ability to discriminate the shapes of a certain class from the other classes in the
database. Here we assume that the quality of a view is quantified as its discrimination
ability, i.e, the ability of the 2D view to discriminate the shape from other shapes that belong
to different classes.
The interpretation of the weak classifier may differ according to the type of descriptor used
for training. In the case of the GEDT, which computes the restriction of the shape to
concentric sphere, the selected feature can be seen as the radius of the concentric sphere on
which the most important features of the class lie. Furthermore, the weight of each weak
classifier can be considered as a measure of the saliency of the selected feature. Recall also
that AdaBoost is a stochastic approach. Therefore, different runs of the algorithm on the
same data will generate different sets of selected features. This is the case when the problem
has many solutions (local optima). At each run it finds a different solution but with similar
performance.
Figure 2 shows the top-best views selected with our algorithm. We can see that the
important features of each class of shapes are visible from the selected views. This shows
first that the selected views are consistent across all models of a same class, and the selected
views are visually plausible. Hence, boosting captures some high semantic features of the
data set. Best view selection has many applications in Computer Graphics and also online
browsing of digital media contents. The framework we proposed provides an easy method
to achieve this. We plan in the future to evaluate the quality of the selected views compared
to other algorithms (Lee et al., 2005; Yamauchi et al., 2006).

Fig. 2. Boosted LFD descriptor allows for automatic best-view selection. The first and second
rows show respectively the first and second best views of objects belonging to different
classes of shapes. Automatic best view selection can be used for visual browsing of large
collections of 3D models.

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

315

4.4 Combining heterogeneous features
One important property of the developed classification algorithm is its ability to combine
heterogeneous features in a straightforward manner; at each step of the training process, a
set of weak classifiers are trained on the features, one-per basic feature, and the one with
minimum training error is picked. Therefore, the features are considered independently.
Although this may ignore possible correlations between basic features, it allows however to
handle features of different types. We use this property to combine heterogeneous features
for efficient classification.

5. Query processing
At the run time, the user specifies a query Q and seeks either to classify it into one of the
shape classes (classification), or retrieve models in the database that are most similar to the
query (retrieval).
To classify the query Q, we compute a set of M feature vectors (LFD and GEDT descriptors
in our case) in the same manner as in the training stage (Section ??). Then we let each binary
classifier Cl vote for a the class Cl, l = 1, . . . , L. The candidate classes are determined by the
classifiers that have positive response to the query Q. We build the candidate classes set by
collecting the indices of classes whose classifiers gave positive response, and we order them
in descending order of the class posterior probabilities given in Equation 1.
We perform the retrieval in two steps combining classification and search: first we find the
candidate classes Ci to which the query Q may belong. Then, we run a search operation
inside each candidate class by computing the similarity between the query Q and every
model in the candidate class Ci. The 3D models of the candidate classes are sorted according
to their similarity to the query model. We return one ranked list per class. The ranked lists
are merged to form the k-best matches to the query. Here we use only the salient features of
the class Ci, and the matching is performed only on a subset of the entire database. This
reduces significantly the computation time.
Search inside classes requires the use of a distance function which measures the distance
between the descriptor of the query and the descriptors of the class’s shapes. In our
implementation we used the Euclidean distance when working with a single descriptor
type, i.e., LFD or GEDT. When using heterogeneous features however(ex. LFD-GEDT), the
descriptor with larger scale will have higher impact on the Euclidean distance. To overcome
this limitation we modify slightly the distance measure as follows; first we compute the
Euclidean distance between the query model and the candidate models using each
descriptor independently. The final distance is then taken as the minimum over the
computed distances.
Examples of retrieval results are shown in Figures 4 and 5 with queries that are not part of
the database. In these examples the query models (first column) do not belong to the
database and have not been used during the training phase.

6. Results
To evaluate the performance of the proposed framework for 3D model classification and
retrieval, we we use the Princeton Shape Benchmark (PSB) Shilane et al. (2004) as a ground
truth, and the Shape Retrieval Evaluation Contest (SHREC2006) (Veltkamp et al., 2006)
query set and performance evaluation tools. The Princeton Shape Benchmark contains 1814

 Machine Learning

314

4.3 Interpretation of the selected features
Boosting algorithm can be used as a feature selection and combination technique. Each
iteration learns a new weak classifier that is based on the most discriminative feature
according to the probability distribution of the training data. In the case of LFD, the selected
feature is the descriptor of a 2D projection of the 3D model. Therefore, by adopting a
Boosting approach we provide a tool for best view selection and view ordering based on
their ability to discriminate the shapes of a certain class from the other classes in the
database. Here we assume that the quality of a view is quantified as its discrimination
ability, i.e, the ability of the 2D view to discriminate the shape from other shapes that belong
to different classes.
The interpretation of the weak classifier may differ according to the type of descriptor used
for training. In the case of the GEDT, which computes the restriction of the shape to
concentric sphere, the selected feature can be seen as the radius of the concentric sphere on
which the most important features of the class lie. Furthermore, the weight of each weak
classifier can be considered as a measure of the saliency of the selected feature. Recall also
that AdaBoost is a stochastic approach. Therefore, different runs of the algorithm on the
same data will generate different sets of selected features. This is the case when the problem
has many solutions (local optima). At each run it finds a different solution but with similar
performance.
Figure 2 shows the top-best views selected with our algorithm. We can see that the
important features of each class of shapes are visible from the selected views. This shows
first that the selected views are consistent across all models of a same class, and the selected
views are visually plausible. Hence, boosting captures some high semantic features of the
data set. Best view selection has many applications in Computer Graphics and also online
browsing of digital media contents. The framework we proposed provides an easy method
to achieve this. We plan in the future to evaluate the quality of the selected views compared
to other algorithms (Lee et al., 2005; Yamauchi et al., 2006).

Fig. 2. Boosted LFD descriptor allows for automatic best-view selection. The first and second
rows show respectively the first and second best views of objects belonging to different
classes of shapes. Automatic best view selection can be used for visual browsing of large
collections of 3D models.

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

315

4.4 Combining heterogeneous features
One important property of the developed classification algorithm is its ability to combine
heterogeneous features in a straightforward manner; at each step of the training process, a
set of weak classifiers are trained on the features, one-per basic feature, and the one with
minimum training error is picked. Therefore, the features are considered independently.
Although this may ignore possible correlations between basic features, it allows however to
handle features of different types. We use this property to combine heterogeneous features
for efficient classification.

5. Query processing
At the run time, the user specifies a query Q and seeks either to classify it into one of the
shape classes (classification), or retrieve models in the database that are most similar to the
query (retrieval).
To classify the query Q, we compute a set of M feature vectors (LFD and GEDT descriptors
in our case) in the same manner as in the training stage (Section ??). Then we let each binary
classifier Cl vote for a the class Cl, l = 1, . . . , L. The candidate classes are determined by the
classifiers that have positive response to the query Q. We build the candidate classes set by
collecting the indices of classes whose classifiers gave positive response, and we order them
in descending order of the class posterior probabilities given in Equation 1.
We perform the retrieval in two steps combining classification and search: first we find the
candidate classes Ci to which the query Q may belong. Then, we run a search operation
inside each candidate class by computing the similarity between the query Q and every
model in the candidate class Ci. The 3D models of the candidate classes are sorted according
to their similarity to the query model. We return one ranked list per class. The ranked lists
are merged to form the k-best matches to the query. Here we use only the salient features of
the class Ci, and the matching is performed only on a subset of the entire database. This
reduces significantly the computation time.
Search inside classes requires the use of a distance function which measures the distance
between the descriptor of the query and the descriptors of the class’s shapes. In our
implementation we used the Euclidean distance when working with a single descriptor
type, i.e., LFD or GEDT. When using heterogeneous features however(ex. LFD-GEDT), the
descriptor with larger scale will have higher impact on the Euclidean distance. To overcome
this limitation we modify slightly the distance measure as follows; first we compute the
Euclidean distance between the query model and the candidate models using each
descriptor independently. The final distance is then taken as the minimum over the
computed distances.
Examples of retrieval results are shown in Figures 4 and 5 with queries that are not part of
the database. In these examples the query models (first column) do not belong to the
database and have not been used during the training phase.

6. Results
To evaluate the performance of the proposed framework for 3D model classification and
retrieval, we we use the Princeton Shape Benchmark (PSB) Shilane et al. (2004) as a ground
truth, and the Shape Retrieval Evaluation Contest (SHREC2006) (Veltkamp et al., 2006)
query set and performance evaluation tools. The Princeton Shape Benchmark contains 1814

 Machine Learning

316

polygon soup models, divided into the training set (907 models) and the test set (907
models). Every set contains four classification levels; the base train classification contains
129 classes while the coarsest classification (coarse3) contains two classes: man-made vs.
natural objects.

6.1 Classification performance
Figure 3 summarizes the classification performance of the developed AdaBoost classifier. In
this figure, the average classification performance is the ratio between the number of
correctly classified models of a class C to the total number of models in the class. We see
that, for the coarse3 classification (Figure 3-(d)), which contains only two classes with very
high shape variability within each class, the classification performance is at 65.3% for
natural shape and 73% for man-made models. This clearly proves that the training
procedure captures efficiently the semantic concepts of the shape classes and generalizes
relatively well to unseen samples.

Fig. 3. Average classification performance of the Boosted-LFD for each class of shapes in the
test set of the Princeton Shape Benchmark. Class labeled by (-1) contains models that cannot
be classified to any of the other classes.

The performance on the other classification levels: base, coarse1 and coarse2 are shown in
Figure 3-(a),(b) and (c). In this experiments we show only the classification results on the
classes of the test set that exist in the training set. On the base classification (Figure 3-(a)), we
can see that the classifiers achieve 100% classification performance on space ship entreprise

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

317

like, dining chair and sea vessel. The worst performance is on the plant tree models. This is
probably because of the high shape variability within the class , which cannot be captured
by the LFD descriptors.

6.2 Retrieval performance
To evaluate the retrieval performance we train our classifier with the entire base
classification (train and test sets) of the PSB. This classification contains 160 shape categories
with varying number of samples in each class. For testing, we use the 30 queries of the
SHREC2006. Each query contains a set of highly relevant and relevant models in the
database. Recall that these queries do not belong the database, and therefore, have not been
used during the training of the AdaBoost classifiers. We measure the retrieval performance
using the SHREC2006 tools and compare to the other descriptors used in contest.
Tables 1, 2, and 3 summarize the performance of our descriptors on the mean average
precision, mean first tier, mean second tier, dynamic average recall, mean normalized
cumulative gain (MNCG), and the mean normalized discounted cumulative gain (MNDCG)
measures. We tested the GEDT and LFD descriptors without boosting, the Boosted-GEDT
and Boosted-LFD (i.e., the GEDT and LFD descriptors after boosting), and combination of
LFD and GEDT denoted by Boosted-LFD-GEDT.
We can see first that the boosted versions of the LFD and GEDT algorithms perform much
better than before boosting. This confirms that learning the salient features of the data by the
mean of supervised learning improves the performance of the descriptors as it captures the
semantic structure of the database to query. Although we tested only the LFD and GEDT,
our approach is more general and it can be applied to other types of descriptors.
The second observation is that the Boosted-LFD-GEDT descriptor outperforms the Boosted-
LFD and Boosted-GEDT in most of the measures. This shows that combining different types
of features precision as well as the the mean dynamic average recall of the retrieval
algorithm. In our implementation we used a simple similarity measure for intra-class search
for the combined descriptor. We believe that there is a window for improvement by
investigating more elaborated similarity measures.
Finally, Figures 4 and 5 some retrieval results of the Boosted-LFD and Boosted-GEDT
descriptors. We use the SHREC2006 queries (first column) and we show the top-10 best
matches. Notice that for some queries (the dolphine for the Boosted-LFD and the horse for
the Boosted-GEDT), the algorithm returned less then 10 results. This is an important
property of our algorithm: it is able to say whether a model is relevant to the query or not
and therefore discard irrelevant models from the retrieval list.

7. Conclusion
We proposed in this chapter a new framework for 3D model retrieval based on an off-line
learning of the most salient features of the shapes. By using a boosting approach we are able
to use a large set of features, which can be heterogeneous, in order to capture the high-level
semantic concepts of different shape classes. The retrieval process is a combination of
classification and intra-class search. The experimental results showed that (1) the boosted
descriptors outperform their non-boosted counter part, and (2) an efficient combination of
descriptors of different types improves significantly the retrieval performance.

 Machine Learning

316

polygon soup models, divided into the training set (907 models) and the test set (907
models). Every set contains four classification levels; the base train classification contains
129 classes while the coarsest classification (coarse3) contains two classes: man-made vs.
natural objects.

6.1 Classification performance
Figure 3 summarizes the classification performance of the developed AdaBoost classifier. In
this figure, the average classification performance is the ratio between the number of
correctly classified models of a class C to the total number of models in the class. We see
that, for the coarse3 classification (Figure 3-(d)), which contains only two classes with very
high shape variability within each class, the classification performance is at 65.3% for
natural shape and 73% for man-made models. This clearly proves that the training
procedure captures efficiently the semantic concepts of the shape classes and generalizes
relatively well to unseen samples.

Fig. 3. Average classification performance of the Boosted-LFD for each class of shapes in the
test set of the Princeton Shape Benchmark. Class labeled by (-1) contains models that cannot
be classified to any of the other classes.

The performance on the other classification levels: base, coarse1 and coarse2 are shown in
Figure 3-(a),(b) and (c). In this experiments we show only the classification results on the
classes of the test set that exist in the training set. On the base classification (Figure 3-(a)), we
can see that the classifiers achieve 100% classification performance on space ship entreprise

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

317

like, dining chair and sea vessel. The worst performance is on the plant tree models. This is
probably because of the high shape variability within the class , which cannot be captured
by the LFD descriptors.

6.2 Retrieval performance
To evaluate the retrieval performance we train our classifier with the entire base
classification (train and test sets) of the PSB. This classification contains 160 shape categories
with varying number of samples in each class. For testing, we use the 30 queries of the
SHREC2006. Each query contains a set of highly relevant and relevant models in the
database. Recall that these queries do not belong the database, and therefore, have not been
used during the training of the AdaBoost classifiers. We measure the retrieval performance
using the SHREC2006 tools and compare to the other descriptors used in contest.
Tables 1, 2, and 3 summarize the performance of our descriptors on the mean average
precision, mean first tier, mean second tier, dynamic average recall, mean normalized
cumulative gain (MNCG), and the mean normalized discounted cumulative gain (MNDCG)
measures. We tested the GEDT and LFD descriptors without boosting, the Boosted-GEDT
and Boosted-LFD (i.e., the GEDT and LFD descriptors after boosting), and combination of
LFD and GEDT denoted by Boosted-LFD-GEDT.
We can see first that the boosted versions of the LFD and GEDT algorithms perform much
better than before boosting. This confirms that learning the salient features of the data by the
mean of supervised learning improves the performance of the descriptors as it captures the
semantic structure of the database to query. Although we tested only the LFD and GEDT,
our approach is more general and it can be applied to other types of descriptors.
The second observation is that the Boosted-LFD-GEDT descriptor outperforms the Boosted-
LFD and Boosted-GEDT in most of the measures. This shows that combining different types
of features precision as well as the the mean dynamic average recall of the retrieval
algorithm. In our implementation we used a simple similarity measure for intra-class search
for the combined descriptor. We believe that there is a window for improvement by
investigating more elaborated similarity measures.
Finally, Figures 4 and 5 some retrieval results of the Boosted-LFD and Boosted-GEDT
descriptors. We use the SHREC2006 queries (first column) and we show the top-10 best
matches. Notice that for some queries (the dolphine for the Boosted-LFD and the horse for
the Boosted-GEDT), the algorithm returned less then 10 results. This is an important
property of our algorithm: it is able to say whether a model is relevant to the query or not
and therefore discard irrelevant models from the retrieval list.

7. Conclusion
We proposed in this chapter a new framework for 3D model retrieval based on an off-line
learning of the most salient features of the shapes. By using a boosting approach we are able
to use a large set of features, which can be heterogeneous, in order to capture the high-level
semantic concepts of different shape classes. The retrieval process is a combination of
classification and intra-class search. The experimental results showed that (1) the boosted
descriptors outperform their non-boosted counter part, and (2) an efficient combination of
descriptors of different types improves significantly the retrieval performance.

 Machine Learning

318

Table 1. Mean Average precision, Mean First Tier and Second Tier performance.
As future work, there are many avenues for improvements. First, most of existing 3D model
repositories are often provided with a hierarchical classification. We plan to extend our
framework to handle such structure of the data as well as fuzzy classification, since in
nature a same model may belong to several categories simultaneously. Also we plan to

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

319

investigate on the meaning of the selected feature space for each shape class and extend the
framework to the problem of building creative prototypes of 3D models. The prototype
should capture the high-level semantic features of the class.

8. Acknowledgement
The implementation of the GEDT descriptor has been kindly provided by Philip Shilane.
Models that appear in this chapter are from the Princeton Shape Benchmark, courtesy of the
Shape Analysis Group of the Princeton University. The query models and the evaluation
tools used in this chapter are part of SHREC2006: the first Shape Retrieval Evaluation
Contest (http://www.aimatshape.net/event/SHREC/shrec06).
This research is supported by the Japanese Ministry of Education, Culture, Sports, Science and
Technology (MEXT) program Promotion of Environmental Improvement for Independence of Young
Researchers under the Special Coordination Funds for Promoting Science and Technology.

9. References
Ankerst, M., Kastenmoller, G., Kriegel, H.-P. and Seidl, T. (1999), Nearest neighbor

classification in 3D protein databases, in ‘the Seventh International Conference on
Intelligent Systems for Molecular Biology’, AAAI Press, pp. 34–43.

Biasotti, S., Marini, S., Spagnuolo, M. and Falcidieno, B. (2006), “Sub-part correspondence by
structural descriptors of 3D shapes.”, Computer-Aided Design , Vol. 38, pp. 1002–1019.

Chen, D.-Y., Tian, X.-P., Shen, Y.-T. and Ouhyoung, M. (2003), “On visual similarity based
3D model retrieval.”, Computer Graphics Forum , Vol. 22, pp. 223–232.

Funkhouser, T. A., Min, P., Kazhdan, M. M., Chen, J., Halderman, J. A., Dobkin, D. P. and
Jacobs, D. P. (2003), “A search engine for 3D models.”, ACM Transactions on
Graphics , Vol. 22, pp. 83–105.

Funkhouser, T. and Shilane, P. (2006), Partial matching of 3D shapes with prioritydriven
search, in ‘SGP ’06: Proceedings of the fourth Eurographics Symposium on
Geometry Processing’, Eurographics Association, pp. 131–14.

Hao, W. and Luo, J. (2006), Generalized multiclass adaboost and its applications to multimedia
classification, in ‘CVPRW ’06: Proceedings of the 2006 Conference on Computer
Vision and Pattern Recognition Workshop’, IEEE Computer Society, p. 113.

Hilaga, M., Shinagawa, Y., Kohmura, T. and Kunii, T. L. (2001), Topology matching for fully
automatic similarity estimation of 3D shapes, in ‘Proceedings of the 28th annual
conference on Computer graphics and interactive techniques’, ACM Press, pp. 203–
212.

Hou, S., Lou, K. and Ramani, K. (2005), “SVM-based semantic clustering and retrieval of a
3D model database”, Journal of Computer Aided Design and Application , Vol. 2, pp.
155–164.

Hou, S. and Ramani, K. (2006), A probability-based unified 3D shape search, in ‘European
Commission International Conference on Semantic and Digital Media
Technologies, Lecture notes in computer science’, Vol. 4306, pp. 124–137.

Ip, C. Y., Regli, W. C., Sieger, L. and Shokoufandeh, A. (2003), Automated learning of model
classifications, in ‘SM ’03: Proceedings of the eighth ACM symposium on Solid
modeling and applications’, ACM Press, pp. 322–327.

Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y. and Ramani, K. (2005), “Threedimensional
shape searching: state-of-the-art review and future trends.”, Computer-Aided Design,
Vol. 37, pp. 509–530.

 Machine Learning

318

Table 1. Mean Average precision, Mean First Tier and Second Tier performance.
As future work, there are many avenues for improvements. First, most of existing 3D model
repositories are often provided with a hierarchical classification. We plan to extend our
framework to handle such structure of the data as well as fuzzy classification, since in
nature a same model may belong to several categories simultaneously. Also we plan to

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

319

investigate on the meaning of the selected feature space for each shape class and extend the
framework to the problem of building creative prototypes of 3D models. The prototype
should capture the high-level semantic features of the class.

8. Acknowledgement
The implementation of the GEDT descriptor has been kindly provided by Philip Shilane.
Models that appear in this chapter are from the Princeton Shape Benchmark, courtesy of the
Shape Analysis Group of the Princeton University. The query models and the evaluation
tools used in this chapter are part of SHREC2006: the first Shape Retrieval Evaluation
Contest (http://www.aimatshape.net/event/SHREC/shrec06).
This research is supported by the Japanese Ministry of Education, Culture, Sports, Science and
Technology (MEXT) program Promotion of Environmental Improvement for Independence of Young
Researchers under the Special Coordination Funds for Promoting Science and Technology.

9. References
Ankerst, M., Kastenmoller, G., Kriegel, H.-P. and Seidl, T. (1999), Nearest neighbor

classification in 3D protein databases, in ‘the Seventh International Conference on
Intelligent Systems for Molecular Biology’, AAAI Press, pp. 34–43.

Biasotti, S., Marini, S., Spagnuolo, M. and Falcidieno, B. (2006), “Sub-part correspondence by
structural descriptors of 3D shapes.”, Computer-Aided Design , Vol. 38, pp. 1002–1019.

Chen, D.-Y., Tian, X.-P., Shen, Y.-T. and Ouhyoung, M. (2003), “On visual similarity based
3D model retrieval.”, Computer Graphics Forum , Vol. 22, pp. 223–232.

Funkhouser, T. A., Min, P., Kazhdan, M. M., Chen, J., Halderman, J. A., Dobkin, D. P. and
Jacobs, D. P. (2003), “A search engine for 3D models.”, ACM Transactions on
Graphics , Vol. 22, pp. 83–105.

Funkhouser, T. and Shilane, P. (2006), Partial matching of 3D shapes with prioritydriven
search, in ‘SGP ’06: Proceedings of the fourth Eurographics Symposium on
Geometry Processing’, Eurographics Association, pp. 131–14.

Hao, W. and Luo, J. (2006), Generalized multiclass adaboost and its applications to multimedia
classification, in ‘CVPRW ’06: Proceedings of the 2006 Conference on Computer
Vision and Pattern Recognition Workshop’, IEEE Computer Society, p. 113.

Hilaga, M., Shinagawa, Y., Kohmura, T. and Kunii, T. L. (2001), Topology matching for fully
automatic similarity estimation of 3D shapes, in ‘Proceedings of the 28th annual
conference on Computer graphics and interactive techniques’, ACM Press, pp. 203–
212.

Hou, S., Lou, K. and Ramani, K. (2005), “SVM-based semantic clustering and retrieval of a
3D model database”, Journal of Computer Aided Design and Application , Vol. 2, pp.
155–164.

Hou, S. and Ramani, K. (2006), A probability-based unified 3D shape search, in ‘European
Commission International Conference on Semantic and Digital Media
Technologies, Lecture notes in computer science’, Vol. 4306, pp. 124–137.

Ip, C. Y., Regli, W. C., Sieger, L. and Shokoufandeh, A. (2003), Automated learning of model
classifications, in ‘SM ’03: Proceedings of the eighth ACM symposium on Solid
modeling and applications’, ACM Press, pp. 322–327.

Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y. and Ramani, K. (2005), “Threedimensional
shape searching: state-of-the-art review and future trends.”, Computer-Aided Design,
Vol. 37, pp. 509–530.

 Machine Learning

320

Johnson, A. (1997), Spin-Images: A Representation for 3-D Surface Matching, PhD thesis,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Kazhdan, M., Funkhouser, T. and Rusinkiewicz, S. (2003), Rotation invariant spherical
harmonic representation of 3D shape descriptors, in ‘SGP ’03: Proceedings of the 2003
Eurographics/ACM SIGGRAPH symposium on Geometry processing’, pp. 156–164.

Laga, H., Takahashi, H. and Nakajima, M. (2006), Spherical wavelet descriptors for content-
based 3D model retrieval, in ‘SMI ’06: Proceedings of the IEEE International
Conference on Shape Modeling and Applications 2006 (SMI’06)’, pp. 75–85.

Lee, C. H., Varshney, A. and Jacobs, D.W. (2005), Mesh saliency, in ‘SIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers’, ACM Press, New York, NY, USA, pp. 659–666.

Lew, M. S., Sebe, N., Djeraba, C. and Jain, R. (2006), “Content-based multimedia information
retrieval: State of the art and challenges”, ACM Trans. Multimedia Comput. Commun.
Appl. , Vol. 2, ACM Press, New York, NY, USA, pp. 1–19.

M.Kortgen, G-J.Patrick, M.Novotni and R.Klein (2003), 3D shape matching with 3D shape
contexts, in ‘the 7th Central European Seminar on Computer Graphics’.

Novotni, M. and Klein, R. (2003), 3D Zernike descriptors for content based shape retrieval,
in ‘SM ’03: Proceedings of the eighth ACM symposium on Solid modeling and
applications’, ACM Press, New York, NY, USA, pp. 216–225.

Ohbuchi, R. and Kobayashi, J. (2006), Unsupervised learning from a corpus for shapebased
3D model retrieval, in ‘MIR ’06: Proceedings of the 8th ACM international
workshop on Multimedia information retrieval’, ACM Press, pp. 163–172.

Ohbuchi, R., Kobayashi, J., Yamamoto, A. and Shimizu, T. (2007), Comparison of dimension
reduction method for database-adaptive 3D model retrieval, in ‘Fifth International
Workshop on Adaptive Multimedia Retrieval (AMR 2007)’.

Reuter, M., Wolter, F.-E. and Peinecke, N. (2006), “Laplace-Beltrami spectra as ”shape-
DNA” of surfaces and solids”, Computer-Aided Design , Vol. 38, pp. 342– 366.

Schapire, R. E. (2003), The boosting approach to machine learning: An overview., in ‘In D. D.
Denison, M. H. Hansen, C. Holmes, B. Mallick, B. Yu, editors, Nonlinear Estimation
and Classification’, Springer.

Shilane, P. and Funkhouser, T. (2006), “Selecting Distinctive 3D Shape Descriptors for Similarity
Retrieval”, IEEE International Conference on Shape Modeling and Applications
(SMI2006) , Vol. 0, IEEE Computer Society, Los Alamitos, CA, USA, p. 18.

Shilane, P., Min, P., Kazhdan, M. and Funkhouser, T. (2004), The princeton shape
benchmark, in ‘SMI’04: Proceedings of the Shape Modeling International 2004
(SMI’04)’, pp. 167–178.

Tangelder, J. W. and Veltkamp, R. C. (2004), A survey of content based 3D shape retrieval, in
‘Shape Modeling International 2004, Genova, Italy’, pp. 145–156.

Tieu, K. and Viola, P. (2004), “Boosting image retrieval”, International Journal of Computer
Vision , Vol. 56, Kluwer Academic Publishers, Hingham, MA, USA, pp. 17–36.

T.Tung and F.Schmitt (2005), “The augmented multiresolution reeb graph approach for
content-based retrieval of 3D shapes”, International Journal of Shape Modeling (IJSM) ,
Vol. 11, pp. 91–120.

Veltkamp, R. C., Ruijsenaars, R., Spagnuolo, M., van Zwol, R. and ter Haar, F. (2006),
SHREC2006: 3D Shape Retrieval Contest, Technical Report UU-CS- 2006-030,
Department of Information and Computing Sciences, Utrecht University.

Xu, C., Tan, T., Li, S. Z., Wang, Y. and Zhong, C. (2006), Learning effective intrinsic features
to boost 3D-based face recognition, in ‘ECCV 2006, 9th European Conference on
Computer Vision’, Springer, pp. 416–427.

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

321

Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A. and Seidel, H.- P. (2006), Towards
stable and salient multi-view representation of 3D shapes, in ‘Proceedings of the IEEE
International Conference on Shape Modeling and Applications 2006 (SMI’06)’, p. 40.

Table 2. Dynamic Average Recall and, Mean Normalized Cumulated Gain (MNCG)
performance.

 Machine Learning

320

Johnson, A. (1997), Spin-Images: A Representation for 3-D Surface Matching, PhD thesis,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Kazhdan, M., Funkhouser, T. and Rusinkiewicz, S. (2003), Rotation invariant spherical
harmonic representation of 3D shape descriptors, in ‘SGP ’03: Proceedings of the 2003
Eurographics/ACM SIGGRAPH symposium on Geometry processing’, pp. 156–164.

Laga, H., Takahashi, H. and Nakajima, M. (2006), Spherical wavelet descriptors for content-
based 3D model retrieval, in ‘SMI ’06: Proceedings of the IEEE International
Conference on Shape Modeling and Applications 2006 (SMI’06)’, pp. 75–85.

Lee, C. H., Varshney, A. and Jacobs, D.W. (2005), Mesh saliency, in ‘SIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers’, ACM Press, New York, NY, USA, pp. 659–666.

Lew, M. S., Sebe, N., Djeraba, C. and Jain, R. (2006), “Content-based multimedia information
retrieval: State of the art and challenges”, ACM Trans. Multimedia Comput. Commun.
Appl. , Vol. 2, ACM Press, New York, NY, USA, pp. 1–19.

M.Kortgen, G-J.Patrick, M.Novotni and R.Klein (2003), 3D shape matching with 3D shape
contexts, in ‘the 7th Central European Seminar on Computer Graphics’.

Novotni, M. and Klein, R. (2003), 3D Zernike descriptors for content based shape retrieval,
in ‘SM ’03: Proceedings of the eighth ACM symposium on Solid modeling and
applications’, ACM Press, New York, NY, USA, pp. 216–225.

Ohbuchi, R. and Kobayashi, J. (2006), Unsupervised learning from a corpus for shapebased
3D model retrieval, in ‘MIR ’06: Proceedings of the 8th ACM international
workshop on Multimedia information retrieval’, ACM Press, pp. 163–172.

Ohbuchi, R., Kobayashi, J., Yamamoto, A. and Shimizu, T. (2007), Comparison of dimension
reduction method for database-adaptive 3D model retrieval, in ‘Fifth International
Workshop on Adaptive Multimedia Retrieval (AMR 2007)’.

Reuter, M., Wolter, F.-E. and Peinecke, N. (2006), “Laplace-Beltrami spectra as ”shape-
DNA” of surfaces and solids”, Computer-Aided Design , Vol. 38, pp. 342– 366.

Schapire, R. E. (2003), The boosting approach to machine learning: An overview., in ‘In D. D.
Denison, M. H. Hansen, C. Holmes, B. Mallick, B. Yu, editors, Nonlinear Estimation
and Classification’, Springer.

Shilane, P. and Funkhouser, T. (2006), “Selecting Distinctive 3D Shape Descriptors for Similarity
Retrieval”, IEEE International Conference on Shape Modeling and Applications
(SMI2006) , Vol. 0, IEEE Computer Society, Los Alamitos, CA, USA, p. 18.

Shilane, P., Min, P., Kazhdan, M. and Funkhouser, T. (2004), The princeton shape
benchmark, in ‘SMI’04: Proceedings of the Shape Modeling International 2004
(SMI’04)’, pp. 167–178.

Tangelder, J. W. and Veltkamp, R. C. (2004), A survey of content based 3D shape retrieval, in
‘Shape Modeling International 2004, Genova, Italy’, pp. 145–156.

Tieu, K. and Viola, P. (2004), “Boosting image retrieval”, International Journal of Computer
Vision , Vol. 56, Kluwer Academic Publishers, Hingham, MA, USA, pp. 17–36.

T.Tung and F.Schmitt (2005), “The augmented multiresolution reeb graph approach for
content-based retrieval of 3D shapes”, International Journal of Shape Modeling (IJSM) ,
Vol. 11, pp. 91–120.

Veltkamp, R. C., Ruijsenaars, R., Spagnuolo, M., van Zwol, R. and ter Haar, F. (2006),
SHREC2006: 3D Shape Retrieval Contest, Technical Report UU-CS- 2006-030,
Department of Information and Computing Sciences, Utrecht University.

Xu, C., Tan, T., Li, S. Z., Wang, Y. and Zhong, C. (2006), Learning effective intrinsic features
to boost 3D-based face recognition, in ‘ECCV 2006, 9th European Conference on
Computer Vision’, Springer, pp. 416–427.

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

321

Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A. and Seidel, H.- P. (2006), Towards
stable and salient multi-view representation of 3D shapes, in ‘Proceedings of the IEEE
International Conference on Shape Modeling and Applications 2006 (SMI’06)’, p. 40.

Table 2. Dynamic Average Recall and, Mean Normalized Cumulated Gain (MNCG)
performance.

 Machine Learning

322

Table 3. Mean Normalized Discounted Cumulated Gain (MNDCG) performance.

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

323

Fig. 4. Some retrieval results using the Boosted-LFD Descriptors. The models in the first
column are used as query models2.2The 10-best matches are displayed.

 Machine Learning

322

Table 3. Mean Normalized Discounted Cumulated Gain (MNDCG) performance.

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning

323

Fig. 4. Some retrieval results using the Boosted-LFD Descriptors. The models in the first
column are used as query models2.2The 10-best matches are displayed.

 Machine Learning

324

Fig. 5. Retrieval results using the Boosted-GEDT Descriptors. The models in the first column
are used as query models. T2h3e 10-best matches are displayed.

16

Performance Analysis of Hybrid
Non-Supervised & Supervised Learning

Techniques Applied to the Classification of
Faults in Energy Transport Systems

Jhon Albeiro Calderón1, Germán Zapata Madrigal2
and Demetrio A. Ovalle Carranza3

1Interconexión Eléctrica S.A. E.S.P.,
 2Electrical and Mechanics Engineering Department,

 3Computer Science Department, National University of Colombia – Campus Medellin
Colombia

1. Introduction
Most of the power systems protection techniques are related to the definition of system
states by means of the identification of patterns from waveform of voltage and associated
current. This means that the development of an adaptive protection can essentially be
treated as a problem about classification/recognition of patterns (Song et al., 1997).
Nevertheless, because the main causes of faults and the operation of nonlinear devices
under certain conditions of fault, the methods of recognition of conventional patterns are
unsatisfactory in some applications, particularly, in the case of high complexity electrical
systems. In this sense, neural networks play an important role due to their unique ability of
mapping nonlinear relations.
Some successful applications of neural networks in the area of electrical engineering (Song
et al., 1996), (Dillon & Niebur, 1996) have demonstrated that they can be used like an
alternative method to solve certain problems of great complexity where the conventional
techniques have experienced difficulties. Nevertheless, when giving a glance to the different
applications of neural networks to electric power systems, it is clear that almost all the
developments that have been carried out are based on the multi-layers perceptron with
retro-propagation learning algorithms (BP). Although, BP can provide very compact
distributed representations of complex data sets, it has some disadvantages such as the
following: it exhibits slow learning, it requires great sets of training, they easily fall in local
minimums, and in general it shows little robustness (Song et al., 1997).
Another type of learning is the non-supervised one that surrounds the learning of patterns
without a target. A typical non-supervised learning network is the Self-Organized Mapping
(SOMs) developed by Teuvo Kohonen. A SOM network has the advantage of fast learning
and small sets of training. Nevertheless, due to the absence of an output “truth” layer in the
SOM, its use is not recommendable for the classification of patterns. Instead, it is used as an

 Machine Learning

324

Fig. 5. Retrieval results using the Boosted-GEDT Descriptors. The models in the first column
are used as query models. T2h3e 10-best matches are displayed.

16

Performance Analysis of Hybrid
Non-Supervised & Supervised Learning

Techniques Applied to the Classification of
Faults in Energy Transport Systems

Jhon Albeiro Calderón1, Germán Zapata Madrigal2
and Demetrio A. Ovalle Carranza3

1Interconexión Eléctrica S.A. E.S.P.,
 2Electrical and Mechanics Engineering Department,

 3Computer Science Department, National University of Colombia – Campus Medellin
Colombia

1. Introduction
Most of the power systems protection techniques are related to the definition of system
states by means of the identification of patterns from waveform of voltage and associated
current. This means that the development of an adaptive protection can essentially be
treated as a problem about classification/recognition of patterns (Song et al., 1997).
Nevertheless, because the main causes of faults and the operation of nonlinear devices
under certain conditions of fault, the methods of recognition of conventional patterns are
unsatisfactory in some applications, particularly, in the case of high complexity electrical
systems. In this sense, neural networks play an important role due to their unique ability of
mapping nonlinear relations.
Some successful applications of neural networks in the area of electrical engineering (Song
et al., 1996), (Dillon & Niebur, 1996) have demonstrated that they can be used like an
alternative method to solve certain problems of great complexity where the conventional
techniques have experienced difficulties. Nevertheless, when giving a glance to the different
applications of neural networks to electric power systems, it is clear that almost all the
developments that have been carried out are based on the multi-layers perceptron with
retro-propagation learning algorithms (BP). Although, BP can provide very compact
distributed representations of complex data sets, it has some disadvantages such as the
following: it exhibits slow learning, it requires great sets of training, they easily fall in local
minimums, and in general it shows little robustness (Song et al., 1997).
Another type of learning is the non-supervised one that surrounds the learning of patterns
without a target. A typical non-supervised learning network is the Self-Organized Mapping
(SOMs) developed by Teuvo Kohonen. A SOM network has the advantage of fast learning
and small sets of training. Nevertheless, due to the absence of an output “truth” layer in the
SOM, its use is not recommendable for the classification of patterns. Instead, it is used as an

 Machine Learning

326

initial procedure ("front-end") to an output layer with a supervised training, that is,
combined non-supervised/supervised learning.
The networks that combine non-supervised and supervised learning have the powerful
ability to organize any complexity of highly nonlinear patterns recognition problem. This
type of neural network is insensitive to noise due to the low internal dimensional
representation (Song et al., 1996). Based on this kind of characteristics the present research
developed a hybrid model entitled Artificial Intelligence Adaptive Model (AIAM)
(Calderón, 2007).
Next, it will be initially described the basic functionality of the several models analyzed in
the research, the respective main results, and finally the AIAM model and conclusions.

2. Neural networks models
With the purpose of selecting the most appropriate neural network model to be used for the
classification of faults in an Electrical Power System (EPS) an exploration of alternatives on
models of neural networks was carried out based on the state-of-the-art of the subject (El-
Sharkawi & Niebur, 1996), (Aggarwal & Song, 1997), (Aggarwal & Song, 1998a), (Aggarwal
& Song, 1998b), (Kezunovic, 1997), (Dalstein & Kulicke, 1995), (Keerthipala et al, 1997),
(Sidhu & Mitai, 2000), (Fernandez & Ghonaim, 2002), (Dalstein et al, 1996), (Zahra et al,
2000), (Ranaweera, 1994), (Oleskovicz et al., 2001), (Song et al, 1997), (Song et al, 1996),
(Dillon & Niebur, 1996), (Dillon & Niebur, 1999),(Badrul et al., 1996).
Next, four important classifiers, based on neural networks, will be briefly described. Special
emphasis was placed on the basic principles and differences, instead of a detailed
description itself.

2.1 Back-Propagation classifier (BP)
BP classifiers are the most popular and widely applied neural networks. They train with
supervision using the descending gradient algorithm to diminish the error between the real
exits and the wished exits of the network.
In Fig. 1. the general architecture of this type of network is illustrated.

Fig. 1. General architecture used by the model of retro-propagation training. (Matlab
educational license).

Many articles provide good introductions to the methods and successful applications of this
type of neural networks applied to the power systems. Nevertheless, in general, most of the
BP classifiers are (1) of prolonged training time; (2) of difficult selection for the optimal size,
and (3) potentially with tendency to be caught in a local minimum (Song et al., 1996).
For this reason, improvements have been developed in recent years, particularly in the
aspect concerning the learning process. In this sense, it is valuable to mention the fuzzy
algorithms of controlled learning and the training based on genetic algorithms.

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

327

2.2 Feature Mapping classifier (FM)
One of the most important algorithms of non-supervised learning is the Self-Organized
Feature Mapping (SOFM) proposed by Kohonen shown in Fig. 2. The SOFM is used to map
non-supervised input vectors in a bi-dimensional space where the vectors are self-organized
in groups that represent the different types.

Fig. 2. General architecture used by the Kohonen model of SOMF. (Matlab educational
license).

The SOFM learns to classify input vectors according to the form that they are grouped in the
input space. This method differs from the competitive method of layers in which the
neighboring neurons in the SOFM learn to recognize also adjacent sections in the input
space. Thus, the self-organized maps learn so much the distribution (as the competitive
method of layers makes it) as well as the topology of the input vectors that train. Neurons in
the layer of a SOFM are originally organized in physical positions according to a topological
function. The distances between neurons are calculated from their positions with a distance
function.
In these networks there is no target for the error evaluation. That is, the learning of the
synaptic weights is non-supervised, which means that, under the presentation of new input
vectors, the network dynamically determines these weights, in such a way that, input
vectors that are closely related will excite neurons that are closely grouped (Badrul et al.,
1996). It is able to separate data in a specified number of categories and therefore able to act
like a classifier. In the Kohonen network there are only two layers: an input layer where the
patterns of the variables are placed and an output layer that has a neuron for each possible
category or type.

2.3 Radial Base Function classifier (RBF)
The construction of a RBF in its most basic form considers three layers entirely different, as
in Fig. 3. The first layer consists of the input nodes. The second layer is composed by the
denominated Kernel nodes (base radial layer) which functions are different from those of a
BP network. The Kernel nodes based on the radial base functions calculate symmetrical
functions which are a maximum when the input is near the centroid of a node. The output
nodes are simple sums.

 Machine Learning

326

initial procedure ("front-end") to an output layer with a supervised training, that is,
combined non-supervised/supervised learning.
The networks that combine non-supervised and supervised learning have the powerful
ability to organize any complexity of highly nonlinear patterns recognition problem. This
type of neural network is insensitive to noise due to the low internal dimensional
representation (Song et al., 1996). Based on this kind of characteristics the present research
developed a hybrid model entitled Artificial Intelligence Adaptive Model (AIAM)
(Calderón, 2007).
Next, it will be initially described the basic functionality of the several models analyzed in
the research, the respective main results, and finally the AIAM model and conclusions.

2. Neural networks models
With the purpose of selecting the most appropriate neural network model to be used for the
classification of faults in an Electrical Power System (EPS) an exploration of alternatives on
models of neural networks was carried out based on the state-of-the-art of the subject (El-
Sharkawi & Niebur, 1996), (Aggarwal & Song, 1997), (Aggarwal & Song, 1998a), (Aggarwal
& Song, 1998b), (Kezunovic, 1997), (Dalstein & Kulicke, 1995), (Keerthipala et al, 1997),
(Sidhu & Mitai, 2000), (Fernandez & Ghonaim, 2002), (Dalstein et al, 1996), (Zahra et al,
2000), (Ranaweera, 1994), (Oleskovicz et al., 2001), (Song et al, 1997), (Song et al, 1996),
(Dillon & Niebur, 1996), (Dillon & Niebur, 1999),(Badrul et al., 1996).
Next, four important classifiers, based on neural networks, will be briefly described. Special
emphasis was placed on the basic principles and differences, instead of a detailed
description itself.

2.1 Back-Propagation classifier (BP)
BP classifiers are the most popular and widely applied neural networks. They train with
supervision using the descending gradient algorithm to diminish the error between the real
exits and the wished exits of the network.
In Fig. 1. the general architecture of this type of network is illustrated.

Fig. 1. General architecture used by the model of retro-propagation training. (Matlab
educational license).

Many articles provide good introductions to the methods and successful applications of this
type of neural networks applied to the power systems. Nevertheless, in general, most of the
BP classifiers are (1) of prolonged training time; (2) of difficult selection for the optimal size,
and (3) potentially with tendency to be caught in a local minimum (Song et al., 1996).
For this reason, improvements have been developed in recent years, particularly in the
aspect concerning the learning process. In this sense, it is valuable to mention the fuzzy
algorithms of controlled learning and the training based on genetic algorithms.

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

327

2.2 Feature Mapping classifier (FM)
One of the most important algorithms of non-supervised learning is the Self-Organized
Feature Mapping (SOFM) proposed by Kohonen shown in Fig. 2. The SOFM is used to map
non-supervised input vectors in a bi-dimensional space where the vectors are self-organized
in groups that represent the different types.

Fig. 2. General architecture used by the Kohonen model of SOMF. (Matlab educational
license).

The SOFM learns to classify input vectors according to the form that they are grouped in the
input space. This method differs from the competitive method of layers in which the
neighboring neurons in the SOFM learn to recognize also adjacent sections in the input
space. Thus, the self-organized maps learn so much the distribution (as the competitive
method of layers makes it) as well as the topology of the input vectors that train. Neurons in
the layer of a SOFM are originally organized in physical positions according to a topological
function. The distances between neurons are calculated from their positions with a distance
function.
In these networks there is no target for the error evaluation. That is, the learning of the
synaptic weights is non-supervised, which means that, under the presentation of new input
vectors, the network dynamically determines these weights, in such a way that, input
vectors that are closely related will excite neurons that are closely grouped (Badrul et al.,
1996). It is able to separate data in a specified number of categories and therefore able to act
like a classifier. In the Kohonen network there are only two layers: an input layer where the
patterns of the variables are placed and an output layer that has a neuron for each possible
category or type.

2.3 Radial Base Function classifier (RBF)
The construction of a RBF in its most basic form considers three layers entirely different, as
in Fig. 3. The first layer consists of the input nodes. The second layer is composed by the
denominated Kernel nodes (base radial layer) which functions are different from those of a
BP network. The Kernel nodes based on the radial base functions calculate symmetrical
functions which are a maximum when the input is near the centroid of a node. The output
nodes are simple sums.

 Machine Learning

328

Fig. 3. General architecture used by the RBF model. (Matlab educational license).

This particular architecture of RBF has been proven to improve the training time but at the
expense of considering many nodes in the radial base layer and connections of weights (in
critical cases the number of neurons of this layer could get to be equal to the number of
training samples, that is to say, a neuron per input pattern).

2.4 Vector Quantification Learning classifier (LVQ)
The Vector Quantification Learning network (LVQ) is a form of adaptive classifier which
structure is shown in Fig. 4. This classifier requires a final stage of supervised training to
improve its performance. LVQ contains an input layer, a Kohonen layer and the output
layer. The number of nodes of the entrance layer is equal to the number of entrance
parameters. The number of nodes of the Kohonen layer is based on the number of input
vectors in the training data. The output layer contains a node for each type.

Fig. 4. General architecture used by the LVQ model. (Matlab educational license).

Based on the analysis of the previous neural networks models the research was oriented into
two ways:
• To complement the neural model BP with a learning method that allowed improving

the generalization and the resulting classification error. In order to do this the Bayesian
Regularization methodology (BR) described in (Foresee and Hagan, 1997), (Hagan et al,
2002), (MacKay, 1998), was used.

• The search of an Adaptive model that would take advantage of the kindnesses of the
combination of the non-supervised learning with the supervised learning but, as well as
looking for to fix the weaknesses found in LVQ and RBF methods. To get this, the
doctorate thesis (Vasilic, 2004), consisting in the Adaptive Resonance Theory (ART),
was used as the starting point.

2.5 BP neural network model with Bayesian regularization
Taking into account the considerations of the previous concept, it was implemented the
performance evaluation of the neural network BP incorporating additional training
techniques to improve its performance. With the purpose of obtaining a high capacity of
generalization of the network, it was considered (Foresee and Hagan, 1997), (Hagan et al,

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

329

2002), (MacKay, 1998), the approach known as the Bayesian regularization in which the
weights of the network are assumed as random variables with specific distributions so that
the parameters of stabilization get associated to the unknown variances connected to these
distributions. In this way, it is possible to consider the parameters using technical statistics.
A more a detailed description of this approach and its combination with other techniques
can be found in (Foresee & Hagan, 1997).
In MATLAB it is possible to use this methodology by means of the trainbr algorithm that
can be established as argument at the time of defining the network by means of the function
newff.
For the detection and classification of the fault, a feed-forward network was used with a
single hidden layer of s neurons (Foresee & Hagan, 1997), (Hagan et al, 2002), (MacKay,
1998). 7 neurons were considered for the input layer that corresponds to the rms values of
the voltages and currents of the 3 phases, plus the sequence zero current. For the output
layer, 4 neurons were considered corresponding to the binary values that indicate the failed
phase (the 3 first bits) and if it is or not grounded (last bit). In this case, the used value of s
was of 12 (value that was obtained after doing different tests of verification trying to
diminish the resulting error, but at the same time guaranteeing a suitable level of
generalization).
The general model of this network it is shown in Fig. 5. The functions of activation of
MATLAB Tansig were used in the hidden layer and in the output layer the linear
transference Purelin.

Fig. 5. Diagram of the classifier algorithm and the used neural network architecture BR.
(Matlab educational license).

2.6 ART model (adaptive resonance theory)
ART Model does not have a defined typical structure with a specified number of neurons.
Instead, it is made up of an adaptive structure with auto-evolving neurons. The structure
solely depends on the characteristics and order of presentation of the patterns in the input

 Machine Learning

328

Fig. 3. General architecture used by the RBF model. (Matlab educational license).

This particular architecture of RBF has been proven to improve the training time but at the
expense of considering many nodes in the radial base layer and connections of weights (in
critical cases the number of neurons of this layer could get to be equal to the number of
training samples, that is to say, a neuron per input pattern).

2.4 Vector Quantification Learning classifier (LVQ)
The Vector Quantification Learning network (LVQ) is a form of adaptive classifier which
structure is shown in Fig. 4. This classifier requires a final stage of supervised training to
improve its performance. LVQ contains an input layer, a Kohonen layer and the output
layer. The number of nodes of the entrance layer is equal to the number of entrance
parameters. The number of nodes of the Kohonen layer is based on the number of input
vectors in the training data. The output layer contains a node for each type.

Fig. 4. General architecture used by the LVQ model. (Matlab educational license).

Based on the analysis of the previous neural networks models the research was oriented into
two ways:
• To complement the neural model BP with a learning method that allowed improving

the generalization and the resulting classification error. In order to do this the Bayesian
Regularization methodology (BR) described in (Foresee and Hagan, 1997), (Hagan et al,
2002), (MacKay, 1998), was used.

• The search of an Adaptive model that would take advantage of the kindnesses of the
combination of the non-supervised learning with the supervised learning but, as well as
looking for to fix the weaknesses found in LVQ and RBF methods. To get this, the
doctorate thesis (Vasilic, 2004), consisting in the Adaptive Resonance Theory (ART),
was used as the starting point.

2.5 BP neural network model with Bayesian regularization
Taking into account the considerations of the previous concept, it was implemented the
performance evaluation of the neural network BP incorporating additional training
techniques to improve its performance. With the purpose of obtaining a high capacity of
generalization of the network, it was considered (Foresee and Hagan, 1997), (Hagan et al,

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

329

2002), (MacKay, 1998), the approach known as the Bayesian regularization in which the
weights of the network are assumed as random variables with specific distributions so that
the parameters of stabilization get associated to the unknown variances connected to these
distributions. In this way, it is possible to consider the parameters using technical statistics.
A more a detailed description of this approach and its combination with other techniques
can be found in (Foresee & Hagan, 1997).
In MATLAB it is possible to use this methodology by means of the trainbr algorithm that
can be established as argument at the time of defining the network by means of the function
newff.
For the detection and classification of the fault, a feed-forward network was used with a
single hidden layer of s neurons (Foresee & Hagan, 1997), (Hagan et al, 2002), (MacKay,
1998). 7 neurons were considered for the input layer that corresponds to the rms values of
the voltages and currents of the 3 phases, plus the sequence zero current. For the output
layer, 4 neurons were considered corresponding to the binary values that indicate the failed
phase (the 3 first bits) and if it is or not grounded (last bit). In this case, the used value of s
was of 12 (value that was obtained after doing different tests of verification trying to
diminish the resulting error, but at the same time guaranteeing a suitable level of
generalization).
The general model of this network it is shown in Fig. 5. The functions of activation of
MATLAB Tansig were used in the hidden layer and in the output layer the linear
transference Purelin.

Fig. 5. Diagram of the classifier algorithm and the used neural network architecture BR.
(Matlab educational license).

2.6 ART model (adaptive resonance theory)
ART Model does not have a defined typical structure with a specified number of neurons.
Instead, it is made up of an adaptive structure with auto-evolving neurons. The structure
solely depends on the characteristics and order of presentation of the patterns in the input

 Machine Learning

330

data set. In Fig. 6. the diagram of the complete procedure used for the training of the
neuronal network type ART is explained in (Vasilic, 2004).

Fig. 6. Combined learning of Supervised and Non- supervised Neural Networks (Vasilic,
2004).

The training consists in numerous iterations in the stages of supervised and non-supervised
learning, suitably combined to obtain a maximum efficiency. Groups of similar patterns lay
in groups, defined as hyper-spheres in a multidimensional space, where the dimension of
the space is determined by means of the length of the input patterns. The neural network
initially uses non-supervised learning with input patterns not tagged in order to form
unstable fugitive groups. This is an attempt to discover the patterns density by means of
getting them in groups to consider prototypes of groups that can serve as prototypes of the
typical input patterns. The category tags are assigned later on to the groups during the stage
of supervised learning. The tuning parameter called “threshold of monitoring” or “radio”,
controls the size of the group and therefore the number of generated groups, and it is
consecutively reduced during the iterations. If the monitoring threshold is high, many
different patterns within a group can then be incorporated, and this generates a small
number of heavy groups. If the monitoring threshold is low, they only activate the same
group patterns that are very similar, and this generates a great number of fine groups.
Subsequent to the training, the centers of the groups serve as typical neurons of the neural
network. The structure of prototypes only depends on the density of the input patterns.
Each training pattern has been located in only one group, at the same time as each group
contains one or more similar input patterns. A prototype is centrally located in the
respective group, and it is either identical to one of the real patterns or identical to a
synthesized prototype of the found patterns. A category tag is assigned to each group
symbolizing a type of groups with a symbolic characteristic, meaning that each group
belongs to one of the existing categories. The number of categories corresponds to the
desired number of outputs of the neural network. Finally, during the implementation phase
of the trained network, the distance between each new pattern and the established
prototypes is calculated, and using a fuzzy classifier of the nearest neighbors, it is assigned
the most representative category to the pattern in evaluation.
In Fig. 7 it is shown the steps carried out for the mapping of the input space in categories
decision regions using algorithm ART2 proposed by (Vasilic, 2004). Initially, using non-
supervised/supervised learning, the space of the training patterns is transferred within a
level of initial abstraction that contains a set of groups with the corresponding prototypes,
size and category. Later, the groups are fuzzyficated and transformed into an intermediate

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

331

level of abstraction. Finally, by means of the defuzzyfication, regions of refined decision are
established, and a level of final abstraction is obtained.

Fig. 7. Mapping of the patterns space using supervise/non-supervised training through the
ART2 algorithm. (Vasilic, 2004).

It is observed in Fig. 8, the classification obtained from homogenous groups of the same
category using the ART1 methodology (which allows the overlapping of groups and the
presence of elements in this zone) and which it is obtained by means of the ART2
methodology (which reduces the radios until no longer elements in the zones of overlaps are
present). By means of this modification, the model ART2 tries to improve its performance in
relation to the classification error, since it reduces the ambiguity that appears when there are
elements in the zones of overlaps that could produce erroneous classification of some
pattern. However, it is important to outline that as the radios get more restricted, the
network loses capacity of generalization. The final ideal model is a commitment between the
needs of precision in the classification with the generalization capacity of the model.

Fig. 8. Comparison between ART1 and ART2 models. (Vasilic, 2004).

 Machine Learning

330

data set. In Fig. 6. the diagram of the complete procedure used for the training of the
neuronal network type ART is explained in (Vasilic, 2004).

Fig. 6. Combined learning of Supervised and Non- supervised Neural Networks (Vasilic,
2004).

The training consists in numerous iterations in the stages of supervised and non-supervised
learning, suitably combined to obtain a maximum efficiency. Groups of similar patterns lay
in groups, defined as hyper-spheres in a multidimensional space, where the dimension of
the space is determined by means of the length of the input patterns. The neural network
initially uses non-supervised learning with input patterns not tagged in order to form
unstable fugitive groups. This is an attempt to discover the patterns density by means of
getting them in groups to consider prototypes of groups that can serve as prototypes of the
typical input patterns. The category tags are assigned later on to the groups during the stage
of supervised learning. The tuning parameter called “threshold of monitoring” or “radio”,
controls the size of the group and therefore the number of generated groups, and it is
consecutively reduced during the iterations. If the monitoring threshold is high, many
different patterns within a group can then be incorporated, and this generates a small
number of heavy groups. If the monitoring threshold is low, they only activate the same
group patterns that are very similar, and this generates a great number of fine groups.
Subsequent to the training, the centers of the groups serve as typical neurons of the neural
network. The structure of prototypes only depends on the density of the input patterns.
Each training pattern has been located in only one group, at the same time as each group
contains one or more similar input patterns. A prototype is centrally located in the
respective group, and it is either identical to one of the real patterns or identical to a
synthesized prototype of the found patterns. A category tag is assigned to each group
symbolizing a type of groups with a symbolic characteristic, meaning that each group
belongs to one of the existing categories. The number of categories corresponds to the
desired number of outputs of the neural network. Finally, during the implementation phase
of the trained network, the distance between each new pattern and the established
prototypes is calculated, and using a fuzzy classifier of the nearest neighbors, it is assigned
the most representative category to the pattern in evaluation.
In Fig. 7 it is shown the steps carried out for the mapping of the input space in categories
decision regions using algorithm ART2 proposed by (Vasilic, 2004). Initially, using non-
supervised/supervised learning, the space of the training patterns is transferred within a
level of initial abstraction that contains a set of groups with the corresponding prototypes,
size and category. Later, the groups are fuzzyficated and transformed into an intermediate

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

331

level of abstraction. Finally, by means of the defuzzyfication, regions of refined decision are
established, and a level of final abstraction is obtained.

Fig. 7. Mapping of the patterns space using supervise/non-supervised training through the
ART2 algorithm. (Vasilic, 2004).

It is observed in Fig. 8, the classification obtained from homogenous groups of the same
category using the ART1 methodology (which allows the overlapping of groups and the
presence of elements in this zone) and which it is obtained by means of the ART2
methodology (which reduces the radios until no longer elements in the zones of overlaps are
present). By means of this modification, the model ART2 tries to improve its performance in
relation to the classification error, since it reduces the ambiguity that appears when there are
elements in the zones of overlaps that could produce erroneous classification of some
pattern. However, it is important to outline that as the radios get more restricted, the
network loses capacity of generalization. The final ideal model is a commitment between the
needs of precision in the classification with the generalization capacity of the model.

Fig. 8. Comparison between ART1 and ART2 models. (Vasilic, 2004).

 Machine Learning

332

3. Art2 model improved
As a contribution of the current research, the model ART2 of (Vasilic, 2004), was improved
by introducing a formal methodology for the “reduction of the radios” and by introducing a
novel concept denominated “learning on line”.

3.1 Formal methodology for reduction of radios
With the purpose of trying to solve the ambiguity that appears when clusters belonging to
different categories are present, and with a region of non-zero intersection among them (that
is to say, that there are a certain number of training patterns in that region), (Vasilic, 2004),
proposes a solution to this problem (ART2) consisting of introducing some rule during the
phase of supervised training to construct homogenous clusters that covers solely patterns of
exactly one category (valid rule of homogenous intersected clusters), allowing regions of
intersection between clusters of different categories as long as patterns do not exist in those
regions.
It is outlined in (Vasilic, 2004), the ART2 methodology expressed in natural language, but it
is not formally described the algorithm, nor details on its implementation provided. In the
current research work, a formal proposal was developed to carry out the implementation of
the model classification ART2 and be able to go from the obtained clusters with ART1 to the
obtained clusters with ART2, as seen in Fig. 8.
Next, it is presented the procedure used and the formal description of the implemented
algorithm. Initially, homogenous intersected valid cluster rule is defined and then the rules
to make the reduction of the radios.

3.1.1 Homogenous intersected valid clusters rule
Let to ch be a homogenous cluster of the form [r, P, C, CP], where:
r: is the radius of cluster. r belongs to the real numbers.
P: a vector of dimension n, is the cluster prototype found with the training patterns; each
input of this vector belongs to the real numbers set.
C: is the type of cluster, C pertaining to the integer numbers.
CP: is a set of vectors of dimension n where each input of each vector belongs to the real
numbers, (training patterns which conform the cluster).
Let to @: [V1 x V2 R] be a function that delivers the Euclidian distance between two
vectors, where V1 and V2 are vectors of dimension n.

Let to A be a finite set of homogenous clusters without training patterns in their intersection
regions, A = {ch1, ch2, ch3,, chn}.

Let to ch1[r1,P1,C1,CP1] and ch2[r2,P2,C2,CP2] be a pair of homogenous clusters of A.

Let to M be the number of patterns in CP1, let to K be the number of patterns in CP2 .

Then:

ch1, ch2 belong to A
IF, AND ONLY IF:
(P1@P2 < r1 + r2) and (C1 ≠ C2) and
FOR EVERYTHING (cpm є CP1) { P2@cpm > r2 } and
FOR EVERYTHING (cpk є CP2) { P1@cpk > r1 } ; k = 1, 2, …, K ; m = 1, 2,.., M

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

333

The rule of homogenous intersected valid clusters is fulfilled if the clusters belong to A.
During the supervised training (phase of stabilization), once the homogenous clusters are
obtained, it must be verified that no patterns exist inside some region of intersection among
the clusters found, that is to say, that the homogenous intersected valid clusters rule is
fulfilled; if this rule is not accomplished, the reduction of radios rule should be applied,
analyzing the possibility of reducing the radius of any of both clusters in conflict, or of both,
if it is necessary, assuring not to exclude any pattern, and having this way the rule fulfilled,
to later on add these new optimized clusters to the final set of clusters.

3.1.2 Reduction of radios rule
Let to min (): [Rn R] be a function that receives a set of real numbers and delivers the
minor.
Le to max() : [Rn R] be a function that receives a set of real numbers and delivers the
major.
If ch1, ch2 does not belong to A
It is verified if patterns of ch1 in ch2 exist, and if it is possible the reduction of its radius is
done.

1 If
2 EXIST (cpm є CP1) { P2@cpm < r2 } ; m = 1, 2, …, M
3 then
4 r2max = min(P2@cpm=1, P2@cpm=2, ..., P2@cpm=M)
5 r2min = max(P2@cpk=1, P2@cpk=2, ..., P2@cpk=K)
6 si r2min > r2max
7 then
8 r2 = r2max - (r2max - r2min)/L

It is verified if patterns of ch1 in ch2 exist, and if it is possible, the reduction of its radius is
done.

1 If
2 EXIST (cpk є CP2) { P1@cpk < r1 } ; k = 1, 2, …, K
3 then
4 r1max = min(P1@cpk=1, P1@cpk=2, ..., P1@cpk=k)
5 r1min = max(P1@cpm=1, P1@cpm=2, ..., P1@cpm=M)
6 si r1min < r1max
7 then
8 r1 = r1max - (r1max – r1min)/L

Where L is an arbitrary constant inverse to the magnitude in which the radius is reduced. If
the given restriction in line 6 is fulfilled the radius can be reduced, and add the cluster to the
final set of homogenous clusters. This operation is done for all the homogenous clusters
found after the stabilization, and also done against the homogenous clusters that previously
have been added in set A.
In Fig. 9 to Fig. 11 it is graphically illustrated what can happen in the intersection of the
clusters.
Notice that in Fig. 10 cluster 2 (yellow) cannot reduce its radius since it would exclude the
most distant pattern, for this reason these patterns must be part of the following iteration in

 Machine Learning

332

3. Art2 model improved
As a contribution of the current research, the model ART2 of (Vasilic, 2004), was improved
by introducing a formal methodology for the “reduction of the radios” and by introducing a
novel concept denominated “learning on line”.

3.1 Formal methodology for reduction of radios
With the purpose of trying to solve the ambiguity that appears when clusters belonging to
different categories are present, and with a region of non-zero intersection among them (that
is to say, that there are a certain number of training patterns in that region), (Vasilic, 2004),
proposes a solution to this problem (ART2) consisting of introducing some rule during the
phase of supervised training to construct homogenous clusters that covers solely patterns of
exactly one category (valid rule of homogenous intersected clusters), allowing regions of
intersection between clusters of different categories as long as patterns do not exist in those
regions.
It is outlined in (Vasilic, 2004), the ART2 methodology expressed in natural language, but it
is not formally described the algorithm, nor details on its implementation provided. In the
current research work, a formal proposal was developed to carry out the implementation of
the model classification ART2 and be able to go from the obtained clusters with ART1 to the
obtained clusters with ART2, as seen in Fig. 8.
Next, it is presented the procedure used and the formal description of the implemented
algorithm. Initially, homogenous intersected valid cluster rule is defined and then the rules
to make the reduction of the radios.

3.1.1 Homogenous intersected valid clusters rule
Let to ch be a homogenous cluster of the form [r, P, C, CP], where:
r: is the radius of cluster. r belongs to the real numbers.
P: a vector of dimension n, is the cluster prototype found with the training patterns; each
input of this vector belongs to the real numbers set.
C: is the type of cluster, C pertaining to the integer numbers.
CP: is a set of vectors of dimension n where each input of each vector belongs to the real
numbers, (training patterns which conform the cluster).
Let to @: [V1 x V2 R] be a function that delivers the Euclidian distance between two
vectors, where V1 and V2 are vectors of dimension n.

Let to A be a finite set of homogenous clusters without training patterns in their intersection
regions, A = {ch1, ch2, ch3,, chn}.

Let to ch1[r1,P1,C1,CP1] and ch2[r2,P2,C2,CP2] be a pair of homogenous clusters of A.

Let to M be the number of patterns in CP1, let to K be the number of patterns in CP2 .

Then:

ch1, ch2 belong to A
IF, AND ONLY IF:
(P1@P2 < r1 + r2) and (C1 ≠ C2) and
FOR EVERYTHING (cpm є CP1) { P2@cpm > r2 } and
FOR EVERYTHING (cpk є CP2) { P1@cpk > r1 } ; k = 1, 2, …, K ; m = 1, 2,.., M

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

333

The rule of homogenous intersected valid clusters is fulfilled if the clusters belong to A.
During the supervised training (phase of stabilization), once the homogenous clusters are
obtained, it must be verified that no patterns exist inside some region of intersection among
the clusters found, that is to say, that the homogenous intersected valid clusters rule is
fulfilled; if this rule is not accomplished, the reduction of radios rule should be applied,
analyzing the possibility of reducing the radius of any of both clusters in conflict, or of both,
if it is necessary, assuring not to exclude any pattern, and having this way the rule fulfilled,
to later on add these new optimized clusters to the final set of clusters.

3.1.2 Reduction of radios rule
Let to min (): [Rn R] be a function that receives a set of real numbers and delivers the
minor.
Le to max() : [Rn R] be a function that receives a set of real numbers and delivers the
major.
If ch1, ch2 does not belong to A
It is verified if patterns of ch1 in ch2 exist, and if it is possible the reduction of its radius is
done.

1 If
2 EXIST (cpm є CP1) { P2@cpm < r2 } ; m = 1, 2, …, M
3 then
4 r2max = min(P2@cpm=1, P2@cpm=2, ..., P2@cpm=M)
5 r2min = max(P2@cpk=1, P2@cpk=2, ..., P2@cpk=K)
6 si r2min > r2max
7 then
8 r2 = r2max - (r2max - r2min)/L

It is verified if patterns of ch1 in ch2 exist, and if it is possible, the reduction of its radius is
done.

1 If
2 EXIST (cpk є CP2) { P1@cpk < r1 } ; k = 1, 2, …, K
3 then
4 r1max = min(P1@cpk=1, P1@cpk=2, ..., P1@cpk=k)
5 r1min = max(P1@cpm=1, P1@cpm=2, ..., P1@cpm=M)
6 si r1min < r1max
7 then
8 r1 = r1max - (r1max – r1min)/L

Where L is an arbitrary constant inverse to the magnitude in which the radius is reduced. If
the given restriction in line 6 is fulfilled the radius can be reduced, and add the cluster to the
final set of homogenous clusters. This operation is done for all the homogenous clusters
found after the stabilization, and also done against the homogenous clusters that previously
have been added in set A.
In Fig. 9 to Fig. 11 it is graphically illustrated what can happen in the intersection of the
clusters.
Notice that in Fig. 10 cluster 2 (yellow) cannot reduce its radius since it would exclude the
most distant pattern, for this reason these patterns must be part of the following iteration in

 Machine Learning

334

the non-supervised & supervised training of ART. Cluster 1 can reduce its radius, and it is
included in the set of the final cluster, this is illustrated in Fig. 11.

Fig. 9. To the left two homogeneous clusters without intersection. To the right two
homogeneous clusters with intersection and without patterns in this region.

Fig. 10. Two homogeneus clusters with intersection and patterns inside this region.

Fig. 11. Reduction of radios is applied to the left cluster and the right cluster is disregarded
because it is not possible to do it.

3.2 On-line learning methodology
By means of this technique an adaptive model is obtained, that gradually accommodate its
structure to the changes that provide the actual enviroment where this adaptive model
develops. That is to say, whenever the algorithm makes an erroneous classification, it will

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

335

have the opportunity of re-training it and learning on line with the appropriate type
provided by the expert. In this way, the algorithm will be learning out more and more from
the experiences to improve along its life time. In Fig. 12 to Fig. 15 the used procedure is
shown.

Fig. 12. Erroneous Classification. (Calderón, 2007).

Fig. 13. Selection of the nearest neighboring K-clusters. (Calderón, 2007).

Fig. 14. New set of patterns for re-training. (Calderón, 2007).

 Machine Learning

334

the non-supervised & supervised training of ART. Cluster 1 can reduce its radius, and it is
included in the set of the final cluster, this is illustrated in Fig. 11.

Fig. 9. To the left two homogeneous clusters without intersection. To the right two
homogeneous clusters with intersection and without patterns in this region.

Fig. 10. Two homogeneus clusters with intersection and patterns inside this region.

Fig. 11. Reduction of radios is applied to the left cluster and the right cluster is disregarded
because it is not possible to do it.

3.2 On-line learning methodology
By means of this technique an adaptive model is obtained, that gradually accommodate its
structure to the changes that provide the actual enviroment where this adaptive model
develops. That is to say, whenever the algorithm makes an erroneous classification, it will

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

335

have the opportunity of re-training it and learning on line with the appropriate type
provided by the expert. In this way, the algorithm will be learning out more and more from
the experiences to improve along its life time. In Fig. 12 to Fig. 15 the used procedure is
shown.

Fig. 12. Erroneous Classification. (Calderón, 2007).

Fig. 13. Selection of the nearest neighboring K-clusters. (Calderón, 2007).

Fig. 14. New set of patterns for re-training. (Calderón, 2007).

 Machine Learning

336

Fig. 15. Resulting set of clusters after on-line re-training. (Calderón, 2007).

Initially, the patterns for the re-training are prepared, extracting the cluster that made the
erroneous classification (see Fig. 12) and the nearest neighboring k clusters (see Fig. 13), to
form a reduced set of patterns for re-training (Fig. 14). With this set of patterns, the phases of
non-supervised learning and supervised learning are implemented again illustrated in Fig.
6. This time the re-training is very efficient now that from the beginning, a subgroup of
reduced clusters it is taking into account, all of them homogenous (the time of re-training
takes a few seconds).

4. Design of faults classifiers based on neural networks
 4.1 Generation of training and validation data
With the purpose of obtaining training samples of the signals of currents of phase and of
zero-sequence the tool of simulation ATP was used (Alternative Transient Program) which
has been validated at world-wide level as one of the most adapted to analyze electrical
power systems (Electric Power Research Institute, 1989), (CanAm EMTP User Group, 1992).
In Fig. 16 the electrical system used for systematic exploration of the considered cases is
illustrated.
With the purpose of automatically generating the data file with the ATP cases of variability
of conditions of the SEP was developed a module in MATLAB that constructs the ATP
format for the sensitivity analysis. Then, this file is run by means of the ATP program to
generate the samples of Training, Validation and Checking of the studied models. In Fig. 17
all the flow of information from simulations with ATP and MATLAB until the model of
neural network is schematically shown.
Initially, by means of the interface MATLAB-ATP, 508 patterns for training and 246 patterns
for validation and checking were simulated. These cases of validation and checking were
simulated as intermediate conditions of the training patterns with the purpose of verifying
that over-training (validation stage) and the capacity of generalization of the model
(checking stage) do not happen. Sensitivity was made on several parameters such as the
impedances of source, chargeability of the transmission line, location of the fault, impedance
of fault, and the type of fault: mono-phase (A, B, C), two-phase isolated (AB, BC and CA),
two-phase to earth (AB-g, BC-g, CA-g) and three-phase (ABC).

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

337

Fig. 16. Typical electrical circuit for analyzing conditions of faults in a SEP. (Alternative
Transient Program-ATP).

Fig. 17. Integrated software tools for the simulation of electrical power system by means of
ATP and MATLAB.
After that, this interface was used to generate 46996 simulated ATP cases of which 36500
were used for training, 5248 for validation, and 5248 for checking. Such the BR model as the
ART 2 improved model were verified with these cases.

4.2 Inputs and outputs of the neural networks
The application of a patterns classifier requires first of all the selection of characteristics that
contain information necessary to distinguish between the classes, it must be insensitive to
the input variability, it must be limited in number to allow efficient calculation, and to limit
the amount of required data of training.

 Machine Learning

336

Fig. 15. Resulting set of clusters after on-line re-training. (Calderón, 2007).

Initially, the patterns for the re-training are prepared, extracting the cluster that made the
erroneous classification (see Fig. 12) and the nearest neighboring k clusters (see Fig. 13), to
form a reduced set of patterns for re-training (Fig. 14). With this set of patterns, the phases of
non-supervised learning and supervised learning are implemented again illustrated in Fig.
6. This time the re-training is very efficient now that from the beginning, a subgroup of
reduced clusters it is taking into account, all of them homogenous (the time of re-training
takes a few seconds).

4. Design of faults classifiers based on neural networks
 4.1 Generation of training and validation data
With the purpose of obtaining training samples of the signals of currents of phase and of
zero-sequence the tool of simulation ATP was used (Alternative Transient Program) which
has been validated at world-wide level as one of the most adapted to analyze electrical
power systems (Electric Power Research Institute, 1989), (CanAm EMTP User Group, 1992).
In Fig. 16 the electrical system used for systematic exploration of the considered cases is
illustrated.
With the purpose of automatically generating the data file with the ATP cases of variability
of conditions of the SEP was developed a module in MATLAB that constructs the ATP
format for the sensitivity analysis. Then, this file is run by means of the ATP program to
generate the samples of Training, Validation and Checking of the studied models. In Fig. 17
all the flow of information from simulations with ATP and MATLAB until the model of
neural network is schematically shown.
Initially, by means of the interface MATLAB-ATP, 508 patterns for training and 246 patterns
for validation and checking were simulated. These cases of validation and checking were
simulated as intermediate conditions of the training patterns with the purpose of verifying
that over-training (validation stage) and the capacity of generalization of the model
(checking stage) do not happen. Sensitivity was made on several parameters such as the
impedances of source, chargeability of the transmission line, location of the fault, impedance
of fault, and the type of fault: mono-phase (A, B, C), two-phase isolated (AB, BC and CA),
two-phase to earth (AB-g, BC-g, CA-g) and three-phase (ABC).

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

337

Fig. 16. Typical electrical circuit for analyzing conditions of faults in a SEP. (Alternative
Transient Program-ATP).

Fig. 17. Integrated software tools for the simulation of electrical power system by means of
ATP and MATLAB.
After that, this interface was used to generate 46996 simulated ATP cases of which 36500
were used for training, 5248 for validation, and 5248 for checking. Such the BR model as the
ART 2 improved model were verified with these cases.

4.2 Inputs and outputs of the neural networks
The application of a patterns classifier requires first of all the selection of characteristics that
contain information necessary to distinguish between the classes, it must be insensitive to
the input variability, it must be limited in number to allow efficient calculation, and to limit
the amount of required data of training.

 Machine Learning

338

As signals of input to the neural network can be selected different parameters from the
system. The outputs of the neural network must indicate the type of fault. In general, two
types of definition of outputs can be adopted. The first format is that the outputs are
compound of A, B, C and G, which indicates that the fault was in the phase a, b or c and
there is a connection with earth (G).

A B C G
0 0 0 0 - normal condition
1 0 0 1 - phase to earth fault
1 1 0 0 - phases a and b without earth fault
1 1 1 0 - phases a, b and c without earth fault.

The second type has 11 outputs, the first that represents the normal condition and each one
of the remain ten is responsible for a type of fault, for example:

1000000000 normal condition.
0100000000 fault phase A.

4.3 Comparison of performance of the classifiers
4.3.1 Size of the neural network
The number of inputs such as the first four neural networks of study as to BR and ART 2
improved model were chosen equal to 7 consisting of three RMS (Root Mean Square)
voltages, the three RMS phase currents and RMS zero sequence current. For the number of
outputs BP, BR, ART 2 improved and RBF the first type of output was used, for the LVQ the
second type and for network MF the output chose like a bi-dimensional Kohonen matrix of
dimension 8x8.
As it is well-known, the selection of an optimal number of hidden layers and nodes for a
continue BP network being point of research although numerous articles in these areas have
been published. For the present study it was only used a hidden layer that turned out to be
adapted for this individual application.
For the BP model a hidden layer was used that was to be adapted for this individual
application. The number of nodes analyzed was considered from 10 to 16. Finally, with a
selection of 12 neurons for the hidden layer a good performance was obtained. This size was
used to BR model getting excellent performance too. The size of the matrix for the Kohonen
model depends to a great extent on the kind of problem and the availability of training
vectors. In this study, a matrix of 8x8 was selected after running a series of simulations and
comparing the obtained results.
In order to determine the optimal structure of a RBF, a set of RBF models were trained and
validated. In these simulations was carried out an analysis of sensitivity of the number of
Kernel nodes varying from 300 to 508 based on the global performance of the network and it
was found that with 357 neurons in the hidden layer a suitable performance is obtained.
In the adjustment of LVQ structure, the critical part is the selection of the number of neurons
of the layer of Kohonen (competitive layer). In this analysis the total number of training
vectors is to be kept in mind and select the number of neurons of the Kohonen layer like a
multiple of the number of output nodes. In this study the number of nodes of Kohonen was
selected based on the total of training vectors and the number of the eleven outputs. After
several simulations were carried out it was found that an optimal number of neurons for the
hidden layer of Kohonen for this application are 150.

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

339

Finally, the structure of ART 2 model is so different than the previous models and in this
case the final number of clusters is automatically determined according to algorithm and is
dependent of the threshold assigned by the user.

4.3.2 Learning process
In the study of BP network and BR model were used the functions of MATLAB tansig
transference for the neurons of the hidden layer and the function purelin for the output
linear layer. The learning factor that controls the rate of convergence and stability was
chosen equal to 0.05. Initially, all the weights and bias were put in small random values. The
input values were presented to the network and the output variables were specified. The
training process took place until the value of error RMS (Root Mean Square) between the
real output and the wished output reached an inferior acceptable value of 0.1. For the
Kohonen layer was chosen equal to 0,9 for the phase of initial ordering and 0,02 for the final
phase of tuning. 1000 steps were simulated in the ordering phase and it was considered a
neighboring radius of 1 for tuning phase. A grille form was used for the space distribution
of the neurons in the matrix of two dimensions.
The parameters of the units of RBF network were determined by means of the function
newrb of MATLAB. First a subtractive grouping of the data by means of the function
subclust of MATLAB with the purpose of estimating an average spread that complied most
of the considered data was carried out. From this analysis was obtained a spread value of
0.19. Later, the centers of the radial units were determined by means of an algorithm of
adaptive group that uses the function dist of MATLAB combined with a parameter of
bias=0.833/spread. Once the centers are determined the algorithm newrb of MATLAB
makes an iterative procedure of addition of new neurons until obtaining an error adapted
between the real outputs of the model and targets of training assigned.
In LVQ network the function newlvq of MATLAB was used. The algorithm newlvq
constructs an LVQ neural network like the one presented in Fig. 4. It is used as input
criterion to consider the percentage of samples that each class has. For example, in this study
10 classes corresponding to 10 conditions of fault were considered. For the 508 samples each
fault condition has associated 50 samples (0,1 p.u). All together, the sum must be equal to 1
p.u (100% of the 508 samples). For the learning process the function learnlv1 of MATLAB
was used considering a learning rate of 0.01.
The ART 2 model training was explained in detail above and is depicted in Fig.6.

4.3.3 Training and validation error
The error often is used like a criterion to finish the learning process. It has been possible to
find that, for a given set of training data and structures of network, the error of minimum
learning that can be reached is similar for all the networks. Nevertheless, the time to reach
the value of the error (speed of learning) is entirely different (Song et al., 1997). It is
important to notice that obtaining the smaller error during the learning does not necessarily
imply the best performance of the network. That is, there must be commitment between
learning error and error during the validation phase.

4.3.4 Precision of classification
Initially, the BP, FM, RBF and LVQ neural networks trained were validated with 246 cases
generated by means of ATP program under several conditions of the system and
intermediate conditions of fault to the 508 cases considered in the training.

 Machine Learning

338

As signals of input to the neural network can be selected different parameters from the
system. The outputs of the neural network must indicate the type of fault. In general, two
types of definition of outputs can be adopted. The first format is that the outputs are
compound of A, B, C and G, which indicates that the fault was in the phase a, b or c and
there is a connection with earth (G).

A B C G
0 0 0 0 - normal condition
1 0 0 1 - phase to earth fault
1 1 0 0 - phases a and b without earth fault
1 1 1 0 - phases a, b and c without earth fault.

The second type has 11 outputs, the first that represents the normal condition and each one
of the remain ten is responsible for a type of fault, for example:

1000000000 normal condition.
0100000000 fault phase A.

4.3 Comparison of performance of the classifiers
4.3.1 Size of the neural network
The number of inputs such as the first four neural networks of study as to BR and ART 2
improved model were chosen equal to 7 consisting of three RMS (Root Mean Square)
voltages, the three RMS phase currents and RMS zero sequence current. For the number of
outputs BP, BR, ART 2 improved and RBF the first type of output was used, for the LVQ the
second type and for network MF the output chose like a bi-dimensional Kohonen matrix of
dimension 8x8.
As it is well-known, the selection of an optimal number of hidden layers and nodes for a
continue BP network being point of research although numerous articles in these areas have
been published. For the present study it was only used a hidden layer that turned out to be
adapted for this individual application.
For the BP model a hidden layer was used that was to be adapted for this individual
application. The number of nodes analyzed was considered from 10 to 16. Finally, with a
selection of 12 neurons for the hidden layer a good performance was obtained. This size was
used to BR model getting excellent performance too. The size of the matrix for the Kohonen
model depends to a great extent on the kind of problem and the availability of training
vectors. In this study, a matrix of 8x8 was selected after running a series of simulations and
comparing the obtained results.
In order to determine the optimal structure of a RBF, a set of RBF models were trained and
validated. In these simulations was carried out an analysis of sensitivity of the number of
Kernel nodes varying from 300 to 508 based on the global performance of the network and it
was found that with 357 neurons in the hidden layer a suitable performance is obtained.
In the adjustment of LVQ structure, the critical part is the selection of the number of neurons
of the layer of Kohonen (competitive layer). In this analysis the total number of training
vectors is to be kept in mind and select the number of neurons of the Kohonen layer like a
multiple of the number of output nodes. In this study the number of nodes of Kohonen was
selected based on the total of training vectors and the number of the eleven outputs. After
several simulations were carried out it was found that an optimal number of neurons for the
hidden layer of Kohonen for this application are 150.

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

339

Finally, the structure of ART 2 model is so different than the previous models and in this
case the final number of clusters is automatically determined according to algorithm and is
dependent of the threshold assigned by the user.

4.3.2 Learning process
In the study of BP network and BR model were used the functions of MATLAB tansig
transference for the neurons of the hidden layer and the function purelin for the output
linear layer. The learning factor that controls the rate of convergence and stability was
chosen equal to 0.05. Initially, all the weights and bias were put in small random values. The
input values were presented to the network and the output variables were specified. The
training process took place until the value of error RMS (Root Mean Square) between the
real output and the wished output reached an inferior acceptable value of 0.1. For the
Kohonen layer was chosen equal to 0,9 for the phase of initial ordering and 0,02 for the final
phase of tuning. 1000 steps were simulated in the ordering phase and it was considered a
neighboring radius of 1 for tuning phase. A grille form was used for the space distribution
of the neurons in the matrix of two dimensions.
The parameters of the units of RBF network were determined by means of the function
newrb of MATLAB. First a subtractive grouping of the data by means of the function
subclust of MATLAB with the purpose of estimating an average spread that complied most
of the considered data was carried out. From this analysis was obtained a spread value of
0.19. Later, the centers of the radial units were determined by means of an algorithm of
adaptive group that uses the function dist of MATLAB combined with a parameter of
bias=0.833/spread. Once the centers are determined the algorithm newrb of MATLAB
makes an iterative procedure of addition of new neurons until obtaining an error adapted
between the real outputs of the model and targets of training assigned.
In LVQ network the function newlvq of MATLAB was used. The algorithm newlvq
constructs an LVQ neural network like the one presented in Fig. 4. It is used as input
criterion to consider the percentage of samples that each class has. For example, in this study
10 classes corresponding to 10 conditions of fault were considered. For the 508 samples each
fault condition has associated 50 samples (0,1 p.u). All together, the sum must be equal to 1
p.u (100% of the 508 samples). For the learning process the function learnlv1 of MATLAB
was used considering a learning rate of 0.01.
The ART 2 model training was explained in detail above and is depicted in Fig.6.

4.3.3 Training and validation error
The error often is used like a criterion to finish the learning process. It has been possible to
find that, for a given set of training data and structures of network, the error of minimum
learning that can be reached is similar for all the networks. Nevertheless, the time to reach
the value of the error (speed of learning) is entirely different (Song et al., 1997). It is
important to notice that obtaining the smaller error during the learning does not necessarily
imply the best performance of the network. That is, there must be commitment between
learning error and error during the validation phase.

4.3.4 Precision of classification
Initially, the BP, FM, RBF and LVQ neural networks trained were validated with 246 cases
generated by means of ATP program under several conditions of the system and
intermediate conditions of fault to the 508 cases considered in the training.

 Machine Learning

340

From the results obtained from the research for networks analyzed it was possible to
observe that the rates of error vary with respect to the type of fault. As it was expected, the
classification error is greater for the faults phase-phase without earth, which is the type of
fault more difficult to detect.
The network that had the smaller error of classification was the RBF (only a 7% of the
validation cases did not have suitable classification). In Fig. 18 the results of the training of
RBF network are shown, where it can be noticed that the error between what is wished and
what is real is very low.

Fig. 18. Vector target (o) vs. Network output (+) during the training of RBF network. (Matlab
educational license).

Although the previous models are, in general, good for classification purposes, these had
some difficulties when certain conditions of the electrical system were considered (for
example, high impedances faults). In some of these cases, the classification error was not
suitable.
Due to this, based in the previous results, the research was oriented in the search of a hybrid
model that was able to adapt itself to many expected conditions from the electrical power
system and at the same time had a low classifcation error, and high level of generalization.
The BR and ART 2 improved models were developed and then trained and validated using
the methology described and ilustrated in Fig. 6.
By using the BR model the training error was 0% for the 36500 cases considered, 0.74% for
the 5248 validation cases and 1,39% for the 5248 checking cases.
By using the ART 2 model the training error was 0.1% for the 36500 cases considered and
3.7% for the 10496 validation and checking cases.

4.3.5 Robustness
For many reasons, it is not possible to assume that the cases presented to the classifier
during the phase of application are complete and precisely represented by the training set. It

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

341

is particularly certain in the classifiers of fault of transmission lines. The patterns of training
are normally limited, and in most cases are generated by means of simulation in computer
that does not exactly match the real data of field. In general the data that enter the
algorithms will be affected by the transducers and the noise from the atmosphere. Also, the
parameters of the power system and the conditions change continuously. Thus, then
actually a good robustness of the trained classifier is required. It includes deviations in the
measurements and superposed white noise. The rates of undesired classification are
considerably greater in BP network for the different cases considered, whereas the error
rates for FM, RBF, LVQ and ART 2 improved neural networks increased moderately or very
little. This is due to the purely supervised nature of BP network. The surfaces of decision of
BP networks can take non intuitive forms because the space regions that are not occupied by
the training data are classified arbitrarily. One way to improve this problem could be to
combine BP with BR method (Bayesian regularization) in order to reduce the classification
errors. Instead, the other networks analyzed are governed by non-supervised learning in
which the regions of the input space occupied by the training data are not classified
according to the proximity that commonly exists among the training data.
In summary, it is important to underline that a classifier has to be evaluated by its time of
training, error rate, calculation, adaptation, and its real time implementation requirements.
At the time of making a decision related to the selection of a network in particular it must be
taken into account the combination of all these aspects and the possibility of considering
new changes in the algorithms that allow improvement of the performance for the specific
applications that are considered.

5. Conclusions and future work
The design of power systems protections can be essentially treated like a problem of pattern
classification/recognition. The neural networks can be used like an attractive alternative for
the development of new protection relays as much as the complexity of the electrical power
systems grows. Different strategies of learning have to be explored before adopting a
particular structure to a specific application, and establishing a commitment between the
off-line training and the real time implementation.
In general, the combined non-supervised/supervised learning techniques offers better
performance than the purely supervised training. In the present study it was possible to
verify that FM, RBF and LVQ networks have a greater speed of training, similar error rate,
better robustness to consider variations of both the system and the environment, and require
much less amount of training data compared with BP network (Song et al., 1997). . On the
other hand, the BP network is more compact and it is hoped to be faster when it is placed in
operation under the real time performance.
This study, additionally showed, that in spite of those models have good performance to
classify faults in electrical power systems in some special cases (for example, high
impedances faults) the resultant error is not suitable. In order to take this fact into account,
it is necessary to consider BP with BR or ART 2 improved models which resolve this kind of
conflict.
It is important noticing that the present study focused in the performance of different
models of neural networks applied to the classification of faults in electrical power systems.

 Machine Learning

340

From the results obtained from the research for networks analyzed it was possible to
observe that the rates of error vary with respect to the type of fault. As it was expected, the
classification error is greater for the faults phase-phase without earth, which is the type of
fault more difficult to detect.
The network that had the smaller error of classification was the RBF (only a 7% of the
validation cases did not have suitable classification). In Fig. 18 the results of the training of
RBF network are shown, where it can be noticed that the error between what is wished and
what is real is very low.

Fig. 18. Vector target (o) vs. Network output (+) during the training of RBF network. (Matlab
educational license).

Although the previous models are, in general, good for classification purposes, these had
some difficulties when certain conditions of the electrical system were considered (for
example, high impedances faults). In some of these cases, the classification error was not
suitable.
Due to this, based in the previous results, the research was oriented in the search of a hybrid
model that was able to adapt itself to many expected conditions from the electrical power
system and at the same time had a low classifcation error, and high level of generalization.
The BR and ART 2 improved models were developed and then trained and validated using
the methology described and ilustrated in Fig. 6.
By using the BR model the training error was 0% for the 36500 cases considered, 0.74% for
the 5248 validation cases and 1,39% for the 5248 checking cases.
By using the ART 2 model the training error was 0.1% for the 36500 cases considered and
3.7% for the 10496 validation and checking cases.

4.3.5 Robustness
For many reasons, it is not possible to assume that the cases presented to the classifier
during the phase of application are complete and precisely represented by the training set. It

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

341

is particularly certain in the classifiers of fault of transmission lines. The patterns of training
are normally limited, and in most cases are generated by means of simulation in computer
that does not exactly match the real data of field. In general the data that enter the
algorithms will be affected by the transducers and the noise from the atmosphere. Also, the
parameters of the power system and the conditions change continuously. Thus, then
actually a good robustness of the trained classifier is required. It includes deviations in the
measurements and superposed white noise. The rates of undesired classification are
considerably greater in BP network for the different cases considered, whereas the error
rates for FM, RBF, LVQ and ART 2 improved neural networks increased moderately or very
little. This is due to the purely supervised nature of BP network. The surfaces of decision of
BP networks can take non intuitive forms because the space regions that are not occupied by
the training data are classified arbitrarily. One way to improve this problem could be to
combine BP with BR method (Bayesian regularization) in order to reduce the classification
errors. Instead, the other networks analyzed are governed by non-supervised learning in
which the regions of the input space occupied by the training data are not classified
according to the proximity that commonly exists among the training data.
In summary, it is important to underline that a classifier has to be evaluated by its time of
training, error rate, calculation, adaptation, and its real time implementation requirements.
At the time of making a decision related to the selection of a network in particular it must be
taken into account the combination of all these aspects and the possibility of considering
new changes in the algorithms that allow improvement of the performance for the specific
applications that are considered.

5. Conclusions and future work
The design of power systems protections can be essentially treated like a problem of pattern
classification/recognition. The neural networks can be used like an attractive alternative for
the development of new protection relays as much as the complexity of the electrical power
systems grows. Different strategies of learning have to be explored before adopting a
particular structure to a specific application, and establishing a commitment between the
off-line training and the real time implementation.
In general, the combined non-supervised/supervised learning techniques offers better
performance than the purely supervised training. In the present study it was possible to
verify that FM, RBF and LVQ networks have a greater speed of training, similar error rate,
better robustness to consider variations of both the system and the environment, and require
much less amount of training data compared with BP network (Song et al., 1997). . On the
other hand, the BP network is more compact and it is hoped to be faster when it is placed in
operation under the real time performance.
This study, additionally showed, that in spite of those models have good performance to
classify faults in electrical power systems in some special cases (for example, high
impedances faults) the resultant error is not suitable. In order to take this fact into account,
it is necessary to consider BP with BR or ART 2 improved models which resolve this kind of
conflict.
It is important noticing that the present study focused in the performance of different
models of neural networks applied to the classification of faults in electrical power systems.

 Machine Learning

342

Nevertheless, for the effects of being considered as protection alternatives of electrical
power systems the techniques presented have to be integrally evaluated, considering in
addition several practical issues. For example, it has to be combined with real field tests and
the implementation of corresponding hardware.

6. Acknowledements
This work presents the results of the researches carried out by the National University of
Colombia and the company Interconexión Eléctrica S.A. E.S.P (ISA), as partial advance of
the research project co-financed by COLCIENCIAS entitled: "Computer Science Tools for the
Automatic Diagnosis of Events in Transmission Lines of Electrical Power".

7. References
Aggarwal, R. and Song, Y. (1997). Artificial neural networks in power systems: Part I -

General introduction into neural computing, Power Engineering Jour., vol.112 11, no.
3, pp. June 1997,129–134.

Aggarwal, R. and Song, Y. (1998a). Artificial neural networks in power systems: Part II -
Types of artificial neural networks, Power Engineering Jour., vol. 12, no.1, Feb. 1998,
pp. 41–47.

Aggarwal, R. and Song, Y. (1998b). Artificial neural networks in power systems: Part III -
Examples of applications in power systems, Power Engineering Jour., vol. 12, no. 6,
Dec. 1998, pp. 279–287.

Badrul, H. ; Choudhury and Kunyu, Wang. (1996). Fault Classification Using Kohonen
Feauture Mapping, IEEE, Electrical Engineering Department, University of
Wyoming.

Calderón, J. A. (2007). Artificial Intelligence Adaptive Model for the Automatic Faults
Diagnosis using oscillate-graphics records. Thesis - Magister on Computer Science,
Computer Science Department, National University of Colombia – Campus
Medellin.

 Calderón, J. A. Ovalle ,D and Zapata, G. (2007). Comparative Analysis between Models of
Neuronal Networks for the classification of faults in Electrical Systems. IEEE
CERMA México.

CanAm EMTP User Group. (1992). Alternative Transients Program (ATP) - Rule Book,
Portland, OR, Sep. 1992.

Dalstein, T. and Kulicke, B. (1995). Neural network approach to fault type classification for
high speed protective relaying, IEEE Trans. Power Delivery, vol. 10, no. 2, Apr.
1995, pp. 1002–1011.

Dalstein, T.; Friedrich, T. ; Kulicke, B. and Sobajic, D. (1996). Multi neural network based
fault area estimation for high speed protective relaying, IEEE Trans. Power Delivery,
vol. 11, no. 2, Apr. 1996, pp. 740–747.

Dillon, T.S. & Niebur, D. (1996). Artificial Neural networks Applications in Power Systems.
CRN Press.

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

343

Dillon. T. and Niebur. D. (1999). Tutorial on artificial neural networks for power systems.
Engineering intelligent Systems for Electrical Engineering and Communications, v
7, n 1, pp. 3-17.

Electric Power Research Institute. (1989). Electromagnetic Transient Program (EMTP) - Rule
Book, EPRI EL 6421-1, CA, June 1989, Palo Alto.

El-Sharkawi, M.A. & Niebur, D. (1996). Application of artificial neural networks to power
systems. IEEE Tutorial Course Text 96TP112-0, Piscataway, NJ.

Fernandez, A. L. O. and Ghonaim, N. K. I. (2002). A novel approach using a FIRANN for
fault detection and direction estimation for high-voltage transmission lines, IEEE
Trans. Power Delivery, vol. 17, no. 4, Oct. 2002, pp. 894–900.

Foresee, F.D. and Hagan, M.T. (1997). Gauss-Newton approximation to Bayesian
regularization, Proceedings of the 1997 International Joint Conference on Neural
Networks, pp. 1930-1935.

Hagan. M.T. ; Demuth. H.B.; De Jesus. O. (2002). An introduction to the use of neural
networks in control systems. International Journal of Robust and Nonlinear
Control, v 12, n 11. pp. 959-85

Keerthipala, W.W. L. ; Wai, C. T. and Huisheng, W. (1997). Neural network based classifier
for power system protection, Electric Power Systems Research, vol. 42, no. 2, Aug.
1997, pp. 109–114.

Kezunovic, M. (1997). A survey of neural net applications to protective relaying and fault
analysis, Engineering Intelligent Systems for El. Engr. and Comm., vol. 5, no. 4, Dec.
1997, pp. 185–192.

MacKav. D.J.C.; Takeuchi. R. (1998). (Cavendish Lab., Cambridge Univ., UK). Statistics and
Computing, v 8, n 1, .pp. 15-23.

Oleskovicz, M.; Coury, D.V.; Aggarwal, R.K. (2001). A complete scheme for fault detection,
classification and locationin transmission lines using neural networks.
Developments in Power System Protection, 2001, Seventh International Conference
on (IEE). vol , Issue , pp.335 – 338.

Ranaweera, D. K. (1994). Comparison of neural network models for fault diagnosis of power
systems, Electric Power Systems Research, vol. 29, no. 2, Mar. 1994, pp. 99–104.

Sidhu. T.S. and Mitai. L. (2000). Rule extraction from an artificial neural network based fault
direction discriminator. 2000 Canadian Conference on Electrical and Computer
Engineering. Conference Proceedings. Navigating to a New Era (Cat. No.00TH8492),
pp. 692-6 vol.2

Song, Y. H. ; Xuan, Q. X. ; Johns, A. T. (1997). Comparison studies of five neural network
based fault classifiers for complex transmission lines. Electric Power Systems
Research, vol. 43, no. 2, (Nov. 1997), pp. 125–132.

Song, Y. H. ; Xuan, Q. X. and Johns, A. T. (1997). Comparison studies of five neural network
based fault classifiers for complex transmission lines, Electric Power Systems
Research, vol. 43, no. 2, Nov. 1997, pp. 125–132.

Song, Y.H., Johns, A.T. and Aggarwal, R.K. (1996). Applications in Power Systems, Science
Press and Kluwer Academic, Computational Intelligence.

 Machine Learning

342

Nevertheless, for the effects of being considered as protection alternatives of electrical
power systems the techniques presented have to be integrally evaluated, considering in
addition several practical issues. For example, it has to be combined with real field tests and
the implementation of corresponding hardware.

6. Acknowledements
This work presents the results of the researches carried out by the National University of
Colombia and the company Interconexión Eléctrica S.A. E.S.P (ISA), as partial advance of
the research project co-financed by COLCIENCIAS entitled: "Computer Science Tools for the
Automatic Diagnosis of Events in Transmission Lines of Electrical Power".

7. References
Aggarwal, R. and Song, Y. (1997). Artificial neural networks in power systems: Part I -

General introduction into neural computing, Power Engineering Jour., vol.112 11, no.
3, pp. June 1997,129–134.

Aggarwal, R. and Song, Y. (1998a). Artificial neural networks in power systems: Part II -
Types of artificial neural networks, Power Engineering Jour., vol. 12, no.1, Feb. 1998,
pp. 41–47.

Aggarwal, R. and Song, Y. (1998b). Artificial neural networks in power systems: Part III -
Examples of applications in power systems, Power Engineering Jour., vol. 12, no. 6,
Dec. 1998, pp. 279–287.

Badrul, H. ; Choudhury and Kunyu, Wang. (1996). Fault Classification Using Kohonen
Feauture Mapping, IEEE, Electrical Engineering Department, University of
Wyoming.

Calderón, J. A. (2007). Artificial Intelligence Adaptive Model for the Automatic Faults
Diagnosis using oscillate-graphics records. Thesis - Magister on Computer Science,
Computer Science Department, National University of Colombia – Campus
Medellin.

 Calderón, J. A. Ovalle ,D and Zapata, G. (2007). Comparative Analysis between Models of
Neuronal Networks for the classification of faults in Electrical Systems. IEEE
CERMA México.

CanAm EMTP User Group. (1992). Alternative Transients Program (ATP) - Rule Book,
Portland, OR, Sep. 1992.

Dalstein, T. and Kulicke, B. (1995). Neural network approach to fault type classification for
high speed protective relaying, IEEE Trans. Power Delivery, vol. 10, no. 2, Apr.
1995, pp. 1002–1011.

Dalstein, T.; Friedrich, T. ; Kulicke, B. and Sobajic, D. (1996). Multi neural network based
fault area estimation for high speed protective relaying, IEEE Trans. Power Delivery,
vol. 11, no. 2, Apr. 1996, pp. 740–747.

Dillon, T.S. & Niebur, D. (1996). Artificial Neural networks Applications in Power Systems.
CRN Press.

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques
Applied to the Classification of Faults in Energy Transport Systems

343

Dillon. T. and Niebur. D. (1999). Tutorial on artificial neural networks for power systems.
Engineering intelligent Systems for Electrical Engineering and Communications, v
7, n 1, pp. 3-17.

Electric Power Research Institute. (1989). Electromagnetic Transient Program (EMTP) - Rule
Book, EPRI EL 6421-1, CA, June 1989, Palo Alto.

El-Sharkawi, M.A. & Niebur, D. (1996). Application of artificial neural networks to power
systems. IEEE Tutorial Course Text 96TP112-0, Piscataway, NJ.

Fernandez, A. L. O. and Ghonaim, N. K. I. (2002). A novel approach using a FIRANN for
fault detection and direction estimation for high-voltage transmission lines, IEEE
Trans. Power Delivery, vol. 17, no. 4, Oct. 2002, pp. 894–900.

Foresee, F.D. and Hagan, M.T. (1997). Gauss-Newton approximation to Bayesian
regularization, Proceedings of the 1997 International Joint Conference on Neural
Networks, pp. 1930-1935.

Hagan. M.T. ; Demuth. H.B.; De Jesus. O. (2002). An introduction to the use of neural
networks in control systems. International Journal of Robust and Nonlinear
Control, v 12, n 11. pp. 959-85

Keerthipala, W.W. L. ; Wai, C. T. and Huisheng, W. (1997). Neural network based classifier
for power system protection, Electric Power Systems Research, vol. 42, no. 2, Aug.
1997, pp. 109–114.

Kezunovic, M. (1997). A survey of neural net applications to protective relaying and fault
analysis, Engineering Intelligent Systems for El. Engr. and Comm., vol. 5, no. 4, Dec.
1997, pp. 185–192.

MacKav. D.J.C.; Takeuchi. R. (1998). (Cavendish Lab., Cambridge Univ., UK). Statistics and
Computing, v 8, n 1, .pp. 15-23.

Oleskovicz, M.; Coury, D.V.; Aggarwal, R.K. (2001). A complete scheme for fault detection,
classification and locationin transmission lines using neural networks.
Developments in Power System Protection, 2001, Seventh International Conference
on (IEE). vol , Issue , pp.335 – 338.

Ranaweera, D. K. (1994). Comparison of neural network models for fault diagnosis of power
systems, Electric Power Systems Research, vol. 29, no. 2, Mar. 1994, pp. 99–104.

Sidhu. T.S. and Mitai. L. (2000). Rule extraction from an artificial neural network based fault
direction discriminator. 2000 Canadian Conference on Electrical and Computer
Engineering. Conference Proceedings. Navigating to a New Era (Cat. No.00TH8492),
pp. 692-6 vol.2

Song, Y. H. ; Xuan, Q. X. ; Johns, A. T. (1997). Comparison studies of five neural network
based fault classifiers for complex transmission lines. Electric Power Systems
Research, vol. 43, no. 2, (Nov. 1997), pp. 125–132.

Song, Y. H. ; Xuan, Q. X. and Johns, A. T. (1997). Comparison studies of five neural network
based fault classifiers for complex transmission lines, Electric Power Systems
Research, vol. 43, no. 2, Nov. 1997, pp. 125–132.

Song, Y.H., Johns, A.T. and Aggarwal, R.K. (1996). Applications in Power Systems, Science
Press and Kluwer Academic, Computational Intelligence.

 Machine Learning

344

Vasilic, S. (2004). Fuzzy neural network pattern recognition algorithm for classification of
the events in power system networks. Doctoral dissertation, Texas A&M University.
Available electronically from http : / /handle .tamu .edu /1969 .1 /436.

Zahra, F. ; Jeyasurya, B. and Quaicoe, J. E. (2000). High-speed transmission line relaying
using artificial neural networks, Electric Power Systems Research, vol. 53, no. 3, Mar.
2000, pp. 173–179.

17

Genetic Network Programming with
Reinforcement Learning and Its Application to

Creating Stock Trading Rules
Yan Chen, Shingo Mabu and Kotaro Hirasawa

Waseda University
Japan

1. Introduction
Evolutionary Computation is well-known for producing the solutions in optimization
problems based on change, composition and selection. We have proposed Genetic Network
Programming (GNP) [1, 2] as an extended method of Genetic Algorithm (GA) [3, 4] and
Genetic Programming (GP) [5, 6]. It has been clarified that GNP is an effective method
mainly for dynamic problems since GNP represents its solutions using graph structures,
which contributes to creating quite compact programs and implicitly memorizing past
action sequences in the network flows. Moreover, we proposed an extended algorithm of
GNP which combines evolution and reinforcement learning [7] (GNP-RL). GNP-RL has two
advantages, and one of them is online learning. Since original GNP is based on evolution
only, the programs are evolved mainly after task execution or enough trial, i.e., offline
learning. On the other hand, the programs in GNP-RL can be changed incrementally based
on rewards obtained during task execution, i.e., online learning. Concretely speaking, when
an agent takes a good action with a positive reward at a certain state, the action is reinforced
and when visiting the state again, the same action will be adopted with higher probability.
Another advantage of GNP-RL is the combination of a diversified search of GNP and an
intensified search of RL. The role of evolution is to make rough structures through selection,
crossover and mutation, while the role of RL is to determine one appropriate path in a
structure made by evolution. Diversified search of evolution could change programs largely
with which the programs could escape from local minima. RL is executed based on
immediate rewards obtained after taking actions, therefore intensified search can be
executed efficiently.
Research on stock price prediction and trading model using evolutionary computation and
neural networks has been done [8–10] in recent years. Generally speaking, there are two
kinds of methods for predicting stock prices and determining the timing of buying or selling
stocks: one is fundamental analysis which analyzes stock prices using the financial
statement of each company, the economic trend and movements of the exchange rate; the
other is technical analysis which analyzes numerically the past movement of stock prices.
The proposed method belongs to technical analysis since it determines the timing of buying
and selling stocks based on the technical indices such as Relative Strength Index, MACD,
Golden/Dead Cross and so on.

 Machine Learning

344

Vasilic, S. (2004). Fuzzy neural network pattern recognition algorithm for classification of
the events in power system networks. Doctoral dissertation, Texas A&M University.
Available electronically from http : / /handle .tamu .edu /1969 .1 /436.

Zahra, F. ; Jeyasurya, B. and Quaicoe, J. E. (2000). High-speed transmission line relaying
using artificial neural networks, Electric Power Systems Research, vol. 53, no. 3, Mar.
2000, pp. 173–179.

17

Genetic Network Programming with
Reinforcement Learning and Its Application to

Creating Stock Trading Rules
Yan Chen, Shingo Mabu and Kotaro Hirasawa

Waseda University
Japan

1. Introduction
Evolutionary Computation is well-known for producing the solutions in optimization
problems based on change, composition and selection. We have proposed Genetic Network
Programming (GNP) [1, 2] as an extended method of Genetic Algorithm (GA) [3, 4] and
Genetic Programming (GP) [5, 6]. It has been clarified that GNP is an effective method
mainly for dynamic problems since GNP represents its solutions using graph structures,
which contributes to creating quite compact programs and implicitly memorizing past
action sequences in the network flows. Moreover, we proposed an extended algorithm of
GNP which combines evolution and reinforcement learning [7] (GNP-RL). GNP-RL has two
advantages, and one of them is online learning. Since original GNP is based on evolution
only, the programs are evolved mainly after task execution or enough trial, i.e., offline
learning. On the other hand, the programs in GNP-RL can be changed incrementally based
on rewards obtained during task execution, i.e., online learning. Concretely speaking, when
an agent takes a good action with a positive reward at a certain state, the action is reinforced
and when visiting the state again, the same action will be adopted with higher probability.
Another advantage of GNP-RL is the combination of a diversified search of GNP and an
intensified search of RL. The role of evolution is to make rough structures through selection,
crossover and mutation, while the role of RL is to determine one appropriate path in a
structure made by evolution. Diversified search of evolution could change programs largely
with which the programs could escape from local minima. RL is executed based on
immediate rewards obtained after taking actions, therefore intensified search can be
executed efficiently.
Research on stock price prediction and trading model using evolutionary computation and
neural networks has been done [8–10] in recent years. Generally speaking, there are two
kinds of methods for predicting stock prices and determining the timing of buying or selling
stocks: one is fundamental analysis which analyzes stock prices using the financial
statement of each company, the economic trend and movements of the exchange rate; the
other is technical analysis which analyzes numerically the past movement of stock prices.
The proposed method belongs to technical analysis since it determines the timing of buying
and selling stocks based on the technical indices such as Relative Strength Index, MACD,
Golden/Dead Cross and so on.

 Machine Learning

346

There are three important points in this paper. First, we combine GNP and Sarsa Learning
[11] which is one of the reinforcement learning methods, while Importance Index (IMX) and
Candlestick Charts [12–15] are introduced for efficient stock trading decision making.
Concretely speaking, Sarsa is used to select appropriate actions (buying/selling), stock price
information obtained from IMX and candlestick charts through the experiences during the
trading. IMX and candlestick charts tell GNP whether or not the buying or selling signals
are likely to appear at the current day. Second, although there are so many technical indices
in the technical analysis, GNP with Sarsa can select appropriate indices and also select
candlestick charts to judge the buying and selling timing of stocks. In other words, GNP
with Sarsa could optimize the combinations of the information obtained by technical indices
and candlestick charts. The third important point is that sub-nodes are introduced in each
node to determine appropriate actions (buying/selling) and to select appropriate stock price
information depending on the situation.
This paper is organized as follows: In Section 2, the related works are described. In Section
3, the algorithm of the proposed method is described. Section 4 shows simulation
environments, conditions and results. Section 5 is devoted to conclusions.

2. Related works
Prediction in financial domains, especially in stock market is quite difficult for a number of
reasons. First, the ultimate goal of our research is not to minimize the prediction error, but
to maximize the profits. It forces us to consider a large number of independent variables,
thereby increasing the dimensionality of the search space. Second, the weak relationships
among variables tend to be nonlinear, and may hold only in limited areas of the search
space. Especially, the data in stock markets are highly time-variant and changing every
minute. Third, the stock market data are given in an event-driven way. They are highly
influenced by the indeterminate dealing. In financial practice, the key is to find the hidden
interactions among variables [16].
Stock market analysis has been one of the most actively pursued avenues of Machine
Learning (ML) research and applications. The most recent literature in the related fields
exposed Portfolio Optimization, Investment Strategy Determination, and Market Risk
Analysis as three major trends in the utilization of Machine Learning approaches. Portfolio
Optimization focuses on the correlative properties of stock market data in order to extract
mutual dependency (or independency) information [17–19]. Investment Strategy
Determination addresses financial prediction based on financial index analysis for the
purposes of investment decision-making. Various Neural Network approaches are by far the
most commonly taken route in the related works. However, other alternative methods exist,
such as Support Vector Machines [20], Genetic Algorithms [21] and statistical analysis [22]. The
Market Risk Analysis concentrates on the evaluation of the risk factors involved in various
investment options, such as expected return and volatility. An example of an overall market
risk evaluation system is described in [23]. Our research focuses on the problem of Investment
Strategy Determination through the use of GNP with reinforcement learning technique.
In recent years, evolutionary algorithms have been applied to several financial problems.
There have been several applications of Genetic Algorithms (GA) to the financial problems,
such as portfolio optimization, bankruptcy prediction, financial forecasting, fraud detection
and scheduling [24]. Genetic Programming (GP) has also been applied to many problems in
the time-series prediction.

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

347

Fig. 1. Basic structure of GNP with Sarsa

In our research, we propose Genetic Network Programming with Sarsa Learning for
creating trading rules on stock markets. GNP has the following advantages in the financial
prediction field. First, GNP has a memory function because of its graph structure, i.e.,
judgment nodes and processing node are connected to each other in a network. As stock
markets are highly influenced by the time, we can consider the information in the past well
by the memory function of GNP for creating the effective programs. Second, GNP works
extremely well for dealing with the stock market problems. That is because GNP has quite
compact structure and it can reuse the nodes for many times. By using GNP we can create
effective trading rules in the stock market, and we can also save the calculation time and
memory consumption because of the compact structures of GNP. By combining GNP with
Sarsa Learning in this paper, we get more advantages such as the combination of online
learning and offline learning, diversified search and intensified search.

3. GNP with Sarsa (GNP-Sarsa) and its trading algorithm
3.1 Basic structure of GNP-Sarsa
Figure 1 shows a basic structure of GNP-Sarsa and Fig. 2 shows judgment node and
processing node structures. GNP-Sarsa consists of judgment nodes and processing nodes,
which are connected to each other. Judgment nodes have if-then type branch decision
functions. They return judgment results for assigned inputs and determine the next node.
Processing nodes take actions (buying or selling stocks). While judgment nodes have
conditional branches, processing nodes have no conditional branches. The role of a start
node is to determine the first node to be executed. The graph structure of GNP has some
inherent characteristics such as compact structures and an implicit memory function that
contributes to creating effective action rules as described in section 2. GNP-Sarsa has two
kinds of time delays: time delays GNP-Sarsa spend on judgment or processing, and the ones

 Machine Learning

346

There are three important points in this paper. First, we combine GNP and Sarsa Learning
[11] which is one of the reinforcement learning methods, while Importance Index (IMX) and
Candlestick Charts [12–15] are introduced for efficient stock trading decision making.
Concretely speaking, Sarsa is used to select appropriate actions (buying/selling), stock price
information obtained from IMX and candlestick charts through the experiences during the
trading. IMX and candlestick charts tell GNP whether or not the buying or selling signals
are likely to appear at the current day. Second, although there are so many technical indices
in the technical analysis, GNP with Sarsa can select appropriate indices and also select
candlestick charts to judge the buying and selling timing of stocks. In other words, GNP
with Sarsa could optimize the combinations of the information obtained by technical indices
and candlestick charts. The third important point is that sub-nodes are introduced in each
node to determine appropriate actions (buying/selling) and to select appropriate stock price
information depending on the situation.
This paper is organized as follows: In Section 2, the related works are described. In Section
3, the algorithm of the proposed method is described. Section 4 shows simulation
environments, conditions and results. Section 5 is devoted to conclusions.

2. Related works
Prediction in financial domains, especially in stock market is quite difficult for a number of
reasons. First, the ultimate goal of our research is not to minimize the prediction error, but
to maximize the profits. It forces us to consider a large number of independent variables,
thereby increasing the dimensionality of the search space. Second, the weak relationships
among variables tend to be nonlinear, and may hold only in limited areas of the search
space. Especially, the data in stock markets are highly time-variant and changing every
minute. Third, the stock market data are given in an event-driven way. They are highly
influenced by the indeterminate dealing. In financial practice, the key is to find the hidden
interactions among variables [16].
Stock market analysis has been one of the most actively pursued avenues of Machine
Learning (ML) research and applications. The most recent literature in the related fields
exposed Portfolio Optimization, Investment Strategy Determination, and Market Risk
Analysis as three major trends in the utilization of Machine Learning approaches. Portfolio
Optimization focuses on the correlative properties of stock market data in order to extract
mutual dependency (or independency) information [17–19]. Investment Strategy
Determination addresses financial prediction based on financial index analysis for the
purposes of investment decision-making. Various Neural Network approaches are by far the
most commonly taken route in the related works. However, other alternative methods exist,
such as Support Vector Machines [20], Genetic Algorithms [21] and statistical analysis [22]. The
Market Risk Analysis concentrates on the evaluation of the risk factors involved in various
investment options, such as expected return and volatility. An example of an overall market
risk evaluation system is described in [23]. Our research focuses on the problem of Investment
Strategy Determination through the use of GNP with reinforcement learning technique.
In recent years, evolutionary algorithms have been applied to several financial problems.
There have been several applications of Genetic Algorithms (GA) to the financial problems,
such as portfolio optimization, bankruptcy prediction, financial forecasting, fraud detection
and scheduling [24]. Genetic Programming (GP) has also been applied to many problems in
the time-series prediction.

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

347

Fig. 1. Basic structure of GNP with Sarsa

In our research, we propose Genetic Network Programming with Sarsa Learning for
creating trading rules on stock markets. GNP has the following advantages in the financial
prediction field. First, GNP has a memory function because of its graph structure, i.e.,
judgment nodes and processing node are connected to each other in a network. As stock
markets are highly influenced by the time, we can consider the information in the past well
by the memory function of GNP for creating the effective programs. Second, GNP works
extremely well for dealing with the stock market problems. That is because GNP has quite
compact structure and it can reuse the nodes for many times. By using GNP we can create
effective trading rules in the stock market, and we can also save the calculation time and
memory consumption because of the compact structures of GNP. By combining GNP with
Sarsa Learning in this paper, we get more advantages such as the combination of online
learning and offline learning, diversified search and intensified search.

3. GNP with Sarsa (GNP-Sarsa) and its trading algorithm
3.1 Basic structure of GNP-Sarsa
Figure 1 shows a basic structure of GNP-Sarsa and Fig. 2 shows judgment node and
processing node structures. GNP-Sarsa consists of judgment nodes and processing nodes,
which are connected to each other. Judgment nodes have if-then type branch decision
functions. They return judgment results for assigned inputs and determine the next node.
Processing nodes take actions (buying or selling stocks). While judgment nodes have
conditional branches, processing nodes have no conditional branches. The role of a start
node is to determine the first node to be executed. The graph structure of GNP has some
inherent characteristics such as compact structures and an implicit memory function that
contributes to creating effective action rules as described in section 2. GNP-Sarsa has two
kinds of time delays: time delays GNP-Sarsa spend on judgment or processing, and the ones

 Machine Learning

348

it spends on node transitions. In this paper, the role of time delays is to determine the
maximum number of technical indices and candlestick information to be considered when
GNP-Sarsa determines buying or selling at a certain day.

Fig. 2. Node Structure

In the table of node gene, Ki represents the node type, Ki = 0 means start node, Ki = 1 means
judgment node and Ki = 2 means processing node. IDi represents an identification number of
the node function, e.g., Ki = 1 and IDi = 2 mean the node is J2. aip is a parameter which
represents the threshold for determining buying or selling stocks in a processing node. Qip
means Q value which is assigned to each state and action pair. In this method, “state” means
a current node, and “action” means a selection of a sub-node (node function). In general
reinforcement learning framework, the current state is determined by the combination of the
current information, and action is an actual action an agent takes, e.g., buying or selling
stocks. However, in GNP-Sarsa, the current node is defined as the current state, and a
selection of a sub-node is defined as an action. dip (1 ≤ p ≤ mi, mi is the number of subnodes in
judgment and processing nodes) is the time delay spent on the judgment or processing at
node i, while dipA, dipB, … are time delays spent on the node transition from node i to the next
node. In this paper, dipA, dipB, … are set at zero time unit, dip of each judgment node is set at
one time unit, dip of each processing node is set at five time units. We suppose that the trade
in one day ends when GNP uses five or more time units, which means the trade in one day
ends when GNP executes fewer than five judgment nodes and one processing node, or five
judgment nodes. CipA, CipB, … show the node number of the next node. Judgment node
determines the upper suffix of the connection genes to refer to depending on the judgment
result. If the judgment result is “B,” GNP-Sarsa refers to CipB and dipB. Processing nodes
always refer to CipA and dipA because processing nodes have no conditional branch.

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

349

Fig. 3. IMX functions in judgment nodes (in case of ROD and RCI)

3.2 Judgment and processing functions of GNP-Sarsa
The node transition of GNP-Sarsa starts from a start node and continues depending on the
node connections and judgment results. Fig. 2 shows node structures of a judgment node
and a processing node.
(1) Judgment node: When a current node i is a judgment node, first, one Q value is selected
from Qi1, …, Qimi based on ε-greedy policy. That is, a maximum Q value among Qi1, …, Qimi
is selected with the probability of 1-ε , or a random one is selected with the probability of ε.
Then corresponding function (IDip) is selected. The gene IDip shows a technical index or a
candlestick GNP judges at node i. Each technical index has its own IMX function shown in
Fig. 3. x axis shows the value of each technical index, and the sections A, B, C, ... correspond
to judgment results. Suppose Qi1 and the corresponding IDi1 = 1 (judgment of rate of
deviation) are selected, and if the rate is more than 0.1, the judgment result becomes E, and
the next node number becomes Ci1E. y axis shows the output of the IMX function and it is
used at a processing node. However, the IMX output of golden cross, dead cross and MACD
could be 1, 0 or -1 based on the cross of the lines, and the values correspond to judgment
results A, B and C, respectively. Concretely speaking, for three days after a golden cross
appears, the IMX output becomes 1, and for three days after a dead cross appears, it
becomes -1, otherwise 0. Furthermore, for three days After MACD passes through the signal
from the lower side to the upper side, the IMX output becomes 1, and for three days after it
does from the upper to the lower, the IMX output becomes -1, otherwise it becomes 0.
Generally, golden cross indicates buying signals and dead cross indicates selling signals,
therefore, buying signals become stronger as the IMX output is close to 1, and selling signals
become stronger as it is close to -1.
In this paper, candlestick chart is used as one of judgment functions. As we know,
candlestick chart has been winning international recognition for its good indication of stock
prices, and it has been widely used as the means of indicating the fluctuations of the stocks.
The proposed method has judgment nodes which check candlestick chart patterns. The
judgment function of candlestick chart is executed as follows. When the selected sub-node
has a judgment function of candlestick chart, GNP judges yesterday’s candlestick and the
candlestick of the day before yesterday. There are eight patterns of candlestick charts as
shown in Fig. 4 according to two kinds of rules: (A) Judge whether there is a gap or not
between yesterday’s lowest price and the highest price of the day before yesterday, or

 Machine Learning

348

it spends on node transitions. In this paper, the role of time delays is to determine the
maximum number of technical indices and candlestick information to be considered when
GNP-Sarsa determines buying or selling at a certain day.

Fig. 2. Node Structure

In the table of node gene, Ki represents the node type, Ki = 0 means start node, Ki = 1 means
judgment node and Ki = 2 means processing node. IDi represents an identification number of
the node function, e.g., Ki = 1 and IDi = 2 mean the node is J2. aip is a parameter which
represents the threshold for determining buying or selling stocks in a processing node. Qip
means Q value which is assigned to each state and action pair. In this method, “state” means
a current node, and “action” means a selection of a sub-node (node function). In general
reinforcement learning framework, the current state is determined by the combination of the
current information, and action is an actual action an agent takes, e.g., buying or selling
stocks. However, in GNP-Sarsa, the current node is defined as the current state, and a
selection of a sub-node is defined as an action. dip (1 ≤ p ≤ mi, mi is the number of subnodes in
judgment and processing nodes) is the time delay spent on the judgment or processing at
node i, while dipA, dipB, … are time delays spent on the node transition from node i to the next
node. In this paper, dipA, dipB, … are set at zero time unit, dip of each judgment node is set at
one time unit, dip of each processing node is set at five time units. We suppose that the trade
in one day ends when GNP uses five or more time units, which means the trade in one day
ends when GNP executes fewer than five judgment nodes and one processing node, or five
judgment nodes. CipA, CipB, … show the node number of the next node. Judgment node
determines the upper suffix of the connection genes to refer to depending on the judgment
result. If the judgment result is “B,” GNP-Sarsa refers to CipB and dipB. Processing nodes
always refer to CipA and dipA because processing nodes have no conditional branch.

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

349

Fig. 3. IMX functions in judgment nodes (in case of ROD and RCI)

3.2 Judgment and processing functions of GNP-Sarsa
The node transition of GNP-Sarsa starts from a start node and continues depending on the
node connections and judgment results. Fig. 2 shows node structures of a judgment node
and a processing node.
(1) Judgment node: When a current node i is a judgment node, first, one Q value is selected
from Qi1, …, Qimi based on ε-greedy policy. That is, a maximum Q value among Qi1, …, Qimi
is selected with the probability of 1-ε , or a random one is selected with the probability of ε.
Then corresponding function (IDip) is selected. The gene IDip shows a technical index or a
candlestick GNP judges at node i. Each technical index has its own IMX function shown in
Fig. 3. x axis shows the value of each technical index, and the sections A, B, C, ... correspond
to judgment results. Suppose Qi1 and the corresponding IDi1 = 1 (judgment of rate of
deviation) are selected, and if the rate is more than 0.1, the judgment result becomes E, and
the next node number becomes Ci1E. y axis shows the output of the IMX function and it is
used at a processing node. However, the IMX output of golden cross, dead cross and MACD
could be 1, 0 or -1 based on the cross of the lines, and the values correspond to judgment
results A, B and C, respectively. Concretely speaking, for three days after a golden cross
appears, the IMX output becomes 1, and for three days after a dead cross appears, it
becomes -1, otherwise 0. Furthermore, for three days After MACD passes through the signal
from the lower side to the upper side, the IMX output becomes 1, and for three days after it
does from the upper to the lower, the IMX output becomes -1, otherwise it becomes 0.
Generally, golden cross indicates buying signals and dead cross indicates selling signals,
therefore, buying signals become stronger as the IMX output is close to 1, and selling signals
become stronger as it is close to -1.
In this paper, candlestick chart is used as one of judgment functions. As we know,
candlestick chart has been winning international recognition for its good indication of stock
prices, and it has been widely used as the means of indicating the fluctuations of the stocks.
The proposed method has judgment nodes which check candlestick chart patterns. The
judgment function of candlestick chart is executed as follows. When the selected sub-node
has a judgment function of candlestick chart, GNP judges yesterday’s candlestick and the
candlestick of the day before yesterday. There are eight patterns of candlestick charts as
shown in Fig. 4 according to two kinds of rules: (A) Judge whether there is a gap or not
between yesterday’s lowest price and the highest price of the day before yesterday, or

 Machine Learning

350

between yesterday’s highest price and the lowest price of the day before yesterday. (B)
Judge whether or not yesterday’s closing price is higher than the opening price of the day
before yesterday. Especially, when the opening price equals to the closing price, the case is
treated as black body candlestick. As an example, when the candlestick pattern is “3”, GNP-
Sarsa selects third branch to transfer to the next node. However, judgment nodes of
candlestick chart do not have IMX function.

Fig. 4. Candlestick chart patterns

(2) Processing node: When a current node is a processing node, Qip, the corresponding IDip
and aip are selected based on ε -greedy policy. The selected aip is a threshold for determining
buying or selling stocks. We explain the procedure of buying and selling stocks using Fig. 5,
where the current node at time t is a processing node.
1. First, one Q value is selected from Qi1, … Qimi based on ε-greedy policy. That is, a

maximum Q value among Qi1, … Qimi is selected with the probability of 1-ε , or a
random one is selected with the probability of ε . Then the corresponding aip is selected.

2. Calculate an average of the IMXs obtained at the judgment nodes executed in the node
transition from the previous processing node to the current processing node.

' '

1 (')
't
i I

A IMX i
I ∈

= ∑

where, I’ shows a set of suffixes of the judgment node numbers executed in the node
transition from the previous processing node to the current processing node. IMX(i’)

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

351

shows an IMX output at node i’ ∈ I’. However, when a judgment node of the
candlestick chart was executed or an IMX output is zero at a judgment node of golden
cross, dead cross and MACD, the node number is excluded from I’ for calculating At .

Fig. 5. An example of node transition

3. determine buying or selling:
In the case of IDip = 0 (buy): if At ≥ aip and we do not have any stocks, GNP buys as
much stocks as possible. Otherwise, GNP takes no action.
In the case of IDip = 1 (sell): if At < aip and we have stocks, GNP sells all the stocks.
Otherwise, GNP takes no action.

4. The current node is transferred to the next node. If aip is selected, the next node number
becomes CipA.

The above procedure puts the information of the technical indices together into At, and
GNP-Sarsa determines buying or selling stocks by comparing At with aip. Therefore, the
points of this paper are 1) to find appropriate aip in the processing nodes by evolution and
Sarsa, and 2) to determine I’ by evolution, in other words, what kinds of judgments
(technical indices and candlestick charts) should be considered is determined automatically.

3.3 Learning phase
First we explain Sarsa algorithm briefly. Sarsa can obtain Q values which estimate the sum
of the discounted rewards obtained in the future. Suppose an agent selects an action at at
state st at time t, a reward rt is obtained and an action at+1 is taken at the next state st+1. Then
Q (st, at) is updated as follows.

1 1(,) (,) [(,) (,)]t t t t t t t t tQ s a Q s a r Q s a Q s aα γ + +← + + −

α is a step size parameter, and γ is a discount rate which determines the present value of
future rewards: a reward received k time steps later is worth only γ k-1 times of the reward
supposed to receive at the current step.
As described before, a state means the current node and an action means the selection of a
sub-node. Here, we explain the procedure for updating Q value in this paper.
1. At time t, GNP refers to Qi1, …, Qimi and selects one of them based on ε -greedy.

Suppose that GNP selects Qip and the corresponding function IDip.

 Machine Learning

350

between yesterday’s highest price and the lowest price of the day before yesterday. (B)
Judge whether or not yesterday’s closing price is higher than the opening price of the day
before yesterday. Especially, when the opening price equals to the closing price, the case is
treated as black body candlestick. As an example, when the candlestick pattern is “3”, GNP-
Sarsa selects third branch to transfer to the next node. However, judgment nodes of
candlestick chart do not have IMX function.

Fig. 4. Candlestick chart patterns

(2) Processing node: When a current node is a processing node, Qip, the corresponding IDip
and aip are selected based on ε -greedy policy. The selected aip is a threshold for determining
buying or selling stocks. We explain the procedure of buying and selling stocks using Fig. 5,
where the current node at time t is a processing node.
1. First, one Q value is selected from Qi1, … Qimi based on ε-greedy policy. That is, a

maximum Q value among Qi1, … Qimi is selected with the probability of 1-ε , or a
random one is selected with the probability of ε . Then the corresponding aip is selected.

2. Calculate an average of the IMXs obtained at the judgment nodes executed in the node
transition from the previous processing node to the current processing node.

' '

1 (')
't
i I

A IMX i
I ∈

= ∑

where, I’ shows a set of suffixes of the judgment node numbers executed in the node
transition from the previous processing node to the current processing node. IMX(i’)

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

351

shows an IMX output at node i’ ∈ I’. However, when a judgment node of the
candlestick chart was executed or an IMX output is zero at a judgment node of golden
cross, dead cross and MACD, the node number is excluded from I’ for calculating At .

Fig. 5. An example of node transition

3. determine buying or selling:
In the case of IDip = 0 (buy): if At ≥ aip and we do not have any stocks, GNP buys as
much stocks as possible. Otherwise, GNP takes no action.
In the case of IDip = 1 (sell): if At < aip and we have stocks, GNP sells all the stocks.
Otherwise, GNP takes no action.

4. The current node is transferred to the next node. If aip is selected, the next node number
becomes CipA.

The above procedure puts the information of the technical indices together into At, and
GNP-Sarsa determines buying or selling stocks by comparing At with aip. Therefore, the
points of this paper are 1) to find appropriate aip in the processing nodes by evolution and
Sarsa, and 2) to determine I’ by evolution, in other words, what kinds of judgments
(technical indices and candlestick charts) should be considered is determined automatically.

3.3 Learning phase
First we explain Sarsa algorithm briefly. Sarsa can obtain Q values which estimate the sum
of the discounted rewards obtained in the future. Suppose an agent selects an action at at
state st at time t, a reward rt is obtained and an action at+1 is taken at the next state st+1. Then
Q (st, at) is updated as follows.

1 1(,) (,) [(,) (,)]t t t t t t t t tQ s a Q s a r Q s a Q s aα γ + +← + + −

α is a step size parameter, and γ is a discount rate which determines the present value of
future rewards: a reward received k time steps later is worth only γ k-1 times of the reward
supposed to receive at the current step.
As described before, a state means the current node and an action means the selection of a
sub-node. Here, we explain the procedure for updating Q value in this paper.
1. At time t, GNP refers to Qi1, …, Qimi and selects one of them based on ε -greedy.

Suppose that GNP selects Qip and the corresponding function IDip.

 Machine Learning

352

2. GNP executes the function IDip, gets the reward rt and suppose the next node j becomes
CipA.

3. At time t+1, GNP selects one Q value in the same way as step1. Suppose that Qjp’ is
selected.

4. Q value is updated as follows.

'[]ip ip t jp ipQ Q r Q Qα γ← + + −

5. t ← t + 1, i ← j, p ← p’ then return step 2.

Fig. 6. Flowchart of GNP-Sarsa

3.4 Evolution phase
Figure 6 shows the whole flowchart of GNP-Sarsa. In this sub-section, the genetic operators
in the evolution phase are introduced. The role of evolution is to change graph structures
and randomly change node parameters aip.

3.4.1 Crossover
Crossover is executed between two parents and generates two offspring [Fig. 7]. The
procedure of crossover is as follows.
1. Select two individuals using tournament selection twice and reproduce them as parents.

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

353

Fig. 7. Crossover

Fig. 8. Mutation

 Machine Learning

352

2. GNP executes the function IDip, gets the reward rt and suppose the next node j becomes
CipA.

3. At time t+1, GNP selects one Q value in the same way as step1. Suppose that Qjp’ is
selected.

4. Q value is updated as follows.

'[]ip ip t jp ipQ Q r Q Qα γ← + + −

5. t ← t + 1, i ← j, p ← p’ then return step 2.

Fig. 6. Flowchart of GNP-Sarsa

3.4 Evolution phase
Figure 6 shows the whole flowchart of GNP-Sarsa. In this sub-section, the genetic operators
in the evolution phase are introduced. The role of evolution is to change graph structures
and randomly change node parameters aip.

3.4.1 Crossover
Crossover is executed between two parents and generates two offspring [Fig. 7]. The
procedure of crossover is as follows.
1. Select two individuals using tournament selection twice and reproduce them as parents.

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

353

Fig. 7. Crossover

Fig. 8. Mutation

 Machine Learning

354

2. Each node is selected as a crossover node with the probability of Pc.
3. Two parents exchange the genes of the corresponding crossover nodes, i.e., the nodes

with the same node number.
4. Generated new individuals become the new ones of the next generation.
Figure 7 shows a crossover example of the graph structure with three processing nodes for
simplicity. If GNP exchanges the genes of judgment nodes, it must exchange all the genes
with suffix A, B, C, … simultaneously.

3.4.2 Mutation
Mutation is executed in one individual and a new one is generated [Fig. 8]. The procedure of
mutation is as follows.
1. Select one individual using tournament selection and reproduce it as a parent.
2. Mutation operation

a. change connection: Each node branch (CipA, CipB, …) is selected with the probability
of Pm, and the selected branch is reconnected to another node.

b. change parameters (aip): Each aip is changed to other value with the probability of Pm.
c. change node function: Each node function (IDip) is selected with the probability of

Pm, and the selected function is changed to another one.
3. Generated new individual becomes the new one of the next generation.

4. Simulation
To confirm the effectiveness of GNP-Sarsa, we carried out the trading simulations using 16
brands selected from the companies listed in the first section of Tokyo stock market in Japan
(see Table 3). The simulation period is divided into two periods; one is used for training and
the other is used for testing simulation.
Training: January 4, 2001–December 30, 2003 (737 days)
Testing: January 5, 2004–December 30, 2004 (246 days)
We suppose that the initial funds is 5,000,000 Japanese yen in both periods, and the order of
buying or selling is executed at the opening of the trading day, i.e., we can buy and sell
stocks with the opening price.

4.1 Fitness and reward
Reward shows a capital gain of one trade (one set of buying and selling) and is used for
learning. Fitness is the sum of the rewards obtained in the trading period.
Reward=selling price - purchase price
Fitness=Σ Reward

4.2 Conditions of GNP-Sarsa
GNP-Sarsa uses judgment nodes which judge the technical indices shown in Table 1 and
candlestick charts. The technical indices are calculated using three kinds of calculation
periods except Golden/Dead cross and MACD. Therefore, the number of kinds of judgment
nodes is 21 (including one candlestick judgment). The number of processing functions is
two: buying and selling. Table 2 shows simulation conditions. The total number of nodes in
each individual is 31 including 20 judgment nodes, 10 processing nodes and one start node.
However, the functions IDip in sub-nodes are determined randomly at the beginning of the
first generation, and changed appropriately by evolution.

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

355

Technical index period1 period2 period3
Rate of deviation
RSI
ROC
Volume ratio
RCI
Stochastics

5 13 26
5 13 26
5 13 26
5 13 26
9 18 27
12 20 30

Golden/Dead cross
MACD

5 (short term), 26 (long term)
5 (short term), 26 (long term), 9 (signal)

Table 1. Calculation periods of the technical indices [day]

Number of individuals = 300
(mutation: 179, crossover:120, elite:1)
Number of nodes = 31
(Judgment node:20, Processing node:10, start node:1)
Number of sub-node in each node = 2
Pc=0.1, Pm=0.03, α=0.1, γ=0.4, =0.1

Table 2. Simulation conditions

The initial connections between nodes are also determined randomly at the first generation.
At the end of each generation, 179 new individuals are produced by mutation, 120 new
individuals are produced by crossover, and the best individual is preserved. The other
parameters are the ones showing good results in the simulations. The initial Q values are set
at zero.

4.3 Simulation results
First, 300 individuals are evolved for 300 generations using the training data. Fig. 9 shows
the fitness curve of the best individual at each generation in the training term using the data
of Toyota motor, and the line is the average over 30 independent simulations. From the
Figure, we can see that GNP-Sarsa can obtain larger profits for the training data as the
generation goes on. The fitness curves of the other companies have almost the same
tendency as that of Toyota Motor.
Next, the test simulation is carried out using the best individual at the last generation in the
training term. Table 3 shows the profits and losses in the testing term. The values in Table 3
are the average of the 30 independent simulations with different random seeds. For the
comparison, the table also shows the results of Buy&Hold which is often considered to be a
benchmark in trading stocks simulations. Buy&Hold buys as much stocks as possible at the
opening of the market on the first day in the simulations, and sells all the stocks at the
opening on the last day. From the table, the proposed method can obtain larger profits than
Buy&Hold in the trade of 12 brands out of 16. By comparing with original GNP, the
proposed method can get larger profits than traditional GNP in the trade of 13 brands out of
16. Especially, the stock prices of NEC, Fuji Heavy Ind., KDDI, Nomura Holdings, Shin-Etsu
Chemical Co., Ltd. are down trend, so Buy&Hold always makes a loss, however the
proposed method can obtain profits in five all brands.

 Machine Learning

354

2. Each node is selected as a crossover node with the probability of Pc.
3. Two parents exchange the genes of the corresponding crossover nodes, i.e., the nodes

with the same node number.
4. Generated new individuals become the new ones of the next generation.
Figure 7 shows a crossover example of the graph structure with three processing nodes for
simplicity. If GNP exchanges the genes of judgment nodes, it must exchange all the genes
with suffix A, B, C, … simultaneously.

3.4.2 Mutation
Mutation is executed in one individual and a new one is generated [Fig. 8]. The procedure of
mutation is as follows.
1. Select one individual using tournament selection and reproduce it as a parent.
2. Mutation operation

a. change connection: Each node branch (CipA, CipB, …) is selected with the probability
of Pm, and the selected branch is reconnected to another node.

b. change parameters (aip): Each aip is changed to other value with the probability of Pm.
c. change node function: Each node function (IDip) is selected with the probability of

Pm, and the selected function is changed to another one.
3. Generated new individual becomes the new one of the next generation.

4. Simulation
To confirm the effectiveness of GNP-Sarsa, we carried out the trading simulations using 16
brands selected from the companies listed in the first section of Tokyo stock market in Japan
(see Table 3). The simulation period is divided into two periods; one is used for training and
the other is used for testing simulation.
Training: January 4, 2001–December 30, 2003 (737 days)
Testing: January 5, 2004–December 30, 2004 (246 days)
We suppose that the initial funds is 5,000,000 Japanese yen in both periods, and the order of
buying or selling is executed at the opening of the trading day, i.e., we can buy and sell
stocks with the opening price.

4.1 Fitness and reward
Reward shows a capital gain of one trade (one set of buying and selling) and is used for
learning. Fitness is the sum of the rewards obtained in the trading period.
Reward=selling price - purchase price
Fitness=Σ Reward

4.2 Conditions of GNP-Sarsa
GNP-Sarsa uses judgment nodes which judge the technical indices shown in Table 1 and
candlestick charts. The technical indices are calculated using three kinds of calculation
periods except Golden/Dead cross and MACD. Therefore, the number of kinds of judgment
nodes is 21 (including one candlestick judgment). The number of processing functions is
two: buying and selling. Table 2 shows simulation conditions. The total number of nodes in
each individual is 31 including 20 judgment nodes, 10 processing nodes and one start node.
However, the functions IDip in sub-nodes are determined randomly at the beginning of the
first generation, and changed appropriately by evolution.

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

355

Technical index period1 period2 period3
Rate of deviation
RSI
ROC
Volume ratio
RCI
Stochastics

5 13 26
5 13 26
5 13 26
5 13 26
9 18 27
12 20 30

Golden/Dead cross
MACD

5 (short term), 26 (long term)
5 (short term), 26 (long term), 9 (signal)

Table 1. Calculation periods of the technical indices [day]

Number of individuals = 300
(mutation: 179, crossover:120, elite:1)
Number of nodes = 31
(Judgment node:20, Processing node:10, start node:1)
Number of sub-node in each node = 2
Pc=0.1, Pm=0.03, α=0.1, γ=0.4, =0.1

Table 2. Simulation conditions

The initial connections between nodes are also determined randomly at the first generation.
At the end of each generation, 179 new individuals are produced by mutation, 120 new
individuals are produced by crossover, and the best individual is preserved. The other
parameters are the ones showing good results in the simulations. The initial Q values are set
at zero.

4.3 Simulation results
First, 300 individuals are evolved for 300 generations using the training data. Fig. 9 shows
the fitness curve of the best individual at each generation in the training term using the data
of Toyota motor, and the line is the average over 30 independent simulations. From the
Figure, we can see that GNP-Sarsa can obtain larger profits for the training data as the
generation goes on. The fitness curves of the other companies have almost the same
tendency as that of Toyota Motor.
Next, the test simulation is carried out using the best individual at the last generation in the
training term. Table 3 shows the profits and losses in the testing term. The values in Table 3
are the average of the 30 independent simulations with different random seeds. For the
comparison, the table also shows the results of Buy&Hold which is often considered to be a
benchmark in trading stocks simulations. Buy&Hold buys as much stocks as possible at the
opening of the market on the first day in the simulations, and sells all the stocks at the
opening on the last day. From the table, the proposed method can obtain larger profits than
Buy&Hold in the trade of 12 brands out of 16. By comparing with original GNP, the
proposed method can get larger profits than traditional GNP in the trade of 13 brands out of
16. Especially, the stock prices of NEC, Fuji Heavy Ind., KDDI, Nomura Holdings, Shin-Etsu
Chemical Co., Ltd. are down trend, so Buy&Hold always makes a loss, however the
proposed method can obtain profits in five all brands.

 Machine Learning

356

Profit[yen](profit rate[%])
Brand GNP-Sarsa GNP Buy&Hold
Toyota Motor
Mitsubishi Estate
Showa Shell Sekiyu
East Japan Railway
NEC Corporation
Fuji Heavy Ind.
Sekisui House, Ltd.
Mitsu & Co.
Sony
Tokyo Gas
KDDI
Tokyo Electric Power
Daiwa House
Nomura Holdings
Shin-Etsu Chemical
Nippon Steel

522,333(10.4)
444,733(8.9)

 263,100(5.3)
413,833(8.3)
36,600(0.7)

217,133(4.3)
582,466(11.6)
473,033(9.5)
148,733(3.0)

669,733(13.4)
199,400(4.0)

570,266(11.4)
612,633(12.3)
366,033(7.3)

562,700(11.3)
469,866(9.4)

480,500(9.6)
405,700(8.1)
294,755(5.9)
491,500(9.8)

-126,150(-2.5)
97,700(2.0)
54,600(1.1)

118,450(2.4)
280,500(5.6)
382,000(7.6)
-76,600(-1.5)
210,000(4.2)
235,400(4.7)

-293,785(5.9)
7,250(0.1)

-27,350(0.5)

520,000 (10.4)
664,000(13.3)
319,200(6.4)
477,000(9.5)

-1,026,000(-20.5)
-189,000(-3.8)

264,000(5.3)
240,000(4.8)
150,000(3.0)
372,000(7.4)

-576,000(-11.5)
262,500(5.3)
32,000(0.6)

-985,500(-19.7)
-264,000(-5.3)

399,000(8.0)
Average 409,537(8.2) 158,404(3.2) 41,200(0.8)

Table 3. Profits in the test simulations

Figure 10 shows the change of the price of Toyota motor in the testing term and also shows
typical buying and selling points by the proposed method. Fig. 11 shows the change of the
funds as a result of the trading. From these figures, we can see that GNP-Sarsa can buy
stocks at the lower points and sell at the higher points.

Fig. 9. Fitness curve in the training period (Toyota Motor)

Figure 12 shows the average ratio of the nodes used in the test period over 30 independent
simulations in order to see which nodes are used and which are most efficient for stock
trading model. The total number of node function is 23, while each processing node has a

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

357

node number (0–1), and each judgment node has a node number (2–22). The x-axis shows
the kinds of the nodes while the y-axis shows the average ratio of the used nodes. From the
figure, we can see that the processing nodes are used to determine buying and selling
stocks, and the judgment nodes of “Rate of deviation1” corresponding to period1 and
“Volume ratio3” corresponding to period3 are frequently used.
Thus it can be said that GNP-Sarsa judges that these nodes are important to determine stock
trading. GNP-Sarsa can automatically determine which nodes should be used in the current
situation by evolving node functions and connections between nodes, in other words, GNP-
Sarsa can optimize the combination of technical indices and candlestick charts used for stock
trading model.

Fig. 10. Stock price of Toyota Motor and typical buying/selling points in 2004 (test period)

Fig. 11. Change of funds in the test simulation (Toyota Motor)

 Machine Learning

356

Profit[yen](profit rate[%])
Brand GNP-Sarsa GNP Buy&Hold
Toyota Motor
Mitsubishi Estate
Showa Shell Sekiyu
East Japan Railway
NEC Corporation
Fuji Heavy Ind.
Sekisui House, Ltd.
Mitsu & Co.
Sony
Tokyo Gas
KDDI
Tokyo Electric Power
Daiwa House
Nomura Holdings
Shin-Etsu Chemical
Nippon Steel

522,333(10.4)
444,733(8.9)

 263,100(5.3)
413,833(8.3)
36,600(0.7)

217,133(4.3)
582,466(11.6)
473,033(9.5)
148,733(3.0)

669,733(13.4)
199,400(4.0)

570,266(11.4)
612,633(12.3)
366,033(7.3)

562,700(11.3)
469,866(9.4)

480,500(9.6)
405,700(8.1)
294,755(5.9)
491,500(9.8)

-126,150(-2.5)
97,700(2.0)
54,600(1.1)

118,450(2.4)
280,500(5.6)
382,000(7.6)
-76,600(-1.5)
210,000(4.2)
235,400(4.7)

-293,785(5.9)
7,250(0.1)

-27,350(0.5)

520,000 (10.4)
664,000(13.3)
319,200(6.4)
477,000(9.5)

-1,026,000(-20.5)
-189,000(-3.8)

264,000(5.3)
240,000(4.8)
150,000(3.0)
372,000(7.4)

-576,000(-11.5)
262,500(5.3)
32,000(0.6)

-985,500(-19.7)
-264,000(-5.3)

399,000(8.0)
Average 409,537(8.2) 158,404(3.2) 41,200(0.8)

Table 3. Profits in the test simulations

Figure 10 shows the change of the price of Toyota motor in the testing term and also shows
typical buying and selling points by the proposed method. Fig. 11 shows the change of the
funds as a result of the trading. From these figures, we can see that GNP-Sarsa can buy
stocks at the lower points and sell at the higher points.

Fig. 9. Fitness curve in the training period (Toyota Motor)

Figure 12 shows the average ratio of the nodes used in the test period over 30 independent
simulations in order to see which nodes are used and which are most efficient for stock
trading model. The total number of node function is 23, while each processing node has a

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

357

node number (0–1), and each judgment node has a node number (2–22). The x-axis shows
the kinds of the nodes while the y-axis shows the average ratio of the used nodes. From the
figure, we can see that the processing nodes are used to determine buying and selling
stocks, and the judgment nodes of “Rate of deviation1” corresponding to period1 and
“Volume ratio3” corresponding to period3 are frequently used.
Thus it can be said that GNP-Sarsa judges that these nodes are important to determine stock
trading. GNP-Sarsa can automatically determine which nodes should be used in the current
situation by evolving node functions and connections between nodes, in other words, GNP-
Sarsa can optimize the combination of technical indices and candlestick charts used for stock
trading model.

Fig. 10. Stock price of Toyota Motor and typical buying/selling points in 2004 (test period)

Fig. 11. Change of funds in the test simulation (Toyota Motor)

 Machine Learning

358

Fig. 12. Ratio of nodes used by GNP-Sarsa in the test period (Toyota Motor)

5. Conclusions
In this paper, a stock trading model using GNP-Sarsa with important index and candlestick
charts is proposed. First, a newly defined IMX function is assigned to each technical index to
tell GNP-Sarsa whether buying or selling stocks is recommended or not. Second, Sarsa
learns Q values to select appropriate sub-nodes/functions used to judge the current stock
price information and determine buying and selling timing. We carried out simulations
using stock price data of 16 brands for four years. From the simulation results, it is clarified
that the fitness becomes larger as the generation goes on and the profits obtained in the
testing term are better than Buy&Hold in the simulations of 12 brands out of 16. By
comparing with original GNP, the proposed method can get larger profits than traditional
GNP in the trade of 13 brands out of 16. When there is downtrend, Buy&Hold makes a loss
in five brands, but the proposed method can obtain profits in five all brands.
There remain some problems to be solved. First, in this paper, the calculation period of each
technical index is fixed in advance. However, to improve the performance of the proposed
method, we should develop a new method that can learn appropriate calculation periods.
Next, it is necessary to consider the way of classifying the candlestick chart body type, and
create more efficient judgment functions to judge current stock price appropriately. Also, we
will evaluate the proposed method comparing with other methods using many data of other
brands.

6. References
[1] Mabu, S., Hirasawa, K. & Hu, J. (2007), A graph-based evolutionary algorithm: Genetic

network programming and its extension using reinforcement learning, Evolutionary
Computation, MIT Press, Vol.15, No.3, pp. 369-398.

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

359

[2] Eguchi, T., Hirasawa, K., Hu, J. & Ota N. (2006), Study of evolutionary multiagent
models based on symbiosis, IEEE Trans. Syst., Man and Cybern. B, Vol.36, No.1, pp.
179-193.

[3] Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor, University
of Michigan Press.

[4] Goldberg, D. E. (1989), Genetic Algorithm in search, optimization and machine learning,
Addison-Wesley.

[5] Koza, J. R. (1992), Genetic Programming, on the programming of computers by means of natural
selection, Cambridge, Mass., MIT Press.

[6] Koza, J. R. (1994), Genetic Programming II, Automatic Discovery of Reusable Programs,
Cambridge, Mass., MIT Press.

[7] Sutton, R. S. & Barto, A. G. (1998), Reinforcement Learning -An Introduction, Cambridge,
Massachusetts, London, England, MIT Press.

[8] Baba, N., Inoue, N. & Yanjun, Y. (2002), Utilization of soft computing techniques for
constructing reliable decision support systems for dealing stocks, Proceedings of Int.
Joint Conf. on Neural Networks.

[9] Potvin, J. -Y., Soriano, P. & Vallee, M. (2004), Generating trading rules on the stock
markets with genetic programming, Computers & Operations Research, Vol.31, pp.
1033-1047.

[10] Oh, K. J., Kim, T. Y., Min, S. -H. & Lee, H. Y. (2006), Portfolio algorithm based on
portfolio beta using genetic algorithm, Expert Systems with Application, Vol.30, pp.
527-534.

[11] Mabu, S., Hatakeyama, H., Thu, M. T., Hirasawa, K. & Hu, J. (2006), Genetic Network
Programming with Reinforcement Learning and Its Application to Making Mobile
Robot Behavior, IEEJ Trans. EIS, Vol.126, No.8, pp. 1009-1015.

[12] Lee, K. H. & Jo, G.S. (1999), Expert system for predicting stock market timing using a
candlestick chart, Expert Systems with Applications, Vol.16, pp. 357-364.

[13] Izumi, Y., Yamaguchi, T., Mabu, S., Hirasawa, K. & Hu, J. (2006), Trading Rules on the
Stock Market using Genetic Network Programming with Candlestick Chart,
Proceedings of 2006 IEEE Congress on Evolutionary Computation, Sheraton Vancouver
Wall Centre Hotel, Vancouver, BC, Canada, pp. 8531-8536, July 16-21.

[14] Mabu, S., Izumi, Y., Hirasawa, K. & Furuzuki, T. (2007), Trading Rules on Stock Markets
Using Genetic Network Progamming with Candle Chart, T. SICE, Vol.43, No.4, pp.
317-322, (in Japanese).

[15] Izumi, Y., Hirasawa, K. & Furuzuki, T. (2006), Trading Rules on the Stock Markets
Using Genetic Network Progamming with Importance Index, T. SICE, Vol.42, No.5,
pp. 559-566, (in Japanese).

[16] Dhar, V. (2001), A Comparison of GLOWER and Other Machine Learning Methods for
Investment Decision Making, Springer Berlin Press, pp.208-220.

[17] Duerson, S., Khan, F. S., Kovalev, V. & Malik, A. H. (2005), Reinforcement Learning in
Online Stock Trading Systems.

 http://www.cc.gatech.edu/grads/h/hisham/projects/ml7641/RLStockTrading. pdf
[18] Pafka, S., Potters, M. & Kondor, I. (2004), Exponential Weighting and Random-Matrix-

Theory-Based Filtering of Financial Covariance Matrices for Portfolio Optimization,
arXiv:cond-mat/0402573v1, 2004. Quantitative Finance, (to be appeared).

 Machine Learning

358

Fig. 12. Ratio of nodes used by GNP-Sarsa in the test period (Toyota Motor)

5. Conclusions
In this paper, a stock trading model using GNP-Sarsa with important index and candlestick
charts is proposed. First, a newly defined IMX function is assigned to each technical index to
tell GNP-Sarsa whether buying or selling stocks is recommended or not. Second, Sarsa
learns Q values to select appropriate sub-nodes/functions used to judge the current stock
price information and determine buying and selling timing. We carried out simulations
using stock price data of 16 brands for four years. From the simulation results, it is clarified
that the fitness becomes larger as the generation goes on and the profits obtained in the
testing term are better than Buy&Hold in the simulations of 12 brands out of 16. By
comparing with original GNP, the proposed method can get larger profits than traditional
GNP in the trade of 13 brands out of 16. When there is downtrend, Buy&Hold makes a loss
in five brands, but the proposed method can obtain profits in five all brands.
There remain some problems to be solved. First, in this paper, the calculation period of each
technical index is fixed in advance. However, to improve the performance of the proposed
method, we should develop a new method that can learn appropriate calculation periods.
Next, it is necessary to consider the way of classifying the candlestick chart body type, and
create more efficient judgment functions to judge current stock price appropriately. Also, we
will evaluate the proposed method comparing with other methods using many data of other
brands.

6. References
[1] Mabu, S., Hirasawa, K. & Hu, J. (2007), A graph-based evolutionary algorithm: Genetic

network programming and its extension using reinforcement learning, Evolutionary
Computation, MIT Press, Vol.15, No.3, pp. 369-398.

Genetic Network Programming with Reinforcement Learning
and Its Application to Creating Stock Trading Rules

359

[2] Eguchi, T., Hirasawa, K., Hu, J. & Ota N. (2006), Study of evolutionary multiagent
models based on symbiosis, IEEE Trans. Syst., Man and Cybern. B, Vol.36, No.1, pp.
179-193.

[3] Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor, University
of Michigan Press.

[4] Goldberg, D. E. (1989), Genetic Algorithm in search, optimization and machine learning,
Addison-Wesley.

[5] Koza, J. R. (1992), Genetic Programming, on the programming of computers by means of natural
selection, Cambridge, Mass., MIT Press.

[6] Koza, J. R. (1994), Genetic Programming II, Automatic Discovery of Reusable Programs,
Cambridge, Mass., MIT Press.

[7] Sutton, R. S. & Barto, A. G. (1998), Reinforcement Learning -An Introduction, Cambridge,
Massachusetts, London, England, MIT Press.

[8] Baba, N., Inoue, N. & Yanjun, Y. (2002), Utilization of soft computing techniques for
constructing reliable decision support systems for dealing stocks, Proceedings of Int.
Joint Conf. on Neural Networks.

[9] Potvin, J. -Y., Soriano, P. & Vallee, M. (2004), Generating trading rules on the stock
markets with genetic programming, Computers & Operations Research, Vol.31, pp.
1033-1047.

[10] Oh, K. J., Kim, T. Y., Min, S. -H. & Lee, H. Y. (2006), Portfolio algorithm based on
portfolio beta using genetic algorithm, Expert Systems with Application, Vol.30, pp.
527-534.

[11] Mabu, S., Hatakeyama, H., Thu, M. T., Hirasawa, K. & Hu, J. (2006), Genetic Network
Programming with Reinforcement Learning and Its Application to Making Mobile
Robot Behavior, IEEJ Trans. EIS, Vol.126, No.8, pp. 1009-1015.

[12] Lee, K. H. & Jo, G.S. (1999), Expert system for predicting stock market timing using a
candlestick chart, Expert Systems with Applications, Vol.16, pp. 357-364.

[13] Izumi, Y., Yamaguchi, T., Mabu, S., Hirasawa, K. & Hu, J. (2006), Trading Rules on the
Stock Market using Genetic Network Programming with Candlestick Chart,
Proceedings of 2006 IEEE Congress on Evolutionary Computation, Sheraton Vancouver
Wall Centre Hotel, Vancouver, BC, Canada, pp. 8531-8536, July 16-21.

[14] Mabu, S., Izumi, Y., Hirasawa, K. & Furuzuki, T. (2007), Trading Rules on Stock Markets
Using Genetic Network Progamming with Candle Chart, T. SICE, Vol.43, No.4, pp.
317-322, (in Japanese).

[15] Izumi, Y., Hirasawa, K. & Furuzuki, T. (2006), Trading Rules on the Stock Markets
Using Genetic Network Progamming with Importance Index, T. SICE, Vol.42, No.5,
pp. 559-566, (in Japanese).

[16] Dhar, V. (2001), A Comparison of GLOWER and Other Machine Learning Methods for
Investment Decision Making, Springer Berlin Press, pp.208-220.

[17] Duerson, S., Khan, F. S., Kovalev, V. & Malik, A. H. (2005), Reinforcement Learning in
Online Stock Trading Systems.

 http://www.cc.gatech.edu/grads/h/hisham/projects/ml7641/RLStockTrading. pdf
[18] Pafka, S., Potters, M. & Kondor, I. (2004), Exponential Weighting and Random-Matrix-

Theory-Based Filtering of Financial Covariance Matrices for Portfolio Optimization,
arXiv:cond-mat/0402573v1, 2004. Quantitative Finance, (to be appeared).

 Machine Learning

360

[19] Basalto, N., Bellotti, R., De Carlo, F., Facchi, P. & Pascazio, S. (2005), Clustering stock
market companies via chaotic map synchronization, Physica A, 345, p. 196,
arXiv:cond-mat/0404497v1.

[20] Huang, W., Nakamori, Y. & Wang, S. Y. (2005), Forecasting stock market movement
direction with support vector machine Source, Computers and Operations Research,
Vol.32, Issue 10, pp. 2513-2522.

[21] Porecha, M. B., Panigrahi, P. K., Parikh, J. C., Kishtawal, C. M. & Basu, S. (2005),
Forecasting non-stationary financial time series through genetic algorithm,
arXiv:nlin/0507037v1.

[22] Jensen, M. H., Johansen, A., Petroni, F. & Simonsen, I. (2004), Inverse Statistics in the
Foreign Exchange Market, Physica A, 340, p. 678, arXiv:cond-mat/0402591v2.

[23] Mikosch, T. & Starica, C. (2004), Stock Market Risk-Return Inference. An Unconditional
Non-parametric Approach, SSRN Working Paper Series.

[24] Iba, H. & Sasaki, T. (2001), Using Genetic Programming to Predict Financial Data,
Proceedings of the Congress of Evolutionary Computation, pp. 244-251.

18

Heuristic Dynamic Programming Nonlinear
Optimal Controller

Asma Al-tamimi, Murad Abu-Khalaf and Frank Lewis
The Hashemite University, Math work, The University of Texas at Arlington

Jordan, USA

1. Introduction
This chapter is concerned with the application of approximate dynamic programming
techniques (ADP) to solve for the value function, and hence the optimal control policy, in
discrete-time nonlinear optimal control problems having continuous state and action spaces.
ADP is a reinforcement learning approach (Sutton & Barto, 1998) based on adaptive critics
(Barto et al., 1983), (Widrow et al., 1973) to solve dynamic programming problems utilizing
function approximation for the value function. ADP techniques can be based on value
iterations or policy iterations. In contrast with value iterations, policy iterations require an
initial stabilizing control action, (Sutton & Barto, 1998). (Howard, 1960) proved convergence
of policy iteration for Markov Decision Processes with discrete state and action spaces.
Lookup tables are used to store the value function iterations at each state. (Watkins, 1989)
developed Q-learning for discrete state and action MDPs, where a ‘Q function’ is stored for
each state/action pair, and model dynamics are not needed to compute the control action.
ADP was proposed by (Werbos, 1990,1991,1992) for discrete-time dynamical systems having
continuous state and action spaces as a way to solve optimal control problems, (Lewis &
Syrmos, 1995), forward in time. (Bertsekas & Tsitsiklis, 1996) provide a treatment of
Neurodynamic programming, where neural networks (NN) are used to approximate the
value function. (Cao, 2002) presents a general theory for learning and optimization.
 (Werbos, 1992) classified approximate dynamic programming approaches into four main
schemes: Heuristic Dynamic Programming (HDP), Dual Heuristic Dynamic Programming
(DHP), Action Dependent Heuristic Dynamic Programming (ADHDP), (a continuous-state-
space generalization of Q-learning (Watkins, 1989)), and Action Dependent Dual Heuristic
Dynamic Programming (ADDHP). Neural networks are used to approximate the value
function (the critic NN) and the control (the action NN), and backpropagation is used to
tune the weights until convergence at each iteration of the ADP algorithm. An overview of
ADP is given in (Si et al., 2004) (e.g. (Ferrari & Stengel, 2004), and also (Prokhorov &
Wunsch, 1997), who deployed new ADP schemes known as Globalized-DHP (GDHP) and
ADGDHP.
ADP for linear systems has received ample attention. An off-line policy iteration scheme for
discrete-time systems with known dynamics was given in (Hewer, 1971) to solve the
discrete-time Riccati equation. In (Bradtke et al, 1994) implemented an (online) Q-learning
policy iteration method for discrete-time linear quadratic regulator (LQR) optimal control

 Machine Learning

360

[19] Basalto, N., Bellotti, R., De Carlo, F., Facchi, P. & Pascazio, S. (2005), Clustering stock
market companies via chaotic map synchronization, Physica A, 345, p. 196,
arXiv:cond-mat/0404497v1.

[20] Huang, W., Nakamori, Y. & Wang, S. Y. (2005), Forecasting stock market movement
direction with support vector machine Source, Computers and Operations Research,
Vol.32, Issue 10, pp. 2513-2522.

[21] Porecha, M. B., Panigrahi, P. K., Parikh, J. C., Kishtawal, C. M. & Basu, S. (2005),
Forecasting non-stationary financial time series through genetic algorithm,
arXiv:nlin/0507037v1.

[22] Jensen, M. H., Johansen, A., Petroni, F. & Simonsen, I. (2004), Inverse Statistics in the
Foreign Exchange Market, Physica A, 340, p. 678, arXiv:cond-mat/0402591v2.

[23] Mikosch, T. & Starica, C. (2004), Stock Market Risk-Return Inference. An Unconditional
Non-parametric Approach, SSRN Working Paper Series.

[24] Iba, H. & Sasaki, T. (2001), Using Genetic Programming to Predict Financial Data,
Proceedings of the Congress of Evolutionary Computation, pp. 244-251.

18

Heuristic Dynamic Programming Nonlinear
Optimal Controller

Asma Al-tamimi, Murad Abu-Khalaf and Frank Lewis
The Hashemite University, Math work, The University of Texas at Arlington

Jordan, USA

1. Introduction
This chapter is concerned with the application of approximate dynamic programming
techniques (ADP) to solve for the value function, and hence the optimal control policy, in
discrete-time nonlinear optimal control problems having continuous state and action spaces.
ADP is a reinforcement learning approach (Sutton & Barto, 1998) based on adaptive critics
(Barto et al., 1983), (Widrow et al., 1973) to solve dynamic programming problems utilizing
function approximation for the value function. ADP techniques can be based on value
iterations or policy iterations. In contrast with value iterations, policy iterations require an
initial stabilizing control action, (Sutton & Barto, 1998). (Howard, 1960) proved convergence
of policy iteration for Markov Decision Processes with discrete state and action spaces.
Lookup tables are used to store the value function iterations at each state. (Watkins, 1989)
developed Q-learning for discrete state and action MDPs, where a ‘Q function’ is stored for
each state/action pair, and model dynamics are not needed to compute the control action.
ADP was proposed by (Werbos, 1990,1991,1992) for discrete-time dynamical systems having
continuous state and action spaces as a way to solve optimal control problems, (Lewis &
Syrmos, 1995), forward in time. (Bertsekas & Tsitsiklis, 1996) provide a treatment of
Neurodynamic programming, where neural networks (NN) are used to approximate the
value function. (Cao, 2002) presents a general theory for learning and optimization.
 (Werbos, 1992) classified approximate dynamic programming approaches into four main
schemes: Heuristic Dynamic Programming (HDP), Dual Heuristic Dynamic Programming
(DHP), Action Dependent Heuristic Dynamic Programming (ADHDP), (a continuous-state-
space generalization of Q-learning (Watkins, 1989)), and Action Dependent Dual Heuristic
Dynamic Programming (ADDHP). Neural networks are used to approximate the value
function (the critic NN) and the control (the action NN), and backpropagation is used to
tune the weights until convergence at each iteration of the ADP algorithm. An overview of
ADP is given in (Si et al., 2004) (e.g. (Ferrari & Stengel, 2004), and also (Prokhorov &
Wunsch, 1997), who deployed new ADP schemes known as Globalized-DHP (GDHP) and
ADGDHP.
ADP for linear systems has received ample attention. An off-line policy iteration scheme for
discrete-time systems with known dynamics was given in (Hewer, 1971) to solve the
discrete-time Riccati equation. In (Bradtke et al, 1994) implemented an (online) Q-learning
policy iteration method for discrete-time linear quadratic regulator (LQR) optimal control

 Machine Learning

362

problems. A convergence proof was given. (Hagen, 1998) discussed, for the LQR case, the
relation between the Q-learning method and model-based adaptive control with system
identification. (Landelius, 1997) applied HDP, DHP, ADHDP and ADDHP value iteration
techniques, called greedy policy iterations therein, to the discrete-time LQR problem and
verified their convergence. It was shown that these iterations are in fact equivalent to
iterative solution of an underlying algebraic Riccati equation, which is known to converge
(Lancaster & Rodman, 1995). (Lu & Balakrishnan, 2000) showed convergence of DHP for
the LQR case.
(Morimoto et al, 2003) developed differential dynamic programming, a Q-learning method,
to solve optimal zero-sum game problems for nonlinear systems by taking the second-order
approximation to the Q function. This effectively provides an exact Q-learning formulation
for linear systems with minimax value functions. In our previous work (Al-tamimi et al,
2007), we studied ADP value iteration techniques to solve the zero-sum game problem for
linear discrete-time dynamical systems using quadratic minimax cost. HDP, DHP, ADHDP
and ADDHP formulations were developed for zero-sum games, and convergence was
proven by showing the equivalence of these ADP methods to iterative solution of an
underlying Game Algebraic Riccati Equation, which is known to converge. Applications
were made to H-infinity control.
For nonlinear systems with continuous state and action spaces, solution methods for the
dynamic programming problem are more sparse. Policy iteration methods for optimal
control for continuous-time systems with continuous state space and action spaces were
given in (Abu-khalaf & Lewis, 2005) (Abu-Khalaf at el, 2004), but complete knowledge of the
plant dynamics is required. The discrete-time nonlinear optimal control solution relies on
solving the discrete-time (DT) Hamilton-Jacobi-Bellman (HJB) equation (Lewis & Syrmos,
1995), exact solution of which is generally impossible for nonlinear systems. Solutions to the
DT HJB equation with known dynamics and continuous state space and action space were
given in (Huang, 1999), where the coefficients of the Taylor series expansion of the value
function are systematically computed. In (Chen & Jagannathan, 2005), the authors show
that under certain conditions a second-order approximation of the discrete-time (DT)
Hamilton-Jacobi-Bellman (HJB) equation can be considered; under those conditions
discussed in that paper, the authors solve for the value function that satisfies the second
order expansion of the DT HJB instead of solving for the original DT HJB. The authors apply
a policy iteration scheme on this second order DT HJB and require an initially stable policy
to start the iterations scheme. The authors also used a single (critic) neural network to
approximate the value function of the second order DT HJB. These are all off-line methods
for solving the HJB equations that require full knowledge of the system dynamics.
Convergence proofs for the on-line value-iteration based ADP techniques for nonlinear
discrete-time systems are even more limited. (Prokhorov & Wunsch, 1997) use NN to
approximate both the value (e.g. a critic NN) and the control action. Least mean squares is
used to tune the critic NN weights and the action NN weights. Stochastic approximation is
used to show that, at each iteration of the ADP algorithm, the critic weights converge.
Likewise, at each iteration the action NN weights converge, but overall convergence of the
ADP algorithm to the optimal solution is not demonstrated. A similar approach was used in
(Si et al., 2004).
In (He & Jagannathan, 2005), a generalized or asynchronous version of ADP (in the sense of
(Sutton & Barto, 1998) was used whereby the updates of the critic NN and action NN are

Heuristic Dynamic Programming Nonlinear Optimal Controller

363

interleaved, each NN being updated at each time step. Tuning was performed online. A
Lyapunov approach was used to show that the method yields uniform ultimate bounded
stability and that the weight estimation errors are bounded, though convergence to the exact
optimal value and control was not shown. The input coupling function must be positive
definite.
In this chapter, we provide a full, rigorous proof of convergence of the online value-iteration
based HDP algorithm, to solve the DT HJB equation of the optimal control problem for
general nonlinear discrete-time systems. It is assumed that at each iteration, the value
update and policy update equations can be exactly solved. Note that this is true in the
specific case of the LQR, where the action is linear and the value quadratic in the states. For
implementation, two NN are used- the critic NN to approximate the value and the action
NN to approximate the control. Full knowledge of the system dynamics is not needed to
implement the HDP algorithm; in fact, the internal dynamics information is not needed. As
a value iteration based algorithm, of course, an initial stabilizing policy is not needed for
HDP.
The point is stressed that these results also hold for the special LQR case of linear systems
x Ax Bu= + and quadratic utility. In the general folklore of HDP for the LQR case, only a
single NN is used, namely a critic NN, and the action is updated using a standard matrix
equation derived from the stationarity condition (Lewis & Syrmos1995). In the DT case, this
equation requires the use of both the plant matrix A, e.g. the internal dynamics, and the
control input coupling matrix B . However, by using a second action NN, the knowledge of
the A matrix is not needed. This important issue is clarified herein.
Section two of the chapter starts by introducing the nonlinear discrete-time optimal control
problem. Section three demonstrates how to setup the HDP algorithm to solve for the
nonlinear discrete-time optimal control problem. In Section four, we prove the convergence
of HDP value iterations to the solution of the DT HJB equation. In Section five, we introduce
two neural network parametric structures to approximate the optimal value function and
policy. As is known, this provides a procedure for implementing the HDP algorithm. We
also discuss in that section how we implement the algorithm without having to know the
plant internal dynamics. Finally, Section six presents two examples that show the practical
effectiveness of the ADP technique. The first example in fact is a LQR example which uses
HDP with two NNs to solve the Riccati equation online without knowing the A matrix. The
second example considers a nonlinear system and the results are compared to solutions
based on State Dependent Riccati Equations (SDRE).

2. The discrete-time HJB equation
Consider an affine in input nonlinear dynamical-system of the form

 1 () () ()k k k kx f x g x u x+ = + . (1)

where nx ∈ , () nf x ∈ , () n mg x ×∈ and the input mu ∈ . Suppose the system is drift-free
and, without loss of generality, that 0x = is an equilibrium state, e.g. (0) 0f = , (0) 0g = .
Assume that the system (1) is stabilizable on a prescribed compact set nΩ∈ .
Definition 1. Stabilizable system: A nonlinear dynamical system is defined to be stabilizable
on a compact set nΩ∈ if there exists a control input mu ∈ such that, for all initial
conditions 0x ∈Ω the state 0kx → as k →∞ .

 Machine Learning

362

problems. A convergence proof was given. (Hagen, 1998) discussed, for the LQR case, the
relation between the Q-learning method and model-based adaptive control with system
identification. (Landelius, 1997) applied HDP, DHP, ADHDP and ADDHP value iteration
techniques, called greedy policy iterations therein, to the discrete-time LQR problem and
verified their convergence. It was shown that these iterations are in fact equivalent to
iterative solution of an underlying algebraic Riccati equation, which is known to converge
(Lancaster & Rodman, 1995). (Lu & Balakrishnan, 2000) showed convergence of DHP for
the LQR case.
(Morimoto et al, 2003) developed differential dynamic programming, a Q-learning method,
to solve optimal zero-sum game problems for nonlinear systems by taking the second-order
approximation to the Q function. This effectively provides an exact Q-learning formulation
for linear systems with minimax value functions. In our previous work (Al-tamimi et al,
2007), we studied ADP value iteration techniques to solve the zero-sum game problem for
linear discrete-time dynamical systems using quadratic minimax cost. HDP, DHP, ADHDP
and ADDHP formulations were developed for zero-sum games, and convergence was
proven by showing the equivalence of these ADP methods to iterative solution of an
underlying Game Algebraic Riccati Equation, which is known to converge. Applications
were made to H-infinity control.
For nonlinear systems with continuous state and action spaces, solution methods for the
dynamic programming problem are more sparse. Policy iteration methods for optimal
control for continuous-time systems with continuous state space and action spaces were
given in (Abu-khalaf & Lewis, 2005) (Abu-Khalaf at el, 2004), but complete knowledge of the
plant dynamics is required. The discrete-time nonlinear optimal control solution relies on
solving the discrete-time (DT) Hamilton-Jacobi-Bellman (HJB) equation (Lewis & Syrmos,
1995), exact solution of which is generally impossible for nonlinear systems. Solutions to the
DT HJB equation with known dynamics and continuous state space and action space were
given in (Huang, 1999), where the coefficients of the Taylor series expansion of the value
function are systematically computed. In (Chen & Jagannathan, 2005), the authors show
that under certain conditions a second-order approximation of the discrete-time (DT)
Hamilton-Jacobi-Bellman (HJB) equation can be considered; under those conditions
discussed in that paper, the authors solve for the value function that satisfies the second
order expansion of the DT HJB instead of solving for the original DT HJB. The authors apply
a policy iteration scheme on this second order DT HJB and require an initially stable policy
to start the iterations scheme. The authors also used a single (critic) neural network to
approximate the value function of the second order DT HJB. These are all off-line methods
for solving the HJB equations that require full knowledge of the system dynamics.
Convergence proofs for the on-line value-iteration based ADP techniques for nonlinear
discrete-time systems are even more limited. (Prokhorov & Wunsch, 1997) use NN to
approximate both the value (e.g. a critic NN) and the control action. Least mean squares is
used to tune the critic NN weights and the action NN weights. Stochastic approximation is
used to show that, at each iteration of the ADP algorithm, the critic weights converge.
Likewise, at each iteration the action NN weights converge, but overall convergence of the
ADP algorithm to the optimal solution is not demonstrated. A similar approach was used in
(Si et al., 2004).
In (He & Jagannathan, 2005), a generalized or asynchronous version of ADP (in the sense of
(Sutton & Barto, 1998) was used whereby the updates of the critic NN and action NN are

Heuristic Dynamic Programming Nonlinear Optimal Controller

363

interleaved, each NN being updated at each time step. Tuning was performed online. A
Lyapunov approach was used to show that the method yields uniform ultimate bounded
stability and that the weight estimation errors are bounded, though convergence to the exact
optimal value and control was not shown. The input coupling function must be positive
definite.
In this chapter, we provide a full, rigorous proof of convergence of the online value-iteration
based HDP algorithm, to solve the DT HJB equation of the optimal control problem for
general nonlinear discrete-time systems. It is assumed that at each iteration, the value
update and policy update equations can be exactly solved. Note that this is true in the
specific case of the LQR, where the action is linear and the value quadratic in the states. For
implementation, two NN are used- the critic NN to approximate the value and the action
NN to approximate the control. Full knowledge of the system dynamics is not needed to
implement the HDP algorithm; in fact, the internal dynamics information is not needed. As
a value iteration based algorithm, of course, an initial stabilizing policy is not needed for
HDP.
The point is stressed that these results also hold for the special LQR case of linear systems
x Ax Bu= + and quadratic utility. In the general folklore of HDP for the LQR case, only a
single NN is used, namely a critic NN, and the action is updated using a standard matrix
equation derived from the stationarity condition (Lewis & Syrmos1995). In the DT case, this
equation requires the use of both the plant matrix A, e.g. the internal dynamics, and the
control input coupling matrix B . However, by using a second action NN, the knowledge of
the A matrix is not needed. This important issue is clarified herein.
Section two of the chapter starts by introducing the nonlinear discrete-time optimal control
problem. Section three demonstrates how to setup the HDP algorithm to solve for the
nonlinear discrete-time optimal control problem. In Section four, we prove the convergence
of HDP value iterations to the solution of the DT HJB equation. In Section five, we introduce
two neural network parametric structures to approximate the optimal value function and
policy. As is known, this provides a procedure for implementing the HDP algorithm. We
also discuss in that section how we implement the algorithm without having to know the
plant internal dynamics. Finally, Section six presents two examples that show the practical
effectiveness of the ADP technique. The first example in fact is a LQR example which uses
HDP with two NNs to solve the Riccati equation online without knowing the A matrix. The
second example considers a nonlinear system and the results are compared to solutions
based on State Dependent Riccati Equations (SDRE).

2. The discrete-time HJB equation
Consider an affine in input nonlinear dynamical-system of the form

 1 () () ()k k k kx f x g x u x+ = + . (1)

where nx ∈ , () nf x ∈ , () n mg x ×∈ and the input mu ∈ . Suppose the system is drift-free
and, without loss of generality, that 0x = is an equilibrium state, e.g. (0) 0f = , (0) 0g = .
Assume that the system (1) is stabilizable on a prescribed compact set nΩ∈ .
Definition 1. Stabilizable system: A nonlinear dynamical system is defined to be stabilizable
on a compact set nΩ∈ if there exists a control input mu ∈ such that, for all initial
conditions 0x ∈Ω the state 0kx → as k →∞ .

 Machine Learning

364

It is desired to find the control action ()ku x which minimizes the infinite-horizon cost
function given as

 () () () ()T
k n n nn k

V x Q x u x Ru x∞

=
= +∑ (2)

for all xk, where () 0Q x > and 0 m mR ×> ∈ . The class of controllers needs to be stable and
also guarantee that (2) is finite, i.e. the control must be admissible (Abu-Khalaf & Lewis,
2005).
Definition 2. Admissible Control: A control ()ku x is defined to be admissible with respect
to (2) on Ω if ()ku x is continuous on a compact set nΩ∈ , (0) 0u = , u stabilizes (1) on Ω ,
and 0 0, ()x V x∀ ∈Ω is finite.
Equation (2) can be written as

 1

1

()

()

T T T T
k k k k k n n n nn k

T T
k k k k k

V x x Qx u Ru x Qx u Ru

x Qx u Ru V x

∞

= +

+

= + + +

= + +

∑ (3)

where we require the boundary condition (0) 0V x = = so that ()kV x serves as a Lyapunov
function. From Bellman’s optimality principle (Lewis & Syrmos, 1995), it is known that for
the infinite-horizon optimization case, the value function ()kV x∗ is time-invariant and
satisfies the discrete-time Hamilton-Jacobi-Bellman (HJB) equation

 1() min(())
k

T T
k k k k k ku

V x x Qx u Ru V x∗ ∗
+= + + (4)

Note that the discrete-time HJB equation develops backward-in time.
The optimal control u ∗ satisfies the first order necessary condition, given by the gradient of
the right hand side of (4) with respect to u as

 1 1

1

() () 0
TT T

k k k k k k

k k k

x Qx u Ru x V x
u u x

∗
+ +

+

∂ + ∂ ∂
+ =

∂ ∂ ∂
 (5)

and therefore

 1 1

1

1 ()() ()
2

T k
k k

k

V xu x R g x
x

∗
∗ − +

+

∂
=

∂
 (6)

Substituting (6) in (4), one may write the discrete-time HJB as

 11 1
1

1 1

1 () ()() () () ()
4

T
T Tk k

k k k k k k
k k

V x V xV x x Qx g x R g x V x
x x

∗ ∗
∗ − ∗+ +

+
+ +

∂ ∂
= + +

∂ ∂
 (7)

where ()kV x∗ is the value function corresponding to the optimal control policy ()ku x∗ .
This equation reduces to the Riccati equation in the linear quadratic regulator (LQR) case,
which can be efficiently solved. In the general nonlinear case, the HJB cannot be solved
exactly.
In the next sections we apply the HDP algorithm to solve for the value function V ∗ of the
HJB equation (7) and present a convergence proof.

Heuristic Dynamic Programming Nonlinear Optimal Controller

365

3. The HDP algorithm
The HDP value iteration algorithm (Werbos, 1990) is a method to solve the DT HJB online.
In this section, a proof of convergence of the HDP algorithm in the general nonlinear
discrete-time setting is presented.

3.1 The HDP algorithm
In the HDP algorithm, one starts with an initial value, e.g. 0 () 0V x = and then solves for 0u
as follows

 0 1() arg min(())T T
o k k k ku
u x x Qx u Ru V x += + + (8)

Once the policy 0u is determined, iteration on the value is performed by computing

 1 0 0 0 0

0 0 0 1

() () () (() () ())

() () ()

T T
k k k k k k k k

T T
k k k k k

V x x Qx u x Ru x V f x g x u x

x Qx u x Ru x V x +

= + + +

= + +
 (9)

The HDP value iteration scheme therefore is a form of incremental optimization that requires
iterating between a sequence of action policies ()iu x determined by the greedy update

1

1 1

1

() arg min(())

arg min((() ()))

1 ()()
2

T T
i k k k i ku

T T
k k i k ku

T i k
k

k

u x x Qx u Ru V x

x Qx u Ru V f x g x u

V xR g x
x

+

− +

+

= + +

= + + +

∂
=

∂

 (10)

and a sequence () 0iV x ≥ where

 1 1() min(())

() () (() () ())

T T
i k k k i ku

T T
k k i k i k i k k i k

V x x Qx u Ru V x

x Qx u x Ru x V f x g x u x

+ += + +

= + + +
 (11)

with initial condition 0 () 0kV x = .
Note that, as a value-iteration algorithm, HDP does not require an initial stabilizing gain.
This is important as stabilizing gains are difficult to find for general nonlinear systems.
Note that i is the value iterations index, while k is the time index. The HDP algorithm
results in an incremental optimization that is implemented forward in time and online.
Note that unlike the case for policy iterations in (Hewer, 1971), the sequence ()i kV x is not a
sequence of cost functions and are therefore not Lyapunov functions for the corresponding
policies ()i ku x which are in turn not necessarily stabilizing. In Section four it is shown that

()i kV x and ()i ku x converges to the value function of the optimal control problem and to
the corresponding optimal control policy respectively.

3.2 The special case of linear systems
Note that for the special case of linear systems, it can be shown that the HDP algorithm is
one way to solve the Discrete-Time Algebraic Riccati Equation (DARE) (Landelius, 1997)).
Particularly, for the discrete-time linear system

 Machine Learning

364

It is desired to find the control action ()ku x which minimizes the infinite-horizon cost
function given as

 () () () ()T
k n n nn k

V x Q x u x Ru x∞

=
= +∑ (2)

for all xk, where () 0Q x > and 0 m mR ×> ∈ . The class of controllers needs to be stable and
also guarantee that (2) is finite, i.e. the control must be admissible (Abu-Khalaf & Lewis,
2005).
Definition 2. Admissible Control: A control ()ku x is defined to be admissible with respect
to (2) on Ω if ()ku x is continuous on a compact set nΩ∈ , (0) 0u = , u stabilizes (1) on Ω ,
and 0 0, ()x V x∀ ∈Ω is finite.
Equation (2) can be written as

 1

1

()

()

T T T T
k k k k k n n n nn k

T T
k k k k k

V x x Qx u Ru x Qx u Ru

x Qx u Ru V x

∞

= +

+

= + + +

= + +

∑ (3)

where we require the boundary condition (0) 0V x = = so that ()kV x serves as a Lyapunov
function. From Bellman’s optimality principle (Lewis & Syrmos, 1995), it is known that for
the infinite-horizon optimization case, the value function ()kV x∗ is time-invariant and
satisfies the discrete-time Hamilton-Jacobi-Bellman (HJB) equation

 1() min(())
k

T T
k k k k k ku

V x x Qx u Ru V x∗ ∗
+= + + (4)

Note that the discrete-time HJB equation develops backward-in time.
The optimal control u ∗ satisfies the first order necessary condition, given by the gradient of
the right hand side of (4) with respect to u as

 1 1

1

() () 0
TT T

k k k k k k

k k k

x Qx u Ru x V x
u u x

∗
+ +

+

∂ + ∂ ∂
+ =

∂ ∂ ∂
 (5)

and therefore

 1 1

1

1 ()() ()
2

T k
k k

k

V xu x R g x
x

∗
∗ − +

+

∂
=

∂
 (6)

Substituting (6) in (4), one may write the discrete-time HJB as

 11 1
1

1 1

1 () ()() () () ()
4

T
T Tk k

k k k k k k
k k

V x V xV x x Qx g x R g x V x
x x

∗ ∗
∗ − ∗+ +

+
+ +

∂ ∂
= + +

∂ ∂
 (7)

where ()kV x∗ is the value function corresponding to the optimal control policy ()ku x∗ .
This equation reduces to the Riccati equation in the linear quadratic regulator (LQR) case,
which can be efficiently solved. In the general nonlinear case, the HJB cannot be solved
exactly.
In the next sections we apply the HDP algorithm to solve for the value function V ∗ of the
HJB equation (7) and present a convergence proof.

Heuristic Dynamic Programming Nonlinear Optimal Controller

365

3. The HDP algorithm
The HDP value iteration algorithm (Werbos, 1990) is a method to solve the DT HJB online.
In this section, a proof of convergence of the HDP algorithm in the general nonlinear
discrete-time setting is presented.

3.1 The HDP algorithm
In the HDP algorithm, one starts with an initial value, e.g. 0 () 0V x = and then solves for 0u
as follows

 0 1() arg min(())T T
o k k k ku
u x x Qx u Ru V x += + + (8)

Once the policy 0u is determined, iteration on the value is performed by computing

 1 0 0 0 0

0 0 0 1

() () () (() () ())

() () ()

T T
k k k k k k k k

T T
k k k k k

V x x Qx u x Ru x V f x g x u x

x Qx u x Ru x V x +

= + + +

= + +
 (9)

The HDP value iteration scheme therefore is a form of incremental optimization that requires
iterating between a sequence of action policies ()iu x determined by the greedy update

1

1 1

1

() arg min(())

arg min((() ()))

1 ()()
2

T T
i k k k i ku

T T
k k i k ku

T i k
k

k

u x x Qx u Ru V x

x Qx u Ru V f x g x u

V xR g x
x

+

− +

+

= + +

= + + +

∂
=

∂

 (10)

and a sequence () 0iV x ≥ where

 1 1() min(())

() () (() () ())

T T
i k k k i ku

T T
k k i k i k i k k i k

V x x Qx u Ru V x

x Qx u x Ru x V f x g x u x

+ += + +

= + + +
 (11)

with initial condition 0 () 0kV x = .
Note that, as a value-iteration algorithm, HDP does not require an initial stabilizing gain.
This is important as stabilizing gains are difficult to find for general nonlinear systems.
Note that i is the value iterations index, while k is the time index. The HDP algorithm
results in an incremental optimization that is implemented forward in time and online.
Note that unlike the case for policy iterations in (Hewer, 1971), the sequence ()i kV x is not a
sequence of cost functions and are therefore not Lyapunov functions for the corresponding
policies ()i ku x which are in turn not necessarily stabilizing. In Section four it is shown that

()i kV x and ()i ku x converges to the value function of the optimal control problem and to
the corresponding optimal control policy respectively.

3.2 The special case of linear systems
Note that for the special case of linear systems, it can be shown that the HDP algorithm is
one way to solve the Discrete-Time Algebraic Riccati Equation (DARE) (Landelius, 1997)).
Particularly, for the discrete-time linear system

 Machine Learning

366

 1k k kx Ax Bu+ = + (12)

the DT HJB equation (7) becomes the DARE

 1()T T T TP A PA Q A PB R B PB B PA−= + − + (13)

with () T
k k kV x x Px∗ = .

In the linear case, the policy update (10) is

 1() ()T T
i k i i ku x R B P B B P Ax−= − + (14)

Substituting this into (11), one sees that the HDP algorithm (10), (11) is equivalent to

1

1

0

()
0

T T T T
i i i i iP A P A Q A P B R B P B B P A
P

−
+ = + − +
=

 (15)

It should be noted that the HDP algorithm (15) solves the DARE forward in time, whereas
the dynamic programming recursion appearing in finite-horizon optimal control [21]
develops backward in time

1

1 1 1 1()
0

T T T T
k k k k k

N

P A P A Q A P B R B P B B P A
P

−
+ + + += + − +

=
 (16)

where N represents the terminal time. Both equations (15) and (16) will produce the same
sequence of iP and kP respectively. It has been shown in (Lewis & Syrmos, 1995) and
(Lancaster, 1995) that this sequence converges to the solution of the DARE after enough
iterations.
It is very important to point out the difference between equations (14) and (15) resulting
from HDP value iterations with

 1() ()
i

T T
i k i i k

K

u x R B P B B P A x−= − + (17)

 1 1

0 0

() ()
(,) : Initial stable control policy with corresponding Lyapunov function

T T
i i i i i iA BK P A BK P Q K RK

P u
+ ++ + − = − −

 (18)

resulting from policy iterations, those in(Hewer, 1971). Unlike iP in (15), the sequence iP in
(18) is a sequence of Lyapunov functions. Similarly the sequence of control policies in (17) is
stabilizing unlike the sequence in (14).

4. Convergence of the HDP algorithm

In this section, we present a proof of convergence for nonlinear HDP. That is, we prove
convergence of the iteration (10) and (11) to the optimal value, i.e. iV V ∗→ and iu u ∗→ as
i →∞ . The linear quadratic case has been proven by (Lancaster, 1995) for the case of
known system dynamics.
Lemma 1. Let iμ be any arbitrary sequence of control policies and iΛ be defined by

Heuristic Dynamic Programming Nonlinear Optimal Controller

367

1

1() () (() () ())
k

T
i k k i i i k k i k

x

x Q x R f x g x xμ μ μ
+

+Λ = + + Λ + . (19)

Let iu and iV be the sequences defined by (10) and (11). If 0 0() () 0k kV x x= Λ = , then
() ()i k i kV x x≤ Λ i∀ .

Proof: Since ()i ku x minimizes the right hand side of equation (11) with respect to the control
u , and since 0 0() () 0k kV x x= Λ = , then by induction it follows that () ()i k i kV x x≤ Λ i∀ . ■
Lemma 2. Let the sequence iV be defined as in (11). If the system is controllable, then:
There exists an upper bound ()kY x such that 0 () ()i k kV x Y x≤ ≤ i∀ .
If the optimal control problem (4) is solvable, there exists a least upper bound

() ()k kV x Y x∗ ≤ where ()kV x∗ solves (7), and that : 0 () () ()i k k ki V x V x Y x∗∀ ≤ ≤ ≤ .
Proof: Let ()kxη be any stabilizing and admissible control policy, and Let

0 0() () 0k kV x Z x= = where iZ is updated as

 1 1

1

() () () () ()
() () ()

T
i k k k k i k

k k k k

Z x Q x x R x Z x
x f x g x x

η η
η

+ +

+

= + +
= +

. (20)

It follows that the difference

1 1 1 1

1 2 2 2

2 3 3 3

1 0

() () () ()
() ()
() ()

.

.

.
() ()

i k i k i k i k

i k i k

i k i k

k i k i

Z x Z x Z x Z x
Z x Z x
Z x Z x

Z x Z x

+ + − +

− + − +

− + − +

+ +

− = −
= −
= −

= −

 (21)

Since 0 () 0kZ x = , it then follows that

1 1

1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 1

() () ()
() () ()
() () () ()
() () () ()

i k k i i k

k i k i i k

k i k i k i i k

k i k i k i k

Z x Z x Z x
Z x Z x Z x
Z x Z x Z x Z x
Z x Z x Z x Z x

+ +

+ + − −

+ + − + − −

+ + − + −

= +
= + +
= + + +
= + + + +

 (22)

and equation (22) can be written as

1 10

0

0

() ()

(() () ())

(() () ())

i
i k k nn

i T
k n k n k nn

T
k n k n k nn

Z x Z x

Q x x R x

Q x x R x

η η

η η

+ +=

+ + +=

∞

+ + +=

=

= +

≤ +

∑
∑
∑

 (23)

Since ()kxη is an admissible stabilizing controller, 0k nx + → as n →∞ and

1 10
: () () ()i k k i ki
i Z x Z x Y x∞

+ +=
∀ ≤ =∑

 Machine Learning

366

 1k k kx Ax Bu+ = + (12)

the DT HJB equation (7) becomes the DARE

 1()T T T TP A PA Q A PB R B PB B PA−= + − + (13)

with () T
k k kV x x Px∗ = .

In the linear case, the policy update (10) is

 1() ()T T
i k i i ku x R B P B B P Ax−= − + (14)

Substituting this into (11), one sees that the HDP algorithm (10), (11) is equivalent to

1

1

0

()
0

T T T T
i i i i iP A P A Q A P B R B P B B P A
P

−
+ = + − +
=

 (15)

It should be noted that the HDP algorithm (15) solves the DARE forward in time, whereas
the dynamic programming recursion appearing in finite-horizon optimal control [21]
develops backward in time

1

1 1 1 1()
0

T T T T
k k k k k

N

P A P A Q A P B R B P B B P A
P

−
+ + + += + − +

=
 (16)

where N represents the terminal time. Both equations (15) and (16) will produce the same
sequence of iP and kP respectively. It has been shown in (Lewis & Syrmos, 1995) and
(Lancaster, 1995) that this sequence converges to the solution of the DARE after enough
iterations.
It is very important to point out the difference between equations (14) and (15) resulting
from HDP value iterations with

 1() ()
i

T T
i k i i k

K

u x R B P B B P A x−= − + (17)

 1 1

0 0

() ()
(,) : Initial stable control policy with corresponding Lyapunov function

T T
i i i i i iA BK P A BK P Q K RK

P u
+ ++ + − = − −

 (18)

resulting from policy iterations, those in(Hewer, 1971). Unlike iP in (15), the sequence iP in
(18) is a sequence of Lyapunov functions. Similarly the sequence of control policies in (17) is
stabilizing unlike the sequence in (14).

4. Convergence of the HDP algorithm

In this section, we present a proof of convergence for nonlinear HDP. That is, we prove
convergence of the iteration (10) and (11) to the optimal value, i.e. iV V ∗→ and iu u ∗→ as
i →∞ . The linear quadratic case has been proven by (Lancaster, 1995) for the case of
known system dynamics.
Lemma 1. Let iμ be any arbitrary sequence of control policies and iΛ be defined by

Heuristic Dynamic Programming Nonlinear Optimal Controller

367

1

1() () (() () ())
k

T
i k k i i i k k i k

x

x Q x R f x g x xμ μ μ
+

+Λ = + + Λ + . (19)

Let iu and iV be the sequences defined by (10) and (11). If 0 0() () 0k kV x x= Λ = , then
() ()i k i kV x x≤ Λ i∀ .

Proof: Since ()i ku x minimizes the right hand side of equation (11) with respect to the control
u , and since 0 0() () 0k kV x x= Λ = , then by induction it follows that () ()i k i kV x x≤ Λ i∀ . ■
Lemma 2. Let the sequence iV be defined as in (11). If the system is controllable, then:
There exists an upper bound ()kY x such that 0 () ()i k kV x Y x≤ ≤ i∀ .
If the optimal control problem (4) is solvable, there exists a least upper bound

() ()k kV x Y x∗ ≤ where ()kV x∗ solves (7), and that : 0 () () ()i k k ki V x V x Y x∗∀ ≤ ≤ ≤ .
Proof: Let ()kxη be any stabilizing and admissible control policy, and Let

0 0() () 0k kV x Z x= = where iZ is updated as

 1 1

1

() () () () ()
() () ()

T
i k k k k i k

k k k k

Z x Q x x R x Z x
x f x g x x

η η
η

+ +

+

= + +
= +

. (20)

It follows that the difference

1 1 1 1

1 2 2 2

2 3 3 3

1 0

() () () ()
() ()
() ()

.

.

.
() ()

i k i k i k i k

i k i k

i k i k

k i k i

Z x Z x Z x Z x
Z x Z x
Z x Z x

Z x Z x

+ + − +

− + − +

− + − +

+ +

− = −
= −
= −

= −

 (21)

Since 0 () 0kZ x = , it then follows that

1 1

1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 1

() () ()
() () ()
() () () ()
() () () ()

i k k i i k

k i k i i k

k i k i k i i k

k i k i k i k

Z x Z x Z x
Z x Z x Z x
Z x Z x Z x Z x
Z x Z x Z x Z x

+ +

+ + − −

+ + − + − −

+ + − + −

= +
= + +
= + + +
= + + + +

 (22)

and equation (22) can be written as

1 10

0

0

() ()

(() () ())

(() () ())

i
i k k nn

i T
k n k n k nn

T
k n k n k nn

Z x Z x

Q x x R x

Q x x R x

η η

η η

+ +=

+ + +=

∞

+ + +=

=

= +

≤ +

∑
∑
∑

 (23)

Since ()kxη is an admissible stabilizing controller, 0k nx + → as n →∞ and

1 10
: () () ()i k k i ki
i Z x Z x Y x∞

+ +=
∀ ≤ =∑

 Machine Learning

368

Using Lemma 1 with () ()i k kx xμ η= and () ()i k i kx Z xΛ = , it follows that

: () () ()i k i k ki V x Z x Y x∀ ≤ ≤

which proves part a). Moreover if () ()k kx u xη ∗= , then

0 0

()()

(() () ()) (() () ())
kk

T T
k n k n k n k n k n k nn n

Y xV x

Q x u x Ru x Q x x R xη η
∗

∞ ∞∗ ∗
+ + + + + += =

+ ≤ +∑ ∑

and hence () ()k kV x Y x∗ ≤ which proves part b) and shows that : 0 () () ()i k k ki V x V x Y x∗∀ ≤ ≤ ≤
for any ()kY x determined by an admissible stabilizing policy ()kxη . ■
Theorem 1. Consider the sequence iV and iu defined by (11) and (10) respectively. If

0 () 0kV x = , then it follows that iV is a non-decreasing sequence

1: () ()i k i ki V x V x+∀ ≥

and as i →∞

iV V ∗→ , iu u ∗→

that is the sequence iV converges to the solution of the DT HJB (7).
Proof: From Lemma 1, let iμ be any arbitrary sequence of control policies and iΛ be defined by

1

1() () (() () ())
k

T
i k k i i i k k i k

x

x Q x R f x g x xμ μ μ
+

+Λ = + + Λ +

If 0 0() () 0k kV x x= Λ = , it follows that () ()i k i kV x x≤ Λ i∀ . Now assume that

1() ()i k i kx u xμ += such that

 1

1 1 1

() () (() () ())

() (() () ())

T
i k k i i i k k i k

T
k i i i k k i k

x Q x R f x g x x

Q x u Ru f x g x u x

μ μ μ+

+ + +

Λ = + + Λ +

= + + Λ +
 (24)

and consider

 1() () (() () ())T
i k k i i i k k i kV x Q x u Ru V f x g x u x+ = + + + (25)

It will next be proven by induction that if 0 0() () 0k kV x x= Λ = , then 1() ()i k i kx V x+Λ ≤ .
Induction is initialized by letting 0 0() () 0k kV x x= Λ = and hence

1 0

1 0

() () ()
0

() ()

k k k

k k

V x x Q x

V x x

− Λ =

≥
≥ Λ

Now assume that 1() ()i k i kV x x−≥ Λ , then subtracting (24) from (25) it follows that

1 1 1 1() () () () 0i k i k i k i kV x x V x x+ + − +− Λ = − Λ ≥

Heuristic Dynamic Programming Nonlinear Optimal Controller

369

and this completes the proof that 1() ()i k i kx V x+Λ ≤ .
From 1() ()i k i kx V x+Λ ≤ and () ()i k i kV x x≤ Λ , it then follows that

1: () ()i k i ki V x V x+∀ ≤ .

From part a) in Lemma 2 and the fact that iV is a non-decreasing sequence, it follows that
iV V ∞→ as i →∞ . From part b) of Lemma 2, it also follows that () ()k kV x V x∗

∞ ≤ .
It now remains to show that in fact V ∞ is V ∗ . To see this, note that from (11) it follows that

() () () (() () ())T T
k k k k k k k kV x x Qx u x Ru x V f x g x u x∞ ∞ ∞ ∞ ∞= + + +

and hence

(() () ()) () () ()T T
k k k k k k k kV f x g x u x V x x Qx u x Ru x∞ ∞ ∞ ∞ ∞+ − = − −

and therefore ()kV x∞ is a Lyapunov function for a stabilizing and admissible policy
() ()k ku x xη∞ = . Using part b) of Lemma 2 it follows that () () ()k k kV x Y x V x∗

∞ = ≥ . This
implies that () () ()k k kV x V x V x∗ ∗

∞≤ ≤ and hence () ()k kV x V x∗
∞ = , () ()k ku x u x∗

∞ = . ■

5. Neural network approximation for Value and Action
We have just proven that the nonlinear HDP algorithm converges to the value function of
the DT HJB equation that appears in the nonlinear discrete-time optimal control.
It was assumed that the action and value update equations (10), (11) can be exactly solved at
each iteration. In fact, these equations are difficult to solve for general nonlinear systems.
Therefore, for implementation purposes, one needs to approximate ,i iu V at each iteration.
This allows approximate solution of (10), (11).
In this section, we review how to implement the HDP value iterations algorithm with two
parametric structures such as neural networks (Werbos, 1990) and (Lewis & Jaganathan,
1999). The important point is stressed that the use of two NN, a critic for value function
approximation and an action NN for the control, allows the implementation of HDP in the
LQR case without knowing the system internal dynamics matrix A. This point is not generally
appreciated in the folklore of ADP.

5.1 NN approximation for implementation of HDP algorithm for nonlinear systems
It is well known that neural networks can be used to approximate smooth functions on
prescribed compact sets (Hornik & Stinchcombe, 1990). Therefore, to solve (11) and (10),

()iV x is approximated at each step by a critic NN

1

ˆ () () ()
L

j T
i vi j Vi

j
V x w x W xφ

=

= =∑ φ (26)

and ()iu x by an action NN

1

ˆ () () ()
M

j T
i ui j ui

j
u x w x W xσ

=

= =∑ σ (27)

 Machine Learning

368

Using Lemma 1 with () ()i k kx xμ η= and () ()i k i kx Z xΛ = , it follows that

: () () ()i k i k ki V x Z x Y x∀ ≤ ≤

which proves part a). Moreover if () ()k kx u xη ∗= , then

0 0

()()

(() () ()) (() () ())
kk

T T
k n k n k n k n k n k nn n

Y xV x

Q x u x Ru x Q x x R xη η
∗

∞ ∞∗ ∗
+ + + + + += =

+ ≤ +∑ ∑

and hence () ()k kV x Y x∗ ≤ which proves part b) and shows that : 0 () () ()i k k ki V x V x Y x∗∀ ≤ ≤ ≤
for any ()kY x determined by an admissible stabilizing policy ()kxη . ■
Theorem 1. Consider the sequence iV and iu defined by (11) and (10) respectively. If

0 () 0kV x = , then it follows that iV is a non-decreasing sequence

1: () ()i k i ki V x V x+∀ ≥

and as i →∞

iV V ∗→ , iu u ∗→

that is the sequence iV converges to the solution of the DT HJB (7).
Proof: From Lemma 1, let iμ be any arbitrary sequence of control policies and iΛ be defined by

1

1() () (() () ())
k

T
i k k i i i k k i k

x

x Q x R f x g x xμ μ μ
+

+Λ = + + Λ +

If 0 0() () 0k kV x x= Λ = , it follows that () ()i k i kV x x≤ Λ i∀ . Now assume that

1() ()i k i kx u xμ += such that

 1

1 1 1

() () (() () ())

() (() () ())

T
i k k i i i k k i k

T
k i i i k k i k

x Q x R f x g x x

Q x u Ru f x g x u x

μ μ μ+

+ + +

Λ = + + Λ +

= + + Λ +
 (24)

and consider

 1() () (() () ())T
i k k i i i k k i kV x Q x u Ru V f x g x u x+ = + + + (25)

It will next be proven by induction that if 0 0() () 0k kV x x= Λ = , then 1() ()i k i kx V x+Λ ≤ .
Induction is initialized by letting 0 0() () 0k kV x x= Λ = and hence

1 0

1 0

() () ()
0

() ()

k k k

k k

V x x Q x

V x x

− Λ =

≥
≥ Λ

Now assume that 1() ()i k i kV x x−≥ Λ , then subtracting (24) from (25) it follows that

1 1 1 1() () () () 0i k i k i k i kV x x V x x+ + − +− Λ = − Λ ≥

Heuristic Dynamic Programming Nonlinear Optimal Controller

369

and this completes the proof that 1() ()i k i kx V x+Λ ≤ .
From 1() ()i k i kx V x+Λ ≤ and () ()i k i kV x x≤ Λ , it then follows that

1: () ()i k i ki V x V x+∀ ≤ .

From part a) in Lemma 2 and the fact that iV is a non-decreasing sequence, it follows that
iV V ∞→ as i →∞ . From part b) of Lemma 2, it also follows that () ()k kV x V x∗

∞ ≤ .
It now remains to show that in fact V ∞ is V ∗ . To see this, note that from (11) it follows that

() () () (() () ())T T
k k k k k k k kV x x Qx u x Ru x V f x g x u x∞ ∞ ∞ ∞ ∞= + + +

and hence

(() () ()) () () ()T T
k k k k k k k kV f x g x u x V x x Qx u x Ru x∞ ∞ ∞ ∞ ∞+ − = − −

and therefore ()kV x∞ is a Lyapunov function for a stabilizing and admissible policy
() ()k ku x xη∞ = . Using part b) of Lemma 2 it follows that () () ()k k kV x Y x V x∗

∞ = ≥ . This
implies that () () ()k k kV x V x V x∗ ∗

∞≤ ≤ and hence () ()k kV x V x∗
∞ = , () ()k ku x u x∗

∞ = . ■

5. Neural network approximation for Value and Action
We have just proven that the nonlinear HDP algorithm converges to the value function of
the DT HJB equation that appears in the nonlinear discrete-time optimal control.
It was assumed that the action and value update equations (10), (11) can be exactly solved at
each iteration. In fact, these equations are difficult to solve for general nonlinear systems.
Therefore, for implementation purposes, one needs to approximate ,i iu V at each iteration.
This allows approximate solution of (10), (11).
In this section, we review how to implement the HDP value iterations algorithm with two
parametric structures such as neural networks (Werbos, 1990) and (Lewis & Jaganathan,
1999). The important point is stressed that the use of two NN, a critic for value function
approximation and an action NN for the control, allows the implementation of HDP in the
LQR case without knowing the system internal dynamics matrix A. This point is not generally
appreciated in the folklore of ADP.

5.1 NN approximation for implementation of HDP algorithm for nonlinear systems
It is well known that neural networks can be used to approximate smooth functions on
prescribed compact sets (Hornik & Stinchcombe, 1990). Therefore, to solve (11) and (10),

()iV x is approximated at each step by a critic NN

1

ˆ () () ()
L

j T
i vi j Vi

j
V x w x W xφ

=

= =∑ φ (26)

and ()iu x by an action NN

1

ˆ () () ()
M

j T
i ui j ui

j
u x w x W xσ

=

= =∑ σ (27)

 Machine Learning

370

where the activation functions are respectively 1(), () ()j jx x Cφ σ ∈ Ω . Since it is required
that (0) 0iV x = = and (0) 0iu x = = , we select activation functions with (0) 0, (0) 0j jφ σ= = .

Moreover, since it is known that V ∗ is a Lyapunov function, and Lyapunov proofs are
convenient if the Lyapunov function is symmetric and positive definite, it is convenient to
also require that the activation functions for the critic NN be symmetric, i.e. () ()j jx xφ φ= − .

The neural network weights in the critic NN (26) are j
viw . L is the number of hidden-layer

neurons. The vector []1 2() () () () TLx x x xφ φ φ≡φ is the vector activation function and
1 2 TL

Vi vi vi viW w w w⎡ ⎤≡ ⎣ ⎦ is the weight vector at iteration i . Similarly, the weights of the

neural network in (27) are j
uiw . M is the number of hidden-layer neurons.

[]1 2() () () () TLx x x xσ σ σ≡σ is the vector activation function, and 1 2 TL
ui ui ui uiW w w w⎡ ⎤≡ ⎣ ⎦ is

the vector weight.
According to (11), the critic weights are tuned at each iteration of HDP to minimize the
residual error between 1

ˆ ()i kV x+ and the target function defined in equation (28) in a least-
squares sense for a set of states kx sampled from a compact set nΩ⊂ .

 1 1

1

ˆˆ ˆ(, , ,) () () ()
ˆ ˆ() () ()

T T
k k Vi ui k k i k i k i k

T T T
k k i k i k Vi k

d x x W W x Qx u x Ru x V x

x Qx u x Ru x W x
+ +

+

= + +

= + + φ
 (28)

The residual error (c.f. temporal difference error) becomes

 ()1 1() (, , ,) ()T
Vi k k k Vi ui LW x d x x W W e x+ +− =φ . (29)

Note that the residual error in (29) is explicit, in fact linear, in the tuning parameters 1ViW + .
Therefore, to find the least-squares solution, the method of weighted residuals may be used
[11]. The weights 1ViW + are determined by projecting the residual error onto 1()L Vide x dW +
and setting the result to zero x∀ ∈Ω using the inner product, i.e.

 () , () 0L
L

Vi +1

de x e x
dW

= , (30)

where f,g Tfg dx
Ω

= ∫ is a Lebesgue integral. One has

 ()1 10 () () (, , ,)T T
k k Vi k k Vi ui kx x W d x x W W dxφ φ + +

Ω

= −∫ (31)

Therefore a unique solution for 1ViW + exists and is computed as

1

1 () () () ((), ,)T T
Vi k k k k Vi uiW x x dx x d x W W dxφ φ φ φ

−

+
Ω Ω

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∫ ∫ (32)

To use this solution, it is required that the outer product integral be positive definite. This is
known as a persistence of excitation condition in system theory. The next assumption is
standard in selecting the NN activation functions as a basis set.

Heuristic Dynamic Programming Nonlinear Optimal Controller

371

Assumption 1. The selected activation functions { }()
L

j xφ are linearly independent on the

compact set nΩ⊂ .
Assumption 1 guarantees that excitation condition is satisfied and hence () ()Tk kx x dxφ φ

Ω
∫ is

of full rank and invertible and a unique solution for (32) exists.
The action NN weights are tuned to solve (10) at each iteration. The use of ˆ (,)i k uiu x W from
(27) allows the rewriting of equation (10) as

 ()1
ˆˆ ˆarg min (,) (,) ()T T i

ui k k i k i k i kw
W x Qx u x w Ru x w V x +

Ω
= + + (33)

where 1 ˆ() () (,)i
k k k i kx f x g x u x w+ = + and the notation means minimization for a set of points

kx selected from the compact set nΩ∈ .
Note that the control weights uiW appear in (33) in an implicit fashion, i.e. it is difficult to
solve explicitly for the weights since the current control weights determine 1kx + . Therefore,
one can use an LMS algorithm on a training set constructed from Ω . The weight update is
therefore

1
1

1
1

1

ˆˆ ˆ((,) (,) ()

()ˆ() 2 (,) ()

ui m

T T
k k i k ui i k ui i km m

ui uim m
ui W

T
T k

ui ui k i k ui k Vim m m
k

x Qx u x W R u x W V x
W W

W

xW W x Ru x W g x W
x

α

φασ

+

+

+
+

+

∂ + +
= −

∂

⎛ ⎞∂
= − +⎜ ⎟

∂⎝ ⎠

 (34)

where α is a positive step size and m is the iteration number for the LMS algorithm. By a
stochastic approximation type argument, the weights ui uim

W W⇒ as m ⇒∞ , and satisfy
(33). Note that one can use alternative tuning methods such as Newton’s method and
Levenberg-Marquardt in order to solve (33).
In Figure 1, the flow chart of the HDP iteration is shown. Note that because of the neural
network used to approximate the control policy the internal dynamics, i.e. ()kf x is not
needed. That is, the internal dynamics can be unknown.
Remark. Neither ()f x nor ()g x is needed to update the critic neural network weights
using (32). Only the input coupling term ()g x is needed to update the action neural
network weights using (34). Therefore the proposed algorithm works for system with
partially unknown dynamics- no knowledge of the internal feedback structure ()f x is
needed.

5.2 HDP for Linear Systems Without Knowledge of Internal Dynamics
The general practice in the HDP folklore for linear quadratic systems is to use a critic NN to
approximate the value, and update the critic weights using a method such as the batch
update (32), or a recursive update method such as LMS. In fact, the critic weights are
nothing but the elements of the Riccati matrix and the activation functions are quadratic
polynomials in terms of the states. Then, the policy is updated using

 Machine Learning

370

where the activation functions are respectively 1(), () ()j jx x Cφ σ ∈ Ω . Since it is required
that (0) 0iV x = = and (0) 0iu x = = , we select activation functions with (0) 0, (0) 0j jφ σ= = .

Moreover, since it is known that V ∗ is a Lyapunov function, and Lyapunov proofs are
convenient if the Lyapunov function is symmetric and positive definite, it is convenient to
also require that the activation functions for the critic NN be symmetric, i.e. () ()j jx xφ φ= − .

The neural network weights in the critic NN (26) are j
viw . L is the number of hidden-layer

neurons. The vector []1 2() () () () TLx x x xφ φ φ≡φ is the vector activation function and
1 2 TL

Vi vi vi viW w w w⎡ ⎤≡ ⎣ ⎦ is the weight vector at iteration i . Similarly, the weights of the

neural network in (27) are j
uiw . M is the number of hidden-layer neurons.

[]1 2() () () () TLx x x xσ σ σ≡σ is the vector activation function, and 1 2 TL
ui ui ui uiW w w w⎡ ⎤≡ ⎣ ⎦ is

the vector weight.
According to (11), the critic weights are tuned at each iteration of HDP to minimize the
residual error between 1

ˆ ()i kV x+ and the target function defined in equation (28) in a least-
squares sense for a set of states kx sampled from a compact set nΩ⊂ .

 1 1

1

ˆˆ ˆ(, , ,) () () ()
ˆ ˆ() () ()

T T
k k Vi ui k k i k i k i k

T T T
k k i k i k Vi k

d x x W W x Qx u x Ru x V x

x Qx u x Ru x W x
+ +

+

= + +

= + + φ
 (28)

The residual error (c.f. temporal difference error) becomes

 ()1 1() (, , ,) ()T
Vi k k k Vi ui LW x d x x W W e x+ +− =φ . (29)

Note that the residual error in (29) is explicit, in fact linear, in the tuning parameters 1ViW + .
Therefore, to find the least-squares solution, the method of weighted residuals may be used
[11]. The weights 1ViW + are determined by projecting the residual error onto 1()L Vide x dW +
and setting the result to zero x∀ ∈Ω using the inner product, i.e.

 () , () 0L
L

Vi +1

de x e x
dW

= , (30)

where f,g Tfg dx
Ω

= ∫ is a Lebesgue integral. One has

 ()1 10 () () (, , ,)T T
k k Vi k k Vi ui kx x W d x x W W dxφ φ + +

Ω

= −∫ (31)

Therefore a unique solution for 1ViW + exists and is computed as

1

1 () () () ((), ,)T T
Vi k k k k Vi uiW x x dx x d x W W dxφ φ φ φ

−

+
Ω Ω

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∫ ∫ (32)

To use this solution, it is required that the outer product integral be positive definite. This is
known as a persistence of excitation condition in system theory. The next assumption is
standard in selecting the NN activation functions as a basis set.

Heuristic Dynamic Programming Nonlinear Optimal Controller

371

Assumption 1. The selected activation functions { }()
L

j xφ are linearly independent on the

compact set nΩ⊂ .
Assumption 1 guarantees that excitation condition is satisfied and hence () ()Tk kx x dxφ φ

Ω
∫ is

of full rank and invertible and a unique solution for (32) exists.
The action NN weights are tuned to solve (10) at each iteration. The use of ˆ (,)i k uiu x W from
(27) allows the rewriting of equation (10) as

 ()1
ˆˆ ˆarg min (,) (,) ()T T i

ui k k i k i k i kw
W x Qx u x w Ru x w V x +

Ω
= + + (33)

where 1 ˆ() () (,)i
k k k i kx f x g x u x w+ = + and the notation means minimization for a set of points

kx selected from the compact set nΩ∈ .
Note that the control weights uiW appear in (33) in an implicit fashion, i.e. it is difficult to
solve explicitly for the weights since the current control weights determine 1kx + . Therefore,
one can use an LMS algorithm on a training set constructed from Ω . The weight update is
therefore

1
1

1
1

1

ˆˆ ˆ((,) (,) ()

()ˆ() 2 (,) ()

ui m

T T
k k i k ui i k ui i km m

ui uim m
ui W

T
T k

ui ui k i k ui k Vim m m
k

x Qx u x W R u x W V x
W W

W

xW W x Ru x W g x W
x

α

φασ

+

+

+
+

+

∂ + +
= −

∂

⎛ ⎞∂
= − +⎜ ⎟

∂⎝ ⎠

 (34)

where α is a positive step size and m is the iteration number for the LMS algorithm. By a
stochastic approximation type argument, the weights ui uim

W W⇒ as m ⇒∞ , and satisfy
(33). Note that one can use alternative tuning methods such as Newton’s method and
Levenberg-Marquardt in order to solve (33).
In Figure 1, the flow chart of the HDP iteration is shown. Note that because of the neural
network used to approximate the control policy the internal dynamics, i.e. ()kf x is not
needed. That is, the internal dynamics can be unknown.
Remark. Neither ()f x nor ()g x is needed to update the critic neural network weights
using (32). Only the input coupling term ()g x is needed to update the action neural
network weights using (34). Therefore the proposed algorithm works for system with
partially unknown dynamics- no knowledge of the internal feedback structure ()f x is
needed.

5.2 HDP for Linear Systems Without Knowledge of Internal Dynamics
The general practice in the HDP folklore for linear quadratic systems is to use a critic NN to
approximate the value, and update the critic weights using a method such as the batch
update (32), or a recursive update method such as LMS. In fact, the critic weights are
nothing but the elements of the Riccati matrix and the activation functions are quadratic
polynomials in terms of the states. Then, the policy is updated using

 Machine Learning

372

Updating the value function

Start of the HDP

Initialization

Solving the minimizing problem

Finish

0 0V =

1
ˆ ˆ
i iV V ε+ <−

Yes

No1+→ ii

ˆ ˆ(,) (,)
arg min

ˆ ˆ(() () (,))

T T
k k k k

ui
i k k k

x Qx u x Ru x
W

V f x g x u xα

α α

α
Ω

⎛ ⎞+ +
= ⎜ ⎟⎜ ⎟+⎝ ⎠

1

1 1
ˆ() () () ((),)T

Vi k k k i k ViW x x dx x V x W dxφ φ φ φ
−

+ +
Ω Ω

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∫ ∫

ˆ (,) ()T
i k Vi Vi kV x W W xφ=

ˆ (,) ()T
i k ui ui ku x W W xσ=

Fig. 1. Flow chart shows the proposed algorithm

 1() ()T T
i k i i ku x R B P B B P Ax−= − + (35)

Note that this equation requires the full knowledge of both the internal dynamics matrix A
and the control weighting matrix B . However, we have just seen (see remark above) that
the knowledge of the A matrix can be avoided by using, instead of the action update(35), a
second NN for the action

ˆ () ()T
i uiu x W x= σ

In fact the action NN approximates the effects of A and B given in (35), and so effectively
learns the A matrix.
That is, using two NN even in the LQR case avoids the need to know the internal dynamics
A. In fact, in the next section we give a LQR example, and only the input coupling matrix B
is needed for the HDP algorithm. Nevertheless, the HDP converges to the correct LQR
Riccati solution matrix P.

Heuristic Dynamic Programming Nonlinear Optimal Controller

373

6. Simulation examples
In this section, two examples are provided to demonstrate the solution of the DT HJB
equation. The first example will be a linear quadratic regulator, which is a special case of the
nonlinear system. It is shown that using two NN allows one to compute the optimal value
and control (i.e. the Riccati equation solution) online without knowing the system matrix A .
The second example is for a DT nonlinear system. MATLAB is used in the simulations to
implement some of the functions discussed in the chapter.

6.1 Unstable multi-input linear system example
In this example we show the power of the proposed method by using an unstable multi-
input linear system. We also emphasize that the method does not require knowledge of the
system A matrix, since two neural networks are used, one to provide the action. = This is in
contrast to normal methods of HDP for linear quadratic control used in the literature, where
the A matrix is needed to update the control policy.
Consider the linear system

 1k k kx Ax Bu+ = + . (36)

It is known that the solution of the optimal control problem for the linear system is
quadratic in the state and given as

() T
k k kV x x Px∗ =

where P is the solution of the ARE. This example is taken from (Stevens & Lewis, 2003), a
linearized model of the short-period dynamics of an advanced (CCV-type) fighter aircraft.
The state vector is

[]Te fx qα γ δ δ=

where the state components are, respectively, angel of attack, pitch rate, flight-path, elevator
deflection and flaperon deflection. The control input are the elevator and the flaperon and
given as

[]Tec fcu δ δ=

The plant model is a discretized version of a continuous-time model given in (Bradtke &
Ydestie, 1994)]

1.0722 0.0954 0 -0.0541 -0.0153
 4.1534 1.1175 0 -0.8000 -0.1010

A= 0.1359 0.0071 1.0 0.0039 0.0097
 0 0 0 0.1353 0
 0 0 0 0 0.1353

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 Machine Learning

372

Updating the value function

Start of the HDP

Initialization

Solving the minimizing problem

Finish

0 0V =

1
ˆ ˆ
i iV V ε+ <−

Yes

No1+→ ii

ˆ ˆ(,) (,)
arg min

ˆ ˆ(() () (,))

T T
k k k k

ui
i k k k

x Qx u x Ru x
W

V f x g x u xα

α α

α
Ω

⎛ ⎞+ +
= ⎜ ⎟⎜ ⎟+⎝ ⎠

1

1 1
ˆ() () () ((),)T

Vi k k k i k ViW x x dx x V x W dxφ φ φ φ
−

+ +
Ω Ω

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∫ ∫

ˆ (,) ()T
i k Vi Vi kV x W W xφ=

ˆ (,) ()T
i k ui ui ku x W W xσ=

Fig. 1. Flow chart shows the proposed algorithm

 1() ()T T
i k i i ku x R B P B B P Ax−= − + (35)

Note that this equation requires the full knowledge of both the internal dynamics matrix A
and the control weighting matrix B . However, we have just seen (see remark above) that
the knowledge of the A matrix can be avoided by using, instead of the action update(35), a
second NN for the action

ˆ () ()T
i uiu x W x= σ

In fact the action NN approximates the effects of A and B given in (35), and so effectively
learns the A matrix.
That is, using two NN even in the LQR case avoids the need to know the internal dynamics
A. In fact, in the next section we give a LQR example, and only the input coupling matrix B
is needed for the HDP algorithm. Nevertheless, the HDP converges to the correct LQR
Riccati solution matrix P.

Heuristic Dynamic Programming Nonlinear Optimal Controller

373

6. Simulation examples
In this section, two examples are provided to demonstrate the solution of the DT HJB
equation. The first example will be a linear quadratic regulator, which is a special case of the
nonlinear system. It is shown that using two NN allows one to compute the optimal value
and control (i.e. the Riccati equation solution) online without knowing the system matrix A .
The second example is for a DT nonlinear system. MATLAB is used in the simulations to
implement some of the functions discussed in the chapter.

6.1 Unstable multi-input linear system example
In this example we show the power of the proposed method by using an unstable multi-
input linear system. We also emphasize that the method does not require knowledge of the
system A matrix, since two neural networks are used, one to provide the action. = This is in
contrast to normal methods of HDP for linear quadratic control used in the literature, where
the A matrix is needed to update the control policy.
Consider the linear system

 1k k kx Ax Bu+ = + . (36)

It is known that the solution of the optimal control problem for the linear system is
quadratic in the state and given as

() T
k k kV x x Px∗ =

where P is the solution of the ARE. This example is taken from (Stevens & Lewis, 2003), a
linearized model of the short-period dynamics of an advanced (CCV-type) fighter aircraft.
The state vector is

[]Te fx qα γ δ δ=

where the state components are, respectively, angel of attack, pitch rate, flight-path, elevator
deflection and flaperon deflection. The control input are the elevator and the flaperon and
given as

[]Tec fcu δ δ=

The plant model is a discretized version of a continuous-time model given in (Bradtke &
Ydestie, 1994)]

1.0722 0.0954 0 -0.0541 -0.0153
 4.1534 1.1175 0 -0.8000 -0.1010

A= 0.1359 0.0071 1.0 0.0039 0.0097
 0 0 0 0.1353 0
 0 0 0 0 0.1353

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 Machine Learning

374

-0.0453 -0.0175
-1.0042 -0.1131

B= 0.0075 0.0134
 0.8647 0
 0 0.8647

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Note that system is not stable and with two control inputs. The proposed algorithm does not
require a stable initial control policy. The ARE solution for the given linear system is

 55.8348 7.6670 16.0470 -4.6754 -0.7265
 7.6670 2.3168 1.4987 -0.8309 -0.1215
 16.0470 1.4987 25.3586 -0.6709 0.0464
 -4.6754 -0.8309 -0.6709 1.5394 0.0782

P =

 -0.7265 -0.1215 0.0464 0.0782 1.0240

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (37)

and the optimal control k ku Lx∗ = , where L is

-4.1136 -0.7170 -0.3847 0.5277 0.0707
-0.6315 -0.1003 0.1236 0.0653 0.0798

L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (38)

For the LQR case the value is quadratic and the control is linear. Therefore, we select linear
activation functions for the action NN and quadratic polynomial activations for the critic
NN. The control is approximated as follows

 ˆ ()T
i ui ku W xσ= (39)

where uW is the weight vector, and the ()kxσ is the vector activation function and is given by

1 2 3 4 5()T x x x x x xσ ⎡ ⎤= ⎣ ⎦

and the weights are

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5
T u u u u u
u

u u u u u

w w w w w
W

w w w w w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

The control weights should converge to

1,1 1,2 1,3 1,4 1,5
11 12 13 14 15

2,1 2,2 2,3 2,4 2,5
21 22 23 24 25

u u u u u

u u u u u

L L L L Lw w w w w
L L L L Lw w w w w

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

The approximation of the value function is given as

ˆ (,) ()T
i k Vi Vi kV x W W xφ=

where VW is the weight vector of the neural network given by

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T
V v v v v v v v v v v v v v v vW w w w w w w w w w w w w w w w⎡ ⎤= ⎣ ⎦

Heuristic Dynamic Programming Nonlinear Optimal Controller

375

and ()kxφ is the vector activation function given by

1 2

2 2 2 2 2
1 2 1 3 1 4 1 5 2 3 4 2 2 5 3 3 4 3 5 4 4 5 5

()T x

x x

φ =

⎡ ⎤⎣ ⎦

In the simulation the weights of the value function are related to the P matrix given in (37)
as follows

1 2 3 4 5
11 12 13 14 15

2 6 7 8 9
21 22 23 24 25

3 7 10 11 12
31 32 33 34 35

4 8 11 13
41 42 43 44 45

51 52 53 54 55

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0

v v v v v

v v v v v

v v v v v

v v v v

P P P P P w w w w w
P P P P P w w w w w
P P P P P w w w w w
P P P P P w w w w
P P P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

14

5 9 12 14 15

.5
0.5 0.5 0.5 0.5

v

v v v v v

w
w w w w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

The value function weights converge to

[55.5411 15.2789 31.3032 -9.3255 -1.4536 2.3142 2.9234 -1.6594 -0.2430

 24.8262 -1.3076 0.0920 1.5388 0.1564 1.0240]

T
VW =

.

The control weights converge to

4.1068 0.7164 0.3756 -0.5274 -0.0707
 0.6330 0.1005 -0.1216 -0.0653 -0.0798uW
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Note that the value function weights converge to the solution of the ARE (37), also the
control weights converge to the optimal policy (38) as expected.

6.2 Nonlinear system example
Consider the following affine in input nonlinear system

 1 () ()k k k kx f x g x u+ = + (40)
where

2

3

00.2 (1)exp((2))
() ()

.2.3 (2)
k k

k k
k

x x
f x g x

x
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

The approximation of the value function is given as

1 1 1
ˆ (,) ()T
i k Vi Vi kV x W W xφ+ + +=

The vector activation function is selected as

2 2 4 3
1 1 2 2 1 1 2

2 2 3 4 6 5 4 2
1 2 1 2 2 1 1 2 1 2
3 3 2 4 5 6
1 2 1 2 1 2 2

() [

]

x x x x x x x x

x x x x x x x x x x

x x x x x x x

φ =

 Machine Learning

374

-0.0453 -0.0175
-1.0042 -0.1131

B= 0.0075 0.0134
 0.8647 0
 0 0.8647

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Note that system is not stable and with two control inputs. The proposed algorithm does not
require a stable initial control policy. The ARE solution for the given linear system is

 55.8348 7.6670 16.0470 -4.6754 -0.7265
 7.6670 2.3168 1.4987 -0.8309 -0.1215
 16.0470 1.4987 25.3586 -0.6709 0.0464
 -4.6754 -0.8309 -0.6709 1.5394 0.0782

P =

 -0.7265 -0.1215 0.0464 0.0782 1.0240

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (37)

and the optimal control k ku Lx∗ = , where L is

-4.1136 -0.7170 -0.3847 0.5277 0.0707
-0.6315 -0.1003 0.1236 0.0653 0.0798

L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (38)

For the LQR case the value is quadratic and the control is linear. Therefore, we select linear
activation functions for the action NN and quadratic polynomial activations for the critic
NN. The control is approximated as follows

 ˆ ()T
i ui ku W xσ= (39)

where uW is the weight vector, and the ()kxσ is the vector activation function and is given by

1 2 3 4 5()T x x x x x xσ ⎡ ⎤= ⎣ ⎦

and the weights are

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5
T u u u u u
u

u u u u u

w w w w w
W

w w w w w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

The control weights should converge to

1,1 1,2 1,3 1,4 1,5
11 12 13 14 15

2,1 2,2 2,3 2,4 2,5
21 22 23 24 25

u u u u u

u u u u u

L L L L Lw w w w w
L L L L Lw w w w w

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

The approximation of the value function is given as

ˆ (,) ()T
i k Vi Vi kV x W W xφ=

where VW is the weight vector of the neural network given by

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T
V v v v v v v v v v v v v v v vW w w w w w w w w w w w w w w w⎡ ⎤= ⎣ ⎦

Heuristic Dynamic Programming Nonlinear Optimal Controller

375

and ()kxφ is the vector activation function given by

1 2

2 2 2 2 2
1 2 1 3 1 4 1 5 2 3 4 2 2 5 3 3 4 3 5 4 4 5 5

()T x

x x

φ =

⎡ ⎤⎣ ⎦

In the simulation the weights of the value function are related to the P matrix given in (37)
as follows

1 2 3 4 5
11 12 13 14 15

2 6 7 8 9
21 22 23 24 25

3 7 10 11 12
31 32 33 34 35

4 8 11 13
41 42 43 44 45

51 52 53 54 55

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0

v v v v v

v v v v v

v v v v v

v v v v

P P P P P w w w w w
P P P P P w w w w w
P P P P P w w w w w
P P P P P w w w w
P P P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

14

5 9 12 14 15

.5
0.5 0.5 0.5 0.5

v

v v v v v

w
w w w w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

The value function weights converge to

[55.5411 15.2789 31.3032 -9.3255 -1.4536 2.3142 2.9234 -1.6594 -0.2430

 24.8262 -1.3076 0.0920 1.5388 0.1564 1.0240]

T
VW =

.

The control weights converge to

4.1068 0.7164 0.3756 -0.5274 -0.0707
 0.6330 0.1005 -0.1216 -0.0653 -0.0798uW
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Note that the value function weights converge to the solution of the ARE (37), also the
control weights converge to the optimal policy (38) as expected.

6.2 Nonlinear system example
Consider the following affine in input nonlinear system

 1 () ()k k k kx f x g x u+ = + (40)
where

2

3

00.2 (1)exp((2))
() ()

.2.3 (2)
k k

k k
k

x x
f x g x

x
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

The approximation of the value function is given as

1 1 1
ˆ (,) ()T
i k Vi Vi kV x W W xφ+ + +=

The vector activation function is selected as

2 2 4 3
1 1 2 2 1 1 2

2 2 3 4 6 5 4 2
1 2 1 2 2 1 1 2 1 2
3 3 2 4 5 6
1 2 1 2 1 2 2

() [

]

x x x x x x x x

x x x x x x x x x x

x x x x x x x

φ =

 Machine Learning

376

and the weight vector is

1 2 3 4 15.....T
V v v v v vW w w w w w⎡ ⎤= ⎣ ⎦ .

The control is approximated by

ˆ ()T
i ui ku W xσ=

where the vector activation function is

3 2 2
1 2 1 1 2 1 2

3 5 4 3 2 2 3
2 1 1 2 1 2 1 2

4 5
1 2 2

() [

]

T x x x x x x x x

x x x x x x x x

x x x

σ =

and the weights are

1 2 3 4 12.....T
u u u u u uW w w w w w⎡ ⎤= ⎣ ⎦ .

The control NN activation functions are selected as the derivatives of the critic activation
functions, since the gradient of the critic activation functions appears in (34). The critic
activations are selected as polynomials to satisfy ˆ (0) 0iV x = = at each step. Note that then
automatically one has ˆ (0) 0iu x = = as required for admissibility. We decided on 6th order
polynomials for VFA after a few simulations, where it came clear that 4th order polynomials
are not good enough, yet going to 8th order does not improve the results.
The result of the algorithm is compared to the discrete-time State Dependent Riccati
Equation (SDRE) proposed in (Cloutier, 1997).
The training sets is 1 [2,2]x ∈ − , 2 [1,1]x ∈ − . The value function weights converged to the
following

[1.0382 0 1.0826 .0028 -0 -.053 0 -.2792
-.0004 0 -.0013 0 .1549 0 .3034]

T
VW =

and the control weights converged to

=[0 -.0004 0 0 0 .0651 0 0 0 -.0003 0 -.0046]T
uW

The result of the nonlinear optimal controller derived in this chapter is compared to the
SDRE approach. Figure 2 and Figure 3 show the states trajectories for the system for both
methods.
In Figure 4, the cost function of the SDRE solution and the cost function of the proposed
algorithm in this chapter are compared. It is clear from the simulation that the cost function
for the control policy derived from the HDP method is lower than that of the SDRE method.
In Figure 5, the control signals for both methods are shown.

Heuristic Dynamic Programming Nonlinear Optimal Controller

377

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

Time step

S
ta

te
 tr

aj
ec

te
or

y

x1optimal

x1SDRE

Fig. 2. The state trajectory for both methods

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Time step

S
ta

te
 tr

aj
ec

te
or

y

x2optimal

x2SDRE

Fig. 3. The state trajectory for both methods

0 1 2 3 4 5 6 7
10

11

12

13

14

15

16

17

Time step

Th
e

C
os

t

Voptimal

VSDRE

Fig. 4. The cost function for both methods

 Machine Learning

376

and the weight vector is

1 2 3 4 15.....T
V v v v v vW w w w w w⎡ ⎤= ⎣ ⎦ .

The control is approximated by

ˆ ()T
i ui ku W xσ=

where the vector activation function is

3 2 2
1 2 1 1 2 1 2

3 5 4 3 2 2 3
2 1 1 2 1 2 1 2

4 5
1 2 2

() [

]

T x x x x x x x x

x x x x x x x x

x x x

σ =

and the weights are

1 2 3 4 12.....T
u u u u u uW w w w w w⎡ ⎤= ⎣ ⎦ .

The control NN activation functions are selected as the derivatives of the critic activation
functions, since the gradient of the critic activation functions appears in (34). The critic
activations are selected as polynomials to satisfy ˆ (0) 0iV x = = at each step. Note that then
automatically one has ˆ (0) 0iu x = = as required for admissibility. We decided on 6th order
polynomials for VFA after a few simulations, where it came clear that 4th order polynomials
are not good enough, yet going to 8th order does not improve the results.
The result of the algorithm is compared to the discrete-time State Dependent Riccati
Equation (SDRE) proposed in (Cloutier, 1997).
The training sets is 1 [2,2]x ∈ − , 2 [1,1]x ∈ − . The value function weights converged to the
following

[1.0382 0 1.0826 .0028 -0 -.053 0 -.2792
-.0004 0 -.0013 0 .1549 0 .3034]

T
VW =

and the control weights converged to

=[0 -.0004 0 0 0 .0651 0 0 0 -.0003 0 -.0046]T
uW

The result of the nonlinear optimal controller derived in this chapter is compared to the
SDRE approach. Figure 2 and Figure 3 show the states trajectories for the system for both
methods.
In Figure 4, the cost function of the SDRE solution and the cost function of the proposed
algorithm in this chapter are compared. It is clear from the simulation that the cost function
for the control policy derived from the HDP method is lower than that of the SDRE method.
In Figure 5, the control signals for both methods are shown.

Heuristic Dynamic Programming Nonlinear Optimal Controller

377

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

Time step

S
ta

te
 tr

aj
ec

te
or

y

x1optimal

x1SDRE

Fig. 2. The state trajectory for both methods

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Time step

S
ta

te
 tr

aj
ec

te
or

y

x2optimal

x2SDRE

Fig. 3. The state trajectory for both methods

0 1 2 3 4 5 6 7
10

11

12

13

14

15

16

17

Time step

Th
e

C
os

t

Voptimal

VSDRE

Fig. 4. The cost function for both methods

 Machine Learning

378

0 1 2 3 4 5 6 7
-2.5

-2

-1.5

-1

-0.5

0

0.5

Time step

Th
e

co
nt

ro
l

uOptimal

uSDRE

Fig. 5. The control signal input for both methods

7. Conclusion
We have proven convergence of the HDP algorithm to the value function solution of
Hamilton-Jacobi-Bellman equation for nonlinear dynamical systems, assuming exact
solution of value update and the action update at each iteration.
Neural networks are used as parametric structures to approximate at each iteration the
value (i.e. critic NN), and the control action. It is stressed that the use of the second neural
network to approximate the control policy, the internal dynamics, i.e. ()kf x , is not needed
to implement HDP. This holds as well for the special LQR case, where use of two NN avoids
the need to know the system internal dynamics matrix A. This is not generally appreciated
in the folkloric literature of ADP for the LQR. In the simulation examples, it is shown that
the linear system critic network converges to the solution of the ARE, and the actor network
converges to the optimal policy, without knowing the system matrix A. In the nonlinear
example, it is shown that the optimal controller derived from the HDP based value iteration
method outperforms suboptimal control methods like those found through the SDRE
method.

8. References
Abu-Khalaf, M., F. L. Lewis. (2005). Nearly Optimal Control Laws for Nonlinear Systems

 with Saturating Actuators Using a Neural Network HJB Approach. Automatica, vol.
 41, pp. 779 – 791.

Abu-Khalaf, M., F. L. Lewis, and J. Huang. (2004).Hamilton-Jacobi-Isaacs formulation for
 constrained input nonlinear systems. 43rd IEEE Conference on Decision and Control,
 2004, pp. 5034 - 5040 Vol.5.

Al-Tamimi, A. , F. L. Lewis, M. Abu-Khalaf (2007). Model-Free Q-Learning Designs for
 Discrete-Time Zero-Sum Games with Application to H-Infinity Control.
 Automatica, volume 43, no. 3. pp 473-481.

Al-Tamimi, A., M. Abu-Khalaf, F. L. Lewis. (2007). Adaptive Critic Designs for Discrete-
 Time Zero-Sum Games with Application to H-Infinity Control. IEEE Transactions
 on Systems, Man, Cybernetics-Part B, Cybernaetics, Vol 37, No 1, pp 240-24.

Heuristic Dynamic Programming Nonlinear Optimal Controller

379

Barto, A. G., R. S. Sutton, and C. W. Anderson. (1983). Neuronlike elements that can solve
 difficult learning control problems. IEEE Trans. Syst., Man, Cybern., vol. SMC-13,
 pp. 835–846.

Bertsekas, D.P. and J. N. Tsitsiklis.(1996). Neuro-Dynamic Programming. Athena Scientific,
 MA.

Bradtke, S. J., B. E. Ydestie, A. G. Barto (1994). Adaptive linear quadratic control using
 policy iteration. Proceedings of the American Control Conference , pp. 3475-3476,
 Baltmore, Myrland.

Chen, Z., Jagannathan, S. (2005). Neural Network -based Nearly Optimal Hamilton-
 Jacobi-Bellman Solution for Affine Nonlinear Discrete-Time Systems. IEEE CDC
 05 ,pp 4123-4128.

Cloutier, J. R. (1997). State –Dependent Riccati equation Techniques: An overview.
 Proceeding of the American control conference, Albuquerque, NM, pp 932-936.

Ferrari, S., Stengel, R.(2004) Model-Based Adaptive Critic Designs. pp 64-94, Eds J. Si, A.
Barto, W. Powell, D. Wunsch Handbook of Learning and Approximate Dynamic
Programming, Wiley.

Finlayson, B. A. (1972). The Method of Weighted Residuals and Variational Principles.
 Academic Press, New York.

Hagen, S. B Krose. (1998). Linear quadratic Regulation using Reinforcement Learning.
 Belgian_Dutch Conference on Mechanical Learning, pp. 39-46.

He, P. and S. Jagannathan.(2005).Reinforcement learning-basedoutput feedback control of
 nonlinear systems with input constraints. IEEE Trans. Systems, Man, and
 Cybernetics -Part B:Cybernetics, vol. 35, no.1, pp. 150-154.

Hewer, G. A. (1971). An iterative technique for the computation of the steady state gains for
the discrete optimal regulator. IEEE Trans. Automatic Control, pp. 382-384.

Hornik, K., M. Stinchcombe, H. White.(1990) .Universal Approximation of an Unknown
 Mapping and Its Derivatives Using Multilayer Feedforward Networks. Neural
 Networks, vol. 3, pp. 551-560.

Howard, R. (1960). Dynamic Programming and Markov Processes., MIT Press, Cambridge,
 MA.

Huang, J. (1999). An algorithm to solve the discrete HJI equation arising in the L2-gain
 optimization problem. INT. J. Control, Vol 72, No 1, pp 49-57.

Kwon, W. H and S. Han. (2005). Receding Horizon Control, Springer-Verlag, London.
Lancaster, P. L. Rodman. (1995). Algebraic Riccati Equations. Oxford University Press, UK.
Landelius, T. (1997). Reinforcement Learning and Distributed Local Model Synthesis. PhD

 Dissertation, Linkoping University, Sweden.
Lewis, F. L., V. L. Syrmos. (1995) Optimal Control, 2nd ed., John Wiley.
Lewis, F. L., Jagannathan, S., & Yesildirek, A. (1999). Neural Network Control of Robot

 Manipulators and Nonlinear Systems. Taylor & Franci.
Lin W.,and C. I. Byrnes.(1996).H∞Control of Discrete-Time Nonlinear System. IEEE Trans.

 on Automat. Control , vol 41, No 4, pp 494-510..
Lu, X., S.N. Balakrishnan. (2000). Convergence analysis of adaptive critic based optimal

 control. Proc. Amer. Control Conf., pp. 1929-1933, Chicago.
Morimoto, J., G. Zeglin, and C.G. Atkeson. (2003). Minimax differential dynamic

 programming: application to a biped walking robot. Proc. IEEE Int. Conf. Intel.
 Robots and Systems, pp. 1927-1932, Las Vegas.

 Machine Learning

378

0 1 2 3 4 5 6 7
-2.5

-2

-1.5

-1

-0.5

0

0.5

Time step

Th
e

co
nt

ro
l

uOptimal

uSDRE

Fig. 5. The control signal input for both methods

7. Conclusion
We have proven convergence of the HDP algorithm to the value function solution of
Hamilton-Jacobi-Bellman equation for nonlinear dynamical systems, assuming exact
solution of value update and the action update at each iteration.
Neural networks are used as parametric structures to approximate at each iteration the
value (i.e. critic NN), and the control action. It is stressed that the use of the second neural
network to approximate the control policy, the internal dynamics, i.e. ()kf x , is not needed
to implement HDP. This holds as well for the special LQR case, where use of two NN avoids
the need to know the system internal dynamics matrix A. This is not generally appreciated
in the folkloric literature of ADP for the LQR. In the simulation examples, it is shown that
the linear system critic network converges to the solution of the ARE, and the actor network
converges to the optimal policy, without knowing the system matrix A. In the nonlinear
example, it is shown that the optimal controller derived from the HDP based value iteration
method outperforms suboptimal control methods like those found through the SDRE
method.

8. References
Abu-Khalaf, M., F. L. Lewis. (2005). Nearly Optimal Control Laws for Nonlinear Systems

 with Saturating Actuators Using a Neural Network HJB Approach. Automatica, vol.
 41, pp. 779 – 791.

Abu-Khalaf, M., F. L. Lewis, and J. Huang. (2004).Hamilton-Jacobi-Isaacs formulation for
 constrained input nonlinear systems. 43rd IEEE Conference on Decision and Control,
 2004, pp. 5034 - 5040 Vol.5.

Al-Tamimi, A. , F. L. Lewis, M. Abu-Khalaf (2007). Model-Free Q-Learning Designs for
 Discrete-Time Zero-Sum Games with Application to H-Infinity Control.
 Automatica, volume 43, no. 3. pp 473-481.

Al-Tamimi, A., M. Abu-Khalaf, F. L. Lewis. (2007). Adaptive Critic Designs for Discrete-
 Time Zero-Sum Games with Application to H-Infinity Control. IEEE Transactions
 on Systems, Man, Cybernetics-Part B, Cybernaetics, Vol 37, No 1, pp 240-24.

Heuristic Dynamic Programming Nonlinear Optimal Controller

379

Barto, A. G., R. S. Sutton, and C. W. Anderson. (1983). Neuronlike elements that can solve
 difficult learning control problems. IEEE Trans. Syst., Man, Cybern., vol. SMC-13,
 pp. 835–846.

Bertsekas, D.P. and J. N. Tsitsiklis.(1996). Neuro-Dynamic Programming. Athena Scientific,
 MA.

Bradtke, S. J., B. E. Ydestie, A. G. Barto (1994). Adaptive linear quadratic control using
 policy iteration. Proceedings of the American Control Conference , pp. 3475-3476,
 Baltmore, Myrland.

Chen, Z., Jagannathan, S. (2005). Neural Network -based Nearly Optimal Hamilton-
 Jacobi-Bellman Solution for Affine Nonlinear Discrete-Time Systems. IEEE CDC
 05 ,pp 4123-4128.

Cloutier, J. R. (1997). State –Dependent Riccati equation Techniques: An overview.
 Proceeding of the American control conference, Albuquerque, NM, pp 932-936.

Ferrari, S., Stengel, R.(2004) Model-Based Adaptive Critic Designs. pp 64-94, Eds J. Si, A.
Barto, W. Powell, D. Wunsch Handbook of Learning and Approximate Dynamic
Programming, Wiley.

Finlayson, B. A. (1972). The Method of Weighted Residuals and Variational Principles.
 Academic Press, New York.

Hagen, S. B Krose. (1998). Linear quadratic Regulation using Reinforcement Learning.
 Belgian_Dutch Conference on Mechanical Learning, pp. 39-46.

He, P. and S. Jagannathan.(2005).Reinforcement learning-basedoutput feedback control of
 nonlinear systems with input constraints. IEEE Trans. Systems, Man, and
 Cybernetics -Part B:Cybernetics, vol. 35, no.1, pp. 150-154.

Hewer, G. A. (1971). An iterative technique for the computation of the steady state gains for
the discrete optimal regulator. IEEE Trans. Automatic Control, pp. 382-384.

Hornik, K., M. Stinchcombe, H. White.(1990) .Universal Approximation of an Unknown
 Mapping and Its Derivatives Using Multilayer Feedforward Networks. Neural
 Networks, vol. 3, pp. 551-560.

Howard, R. (1960). Dynamic Programming and Markov Processes., MIT Press, Cambridge,
 MA.

Huang, J. (1999). An algorithm to solve the discrete HJI equation arising in the L2-gain
 optimization problem. INT. J. Control, Vol 72, No 1, pp 49-57.

Kwon, W. H and S. Han. (2005). Receding Horizon Control, Springer-Verlag, London.
Lancaster, P. L. Rodman. (1995). Algebraic Riccati Equations. Oxford University Press, UK.
Landelius, T. (1997). Reinforcement Learning and Distributed Local Model Synthesis. PhD

 Dissertation, Linkoping University, Sweden.
Lewis, F. L., V. L. Syrmos. (1995) Optimal Control, 2nd ed., John Wiley.
Lewis, F. L., Jagannathan, S., & Yesildirek, A. (1999). Neural Network Control of Robot

 Manipulators and Nonlinear Systems. Taylor & Franci.
Lin W.,and C. I. Byrnes.(1996).H∞Control of Discrete-Time Nonlinear System. IEEE Trans.

 on Automat. Control , vol 41, No 4, pp 494-510..
Lu, X., S.N. Balakrishnan. (2000). Convergence analysis of adaptive critic based optimal

 control. Proc. Amer. Control Conf., pp. 1929-1933, Chicago.
Morimoto, J., G. Zeglin, and C.G. Atkeson. (2003). Minimax differential dynamic

 programming: application to a biped walking robot. Proc. IEEE Int. Conf. Intel.
 Robots and Systems, pp. 1927-1932, Las Vegas.

 Machine Learning

380

Murray J., C. J. Cox, G. G. Lendaris, and R. Saeks.(2002).Adaptive Dynamic
 Programming. IEEE Trans. on Sys., Man. and Cyb., Vol. 32, No. 2, pp 140-153.

Narendra, K.S. and F.L. Lewis. (2001).Special Issue on Neural Network feedback Control.
 Automatica, vol. 37, no. 8.

Prokhorov, D., D. Wunsch. (1997). Adaptive critic designs. IEEE Trans. on Neural Networks,
 vol. 8, no. 5, pp 997-1007.

Prokhorov, D., D. Wunsch (1997). Convergence of Critic-Based Training. Proc. IEEE Int.
 Conf. Syst., Man, Cybern., vol. 4, pp. 3057—3060.

Si, J. and Wang. (2001). On-Line learning by association and reinforcement. IEEE Trans.
 Neural Networks, vol. 12, pp.264-276.

Si, Ji. A. Barto, W. Powell, D. Wunsch.(2004). Handbook of Learning and Approximate
 Dynamic Programming. John Wiley, New Jersey.

Stevens B., F. L. Lewis. (2003). Aircraft Control and Simulation, 2nd edition, John Wiley,
 New Jersey.

Sutton, R. S., A. G. Barto. (19998). Reinforcement Learning, MIT Press. Cambridge, MA .
Watkins, C.(1989). Learning from Delayed Rewards. Ph.D. Thesis, Cambridge University,

 Cambridge, England.
Werbos, P. J. (1991). A menu of designs for reinforcement learning over time. , Neural

 Networks for Control, pp. 67-95, ed. W.T. Miller, R.S. Sutton, P.J. Werbos,
 Cambridge: MIT Press.

Werbos, P. J. (1992). Approximate dynamic programming for real-time control and neural
 modeling. Handbook of Intelligent Control, ed. D.A. White and D.A. Sofge, New
 York: Van Nostrand Reinhold,.

Werbos, P. J. (1990). Neural networks for control and system identification. Heuristics, Vol.
 3, No. 1, pp. 18-27.

Widrow, B., N. Gupta, and S. Maitra. (1973). Punish/reward: Learning with a critic in
 adaptive threshold systems. IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 455–
 465.

Xi-Ren Cao. (2001). Learning and Optimization—From a Systems Theoretic Perspective.
 Proc. of IEEE Conference on Decision and Control, pp. 3367-3371.

19

Implicit Estimation of Another’s Intention Based
on Modular Reinforcement Learning

Tadahiro Taniguchi1, Kenji Ogawa2 and Tetsuo Sawaragi3

1College of Information Science and Engineering,
2Matsushita Electoronic Industrial Co.

3Graduate School of Engineering and Science,
Japan

1. Introduction
When we try to accomplish a collaborative task, e.g., playing football or carrying large
tables, we have to share a goal and a way of achieving the goal. Although people
accomplish such tasks, achieveing such cooperation is not so easy in the context of a
computational multi-agent learning system because participating agents cannot observe
another person’s intention directly. We cannot know directly what other participants intend
to do and how they intend to achieve that. Therefore, we have to notice another participant’s
intention by utilizing other hints or information. In other words, we have to estimate
another’s intention to accomplish collaborative tasks.
In particular, in multi-agent reinforcement learning tasks, when another’s intention is
unobservable the learning process is fatally harmed. When a participating agent of a
collaborative task changes its intention and switches or modifies its controller, system
dynamics for each agent will inevitably change. If other agents learn on the basis of simple
reinforcement learning architecture, they cannot keep up with changes in the task
environment because most reinforcement learning architectures assume that environmental
dynamics are fixed. To overcome the problem, each agent must have a simple reinforcement
learning architecture and some additional capability, which solves the problem. We take the
capability of “estimation of another’s intention” as an example of such a capability.
Human beings can perform several kinds of collaborative tasks. This means that we have
some computational skills, which enable us to estimate another’s intention to some extent
even if we cannot observe another’s intention directly.
The computational model for implicit communication is described in this chapter on the
basis of a framework of modular reinforcement learning. The computational model is called
situation-sensitive reinforcement learning (SSRL), which is a type of modular reinforcement
learning architecture. We assumed that such a distributed learning architecture would be
essential for an autonomous agent to cope with a physically dynamic environment and a
socially dynamic environment that included changes in another agent’s intentions. The skill,
estimation of another’s intention, seems to be a social skill. However, human adaptability,
which we believe our selves to be equipped with to deal with a physically dynamic
environment, enables an agent to deal with such a dynamic social environment, including

 Machine Learning

380

Murray J., C. J. Cox, G. G. Lendaris, and R. Saeks.(2002).Adaptive Dynamic
 Programming. IEEE Trans. on Sys., Man. and Cyb., Vol. 32, No. 2, pp 140-153.

Narendra, K.S. and F.L. Lewis. (2001).Special Issue on Neural Network feedback Control.
 Automatica, vol. 37, no. 8.

Prokhorov, D., D. Wunsch. (1997). Adaptive critic designs. IEEE Trans. on Neural Networks,
 vol. 8, no. 5, pp 997-1007.

Prokhorov, D., D. Wunsch (1997). Convergence of Critic-Based Training. Proc. IEEE Int.
 Conf. Syst., Man, Cybern., vol. 4, pp. 3057—3060.

Si, J. and Wang. (2001). On-Line learning by association and reinforcement. IEEE Trans.
 Neural Networks, vol. 12, pp.264-276.

Si, Ji. A. Barto, W. Powell, D. Wunsch.(2004). Handbook of Learning and Approximate
 Dynamic Programming. John Wiley, New Jersey.

Stevens B., F. L. Lewis. (2003). Aircraft Control and Simulation, 2nd edition, John Wiley,
 New Jersey.

Sutton, R. S., A. G. Barto. (19998). Reinforcement Learning, MIT Press. Cambridge, MA .
Watkins, C.(1989). Learning from Delayed Rewards. Ph.D. Thesis, Cambridge University,

 Cambridge, England.
Werbos, P. J. (1991). A menu of designs for reinforcement learning over time. , Neural

 Networks for Control, pp. 67-95, ed. W.T. Miller, R.S. Sutton, P.J. Werbos,
 Cambridge: MIT Press.

Werbos, P. J. (1992). Approximate dynamic programming for real-time control and neural
 modeling. Handbook of Intelligent Control, ed. D.A. White and D.A. Sofge, New
 York: Van Nostrand Reinhold,.

Werbos, P. J. (1990). Neural networks for control and system identification. Heuristics, Vol.
 3, No. 1, pp. 18-27.

Widrow, B., N. Gupta, and S. Maitra. (1973). Punish/reward: Learning with a critic in
 adaptive threshold systems. IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 455–
 465.

Xi-Ren Cao. (2001). Learning and Optimization—From a Systems Theoretic Perspective.
 Proc. of IEEE Conference on Decision and Control, pp. 3367-3371.

19

Implicit Estimation of Another’s Intention Based
on Modular Reinforcement Learning

Tadahiro Taniguchi1, Kenji Ogawa2 and Tetsuo Sawaragi3

1College of Information Science and Engineering,
2Matsushita Electoronic Industrial Co.

3Graduate School of Engineering and Science,
Japan

1. Introduction
When we try to accomplish a collaborative task, e.g., playing football or carrying large
tables, we have to share a goal and a way of achieving the goal. Although people
accomplish such tasks, achieveing such cooperation is not so easy in the context of a
computational multi-agent learning system because participating agents cannot observe
another person’s intention directly. We cannot know directly what other participants intend
to do and how they intend to achieve that. Therefore, we have to notice another participant’s
intention by utilizing other hints or information. In other words, we have to estimate
another’s intention to accomplish collaborative tasks.
In particular, in multi-agent reinforcement learning tasks, when another’s intention is
unobservable the learning process is fatally harmed. When a participating agent of a
collaborative task changes its intention and switches or modifies its controller, system
dynamics for each agent will inevitably change. If other agents learn on the basis of simple
reinforcement learning architecture, they cannot keep up with changes in the task
environment because most reinforcement learning architectures assume that environmental
dynamics are fixed. To overcome the problem, each agent must have a simple reinforcement
learning architecture and some additional capability, which solves the problem. We take the
capability of “estimation of another’s intention” as an example of such a capability.
Human beings can perform several kinds of collaborative tasks. This means that we have
some computational skills, which enable us to estimate another’s intention to some extent
even if we cannot observe another’s intention directly.
The computational model for implicit communication is described in this chapter on the
basis of a framework of modular reinforcement learning. The computational model is called
situation-sensitive reinforcement learning (SSRL), which is a type of modular reinforcement
learning architecture. We assumed that such a distributed learning architecture would be
essential for an autonomous agent to cope with a physically dynamic environment and a
socially dynamic environment that included changes in another agent’s intentions. The skill,
estimation of another’s intention, seems to be a social skill. However, human adaptability,
which we believe our selves to be equipped with to deal with a physically dynamic
environment, enables an agent to deal with such a dynamic social environment, including

 Machine Learning

382

intentional changes of collaborators. Determining clearlify the computational relationship
between the two skills is also a purpose of this study.
The mathematical basis for the implicit estimation of another’s intention based on the
framework of reinforcement learning is also provided. Furthermore, a simple truck-pushing
task performed by a pair of agents is presented to evaluate the learning architecture.

2. Communication and estimation of another’s intention
Communicating one’s intention to another person enables the other person to estimate one’s
intention. Therefore, communication and estimation of another’s intention are different
aspects of the same phenomenon. Implicit estimation is a key idea to supplement the
classical communication model, i.e., Shannon-Weaver communication model. Additionally,
it is also important to understand a computational mechanism of emergence of
communication.

Fig. 1. Schematic diagram of general communication system

We describe the background in this section. In addition to that, an abstract mechanism of the
implicit estimation is described on the basis of the notion of multiple internal models.

2.1 Communication models
Shannon formulated “communication” in mathematical terms [5]. In Shannon’s
communication model, a sender’s messages encapsulated in signals or signs are carried
through an information channel to a receiver. An encoder owned by the sender encodes the
message to the signal by referring to its code table. When a receiver receives the signal, the
receiver’s decoder decodes the signal back to a message by referring to its code table. After
that, the receiver understands the sender’s intention and determines what to do. The general
communication system described by Shannon is shown in Fig. 1 schematically.
In contrast to Shannon, Peirce, who started “semiotics,” insisted that the basis of
communication is symbols, and he defined a symbol as a triadic relationship among “sign,”
“object,” and “interpretant”[2]. A “sign” is a signal that represents something to an
interpreter. An “object” is something that is represented by the sign, and an “interpretant” is
something that relates the sign to the object. In other words, an “interpretant” is a mediator
between a “sign” and an “object.” The words “sign” and “object” are easy for most people
to understand. However, “interpretant” may be difficult to understand. An “interpretant” is
sometimes a concept an interpreter comes up with, an action the interpreter takes, or culture
in which people consider the sign and object to be related. The important point of Peirce’s

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

383

semiotics is that the relationship between “sign” and “object” is not fixed. The relationship
can be dynamically changing. The relationship simply depends on the “interpretant.” The
dynamic process by which a sign represents an object mediated by an interpretant is called
“semiosis.” Peirce’s semiotics is thoroughly constructed from the viewpoint of an
interpreter. In the framework of Peirce’s semiotics, the third element, “interpretant,” plays
an essential role in communication. In Shannon’s communication model, one premise is that
a shared code table is required. However, an autonomous agent cannot observe other
agents’ internal goals or code table. In contrast, Peirce’s semiosis does not require such a
premise. Semiosis is a phenomenon that emerges inside of an autonomous agent. The
participants in a communication must create meaning from incoming signs based on their
physical and social experience. Such an individual learning process is considered to
supplement symbolic communication. However, semiosis requires autonomous agents to
have sufficient adaptability and capability to create meanings from superficial meaningless
signs.

Fig. 2. Semiotic triad

In a human collaborative task, a human participant becomes able to distinguish several
situations, which are modified by another’s changing intentions. In such a case, the kind of
policy the participant should follow in each situation is not clear beforehand. However, if
the team continues to collaborate through trial and error, some kind of shared rules will be
formed as a kind of habit of the team, and a follwer on the team becomes able to perform
adequately by referring to the situation and the habit. This process corresponds to
“semiosis” in Peirce’s semiotics. Here, “sign,” “object,” and “interpretant” correspond to a
“situation,” “the leader’s intention,” and “acquired rule” or “the follower’s action,”
respectively.
An important point in this scenario is that the “situation” has no meaning before the
follower distinguishes situation, performs adequately, and a tacit rule is established
between the two agents.
In this chapter, we describe candidates for computational communication models, which are
based on Peirce’s semiosis.

2.2 Estimation of another’s intention
Roughly speaking, we assume there are two ways in which we estimate another’s intention.
Here, we explain the difference between the two ways of estimating another’s intention.
For illustrative purposes, we assume that there is a leader in an organization who makes
decisions. The leader makes decisions to direct the team, and followers play their roles
based on the decision.
In such a case, the leader communicates his/her intention to the follwers, and followers in
the organization have to estimate a leading agent’s intention to cope with cooperative tasks.

 Machine Learning

382

intentional changes of collaborators. Determining clearlify the computational relationship
between the two skills is also a purpose of this study.
The mathematical basis for the implicit estimation of another’s intention based on the
framework of reinforcement learning is also provided. Furthermore, a simple truck-pushing
task performed by a pair of agents is presented to evaluate the learning architecture.

2. Communication and estimation of another’s intention
Communicating one’s intention to another person enables the other person to estimate one’s
intention. Therefore, communication and estimation of another’s intention are different
aspects of the same phenomenon. Implicit estimation is a key idea to supplement the
classical communication model, i.e., Shannon-Weaver communication model. Additionally,
it is also important to understand a computational mechanism of emergence of
communication.

Fig. 1. Schematic diagram of general communication system

We describe the background in this section. In addition to that, an abstract mechanism of the
implicit estimation is described on the basis of the notion of multiple internal models.

2.1 Communication models
Shannon formulated “communication” in mathematical terms [5]. In Shannon’s
communication model, a sender’s messages encapsulated in signals or signs are carried
through an information channel to a receiver. An encoder owned by the sender encodes the
message to the signal by referring to its code table. When a receiver receives the signal, the
receiver’s decoder decodes the signal back to a message by referring to its code table. After
that, the receiver understands the sender’s intention and determines what to do. The general
communication system described by Shannon is shown in Fig. 1 schematically.
In contrast to Shannon, Peirce, who started “semiotics,” insisted that the basis of
communication is symbols, and he defined a symbol as a triadic relationship among “sign,”
“object,” and “interpretant”[2]. A “sign” is a signal that represents something to an
interpreter. An “object” is something that is represented by the sign, and an “interpretant” is
something that relates the sign to the object. In other words, an “interpretant” is a mediator
between a “sign” and an “object.” The words “sign” and “object” are easy for most people
to understand. However, “interpretant” may be difficult to understand. An “interpretant” is
sometimes a concept an interpreter comes up with, an action the interpreter takes, or culture
in which people consider the sign and object to be related. The important point of Peirce’s

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

383

semiotics is that the relationship between “sign” and “object” is not fixed. The relationship
can be dynamically changing. The relationship simply depends on the “interpretant.” The
dynamic process by which a sign represents an object mediated by an interpretant is called
“semiosis.” Peirce’s semiotics is thoroughly constructed from the viewpoint of an
interpreter. In the framework of Peirce’s semiotics, the third element, “interpretant,” plays
an essential role in communication. In Shannon’s communication model, one premise is that
a shared code table is required. However, an autonomous agent cannot observe other
agents’ internal goals or code table. In contrast, Peirce’s semiosis does not require such a
premise. Semiosis is a phenomenon that emerges inside of an autonomous agent. The
participants in a communication must create meaning from incoming signs based on their
physical and social experience. Such an individual learning process is considered to
supplement symbolic communication. However, semiosis requires autonomous agents to
have sufficient adaptability and capability to create meanings from superficial meaningless
signs.

Fig. 2. Semiotic triad

In a human collaborative task, a human participant becomes able to distinguish several
situations, which are modified by another’s changing intentions. In such a case, the kind of
policy the participant should follow in each situation is not clear beforehand. However, if
the team continues to collaborate through trial and error, some kind of shared rules will be
formed as a kind of habit of the team, and a follwer on the team becomes able to perform
adequately by referring to the situation and the habit. This process corresponds to
“semiosis” in Peirce’s semiotics. Here, “sign,” “object,” and “interpretant” correspond to a
“situation,” “the leader’s intention,” and “acquired rule” or “the follower’s action,”
respectively.
An important point in this scenario is that the “situation” has no meaning before the
follower distinguishes situation, performs adequately, and a tacit rule is established
between the two agents.
In this chapter, we describe candidates for computational communication models, which are
based on Peirce’s semiosis.

2.2 Estimation of another’s intention
Roughly speaking, we assume there are two ways in which we estimate another’s intention.
Here, we explain the difference between the two ways of estimating another’s intention.
For illustrative purposes, we assume that there is a leader in an organization who makes
decisions. The leader makes decisions to direct the team, and followers play their roles
based on the decision.
In such a case, the leader communicates his/her intention to the follwers, and followers in
the organization have to estimate a leading agent’s intention to cope with cooperative tasks.

 Machine Learning

384

The communication and the estimation of another’s intention are different aspects of the
same phenomenon, as we described above. How can followers members estimate the
leader’s intention? This is the problem.
Here, we take two kinds of estimation of another’s intention into consideration. One is
“explicit estimation,” and the other is “implicit estimation.”

2.2.1 Explicit estimation of another’s intention
One solution for communicating one’s intention to another person is to express one’s
intention directly with predefined signals, e.g., by pointing to the goal and by commanding
the other person to act. The method of communication requires a shared symbolic system as
a basic premise. The symbolic system is often called a code table. If the symbolic system
used in this communication must be completely shared by the participants in the
cooperativetask environment, a participant who receives a message understands exactly
what the person transmitting the message wants to do. The receiver of the message can
estimate the sender’s intentions based on externalized signs. We call this process the
“explicit estimation” because the intention of the leader is explicitly expressed as
externalized signals. In this communication model, both agents have to share a predefined
code table before the tasks. In the explicit estimation model, the accuracy of the
communication is measured by the coincidence between the transmitted message and the
receiver’s interpretation of the sender’s message, which is obtained by decoding the
incoming signal utilizing the shared code table. The process of estimating another’s
intention in a collaborative task is shown in Figure 3 schematically. A leader and a follower
carry a truck collaboratively. How can the follower estimate the leader’s goal using explicit
estimation when the leader changes his goal?

Fig. 3. explicit estimation

First, the leader agent changes his goal. In the explicit estimation scheme, this seems like a
natural framework of communication. After Shannon formulated “communication”
mathematically, many sociologists and computer scientists have described “communication”
as above. However, the communication model based on explicit estimation of another’s

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

385

intention has two shortcomings. One is that the method of sharing the code table between
the two agetns is unknown. If we consider the two agents to be autonomous, neither agent
can observe the other agent’s internal goals and code table. Therefore, neither agent can
utilize a “teacher signal” as feedback of its interpretation to upgrade its code table. The
second shortcoming is that the leader agent has to display his intention whenever he
changes his goal. These are two problems of explicit estimation of another’s intention.
In contrast, when we review what we do in collaborative tasks, we find that we do not
always send verbal messages representing our intention to our collaborators. We sometimes
execute a collaborative task without saying anything. In this case, the leader’s intention is
not transmitted to the follower by sending the explicit linguistic sign but through the shared
environmental dynamics implicitly. Explicit estimation of another’s intention is not the only
way of communication. To complement or to support the explicit estimation, implicit
estimation is necessary.

Fig. 4. Implicit communication

2.2.2 Implicit estimation of another’s intention
People occasionally undertake collaborative tasks without saying anything. Even if a leader
says nothing to members of his organization, they can often perform the task by estimating
the leader’s intentions on the basis of their observation. We call such an estimation process
“implicit estimation” of another’s intention. However, if there were no pathways through
which information about the leader’s intention goes to the followers, the followers could
never estimate the leader’s intention. One reason followers can estimate the leader’s
intention is that the action and sensation of the followers are causally related to the leader’s
intentions.
In other words, sensations a participating agent has after he/she performs actions are
affected by the leader’s way of acting and another agents’ ways of acting. Therefore,
subjective environmental dynamics for a participating agent are causally affected by the
leader’s intention because other agents are assumed to behave based on the leader’s
intention.

 Machine Learning

384

The communication and the estimation of another’s intention are different aspects of the
same phenomenon, as we described above. How can followers members estimate the
leader’s intention? This is the problem.
Here, we take two kinds of estimation of another’s intention into consideration. One is
“explicit estimation,” and the other is “implicit estimation.”

2.2.1 Explicit estimation of another’s intention
One solution for communicating one’s intention to another person is to express one’s
intention directly with predefined signals, e.g., by pointing to the goal and by commanding
the other person to act. The method of communication requires a shared symbolic system as
a basic premise. The symbolic system is often called a code table. If the symbolic system
used in this communication must be completely shared by the participants in the
cooperativetask environment, a participant who receives a message understands exactly
what the person transmitting the message wants to do. The receiver of the message can
estimate the sender’s intentions based on externalized signs. We call this process the
“explicit estimation” because the intention of the leader is explicitly expressed as
externalized signals. In this communication model, both agents have to share a predefined
code table before the tasks. In the explicit estimation model, the accuracy of the
communication is measured by the coincidence between the transmitted message and the
receiver’s interpretation of the sender’s message, which is obtained by decoding the
incoming signal utilizing the shared code table. The process of estimating another’s
intention in a collaborative task is shown in Figure 3 schematically. A leader and a follower
carry a truck collaboratively. How can the follower estimate the leader’s goal using explicit
estimation when the leader changes his goal?

Fig. 3. explicit estimation

First, the leader agent changes his goal. In the explicit estimation scheme, this seems like a
natural framework of communication. After Shannon formulated “communication”
mathematically, many sociologists and computer scientists have described “communication”
as above. However, the communication model based on explicit estimation of another’s

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

385

intention has two shortcomings. One is that the method of sharing the code table between
the two agetns is unknown. If we consider the two agents to be autonomous, neither agent
can observe the other agent’s internal goals and code table. Therefore, neither agent can
utilize a “teacher signal” as feedback of its interpretation to upgrade its code table. The
second shortcoming is that the leader agent has to display his intention whenever he
changes his goal. These are two problems of explicit estimation of another’s intention.
In contrast, when we review what we do in collaborative tasks, we find that we do not
always send verbal messages representing our intention to our collaborators. We sometimes
execute a collaborative task without saying anything. In this case, the leader’s intention is
not transmitted to the follower by sending the explicit linguistic sign but through the shared
environmental dynamics implicitly. Explicit estimation of another’s intention is not the only
way of communication. To complement or to support the explicit estimation, implicit
estimation is necessary.

Fig. 4. Implicit communication

2.2.2 Implicit estimation of another’s intention
People occasionally undertake collaborative tasks without saying anything. Even if a leader
says nothing to members of his organization, they can often perform the task by estimating
the leader’s intentions on the basis of their observation. We call such an estimation process
“implicit estimation” of another’s intention. However, if there were no pathways through
which information about the leader’s intention goes to the followers, the followers could
never estimate the leader’s intention. One reason followers can estimate the leader’s
intention is that the action and sensation of the followers are causally related to the leader’s
intentions.
In other words, sensations a participating agent has after he/she performs actions are
affected by the leader’s way of acting and another agents’ ways of acting. Therefore,
subjective environmental dynamics for a participating agent are causally affected by the
leader’s intention because other agents are assumed to behave based on the leader’s
intention.

 Machine Learning

386

We assume none of the members can observe any information except for their own sensory-
motor information. However, they can estimate the leader’s intentions. We call this process
“implicit estimation.” Implicit estimation is achieved by watching how the agent’s sensation
changes. In control tasks, an agent usually observes state variables.
In what follows, we assume that an agent obtains state variables, e.g., position, velocity, and
angle. State variables are usually considered to be objectives to be controlled in many
control tasks. However, in implicit communication, state variables also become information
media of another agent’s intention. An participating agent can estimate another’s intention
by observing changes in state variables. The information goes through their shared
dynamics.
The process of implicit estimation of another’s intention is showen in Figure 4,
schematically. First, the leader changes his goal. When the leader’s goal has changed, his
controller, which produces his behavior, is switched. That, of course, affects physical
dynamics of the dynamical system shared between the leader and the follower. If a
participating agent has a state predictor, he will become aware of the qualitative change in
the shared dynamics because his prediction of the state value collapses If physical dynamics
are stable, he can predict his state variables consistently. If the follower agent notices the
change in subjective physical dynamics, the follower can notice the change in the leader’s
intention based on the causal relationship between the leader’s intention and his facing
dynamical system.
Therefore, the capability to predict state variables seems to be required for physical skills
and social skills. This scenario suggests the process of learning physical skills to control the
target system and the method to communicate with the partner agent might be quite similar
in such cooperative tasks.

3. Multiple internal models
Our computational model of implicit estimation of another’s intention is based on modular
reinforcement learning architecture including multiple internal models. To achieve implicit
estimation of another’s intention described in the previous section, an agent must have a
learning architecture that includes state predictors. We focus on multiple internal models as
neural architectures that achieve such an adaptive capability.

3.1 Multiple internal models and social adaptability
Relationships between the human brain’s social capability and physical capability are
commanding interest. From the viewpoint of computational neuroscience, Wolpert et al. [17,
3] suggested that MOSAIC, which is a modular learning architecture representing a part of
the human central nervous system (CNS), acquires multiple internal models that play an
essential role in adapting to the physical dynamic environment as well as other roles. We
regard this as a candidate for a brain function that connects human physical capability and
social capability. An internal model is a learning architecture that predicts the state
transition of the environment or other target system. This is a belief that a person can
operate his/her body and his/her grasping tool by utilizing an obtained internal model[16].
The internal model is acquired in the cerebellum through interactions. The learning system
of internal models is considered to be a kind of schema that assimilates exterior dynamics
and accommodates the internal memory system, i.e., internal model. If a person encounters
various kinds of environments and/or tools, which have different dynamical properties, the

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

387

human brain needs to differentiate them and acquire several internal models. However,
segmentation of dynamics is not given a priori. Therefore, a learning architecture
representing multiple internal models should generate and learn internal models, and
recognize changes in physical dynamics in its facing environment at the same time. To
describe such a learning system, several computational models have been proposed, e.g.,
MPFIM [17], the mixture of RNNs[10], RNNPB[9], and the schema model [13]. Most of them
are comprised of several learning predictors. The learning architecture switches the
predictors and accommodates them through interactions with the environment. Such a
learning architecture is often called a modular learning system. The RNNPB is not a
modular learning system. Tani insisted internal models should be obtained in a single
neural network in a distributed way[9]. In most modular learning architecture, a Bayesian
rule is used to calculate the posterior probability in which a current predictor is selected. In
contrast, the schema model [13] is a modular learning architecture that does not use a
Bayesian rule but hypothesis-testing theory. At the moment, multiple internal models are
usually considered to be a learning system for an autonomous system to cope with a
physically dynamic environment. Meanwhile, Wolpert et al. addressed a hypothesis that a
person utilizes multiple internal models to estimate another’s intention from the observation
of another’s movement. Although these internal models described in the hypothesis seem to
add a slightly different feature to the original definition of an internal model, interestingly,
the hypothesis tries to connect neural architectures for physical adaptability and social
adaptability. Doya et al. [1] proposed a modular learning architecture that enables robots to
estimate another’s intention and to communicate with each other in a reinforcement
learning task.
In addition, when a person performs a collaborative task with others, one can notice changes
in another agent’s intention by recognizing the change in his/her facing dynamical system
without any direct observation of the other agent’s movement. This means multiple internal
models enable an agent to notice changes in another agent’s intention. This usage of
multiple internal models does not require adding any features to the original definition of
multiple internal models.

3.2 Implicit estimation of another’s intention based on multiple internal models
“Intention” in everyday language denotes a number of meanings. Therefore, a perfect
computational definition of “intention” is impossible. In this chapter, we simply consider an
“intention” as a goal the agent is trying to achieve. In the framework of reinforcement
learning, an agent’s goal is represented by a reward function. Therefore, an agent who has
several intentions has several internal goals, i.e., several internal reward functions, Gm. If an
internal reward function, Gm, is selected, a policy, um, is selected and modified to maximize
the cumulative future internal reward through interactions with the task environment.
In the following, we assume that the collaborative task involves two agents. The system is
described as

 (1)

 (2)

 (3)

 Machine Learning

386

We assume none of the members can observe any information except for their own sensory-
motor information. However, they can estimate the leader’s intentions. We call this process
“implicit estimation.” Implicit estimation is achieved by watching how the agent’s sensation
changes. In control tasks, an agent usually observes state variables.
In what follows, we assume that an agent obtains state variables, e.g., position, velocity, and
angle. State variables are usually considered to be objectives to be controlled in many
control tasks. However, in implicit communication, state variables also become information
media of another agent’s intention. An participating agent can estimate another’s intention
by observing changes in state variables. The information goes through their shared
dynamics.
The process of implicit estimation of another’s intention is showen in Figure 4,
schematically. First, the leader changes his goal. When the leader’s goal has changed, his
controller, which produces his behavior, is switched. That, of course, affects physical
dynamics of the dynamical system shared between the leader and the follower. If a
participating agent has a state predictor, he will become aware of the qualitative change in
the shared dynamics because his prediction of the state value collapses If physical dynamics
are stable, he can predict his state variables consistently. If the follower agent notices the
change in subjective physical dynamics, the follower can notice the change in the leader’s
intention based on the causal relationship between the leader’s intention and his facing
dynamical system.
Therefore, the capability to predict state variables seems to be required for physical skills
and social skills. This scenario suggests the process of learning physical skills to control the
target system and the method to communicate with the partner agent might be quite similar
in such cooperative tasks.

3. Multiple internal models
Our computational model of implicit estimation of another’s intention is based on modular
reinforcement learning architecture including multiple internal models. To achieve implicit
estimation of another’s intention described in the previous section, an agent must have a
learning architecture that includes state predictors. We focus on multiple internal models as
neural architectures that achieve such an adaptive capability.

3.1 Multiple internal models and social adaptability
Relationships between the human brain’s social capability and physical capability are
commanding interest. From the viewpoint of computational neuroscience, Wolpert et al. [17,
3] suggested that MOSAIC, which is a modular learning architecture representing a part of
the human central nervous system (CNS), acquires multiple internal models that play an
essential role in adapting to the physical dynamic environment as well as other roles. We
regard this as a candidate for a brain function that connects human physical capability and
social capability. An internal model is a learning architecture that predicts the state
transition of the environment or other target system. This is a belief that a person can
operate his/her body and his/her grasping tool by utilizing an obtained internal model[16].
The internal model is acquired in the cerebellum through interactions. The learning system
of internal models is considered to be a kind of schema that assimilates exterior dynamics
and accommodates the internal memory system, i.e., internal model. If a person encounters
various kinds of environments and/or tools, which have different dynamical properties, the

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

387

human brain needs to differentiate them and acquire several internal models. However,
segmentation of dynamics is not given a priori. Therefore, a learning architecture
representing multiple internal models should generate and learn internal models, and
recognize changes in physical dynamics in its facing environment at the same time. To
describe such a learning system, several computational models have been proposed, e.g.,
MPFIM [17], the mixture of RNNs[10], RNNPB[9], and the schema model [13]. Most of them
are comprised of several learning predictors. The learning architecture switches the
predictors and accommodates them through interactions with the environment. Such a
learning architecture is often called a modular learning system. The RNNPB is not a
modular learning system. Tani insisted internal models should be obtained in a single
neural network in a distributed way[9]. In most modular learning architecture, a Bayesian
rule is used to calculate the posterior probability in which a current predictor is selected. In
contrast, the schema model [13] is a modular learning architecture that does not use a
Bayesian rule but hypothesis-testing theory. At the moment, multiple internal models are
usually considered to be a learning system for an autonomous system to cope with a
physically dynamic environment. Meanwhile, Wolpert et al. addressed a hypothesis that a
person utilizes multiple internal models to estimate another’s intention from the observation
of another’s movement. Although these internal models described in the hypothesis seem to
add a slightly different feature to the original definition of an internal model, interestingly,
the hypothesis tries to connect neural architectures for physical adaptability and social
adaptability. Doya et al. [1] proposed a modular learning architecture that enables robots to
estimate another’s intention and to communicate with each other in a reinforcement
learning task.
In addition, when a person performs a collaborative task with others, one can notice changes
in another agent’s intention by recognizing the change in his/her facing dynamical system
without any direct observation of the other agent’s movement. This means multiple internal
models enable an agent to notice changes in another agent’s intention. This usage of
multiple internal models does not require adding any features to the original definition of
multiple internal models.

3.2 Implicit estimation of another’s intention based on multiple internal models
“Intention” in everyday language denotes a number of meanings. Therefore, a perfect
computational definition of “intention” is impossible. In this chapter, we simply consider an
“intention” as a goal the agent is trying to achieve. In the framework of reinforcement
learning, an agent’s goal is represented by a reward function. Therefore, an agent who has
several intentions has several internal goals, i.e., several internal reward functions, Gm. If an
internal reward function, Gm, is selected, a policy, um, is selected and modified to maximize
the cumulative future internal reward through interactions with the task environment.
In the following, we assume that the collaborative task involves two agents. The system is
described as

 (1)

 (2)

 (3)

 Machine Learning

388

Here, x is a state variable, ui is the i-th agent’s motor output, and n is a noise term. We
assumed that an agent would not be able to observe another agent’s motor output directly.
In such cases, environmental dynamics seem to be Eq. 3 to the first agent. If the second agent
changes its policy, environmental dynamics for the first agent change. Therefore, in a
physically stationary environment, the first agent can establish that the second agent has
changed its intention by noticing changes in environmental dynamics.
The discussion can be summarized as follows. If physical environmental dynamics, f, is
fixed, agents who have multiple internal models can detect changes in another agent’s
intentions by detecting changes in subjective environmental dynamics, F. The computational
process is equal to the process by which an agent detects changes in the original physical
dynamics.
We define “situation” as “how state variable x and motor output u change observed output
y.” In this case, a change in an agent’s intentions leads to a change in the subjective situation
of another agent. By utilizing multiple internal models, an agent is expected to differentiate
situations and execute adequate actions. In the next section, we describe a concrete modular
reinforcement learning architecture named Situation-Sensitive Reinforcement Learning
(SSRL).

4. Situation-sensitive reinforcement learning architecture
It is important for autonomous agents to accumulate the results of adaptation to various
environments to cope with dynamically changing environments. Acquired concepts,
models, and policies should be stored for similar situations that are expected to occur in the
near future. Not only learning a certain behavior and/or a certain model, but also the
obtained behaviors, policies, and models is essential to describe such a learning process.
Many modular learning architectures [7, 4] and hierarchical learning architectures [10, 8]
have been proposed to describe this kind of learning process. This section introduces such a
modular-learning architecture called the situation-sensitive reinforcement learning
architecture (SSRL). This enables an autonomous agent to distinguish changes the agent is
facing in situations, and to infer the partner agent’s intentions without any teacher signals
from the partner.

4.1 Discrimination of intentions based on changes in dynamics
Fig. 5 is an overview of SSRL. SSRL has several state predictors, Fm, representing situations
and internal goals, Gm, representing intentions. Each state predictor Fm corresponds to each
situation.

 (4)

(5)

(6)

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

389

where is the temporal average of the prediction error, , of the j-th state predictor, Fj . If
averaged error has a normal distribution and the system dynamics is Fj , the posterior
probability, P(j|), can be defined based on the Bayesian framework above under the
condition that there is no other information. If there are no adequate state predictors in
SSRL, the SSRL allocates one more state predictor based on hypothesis-testing theory [13].

Fig. 5. Situation-Sensitive Reinforcement Learning architecture

We model the state predictors by using locally linear predictors, and we don’t estimate the
standard deviation σ . The updating rule are switched based on hypothesis testing.
Case 1:

In this case, the learning system considers that incoming sample data are normal
samples for the existing predictors, decides the curret situation j*, and update the
corresponding function F j* by using assimilated samples.

Case 2:
In this case, the learning system considers that incoming sample data are outliers for the
existing predictors, and prepare a new fnction Fp+1. It decides the curret situation jp+1.
However, the new predictor is considered as a exeptional state predictor until < δl.
If the predictor’s averaged error reaches under δl, the function Fp+1 is taken into a list of
existing predictors, and p ← p + 1.

Case 3:
In this case, the system take no account of the incoming sample.

This is an intermediate method for the MOSAIC model [17, 15], which is based on the Basian
framework, and the schema model [13], which is based on hypothesis-testing theory. SSRL
detects the current situation based on Eq. 6. During this an adequate state predictor is
selected and assimilates the incoming experiences; SSRL acquires the state predictors by
ridge regression based on the assimilated experiences.

 Machine Learning

388

Here, x is a state variable, ui is the i-th agent’s motor output, and n is a noise term. We
assumed that an agent would not be able to observe another agent’s motor output directly.
In such cases, environmental dynamics seem to be Eq. 3 to the first agent. If the second agent
changes its policy, environmental dynamics for the first agent change. Therefore, in a
physically stationary environment, the first agent can establish that the second agent has
changed its intention by noticing changes in environmental dynamics.
The discussion can be summarized as follows. If physical environmental dynamics, f, is
fixed, agents who have multiple internal models can detect changes in another agent’s
intentions by detecting changes in subjective environmental dynamics, F. The computational
process is equal to the process by which an agent detects changes in the original physical
dynamics.
We define “situation” as “how state variable x and motor output u change observed output
y.” In this case, a change in an agent’s intentions leads to a change in the subjective situation
of another agent. By utilizing multiple internal models, an agent is expected to differentiate
situations and execute adequate actions. In the next section, we describe a concrete modular
reinforcement learning architecture named Situation-Sensitive Reinforcement Learning
(SSRL).

4. Situation-sensitive reinforcement learning architecture
It is important for autonomous agents to accumulate the results of adaptation to various
environments to cope with dynamically changing environments. Acquired concepts,
models, and policies should be stored for similar situations that are expected to occur in the
near future. Not only learning a certain behavior and/or a certain model, but also the
obtained behaviors, policies, and models is essential to describe such a learning process.
Many modular learning architectures [7, 4] and hierarchical learning architectures [10, 8]
have been proposed to describe this kind of learning process. This section introduces such a
modular-learning architecture called the situation-sensitive reinforcement learning
architecture (SSRL). This enables an autonomous agent to distinguish changes the agent is
facing in situations, and to infer the partner agent’s intentions without any teacher signals
from the partner.

4.1 Discrimination of intentions based on changes in dynamics
Fig. 5 is an overview of SSRL. SSRL has several state predictors, Fm, representing situations
and internal goals, Gm, representing intentions. Each state predictor Fm corresponds to each
situation.

 (4)

(5)

(6)

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

389

where is the temporal average of the prediction error, , of the j-th state predictor, Fj . If
averaged error has a normal distribution and the system dynamics is Fj , the posterior
probability, P(j|), can be defined based on the Bayesian framework above under the
condition that there is no other information. If there are no adequate state predictors in
SSRL, the SSRL allocates one more state predictor based on hypothesis-testing theory [13].

Fig. 5. Situation-Sensitive Reinforcement Learning architecture

We model the state predictors by using locally linear predictors, and we don’t estimate the
standard deviation σ . The updating rule are switched based on hypothesis testing.
Case 1:

In this case, the learning system considers that incoming sample data are normal
samples for the existing predictors, decides the curret situation j*, and update the
corresponding function F j* by using assimilated samples.

Case 2:
In this case, the learning system considers that incoming sample data are outliers for the
existing predictors, and prepare a new fnction Fp+1. It decides the curret situation jp+1.
However, the new predictor is considered as a exeptional state predictor until < δl.
If the predictor’s averaged error reaches under δl, the function Fp+1 is taken into a list of
existing predictors, and p ← p + 1.

Case 3:
In this case, the system take no account of the incoming sample.

This is an intermediate method for the MOSAIC model [17, 15], which is based on the Basian
framework, and the schema model [13], which is based on hypothesis-testing theory. SSRL
detects the current situation based on Eq. 6. During this an adequate state predictor is
selected and assimilates the incoming experiences; SSRL acquires the state predictors by
ridge regression based on the assimilated experiences.

 Machine Learning

390

4.2 Reinforcement learning
Each policy corresponding to a goal is acquired by using reinforcement learning [6]. SSRL
uses Q-Learning [14] in this paper. This method can be used to estimate the state-action
value function, Q(s, a), through interactions with the agent’s environment. The optimal
state-action value function directly gives the optimal policy. When we define S as a set of
state variables and A as a set of motor outputs, and we assume the environment consists of
a Markov decision process, the algorithm for Q-learning is described as

(7)

(8)

where s ∈ S is a state variable, a ∈A is a motor output, r(s, a) is a reward, and s’ is a state
variable at the next time step. In these equations, is the learning rate and γ is a discount
factor. After an adequate Q is acquired,the agent can utilize an optimal policy, u, as in Eq. 8.
Boltzmann selection is employed during the learning phase.

(9)

4.3 Switching architecture of internal goals
An agent can detect changes in the other agent’s intentions by distinguishing between
situations he/she faces. However, the goals themselves cannot be estimated even if
switching between several goals can be detected. Here, we describe a learning method,
which enables an agent to estimate the another’s intentions implicitly. The method requires
three assumptions to be made.
A1 Physical environmental dynamics f do not change.
A2 Every internal goal is equally difficult to achieve.
A3 The leader agent always selects each optimal policy for each intention.
The mathematical explanation for these assumptions will be described in the next section.
We employes Boltzmann selection for internal goal switch. The rule to select the internal
goals are described as

(10)

where p(m|j) is the probability that Gm will be selected under situation, F j , and B is the
inverse temperature. The network connection, wjm, between the current situation, F j , and
the current internal goal, Gm, is modified by the sum of the obtained reward, , during a
certain period during the t-th trial, i.e.,

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

391

 (11)

Here, ν is the learning rate of the internal goal switching module. Eq. 11 shows that
connection wjm

 becomes strong if internal goal Gm is more easy to accomplish when the
situation is F j . Eq. 10 shows that an internal goal is more likely to be selected if its network
connection is stronger than the other’s. The abstract figure for the switching module is
shown in Fig. 6. If the learning process for the switching architecture of internal goals is
preceded and converged, a certain internal goal corresponding to a situation is selected.

Fig. 6. Internal goal switching module

4.4 Mathematical basis for internal goal switching module
This section provides the mathematical basis for the learning rule ofr the implicit
communication. First, the Bellman equation for the i-th (i = 1, 2) agent of a system involving
two agents are described as1.

(12)

where Gλ is a reward function for the λ-th goal, ui
 is the i-th agent’s motor output, and x’ is

the x in the next step. Gλ in this framework is not assumed to have motor outputs as
variables of the function. The optimal value function for the i-th agent depends on the other
agent’s policy, uj

 . Here, we define as the i-th agent’s policy that maximizes the j-th
agent’s maximized value function whose goal is Gλ.

(13)

(14)

1 In this section, we have assumed i ≠ j without making any remarks.

 Machine Learning

390

4.2 Reinforcement learning
Each policy corresponding to a goal is acquired by using reinforcement learning [6]. SSRL
uses Q-Learning [14] in this paper. This method can be used to estimate the state-action
value function, Q(s, a), through interactions with the agent’s environment. The optimal
state-action value function directly gives the optimal policy. When we define S as a set of
state variables and A as a set of motor outputs, and we assume the environment consists of
a Markov decision process, the algorithm for Q-learning is described as

(7)

(8)

where s ∈ S is a state variable, a ∈A is a motor output, r(s, a) is a reward, and s’ is a state
variable at the next time step. In these equations, is the learning rate and γ is a discount
factor. After an adequate Q is acquired,the agent can utilize an optimal policy, u, as in Eq. 8.
Boltzmann selection is employed during the learning phase.

(9)

4.3 Switching architecture of internal goals
An agent can detect changes in the other agent’s intentions by distinguishing between
situations he/she faces. However, the goals themselves cannot be estimated even if
switching between several goals can be detected. Here, we describe a learning method,
which enables an agent to estimate the another’s intentions implicitly. The method requires
three assumptions to be made.
A1 Physical environmental dynamics f do not change.
A2 Every internal goal is equally difficult to achieve.
A3 The leader agent always selects each optimal policy for each intention.
The mathematical explanation for these assumptions will be described in the next section.
We employes Boltzmann selection for internal goal switch. The rule to select the internal
goals are described as

(10)

where p(m|j) is the probability that Gm will be selected under situation, F j , and B is the
inverse temperature. The network connection, wjm, between the current situation, F j , and
the current internal goal, Gm, is modified by the sum of the obtained reward, , during a
certain period during the t-th trial, i.e.,

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

391

 (11)

Here, ν is the learning rate of the internal goal switching module. Eq. 11 shows that
connection wjm

 becomes strong if internal goal Gm is more easy to accomplish when the
situation is F j . Eq. 10 shows that an internal goal is more likely to be selected if its network
connection is stronger than the other’s. The abstract figure for the switching module is
shown in Fig. 6. If the learning process for the switching architecture of internal goals is
preceded and converged, a certain internal goal corresponding to a situation is selected.

Fig. 6. Internal goal switching module

4.4 Mathematical basis for internal goal switching module
This section provides the mathematical basis for the learning rule ofr the implicit
communication. First, the Bellman equation for the i-th (i = 1, 2) agent of a system involving
two agents are described as1.

(12)

where Gλ is a reward function for the λ-th goal, ui
 is the i-th agent’s motor output, and x’ is

the x in the next step. Gλ in this framework is not assumed to have motor outputs as
variables of the function. The optimal value function for the i-th agent depends on the other
agent’s policy, uj

 . Here, we define as the i-th agent’s policy that maximizes the j-th
agent’s maximized value function whose goal is Gλ.

(13)

(14)

1 In this section, we have assumed i ≠ j without making any remarks.

 Machine Learning

392

The assumptions, A2 and A3, we made in the previous section can be translated into the
following,
A’2 : We assumed the j-th agent would use the controller, , and

A’3 :
where x0 is the initial point of the task. The following relationship can easily be derived from
the definition.

(15)

Therefore, the i-th agent’s internal goal becomes the same as j-th agent’s goal, if the i-th
agent select a reward function that maximizes the value function under the condition that
the j-th agent uses controller . When the initial point is not fixed, Vi(x0) is substituted by
the averaged cumulative sum of rewards the i−th agent obtains, who starts the task around
the initial point, x0. This leads us to the algorithm eq.11.

5. Experiment
We evaluate SSRL in this section. To fulfill all the assumptions made in Section 4 completely
is difficult in a realistic task environment. The task described in this section roughly satisfies
the assumptions, A’2 and A’3.

5.1 Conditions
We applied the proposed method to the truck-pushing task shown in Fig. 7. Two agents in
the task environment, “Leader” and “Follower,”cooperatively push a truck to various
locations. Both agents can adjust the truck’s velocity and the angle of the handle. However, a
single agent cannot achieve the task alone because its control force is limited. In addition,
the Leader has all fixed policies for all sub-goals beforehand, and holds a stake in deciding
the next goal. However, the agents cannot communicate with each other. Therefore, the
agents cannot “explicitly” communicate their intentions. The Follower perceives situation F j

by using SSRL, changes its internal goal Gm
 based on the situation, and learns how to

achieve the collaborative task. The two agents output the angle of the handle, θL, θF, and the
wheel’s rotating speed, ωL, ωF. Here，the final motor output to the truck, θ, ω, is defined as

 (16)

 (17)

where Kθ and Kω are the gain parameters of the truck. Kθ and Kω were set to 0.5 in this
experiment. The Leader’s controller was designed to approximately satisfy the assumptions
in Section 3. The controller in this experiment was a simple PD controller. The Follower’s
state, s, was defined as s = [ρ,]. The state space was digitized into 10 × 8 parts. The action
space was defined as θF = {−π/4,−π/8, 0, π/8, π/4} and ωF = {0.0, 3.0}. As a result of the two
agents’ actions, the truck’s angular velocity, Ω, was observed by the Follower agent. Ω, θ,
and ω have a relationship of

 (18)

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

393

The agents can carry the truck to a certain goal by cooperatively controlling Ω. The main
state variables are shown in Fig. 8. Internal reward function Gm is defined as

(19)

where C is the position of the truck, and Goalm is the position of the m-th goal.

Fig. 7. Simple truck-pushing task by pair of agents

Fig. 8. State variables and parameters in task environment

5.2 Experiment 1: implicit estimation of another’s intention
Wwe fisrt conducted an experiment in which the Follower estimated the Leader’s goal,
where the Leader selected one of three sub-goals, and learned how to achieve the
collaborative task (Fig. 9, top). There were three goals, and the Leader changed its goals
from G1− > G2− > G3 alternately every 1000 trials.
In contrast to simple reinforcement learning, the Follower agent not only has to learn the
policies for the goals but also the state for predictors the relationship between the current
situation and the internal goal by updating these parameters.

 Machine Learning

392

The assumptions, A2 and A3, we made in the previous section can be translated into the
following,
A’2 : We assumed the j-th agent would use the controller, , and

A’3 :
where x0 is the initial point of the task. The following relationship can easily be derived from
the definition.

(15)

Therefore, the i-th agent’s internal goal becomes the same as j-th agent’s goal, if the i-th
agent select a reward function that maximizes the value function under the condition that
the j-th agent uses controller . When the initial point is not fixed, Vi(x0) is substituted by
the averaged cumulative sum of rewards the i−th agent obtains, who starts the task around
the initial point, x0. This leads us to the algorithm eq.11.

5. Experiment
We evaluate SSRL in this section. To fulfill all the assumptions made in Section 4 completely
is difficult in a realistic task environment. The task described in this section roughly satisfies
the assumptions, A’2 and A’3.

5.1 Conditions
We applied the proposed method to the truck-pushing task shown in Fig. 7. Two agents in
the task environment, “Leader” and “Follower,”cooperatively push a truck to various
locations. Both agents can adjust the truck’s velocity and the angle of the handle. However, a
single agent cannot achieve the task alone because its control force is limited. In addition,
the Leader has all fixed policies for all sub-goals beforehand, and holds a stake in deciding
the next goal. However, the agents cannot communicate with each other. Therefore, the
agents cannot “explicitly” communicate their intentions. The Follower perceives situation F j

by using SSRL, changes its internal goal Gm
 based on the situation, and learns how to

achieve the collaborative task. The two agents output the angle of the handle, θL, θF, and the
wheel’s rotating speed, ωL, ωF. Here，the final motor output to the truck, θ, ω, is defined as

 (16)

 (17)

where Kθ and Kω are the gain parameters of the truck. Kθ and Kω were set to 0.5 in this
experiment. The Leader’s controller was designed to approximately satisfy the assumptions
in Section 3. The controller in this experiment was a simple PD controller. The Follower’s
state, s, was defined as s = [ρ,]. The state space was digitized into 10 × 8 parts. The action
space was defined as θF = {−π/4,−π/8, 0, π/8, π/4} and ωF = {0.0, 3.0}. As a result of the two
agents’ actions, the truck’s angular velocity, Ω, was observed by the Follower agent. Ω, θ,
and ω have a relationship of

 (18)

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

393

The agents can carry the truck to a certain goal by cooperatively controlling Ω. The main
state variables are shown in Fig. 8. Internal reward function Gm is defined as

(19)

where C is the position of the truck, and Goalm is the position of the m-th goal.

Fig. 7. Simple truck-pushing task by pair of agents

Fig. 8. State variables and parameters in task environment

5.2 Experiment 1: implicit estimation of another’s intention
Wwe fisrt conducted an experiment in which the Follower estimated the Leader’s goal,
where the Leader selected one of three sub-goals, and learned how to achieve the
collaborative task (Fig. 9, top). There were three goals, and the Leader changed its goals
from G1− > G2− > G3 alternately every 1000 trials.
In contrast to simple reinforcement learning, the Follower agent not only has to learn the
policies for the goals but also the state for predictors the relationship between the current
situation and the internal goal by updating these parameters.

 Machine Learning

394

The 1000 trajectories of the truck corresponding to all 1000 trials in this experiment are
shown in Figs. 10 and 11. Simple Q-learning with explicitly given internal goals and SSRL
are compared. Fig. 10 shows the results obtained from the experiment using Q-learning, and
Fig. 11 shows those from the experiment using SSRL. The task success rate is indicated in
each figure. The red curves represent the trajectories for the team that reached the goal, and
the gray curves represent the trajectories for the team that did not reach the goal. This shows
that simple Q-learning achieves a single task. However, the Follower could not coordinate
with the Leader agent after it had changed its goal because it could not discover the Leader
agent’s intentions. SSRL performs better when the Leader changes its intentions. Fig.13
shows that three predictors were generated that discover the Leader’s intentions.
Furthermore, Fig. 12 shows that appropriate internal goals were selected inside the Follower
agent.

Fig. 9. Top: cooperative action is acquired by Follower, bottom: plan toward the goal is
acquired by Leader

Fig. 10. Behaviors of truck at Follower’s learning stage with single Q-table and internal goal-
switching module without state predictors

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

395

Fig. 11. Behaviors of truck at Follower’s learning stage with SSRL

Fig. 12. Time course of probabilities where m-th internal goal is selected

Fig. 13. Time course of probabilities that environment being faced is the i-th situation

 Machine Learning

394

The 1000 trajectories of the truck corresponding to all 1000 trials in this experiment are
shown in Figs. 10 and 11. Simple Q-learning with explicitly given internal goals and SSRL
are compared. Fig. 10 shows the results obtained from the experiment using Q-learning, and
Fig. 11 shows those from the experiment using SSRL. The task success rate is indicated in
each figure. The red curves represent the trajectories for the team that reached the goal, and
the gray curves represent the trajectories for the team that did not reach the goal. This shows
that simple Q-learning achieves a single task. However, the Follower could not coordinate
with the Leader agent after it had changed its goal because it could not discover the Leader
agent’s intentions. SSRL performs better when the Leader changes its intentions. Fig.13
shows that three predictors were generated that discover the Leader’s intentions.
Furthermore, Fig. 12 shows that appropriate internal goals were selected inside the Follower
agent.

Fig. 9. Top: cooperative action is acquired by Follower, bottom: plan toward the goal is
acquired by Leader

Fig. 10. Behaviors of truck at Follower’s learning stage with single Q-table and internal goal-
switching module without state predictors

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

395

Fig. 11. Behaviors of truck at Follower’s learning stage with SSRL

Fig. 12. Time course of probabilities where m-th internal goal is selected

Fig. 13. Time course of probabilities that environment being faced is the i-th situation

 Machine Learning

396

Fig. 14. Reward function for Follower’s internal goals

These results show that SSRL enabled the Follower to implicitly estimate the Leader’s
intention.

5.3 Experiment 2: sequential collaborative task
After the follower had acquired the ability to implicitly estimate the leader’s intentions, the
next experiment was carried out. The experimental environment is shown at the bottom of
Fig. 9. The task required the agents to go through several checkpoints (sub-goals), and reach
the final goal. The Follower in the next experiment exploited the SSRL acquired through
Experiment 1, and the Leader explored and planed the path to the final goal. The Leader
agent can chose the next sub-goal out of three check points that correspond to three goals in
Experiment 1, i.e., “up,” “upper right,” and “right,” from the current checkpoint as shown in
Fig. 9. There are also two “cliffs” in this task environment. If the truck enters the cliffs, it can
no longer move. The Leader learned the path to the final goal by using a simple Q-learning.
The reward function for the Leader is shown in Fig. 15. Two kinds of Follower agents are
compared in this experiment. The first has a single Q-learning architecture and a perfect
internal goal switch. The second has SSRL.
Fig. 16 shows the results for the experiment using simple Q-learning. Fig. 17 shows the
results for the experiment using SSRL. Fig. 18 shows the success rate representing the
probability that the team will finally reach the final goal. The results reveal that the team
whose Follower agent could not discriminate the Leader’s intentions performed worse than
the team whose Follower agent could distinguish the Leader’s intentions. Without such a
distributed memory system like SSRL, the Follower would not be able to up with in the
Leader’s intentions. In addition to disadvantage, the poor performance of the Follower
agent adversely affects the Leader’s learning process. However, the Follower with SSRL
could estimate the Leader’s intentions and keep up with the Leader’s plans although there
was no explicit communication between the two agents.

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

397

Fig. 15. Reward function for Leader agent for planning path

Fig. 16. Behaviors of truck at Leader’s learning stage with single Q-table and internal goal
switching module without Situation Recognizer

However, the success rate for the collaborative task saturated at about 40%. The reason for
this is that the Follower notices changes in the Leader’s intentions after these changes have
sufficiently affected the state variables. The delay until the Follower becomes aware of the
changes is sometimes critical, and the truck occasionally fell into the cliffs. To estimate the
other’s intentions without any explicit signs outside the state variables, the information has

 Machine Learning

396

Fig. 14. Reward function for Follower’s internal goals

These results show that SSRL enabled the Follower to implicitly estimate the Leader’s
intention.

5.3 Experiment 2: sequential collaborative task
After the follower had acquired the ability to implicitly estimate the leader’s intentions, the
next experiment was carried out. The experimental environment is shown at the bottom of
Fig. 9. The task required the agents to go through several checkpoints (sub-goals), and reach
the final goal. The Follower in the next experiment exploited the SSRL acquired through
Experiment 1, and the Leader explored and planed the path to the final goal. The Leader
agent can chose the next sub-goal out of three check points that correspond to three goals in
Experiment 1, i.e., “up,” “upper right,” and “right,” from the current checkpoint as shown in
Fig. 9. There are also two “cliffs” in this task environment. If the truck enters the cliffs, it can
no longer move. The Leader learned the path to the final goal by using a simple Q-learning.
The reward function for the Leader is shown in Fig. 15. Two kinds of Follower agents are
compared in this experiment. The first has a single Q-learning architecture and a perfect
internal goal switch. The second has SSRL.
Fig. 16 shows the results for the experiment using simple Q-learning. Fig. 17 shows the
results for the experiment using SSRL. Fig. 18 shows the success rate representing the
probability that the team will finally reach the final goal. The results reveal that the team
whose Follower agent could not discriminate the Leader’s intentions performed worse than
the team whose Follower agent could distinguish the Leader’s intentions. Without such a
distributed memory system like SSRL, the Follower would not be able to up with in the
Leader’s intentions. In addition to disadvantage, the poor performance of the Follower
agent adversely affects the Leader’s learning process. However, the Follower with SSRL
could estimate the Leader’s intentions and keep up with the Leader’s plans although there
was no explicit communication between the two agents.

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

397

Fig. 15. Reward function for Leader agent for planning path

Fig. 16. Behaviors of truck at Leader’s learning stage with single Q-table and internal goal
switching module without Situation Recognizer

However, the success rate for the collaborative task saturated at about 40%. The reason for
this is that the Follower notices changes in the Leader’s intentions after these changes have
sufficiently affected the state variables. The delay until the Follower becomes aware of the
changes is sometimes critical, and the truck occasionally fell into the cliffs. To estimate the
other’s intentions without any explicit signs outside the state variables, the information has

 Machine Learning

398

Fig. 17. Behaviors of truck at Leader’s learning stage with SSRL

Fig. 18. Success rate for cooperative task

to be embedded in the state variables, which are the objectives of the team’s control task.
Our results suggest that it is not impossible to implicitly estimate the other’s intentions, but
it is important to have a communication channel whose variables are not related to the state
variables, which are the objectives of the task, e.g., voice, colar sign, or marker. This must be
the reason why we use explicit sign in collaborative tasks. As we mentioned, the “implicit
estimation” must back up and complement “explicit estimation.” “Explicit estimation” must
be faster and better than “implicit estimation” as far as a code table was shared in a team.
However, this does not mean “explicit estimation” is superior to“implicit estimation.” They
are complementary architectures.

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

399

6. Conclusion
We described a framework for implicitly estimating another’s intentions based on modular
reinforcement learning. We applied the framework to a truckpushing task by two agents as
a concrete example. In the experiment, the Follower agent could perceive changes in the
Leader’s intentions and estimate his intentions without observing any explicit signs on any
action outputs from the Leader. This demonstrated that autonomous agents can
cooperatively achieve a task without any explicit communication. Self-enclosed autonomous
agents can indirectly perceive the other’s changes in intentions from changes in their
surrounding environment. It is revealed that multiple internal models help an autonomous
agent to achieve collaborative task.
In the context of artificial intelligence, “symbol grounding problem” is considered as an
important problem. The problem deals with how robots and people can relate their
symbolic system to their physical and embodied experiences. The symbolic system
mentioned here is also used in communication, usually. Takamuku et al. presented a system
for lexicon acquisition through behavior learning which is based on a modified multi-
module reinforcement. The robot in their work is able to automatically associate words to
objects with various visual features based on similarities in features of dynamics[8]. At the
same time, Taniguchi et al. described an integrative learning architecture for spike timing-
dependent plasticity (STDP) and the reinforcement learning schemata model (RLSM) [12,
11]. The learning architecture enables an autonomous robot to acquire behavioral concepts
and signs representing the situation where the robot should initiate the behavior. They
called this process “symbol emergence.” The symbolic system plays a important role in
human social communication.They also utilize modular learning architecture to describe the
process of symbol organization. However, they treat bottomup organization of “explicit
symbols,” which is assumed to be used explicit communication.
In many researches, “symbolic communication” means exchanging discrete signals.
However, the essential point of symbolic communication is not such an externalized signs,
but an adaptive formation of “interpretant” from the viewpoint of Peirce’s semiotics.
Therefore, we focus on the implicit communication and its bottom-up process of
organization.
However, the system we treated in this chapter is constrained to some extent. This
framework for implicit estimates does not always work well. If the system does not satisfy
the assumptions made in Section 4, the framework is not guaranteed to work. The Leader’s
policies are fixed when the Follower agent is learning its policies, predictors, and network
connections in our framework. The model described in this chapter may not work in the
simultaneous multi-agent reinforcement learning environment. We intend to take these into
account in future work.

7. References
[1] K. Doya, N. Sugimoto, D. Wolpert, and M. Kawato. Selecting optimal behaviors based on

context. International symposium on emergent mechanisms of communication, 2003.
[2] Charles Hartshorne, Paul Weiss, and Arthur W. Burks, editors. Collected Papers of Charles

Sanders Peirce. Thoemmes Pr, 4 1997.
[3] M. Haruno, D.M.Wolpert, and M. Kawato. Mosaic model for sensorimotor learning and

control. Neural Computation, 13:2201–2220, 2001.

 Machine Learning

398

Fig. 17. Behaviors of truck at Leader’s learning stage with SSRL

Fig. 18. Success rate for cooperative task

to be embedded in the state variables, which are the objectives of the team’s control task.
Our results suggest that it is not impossible to implicitly estimate the other’s intentions, but
it is important to have a communication channel whose variables are not related to the state
variables, which are the objectives of the task, e.g., voice, colar sign, or marker. This must be
the reason why we use explicit sign in collaborative tasks. As we mentioned, the “implicit
estimation” must back up and complement “explicit estimation.” “Explicit estimation” must
be faster and better than “implicit estimation” as far as a code table was shared in a team.
However, this does not mean “explicit estimation” is superior to“implicit estimation.” They
are complementary architectures.

Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning

399

6. Conclusion
We described a framework for implicitly estimating another’s intentions based on modular
reinforcement learning. We applied the framework to a truckpushing task by two agents as
a concrete example. In the experiment, the Follower agent could perceive changes in the
Leader’s intentions and estimate his intentions without observing any explicit signs on any
action outputs from the Leader. This demonstrated that autonomous agents can
cooperatively achieve a task without any explicit communication. Self-enclosed autonomous
agents can indirectly perceive the other’s changes in intentions from changes in their
surrounding environment. It is revealed that multiple internal models help an autonomous
agent to achieve collaborative task.
In the context of artificial intelligence, “symbol grounding problem” is considered as an
important problem. The problem deals with how robots and people can relate their
symbolic system to their physical and embodied experiences. The symbolic system
mentioned here is also used in communication, usually. Takamuku et al. presented a system
for lexicon acquisition through behavior learning which is based on a modified multi-
module reinforcement. The robot in their work is able to automatically associate words to
objects with various visual features based on similarities in features of dynamics[8]. At the
same time, Taniguchi et al. described an integrative learning architecture for spike timing-
dependent plasticity (STDP) and the reinforcement learning schemata model (RLSM) [12,
11]. The learning architecture enables an autonomous robot to acquire behavioral concepts
and signs representing the situation where the robot should initiate the behavior. They
called this process “symbol emergence.” The symbolic system plays a important role in
human social communication.They also utilize modular learning architecture to describe the
process of symbol organization. However, they treat bottomup organization of “explicit
symbols,” which is assumed to be used explicit communication.
In many researches, “symbolic communication” means exchanging discrete signals.
However, the essential point of symbolic communication is not such an externalized signs,
but an adaptive formation of “interpretant” from the viewpoint of Peirce’s semiotics.
Therefore, we focus on the implicit communication and its bottom-up process of
organization.
However, the system we treated in this chapter is constrained to some extent. This
framework for implicit estimates does not always work well. If the system does not satisfy
the assumptions made in Section 4, the framework is not guaranteed to work. The Leader’s
policies are fixed when the Follower agent is learning its policies, predictors, and network
connections in our framework. The model described in this chapter may not work in the
simultaneous multi-agent reinforcement learning environment. We intend to take these into
account in future work.

7. References
[1] K. Doya, N. Sugimoto, D. Wolpert, and M. Kawato. Selecting optimal behaviors based on

context. International symposium on emergent mechanisms of communication, 2003.
[2] Charles Hartshorne, Paul Weiss, and Arthur W. Burks, editors. Collected Papers of Charles

Sanders Peirce. Thoemmes Pr, 4 1997.
[3] M. Haruno, D.M.Wolpert, and M. Kawato. Mosaic model for sensorimotor learning and

control. Neural Computation, 13:2201–2220, 2001.

 Machine Learning

400

[4] K. Murphy. Learning switching kalman-filter models. Compaq Cambridge Research Lab
Tech Report, pages 98–10, 1998.

[5] C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal,,
27:379–423, and 623–656, 1948.

[6] R. Sutton and A.G. Barto. Reinforcement Learning : An Introduction. The MIT Press, 1998.
[7] Y. Takahashi et al. Modular learning syatem and scheduling for behavior acquisition in

multi-agent environment. In RoboCup 2004 Symposium papers and team description
papers, CD-ROM, 2004.

[8] Shinya Takamuku, Yasutake Takahashi, and Minoru Asada. Lexicon acquisition based
on object-oriented behavior learning. Advanced Robotics, 20(10):1127–1145, 2006.

[9] J. Tani, M. Ito, and Y. Sugita. Seif-organization of distributedly represented mulyiple
behavior schemata in a mirror system:reviews of robots using rnnpb. Neural
Networks,, 17:1273–1289, 2004.

[10] J. Tani and S. Nolfi. Learning to perceive the world as articulated: an approach for
hierarchical learning in sensory-motor systems. Neural Networks, 12:1131–1141,
1999.

[11] T. Taniguchi and T. Sawaragi. Symbol emergence by combining a reinforcement
learning schema model with asymmetric synaptic plasticity. In 5th International
Conference on Development and Learning, 2006.

[12] T. Taniguchi and T. Sawaragi. Incremental acquisition of behaviors and signs based on a
reinforcement learning schemata model and a spike timing-dependent plasticity
network. Advanced Robotics, 21(10):1177–1199, 2007.

[13] T. Taniguchi and T. Sawaragi. Incremental acquisition of multiple nonlinear forward
models based on differentiation process of schema model. Neural Networks,
21(1):13–27, 2008.

[14] C. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning, 8:279–292, 1992.
[15] D.M. Wolpert, K. Doya, and M. Kawato. A unifying comuputational framework for

motor control and social interaction. Phil Trans R Soc Lond B, 358:593–602, 2003.
[16] D.M. Wolpert, Z. Ghahramani, and M. I. Jordan. An internal model for sensorimotor

integration. science, 269:1880–1882, 1995.
[17] D.M. Wolpert and M. Kawato. Multiple paired forward and inverse models for motor

control. Neural Networks, 11:1317–1329, 1998.

20

Machine Learning for Sequential Behavior
Modeling and Prediction

Xin Xu
Institute of Automation, National University of Defense Technology,

Changsha, 410073, China

1. Introduction
In the information era, as computer networks and related applications become more and
more popular, security problems are more and more serious in global information
infrastructure. It was reported that in the past two years, large amounts of network attacks
and computer viruses caused great damages to global economy and the potential threats to
the global information infrastructure have increased a lot. To defend various cyber attacks
and computer viruses, lots of computer security techniques have been studied, which
include cryptography, firewalls and intrusion detection, etc. As an important computer
security technique, intrusion detection [1,2] has been considered to be more promising for
defending complex computer attacks than other techniques such as cryptography, firewalls,
etc. The aim of intrusion detection is to find cyber attacks or non-permitted deviations of the
characteristic properties in a computer system or monitored networks. Thus, one of the
central problems for intrusion detection systems (IDSs) is to build effective behavior models
or patterns to distinguish normal behaviors from abnormal behaviors by observing collected
audit data. To solve this problem, earlier IDSs usually rely on security experts to analyze the
audit data and construct intrusion detection rules manually [2]. However, since the amount
of audit data, including network data, process execution traces and user command data, etc.,
increases vary fast, it becomes a time-consuming, tedious and even impossible work for
human experts to analyze dynamic, huge volumes of audit data and extract attack
signatures or detection rules. Furthermore, detection rules constructed by human experts
are usually based on fixed features or signatures of existing attacks, so it will be very
difficult for these rules to detect deformed or even completely new attacks.
According to the differences in the monitored data, IDSs can be mainly classified into two
categories, i.e., network-based intrusion detection and host-based intrusion detection.
Network-based intrusion detection observes data from network packets and extracts various
features from them, which usually include connection features, traffic features, and content
features. A systematic discussion on feature representation in network-based intrusion
detection can be found in [3]. For host-based intrusion detection, various observation data
from the corresponding operation systems are collected, which mainly include system call
data and shell command data [4], etc. Despite of having different observation data, both
host-based and network-based intrusion detection need to improve the detection accuracy
for large volumes and variability of normal and attack behaviors. Aiming at this problem,

 Machine Learning

400

[4] K. Murphy. Learning switching kalman-filter models. Compaq Cambridge Research Lab
Tech Report, pages 98–10, 1998.

[5] C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal,,
27:379–423, and 623–656, 1948.

[6] R. Sutton and A.G. Barto. Reinforcement Learning : An Introduction. The MIT Press, 1998.
[7] Y. Takahashi et al. Modular learning syatem and scheduling for behavior acquisition in

multi-agent environment. In RoboCup 2004 Symposium papers and team description
papers, CD-ROM, 2004.

[8] Shinya Takamuku, Yasutake Takahashi, and Minoru Asada. Lexicon acquisition based
on object-oriented behavior learning. Advanced Robotics, 20(10):1127–1145, 2006.

[9] J. Tani, M. Ito, and Y. Sugita. Seif-organization of distributedly represented mulyiple
behavior schemata in a mirror system:reviews of robots using rnnpb. Neural
Networks,, 17:1273–1289, 2004.

[10] J. Tani and S. Nolfi. Learning to perceive the world as articulated: an approach for
hierarchical learning in sensory-motor systems. Neural Networks, 12:1131–1141,
1999.

[11] T. Taniguchi and T. Sawaragi. Symbol emergence by combining a reinforcement
learning schema model with asymmetric synaptic plasticity. In 5th International
Conference on Development and Learning, 2006.

[12] T. Taniguchi and T. Sawaragi. Incremental acquisition of behaviors and signs based on a
reinforcement learning schemata model and a spike timing-dependent plasticity
network. Advanced Robotics, 21(10):1177–1199, 2007.

[13] T. Taniguchi and T. Sawaragi. Incremental acquisition of multiple nonlinear forward
models based on differentiation process of schema model. Neural Networks,
21(1):13–27, 2008.

[14] C. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning, 8:279–292, 1992.
[15] D.M. Wolpert, K. Doya, and M. Kawato. A unifying comuputational framework for

motor control and social interaction. Phil Trans R Soc Lond B, 358:593–602, 2003.
[16] D.M. Wolpert, Z. Ghahramani, and M. I. Jordan. An internal model for sensorimotor

integration. science, 269:1880–1882, 1995.
[17] D.M. Wolpert and M. Kawato. Multiple paired forward and inverse models for motor

control. Neural Networks, 11:1317–1329, 1998.

20

Machine Learning for Sequential Behavior
Modeling and Prediction

Xin Xu
Institute of Automation, National University of Defense Technology,

Changsha, 410073, China

1. Introduction
In the information era, as computer networks and related applications become more and
more popular, security problems are more and more serious in global information
infrastructure. It was reported that in the past two years, large amounts of network attacks
and computer viruses caused great damages to global economy and the potential threats to
the global information infrastructure have increased a lot. To defend various cyber attacks
and computer viruses, lots of computer security techniques have been studied, which
include cryptography, firewalls and intrusion detection, etc. As an important computer
security technique, intrusion detection [1,2] has been considered to be more promising for
defending complex computer attacks than other techniques such as cryptography, firewalls,
etc. The aim of intrusion detection is to find cyber attacks or non-permitted deviations of the
characteristic properties in a computer system or monitored networks. Thus, one of the
central problems for intrusion detection systems (IDSs) is to build effective behavior models
or patterns to distinguish normal behaviors from abnormal behaviors by observing collected
audit data. To solve this problem, earlier IDSs usually rely on security experts to analyze the
audit data and construct intrusion detection rules manually [2]. However, since the amount
of audit data, including network data, process execution traces and user command data, etc.,
increases vary fast, it becomes a time-consuming, tedious and even impossible work for
human experts to analyze dynamic, huge volumes of audit data and extract attack
signatures or detection rules. Furthermore, detection rules constructed by human experts
are usually based on fixed features or signatures of existing attacks, so it will be very
difficult for these rules to detect deformed or even completely new attacks.
According to the differences in the monitored data, IDSs can be mainly classified into two
categories, i.e., network-based intrusion detection and host-based intrusion detection.
Network-based intrusion detection observes data from network packets and extracts various
features from them, which usually include connection features, traffic features, and content
features. A systematic discussion on feature representation in network-based intrusion
detection can be found in [3]. For host-based intrusion detection, various observation data
from the corresponding operation systems are collected, which mainly include system call
data and shell command data [4], etc. Despite of having different observation data, both
host-based and network-based intrusion detection need to improve the detection accuracy
for large volumes and variability of normal and attack behaviors. Aiming at this problem,

 Machine Learning

402

lots of research work has been devoted to develop intrusion detection systems (IDSs) using
various artificial intelligence (AI) methods and tools [3-5]. Thus, the motivations for
applying AI techniques in IDSs are due to large amounts of dynamic behaviors and the lack
of a priori knowledge for unknown attacks. How to establish appropriate behavior models
has been a central problem in the development of IDSs since the distinctions between
normal behaviors and computer attacks are usually very vague. In earlier research on IDSs,
it was very popular to separately construct behavior models either for normal usages or
attacks. To model intrusion behaviors alone is called misuse detection and anomaly
detection refers to establish profiles of normal usages. In misuse detection, behavior patterns
or models of known attacks are constructed and alarms are raised when the patterns of
observation data match the attack models. On the other hand, anomaly detection only
models the patterns of normal behaviors and detects any possible attacks as deviations from
the normal behavior model. Until now, although there have been many advances in misuse
detection and anomaly detection, some significant challenges still exist to meet the
requirements of defending computer systems from attacks with increasing complexity,
intelligence, and variability. For misuse detection, the inability of detecting new attacks is its
inevitable weakness and it is very hard to improve the performance of pure misuse
detection systems for the sake of increasing amounts of novel attacks. Although anomaly
detection has the ability of detecting new attacks, it usually suffers from high rates of false
alarms since it is very difficult to obtain a complete model of normal behaviors.
To solve the above problems in IDSs, machine learning and data mining methods for
intrusion detection have received a lot of research interests in recent years [4-10]. One
motivation for applying machine learning and data mining techniques in IDSs is to
construct and optimize detection models automatically, which will eliminate the tedious
work of human experts for data analysis and model building in earlier IDSs. To detect novel
attacks, several adaptive anomaly detection methods were proposed by employing data
mining methods based on statistics [7], or clustering techniques [10]. Recently, there have
been several efforts in designing anomaly detection algorithms using supervised learning
algorithms, such as neural networks [8], support vector machines [11], etc. In addition to
supervised or inductive learning methods for misuse and anomaly detection, another
approach to adaptive intrusion detection is to use unsupervised learning methods. Unlike
supervised learning methods, where detection models are constructed by careful labeling of
normal behaviors, unsupervised anomaly detection tries to detect anomalous behaviors
with very little a priori knowledge about the training data. However, as studied in [12], the
performance of pure unsupervised anomaly detection approaches is usually unsatisfactory,
e.g., it was demonstrated in [12] that supervised learning methods significantly outperform
the unsupervised ones if the test data contains no unknown attacks.
Despite of many advances that have been achieved, existing IDSs still have some difficulties
in improving their performance to meet the needs of detecting increasing types of attacks in
high-speed networks. One difficulty is to improve detection abilities for complex or new
attacks without increasing false alarms. Since misuse IDSs employ signatures of known
attacks, it is hard for them to detect deformed attacks, notwithstanding completely new
attacks. On the other hand, although anomaly detection can detect new types of attacks by
constructing a model of normal behaviors, the false alarm rates in anomaly-based IDSs are
usually high. How to increase the detecting ability while maintaining low false alarms is still
an open problem of IDS research.

Machine Learning for Sequential Behavior Modeling and Prediction

403

In addition to the ability of realizing automatic model construction for misuse detection and
anomaly detection, another promising application of machine learning methods in intrusion
detection is to build dynamic behavior modeling frameworks which can combine the
advantages of misuse detection and anomaly detection while eliminate the weakness of
both. Many previous results on misuse detection and anomaly detection were usually based
on static behavior modeling, i.e., normal behaviors or attack behaviors were modeled as
static feature patterns and the intrusion detection problem was transformed to a pattern
matching or classification procedure. However, dynamic behavior modeling is different
from static behavior modeling approaches in two aspects. One aspect is that the
relationships between temporal features are explicitly modeled in dynamic modeling
approaches while static modeling only considers time independent features. The other
aspect is that probabilistic frameworks are usually employed in dynamic behavior models
while most static models make use of deterministic decision functions. Furthermore, many
complex attacks are composed of multiple stages of behaviors, for example, a remote-to-
local (R2L) attack commonly performs probe attacks to find target computers with
vulnerabilities at first, and later realizes various buffer overflow attacks by utilizing the
vulnerabilities in the target host computers. Therefore, sequential modeling approaches will
be more beneficial to precisely describe the properties of complex multi-stage attacks. In [4],
dynamic behavior modeling and static behavior modeling approaches were discussed and
compared in detail, where a Hidden Markov Model was proposed to establish dynamic
behavior models of audit data in host computers including system call data and shell
command data. It was demonstrated in [4] that dynamic behavior modeling is more suitable
for sequential data patterns such as system call data of host computers. However, the main
difficulty for applying HMMs in real-time IDS applications is that the computational costs of
HMM training and testing increase very fast with the number of states and the length of
observation traces.
In this Chapter, some recently developed machine learning techniques for sequential
behavior modeling and prediction are studied, where adaptive intrusion detection in
computer systems is used as the application case. At first, a general framework for applying
machine learning to computer intrusion detection is analyzed. Then, reinforcement learning
algorithms based on Markov reward models as well as previous approaches using Hidden
Markov Models (HMMs) are studied for sequential behavior modeling and prediction in
adaptive intrusion detection. At last, the performance of different methods are evaluated
and compared.

2. A general framework of ML applications in intrusion detection
In [9], based on a comprehensive analysis for the current research challenges in intrusion
detection, a framework for adaptive intrusion detection using machine learning techniques
was presented, which is shown in Fig.1. The framework is composed of three main parts.
The first one is for data acquisition and feature extraction. Data acquisition is realized by a
data sensing module that observes network flow data or process execution trajectories from
network or host computers. After pre-processing of the raw data, a feature extraction
module is used to convert the raw data into feature vectors that can be processed by
machine learning algorithms and an extraction model based on unsupervised learning can
be employed to extract more useful features or reduce the dimensionality of feature vectors.
This process for automated feature extraction is a component of the machine learning part in

 Machine Learning

402

lots of research work has been devoted to develop intrusion detection systems (IDSs) using
various artificial intelligence (AI) methods and tools [3-5]. Thus, the motivations for
applying AI techniques in IDSs are due to large amounts of dynamic behaviors and the lack
of a priori knowledge for unknown attacks. How to establish appropriate behavior models
has been a central problem in the development of IDSs since the distinctions between
normal behaviors and computer attacks are usually very vague. In earlier research on IDSs,
it was very popular to separately construct behavior models either for normal usages or
attacks. To model intrusion behaviors alone is called misuse detection and anomaly
detection refers to establish profiles of normal usages. In misuse detection, behavior patterns
or models of known attacks are constructed and alarms are raised when the patterns of
observation data match the attack models. On the other hand, anomaly detection only
models the patterns of normal behaviors and detects any possible attacks as deviations from
the normal behavior model. Until now, although there have been many advances in misuse
detection and anomaly detection, some significant challenges still exist to meet the
requirements of defending computer systems from attacks with increasing complexity,
intelligence, and variability. For misuse detection, the inability of detecting new attacks is its
inevitable weakness and it is very hard to improve the performance of pure misuse
detection systems for the sake of increasing amounts of novel attacks. Although anomaly
detection has the ability of detecting new attacks, it usually suffers from high rates of false
alarms since it is very difficult to obtain a complete model of normal behaviors.
To solve the above problems in IDSs, machine learning and data mining methods for
intrusion detection have received a lot of research interests in recent years [4-10]. One
motivation for applying machine learning and data mining techniques in IDSs is to
construct and optimize detection models automatically, which will eliminate the tedious
work of human experts for data analysis and model building in earlier IDSs. To detect novel
attacks, several adaptive anomaly detection methods were proposed by employing data
mining methods based on statistics [7], or clustering techniques [10]. Recently, there have
been several efforts in designing anomaly detection algorithms using supervised learning
algorithms, such as neural networks [8], support vector machines [11], etc. In addition to
supervised or inductive learning methods for misuse and anomaly detection, another
approach to adaptive intrusion detection is to use unsupervised learning methods. Unlike
supervised learning methods, where detection models are constructed by careful labeling of
normal behaviors, unsupervised anomaly detection tries to detect anomalous behaviors
with very little a priori knowledge about the training data. However, as studied in [12], the
performance of pure unsupervised anomaly detection approaches is usually unsatisfactory,
e.g., it was demonstrated in [12] that supervised learning methods significantly outperform
the unsupervised ones if the test data contains no unknown attacks.
Despite of many advances that have been achieved, existing IDSs still have some difficulties
in improving their performance to meet the needs of detecting increasing types of attacks in
high-speed networks. One difficulty is to improve detection abilities for complex or new
attacks without increasing false alarms. Since misuse IDSs employ signatures of known
attacks, it is hard for them to detect deformed attacks, notwithstanding completely new
attacks. On the other hand, although anomaly detection can detect new types of attacks by
constructing a model of normal behaviors, the false alarm rates in anomaly-based IDSs are
usually high. How to increase the detecting ability while maintaining low false alarms is still
an open problem of IDS research.

Machine Learning for Sequential Behavior Modeling and Prediction

403

In addition to the ability of realizing automatic model construction for misuse detection and
anomaly detection, another promising application of machine learning methods in intrusion
detection is to build dynamic behavior modeling frameworks which can combine the
advantages of misuse detection and anomaly detection while eliminate the weakness of
both. Many previous results on misuse detection and anomaly detection were usually based
on static behavior modeling, i.e., normal behaviors or attack behaviors were modeled as
static feature patterns and the intrusion detection problem was transformed to a pattern
matching or classification procedure. However, dynamic behavior modeling is different
from static behavior modeling approaches in two aspects. One aspect is that the
relationships between temporal features are explicitly modeled in dynamic modeling
approaches while static modeling only considers time independent features. The other
aspect is that probabilistic frameworks are usually employed in dynamic behavior models
while most static models make use of deterministic decision functions. Furthermore, many
complex attacks are composed of multiple stages of behaviors, for example, a remote-to-
local (R2L) attack commonly performs probe attacks to find target computers with
vulnerabilities at first, and later realizes various buffer overflow attacks by utilizing the
vulnerabilities in the target host computers. Therefore, sequential modeling approaches will
be more beneficial to precisely describe the properties of complex multi-stage attacks. In [4],
dynamic behavior modeling and static behavior modeling approaches were discussed and
compared in detail, where a Hidden Markov Model was proposed to establish dynamic
behavior models of audit data in host computers including system call data and shell
command data. It was demonstrated in [4] that dynamic behavior modeling is more suitable
for sequential data patterns such as system call data of host computers. However, the main
difficulty for applying HMMs in real-time IDS applications is that the computational costs of
HMM training and testing increase very fast with the number of states and the length of
observation traces.
In this Chapter, some recently developed machine learning techniques for sequential
behavior modeling and prediction are studied, where adaptive intrusion detection in
computer systems is used as the application case. At first, a general framework for applying
machine learning to computer intrusion detection is analyzed. Then, reinforcement learning
algorithms based on Markov reward models as well as previous approaches using Hidden
Markov Models (HMMs) are studied for sequential behavior modeling and prediction in
adaptive intrusion detection. At last, the performance of different methods are evaluated
and compared.

2. A general framework of ML applications in intrusion detection
In [9], based on a comprehensive analysis for the current research challenges in intrusion
detection, a framework for adaptive intrusion detection using machine learning techniques
was presented, which is shown in Fig.1. The framework is composed of three main parts.
The first one is for data acquisition and feature extraction. Data acquisition is realized by a
data sensing module that observes network flow data or process execution trajectories from
network or host computers. After pre-processing of the raw data, a feature extraction
module is used to convert the raw data into feature vectors that can be processed by
machine learning algorithms and an extraction model based on unsupervised learning can
be employed to extract more useful features or reduce the dimensionality of feature vectors.
This process for automated feature extraction is a component of the machine learning part in

 Machine Learning

404

the framework. In the machine learning part, audit data for training are stored in databases
and they can be dynamically updated by human analysts or by machine learning
algorithms. The third part in the framework depicted in Fig.1 is for real-time detection,
which is to make use of the detection models as well as the extracted feature vectors to
determine whether an observed pattern or a sequence of patterns is normal or abnormal.
To automatically construct detection models from the audit data, various machine learning
methods can be applied, which include unsupervised learning, supervised learning and
reinforcement learning. In addition, there are three perspectives of research challenges for
intrusion detection, which include feature extraction, classifier construction and sequential
behavior prediction. Although various hybrid approaches may be employed, it was
illustrated that these three perspectives of research challenges are mainly suitable for
machine learning methods using unsupervised, supervised and reinforcement learning
algorithms, respectively. In contrast, in the previous adaptive IDS framework in [13], feature
selection and classifier construction of IDSs were mainly tackled by traditional association
data mining methods such as the Apriori algorithm.

2.1 Feature extraction
As illustrated in Fig.1, feature extraction is the basis for high-performance intrusion
detection using data mining since the detection models have to be optimized based on the
selection of feature spaces. If the features are improperly selected, the ultimate performance
of detection models will be influenced a lot. This problem has been studied during the early
work of W.K. Lee and his research results lead to the benchmark dataset KDD99 [13-14],
where a 41-dimensional feature vector was constructed for each network connection. The
feature extraction method in KDD99 made use of various data mining techniques to identify
some of the important features for detecting anomalous connections. The features employed
in KDD99 can serve as the basis of further feature extraction.
In KDD99, there are 494,021 records in the 10% training data set and the number of records
in the testing data set is about five million, with a 10 percent testing subset of 311028
records. The data set contains a total of 22 different attack types. There are 41 features for
each connection record that have either discrete values or continuous values. The 41-
dimensional feature can be divided into three groups. The first group of features is called
basic or intrinsic features of a network connection, which include the duration, prototype,
service, number of bytes from source IP addresses or from destination IP addresses, and
some flags in TCP connections. The second group of features in KDD99 is composed of the
content features of network connections and the third group is composed of the statistical
features that are computed either by a time window or a window of certain kind of
connections.
The feature extraction method in the KDD99 dataset has been widely used as a standard
feature construction method for network-based intrusion detection. However, in the later
work of other researchers, it was found that the 41-dimensional features are not the best
ones for intrusion detection and the performance of IDSs may be further improved by
studying new feature extraction or dimension reduction methods [11]. In [11], a
dimension reduction method based on principal component analysis (PCA) was
developed so that the classification speed of IDSs can be improved a lot without much
loss of detection precision.

Machine Learning for Sequential Behavior Modeling and Prediction

405

Fig. 1. A framework for adaptive IDSs based on machine learning

2.2 Classifier construction
After performing feature extraction of network flow data, every network connection record
can be denoted by a numerical feature vector and a class label can be assigned to the record,
i.e.,

For the extracted features of audit data such as KDD99, when labels were assigned to each
data record, the classifier construction problem can be solved by applying various
supervised learning algorithms such as neural networks, decision trees, etc. However, the
classification precision of most existing methods needs to be improved further since it is
very difficult to detect lots of new attacks by only training on limited audit data. Using
anomaly detection strategy can detect novel attacks but the false alarm rate is usually very
high since to model normal patterns very well is also hard. Thus, the classifier construction in
IDSs remains another technical challenge for intrusion detection based on machine learning.

2.3 Sequential behavior prediction
As discussed above, host-based IDSs are different from network-based IDSs in that the
observed trajectories of processes or user shell commands in a host computer are sequential

 Machine Learning

404

the framework. In the machine learning part, audit data for training are stored in databases
and they can be dynamically updated by human analysts or by machine learning
algorithms. The third part in the framework depicted in Fig.1 is for real-time detection,
which is to make use of the detection models as well as the extracted feature vectors to
determine whether an observed pattern or a sequence of patterns is normal or abnormal.
To automatically construct detection models from the audit data, various machine learning
methods can be applied, which include unsupervised learning, supervised learning and
reinforcement learning. In addition, there are three perspectives of research challenges for
intrusion detection, which include feature extraction, classifier construction and sequential
behavior prediction. Although various hybrid approaches may be employed, it was
illustrated that these three perspectives of research challenges are mainly suitable for
machine learning methods using unsupervised, supervised and reinforcement learning
algorithms, respectively. In contrast, in the previous adaptive IDS framework in [13], feature
selection and classifier construction of IDSs were mainly tackled by traditional association
data mining methods such as the Apriori algorithm.

2.1 Feature extraction
As illustrated in Fig.1, feature extraction is the basis for high-performance intrusion
detection using data mining since the detection models have to be optimized based on the
selection of feature spaces. If the features are improperly selected, the ultimate performance
of detection models will be influenced a lot. This problem has been studied during the early
work of W.K. Lee and his research results lead to the benchmark dataset KDD99 [13-14],
where a 41-dimensional feature vector was constructed for each network connection. The
feature extraction method in KDD99 made use of various data mining techniques to identify
some of the important features for detecting anomalous connections. The features employed
in KDD99 can serve as the basis of further feature extraction.
In KDD99, there are 494,021 records in the 10% training data set and the number of records
in the testing data set is about five million, with a 10 percent testing subset of 311028
records. The data set contains a total of 22 different attack types. There are 41 features for
each connection record that have either discrete values or continuous values. The 41-
dimensional feature can be divided into three groups. The first group of features is called
basic or intrinsic features of a network connection, which include the duration, prototype,
service, number of bytes from source IP addresses or from destination IP addresses, and
some flags in TCP connections. The second group of features in KDD99 is composed of the
content features of network connections and the third group is composed of the statistical
features that are computed either by a time window or a window of certain kind of
connections.
The feature extraction method in the KDD99 dataset has been widely used as a standard
feature construction method for network-based intrusion detection. However, in the later
work of other researchers, it was found that the 41-dimensional features are not the best
ones for intrusion detection and the performance of IDSs may be further improved by
studying new feature extraction or dimension reduction methods [11]. In [11], a
dimension reduction method based on principal component analysis (PCA) was
developed so that the classification speed of IDSs can be improved a lot without much
loss of detection precision.

Machine Learning for Sequential Behavior Modeling and Prediction

405

Fig. 1. A framework for adaptive IDSs based on machine learning

2.2 Classifier construction
After performing feature extraction of network flow data, every network connection record
can be denoted by a numerical feature vector and a class label can be assigned to the record,
i.e.,

For the extracted features of audit data such as KDD99, when labels were assigned to each
data record, the classifier construction problem can be solved by applying various
supervised learning algorithms such as neural networks, decision trees, etc. However, the
classification precision of most existing methods needs to be improved further since it is
very difficult to detect lots of new attacks by only training on limited audit data. Using
anomaly detection strategy can detect novel attacks but the false alarm rate is usually very
high since to model normal patterns very well is also hard. Thus, the classifier construction in
IDSs remains another technical challenge for intrusion detection based on machine learning.

2.3 Sequential behavior prediction
As discussed above, host-based IDSs are different from network-based IDSs in that the
observed trajectories of processes or user shell commands in a host computer are sequential

 Machine Learning

406

patterns. For example, if we use system call traces as audit data, a trajectory of system calls
can be modeled as a state transition sequence of short sequences. In the following Fig. 2, it is
shown that every state is a short sequence of length 3 and different system call traces can
form different state transitions, where a, b, and c are symbols for system calls in a host
computer.

Fig. 2. A sequential state transition model for host-based IDSs

Therefore, the host-based intrusion detection problem can be considered as a sequential
prediction problem since it is hard to determine a single short sequence of system calls to be
normal and normal and there are intrinsic temporal relationships between sequences.
Although we can still transform the above problem to a static classification problem by
mapping the whole trace of a process to a feature vector [15], it has been shown that
dynamic behavior modeling methods, such as Hidden Markov Models (HMMs) [4], are
more suitable for this kind of intrusion detection problem. In the following, a host-based
intrusion detection method will be studied based on reinforcement learning, where a
Markov reward model is established for sequential pattern prediction and temporal
difference (TD) algorithms [16] are used to realize high-precision prediction without many
computational costs. At first, the popular HMMs for sequential behavior modeling will be
introduced in the next section.

3. Hidden Markov Models (HMMs) for sequential behavior modeling
Due to the large volumes of audit data, to establish and modify detection models manually
by human experts becomes more and more impractical. Therefore, machine learning and
data mining methods have been widely considered as important techniques for adaptive
intrusion detection, i.e., to construct and optimize detection models automatically. Previous
work using supervised learning mainly focused on static behavior modeling methods based
on pre-processed training data with class labels. However, training data labeling is one of
the most important and difficult tasks since it is hard to extract signatures precisely even for
known attacks and there are still increasing amounts of unknown attacks. In most of the
previous works using static behavior modeling and supervised learning algorithms, every
single sample of the training data was either labeled as normal or abnormal. However, the
distinctions between normal and abnormal behaviors are usually very vague and improper
labeling may limit or worsen the detection performance of supervised learning methods.

Machine Learning for Sequential Behavior Modeling and Prediction

407

More importantly, for complex multi-stage attacks, it is very difficult or even impossible for
static behavior models based on supervised learning to describe precisely the temporal
relationships between sequential patterns. The above problems become the main reasons
leading to the unsatisfactory performance of previous supervised learning approaches to
adaptive IDSs, especially for complex sequential data. The recent works on applying HMMs
[4] and other sequence learning methods [17] have been focused on dynamic behavior
modeling for IDSs, which tried to explicitly estimate the probabilistic transition model of
sequential patterns. For the purpose of comparisons, in the following, a brief introduction
on HMM-based methods for intrusion detection will be given.
As a popular sequential modeling approach, HMMs have been widely studied and applied
in lots of areas such as speech recognition [18], protein structure prediction, etc. A discrete
state, discrete time, first order hidden Markov model describes a stochastic, memory-less
process. A full HMM can be specified as a tuple: λ = (N, M, A, B, π), where N is the number
of states, M is the number of observable symbols, A is the state transition probability matrix
which satisfies the Markov property:

 (1)

B is the observation probability distribution

 (2)

and π is the initial state distribution. The initial state distribution π satisfies:

 (3)

 (4)

(5)

For discrete state HMMs, we can let Q = {q1, q2, …,qM} denote the set of all states, O = {O1, O2,
… ,ON} denote the set of all observation symbols. A typical trace of HMMs is shown in the
following Fig.3, where Oi (i=1,2,…,T) are observation symbols and qi (i=1,2,…,T) are the
corresponding states.

Fig. 3. An HMM model

 Machine Learning

406

patterns. For example, if we use system call traces as audit data, a trajectory of system calls
can be modeled as a state transition sequence of short sequences. In the following Fig. 2, it is
shown that every state is a short sequence of length 3 and different system call traces can
form different state transitions, where a, b, and c are symbols for system calls in a host
computer.

Fig. 2. A sequential state transition model for host-based IDSs

Therefore, the host-based intrusion detection problem can be considered as a sequential
prediction problem since it is hard to determine a single short sequence of system calls to be
normal and normal and there are intrinsic temporal relationships between sequences.
Although we can still transform the above problem to a static classification problem by
mapping the whole trace of a process to a feature vector [15], it has been shown that
dynamic behavior modeling methods, such as Hidden Markov Models (HMMs) [4], are
more suitable for this kind of intrusion detection problem. In the following, a host-based
intrusion detection method will be studied based on reinforcement learning, where a
Markov reward model is established for sequential pattern prediction and temporal
difference (TD) algorithms [16] are used to realize high-precision prediction without many
computational costs. At first, the popular HMMs for sequential behavior modeling will be
introduced in the next section.

3. Hidden Markov Models (HMMs) for sequential behavior modeling
Due to the large volumes of audit data, to establish and modify detection models manually
by human experts becomes more and more impractical. Therefore, machine learning and
data mining methods have been widely considered as important techniques for adaptive
intrusion detection, i.e., to construct and optimize detection models automatically. Previous
work using supervised learning mainly focused on static behavior modeling methods based
on pre-processed training data with class labels. However, training data labeling is one of
the most important and difficult tasks since it is hard to extract signatures precisely even for
known attacks and there are still increasing amounts of unknown attacks. In most of the
previous works using static behavior modeling and supervised learning algorithms, every
single sample of the training data was either labeled as normal or abnormal. However, the
distinctions between normal and abnormal behaviors are usually very vague and improper
labeling may limit or worsen the detection performance of supervised learning methods.

Machine Learning for Sequential Behavior Modeling and Prediction

407

More importantly, for complex multi-stage attacks, it is very difficult or even impossible for
static behavior models based on supervised learning to describe precisely the temporal
relationships between sequential patterns. The above problems become the main reasons
leading to the unsatisfactory performance of previous supervised learning approaches to
adaptive IDSs, especially for complex sequential data. The recent works on applying HMMs
[4] and other sequence learning methods [17] have been focused on dynamic behavior
modeling for IDSs, which tried to explicitly estimate the probabilistic transition model of
sequential patterns. For the purpose of comparisons, in the following, a brief introduction
on HMM-based methods for intrusion detection will be given.
As a popular sequential modeling approach, HMMs have been widely studied and applied
in lots of areas such as speech recognition [18], protein structure prediction, etc. A discrete
state, discrete time, first order hidden Markov model describes a stochastic, memory-less
process. A full HMM can be specified as a tuple: λ = (N, M, A, B, π), where N is the number
of states, M is the number of observable symbols, A is the state transition probability matrix
which satisfies the Markov property:

 (1)

B is the observation probability distribution

 (2)

and π is the initial state distribution. The initial state distribution π satisfies:

 (3)

 (4)

(5)

For discrete state HMMs, we can let Q = {q1, q2, …,qM} denote the set of all states, O = {O1, O2,
… ,ON} denote the set of all observation symbols. A typical trace of HMMs is shown in the
following Fig.3, where Oi (i=1,2,…,T) are observation symbols and qi (i=1,2,…,T) are the
corresponding states.

Fig. 3. An HMM model

 Machine Learning

408

In practice, there might be a priori reasons to assign certain values to each of the initial state
probabilities. For example, in some applications, one typically expects HMMs to start in a
particular state. Thus, one can assign probability one to that state and zero to others.
For HMMs, there are two important algorithms to compute the data likelihood when the
model of an HMM is given. One algorithm is the Forward-Backward algorithm which
calculates the incomplete data likelihood and the other is the Viterbi algorithm which
calculates the complete data likelihood. Implicitly, both Forward-Backward and Viterbi find
the most likely sequence of states, although differently defined. For detailed discussion on
the two algorithms, please refer to [8].
Another important problem in HMMs is the model learning problem which is to estimate
the model parameters when the model is unknown and only observation data can be
obtained. The model learning problem is essential for HMMs to be applied in intrusion
detection since a detection model must be constructed only by training data samples. For
model learning in HMMs, the Expectation-Maximization (EM) algorithm is the most
popular one which finds maximum a posteriori or maximum likelihood parameter estimate
from incomplete data. The Baum-Welch algorithm is a particular form of EM for maximum
likelihood parameter estimation in HMMs. For a detailed discussion on HMMs, the readers
may refer to [18].
In intrusion detection based on HMMs, the Baum-Welch algorithm can be used to establish
dynamic behavior models of normal data and after the learning process is completed, attack
behaviors can be identified as deviations from the normal behavior models.

4. Reinforcement learning for sequential behavior prediction
4.1 Intrusion detection using Markov reward model and temporal-difference learning
In HMM-based dynamic behavior modeling for intrusion detection, the probabilistic
transition model of the IDS problem is explicitly estimated, which is computationally
expensive when the number of states and the length of traces increase. In this Section, an
alternative approach to adaptive intrusion detection will be presented. In the alternative
approach, Markov state transition models are also employed but have an additional
evaluative reward function, which is used to indicate the possibility of anomaly. Therefore,
the intrusion detection problem can be tackled by learning prediction of value functions of a
Markov reward process, which have been widely studied in the reinforcement learning
community. To explain the principle of the RL-based approach to intrusion detection, the
sequential behavior modeling problem in host-based IDSs using sequences of system calls is
discussed in the following.
For host-based intrusion detection, the audit data are usually obtained by collecting the
execution trajectories of processes or user commands in a host computer. As discussed in
[19], host-based IDSs can be realized by observing sequences of system calls, which are
related to the operating systems in the host computer. The execution trajectories of different
processes form different traces of system calls. Each trace is defined as the list of system calls
issued by a single process from the beginning of its execution to the end. If a state at a time
step is defined as m successive system calls and a sliding window with length l is defined,
the traces of system calls can be transformed to a state transition sequences and different
traces correspond to different state transition sequences. For example, if we select a
sequence of 4 system calls as one state and the sliding length between sequences is 1, the

Machine Learning for Sequential Behavior Modeling and Prediction

409

state transitions corresponding to a short trace tr={ open, read, mmap, mmap, open, read,
mmap} are:

Then the state transition sequence of the above trace tr is:

As studied and verified in [4], dynamic behavior models for sequential pattern prediction
are superior to static models when temporal relationships between feature patterns need to
be described accurately. Different from the previous work in [4], where an HMM-based
dynamic behavior modeling approach was studied, the following dynamic behavior
modeling method for intrusion detection is based on learning prediction using Markov
reward models. The method is focused on a learning prediction approach, which has been
popularly studied in RL research [21-22], by introducing a Markov reward model of the IDS
problem so that high accuracy and low computational costs can both be guaranteed [20].
Firstly, the Markov reward model for the IDS problem is introduced as follows.
Markov reward processes are popular stochastic models for sequential modeling and
decision making. A Markov reward process can be denoted as a tuple {S, R, P}, where S is
the state space, R is the reward function, P is the state transition probability. Let
{xt |t=0,1,2,…; xt ∈S} denote a trajectory generated by a Markov reward process. For each
state transition from xt to xt+1, a scalar reward rt is defined. The state transition probabilities
satisfy the following Markov property:

 (6)

The reward function of the Markov reward plays an important role for dynamic behavior
modeling in intrusion detection problems. As described in the following Fig.2, in a Markov
reward model for intrusion detection based on system calls, each state is defined as a short
sequence of successive system calls and after each state transition, a scalar reward rt is given
to indicate whether there is a possibility to be normal or attack behaviors. The design of the
reward function can make use of available a priori information so that the anomaly
probability of a whole state trajectory can be estimated based on the accumulated reward
function. In one extreme case, we can indicate every state to be normal or abnormal with
high confidence and the immediate reward of each state is designed as

(7)

The above extreme case is identical to transform the dynamic behavior modeling problem to
a static pattern classification problem since we have class labels for every possible states,
where the reward becomes a class label for every state. However, in fact, due to the
sequential properties of system call data and the vague distinctions between normal traces

 Machine Learning

408

In practice, there might be a priori reasons to assign certain values to each of the initial state
probabilities. For example, in some applications, one typically expects HMMs to start in a
particular state. Thus, one can assign probability one to that state and zero to others.
For HMMs, there are two important algorithms to compute the data likelihood when the
model of an HMM is given. One algorithm is the Forward-Backward algorithm which
calculates the incomplete data likelihood and the other is the Viterbi algorithm which
calculates the complete data likelihood. Implicitly, both Forward-Backward and Viterbi find
the most likely sequence of states, although differently defined. For detailed discussion on
the two algorithms, please refer to [8].
Another important problem in HMMs is the model learning problem which is to estimate
the model parameters when the model is unknown and only observation data can be
obtained. The model learning problem is essential for HMMs to be applied in intrusion
detection since a detection model must be constructed only by training data samples. For
model learning in HMMs, the Expectation-Maximization (EM) algorithm is the most
popular one which finds maximum a posteriori or maximum likelihood parameter estimate
from incomplete data. The Baum-Welch algorithm is a particular form of EM for maximum
likelihood parameter estimation in HMMs. For a detailed discussion on HMMs, the readers
may refer to [18].
In intrusion detection based on HMMs, the Baum-Welch algorithm can be used to establish
dynamic behavior models of normal data and after the learning process is completed, attack
behaviors can be identified as deviations from the normal behavior models.

4. Reinforcement learning for sequential behavior prediction
4.1 Intrusion detection using Markov reward model and temporal-difference learning
In HMM-based dynamic behavior modeling for intrusion detection, the probabilistic
transition model of the IDS problem is explicitly estimated, which is computationally
expensive when the number of states and the length of traces increase. In this Section, an
alternative approach to adaptive intrusion detection will be presented. In the alternative
approach, Markov state transition models are also employed but have an additional
evaluative reward function, which is used to indicate the possibility of anomaly. Therefore,
the intrusion detection problem can be tackled by learning prediction of value functions of a
Markov reward process, which have been widely studied in the reinforcement learning
community. To explain the principle of the RL-based approach to intrusion detection, the
sequential behavior modeling problem in host-based IDSs using sequences of system calls is
discussed in the following.
For host-based intrusion detection, the audit data are usually obtained by collecting the
execution trajectories of processes or user commands in a host computer. As discussed in
[19], host-based IDSs can be realized by observing sequences of system calls, which are
related to the operating systems in the host computer. The execution trajectories of different
processes form different traces of system calls. Each trace is defined as the list of system calls
issued by a single process from the beginning of its execution to the end. If a state at a time
step is defined as m successive system calls and a sliding window with length l is defined,
the traces of system calls can be transformed to a state transition sequences and different
traces correspond to different state transition sequences. For example, if we select a
sequence of 4 system calls as one state and the sliding length between sequences is 1, the

Machine Learning for Sequential Behavior Modeling and Prediction

409

state transitions corresponding to a short trace tr={ open, read, mmap, mmap, open, read,
mmap} are:

Then the state transition sequence of the above trace tr is:

As studied and verified in [4], dynamic behavior models for sequential pattern prediction
are superior to static models when temporal relationships between feature patterns need to
be described accurately. Different from the previous work in [4], where an HMM-based
dynamic behavior modeling approach was studied, the following dynamic behavior
modeling method for intrusion detection is based on learning prediction using Markov
reward models. The method is focused on a learning prediction approach, which has been
popularly studied in RL research [21-22], by introducing a Markov reward model of the IDS
problem so that high accuracy and low computational costs can both be guaranteed [20].
Firstly, the Markov reward model for the IDS problem is introduced as follows.
Markov reward processes are popular stochastic models for sequential modeling and
decision making. A Markov reward process can be denoted as a tuple {S, R, P}, where S is
the state space, R is the reward function, P is the state transition probability. Let
{xt |t=0,1,2,…; xt ∈S} denote a trajectory generated by a Markov reward process. For each
state transition from xt to xt+1, a scalar reward rt is defined. The state transition probabilities
satisfy the following Markov property:

 (6)

The reward function of the Markov reward plays an important role for dynamic behavior
modeling in intrusion detection problems. As described in the following Fig.2, in a Markov
reward model for intrusion detection based on system calls, each state is defined as a short
sequence of successive system calls and after each state transition, a scalar reward rt is given
to indicate whether there is a possibility to be normal or attack behaviors. The design of the
reward function can make use of available a priori information so that the anomaly
probability of a whole state trajectory can be estimated based on the accumulated reward
function. In one extreme case, we can indicate every state to be normal or abnormal with
high confidence and the immediate reward of each state is designed as

(7)

The above extreme case is identical to transform the dynamic behavior modeling problem to
a static pattern classification problem since we have class labels for every possible states,
where the reward becomes a class label for every state. However, in fact, due to the
sequential properties of system call data and the vague distinctions between normal traces

 Machine Learning

410

and abnormal traces, it is usually not appropriate or even impossible to tell whether an
intermediate state to be normal or abnormal definitely. Moreover, even if it is reasonable to
assign precise class labels to every states, it is also very hard to obtain precise class labels for
large amounts of audit data. Therefore, it is more reasonable to develop dynamic behavior
modeling approaches which not only incorporate the temporal properties of state transitions
but also need little a priori knowledge for class labeling. An extreme case toward this
direction is to provide evaluative signals to a whole state transition trajectory, i.e., only a
whole state trajectory is indicated to be normal or abnormal while the intermediate states
are not definitely labeled. For example, in the following Fig.4, the reward at the terminal
state rT can be precisely given as:

(8)

For intermediate states s1,…, sT-1, a zero reward can be given to each state when there is no a
priori knowledge about the anomaly of the states. However, in more general cases, the
intermediate rewards can be designed based on available prior knowledge on some features
or signatures of known attacks.

Fig. 4. A Markov reward process for intrusion detection

According to the above Markov reward process model, the detection of attack behaviors can
be tackled by the sequential prediction of expected total rewards of a state in a trajectory
since the reward signals, especially the terminal reward at the end of the trajectory provide
information about whether the trajectory is normal or abnormal. Therefore, the intrusion
detection problem becomes a value function prediction problem of a Markov reward
process, which has been popularly studied by many researchers in the framework of
reinforcement learning [21-24]. Among the learning prediction methods studied in RL,
temporal difference learning (TD) is one of the most important one and in the following
discussions, we will focus on the TD learning prediction algorithm for intrusion detection.
Firstly, some basic definitions on value functions and dynamic programming are given as
follows.
In order to predict the expected total rewards received after a state trajectory starting from a
state x, the value function of state x is defined as follows:

(9)

where x ∈ S , 0 < γ ≤ 1 is the discount factor, rt is the reward received after state transition
xt → xt+1 and E{.} is the expectation over the state transition probabilities.

Machine Learning for Sequential Behavior Modeling and Prediction

411

According to the theory of dynamic programming, the above value function satisfies the
following Bellman equation.

 (10)

where Rt is the expected reward received after state transition xt → xt+1 .
The aim of RL is to approximate the optimal or near-optimal policies from its experiences
without knowing the parameters of this process. To estimate the optimal policy of an MDP,
RL algorithms usually predict the value functions by observing data from state transitions
and rewards. Thus, value function prediction of Markov reward models becomes a central
problem in RL since optimal policies or optimal value functions can be obtained based on
the estimation of value functions. However, in RL, learning prediction is more difficult that
in supervised learning. As pointed out by Sutton [22], the prediction problems in supervised
learning are single-step prediction problems while learning prediction in reinforcement
learning belongs to multi-step prediction, which is to predict outcomes that depend on a
future sequence of decisions.
Until now, temporal difference learning or TD learning has been considered as one of the
most efficient approaches to value function prediction without any a priori model
information about Markov reward processes. Different from supervised learning for
sequential prediction such as Monte Carlo estimation methods, TD learning is to update the
estimations based on the differences between two temporally successive estimations, which
constitutes the main ideas of a popular class of TD learning algorithms called TD(λ) [22]. In
TD(λ), there are two basic mechanisms which are the temporal difference and the eligibility
trace, respectively. Temporal differences are defined as the differences between two
successive estimations and have the following form

 (11)

where xt+1 is the successive state of xt, V (x) denotes the estimate of value function V(x) and
rt is the reward received after the state transition from xt to xt+1.
As discussed in [22], the eligibility trace can be viewed as an algebraic trick to improve
learning efficiency without recording all the data of a multi-step prediction process. This
trick is originated from the idea of using a truncated reward sum of Markov reward
processes. In TD learning with eligibility traces, an n-step truncated return is defined as

 (12)

For an absorbing Markov reward process whose length is T, the weighted average of
truncated returns is

(13)

where 0 ≤ λ ≤1 is a decaying factor and

 (14)

 Machine Learning

410

and abnormal traces, it is usually not appropriate or even impossible to tell whether an
intermediate state to be normal or abnormal definitely. Moreover, even if it is reasonable to
assign precise class labels to every states, it is also very hard to obtain precise class labels for
large amounts of audit data. Therefore, it is more reasonable to develop dynamic behavior
modeling approaches which not only incorporate the temporal properties of state transitions
but also need little a priori knowledge for class labeling. An extreme case toward this
direction is to provide evaluative signals to a whole state transition trajectory, i.e., only a
whole state trajectory is indicated to be normal or abnormal while the intermediate states
are not definitely labeled. For example, in the following Fig.4, the reward at the terminal
state rT can be precisely given as:

(8)

For intermediate states s1,…, sT-1, a zero reward can be given to each state when there is no a
priori knowledge about the anomaly of the states. However, in more general cases, the
intermediate rewards can be designed based on available prior knowledge on some features
or signatures of known attacks.

Fig. 4. A Markov reward process for intrusion detection

According to the above Markov reward process model, the detection of attack behaviors can
be tackled by the sequential prediction of expected total rewards of a state in a trajectory
since the reward signals, especially the terminal reward at the end of the trajectory provide
information about whether the trajectory is normal or abnormal. Therefore, the intrusion
detection problem becomes a value function prediction problem of a Markov reward
process, which has been popularly studied by many researchers in the framework of
reinforcement learning [21-24]. Among the learning prediction methods studied in RL,
temporal difference learning (TD) is one of the most important one and in the following
discussions, we will focus on the TD learning prediction algorithm for intrusion detection.
Firstly, some basic definitions on value functions and dynamic programming are given as
follows.
In order to predict the expected total rewards received after a state trajectory starting from a
state x, the value function of state x is defined as follows:

(9)

where x ∈ S , 0 < γ ≤ 1 is the discount factor, rt is the reward received after state transition
xt → xt+1 and E{.} is the expectation over the state transition probabilities.

Machine Learning for Sequential Behavior Modeling and Prediction

411

According to the theory of dynamic programming, the above value function satisfies the
following Bellman equation.

 (10)

where Rt is the expected reward received after state transition xt → xt+1 .
The aim of RL is to approximate the optimal or near-optimal policies from its experiences
without knowing the parameters of this process. To estimate the optimal policy of an MDP,
RL algorithms usually predict the value functions by observing data from state transitions
and rewards. Thus, value function prediction of Markov reward models becomes a central
problem in RL since optimal policies or optimal value functions can be obtained based on
the estimation of value functions. However, in RL, learning prediction is more difficult that
in supervised learning. As pointed out by Sutton [22], the prediction problems in supervised
learning are single-step prediction problems while learning prediction in reinforcement
learning belongs to multi-step prediction, which is to predict outcomes that depend on a
future sequence of decisions.
Until now, temporal difference learning or TD learning has been considered as one of the
most efficient approaches to value function prediction without any a priori model
information about Markov reward processes. Different from supervised learning for
sequential prediction such as Monte Carlo estimation methods, TD learning is to update the
estimations based on the differences between two temporally successive estimations, which
constitutes the main ideas of a popular class of TD learning algorithms called TD(λ) [22]. In
TD(λ), there are two basic mechanisms which are the temporal difference and the eligibility
trace, respectively. Temporal differences are defined as the differences between two
successive estimations and have the following form

 (11)

where xt+1 is the successive state of xt, V (x) denotes the estimate of value function V(x) and
rt is the reward received after the state transition from xt to xt+1.
As discussed in [22], the eligibility trace can be viewed as an algebraic trick to improve
learning efficiency without recording all the data of a multi-step prediction process. This
trick is originated from the idea of using a truncated reward sum of Markov reward
processes. In TD learning with eligibility traces, an n-step truncated return is defined as

 (12)

For an absorbing Markov reward process whose length is T, the weighted average of
truncated returns is

(13)

where 0 ≤ λ ≤1 is a decaying factor and

 (14)

 Machine Learning

412

RT is the Monte-Carlo return at the terminal state. In each step of TD(λ), the update rule of
value function estimation is determined by the weighted average of truncated returns
defined above, i.e.,

 (15)

where αt is a learning factor.
The update equation (25) can be used only after the whole trajectory of the Markov reward
process is observed. To realize incremental or online learning, eligibility traces are defined
for each state as follows:

(16)

The online TD(λ) update rule with eligibility traces is

 (17)

where δt is the temporal difference at time step t, which is defined in (21) and z0(s)=0 for all s.
Based on the above TD learning prediction principle, the intrusion detection problem can be
solved by a model learning process and an online detection process. In the model learning
process, the value functions are estimated based on the online TD(λ) update rules and in
the detection process, the estimated value functions are used to determine whether a
sequence of states belongs to a normal trajectory or an abnormal trajectory. For the reward
function defined in (18), when an appropriate threshold μ is selected, the detection rules of
the IDS can be designed as follows:

If V (x) > μ , then raise alarms for attacks,

Else there are no alarms.
Since the state space of a Markov reward process is usually large or infinite in practice,
function approximators such as neural networks are commonly used to approximate the
value function. Among the existing TD learning prediction methods, TD(λ) algorithms with
linear function approximators are the most popular and well-studied ones, which can be
called linear TD(λ) algorithms.
In linear TD(λ), consider a general linear function approximator with a fixed basis function
vector

 (18)

The estimated value function can be denoted as

 (19)

where Wt =(w1, w2,…,wn)T is the weight vector.
The corresponding incremental weight update rule is

Machine Learning for Sequential Behavior Modeling and Prediction

413

 (20)

where the eligibility trace vector is defined as

 (21)

In [19], the above linear TD(λ) algorithm is proved to converge with probability 1 under
certain assumptions and the limit of convergence W* is also derived, which satisfies the
following equation

 (22)

where Xt =(xt,xt+1,zt+1) (t=1,2,…) form a Markov process, E0[·] stands for the expectation with
respect to the unique invariant distribution of {Xt}, and A(Xt), b(Xt) are defined as

 (23)

 (24)

Then, based on a set of observation data {(xt, rt)} (t=1,2,…,T), a least-squares solution to the
above problem can be obtained as [24]:

(25)

4.2 Kernel-based RL for sequential behavior learning
After introducing the above Markov reward model, the intrusion detection problem using
system call traces can be solved by a class of reinforcement learning algorithms called
temporal-difference (TD) learning. The aim of TD learning is to predict the state value
functions of a Markov reward process by updating the value function estimations based on
the differences between temporally successive predictions rather than using errors between
the real values and the predicted ones. And it has been verified that TD learning is more
efficient than supervised learning in multi-step prediction problems [22].
Until now, TD learning algorithms with linear function approximators have been widely
studied in the literature [23-24]. In [24], a linear TD learning algorithm was applied to host-
based intrusion detection using sequences of system calls and very promising results have
been obtained. Nevertheless, the approximation ability of linear function approximators is
limited and the performance of linear TD learning is greatly influenced by the selection of
linear basis functions. In the following, a sparse kernel-based LS-TD(λ) algorithm will be
presented for value function prediction in host-based IDSs [25]. The sparse kernel-based LS-
TD algorithm was recently developed in [26] and it was demonstrated that by realizing
least-squares TD learning in a kernel-induced high-dimensional feature space, nonlinear
value function estimation can be implicitly implemented by a linear form of computation

 Machine Learning

412

RT is the Monte-Carlo return at the terminal state. In each step of TD(λ), the update rule of
value function estimation is determined by the weighted average of truncated returns
defined above, i.e.,

 (15)

where αt is a learning factor.
The update equation (25) can be used only after the whole trajectory of the Markov reward
process is observed. To realize incremental or online learning, eligibility traces are defined
for each state as follows:

(16)

The online TD(λ) update rule with eligibility traces is

 (17)

where δt is the temporal difference at time step t, which is defined in (21) and z0(s)=0 for all s.
Based on the above TD learning prediction principle, the intrusion detection problem can be
solved by a model learning process and an online detection process. In the model learning
process, the value functions are estimated based on the online TD(λ) update rules and in
the detection process, the estimated value functions are used to determine whether a
sequence of states belongs to a normal trajectory or an abnormal trajectory. For the reward
function defined in (18), when an appropriate threshold μ is selected, the detection rules of
the IDS can be designed as follows:

If V (x) > μ , then raise alarms for attacks,

Else there are no alarms.
Since the state space of a Markov reward process is usually large or infinite in practice,
function approximators such as neural networks are commonly used to approximate the
value function. Among the existing TD learning prediction methods, TD(λ) algorithms with
linear function approximators are the most popular and well-studied ones, which can be
called linear TD(λ) algorithms.
In linear TD(λ), consider a general linear function approximator with a fixed basis function
vector

 (18)

The estimated value function can be denoted as

 (19)

where Wt =(w1, w2,…,wn)T is the weight vector.
The corresponding incremental weight update rule is

Machine Learning for Sequential Behavior Modeling and Prediction

413

 (20)

where the eligibility trace vector is defined as

 (21)

In [19], the above linear TD(λ) algorithm is proved to converge with probability 1 under
certain assumptions and the limit of convergence W* is also derived, which satisfies the
following equation

 (22)

where Xt =(xt,xt+1,zt+1) (t=1,2,…) form a Markov process, E0[·] stands for the expectation with
respect to the unique invariant distribution of {Xt}, and A(Xt), b(Xt) are defined as

 (23)

 (24)

Then, based on a set of observation data {(xt, rt)} (t=1,2,…,T), a least-squares solution to the
above problem can be obtained as [24]:

(25)

4.2 Kernel-based RL for sequential behavior learning
After introducing the above Markov reward model, the intrusion detection problem using
system call traces can be solved by a class of reinforcement learning algorithms called
temporal-difference (TD) learning. The aim of TD learning is to predict the state value
functions of a Markov reward process by updating the value function estimations based on
the differences between temporally successive predictions rather than using errors between
the real values and the predicted ones. And it has been verified that TD learning is more
efficient than supervised learning in multi-step prediction problems [22].
Until now, TD learning algorithms with linear function approximators have been widely
studied in the literature [23-24]. In [24], a linear TD learning algorithm was applied to host-
based intrusion detection using sequences of system calls and very promising results have
been obtained. Nevertheless, the approximation ability of linear function approximators is
limited and the performance of linear TD learning is greatly influenced by the selection of
linear basis functions. In the following, a sparse kernel-based LS-TD(λ) algorithm will be
presented for value function prediction in host-based IDSs [25]. The sparse kernel-based LS-
TD algorithm was recently developed in [26] and it was demonstrated that by realizing
least-squares TD learning in a kernel-induced high-dimensional feature space, nonlinear
value function estimation can be implicitly implemented by a linear form of computation

 Machine Learning

414

with high approximation accuracy. Therefore, by making use of the kernel-based LS-TD
learning algorithm, the predictions of anomaly probabilities for intrusion detection will have
higher precision and it will be more beneficial to realize high-performance IDSs based on
dynamic behavior modeling.
In the kernel-based LS-TD learning method [26], the same solution to the following LS-TD
problem was considered:

 (26)

where the corresponding value functions are estimated by

Using the average value of observations as the estimation of expectation E0[·], equation (26)
can be expressed as follows:

(27)

Based on the idea of kernel methods, a high-dimensional nonlinear feature mapping can be
constructed by selecting a Mercer kernel function k(x1, x2) in a reproducing kernel Hilbert
space (RKHS). In the following, the nonlinear feature mapping based on the kernel function
k(.,.) is also denoted by φ(s) and according to the Mercer Theorem [27], the inner product of
two feature vectors is computed by

 (28)

Due to the properties of RKHS [27], the weight vector W can be represented by the weighted
sum of the state feature vectors:

(29)

where xi (i = 1,2,..., N) are the observed states, N is the total number of states and
α = [α1, α2 ,...,αN]T are the corresponding coefficients, and the matrix notation of the feature
vectors is denoted as

 (30)

For a state sequence xi (i = 1, 2,..., N) , let the corresponding kernel matrix K be denoted as
K=(kij) N×N , where kij=k(xi, xj).

 (31)

By substituting (28), (29) and (30) into (27), and multiplying the two sides of (27) with
T
NΦ we can get

Machine Learning for Sequential Behavior Modeling and Prediction

415

 (32)

 (33)

(34)

In (34), the values of βi (i=1,2,…,N-1) are determined by the following rule: when state xi-1 is
not an absorbing state, βi is equal to -1, otherwise, βi is set to zero.
As discussed in [26], by using the techniques of generalized inverse matrix in [28], the
kernel-based LS-TD solution to (26) is as follows:

 (35)

where (.)+ denotes the generalized inverse of a matrix.
One problem remained for the above kernel-based LS-TD learning algorithm is that the
dimension of the kernel-based LS-TD solution is equal to the number of state transition
samples, which will cause huge computational costs when the number of observation data is
large. To make the above algorithm be practical, one key problem is to decrease the
dimension of kernel matrix K as well as the dimensional of α. The problem has been studied
in [29] by employing an approximately linear dependence (ALD) analysis method [30] for
the sparsification of kernel matrix K.
The main idea of ALD-based sparcification is to represent the feature vectors of the original
data samples by an approximately linearly independent subset of feature vectors, which is
to compute the following optimization problem

(36)

During the sparsification procedure, a data dictionary is incrementally constructed and
every new data sample xt is tested by compute the solution δt of (36). Only if δt is greater than
a predefined threshold, the tested data sample xt will be added to the dictionary. For
detailed discussion of the sparsification process, please refer to [29] and [30]. After the
sparsification procedure, a data dictionary DN with reduced number of feature vectors will
be obtained and the approximated state value function can be represented as:

(37)

where n(DN) is the size of the dictionary.

 Machine Learning

414

with high approximation accuracy. Therefore, by making use of the kernel-based LS-TD
learning algorithm, the predictions of anomaly probabilities for intrusion detection will have
higher precision and it will be more beneficial to realize high-performance IDSs based on
dynamic behavior modeling.
In the kernel-based LS-TD learning method [26], the same solution to the following LS-TD
problem was considered:

 (26)

where the corresponding value functions are estimated by

Using the average value of observations as the estimation of expectation E0[·], equation (26)
can be expressed as follows:

(27)

Based on the idea of kernel methods, a high-dimensional nonlinear feature mapping can be
constructed by selecting a Mercer kernel function k(x1, x2) in a reproducing kernel Hilbert
space (RKHS). In the following, the nonlinear feature mapping based on the kernel function
k(.,.) is also denoted by φ(s) and according to the Mercer Theorem [27], the inner product of
two feature vectors is computed by

 (28)

Due to the properties of RKHS [27], the weight vector W can be represented by the weighted
sum of the state feature vectors:

(29)

where xi (i = 1,2,..., N) are the observed states, N is the total number of states and
α = [α1, α2 ,...,αN]T are the corresponding coefficients, and the matrix notation of the feature
vectors is denoted as

 (30)

For a state sequence xi (i = 1, 2,..., N) , let the corresponding kernel matrix K be denoted as
K=(kij) N×N , where kij=k(xi, xj).

 (31)

By substituting (28), (29) and (30) into (27), and multiplying the two sides of (27) with
T
NΦ we can get

Machine Learning for Sequential Behavior Modeling and Prediction

415

 (32)

 (33)

(34)

In (34), the values of βi (i=1,2,…,N-1) are determined by the following rule: when state xi-1 is
not an absorbing state, βi is equal to -1, otherwise, βi is set to zero.
As discussed in [26], by using the techniques of generalized inverse matrix in [28], the
kernel-based LS-TD solution to (26) is as follows:

 (35)

where (.)+ denotes the generalized inverse of a matrix.
One problem remained for the above kernel-based LS-TD learning algorithm is that the
dimension of the kernel-based LS-TD solution is equal to the number of state transition
samples, which will cause huge computational costs when the number of observation data is
large. To make the above algorithm be practical, one key problem is to decrease the
dimension of kernel matrix K as well as the dimensional of α. The problem has been studied
in [29] by employing an approximately linear dependence (ALD) analysis method [30] for
the sparsification of kernel matrix K.
The main idea of ALD-based sparcification is to represent the feature vectors of the original
data samples by an approximately linearly independent subset of feature vectors, which is
to compute the following optimization problem

(36)

During the sparsification procedure, a data dictionary is incrementally constructed and
every new data sample xt is tested by compute the solution δt of (36). Only if δt is greater than
a predefined threshold, the tested data sample xt will be added to the dictionary. For
detailed discussion of the sparsification process, please refer to [29] and [30]. After the
sparsification procedure, a data dictionary DN with reduced number of feature vectors will
be obtained and the approximated state value function can be represented as:

(37)

where n(DN) is the size of the dictionary.

 Machine Learning

416

When the above learning and sparcification process is completed, a value function model of
the IDS problem can be obtained. And the accumulated anomaly probability of a state
sequence Sn={x1, x2,…xn} can be computed as

(38)

By selecting an appropriate threshold μ, the detection output of the adaptive IDS can be
simply determined as follows:

4.3 Performance evaluations
Generally speaking, previous works on machine learning methods for adaptive intrusion
detection can be mainly classified into four categories, i.e., supervised learning methods,
unsupervised learning methods, semi-supervised methods and statistical modeling
methods. Compared with the supervised learning methods in intrusion detection, the
proposed model does not require precise labeling of every observed feature, which is a
difficult task and may usually lead to the poor performance of supervised methods,
especially for complex sequential attacks. For unsupervised learning algorithms in intrusion
detection, e.g., SOM, clustering, due to the lack of prior information, the performance of
IDSs can not be optimized adequately [12].
The proposed RL-based dynamic behavior modeling approach for intrusion detection
estimates the anomaly probability of states based on the learning prediction of state value
functions. Therefore, it can be applied to detect complex attack behaviors with complex
sequential patterns. The computational complexity of TD learning algorithms is linear with
respect to the number k of state features and the length m of traces, i.e., it has time
complexity of O(km), which is lower than the training algorithm for HMMs, which runs in
time O(nm2), where n is the number of states in the HMM and m is the size of the trace.
Furthermore, since TD learning prediction methods using function approximators are
commonly used, the number k of state features can become much smaller than n and the
computational efficiency will be further improved.
For the RL-based approach, the most related methods are based on Markov chain modeling
or Hidden Markov models (HMMs), which are anomaly detection techniques that aim to
establish the probabilistic structure model of the normal data sequences explicitly. However,
the Markov reward model and the TD prediction method are based on hybrid modeling
strategy where the intrusion data can be combined with normal data to train the detection
model. Moreover, the RL-based method only implicitly constructs the probabilistic model
and the detection of anomalies is based on the estimated value functions. In [31], the
robustness of Markov chain modeling techniques was studied and it was shown that when
explicitly estimating the probabilistic structure of the Markov chain model for normal data,
the detection accuracy was very sensitive to the noise of data, i.e., when the intrusion data
were mixed with normal data, the performance of the Markov chain model would become
worse. Nevertheless, in our approach, the detection accuracy is not influenced by the mixing
of normal and abnormal data due to the hybrid modeling strategy.

Machine Learning for Sequential Behavior Modeling and Prediction

417

To compare the performance between the previous HMM-based approach and the RL-based
approach, experiments on host-based intrusion detection using system calls were
conducted. In the experiments, two types of data sets were used, which include system call
traces from the “live” lpr and the Sendmail programs. Table 1 shows some of the details of
the data, which include two kinds of attack data and corresponding normal data. All of
these data sets are publicly available at the website of University of New Mexico [32].
In the data sets, each trace is a sequence of system calls generated by a single process from
the beginning of its execution to the end. Since the traces were generated by different
programs under different environments, the number of system calls per trace varies widely.
In the MIT environment, lpr was traced by running the program on 77 different hosts, each
running SunOS, for two weeks, to obtain traces of a total of 2766 print jobs. For detailed
discussion of the properties of the data sets, please refer to [32-33].
The two types of system call traces were divided into two parts. One part is for model
training and threshold determination and the other part is for performance evaluation.
Table 1 shows the numbers of normal and attack traces for training and testing. As can be
seen in the table, the numbers of testing traces are usually larger than those of testing
traces.

Table 1. Experimental data for host-based IDS

During the threshold determination process, the same data sets were used as the training
process, i.e., the training data sets and the data sets for threshold determination are the
same. For performance testing, the data sets are different from those in model training and
their sizes are usually larger than the training data. In the testing stage, two criterions for
performance evaluations were used, which are the detection rate Dr and the false alarm or
false positive rate Fp, and they are computed as follows:

(36)

 Machine Learning

416

When the above learning and sparcification process is completed, a value function model of
the IDS problem can be obtained. And the accumulated anomaly probability of a state
sequence Sn={x1, x2,…xn} can be computed as

(38)

By selecting an appropriate threshold μ, the detection output of the adaptive IDS can be
simply determined as follows:

4.3 Performance evaluations
Generally speaking, previous works on machine learning methods for adaptive intrusion
detection can be mainly classified into four categories, i.e., supervised learning methods,
unsupervised learning methods, semi-supervised methods and statistical modeling
methods. Compared with the supervised learning methods in intrusion detection, the
proposed model does not require precise labeling of every observed feature, which is a
difficult task and may usually lead to the poor performance of supervised methods,
especially for complex sequential attacks. For unsupervised learning algorithms in intrusion
detection, e.g., SOM, clustering, due to the lack of prior information, the performance of
IDSs can not be optimized adequately [12].
The proposed RL-based dynamic behavior modeling approach for intrusion detection
estimates the anomaly probability of states based on the learning prediction of state value
functions. Therefore, it can be applied to detect complex attack behaviors with complex
sequential patterns. The computational complexity of TD learning algorithms is linear with
respect to the number k of state features and the length m of traces, i.e., it has time
complexity of O(km), which is lower than the training algorithm for HMMs, which runs in
time O(nm2), where n is the number of states in the HMM and m is the size of the trace.
Furthermore, since TD learning prediction methods using function approximators are
commonly used, the number k of state features can become much smaller than n and the
computational efficiency will be further improved.
For the RL-based approach, the most related methods are based on Markov chain modeling
or Hidden Markov models (HMMs), which are anomaly detection techniques that aim to
establish the probabilistic structure model of the normal data sequences explicitly. However,
the Markov reward model and the TD prediction method are based on hybrid modeling
strategy where the intrusion data can be combined with normal data to train the detection
model. Moreover, the RL-based method only implicitly constructs the probabilistic model
and the detection of anomalies is based on the estimated value functions. In [31], the
robustness of Markov chain modeling techniques was studied and it was shown that when
explicitly estimating the probabilistic structure of the Markov chain model for normal data,
the detection accuracy was very sensitive to the noise of data, i.e., when the intrusion data
were mixed with normal data, the performance of the Markov chain model would become
worse. Nevertheless, in our approach, the detection accuracy is not influenced by the mixing
of normal and abnormal data due to the hybrid modeling strategy.

Machine Learning for Sequential Behavior Modeling and Prediction

417

To compare the performance between the previous HMM-based approach and the RL-based
approach, experiments on host-based intrusion detection using system calls were
conducted. In the experiments, two types of data sets were used, which include system call
traces from the “live” lpr and the Sendmail programs. Table 1 shows some of the details of
the data, which include two kinds of attack data and corresponding normal data. All of
these data sets are publicly available at the website of University of New Mexico [32].
In the data sets, each trace is a sequence of system calls generated by a single process from
the beginning of its execution to the end. Since the traces were generated by different
programs under different environments, the number of system calls per trace varies widely.
In the MIT environment, lpr was traced by running the program on 77 different hosts, each
running SunOS, for two weeks, to obtain traces of a total of 2766 print jobs. For detailed
discussion of the properties of the data sets, please refer to [32-33].
The two types of system call traces were divided into two parts. One part is for model
training and threshold determination and the other part is for performance evaluation.
Table 1 shows the numbers of normal and attack traces for training and testing. As can be
seen in the table, the numbers of testing traces are usually larger than those of testing
traces.

Table 1. Experimental data for host-based IDS

During the threshold determination process, the same data sets were used as the training
process, i.e., the training data sets and the data sets for threshold determination are the
same. For performance testing, the data sets are different from those in model training and
their sizes are usually larger than the training data. In the testing stage, two criterions for
performance evaluations were used, which are the detection rate Dr and the false alarm or
false positive rate Fp, and they are computed as follows:

(36)

 Machine Learning

418

(37)

where nd is the number of abnormal traces that have been correctly identified by the
detection model and na is the total number of abnormal traces, Na is the number of normal
states that have been incorrectly identified as anomaly by the detection model, and N is the
total number of normal states. In the computation of false alarm rates, we use the same ideas
discussed in [4], where every possible false alarms during a long state traces are all counted
and the total sum of false alarms is divided by the number of all states in traces. Therefore,
the false positives were measured differently from the detection rates or true positives. To
detect an intrusion, it is only required that the anomaly probabilities exceed a preset
threshold at some point during the intrusion. However, making a single decision as to
whether a normal trace is abnormal or not is not sufficient, especially for very long traces.
For example, if a program runs for several days or more, each time that it is flagged as
anomalous must be counted separately. As pointed out in [17], the simplest way to measure
this is to count all the individual decisions. Then, the false-positive rate is selected as the
percentage of decisions in which normal data were detected as anomalous.
In the experiments, the TD learning prediction method was applied to the above data sets.
Every state in the Markov reward model has a system-call sequence length of 6, which has
been widely employed in previous works. The reward function is defined by (18). A linear
function approximator, which is a polynomial function of the observation states and has a
dimension of 24, was used as the value function approximator. To compare the performance
of TD learning prediction and previous approaches, the experimental results in [4], where
HMM-based dynamic behavior modeling methods were applied to the same data sets, are
also shown in the following Table 2.

Table 2. Performance comparisons between TD and HMM methods

To compare the performance between the kernel LS-TD approach with the linear LS-TD [16]
and the HMM-based approach [4], experiments on host-based intrusion detection using
system calls were conducted. In the experiments, the data set of system call traces generated
from the Sendmail program was used. The system call traces were divided into two parts.

Machine Learning for Sequential Behavior Modeling and Prediction

419

One part is for model training and threshold determination and the other part is for
performance evaluation. The normal trace numbers for training and testing are 13 and 67,
respectively. The numbers of attack traces used for training and testing are 5 and 7. The total
number of system calls in the data set is 223733. During the threshold determination
process, the same traces were used as the training process. The testing data are different
from those in model training and their sizes are usually larger than the training data.
In the learning prediction experiments for intrusion detection, the kernel LS-TD algorithm
and previous linear TD(λ) algorithms, i.e., LS-TD(λ), are all implemented for the learning
prediction task. In the kernel-based LS-TD algorithm, a radius basis function (RBF) kernel is
selected and its width parameter is set to 0.8 in all the experiments. A threshold parameter
δ=0.001 is selected for the sparsification procedure of the kernel-based LS-TD learning
algorithm. The LS-TD(λ) algorithm uses a linear function approximator, which is a
polynomial function of the observation states and has a dimension of 24.

* The false alarm rates were only computed for trace numbers, not for single state

Table 3. Performance comparisons between different methods

The experimental results are shown in Table 3. It can be seen from the results that both of
the two RL methods, i.e., the kernel LS-TD and linear LS-TD, have 100% detection rates and
the kernel-based LS-TD approach has better performance in false alarm rates than the linear
LS-TD method. The main reason is due to the learning prediction accuracy of kernel-based
LS-TD for value function estimation. It is also illustrated that the two TD learning prediction
methods have much better performance than the previous HMM-based method. Therefore,
the applications of kernel-based reinforcement learning methods, which are based on the
Markov reward model, will be very promising to realize dynamic behavior modeling and
prediction for complex multi-stage attacks so that the performance of IDSs can be efficiently
optimized.

5. Conclusions
Although in recent years, there are many research works on applying machine learning
and statistical modeling methods to intrusion detection problems, the sequential
modeling problem in intelligent intrusion detection has not been well solved yet. In this
Chapter, the TD learning prediction method is introduced to construct detection models
and improve the performance of IDSs only by simplified labeling schemes using

 Machine Learning

418

(37)

where nd is the number of abnormal traces that have been correctly identified by the
detection model and na is the total number of abnormal traces, Na is the number of normal
states that have been incorrectly identified as anomaly by the detection model, and N is the
total number of normal states. In the computation of false alarm rates, we use the same ideas
discussed in [4], where every possible false alarms during a long state traces are all counted
and the total sum of false alarms is divided by the number of all states in traces. Therefore,
the false positives were measured differently from the detection rates or true positives. To
detect an intrusion, it is only required that the anomaly probabilities exceed a preset
threshold at some point during the intrusion. However, making a single decision as to
whether a normal trace is abnormal or not is not sufficient, especially for very long traces.
For example, if a program runs for several days or more, each time that it is flagged as
anomalous must be counted separately. As pointed out in [17], the simplest way to measure
this is to count all the individual decisions. Then, the false-positive rate is selected as the
percentage of decisions in which normal data were detected as anomalous.
In the experiments, the TD learning prediction method was applied to the above data sets.
Every state in the Markov reward model has a system-call sequence length of 6, which has
been widely employed in previous works. The reward function is defined by (18). A linear
function approximator, which is a polynomial function of the observation states and has a
dimension of 24, was used as the value function approximator. To compare the performance
of TD learning prediction and previous approaches, the experimental results in [4], where
HMM-based dynamic behavior modeling methods were applied to the same data sets, are
also shown in the following Table 2.

Table 2. Performance comparisons between TD and HMM methods

To compare the performance between the kernel LS-TD approach with the linear LS-TD [16]
and the HMM-based approach [4], experiments on host-based intrusion detection using
system calls were conducted. In the experiments, the data set of system call traces generated
from the Sendmail program was used. The system call traces were divided into two parts.

Machine Learning for Sequential Behavior Modeling and Prediction

419

One part is for model training and threshold determination and the other part is for
performance evaluation. The normal trace numbers for training and testing are 13 and 67,
respectively. The numbers of attack traces used for training and testing are 5 and 7. The total
number of system calls in the data set is 223733. During the threshold determination
process, the same traces were used as the training process. The testing data are different
from those in model training and their sizes are usually larger than the training data.
In the learning prediction experiments for intrusion detection, the kernel LS-TD algorithm
and previous linear TD(λ) algorithms, i.e., LS-TD(λ), are all implemented for the learning
prediction task. In the kernel-based LS-TD algorithm, a radius basis function (RBF) kernel is
selected and its width parameter is set to 0.8 in all the experiments. A threshold parameter
δ=0.001 is selected for the sparsification procedure of the kernel-based LS-TD learning
algorithm. The LS-TD(λ) algorithm uses a linear function approximator, which is a
polynomial function of the observation states and has a dimension of 24.

* The false alarm rates were only computed for trace numbers, not for single state

Table 3. Performance comparisons between different methods

The experimental results are shown in Table 3. It can be seen from the results that both of
the two RL methods, i.e., the kernel LS-TD and linear LS-TD, have 100% detection rates and
the kernel-based LS-TD approach has better performance in false alarm rates than the linear
LS-TD method. The main reason is due to the learning prediction accuracy of kernel-based
LS-TD for value function estimation. It is also illustrated that the two TD learning prediction
methods have much better performance than the previous HMM-based method. Therefore,
the applications of kernel-based reinforcement learning methods, which are based on the
Markov reward model, will be very promising to realize dynamic behavior modeling and
prediction for complex multi-stage attacks so that the performance of IDSs can be efficiently
optimized.

5. Conclusions
Although in recent years, there are many research works on applying machine learning
and statistical modeling methods to intrusion detection problems, the sequential
modeling problem in intelligent intrusion detection has not been well solved yet. In this
Chapter, the TD learning prediction method is introduced to construct detection models
and improve the performance of IDSs only by simplified labeling schemes using

 Machine Learning

420

evaluative signals or feedbacks for sequential training data. It is illustrated that compared
with previous anomaly detection approaches using machine learning, the TD learning and
prediction method can obtain comparable or even better detection accuracies for complex
sequential attacks. More importantly, the proposed TD learning and prediction approach
provides an efficient anomaly detection technique with simplified labeling procedure and
reduced computational complexity. Future work may need to be focused on the extension
of the proposed method to more general intrusion detection systems with real-time
applications.

6. References
[1] D. Denning: An intrusion-detection model. IEEE Transactions on Software Engineering,

13(2) (1987) 222-232
[2] M. M. Sebring, E. Shellhouse, M. E. Hanna, and R. Alan Whitehurst. Expert systems in

intrusion detection: A case study. In Proceedings of the 11th National Computer
Security Conference, Baltimore, Maryland, October, (1988) 74-81

[3] W. K. Lee, Stolfo, S., and Mok, K.: Adaptive Intrusion Detection: A Data Mining
Approach. Artificial Intelligence Review, 14(6), (2000) 533 – 567

[4] D.Y. Yeung, Y.X. Ding, Host-based intrusion detection using dynamic and static
behavioral models. Pattern Recognition, 36 (2003) 229 – 243

[5] A. K. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly
and misuse detection. in Proceedings of the 8th USENIX Security Symposium,
(1999).

[6] H.Shah, J.Undercoffer and A.Joshi: Fuzzy clustering for intrusion detection. In:
Proceedings of the 12th IEEE International Conference on Fuzzy Systems. (2003)
1274-1278

[7] D. Barbara, N. Wu, S. Jajodia, Detecting novel network intrusions using Bayes estimators,
First SIAM Conference on Data Mining, Chicago, IL, (2001).

[8] J. Ryan, M-J. Lin, R. Miikkulainen, Intrusion detection with neural networks, Proceedings
of AAAI-97 Workshop on AI Approaches to Fraud Detection and Risk Management, AAAI
Press, (1997) 72-77.

[9] X. Xu. Adaptive Intrusion Detection Based on Machine Learning: Feature Extraction,
Classifier Construction and Sequential Pattern Prediction. International Journal of
Web Services Practices, Vol.2, No.1-2 (2006), pp. 49-58

[10] M. Mahoney, P.Chan: Learning nonstationary models of normal network traffic for
detecting novel attacks. In: Proceedings of 8th International Conference on Knowledge
Discovery and Data Mining, (2002) 376-385

[11] X. Xu, X. N. Wang, Adaptive network intrusion detection method based on PCA and
support vector machines . Lecture Notes in Artificial Intelligence, ADMA 2005, LNAI
3584, (2005) 696 – 703.

[12] P. Laskov, P. Düssel, C. Schäfer, K. Rieck, Learning intrusion detection: supervised or
unsupervised? Proc. ICIAP 2005, September, Lecture Notes in Computer Science ,
LNCS 3617 (2005) 50-57

Machine Learning for Sequential Behavior Modeling and Prediction

421

[13] W.K. Lee, S.J.Stolfo: A data mining framework for building intrusion detection model.
In: Gong L., Reiter M.K. (eds.): Proceedings of the IEEE Symposium on Security and
Privacy. Oakland, CA: IEEE Computer Society Press (1999) 120~132

[14] http://www.kdnuggets.com/datasets/kddcup.html
[15] Y. H. Liao, V. Rao Vemuri, Using text categorization techniques for intrusion

detection, Proceedings of the 11th USENIX Security Symposium, August, (2002)
51-59.

[16] X.Xu, Intrusion Detection Based on Dynamic Behavior Modeling: Reinforcement
Learning versus Hidden Markov Models, International Journal of Computational
Intelligence Theory and Practice, 2(1), (2007) 57-66

[17] T. Lane, C. Brodley, Temporal sequence learning and data reduction for anomaly
detection. ACM Transactions on Information and System Security, 2(3) (1999) 295–331

[18] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2): 257-286, 1986.

[19] S. Hofmeyr et al., Intrusion detection using sequences of systems call, Journal of
Computer Security, 6 (1998) 151-180

[20] X.Xu, A Reinforcement Learning Approach for Host-Based Intrusion Detection Using
Sequences of System Calls. Lecture Notes in Computer Science, LNCS 3644, pp. 995 –
1003

[21] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, vol. 4, (1996) 237--285.

[22] R. Sutton, Learning to predict by the method of temporal differences. Machine Learning,
3(1), (1988) 9-44

[23] X. Xu, H. G. He, D. W. Hu: Efficient reinforcement learning using recursive least-
squares methods. Journal of Artificial Intelligence Research, vol.16, (2002) 259-292

[24] J. A. Boyan, Technical Update: Least-squares temporal difference learning. Machine
Learning, 49, (2002) 233-246

[25] X. Xu, Yirong Luo, A Kernel-Based Reinforcement Learning Approach to Dynamic
Behavior Modeling of Intrusion Detection, In : D. Liu et al. (Eds.): ISNN 2007,
Lecture Notes in Computer Science, LNCS 4491, Part I, (2007) 459–468

[26] X. Xu, et al., Kernel Least-Squares Temporal Difference Learning, International Journal of
Information Technology,11(9), (2005) 54-63

[27] Schölkopf, B., Smola, A.: Learning with Kernels. Cambridge, MA: MIT Press (2002)
[28] Nashed, M. Z., ed.: Generalized Inverses and Applications. Academic Press, New York,

(1976)
[29] Xu, X.: A Sparse Kernel-Based Least-Squares Temporal Difference Algorithm for

Reinforcement Learning. In: Proceedings of International Conference on
Intelligent Computing. 2006, Lecture Notes in Computer Science, LNCS 4221
(2006) 47-56

[30] Engel, Y., Mannor, S., Meir, R.: The Kernel Recursive Least-Squares Algorithm. IEEE
Transactions on Signal Processing, 52 (8) (2004) 2275-2285

[31] N. Ye, Y. Zhang, and C. M. Borror. Robustness of the Markov-Chain model for cyber-
attack detection. IEEE Transactions on Reliability, 53(1), (2004) 116-123.

[32] http://www.cs.unm.edu/~immsec/data/

 Machine Learning

420

evaluative signals or feedbacks for sequential training data. It is illustrated that compared
with previous anomaly detection approaches using machine learning, the TD learning and
prediction method can obtain comparable or even better detection accuracies for complex
sequential attacks. More importantly, the proposed TD learning and prediction approach
provides an efficient anomaly detection technique with simplified labeling procedure and
reduced computational complexity. Future work may need to be focused on the extension
of the proposed method to more general intrusion detection systems with real-time
applications.

6. References
[1] D. Denning: An intrusion-detection model. IEEE Transactions on Software Engineering,

13(2) (1987) 222-232
[2] M. M. Sebring, E. Shellhouse, M. E. Hanna, and R. Alan Whitehurst. Expert systems in

intrusion detection: A case study. In Proceedings of the 11th National Computer
Security Conference, Baltimore, Maryland, October, (1988) 74-81

[3] W. K. Lee, Stolfo, S., and Mok, K.: Adaptive Intrusion Detection: A Data Mining
Approach. Artificial Intelligence Review, 14(6), (2000) 533 – 567

[4] D.Y. Yeung, Y.X. Ding, Host-based intrusion detection using dynamic and static
behavioral models. Pattern Recognition, 36 (2003) 229 – 243

[5] A. K. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly
and misuse detection. in Proceedings of the 8th USENIX Security Symposium,
(1999).

[6] H.Shah, J.Undercoffer and A.Joshi: Fuzzy clustering for intrusion detection. In:
Proceedings of the 12th IEEE International Conference on Fuzzy Systems. (2003)
1274-1278

[7] D. Barbara, N. Wu, S. Jajodia, Detecting novel network intrusions using Bayes estimators,
First SIAM Conference on Data Mining, Chicago, IL, (2001).

[8] J. Ryan, M-J. Lin, R. Miikkulainen, Intrusion detection with neural networks, Proceedings
of AAAI-97 Workshop on AI Approaches to Fraud Detection and Risk Management, AAAI
Press, (1997) 72-77.

[9] X. Xu. Adaptive Intrusion Detection Based on Machine Learning: Feature Extraction,
Classifier Construction and Sequential Pattern Prediction. International Journal of
Web Services Practices, Vol.2, No.1-2 (2006), pp. 49-58

[10] M. Mahoney, P.Chan: Learning nonstationary models of normal network traffic for
detecting novel attacks. In: Proceedings of 8th International Conference on Knowledge
Discovery and Data Mining, (2002) 376-385

[11] X. Xu, X. N. Wang, Adaptive network intrusion detection method based on PCA and
support vector machines . Lecture Notes in Artificial Intelligence, ADMA 2005, LNAI
3584, (2005) 696 – 703.

[12] P. Laskov, P. Düssel, C. Schäfer, K. Rieck, Learning intrusion detection: supervised or
unsupervised? Proc. ICIAP 2005, September, Lecture Notes in Computer Science ,
LNCS 3617 (2005) 50-57

Machine Learning for Sequential Behavior Modeling and Prediction

421

[13] W.K. Lee, S.J.Stolfo: A data mining framework for building intrusion detection model.
In: Gong L., Reiter M.K. (eds.): Proceedings of the IEEE Symposium on Security and
Privacy. Oakland, CA: IEEE Computer Society Press (1999) 120~132

[14] http://www.kdnuggets.com/datasets/kddcup.html
[15] Y. H. Liao, V. Rao Vemuri, Using text categorization techniques for intrusion

detection, Proceedings of the 11th USENIX Security Symposium, August, (2002)
51-59.

[16] X.Xu, Intrusion Detection Based on Dynamic Behavior Modeling: Reinforcement
Learning versus Hidden Markov Models, International Journal of Computational
Intelligence Theory and Practice, 2(1), (2007) 57-66

[17] T. Lane, C. Brodley, Temporal sequence learning and data reduction for anomaly
detection. ACM Transactions on Information and System Security, 2(3) (1999) 295–331

[18] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2): 257-286, 1986.

[19] S. Hofmeyr et al., Intrusion detection using sequences of systems call, Journal of
Computer Security, 6 (1998) 151-180

[20] X.Xu, A Reinforcement Learning Approach for Host-Based Intrusion Detection Using
Sequences of System Calls. Lecture Notes in Computer Science, LNCS 3644, pp. 995 –
1003

[21] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, vol. 4, (1996) 237--285.

[22] R. Sutton, Learning to predict by the method of temporal differences. Machine Learning,
3(1), (1988) 9-44

[23] X. Xu, H. G. He, D. W. Hu: Efficient reinforcement learning using recursive least-
squares methods. Journal of Artificial Intelligence Research, vol.16, (2002) 259-292

[24] J. A. Boyan, Technical Update: Least-squares temporal difference learning. Machine
Learning, 49, (2002) 233-246

[25] X. Xu, Yirong Luo, A Kernel-Based Reinforcement Learning Approach to Dynamic
Behavior Modeling of Intrusion Detection, In : D. Liu et al. (Eds.): ISNN 2007,
Lecture Notes in Computer Science, LNCS 4491, Part I, (2007) 459–468

[26] X. Xu, et al., Kernel Least-Squares Temporal Difference Learning, International Journal of
Information Technology,11(9), (2005) 54-63

[27] Schölkopf, B., Smola, A.: Learning with Kernels. Cambridge, MA: MIT Press (2002)
[28] Nashed, M. Z., ed.: Generalized Inverses and Applications. Academic Press, New York,

(1976)
[29] Xu, X.: A Sparse Kernel-Based Least-Squares Temporal Difference Algorithm for

Reinforcement Learning. In: Proceedings of International Conference on
Intelligent Computing. 2006, Lecture Notes in Computer Science, LNCS 4221
(2006) 47-56

[30] Engel, Y., Mannor, S., Meir, R.: The Kernel Recursive Least-Squares Algorithm. IEEE
Transactions on Signal Processing, 52 (8) (2004) 2275-2285

[31] N. Ye, Y. Zhang, and C. M. Borror. Robustness of the Markov-Chain model for cyber-
attack detection. IEEE Transactions on Reliability, 53(1), (2004) 116-123.

[32] http://www.cs.unm.edu/~immsec/data/

 Machine Learning

422

[33] C. Warrender, S. Forrest, B. Pearlmutter. Detecting intrusions using system calls:
alternative data models. in the 1999 IEEE Symposium on Security and Privacy, May
9-12, (1999)

 Machine Learning

422

[33] C. Warrender, S. Forrest, B. Pearlmutter. Detecting intrusions using system calls:
alternative data models. in the 1999 IEEE Symposium on Security and Privacy, May
9-12, (1999)

Machine Learning
Edited by Abdelhamid Mellouk

and Abdennacer Chebira

Edited by Abdelhamid Mellouk
and Abdennacer Chebira

Machine Learning can be defined in various ways related to a scientific domain
concerned with the design and development of theoretical and implementation tools that

allow building systems with some Human Like intelligent behavior. Machine learning
addresses more specifically the ability to improve automatically through experience.

Photo by agsandrew / iStock

ISBN 978-3-902613-56-1

M
achine Learning

ISBN 978-953-51-5838-7

	Machine Learning
	Preface
	Contents
	1. Neural Machine Learning Approaches:Q-Learning and Complexity Estimation Based Information Processing System
	2. From Automation To Autonomy
	3. Taking Experience to a Whole New Level
	4. Hamiltonian Neural Networks Based Networks for Learning
	5. Similarity Discriminant Analysis
	6. Forced Information for Information-Theoretic Competitive Learning
	7. Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help
	8. Machine Learning Methods for Spoken Dialogue Simulation and Optimization
	9. Hardening Email Security via Bayesian Additive Regression Trees
	10. Learning Optimal Web Service Selections in Dynamic Environments when Many Quality-of-Service Criteria Matter
	11. Model Selection for Ranking SVM Using Regularization Path
	12. Generation of Facial Expression Map using Supervised and Unsupervised Learning
	13. Linear Subspace Learning for Facial Expression Analysis
	14. Resampling Methods for Unsupervised Learning from Sample Data
	15. 3D Shape Classification and Retrieval Using Heterogenous Featuresand Supervised Learning
	16. Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques Applied to the Classification of Faults in Energy Transport Systems
	17. Genetic Network Programming with Reinforcement Learning and Its Application to Creating Stock Trading Rules
	18. Heuristic Dynamic Programming Nonlinear Optimal Controller
	19. Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning
	20. Machine Learning for Sequential Behavior Modeling and Prediction

