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Preface 
 
Machine Learning is often referred to as a branch of artificial intelligence which deals 

with the design and the development of algorithms and techniques that help machines to 
“learn”. Hence, it is closely related to various scientific domains as Optimization, Vision, 
Robotic and Control, Theoretical Computer Science, etc. 

Based on this, Machine Learning can be defined in various ways related to a scientific 
domain concerned with the design and development of theoretical and implementation 
tools that allow building systems with some Human Like intelligent behavior. Machine 
learning addresses more specifically the ability to improve automatically through 
experience. 

This book brings together many different aspects of the current research on several 
fields associated to Machine Learning. The selection of the chapters for this book was done 
in respect to the fact that it comprises a cross-edition of topics that reflect variety of 
perspectives and disciplinary backgrounds.  

Four main parts have been defined and allow gathering the 21 chapters around the 
following topics: machine learning approaches, Human-like behavior and machine Human 
interaction, supervised and unsupervised learning approaches, reinforcement learning 
approaches and their applications. 

This book starts with a first set of chapters which addresses general approaches in 
Machine Learning fields. One can find discussion about various issues: how to use the 
paradigm divide and conquer to build a hybrid self organized neural network tree structure, 
how to move from automation to autonomy, how to take experience to a whole new level, 
how to design very large scale networks based on Hamiltonian neural networks, how to 
design classifiers generative with similarity based abilities, and how information-theoretic 
competitive learning can force networks to increase knowledge. 

In addition, the second part addresses the problem of Human-like behavior and 
machine Human interaction. It contains five chapters that deal with the following scope: 
Human-Knowledge poor-process of ontological information extraction, Machine learning 
for spoken dialogue system optimization, Bayesian additive regression trees applied to mail 
phishing detection, Composition of web services under multiple criteria and supervised 
learning problems under the ranking framework. 

Another set of chapters presents an overview and challenges in several areas of 
supervised and unsupervised learning approaches. Subjects deal with generation method 
for a person specific facial expression map, linear subspace methods in the context of 
automatic facial expression analysis, nearest neighbor re-sampling method for prognostic 
gene expression patterns of tumor patients, 3D shape classification and retrieval algorithm 
and classification of faults in electrical power systems using a hybrid model based on neural 
networks.  

The last part of the book deals with reinforcement learning approaches used in Machine 
Learning area. Various techniques are developed:  Genetic learning programming and Sarsa 
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learning allow the selection of appropriate stock trading rules in financial area, convergence 
of the online value-iteration in dynamic programming techniques is given in the case of the 
optimal control problem for general nonlinear discrete-time systems, modular reinforcement 
learning with situation-sensitive ability is used for intention estimation, experience replay 
technique is applied to real-words application and finally sequential modeling and 
prediction allow an adaptive intrusion detection in computer system. 

This book shows that Machine Learning is a very dynamic area in terms of theory and 
application. The field of Machine Learning has been growing rapidly, producing a wide 
variety of learning algorithms for different applications. The ultimate value of those 
algorithms is to a great extent judged by their success in solving real-world problems. There 
is also a very extensive literature on Machine Learning, and to give a complete bibliography 
and a historical account of the research that led to the present form would have been 
impossible. It is thus inevitable that some topics have been treated in less detail than others. 
The choices made reflect on one hand personal taste and expertise and on second hand a 
preference for a very promising research and recent developments in Machine Learning 
fields. 

Finally, we would to thank all contributors to this book for their research and effort.We 
hope you enjoy reading this book and get many helpful ideas and overviews for your own 
study. 

Editors 

Abdelhamid Mellouk 
IUT Creteil/Vitry, 
LiSSi Laboratory, 

University of Paris 12 
France 

Abdennacer Chebira  
IUT Senart/Fontainebleau, 

LiSSi Laboratory, 
University of Paris 12 

France 
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Neural Machine Learning Approaches:
Q-Learning and Complexity Estimation Based 

Information Processing System 
Abdennasser Chebira, Abdelhamid Mellouk,  

Kurosh Madani and Said Hoceini 
LISSI laboratory, University Paris 12-Val de Marne 

France

1. Introduction 
Real world dilemmas, and especially industry related ones, are set apart from academic ones
from several basic points of views. The difference appears since definition of the “problem’s 
solution” notion. In fact, academic (called also sometime theoretical) approach often begins
by problem’s constraints simplification in order to obtain a “solvable” model (here, solvable 
model means a set of mathematically solvable relations or equations describing a behavior, 
phenomena, etc…) (Madani, 2008). If the theoretical consideration is a mandatory step to
study a given problem’s solvability, for a very large number of real world dilemmas, it 
doesn’t lead to a solvable or realistic solution. Difficulty could be related to several issues
among which:
- large number of parameters to be taken into account (influencing the behavior) making 

conventional mathematical tools inefficient,  
- strong nonlinearity of the system (or behavior), leading to unsolvable equations,
- partial or total inaccessibility of system’s relevant features, making the model

insignificant,
- subjective nature of relevant features, parameters or data, making the processing of 

such data or parameters difficult in the frame of conventional quantification, 
- necessity of expert’s knowledge, or heuristic information consideration,
- imprecise information or data leakage. 
Examples illustrating the above-mentioned difficulties are numerous and may concern 
various areas of real world or industrial applications. As first example, one can emphasize
difficulties related to economical and financial modeling and prediction, where the large 
number of parameters, on the one hand, and human related factors, on the other hand, make 
related real world problems among the most difficult to solve. Another illustrative example 
concerns the delicate class of dilemmas dealing with complex data’s and multifaceted
information’s processing, especially when processed information (representing patterns,
signals, images, etc.) are strongly noisy or involve deficient data. In fact, real world and 
industrial applications, comprising system identification, industrial processes control, 
systems and plants safety, manufacturing regulation and optimization, pattern recognition,
communication networks (complex routing, large communication networks management
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and optimization, etc.) (Mellouk, 2008a), are often those belonging to such class of 
dilemmas. 
If much is still to discover about how the animal’s brain trains and self-organizes itself in 
order to process so various and so complex information, a number of recent advances in 
“neurobiology” allow already highlighting some of key mechanisms of this marvels 
machine. Among them one can emphasizes brain’s “modular” structure and its “self-
organizing” capabilities. In fact, if our simple and inappropriate binary technology remains 
too primitive to achieve the processing ability of these marvels mechanisms, a number of 
those highlighted points could already be sources of inspiration for designing new machine 
learning approaches leading to higher levels of artificial systems’ intelligence (Madani, 2007).  
In this chapter, we deal with machine learning based modular approaches which could offer 
powerful solutions to overcome processing difficulties in the aforementioned frame. If the 
machine learning capability provides processing system’s adaptability and offers an 
appealing alternative for fashioning the processing technique adequacy, the modularity may 
result on a substantial reduction of treatment’s complexity. In fact, the modularity issued 
complexity reduction may be obtained from several instances: it may result from 
distribution of computational effort on several modules; it can emerge from cooperative or 
concurrent contribution of several processing modules in handling a same task; it may drop 
from the modules’ complementary contribution (e.g. specialization of a module on treating a 
given task to be performed).  
A number of works dealing with modular computing and issued architectures have been 
proposed since 1990. Most of them associate a set of Artificial Neural Networks (ANN) in a 
modular structure in order to process a complex task by dividing it into several simpler sub-
tasks. One can mention active learning approaches (Fahlman & Lebiere, 1990), neural 
networks ensemble concept proposed by (Hanibal, 1993), intelligent hybrid systems (Krogh 
& Vedelsby, 1995), Mixture of experts concept proposed by (Bruske & Sommer, 1995) and 
(Sung & Niyogi, 1995) or structures based on dynamic cells (Lang & Witbrock, 1998). In the 
same years, a number of authors proposed multi-modeling concept for nonlinear systems 
modeling, where a set of simple models is used to sculpt a complex behaviour 
(Goonnatilake & Khebbal, 1996), (Mayoubi et al., 1995), (Murray-Smith & Johansen, 1997), 
(Ernst, 1998)) in order to avoid difficulties (modeling complexity). However, it is important 
to remind that the most of proposed works (except those described in the four latest 
references) remain essentially theoretical and if a relatively consequent number of different 
structures have been proposed, a very few of them have been applied to real-world 
dilemmas solution. 
The present chapter focuses those machine learning based modular approaches which take 
advantage either from modules’ independence (multi-agent approach) or from self-
organizing multi-modeling ("divide and conquer" paradigm). In other words, we will 
expound online and self-organizing approaches which are used when no a priori learning 
information is available. Within this frame, we will present, detail and discuss two 
challenging applicative aspects: the first one dealing with routing optimization in high 
speed communication networks and the other with complex information processing. 
Concerning the network routing optimization problem, we will describe and evaluate an 
adaptive online machine learning based approach, combining multi-agent based modularity 
and neural network based reinforcement learning ((Mellouk, 2007), (Mellouk, 2008b)). On 
the side of complex information processing, we will describe and evaluate a self-organizing 
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modular machine learning approach, combining "divide and conquer" paradigm and 
“complexity estimation” techniques that we called self-organizing “Tree-like Divide To 
Simplify” (T-DTS) approach ((Madani et al., 2003), (Madani et al., 2005), (Bouyoucef et al., 
2005), (Chebira et al., 2006)).  
This chapter is composed by four sections. The second section presents the state of the art of 
modular approaches over three modular paradigms: "divide and conquer" paradigm, 
Committee Machines and Multi Agent systems. In section 3, a neural network based 
reinforcement learning approach dealing with adaptive routing in communication networks 
is presented. In the last section, dealing with complex information processing, we will detail 
the self-organizing Tree divide to simplify approach, including methods and strategies for 
building the modular structure, decomposition of databases and finally processing. A sub-
section will present a number of aspects relating “complexity estimation” that is used in T-
DTS in order to self-organize such modular structure. Evaluating the universality of T-DTS 
approach, by showing its applicability to different classes of problems will concern other 
sub-sections of this fourth section. Global conclusions end this chapter and give further 
perspectives for the future development of proposed approaches. 

2. Modular approaches 
Apart from specialized "one-piece" algorithm as explicit solution of a problem, there exist a 
number of alternative solutions, which promote modular structure. In modular structure, 
units (computational unit or model) could either have some defined and regularized 
connectivity or be more or less randomly linked, ending up at completely independent and 
individual units. The units can communicate with each others. The units’ communication 
may take various forms. It may consist of data exchange. It may consist of orders exchange, 
resulting either on module’s features modification or on its structure. Units may espouse 
cooperative or competitive interaction. A modular structure composed of Artificial Neural 
Networks is called Multi Neural Network (MNN). 
We will present here three modular paradigms that are of particular interest: "Divide and 
Conquer" paradigm, Committee Machines and Multi Agent Systems. "Divide and conquer" 
paradigm is certainly a leading idea for the tree structure described in this section. 
Committee machines are in large part incorporation of this paradigm. For multi-agent 
approach the stress is put on the modules independence. 

2.1 “Divide and Conquer" paradigms 
This approach is based on the principle "Divide et Impera" (Julius Caesar). The main frame 
of the principle can be expressed as: 
- Break up problem into two (or more) smaller sub-problems; 
- Solve sub-problems; 
- Combine results to produce a solution to original problem. 
The ways in which the original problem is split differ as well as the algorithms of solving 
sub-problems and combining the partial solutions. The splitting of the problem can be done 
in recursive way. Very known algorithm using this paradigm is Quicksort (Hoare, 1962), 
which splits recursively data in order to sort them in a defined order. In the Artificial Neural 
Networks area the most known algorithm of similar structure is Mixture of Experts (Bruske 
& Sommer, 1995). 
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modular machine learning approach, combining "divide and conquer" paradigm and 
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which splits recursively data in order to sort them in a defined order. In the Artificial Neural 
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Algorithmic paradigms evaluation could be made on the basis of running time. This is 
useful in that it allows computational effort comparisons between the performances of two 
algorithms to be made. For Divide-and-Conquer algorithms the running time is mainly 
affected by: 
- The number of sub-instances into which a problem is split; 
- The ratio of initial problem size to sub-problem size; 
- The number of steps required to divide the initial instance and to combine sub-

solutions; 
- Task complexity; 
- Database size. 

2.2 Committee machines 
The committee machines are based on engineering principle divide and conquer. According 
to that rule, a complex computational task is solved by dividing it into a number of 
computationally simple sub-tasks and then combining the solutions of these sub-tasks. In 
supervised learning, the task is distributed among a number of experts. The combination of 
experts is called committee machine. Committee machine fuses knowledge of experts to 
achieve an overall task, which may be more efficient than that achieved by any of the 
experts alone (Tresp, 2001). 
The taxonomy of committee machines could be as follows: 
- Static structures: Ensemble Averaging and Boosting; 
- Dynamic structures: Mixture of Experts and Hierarchical Mixture of Experts. 
Next several subsections will present the types of committee machines in detail. 

2.2.1 Ensemble averaging 
In ensemble averaging technique (Haykin, 1999), (Arbib, 1989), a number of differently 
trained experts (i.e. neural networks) share a common input and their outputs are combined 
to produce an overall output value y. 
 

 
Fig. 1. Ensemble averaging structure 

The advantage of such structure over a single expert is that the variance of the average 
function is smaller than the variance of single expert. Simultaneously both average 
functions have the same bias. These two facts lead to a training strategy for reducing the 
overall error produced by a committee machine due to varying initial conditions (Naftaly 
et al., 1997): the experts are purposely over-trained, what results in reducing the bias at 
the variance cost. The variance is subsequently reduced by averaging the experts, leaving 
the bias unchanged. 
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2.2.2 Boosting 
In boosting approach (Schapire, 1999) the experts are trained on data sets with entirely 
different distributions; it is a general method which can improve the performance of any 
learning algorithm. Boosting can be implemented in three different ways: Boosting by 
filtering, Boosting by sub-sampling and Boosting by re-weighing. A well known example is 
AdaBoost (Schapire, 1999) algorithm, which runs a given weak learner several times on 
slightly altered training data, and combining the hypotheses to one final hypothesis, in 
order to achieve higher accuracy than the weak learner's hypothesis would have.  

2.2.3 Mixture of experts  
Mixture of experts consists of K supervised models called expert networks and a gating 
network, which performs a function of mediator among expert networks. The output is a 
weighted sum of experts' outputs (Jordan & Jacobs, 2002). 
A typical Mixture of Experts structure is presented by figure 2. One can notice the K experts 
and a gating network that filters the solutions of experts. Finally the weighted outputs are 
combined to produce overall structure output. The gating network consists of K neurons, 
each one is assigned to a specific expert. 
The neurons in gating network are nonlinear with activation function that is a differentiable 
version of "winner-takes-all" operation of picking the maximum value. It is referred as 
"softmax" transfer function (Bridle, 1990). The mixture of experts is an associative Gaussian 
mixture model, which is a generalization of traditional Gaussian mixture model 
(Titterington et al., 1985), (MacLachlan & Basford, 1988). 

2.2.4 Hierarchical mixture of experts 
Hierarchical mixture of experts (Jordan & Jacobs, 1993) works similarly to ordinary mixture 
of experts, except that multiple levels of gating networks exist. So the outputs of mixture of 
experts are gated in order to produce combined output of several mixtures of expert 
structures. In figure 3 one can see two separate mixture of experts blocks (marked with 
dashed rectangles). The additional gating network is gating the outputs of these two blocks 
in order to produce the global structure output. 

 
Fig. 2. Mixture of Experts 
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Fig. 3. Example of hierarchical mixture of experts 

2.3 Multi agent systems 
Multi agent system is a system that compounds of independent modules called "agents". 
There is no single control structure (designer) which controls all agents. Each of these agents 
can work on different goals, sometimes in cooperative and sometimes in competitive modes. 
Both cooperation and competition modes are possible among agents (Decker et al., 1997). 
There is a great variety of intelligent software agents and structures. The characteristics of 
Multi Agent Systems (Ferber, 1998) are: 
- Each agent has incomplete information or capabilities for solving the problem and, 

thus, has a limited viewpoint; 
- There is no system global control; 
- Data are decentralized; 
- Computation is asynchronous. 
In Multi Agent Systems many intelligent agents interact with each other. The agents can 
share a common goal (e.g. an ant colony), or they can pursue their own interests (as in the 
free market economy). Figure 4 gives the classification of intelligent artificial agents 
considering their origin. 
Agents may also be classified according to the tasks they perform:  
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- Interface Agents - Computer programs using artificial intelligence techniques in order 
to provide assistance to a user dealing with a particular application. The metaphor is 
that of a personal assistant who is collaborating with the user in the same work 
environment (Maes, 1994). 

- Information Agents - An information agent is an agent that has access to at least one, 
and potentially many information sources, and is able to collect and manipulate 
information obtained from these sources to answer to users and other information 
agent’s queries (Wooldridge & Jennings, 1995). 

 
Fig. 4. Classification of intelligent artificial agents considering origin 

- Commerce Agents- A commerce agent is an agent that provides commercial services 
(e.g., selling, buying and prices' advice) for a human user or for another agent.  

- Entertainment Agents - Artistically interesting, highly interactive, simulated worlds to 
give users the experience of living in (not merely watching) dramatically rich worlds 
that include moderately competent, emotional agents (Bate et al., 1992). 

Agents can communicate, cooperate and negotiate with other agents. The basic idea behind 
Multi Agent systems is to build many agents with small areas of action and link them 
together to create a structure which is much more powerful than the single agent itself. 

2.4 Discussion 
If over past decade wide studies have been devoted to theoretical aspects of modular 
structures (and algorithms), very few works have concerned their effective implementation 
and their application to real-world dilemmas. Presenting appealing potential advantages 
over single structures, this kind of processing systems may avoid difficulties inherent to 
large and complicated processing systems by splitting the initial complex task into a set of 
simpler task requiring simpler processing algorithms. The other main advantage is the 
customized nature of the modular design regarding the task under hand. Among the above-
presented structures, the "Divide and Conquer" class of algorithms presents engaging 
faultlessness. Three variants could be distinguished: 
- Each module works with full database aiming a "global" processing. This variant uses a 

combination of the results issued from individual modules to construct the final 
system’s response. 

- Modules work with a part of database (sub-database) aiming a “local” but “not 
exclusive” processing. In this variant, some of the processing data could be shared by 
several modules. However, depending on the amount of shared data this variant could 
be more or less similar to the two others cases. 

 
Autonomous 

Biological agents Robotic agents Computational agents 

Software agents Artificial life agents 

Task-specific agents Entertainment agents Viruses



Machine Learning 6 

 
Fig. 3. Example of hierarchical mixture of experts 

2.3 Multi agent systems 
Multi agent system is a system that compounds of independent modules called "agents". 
There is no single control structure (designer) which controls all agents. Each of these agents 
can work on different goals, sometimes in cooperative and sometimes in competitive modes. 
Both cooperation and competition modes are possible among agents (Decker et al., 1997). 
There is a great variety of intelligent software agents and structures. The characteristics of 
Multi Agent Systems (Ferber, 1998) are: 
- Each agent has incomplete information or capabilities for solving the problem and, 

thus, has a limited viewpoint; 
- There is no system global control; 
- Data are decentralized; 
- Computation is asynchronous. 
In Multi Agent Systems many intelligent agents interact with each other. The agents can 
share a common goal (e.g. an ant colony), or they can pursue their own interests (as in the 
free market economy). Figure 4 gives the classification of intelligent artificial agents 
considering their origin. 
Agents may also be classified according to the tasks they perform:  

 

Input x 

Output 

Expert 1,2
 

Expert 1,2
 

Expert L,2
 

...
 

Gating network 2 

gL2 

g12 

g22 

... 

...
 

yL2 

y22 ∑ 

y12 

Expert 1,1 

Expert 2,1
 

Expert K,1
 

...
 

Gating network 1 

gK1 

g11 

g21 

 

...
 

yK1 

y21 ∑ 

y11 

Gating network 3 

g2 

g1 

∑ 

Output y2 

Output y1 

Neural Machine Learning Approaches:  
Q-Learning and Complexity Estimation Based Information Processing System 7 

- Interface Agents - Computer programs using artificial intelligence techniques in order 
to provide assistance to a user dealing with a particular application. The metaphor is 
that of a personal assistant who is collaborating with the user in the same work 
environment (Maes, 1994). 

- Information Agents - An information agent is an agent that has access to at least one, 
and potentially many information sources, and is able to collect and manipulate 
information obtained from these sources to answer to users and other information 
agent’s queries (Wooldridge & Jennings, 1995). 

 
Fig. 4. Classification of intelligent artificial agents considering origin 

- Commerce Agents- A commerce agent is an agent that provides commercial services 
(e.g., selling, buying and prices' advice) for a human user or for another agent.  

- Entertainment Agents - Artistically interesting, highly interactive, simulated worlds to 
give users the experience of living in (not merely watching) dramatically rich worlds 
that include moderately competent, emotional agents (Bate et al., 1992). 

Agents can communicate, cooperate and negotiate with other agents. The basic idea behind 
Multi Agent systems is to build many agents with small areas of action and link them 
together to create a structure which is much more powerful than the single agent itself. 

2.4 Discussion 
If over past decade wide studies have been devoted to theoretical aspects of modular 
structures (and algorithms), very few works have concerned their effective implementation 
and their application to real-world dilemmas. Presenting appealing potential advantages 
over single structures, this kind of processing systems may avoid difficulties inherent to 
large and complicated processing systems by splitting the initial complex task into a set of 
simpler task requiring simpler processing algorithms. The other main advantage is the 
customized nature of the modular design regarding the task under hand. Among the above-
presented structures, the "Divide and Conquer" class of algorithms presents engaging 
faultlessness. Three variants could be distinguished: 
- Each module works with full database aiming a "global" processing. This variant uses a 

combination of the results issued from individual modules to construct the final 
system’s response. 

- Modules work with a part of database (sub-database) aiming a “local” but “not 
exclusive” processing. In this variant, some of the processing data could be shared by 
several modules. However, depending on the amount of shared data this variant could 
be more or less similar to the two others cases. 

 
Autonomous 

Biological agents Robotic agents Computational agents 

Software agents Artificial life agents 

Task-specific agents Entertainment agents Viruses



Machine Learning 8 

- Modules work with a part of database (sub-database) aiming a “local” and “exclusive” 
processing. In this option, sub-databases are exclusive by meaning that no data is 
shared by modules. The final system’s result could either be a set of responses 
corresponding to different parts of the initial treated problem or be the output of the 
most appropriated module among the available ones. 

Tree-like Divide To Simplify Approach (described later in this chapter) could be classified as 
belonging to "Divide and Conquer" class of algorithms as it breaks up an initially complex 
problem into a set of sub-problems. However, regarding the three aforementioned variants, 
its actually implemented version solves the sub-problems issued from the decomposition 
process according to the last variant. In the next section, we present a first modular 
algorithms which hybridize multi-agents techniques and Q-Neural learning. 

3. Multi-agents approach and Q-neural reinforcement learning hybridization: 
application to QoS complex routing problem  
This section present in detail a Q-routing algorithm optimizing the average packet delivery 
time, based on Neural Network (NN) ensuring the prediction of parameters depending on 
traffic variations. Compared to the approaches based on Q-tables, the Q-value is 
approximated by a reinforcement learning based neural network of a fixed size, allowing 
the learner to incorporate various parameters such as local queue size and time of day, into 
its distance estimation. Indeed, a Neural Network allows the modeling of complex functions 
with a good precision along with a discriminating training and network context 
consideration. Moreover, it can be used to predict non-stationary or irregular traffics. The Q-
Neural Routing algorithm is presented in detail in section 3.2. The performance of Q-
Routing and Q-Neural Routing algorithms are evaluated experimentally in section 3.3 and 
compared to the standard shortest path routing algorithms.  

3.1 Routing problem in communication networks 
Network, such as Internet, has become the most important communication infrastructure of 
today's human society. It enables the world-wide users (individual, group and 
organizational) to access and exchange remote information scattered over the world. 
Currently, due to the growing needs in telecommunications (VoD, Video-Conference, VoIP, 
etc.) and the diversity of transported flows, Internet network does not meet the 
requirements of the future integrated-service networks that carry multimedia data traffic 
with a high Quality of Service (QoS). The main drivers of this evolution are the continuous 
growth of the bandwidth requests, the promise of cost improvements and finally the 
possibility of increasing profits by offering new services. First, it does not support resource 
reservation which is primordial to guarantee an end-to-end Qos (bounded delay, bounded 
delay jitter, and/or bounded loss ratio). Second, data packets may be subjected to 
unpredictable delays and thus may arrive at their destination after the expiration time, 
which is undesirable for continuous real-time media. In this Context, for optimizing the 
financial investment on their networks, operators must use the same support for 
transporting all the flows. Therefore, it is necessary to develop a high quality control 
mechanism to check the network traffic load and ensure QoS requirements. 
A lot of different definitions and parameters for this concept of quality of service can be 
found. For ITU-T E.800 recommendation, QoS is described as “the collective effect of service 
performance which determines the degree of satisfaction of a user of the service”. This 
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definition is completed by the I.350 ITU-T recommendation which defines more precisely 
the differences between QoS and Network Performance. Relating QoS concepts in the 
Internet are focused on a packet-based end-to-end, edge-to-edge or end-to-edge 
communication. QoS parameters which refer to this packet transport at different layers are: 
availability, bandwidth, delay, jitter and loss ratio. It’s clear that the integration of these QoS 
parameters increases the complexity of the used algorithms. Anyway, there will be QoS 
relevant technological challenges in the emerging hybrid networks which mixes several 
networks topologies and technologies (wireless, broadcast, mobile, fixed, etc.). 
In the literature, we can find the usage of QoS in three ways: 
- Deterministic QoS consists in sufficiently resources reserved for a particular flow in 

order to respect the strict temporal constraints for all the packages of flow. No loss of 
package or going beyond of expiries is considered in this type of guarantee. This model 
makes it possible to provide an absolute terminal on the time according to the reserved 
resources. 

- Probabilistic QoS consists in providing a long-term guarantee of the level of service 
required by a flow. For time-reality applications tolerating the loss of a few packages or 
the going beyond of some expiries, the temporal requirements as well as the rates of 
loss are evaluated on average. The probabilistic guarantee makes it possible to provide 
a temporal terminal with a certain probability which is given according to the 
conditions of load of the network. 

- Stochastic QoS which is fixed before by a stochastic distribution.  
Various techniques have been proposed to take into account QoS requirements (Strassner, 
2003). By using in-band or out-band specific control protocols, these techniques may be 
classified as follows: the congestion control (Slow Start (Welzl, 2003), Weighted Random 
Early Detection (Jacobson, 1988)), the traffic shaping (Leaky Bucket (Feng et al., 1997), Token 
Bucket (Turner, 1986)), integrated services architecture, (RSVP (Shenker et al., 1997), (Zhang 
et al., 1993)), the differentiated services (DiffServ (Zhang et al., 1993), (Bernet, 1998)) and 
QoS based routing. In this section, we focus on QoS routing policies.   
A routing algorithm is based on the hop-by-hop shortest-path paradigm. The source of a 
packet specifies the address of the destination, and each router along the route forwards the 
packet to a neighbour located “closest” to the destination. The best optimal path is selected 
according to given criteria. When the network is heavily loaded, some of the routers 
introduce an excessive delay while others are ignored (not expoited). In some cases, this 
non-optimized usage of the network resources may introduce not only excessive delays but 
also high packet loss rate. Among routing algorithms extensively employed in routers, one 
can note: distance vector algorithm such as RIP (Malkin, 1993) and the link state algorithm 
such as OSPF (Moy, 1998). These kinds of algorithms take into account variations of load 
leading to limited performances.  
A lot of study has been conducted in a search for an alternative routing paradigm that 
would address the integration of dynamic criteria. The most popular formulation of the 
optimal distributed routing problem in a data network is based on a multi-commodity flow 
optimization whereby a separable objective function is minimized with respect to the types 
of flow subject to multi-commodity  flow constraints (Gallager, 1977), (Ozdalgar et al., 2003). 
However, due their complexity, increased processing burden, a few proposed routing 
schemes could be accepted for the internet. We listed here some QoS based routing 
algorithms proposed in the literature: QOSPF (Quality Of Service Path First) (Crawley et al., 
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definition is completed by the I.350 ITU-T recommendation which defines more precisely 
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also high packet loss rate. Among routing algorithms extensively employed in routers, one 
can note: distance vector algorithm such as RIP (Malkin, 1993) and the link state algorithm 
such as OSPF (Moy, 1998). These kinds of algorithms take into account variations of load 
leading to limited performances.  
A lot of study has been conducted in a search for an alternative routing paradigm that 
would address the integration of dynamic criteria. The most popular formulation of the 
optimal distributed routing problem in a data network is based on a multi-commodity flow 
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1998), MPLS (Multiprotocol label switching) (Rosen et al., 1999), (Stallings, 2001), (Partridge, 
1992), Traffic Engineering (Strasnner, 2003), (Welzl, 2003), Wang-Crowcroft algorithm 
(Wang & Crowcroft, 1996), Ants routing approach (Subramanian et al., 1997), Cognitive 
Packet Networks based on random neural networks (Gelenbe et al., 2002). 
For a network node to be able to make an optimal routing decision, according to relevant 
performance criteria, it requires not only up-to-date and complete knowledge of the state of 
the entire network but also an accurate prediction of the network dynamics during 
propagation of the message through the network. This, however, is impossible unless the 
routing algorithm is capable of adapting to network state changes in almost real time. So, it 
is necessary to develop a new intelligent and adaptive optimizing routing algorithm. This 
problem is naturally formulated as a dynamic programming problem, which, however, is 
too complex to be solved exactly.  
In our approach, we use the methodology of reinforcement learning (RL) introduced by 
Sutton (Sutton & Barto, 1997) to approximate the value function of dynamic programming. 
One of pioneering works related to this kind of approaches concerns Q-Routing algorithm 
(Boyan & Littman, 1994) based on Q-learning technique (Watkins & Dayan, 1989). In this 
approach, each node makes its routing decision based on the local routing information, 
represented as a table of Q values which estimate the quality of the alternative routes. These 
values are updated each time the node sends a packet to one of its neighbors. However, 
when a Q value is not updated for a long time, it does not necessarily reflect the current 
state of the network and hence a routing decision based on such an unreliable Q value will 
not be accurate. The update rule in Q-Routing does not take into account the reliability of 
the estimated or updated Q value because it’s depending on the traffic pattern, and load 
levels, only a few Q values are current while most of the Q values in the network are 
unreliable. For this purpose, other algorithms have been proposed like Confidence based Q-
Routing (CQ-Routing) (Kumar & Miikkualainen, 1998) or Dual Reinforcement Q-Routing 
(DRQ-Routing) (Kumar & Miikkualainen, 1997), (Goetz et al., 1996). All these routing 
algorithms use a table to estimate Q values. However, the size of the table depends on the 
number of destination nodes existing in the network. Thus, this approach is not well suited 
when we are concerned with a state-space of high dimensionality. 

3.2 Q-neural routing approach 
In this section, we present an adaptive routing algorithm based on the Q-learning approach, 
the Q-function is approximated by a reinforcement learning based neural network. First, we 
formulate the reinforcement learning process. 

3.2.1 Reinforcement learning 
Algorithms for reinforcement learning face the same issues as traditional distributed 
algorithms, with some additional peculiarities. First, the environment is modelled as 
stochastic (especially links, link costs, traffic, and congestion), so routing algorithms can take 
into account the dynamics of the network. However no model of dynamics is assumed to be 
given. This means that RL algorithms have to sample, estimate, and perhaps build models of 
pertinent aspect of the environment. Second, RL algorithms, unlike other machine learning 
algorithms, do not have an explicit learning phase followed by evaluation. Since there is no 
training signal for a direct evaluation of the policy’s performance before the packet has 
reached its final destination, it is difficult to apply supervised learning techniques to this 
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problem (Haykin, 1998). In addition, it is difficult to determine to what extent a routing 
decision that has been made on a single node may influence the network’s overall 
performance. This fact fits into the temporal credit assignment problem (Watkins, 1989).  
The RL algorithm, called reactive approach, consists of endowing an autonomous agent 
with a correctness behavior guaranteeing the fulfillment of the desired task in the dynamics 
environment. The behavior must be specified in terms of Perception - Decision – Action loop 
(Fig. 5). Each variation of the environment induces stimuli received by the agent, leading to 
the determination of the appropriate action. The reaction is then considered as a punishment 
or a performance function, also called, reinforcement signal.  
 

 
Fig. 5. Reinforcement learning model 

Thus, the agent must integrate this function to modify its future actions in order to reach an 
optimal performance. In other words, a RL Algorithm is a finite-state machine that interacts 
with a stochastic environment, trying to learn the optimal action the environment offers 
through a learning process. At any iteration the automaton’s agent chooses an action, 
according to a probability vector, using an output function. This function stimulates the 
environment, which responds with an answer (reward or penalty). The automaton’s agent 
takes into account this answer and jumps, if necessary, to a new state using a transition 
function. 
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supervised learning is that on-line performance is important: the evaluation of the system is 
often concurrent with learning.  
A Reinforcement Learning system thus involves the following elements: an Agent, an 
Environment, a Reinforcement Function, an Action, a State, a Value Function, which is 
obtained from the reinforcement function, and a Policy. In order to obtain a network routing 
useful model, it is possible to associate the network’s elements to the basic elements of a RL 
system, as shown in Table 1. 

3.2.2 Q-learning algorithm for routing 
In our routing algorithm (Mellouk, 2006), the objective is to minimize the average packet 
delivery time. Consequently, the reinforcement signal which is chosen corresponds to the 
estimated time to transfer a packet to its destination. Typically, the packet delivery time 
includes three variables: The packet transmission time, the packet treatment time in the 
router and the latency in the waiting queue. In our case, the packet transmission time is not 
taken into account. In fact, this parameter can be neglected in comparison to the other ones 
and has no effect on the routing process. 
The reinforcement signal T employed in the Q-learning algorithm can be defined as the 
minimum of the sum of the estimated Q (y, x, d) sent by the router x neighbor of router y 
and the latency in waiting queue qy corresponding to router y. 

 { }
neighbor of y
min ( , , )yx

T q Q y x d
∈

= +  (1) 

Q(s, y, d) denote the estimated time by the router s so that the packet p reaches its 
destination d through the router y. This parameter does not include the latency in the 
waiting queue of the router s.  The packet is sent to the router y which determines the 
optimal path to send this packet (Watkins, 1989). 
 

 
Fig. 6. Updating the reinforcement signal 
Once the choice of the next router made, the router y puts the packet in the waiting queue, 
and sends back the value T as a reinforcement signal to the router s. It can therefore update 
its reinforcement function as: 

 ( , , ) ( ( , , ))Q s y d T Q s y dη αΔ = + −  (2) 

So, the new estimation ),,(' dysQ can be written as follows (fig.6): 

 '( , , )Q s y d = ( , , )Q s y d ( )1 η−  + ( )Tη α+  (3) 

α  and η are respectively, the packet transmission time between s and y, and the learning rate.  
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3.2.2 Q-learning neural net architecture 
The neural network proposed in our study is a Recurrent Multi-Layers Perceptron (MLP) 
with an input, one hidden and an output layer. 
 

 
Fig. 7. Artificial Neural Network Architecture 

The input cells correspond to the destination addresses d and the waiting queue states. The 
outputs are the estimated packet transfer times passing through the neighbors of the 
considered router.  The algorithm derived from this architecture is called Q-Neural Routing 
and can be described according to the following algorithm: 
 
Etiq1 : 
{While (not packet receive) 

Begin 
End 

} 
If (packet = "packet of reinforcement")   

Begin 
1. Neural Network updating using a retro-propagation algorithm based on gradient 

method, 
2. Destroy the reinforcement packet. 

End 
Else 

Begin  
1. Calculate Neural Network outputs, 
2. Select the smallest output value and get an IP address of the associated router, 
3. Send the packet to this router, 
4. Get an IP address of the precedent router, 
5. Create and send the packet as a reinforcement signal. 

End 
End 
Goto Etiq1  
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3.3 Implementation and simulation results 
To show the efficiency and evaluate the performances of our approach, an implementation 
has been performed on OPNET software of MIL3 Company. The proposed approach has 
been compared to that based on standard Q-routing (Boyan & Littman, 1994) and shortest 
path routing policy. OPNET constitutes for telecommunication networks an appropriate 
modeling, scheduling and simulation tool. It allows the visualization of a physical topology 
of a local, metropolitan, distant or on board network. The protocol specification language is 
based on a formal description of a finite state automaton.  
The proposed approaches have been compared to that based on standard Q-routing and 
shortest paths routing policies (such as Routing Internet Protocol RIP). The topology of the 
network used for simulations purpuse, which used in many papers, includes 33 
interconnected nodes, as shown in figure 8. Two kinds of traffic have been studied: low load 
and high load of the network. In the first case, a low rate flow is sent to node destination-1, 
from nodes source-1 and source-4. From the previous case, we have created conditions of 
congestion of the network. Thus, a high rate flow is generated by nodes source-2 and 
source-3. Two possible ways R-1 (router-29 and router-30) and R-2 (router-21 and router-22) 
to route the packets between the left part and the right part of the network.  
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Fig. 8.  Network topology for simulation 

Performances of algorithms are evaluated in terms of average packet delivery time. Figure 9 
and figure 10 illustrates the obtained results when source-2 and source-3 send information 
packets during 10 minutes. From figure 10, one can see clearly, that after an initialization 
period, the Q-routing and Q-Neural routing algorithms, exhibit better performances than 
RIP. Thus, packet average delivery time obtained by Q-routing algorithm and Q-Neural 
routing algorithm is reduced of respectively 23.6% and 27.3% compared to RIP routing 
policy (table 2). These results confirm that classical shortest path routing algorithm like RIP 
lead to weak performances due to packets delayed in the waiting queues of the routers. 
Moreover, this policy does not take into account the load of the network. On the other hand, 
when a way of destination is saturated, Q-routing and Q-Neural routing algorithms allow 
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the selection of a new one to avoid this congestion. In the case of a low load (figure 10), one 
can note that after a period of initialization, performances of these algorithms are 
approximately the same as those obtained with RIP routing policy. 
 

        
Fig. 9. Network with a low load                                Fig. 10. Network with a high load 
 

Computed 
Algorithms MAPTT 

Q-routing  42 

Q-neural 
routing  40 

RIP 55 

Table 2. Maximum average packet delivery time 

Figure 11 illustrates the average packet delivery time obtained when a congestion of the 
network is generated during 60 minutes. Thus, in the case where the number of packets is 
more important, the Q-Neural routing algorithm gives better results compared to Q-
routing algorithm. For example, after 2 hours of simulation, Q-Neural routing exhibits a 
performance of 20% higher than that of Q-routing. Indeed, the use of waiting queue state 
of the neighboring routers in the routing decision, allows anticipation of routers 
congestion. 
In general, the topology of the neural network must be fixed before the training process. 
The only variables being able to be modified are the values of the weights of connections. 
The specification of this architecture, the number of cells of each layer and of connections, 
remains a crucial problem. If this number is insufficient, the model will not be able to take 
into account all data. A contrario, if it is too significant, the training will be perfect but the 
network generalization ability will be poor (overfitting problem). However, we are 
concerned here by online training, for which the number of examples is not defined a 
priori. For that, we propose an empirical study based on pruning technique to find a 
compromise between a satisfactory estimate of the function Q and an acceptable 
computing time. 
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Fig. 11. Very High load Network 
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based on modular tree-like decomposition structure, which is used amongst others for task 
decomposition. This section will present also in detail procedures and algorithms that are 
used for the creation, execution and modification of the modules. It will discuss also 
advantages and disadvantages of T-DTS approach and compare it with other approaches. 
T-DTS is a self-organizing modular structure including two types of modules: 
Decomposition Unit (DU) and Processing Unit (PU). The purpose is based on the use of a set 
of specialized mapping neural networks (PU), supervised by a set of DU. DU could be a 
prototype based neural network, Markovian decision process, etc. The T-DTS paradigm 
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allows us to build a modular tree structure. In such structure, DU could be seen as “nodes” 
and PU as leaves. At the nodes level, the input space is decomposed into a set of subspaces 
of smaller sizes. At the leaves level, the aim is to learn the relations between inputs and 
outputs of sub-spaces, obtained from splitting. As the modules are based on Artificial 
Neural Networks, they inherit the ANN’s approximation universality as well as their 
learning and generalization abilities. 

4.1 Hybrid Multiple Neural Networks framework - T-DTS 
As it has been mentioned above, in essence, T-DTS is a self-organizing modular structure 
(Madani et Al., 2003). T-DTS paradigm builds a tree-like structure of models (DU and PU). 
Decomposition Units are prototypes based ANNs and Processing Units are specialized 
mapping ANNs. However, in a general frame, PU could be any kind of processing model 
(conventional algorithm or model, ANN based model, etc…). At the nodes level(s) - the 
input space is decomposed into a set of optimal sub-spaces of the smaller size. At the leaves 
level(s) - the aim is to learn the relation between inputs and outputs of sub-spaces obtained 
from splitting. T-DTS acts in two main operational phases: 
Learning: recursive decomposition under DU supervision of the database into sub-sets:  tree 
structure building phase; 
Operational: Activation of the tree structure to compute system output (provided by PU at 
tree leaf’s level). 
General block diagram of T-DTS is described on Figure 13. The proposed schema is open 
software architecture.  It can be adapted to specific problem using the appropriate modeling 
paradigm at PU level: we use mainly Artificial Neural Network computing model in this 
work. In our case the tree structure construction is based on a complexity estimation 
module. This module introduces a feedback in the learning process and control the tree 
building process. The reliability of tree model to sculpt the problem behavior is associated to 
the complexity estimation module. The whole decomposing process is built on the paradigm 
“splitting database into sub-databases - decreasing task complexity”. It means that the 
decomposition process is activated until a low satisfactory complexity ratio is reached. T- DTS 
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software architecture is depicted on Figure 14. T-DTS software incorporates three databases: 
decomposition methods, ANN models and complexity estimation modules databases. 
 

 
Fig. 14. T-DTS software architecture 

T-DTS software engine is the Control Unit. This core-module controls and activates several 
software packages: normalization of incoming database (if it’s required), splitting and 
building a tree of prototypes using selected decomposition method, sculpting the set of local 
results and generating global result (learning and generalization rates). T-DTS software can 
be seen as a Lego system of decomposition methods, processing methods powered by a 
control engine an accessible by operator thought Graphic User Interface. 
The three databases can be independently developed out of the main frame and more 
important, they can be easily incorporated into T-DTS framework. 
For example, SOM-LSVMDT (Mehmet et al., 2003) algorithm; which is based on the same 
idea of decomposition, can be implement by T-DTS by mean of LSVMDT (Chi & Ersoy, 
2002) (Linear Support Vector Machine Decision Tree) processing method incorporation into 
PU database. 
- The current T-DTS software (version 2.02) includes the following units and methods: 

 Decomposition Units: 
 CN (Competitive Network) 
 SOM (Self Organized Map) 
 LVQ (Learning Vector Quantization) 

- Processing Units: 
 LVQ (Learning Vector Quantization) 
 Perceptrons 
 MLP (Multilayer Perceptron) 
 GRNN (General Regression Neural Network) 
 RBF (Radial basis function network) 
 PNN (Probabilistic Neural Network) 
 LN 

- Complexity estimators (Bouyoucef, 2007), presented in sub-section 4.2.5, are  based on 
the following criteria: 

 MaxStd (Sum of the maximal standard deviations) 
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 Fisher measure. 
 Purity measure 
 Normalized mean distance 
 Divergence measure 
 Jeffries-Matusita distance 
 Bhattacharyya bound 
 Mahalanobis distance 
 Scattered-matrix method based on inter-intra matrix-criteria (Fukunaga, 1972). 
 ZISC© IBM ® based complexity indicator (Budnyk & al. 2007). 

4.2 T-DTS learning and decomposition mechanism 
The decomposition mechanism in T-DTS approach builds a tree structure. The creation of 
decomposition tree is data-driven. It means that the decision to-split-or-not and how-to-split 
is made depending on the properties of the current sub-database. For each database the 
decision to-split-or-not should be made. After a positive decision a Decomposition Unit 
(DU) is created which divides the data and distributes the resulting sub-databases creating 
children in the tree. If the decision is negative the decomposition of this sub-database (and 
tree branch) is over and a Processing Unit should be built for the sub-database. The type of 
the new tree module depends on the result of decomposition decision made for the current 
sub-database (and in some cases also on other parameters, as described later). The tree is 
built beginning from the root which achieves the complete learning database. The process 
results in a tree which has DUs at nodes and Processing Unit models in tree leaves.  
Figure 15 shows decomposition tree structure (in case of binary tree) and its recurrent 
construction in time, while question marks mean decomposition decisions.  
For any database B (including the initial) a splitting decision (if to split and how to split) is 
taken. When the decision is positive then a Decomposition Unit is created, and the database 
is decomposed (clustered) by the new Decomposition Unit. When the decomposition 
decision is negative, a Processing Unit is created in order to process the database (for 
example to create a model).  
The database B incoming to some Decomposition Unit will be split into several sub-
databases b1,b2...bk , depending on the properties of the database B and parameters τ 

obtained from controlling structure. The function S(ψi,τ) assigns any vector ψi from database 

B to an appropriate sub-database j. The procedure is repeated in recursive way i.e. for each 
resulting sub-database a decomposition decision is taken and the process repeats. One chain 
of the process is depicted in figure 16. 
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The scheduling vector S(ψi,τk) will activate (select) the K-th Processing Unit, and so the 
processing of an unlearned input data conform to parameter τk and condition ξk will be given 
by the output of the selected Processing Unit: 

 ( ) ( )( )i k k iY Y i FΨ = = Ψ  (5) 

Complexity indicators are used in our approach in order to reach one of the following goals:  
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-  Global decomposition control - estimator which evaluates the difficulty of classification 
of the whole dataset and chooses decomposition strategy and parameters before any 
decomposition has started, 

-  Local decomposition control - estimator which evaluates the difficulty of classification 
of the current sub-database during decomposition of dataset, in particular: 

 Estimator which evaluates the difficulty of classification of the current sub-database, 
to produce decomposition decision (if to divide the current sub-database or not); 

 Estimator which can be used to determine the type of used classifier or its 
properties and parameters. 

-  Mixed approach - use of many techniques mentioned above at once, for example: usage 
of Global decomposition control to determine the parameters of local decomposition 
control. 

One should mention also that estimation of sub-database complexity occurs for each sub-
database dividing decision thus computational complexity of the algorithm should rather be 
small. Thus it doesn't require advanced complexity estimation methods. Considering these 
features, the second option - estimation during decomposition - has been chosen in our 
experiments in order to achieve self adaptation feature of T-DTS structure. 
 

 
Fig. 15. T-DTS decomposition tree creation in time 
 

 
Fig. 16. Decomposition Unit activities 
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4.2.1 Decomposition Unit (DU) 
The purpose of Decomposition Unit is to divide the database into several sub-databases. 
This task is referred in the literature as clustering (Hartgan, 1975). To accomplish this task a 
plenty of methods are known. We are using Vector Quantization unsupervised methods, in 
particular: competitive Neural Networks and Kohonen Self-Organizing Maps (Kohonen, 
1984). These methods are based on prototype, that represent the centre of cluster (cluster = 
group of vectors). In our approach cluster is referred to as sub-database.  

4.2.2 Decomposition of learning database  
The learning database is split into M learning sub-databases by DUs during building of the 
decomposition tree. The learning database decomposition is equivalent to "following the 
decomposition tree" decomposition strategy. The resulting learning sub-databases could be 
used for Processing Unit learning. Each sub-database has then Processing Unit attached. The 
Processing Unit models are trained using the corresponding learning sub-database. 

 
Fig. 17. Decomposition of learning database "following the decomposition tree" strategy 

4.2.3 Training of Processing Units (models) 
For each sub-database T-DTS constructs a neural based model describing the relations 
between inputs and outputs. Training of Processing Unit models is performed using 
standard supervised training techniques, possibly most appropriate for the learning task 
required. In this work only Artificial Neural Networks are used, however there should be no 
difficulty to use other modelling techniques. 
Processing Unit is provided with a sub-database and target data. It is expected to model the 
input/output mapping underlying the subspace as reflected by the sub-database provided. 
The trained model is used later to process data patterns assigned to the Processing Unit by 
assignment rules. 

4.2.4 Processing Units  
Processing Unit models used in our approach can be of any origin. In fact they could be also 
not based on Artificial Neural Networks at all. The structure used depend on the type of 
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- for classification - MLP, LVQ, Probabilistic Networks (Haykin, 1999), RBF, Linear 
Networks; 

- for regression - MLP, RBF; 
- for model identification - MLP.  
Processing Unit models are created and trained in the learning phase of T-DTS algorithm, 
using learning sub-databases assigned by decomposition structure. In the generalization 
phase, they are provided with generalization vectors assigned to them by pattern 
assignment rules. The vectors form generalization sub-databases are processed by 
Processing Unit models. Each Processing Unit produce some set of approximated output 
vectors, and the ensemble of them will compose whole generalization database. 

4.2.5 Complexity estimation techniques  
The goal of complexity estimation techniques is to estimate the processing task’s difficulty. 
The information provided by these techniques is mainly used in a splitting process 
according to a divide and conquer approach. It act’s at three levels:  
- The task decomposition process up to some degree dependant on task or data complexity. 
- The choice of appropriate processing structure (i.e. appropriated model) for each subset 

of decomposed data. 
- The choice of processing architecture (i.e. models parameters).  
The techniques usually used for complexity estimation are sorted out in three main 
categories: those based on Bayes error estimation, those based on space partitioning 
methods and others based on intuitive paradigms. Bayes error estimation may involve two 
classes of approaches, known as: indirect and non-parametric Bayes error estimation methods, 
respectively. This sub-section of the chapter will present a detailed summery of these main 
complexity estimation methods which are used in the T-DTS self-organizing system core, 
focusing mainly on measurements supporting task decomposition aspect.  
4.2.5.1 Indirect Bayes error estimation  
To avoid the difficulties related to direct estimation of the Bayes error, an alternative 
approach is to estimate a measure directly related to the Bayes error, but easier to compute. 
Usually one assumes that the data distribution is normal (Gaussian). Statistical methods 
grounded in the estimation of probability distributions are most frequently used. The 
drawback of these is that they assume data normality. A number of limitations have been 
documented in literature (Vapnik, 1998):  
- model construction could be time consuming; 
- model checking could be difficult; 
- as data dimensionality increases, a much larger number of samples is needed to 

estimate accurately class conditional probabilities; 
- if sample does not sufficiently represent the problem, the probability distribution 

function cannot be reliably approximated; 
- with a large number of classes, estimating a priori probabilities is quite difficult. This 

can be only partially overcome by assuming equal class probabilities (Fukunaga, 1990), 
(Ho & Basu, 2002). 

- we normally do not know the density form (distribution function); 
- most distributions in practice are multimodal, while models are unimodal; 
- approximating a multimodal distributions as a product of univariate distributions do 

not work well in practice.  

Neural Machine Learning Approaches:  
Q-Learning and Complexity Estimation Based Information Processing System 23 

4.2.5.1.1 Normalized mean distance  

Normalized mean distance is a very simple complexity measure for Gaussian unimodal 
distribution. It raises when the distributions are distant and not overlapping. 

 1 2

1 2
normd

μ μ
σ σ

−
=

+
 (6) 

The main drawback of that estimator is that it is inadequate (as a measure of separability) 
when both classes have the same mean values. 

4.2.5.1.2 Chernoff bound  

The Bayes error for the two class case can be expressed as: 

 ( )min ( ) |k ki
P c p x c dxε = ⎡ ⎤⎣ ⎦∫  (7) 

Through modifications, we can obtain a Chernoff bound εu, which is an upper bound on ε for 
the two class case: 
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The tightness of bound varies with s. 
4.2.5.1.3 Bhattacharyya bound  

The Bhattacharyya bound is a special case of Chernoff bound for s = 1/2. Empirical evidence 
indicates that optimal value for Chernoff bound is close to 1/2 when the majority of 
separation comes from the difference in class means. Under a Gaussian assumption, the 
expression of the Bhattacharyya bound is: 
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and μi and Σi are respectively the means and classes covariance’s (i in {1,2}). 

4.2.5.1.4 Mahalanobis distance  

Mahalanobis distance (Takeshita et al., 1987) is defined as follows: 

 ( ) ( )1
2 1 2 1

T
DM μ μ μ μ−= − Σ −  (11) 

MD is the Mahalanobis distance between two classes. The classes' means are μ1 and μ2 and Σ 
is the covariance matrix. Mahalanobis distance is used in statistics to measure the similarity 
of two data distributions. It is sensitive to distribution of points in both samples. The 
Mahalanobis distance is measured in units of standard deviation, so it is possible to assign 
statistical probabilities (that the data comes from the same class) to the specific measure 
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- for classification - MLP, LVQ, Probabilistic Networks (Haykin, 1999), RBF, Linear 
Networks; 

- for regression - MLP, RBF; 
- for model identification - MLP.  
Processing Unit models are created and trained in the learning phase of T-DTS algorithm, 
using learning sub-databases assigned by decomposition structure. In the generalization 
phase, they are provided with generalization vectors assigned to them by pattern 
assignment rules. The vectors form generalization sub-databases are processed by 
Processing Unit models. Each Processing Unit produce some set of approximated output 
vectors, and the ensemble of them will compose whole generalization database. 

4.2.5 Complexity estimation techniques  
The goal of complexity estimation techniques is to estimate the processing task’s difficulty. 
The information provided by these techniques is mainly used in a splitting process 
according to a divide and conquer approach. It act’s at three levels:  
- The task decomposition process up to some degree dependant on task or data complexity. 
- The choice of appropriate processing structure (i.e. appropriated model) for each subset 

of decomposed data. 
- The choice of processing architecture (i.e. models parameters).  
The techniques usually used for complexity estimation are sorted out in three main 
categories: those based on Bayes error estimation, those based on space partitioning 
methods and others based on intuitive paradigms. Bayes error estimation may involve two 
classes of approaches, known as: indirect and non-parametric Bayes error estimation methods, 
respectively. This sub-section of the chapter will present a detailed summery of these main 
complexity estimation methods which are used in the T-DTS self-organizing system core, 
focusing mainly on measurements supporting task decomposition aspect.  
4.2.5.1 Indirect Bayes error estimation  
To avoid the difficulties related to direct estimation of the Bayes error, an alternative 
approach is to estimate a measure directly related to the Bayes error, but easier to compute. 
Usually one assumes that the data distribution is normal (Gaussian). Statistical methods 
grounded in the estimation of probability distributions are most frequently used. The 
drawback of these is that they assume data normality. A number of limitations have been 
documented in literature (Vapnik, 1998):  
- model construction could be time consuming; 
- model checking could be difficult; 
- as data dimensionality increases, a much larger number of samples is needed to 

estimate accurately class conditional probabilities; 
- if sample does not sufficiently represent the problem, the probability distribution 

function cannot be reliably approximated; 
- with a large number of classes, estimating a priori probabilities is quite difficult. This 

can be only partially overcome by assuming equal class probabilities (Fukunaga, 1990), 
(Ho & Basu, 2002). 

- we normally do not know the density form (distribution function); 
- most distributions in practice are multimodal, while models are unimodal; 
- approximating a multimodal distributions as a product of univariate distributions do 

not work well in practice.  
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4.2.5.1.1 Normalized mean distance  

Normalized mean distance is a very simple complexity measure for Gaussian unimodal 
distribution. It raises when the distributions are distant and not overlapping. 
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The main drawback of that estimator is that it is inadequate (as a measure of separability) 
when both classes have the same mean values. 

4.2.5.1.2 Chernoff bound  

The Bayes error for the two class case can be expressed as: 

 ( )min ( ) |k ki
P c p x c dxε = ⎡ ⎤⎣ ⎦∫  (7) 

Through modifications, we can obtain a Chernoff bound εu, which is an upper bound on ε for 
the two class case: 
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The tightness of bound varies with s. 
4.2.5.1.3 Bhattacharyya bound  

The Bhattacharyya bound is a special case of Chernoff bound for s = 1/2. Empirical evidence 
indicates that optimal value for Chernoff bound is close to 1/2 when the majority of 
separation comes from the difference in class means. Under a Gaussian assumption, the 
expression of the Bhattacharyya bound is: 
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and μi and Σi are respectively the means and classes covariance’s (i in {1,2}). 

4.2.5.1.4 Mahalanobis distance  

Mahalanobis distance (Takeshita et al., 1987) is defined as follows: 
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MD is the Mahalanobis distance between two classes. The classes' means are μ1 and μ2 and Σ 
is the covariance matrix. Mahalanobis distance is used in statistics to measure the similarity 
of two data distributions. It is sensitive to distribution of points in both samples. The 
Mahalanobis distance is measured in units of standard deviation, so it is possible to assign 
statistical probabilities (that the data comes from the same class) to the specific measure 
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values. Mahalanobis distance greater than 3 is considered as a signal that data are not 
homogenous (does not come from the same distribution). 
4.2.5.1.5 Jeffries-Matusita distance  

Jeffries-Matusita (Matusita ,1967) distance between class’s c1 and c2 is defined as: 

 ( ) ( ){ }2

2 1| |D x
JM p X c p X c dx= −∫  (12) 

If class’s distributions are normal Jeffries-Matusita distance reduces to: 
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Matusita distance is bounded within range [0, 2] where high values signify high separation 
between c1 and c2 classes. 
4.2.5.2 Non-Parametric Bayes error estimation and bounds  
Non-parametric Bayes error estimation methods make no assumptions about the specific 
distributions involved. They use some intuitive methods and then prove the relation to 
Bayes error. Non-parametric techniques do not suffer from problems with parametric 
techniques. 

4.2.5.2.1 Error of the classifier itself  

This is the most intuitive measure. However it varies much depending on the type of 
classifier used and, as such, it is not very reliable unless one uses many classification 
methods and averages the results. The last solution is certainly not computationally 
efficient. 

4.2.5.2.2 k-Nearest Neighbours, (k-NN)  

K- Nearest Neighbours (Cove & Hart, 1967) technique relays on the concept of setting a local 
region Γ(x) around each sample x and examining the ratio of the number of samples 
enclosed k to the total number of samples N, normalized with respect to region volume v: 

 ( )( ) k xp x
vN

=  (15) 

K-NN technique fixes the number of samples enclosed by the local region (k becomes 
constant). The density estimation Equation for k-NN becomes: 

 -1( )
( )
kp x
v x N

=  (16) 

where p(x) represent probability of specific class appearance and v(x) represent local region 
volume. K-NN is used to estimate Bayes error by either providing an asymptotic bound or 
through direct estimation.  K-NN estimation is computationally complex. 

Neural Machine Learning Approaches:  
Q-Learning and Complexity Estimation Based Information Processing System 25 

4.2.5.2.3 Paren Estimation  
Parzen techniques relay on the same concept as k-NN: setting a local region Γ(x) around 
each sample x and examining the ratio of the samples enclosed k, to the total number of 
samples N, normalized with respect to region volume v:    

 ( ) kp x
vN

=  (17)    

The difference according to k-NN is that Parzen fixes the volume of local region v. Then the 
density estimation equation becomes: 

 ( )( ) k xp x
vN

=  (18) 

where p(x) represents density and k(x) represents number of samples enclosed in volume. 
Estimating the Bayes error using the Parzen estimate is done by forming the log likelihood 
ratio functions based upon the Parzen density estimates and then using resubstitution and 
leave-one-out methodologies to find an optimistic and pessimistic value for error estimate. 
Parzen estimates are however not known to bound the Bayes error. Parzen estimation is 
computationally complex. 

4.2.5.2.4 Boundary methods  

The boundary methods are described in the work of Pierson (Pierson, 1998). Data from each 
class is enclosed within a boundary of specified shape according to some criteria. The 
boundaries can be generated using general shapes like: ellipses, convex hulls, splines and 
others. The boundary method often uses ellipsoidal boundaries for Gaussian data, since it is 
a natural representation of those. The boundaries may be made compact by excluding 
outlying observations. Since most decision boundaries pass through overlap regions, a 
count of these samples may give a measure related to misclassification rate. Collapsing 
boundaries iteratively in a structured manner and counting the measure again lead to a 
series of decreasing values related to misclassification error. The rate of overlap region 
decay provides information about the separability of classes. Pierson discuses in his work a 
way in which the process from two classes in two dimensions can be expanded to higher 
dimension with more classes. Pierson has demonstrated that the measure of separability 
called the Overlap Sum is directly related to Bayes error with a much more simple 
computational complexity. It does not require any exact knowledge of the a posteriori 
distributions. Overlap Sum is the arithmetical mean of overlapped points with respect to 
progressive collapsing iterations: 
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where to is the step size, m is the maximum number of iteration (collapsing boundaries), N is 
the number of data points in whole dataset and Δs(kt0) is the number of points in the 
differential overlap. 
4.2.5.3 Measures related to space partitioning  
Measures related to space partitioning are connected to space partitioning algorithms. Space 
partitioning algorithms divide the feature space into sub-spaces. That allows obtaining some 
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values. Mahalanobis distance greater than 3 is considered as a signal that data are not 
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Matusita distance is bounded within range [0, 2] where high values signify high separation 
between c1 and c2 classes. 
4.2.5.2 Non-Parametric Bayes error estimation and bounds  
Non-parametric Bayes error estimation methods make no assumptions about the specific 
distributions involved. They use some intuitive methods and then prove the relation to 
Bayes error. Non-parametric techniques do not suffer from problems with parametric 
techniques. 

4.2.5.2.1 Error of the classifier itself  

This is the most intuitive measure. However it varies much depending on the type of 
classifier used and, as such, it is not very reliable unless one uses many classification 
methods and averages the results. The last solution is certainly not computationally 
efficient. 

4.2.5.2.2 k-Nearest Neighbours, (k-NN)  

K- Nearest Neighbours (Cove & Hart, 1967) technique relays on the concept of setting a local 
region Γ(x) around each sample x and examining the ratio of the number of samples 
enclosed k to the total number of samples N, normalized with respect to region volume v: 
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K-NN technique fixes the number of samples enclosed by the local region (k becomes 
constant). The density estimation Equation for k-NN becomes: 
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where p(x) represent probability of specific class appearance and v(x) represent local region 
volume. K-NN is used to estimate Bayes error by either providing an asymptotic bound or 
through direct estimation.  K-NN estimation is computationally complex. 
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each sample x and examining the ratio of the samples enclosed k, to the total number of 
samples N, normalized with respect to region volume v:    
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density estimation equation becomes: 
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where p(x) represents density and k(x) represents number of samples enclosed in volume. 
Estimating the Bayes error using the Parzen estimate is done by forming the log likelihood 
ratio functions based upon the Parzen density estimates and then using resubstitution and 
leave-one-out methodologies to find an optimistic and pessimistic value for error estimate. 
Parzen estimates are however not known to bound the Bayes error. Parzen estimation is 
computationally complex. 

4.2.5.2.4 Boundary methods  

The boundary methods are described in the work of Pierson (Pierson, 1998). Data from each 
class is enclosed within a boundary of specified shape according to some criteria. The 
boundaries can be generated using general shapes like: ellipses, convex hulls, splines and 
others. The boundary method often uses ellipsoidal boundaries for Gaussian data, since it is 
a natural representation of those. The boundaries may be made compact by excluding 
outlying observations. Since most decision boundaries pass through overlap regions, a 
count of these samples may give a measure related to misclassification rate. Collapsing 
boundaries iteratively in a structured manner and counting the measure again lead to a 
series of decreasing values related to misclassification error. The rate of overlap region 
decay provides information about the separability of classes. Pierson discuses in his work a 
way in which the process from two classes in two dimensions can be expanded to higher 
dimension with more classes. Pierson has demonstrated that the measure of separability 
called the Overlap Sum is directly related to Bayes error with a much more simple 
computational complexity. It does not require any exact knowledge of the a posteriori 
distributions. Overlap Sum is the arithmetical mean of overlapped points with respect to 
progressive collapsing iterations: 
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where to is the step size, m is the maximum number of iteration (collapsing boundaries), N is 
the number of data points in whole dataset and Δs(kt0) is the number of points in the 
differential overlap. 
4.2.5.3 Measures related to space partitioning  
Measures related to space partitioning are connected to space partitioning algorithms. Space 
partitioning algorithms divide the feature space into sub-spaces. That allows obtaining some 
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advantages, like information about the distribution of class instances in the sub-spaces. Then 
the local information is globalized in some manner to obtain information about the whole 
database, not only the parts of it. 
4.2.5.3.1 Class Discriminability Measures 

Class Discriminability Measure (CDM) (Kohn et al., 1996) is based on the idea of 
inhomogeneous buckets. The idea here is to divide the feature space into a number of 
hypercuboids. Each of those hypercuboids is called a "box". The dividing process stops 
when any of following criteria is fulfilled:  
- box contains data from only one class; 
- box is non-homogenous but linearly separable; 
- number of samples in a box is lower that N0.375, where N is the total number of samples 

in dataset.  
If the stopping criteria are not satisfied, the box is partitioned into two boxes along the axis 
that has the highest range in terms of samples, as a point of division using among others 
median of the data. 
Final result will be a number of boxes which can be:  
- homogenous terminal boxes (HTB); 
- non-linearly separable terminal boxes (NLSTB); 
- non-homogenous non-linearly separable terminal boxes (NNLSTB). 
In order to measure complexity, CDM uses only Not Linearly Separable Terminal Boxes, as, 
according to author (Kohn et al., 1996), only these contribute to Bayes error. That is however 
not true, because Bayes error of the set of boxes can be greater than the sum of Bayes errors 
of the boxes - partitioning (and in fact nothing) cannot by itself diminish the Bayes error of 
the whole dataset; however it can help classifiers in approaching the Bayes error optimum. 
So given enough partitions we arrive to have only homogenous terminal boxes, so the Bayes 
error is supposed to be zero, that is not true. 
 The formula for CDM is: 
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where k(i) is the total number of samples in the i-th NNLSTB, k(j|i) is the number of samples 
from class j in the i-th NNLSTB and N is the total number of samples. For task that lead to 
only non-homogenous but linearly separable boxes, this measure equals zero. 
4.2.5.3.2 Purity measure 
Purity measure (Sing, 2003) is developed by Singh and it is presented with connection to his 
idea based on feature space partitioning called PRISM (Pattern Recognition using 
Information Slicing Method). PRISM divides the space into cells within defined resolution B. 
Then for each cell probability of class i in cell l is: 
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where njl is the number of points of class j in cell l, nil is the number of points of class i in cell 
l and Kl is the total number of classes.  
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Degree of separability in cell l is given by:    
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These values are averaged for all classes, obtaining overall degree of separability: 
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where Nl signifies the number of points in the l-th cell, and N signifies total number of 
points. If this value was computed at resolution B then it is weighted by factor 

Bw
2
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B=(0,1,...31). Considering the curve (SH versus normalized resolution) as a closed polygon 
with vertices (xi,yi), the area under the curve called purity for a total of n vertices is given as:  
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The x axis is scaled to achieve values bounded within range [0, 1]. After the weighing 
process maximum possible value is 0.702, thus the value is rescaled once again to be 
between [0, 1] range. 
The main drawback of purity measure is that if in a given cell, the number of points from 
each class is equal, then the purity measure is zero despite that in fact the distribution may 
be linearly separable. Purity measure does not depend on the distribution of data in space of 
single cell, but the distribution of data into the cells is obviously associated with data 
distribution. 

4.2.5.3.3 Neighborhood Separability 

Neighborhood Separability (Singh, 2003) measure is developed by Singh. Similarly to 
purity, it also depends on the PRISM partitioning results. In each cell, up to k nearest 
neighbors are found. Then one measure a proportion pk of nearest neighbors that come from 
the same class to total number of nearest neighbors. For each number of neighbors k, 
1<=k<=λil calculate the area under the curve that plots pk against k as φj. Then compute the 
average proportion for cell Hl as: 
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Overall separability of data is given as:   

 
1

totalH l

NN l
l

NS p
N=

= ∑  (26)   

One compute the SNN measure for each resolution B=(0, 1, … ,31). Finally, the area ASNN 
under the curve SNN versus resolution gives the measure of neighborhood separability for a 
given data set.  
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hypercuboids. Each of those hypercuboids is called a "box". The dividing process stops 
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- number of samples in a box is lower that N0.375, where N is the total number of samples 
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If the stopping criteria are not satisfied, the box is partitioned into two boxes along the axis 
that has the highest range in terms of samples, as a point of division using among others 
median of the data. 
Final result will be a number of boxes which can be:  
- homogenous terminal boxes (HTB); 
- non-linearly separable terminal boxes (NLSTB); 
- non-homogenous non-linearly separable terminal boxes (NNLSTB). 
In order to measure complexity, CDM uses only Not Linearly Separable Terminal Boxes, as, 
according to author (Kohn et al., 1996), only these contribute to Bayes error. That is however 
not true, because Bayes error of the set of boxes can be greater than the sum of Bayes errors 
of the boxes - partitioning (and in fact nothing) cannot by itself diminish the Bayes error of 
the whole dataset; however it can help classifiers in approaching the Bayes error optimum. 
So given enough partitions we arrive to have only homogenous terminal boxes, so the Bayes 
error is supposed to be zero, that is not true. 
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where k(i) is the total number of samples in the i-th NNLSTB, k(j|i) is the number of samples 
from class j in the i-th NNLSTB and N is the total number of samples. For task that lead to 
only non-homogenous but linearly separable boxes, this measure equals zero. 
4.2.5.3.2 Purity measure 
Purity measure (Sing, 2003) is developed by Singh and it is presented with connection to his 
idea based on feature space partitioning called PRISM (Pattern Recognition using 
Information Slicing Method). PRISM divides the space into cells within defined resolution B. 
Then for each cell probability of class i in cell l is: 
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where njl is the number of points of class j in cell l, nil is the number of points of class i in cell 
l and Kl is the total number of classes.  
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These values are averaged for all classes, obtaining overall degree of separability: 

 
( )

1

totalH l

H H l
l

NS S
N=

= ∑  (23) 

where Nl signifies the number of points in the l-th cell, and N signifies total number of 
points. If this value was computed at resolution B then it is weighted by factor 
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B=(0,1,...31). Considering the curve (SH versus normalized resolution) as a closed polygon 
with vertices (xi,yi), the area under the curve called purity for a total of n vertices is given as:  
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The x axis is scaled to achieve values bounded within range [0, 1]. After the weighing 
process maximum possible value is 0.702, thus the value is rescaled once again to be 
between [0, 1] range. 
The main drawback of purity measure is that if in a given cell, the number of points from 
each class is equal, then the purity measure is zero despite that in fact the distribution may 
be linearly separable. Purity measure does not depend on the distribution of data in space of 
single cell, but the distribution of data into the cells is obviously associated with data 
distribution. 

4.2.5.3.3 Neighborhood Separability 

Neighborhood Separability (Singh, 2003) measure is developed by Singh. Similarly to 
purity, it also depends on the PRISM partitioning results. In each cell, up to k nearest 
neighbors are found. Then one measure a proportion pk of nearest neighbors that come from 
the same class to total number of nearest neighbors. For each number of neighbors k, 
1<=k<=λil calculate the area under the curve that plots pk against k as φj. Then compute the 
average proportion for cell Hl as: 
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Overall separability of data is given as:   
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One compute the SNN measure for each resolution B=(0, 1, … ,31). Finally, the area ASNN 
under the curve SNN versus resolution gives the measure of neighborhood separability for a 
given data set.  
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4.2.5.3.4 Collective entropy  

Collective entropy (Singh & Galton, 2002), (Singh, 2003) measure the degree of uncertainty. 
High values of entropy represent disordered systems. The measure is connected to data 
partitioning algorithm called PRISM. 
Calculate the entropy measure for each cell Hl: 
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Estimate overall entropy of data as weighted by the number of data in each cell:    
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Collective entropy for data at given partition resolution is defined as: 

 1 - CE E=  (29) 

This is to keep consistency with other measures: maximal value of 1 signifies complete 
certainty and minimum value of 0 uncertainty and disorder. 
Collective entropy is measured at multiple partition resolutions B=(0,…31) and scaled by 
factor Bw 2/1=  to promote lower resolution. Area under the curve of Collective Entropy 
versus resolution gives a measure of uncertainty for a given data set. That measure should 
be scaled as 

702.0
E

E
ASAS =  to keep the values in [0,1] range. 

4.2.5.4 Other Measures 
The measures described here are difficult to classify as they are very different in idea and it's 
difficult to distinguish common properties. 
4.2.5.4.1 Correlation-based approach 
Correlation-based approach (Rahman & Fairhurst, 1998) is described by Rahman and 
Fairhust. In their work, databases are ranked by the complexity of images within them. The 
degree of similarity in database is measured as the correlation between a given image and 
the remaining images in database. It indicates how homogenous the database is. For 
separable data, the correlation between data of different classes should be low.  
4.2.5.4.2 Fisher discriminant ratio 
 Fisher discriminant ratio (Fisher, 2000) originates from Linear Discriminant Analysis (LDA). 
The idea of linear discriminant approach is to seek a linear combination of the variables 
which separates two classes in best way. The Fisher discriminant ratio is given as:    
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where μ1, μ2, σ1, σ2 are the means and variances of two classes respectively. The measure is 
calculated in each dimension separately and afterwards the maximum of the values is taken. 
It takes values from [0,+∞] ; high value signifies high class separability. To use it for multi 
class problem it is necessary however to compute Fisher discriminant ratios for each two-
element combination of classes and later average the values. 
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Important feature of the measurement is that it is strongly related to data structure. The 
main drawback is that it acts more like a detector of linearly separable classes than 
complexity measure. The advantage is very low computational complexity. 

4.2.5.4.3 Interclass distance measures 

The interclass distance measures (Fukunaga, 1990) are founded upon the idea that class 
separability increases as class means separate and class covariance’s become tighter. We 
define: 
Within-class scatter matrix:      
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Mixture (total) scatter matrix: 
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where μi are class means, P(ci) are the class probabilities, Σi are class covariance matrices, 
and ∑

1=0 )(=
L

i ii μωPμ  is the mean of all classes. 

Many intuitive measures of class separability come from manipulating these matrices which 
are formulated to capture the separation of class means and class covariance compactness. 
Some of the popular measures are: 
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where S1, S2 are a tuple from among { Sb, Sw, Sm}, and tr signifies matrix trace. Frequently 
many of these combinations and criteria result in the same optimal features. 
4.2.5.4.4 Volume of the overlap region 

We can find volume of the overlap region (Ho & Baird, 1998) by finding the lengths of 
overlapping of two classes' combination across all dimensions. The lengths are then divided 
by overall range of values in the dimension (normalized), where do represents length of 
overlapping region, dmax and dmin represent consequently maximum and minimum feature 
values in specified dimension: 
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Resulting ratios are multiplied across all dimensions dim to achieve volume of overlapping 
ratio for the 2-class case (normalized with respect to feature space) 
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4.2.5.3.4 Collective entropy  

Collective entropy (Singh & Galton, 2002), (Singh, 2003) measure the degree of uncertainty. 
High values of entropy represent disordered systems. The measure is connected to data 
partitioning algorithm called PRISM. 
Calculate the entropy measure for each cell Hl: 
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Estimate overall entropy of data as weighted by the number of data in each cell:    
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Collective entropy for data at given partition resolution is defined as: 
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This is to keep consistency with other measures: maximal value of 1 signifies complete 
certainty and minimum value of 0 uncertainty and disorder. 
Collective entropy is measured at multiple partition resolutions B=(0,…31) and scaled by 
factor Bw 2/1=  to promote lower resolution. Area under the curve of Collective Entropy 
versus resolution gives a measure of uncertainty for a given data set. That measure should 
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4.2.5.4 Other Measures 
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where μ1, μ2, σ1, σ2 are the means and variances of two classes respectively. The measure is 
calculated in each dimension separately and afterwards the maximum of the values is taken. 
It takes values from [0,+∞] ; high value signifies high class separability. To use it for multi 
class problem it is necessary however to compute Fisher discriminant ratios for each two-
element combination of classes and later average the values. 
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It should be noted that the value is zero as long as there is at least one dimension in which 
the classes don't overlap.  
 

Technique Relation to 
Bayes error 

Computing 
cost 

Probability density 
functions 

Number of 
classes 

Chernoff bound Yes High needed 2 
Bhattacharyya bound Yes Medium needed 2 

Divergence Yes High needed 2 
Mahalanobis distance Yes Medium not needed 2 

Matusita distance Yes High needed 2 
Entropy measures No High needed >2 

Classifier error Potential Depends on the classifier used 
k-Nearest Neighbours Yes High not needed >2 

Parzen estimation No High not needed >2 
Boundary methods Yes Medium not needed 2 

Class Discriminability 
Measures No High not needed 2 

Purity No High not needed >2 
Neighbourhood separability No High not needed >2 

Collective entropy No High not needed 2 
Correlation based approach No High not needed >2 

Fisher discriminant ratio No very low not needed 2 
Interclass distance measures No Low not needed >2 
Volume of the overlap region No Low not needed 2 

Feature efficiency No Medium not needed 2 
Minimum Spanning Tree No High not needed >2 

Inter-intra cluster distance No High not needed 2 
Space covered by epsilon 

neighbourhoods No High not needed >2 

Ensemble of estimators Potential High depends Depends 

Table 3. Comparison of Classification Complexity Techniques 

4.2.6 Discussion 
Classification complexity estimation methods present great variability. The methods which 
are derived from Bayes error are most reliable in terms of performance, as they are 
theoretically stated. The most obvious drawback is that they have to do assumptions about a 
priori probability distributions. If the advantage of the methods designed using 
experimental (empirical) basis is that they are based uniquely on experimental data and do 
not need probability density estimates of distributions, these methods are as various as 
those relating the Bayes error’s estimation and their performance are difficult to predict. 
Some methods are designed only for two-class problems, and as such they need special 
procedures to accommodate them to multi-class problem (like counting the average of 
complexities of all two-class combinations). The table 3, comparing complexity estimation 
methods, is aimed at several specific aspects which are:  
- Relation with Bayes error which could be seen as a proof of estimator's accuracy up to 

some point; 
- Computational Cost, this is especially important when the measurements are taken 

many times during the processing of problem, as in T-DTS case; 
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- Need for probability density function estimates;  
- Number of classes in classification problem for which the method can be applied 

directly. 
Recently, a number of investigations pushed forward the idea to combine several 
complexity estimation methods: for example by using a weighted average of them 
(Bouyoucef, 2007). It is possible that a single measure of complexity be not suitable for 
practical applications; instead, a hierarchy of estimators may be more appropriate (Maddox, 
1990).  
Using complexity estimation techniques based splitting regulation, T-DTS is able to reduce 
complexity on both data and processing chain levels (Madani et Al., 2003). It constructs a 
treelike evolutionary architecture of models, where nodes (DU) are decision units and leaves 
correspond to Neural Network - based Models (Processing Unit). That results in splitting 
the learning database into set of sub-databases. For each sub-database a separate model is 
built. 
This approach presents numerous advantages among which are:  
- simplification of the treated problem - by using a set of simpler local models; 
- parallel processing capability - after decomposition, the sub-databases can be processed 

independently and joined together after processing; 
- task decomposition is useful in cases when information about system is distributed 

locally and the models used are limited in strength in terms of computational difficulty 
or processing (modeling) power; 

- modular structure gives universality: it allows using of specialized processing 
structures as well as replacing Decomposition Units with another clustering techniques; 

- classification complexity estimation and other statistical techniques may influence the 
parameters to automate processing, i.e., decompose automatically; 

- automatic learning. 
However, our approach is not free of some disadvantages: 
- if the problem doesn't require simplification (problem is solved efficiently with single 

model) then Task Decomposition may decrease the time performance, as learning or 
executing of some problems divided into sub-problems is slower than learning or 
executing of not split problem; especially if using sequential processing (in opposition 
to parallel processing); 

- some problems may be naturally suited to solve by one-piece model - in this case 
splitting process should detect that and do not divide the problem; 

- too much decomposition leads to very small learning sub-databases. Then they may 
loss of generalization properties. In extreme case leading to problem solution based 
only on distance to learning examples, so equal to nearest-neighbor classification 
method. 

In the following section, we study the efficiency of T-DTS approach when dealing with 
classification problems. 

4.2.7 Implementation and validation results 
In order to validate the T-DTS self-organizing approach, we present in this section the 
application of such a paradigm to three complex problems. The first one concerns a pattern 
recognition problem. The second and third one are picked from the well know UCI 
repository: a toy problem (Tic-Tac-Toe) for validation purpose and a DNA classification one. 
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4.2.7.1 Application to UCI Reprository 
Complexity estimating plays key-role in decomposition and tree-building process. In order to 
evaluate and validate T-DTS approach, we use two benchmarks from the UCI Machine 
Learning Repository (Bouyoucef, 2007). These two benchmarks are: 
1. Tic-tac-toe end-game problem. The problem is to predict whether each of 958 legal 

endgame boards for tic-tac-toe is won for `x'. The 958 instances encode the complete set 
of possible board configurations at the end of tic-tac-toe. This problem is hard for the 
covering family algorithm, because of multi-overlapping. 

2. Splice-junction DNA Sequences classification problem. The problem posed in this 
dataset is to recognize, given a sequence of DNA, the boundaries between exons (the 
parts of the DNA sequence retained after splicing) and introns (the parts of the DNA 
sequence that are spliced out). This problem consists of two subtasks: recognizing 
exon/intron boundaries (referred to as EI sites), and recognizing intron/exon 
boundaries (IE sites). There are 3190 numbers of instances from Genbank 64.1, each of 
them compound 62 attributes which defines DNA sequences (ftp-site: 
ftp://ftp.genbank.bio.net) problem. 

Next subsections include description of experimental protocol. 
4.2.7.2 Experimental protocol 
In the first case, Tic-tac-toe end game, we have used 50% of database for learning purpose 
and 50% for generalization purpose. At the node level (DU), competitive networks perform 
the decomposition. The following complexity estimation methods have been used: 
Mahalanobis, ZISC and Normalized mean. At T-DTS leaf level we have applied PU - LVQ. 
 

Method type Max Gr (± Std. Dev.) (%) 
IB3-CI 99.1 

CN2 standard 98.33 (± 0.08) 
IB1 98.1 

Decision Tree (DT)+FICUS 96.45 (± 1.68) 
3-Nearest neighbor algorithm+FICUS 96.14 (± 2.03) 

MBRTalk 88.4 
Decision Tree (DT) Learning Concept 85.38 (± 2.18) 

T-DTS&Mahalanobis com. est. 84.551 (± 4.592) 
NewID 84.0 

CN2-SD (add. weight.) 83.92 (± 0.39) 
T-DTS&ZISC based com. est. 82.087 (± 2.455) 

IB3 82.0 
Back propagation +FICUS 81.66 (± 14.46) 

T-DTS&Normalized mean com. est. 81.002 (±1.753) 
7-Nearest neighbor 76.36 (± 1.87) 

CN2-WRAcc 70.56 (± 0.42) 
3-Nearest neighbor 67.95 (± 1.82) 
Back propagation 62.90 (± 3.88) 
Perceptron+FICUS 37.69 (± 3.98) 

Perceptron 34.66 (± 1.84) 

Table 4. Tic-tac-toe endgame problem 
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Method type Max Gr (± Std. Dev.) (%) 
3-Nearest neighbor algorithm+FICUS 86.30 (± 4.96) 

Perceptron+FICUS 83.96 (± 6.22) 
Decision Tree (DT)+FICUS 83.78 (± 4.61) 

Back propagation algorithm+FICUS 83.42 (± 7.73) 
T-DTS&ZISC based com. Est 80.084 (± 3.176) 
3-Nearest neighbor algorithm 79.18 (± 6.32) 

T-DTS&Mahalanobis based com. Est 78.672 (± 4.998) 
Perceptron 76.34 (± 6.71) 

T-DTS & Jeffries-Matusita based c.e. 75.647 (±8.665) 
Decision Tree (DT) Learning Concept 73.55 (± 5.88) 

Table 5. Splice-junction DNA sequences classification test 

For DNA Benchmark, we have used 20% of database for learning purpose and 80% for 
generalization purpose. At the node level competitive networks perform the decomposition. 
The following complexity estimation methods have been used: Mahalanobis, Bhattacharya, 
ZISC, Purity and Fisher Measure. At T-DTS leaf level we applied PU - MLP. 
For DNA Benchmark, we have used 20% of database for learning purpose and 80% for 
generalization purpose. At the node level competitive networks perform the decomposition. 
The following complexity estimation methods have been used: Mahalanobis, Bhattacharya, 
ZISC, Purity and Fisher Measure. At T-DTS leaf level we applied PU - MLP. 
For both cases, a manual optimization has been performed. We have selected the 
decomposition units, the complexity estimation methods and the processing units that allow 
us to reach the highest performances in terms of generalization rate. In the next subsection, 
we present the results and compare them to those obtained by other approaches, mainly 
based on decision tree algorithms. 
4.2.7.3 Results presentation and discussion 
Various experiments have been conducted according to the experimental protocol described 
previously. Table 4 and Table 5 consolidate the results of our experiments and the results 
obtained by other classification approaches (Lavrac et al,. 2002), (Aha,  1991), (Markovitch & 
Rosenstein, 2002). As it is shown, we have resolved Tic-tac-toe endgame classification task 
with respectively 84.55%, 82.09% and 81.00% of generalization rates using Mahalanobis, ZISC 
and Normalized mean complexity estimators with a standard deviation of 4.59%, 2.46% and 
1.75%. Taking into account standard deviation ratio, we can state that these results are 
equivalent as they are in the same range. 
IB3-CI, CN2, IB1, DT and MBRTalk algorithms are rely on the instances extracting and their 
extrapolation. So, they are well adapted to board game problems. They also use domain 
knowledge to reach very high generalization rates (around 95%). Methods associated to 
FICUS use hypothesis driven construction strategies and especially FICUS algorithms 
allows to enhance the learning data base size. 
In our case, T-DTS uses only data driven strategy. So, as we can see in Table 5, for Splice-
junction DNA Sequences benchmark, taking into account the generalization rate standard 
deviation, the leading algorithms exhibit the same performances (3-Nearest 
neighbor+FICUS, Perceptron+FICUS, DT+FICUS, Back propagation +FICUS and T-
DTS&ZISC). So, without using specific domain knowledge, T-DTS reaches a high 
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generalization rate. The T-DTS strength is its ability to solve hard classification problems 
without need of domain specific knowledge. In the experiments described in this paper, T-
DTS structure optimization has been conducted manually (by the user). This is the main 
drawback. 

5. Conclusion 
Due the complexity of the actual systems based on heterogeneous methods, artificial neural 
networks approaches can reduce this complexity by modeling the environment as 
stochastic. Algorithms based on Neural Networks can take into account the dynamics of 
these environments with no model of dynamics to be given. Main idea of the approaches 
developed in this chapter is to take advantage from distributed processing and task 
simplification by dividing an initially complex processing task into a set of simpler subtasks 
using complexity estimation based loop to control the splitting process. An appealing 
consequence of combining complexity estimation based splitting and artificial neural 
networks based processing techniques is decreasing of user’s intervention in specifying 
processing parameters. A first modular structure is proposed. We have focused our 
attention in some special kind of Constrained Based Routing in wired networks which we 
called QoS self-optimization Routing. In a second part, we study the use of T-DTS self-
organizing and task adaptive abilities. Beside complexity estimation based self-organization 
and adaptation abilities of our approach, the neural nature of generated models leads to 
additional attractive features which are modularity and some universality of the issued 
processing system, opening new dimensions in bio-inspired artificial intelligence. Moreover, 
the distributed nature of T-DTS makes the processing phase potentially realizable using 
either parallel machine or network of sequential machines. Very promising results, obtained 
from experimental validation, involving either the presented set of classification 
benchmarks (problems) or the reported pattern recognition dilemma, show efficiency of 
such self-organizing multiple models’ generator to enhance global and local processing 
capabilities by reducing complexity on both processing and data levels.  
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1. Introduction 
Recently, there are many researches on intelligence in the field of engineering from various 
viewpoints. Representative aim is to satisfy two desires. One desire is to want more convenient 
machine (Kawamoto et al., 2003; Kobayashi et al., 1999; Hasegawa et al., 2004). Researchers 
have tried to improve existing machines or invent new machines. And now, researchers 
consider realizing new one by incorporating with a mechanism of life intelligence. Another 
desire is to want to know what intelligence is. Here, a purpose is to elucidate a mechanism of 
intelligence and to create it (Asada et al., 2001; Brooks & Stein, 1994; Goodwin, 1994). 
Researchers have expected that utility will be made known as a result of various studies. 
As the milestone for intelligent machine, realizing autonomy on machine as a progress from 
automation is expected. The research of automation can be regarded as study how to make 
proper outputs by rules which human prepared. It is smarter than operating machine 
manually, but still not intelligent. Autonomy can be regarded as a mechanism which can 
make rules corresponding with surrounding environment and make proper outputs by 
making rules.  
As one method to realize autonomy on machine, there are researches into machine learning. 
Especially, researches using soft computing method are so active. Essence of learning is 
making knowledge through trial and error and making outputs using this knowledge 
(Jordan, 1992). Expression of knowledge is different between each method, for example 
neural network (Nolfi & Parisi, 1997) has knowledge with weight matrix, but knowledge 
can be regarded as a rule which is mapping from input to output. Here, we have been free 
from necessity of a load that we must make rules to get proper outputs for all situations 
machine will face. 
But new problem has occurred and we have gotten new load when we use learning method. 
We must make evaluation to learn a task or environment. In the framework of machine 
learning, human imagines a task which he/she gives to machine at first. Next, human must 
design evaluation which is a way how to teach a machine human desire. Evaluation 
functions expressed by numerical formula are used mostly as evaluation. The point of this is 
that these functions are closely related with context. So it is possible that evaluations of one 
output on different tasks are different values. Evaluation is strongly affected by a task, 
environment or a viewpoint of researchers. For this reason, a machine can work only for 
taught task and it is difficult to apply acquired knowledge or rules for other tasks. Human 
must design evaluation for all tasks individually. This load is heavy; especially in a case of 
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robot which has the ability to achieve various tasks and cause changeful environment by its 
moving ability, human must persevere in design of evaluation functions. 
To overcome this problem, we focus on learning based on universal evaluation. We define 
universal evaluation as evaluation which is independent of a task or task information and 
environment a machine will be used. And we try to realize a mechanism which can learn 
with universal evaluation. In this chapter, we show two challenges using robot as 
application. One challenge is study of learning with sense of pain as universal evaluation 
(Kurashige & Onoue, 2007). Another challenge is study about creation of evaluation 
functions for concrete task and environment with energy as universal evaluation (Kurashige 
et al., 2002). On both challenges, we show robot can learn and create proper movement for a 
task or environment robot will face.  

2. Learning with sense of pain on robot 
In this section, we show a case of learning by using sense of pain on robot as universal 
evaluation (Kurashige & Onoue, 2007). We think universal evaluation must be independent 
of information related with each task and environment robot will face. Here, we consulted 
evolutionary process. Instinct which life has innately is important to keep living, and is 
independent of concrete environment it will face to a certain extent. Sense of pain, which is a 
kind of instinct, is especially important to detect abnormal state. Life can learn avoiding fatal 
injury with this instinct. We define sense of pain on robot and make robot learn to protect 
itself. And it is so hard to learn various concrete tasks only with universal evaluation. So we 
combine learning based on universal evaluation with usual learning method. We construct a 
learning system with both learning and expect that operator will be able to design 
evaluation function for each task easier by focusing only on a task. 
We explain proposed system at first, and next we show an experiment with small-sized 
humanoid robot. 

2.1 Outline of proposed system using sense of pain 
Proposed system consist of three component; usual learning method, learning by sense of 
pain, action adjuster. Usual learning method is for learning a task human wants to give a 
robot. Here operator designs evaluation function for a task. Learning by sense of pain is for 
learning avoiding fatal injury. This learning is not related with each task and can be used to 
various tasks. Each component creates or selects action independently, so these actions 
conflict sometimes. Proposed system must need action adjuster to solve this problem. 
We show outline of proposed system in fig. 1. 
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data

usual learning method
(role of task learning)

learning by sense of pain
(role of instinct)

action
adjuster

(for each task)

 
Fig. 1. Component of proposed system 
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2.2 Experimental robot 
We use small-sized humanoid robot as application. We show the robot in fig. 2. This robot is 
about 50cm tall and has 23 degrees of freedom and various sensors. Especially, each 
servomotor has sensors about a position, a load and its temperature. This robot has 
processor unit on which UNIX OS runs internally. I show the detail in table 1. 
 

            
Fig. 2. The photo of the robot and the structure of the robot 
 

Tall / Weight 50cm / 3.7kg 
Degree of freedom 23 axes 
sensing single-degree-of-freedom gyro 
 three-degrees-of-freedom gravity 
 CMOS color camera 
 2 x monaural microphone 
sensing (each servomotor) angle 
 torque 
 temperature 
other interface 2 x LED (3 color) 
 speaker 
 wireless LAN (IEEE 802.11b) 

Table 1. The specification of experimental robot 

2.3 Definition of pain on the robot 
We define pain on the robot based on its sensor values. We consider that a robot has N 
kinds of sensors. For each sensor, we define normal value and abnormal value. And if there 
is over one sensor which has abnormal value, we define a robot feels pain. In this section, 
we use a torque sensor which can detect a load on a servomotor and define pain on 
experimental robot. Using Li which is the value of i-th torque sensor, we define the state 
which the sensor has abnormal value as Li > Li’. By this, we define paini as follows; value of 1 
means robot feels pain on place of i-th sensor, value of 0 means robot doesn’t feel pain on it. 
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To determine Li’, we examine pre-experiment which made the robot move randomly, collect 
data of values of Li and calculate average μi and deviation i. By these values, we define Li’ 
as follows 

 iiiL σμ 3' +=   (2) 
Using paini, we define pain as follow. 

 i
i

pain pain= ∪   (3) 

2.4 Learning a given task and avoiding fatal injury using RL as learning method 
We give the robot a task which is to select action human want the robot to do. Here we 
decide desired action as follows. 
learning task : 
a. If the robot detects load on arm in back and forth, desired action is to move its arm back 

and forth. 
b. If the robot detects load on arm in right and left, desired action is to move its arm right 

and left. 
At the same time, we expect that the robot learn by sense of pain and avoiding fatal injury. 
learning by sense of pain : 
c. If the robot detects abnormal load on arm, desired action is avoidance action. 
We use reinforcement learning (Sutton & Barto, 1998) to realize these learning. We adopt Q 
learning as a learning method (eq. 4). This way, we applied same equation to both learning. 

 ( ) ( ) ( )[ ]# # ## 1## # ## # # ,,, ttttttt asQrasQasQ −+← +α   (4) 

Here, St # is a current state, a t # is a selected action, r t # is a reward obtained by the action. 
Subscript symbol “t” is discrete time step, and “#” is whether “pain” or “task”. For example, 

painta   is action a at time t considering at learning based on sense of pain. And we adopt 

Softmax Action Selection defined by eq. 5 to select action a. 
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Here, #τ  is a positive constant called temperature. Other is same meaning as upper case. 
Next, we define states and actions to use reinforcement learning. For learning task, we 
define these as table 2. And for learning by sense of pain we define these as table 3.  
We use plural learning which is for task and is based on sense of pain, so plural actions will 
be selected. To make the robot move actually, one action must be selected. We consider 
action adjuster to select an action the robot will act. On this mechanism, an action which has 
maximum value in #π  at “#” is selected. We show the outline of action adjuster in fig. 3. 
Using proposed system, we realize to learn given task and to learn avoiding fatal injury at 
the same time. At the experiment, the learning for given task is tried 100 times in each state. 
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tasks  0  load detection in back and forth 
tasks  1  load detection in right and left 

(a) state 
taska  0  move arm back and forth 
taska  1  move arm right and left 

(b) action 
Table 2. States and actions for learning task 
 

pains  0  pain = 0 (robot doesn’t feels pain) 

pains  1  pain = 1 (robot feels pain) 
(c) state 

paina  0  continue a present action 
(no action for avoidance) 

paina  1  return the servo to an initial position 
(avoidance action) 

(d) action 
Table 3. States and actions for learning by sense of pain 
 

positive reward 5 
negative reward -3 
taskα  0.1 

Learning for given task 

taskτ  3 
reward if return the servo to an initial position -1 
reward if servo become to be abnormal state -100 
painα  0.5 

Learning by sense of pain 

painτ  0.5 

Table 4. The parameter for the experiment 

learning for task
selected best action

( )taskttaskttask
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selected best action
action adjuster

 
Fig. 3. Outline of action adjuster 

And the learning by sense of pain is done once every 500msec. Other parameter is shown in 
table 4. 
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And the learning by sense of pain is done once every 500msec. Other parameter is shown in 
table 4. 
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2.5 Result 
We show results in fig. 4 and fig. 5 and table 5. The transition of action selection probability 
in learning for given task is shown in fig. 4. It shows that the selection probability of the best 
action was rising with progress of the trial time. The transition of action selection probability 
in learning by sense of pain is shown in fig. 5. It shows that the learning was done and the 
robot got the ability of avoiding fatal injury.  
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Fig. 4. The transition of probability of action selection in learning for given task 
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Fig. 5. The transition of probability of action selection in learning by sense of pain 
 

paina  0 (no avoidance action) 
 

taska  0  taska  1  paina  1  

tasks  0  and pains  0  99.67% 3.33% 0% 

tasks  1  and pains  0  6.67% 93.33% 0% 

tasks  0  and pains  1  0% 0% 100% 

tasks  1  and pains  1  0% 0% 100% 

Table 5. The result of action selection after 120 times learning 

After learning, we experimented to confirm the result of the learning. We give the robot 
given task at 120times including the case caused abnormal state. The result of this 
confirmation is shown in table 5. 
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3. Creation of evaluation functions with energy 
In this section, we show a study about creation of evaluation functions by using energy of 
robot as universal evaluation (Kurashige et al., 2002). How to evaluate robot’s action 
changes in different contexts, in different tasks or environment. For usual learning, human 
must design evaluation functions for concrete task or environment robot will face. We have 
tried to create proper evaluations along concrete task and environment by universal 
evaluation. We proposed a method based on motivation to drive action on life. Here, we 
show motivation model we proposed and experiment on computer simulation. 

3.1 Proposed concept “motivation model” based on life 
Life has desire to feel satisfaction, especially when they feel insufficiency. They act for the 
aim of being satisfied with their status. The force that causes life to take action by desire is 
called “motive” in the field of psychology (Atkinson et al., 1999). Motive is classified 
roughly into two types; one is called basic motive and another is called derived motive. 
Basic motive is considered as motive which life has innately and which is equally among life 
or a species. Derived motive is considered as motive which is acquired through individual 
experience and is different on each other. And derived motive is considered as one gained 
based on basic motive. But this acquisition process isn’t fixed on yet. 
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Fig. 6. Proposed concept named motivation model 

Here, we thought of basic idea based on this knowledge as follows. Desire on agent, which 
is robot or etc., is a direction or index of satisfaction. And motive on agent is the process 
which agent creates or selects action to satisfy its desire. We consider desire as evaluation 
function and motive as learning process. If agent can learn and satisfy its desire, there is no 
problem. If it is hard or impossible to make proper action for satisfaction of its desire, there 
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2.5 Result 
We show results in fig. 4 and fig. 5 and table 5. The transition of action selection probability 
in learning for given task is shown in fig. 4. It shows that the selection probability of the best 
action was rising with progress of the trial time. The transition of action selection probability 
in learning by sense of pain is shown in fig. 5. It shows that the learning was done and the 
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paina  0 (no avoidance action) 
 

taska  0  taska  1  paina  1  

tasks  0  and pains  0  99.67% 3.33% 0% 

tasks  1  and pains  0  6.67% 93.33% 0% 

tasks  0  and pains  1  0% 0% 100% 

tasks  1  and pains  1  0% 0% 100% 

Table 5. The result of action selection after 120 times learning 

After learning, we experimented to confirm the result of the learning. We give the robot 
given task at 120times including the case caused abnormal state. The result of this 
confirmation is shown in table 5. 
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3. Creation of evaluation functions with energy 
In this section, we show a study about creation of evaluation functions by using energy of 
robot as universal evaluation (Kurashige et al., 2002). How to evaluate robot’s action 
changes in different contexts, in different tasks or environment. For usual learning, human 
must design evaluation functions for concrete task or environment robot will face. We have 
tried to create proper evaluations along concrete task and environment by universal 
evaluation. We proposed a method based on motivation to drive action on life. Here, we 
show motivation model we proposed and experiment on computer simulation. 

3.1 Proposed concept “motivation model” based on life 
Life has desire to feel satisfaction, especially when they feel insufficiency. They act for the 
aim of being satisfied with their status. The force that causes life to take action by desire is 
called “motive” in the field of psychology (Atkinson et al., 1999). Motive is classified 
roughly into two types; one is called basic motive and another is called derived motive. 
Basic motive is considered as motive which life has innately and which is equally among life 
or a species. Derived motive is considered as motive which is acquired through individual 
experience and is different on each other. And derived motive is considered as one gained 
based on basic motive. But this acquisition process isn’t fixed on yet. 
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Here, we thought of basic idea based on this knowledge as follows. Desire on agent, which 
is robot or etc., is a direction or index of satisfaction. And motive on agent is the process 
which agent creates or selects action to satisfy its desire. We consider desire as evaluation 
function and motive as learning process. If agent can learn and satisfy its desire, there is no 
problem. If it is hard or impossible to make proper action for satisfaction of its desire, there 
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is problem that agent can’t satisfy its desire. To solve this problem, we consider that agent 
creates new desire which is to satisfy one time desire. By action caused by new motive to try 
to satisfy corresponding desire, agent tries to change an environment into the others on 
which agent can satisfy its desire easier or on which agent doesn’t have the desire it can’t 
satisfy. Especially by the latter case, agent tries to avoid an environment on which agent 
can’t satisfy its desire, and tries to learn proper action on other environment to satisfy its 
desire. This is outline of idea named “motivation model”. We show proposed concept in fig. 
6. Next, we construct concrete algorithm by motivation model. 

3.2 The algorithm to generate evaluation functions based on motivation model 
We propose an algorithm to generate evaluation functions based on motivation model. 
Here, we construct the algorithm by modifying reinforcement learning (Sutton & Barto, 
1998). The outline of proposed algorithm is shown in fig. 7. Evaluation μi is i-th evaluation 
and produces reward which is decided according to an agent’s state. Knowledge space is the 
space composed by μi, s, a and is made by learning. If agent can get high reward and be 
sufficient by learning, there is no problem. If it is hard or impossible to get high reward, we 
think there is problem and try to make agent create new evaluation to solve the problem. 
We explain when agent creates new evaluation, and next explain the algorithm how to 
create it.  
We define the timing to create new evaluation by a shape of knowledge space. At first, we 
define knowledge space corresponding to i-th evaluation as ( )asM ii ,: ×μ  and show outline 
in fig. 8. We classify this under four typical types to explain a concept of creation of new 
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Fig. 7. The outline of proposed algorithm 
evaluation as shown in fig. 9. In the case of fig. 9(a), both an agent’s action and a state of 
environment agent faces influence an evaluation score, so they have the strong relationship. 
In the case of fig. 9(b) and (c), the relationship between an agent’s action and a state is 
weaker than in the case of fig. 9(a). Evaluation score depends only on a state of environment 
in the case of fig. 9(b) and depends only on an agent’s action in the case of fig. 9(c). Lastly, 
there is no relationship between an agent’s action and a state of environment in the case of 
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fig. 9(d). Here, we focus on cases of fig. 9(a) and (b). In these cases, an agent can’t control its 
evaluation score only by its action. The evaluation score depends on a state of environment. 
So we consider that an agent creates new evaluation in these cases, and by created action 
under new evaluation an agent tries to be in a state which has possibility to get high reward.  
To judge whether new evaluation must be created or not, we use joint probability 
distribution ( )asP i ,,μ . By this, we can calculate marginal probability distribution ( )ag i ,μ  as 
shown in eq. 5.  

 ( ) ( )∑=
s

ii asPag ,,, μμ   (5) 

At this time, we can calculate existence probability p on 
i
rμ  as follows. 

 ( )targp
i
,μ=   (6) 

Here, 
i
rμ  is reward for an action at under a state st according to evaluation iμ . Using 

existence probability p, we define the probability of generation of evaluation function as 1-p. 
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Next, we explain how to create new evaluation. We think that an agent tries to be in a state 
which agent can get higher reward by an action derived by new evaluation. So we define 
new evaluation jμ  with a state s. On knowledge space Mi , we can calculate marginal 
probability distribution ( )sf i ,μ  as shown in eq. 7. 

 ( ) ( )∑=
a

ii asPsf ,,, μμ   (7) 
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fig. 9(d). Here, we focus on cases of fig. 9(a) and (b). In these cases, an agent can’t control its 
evaluation score only by its action. The evaluation score depends on a state of environment. 
So we consider that an agent creates new evaluation in these cases, and by created action 
under new evaluation an agent tries to be in a state which has possibility to get high reward.  
To judge whether new evaluation must be created or not, we use joint probability 
distribution ( )asP i ,,μ . By this, we can calculate marginal probability distribution ( )ag i ,μ  as 
shown in eq. 5.  
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Next, we explain how to create new evaluation. We think that an agent tries to be in a state 
which agent can get higher reward by an action derived by new evaluation. So we define 
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An action at at time t under evaluation jμ  is action to make profitable environment under 
evaluation iμ . So we define jμ  using a state st+1 derived by at as follows. And we show the 
concept of how to create new evaluation in fig. 10. 
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Fig. 10. Concept of how to create new evaluation 

Finally, we explain how to select action using these evaluation functions. On each 
evaluation iμ , an action ai which can take max iμ  is selected. Here, max iμ  is maximum value of 
evaluation iμ . The number of candidate actions is equal to the number of evaluation 
functions. We define probability of selection for each action ai as eq. 9. An agent decides an 
action based on this probability of selection.  
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3.3 Burden-carrying task 
We applied proposed algorithm to burden-carrying task. The object environment is shown 
in fig. 11. The task is to carry burdens from loading station to unloading station. The robot 
which is the agent at this task can get energy β per one burden as a reward for work. In the 
environment, there are several kinds of hindrances. They are walls and burdens. Walls bar 
robot’s way. If the robot puts burden down on any place except unloading station, it will 
become hindrance.  
For this task and environment, the robot can takes several actions: Load, Unload, Forward, 
Left, Right and Stop. The robot needs energy to execute each action whether the robot can 
do or not. So if the robot fails to execute an action, for example the robot tries to go through 
a wall, the robot loses same amount of energy when the robot succeeds to take that action 
and a state of the robot doesn’t change. In this task, we set energy to take any action as α. 
Actions the robot can take and perceptions the robot can use are as follows. 
 

Load get a burden in front of the robot 
Unload put a burden down in front of the robot 
Forward take a step forward 
Left turn to the left 
Right turn to the right 
Stop stop 

Table 6. Actions the robot can take 
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direcstate  state around the robot 
(direc : forward, right, left, back) 

burdenstate  state whether the robot has burden or not 
(x , y , direc) current location and direction 
energyΔ  change of energy 

Table 7. Perceptions the robot can use 

We define initial evaluation function by using the change of energy of the robot as eq. 10. 
This is basic motive at this task. And it plays the role of universal evaluation because of the 
definition which is independent of environment.  
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Here, α  is energy to take an action and β  is a reward for work when the robot can get at 
unloading station. 
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Fig. 11. Outline of load-carrying task 

3.4 Results of computer simulation 
We experiment burden-carrying task on computer simulation. The robot has energy ϕ  as 
initial energy. If energy of the robot drops to zero, we give the robot energy γ  in the midst 
of learning as recharging. The number of burden which the robot can carry at once is 
expressed as χ . We show the parameter of simulation in table 8.  
 

α  -1 
β  150 
ϕ  100 
γ  10 
χ  10 

Table 8. The parameter of simulation 
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3.4 Results of computer simulation 
We experiment burden-carrying task on computer simulation. The robot has energy ϕ  as 
initial energy. If energy of the robot drops to zero, we give the robot energy γ  in the midst 
of learning as recharging. The number of burden which the robot can carry at once is 
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(a) Transition of the amount of energy robot keeps 
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(b) Transition of the number of evaluation 

Fig. 12. Results through learning 

The results of simulation under this condition are shown in fig. 12. Figure 12(a) represents 
transition of amount of energy on the robot. Figure 12(b) represents the number of 
evaluation which the robot creates with proposed algorithm. 
In the first part of fig. 12(a), the amount of energy which the robot kept was low. We 
consider it was occurred because the robot took actions randomly in this phase which is 
early phase of learning. And increasing the number of evaluation, we can see the amount of 
energy which robot kept was rising.  
And we show the existence probability of the robot on the environment from 40000 step to 
50000 step in fig. 13. This shows the robot went round between loading station and 
unloading station.  
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Fig. 13. Existence probability of the robot on learning between 4000 step and 5000 step 

4. Conclusion 
Our goal is to realize a system which keeps adapting various tasks and environment with 
universal mechanism which is independent of concrete tasks and environment. In this 
chapter, we proposed the concept of universal evaluation as a kind of universal mechanism. 
Here, we showed two experiments as instances. One is the study using sense of pain as 
universal evaluation. With this universal evaluation, the robot could avoid being injured by 
unexpected load. Another is the study to create evaluation functions for concrete 
environment by universal evaluation. We showed recursive algorithm to create evaluation 
functions by existing evaluation functions. And we used evaluation about energy on robot 
as the beginning and universal evaluation. We showed the robot could take more proper 
action as it created evaluation functions by proposed algorithm. 
As the future works, we try to find and propose better universal mechanisms. For example, 
we consider that a rule how to interact environment can be used as a universal mechanism. 
As the first step of this, we have tried to create evaluation functions for concrete task and 
environment with an interaction rule which is defined by variance of sensor data 
(Kurashige, 2007). By importing a concept of universal mechanism into learning method, we 
try to divide between how to design a robot and how to use a robot, and we try to realize a 
system which can get necessary knowledge whenever it is necessary only with an operation 
of its information. We think that is next step for autonomy. 
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Human kind through out history has shown a keen ability to learn by observation and to 
create.  He’s the only species on earth that has drastically changed his surroundings by 
constructing cities, houses and parks among other things. He also has left the planet for the 
nearest celestial body and built a home on the stars.   But if one takes the knowledge needed 
to build something as complicated as the space station, one soon realizes that one did not 
have to learn everything at once. As matter of fact the knowledge needed to build the station 
is the result of a very long learning process that was done one step at the time.  
This type of learning process, based very strongly on previous experiences, has proved to be 
efficient in the way that once something works it is fairly easy to replicate or do it better. 
However, it is interesting to point out that regardless if it is the best method for learning it is 
the only method used. The school systems all around the world expect a child to learn 
certain skills during the first years of schooling, such as reading, writing and spatial 
reasoning. Then these skills are broadly used from there on to learn things like basic algebra, 
logic reasoning, arts, crafts, history and so on.  Once in college the student is expected to 
choose an area of interest and study the extra skills necessary to learn the advanced subjects 
of the area and be able to use them in a professional environment.  If the student pursues a 
higher degree of education his success will reside on his ability to interconnect past 
experiences to produce some new bits of knowledge. 
Interesting enough, the power of knowledge is derived not only from personal experience 
but from a collective experience as well. This can be seen in very isolated communities as 
well as in the global community of today. In aborigine tribes, the collective experience is 
passed from generation to generation usually by means of oral tradition. For example, the 
best way to hunt, the best grassing places for cattle and so on. Such knowledge is updated 
by the most recent personal experiences. In today’s more globalized community experiences 
are shared through many different channels, such as books or the internet. 
The discussion comes to the point where it becomes important to define experience. In a 
general context; the Merriam Webster’s dictionary defines experience as:  
“1 a: direct observation of or participation in events as a basis of knowledge b: the fact or 
state of having been affected by or gained knowledge through direct observation or 
participation 
2 a: practical knowledge, skill, or practice derived from direct observation of or participation 
in events or in a particular activity b: the length of such participation <has 10 years' 
experience in the job> 
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3 a: the conscious events that make up an individual life b: the events that make up the 
conscious past of a community or nation or humankind generally 
4: something personally encountered, undergone, or lived through 
5: the act or process of directly perceiving events or reality”. 
These definitions illustrate clearly how knowledge can derive from direct or indirect 
involvement in an activity. It also defines a way of learning. More precisely in the context of 
this book, “Learning is done by a machine when it records its experience into internal system 
changes that causes its behavior to be changed.” (Looney, 1997). Most algorithms in machine 
learning use this definition to better adjust the detected classes and generate new ones if 
necessary. 
But unfortunately, these inner changes do not take the machine closer to a human like 
learning method. It only perfects the machine output to a constrained set of variables. But if 
the set of variables, all of the sudden, become unconstrained or the constraints change 
drastically, the previews experiences become obsolete and the training process has to star all 
over again (Hagras et al., 1997). As a result, for machine learning applications, you want the 
problem to be as constrained as possible and the machine as invariable as possible. These 
limitations become the “Achilles’ heel” of systems that have to undertake unexplored and 
unstructured environments.   
Understanding human experience has been the material of study by many philosophers, 
and scientists. Is not the intention of this chapter to enter in the discussion on any way, 
however, it is relevant to point out that the basic definition given before falls short to 
describe experience that transcends the observed event’s context; in other words, experience 
that is used in something else than the set of events where it was generated. This is best 
illustrated by an example:  An electrical technician learned throughout his career how to 
repair CRT TV’s, now he is faced with the challenge of repairing LCD screens. It is evident 
that some additional learning has to be done, but, a lot of the skills used to fix the CRT will 
be useful to fix the LCD.  And furthermore, if another CRT TV comes to his shop, he would 
still be able to fix it.      
From a systemic point of view, the agent’s physical capabilities, such as sensors actuators, 
computational power, etc, can be considered services to the way of doing things. And these 
services become the framework to design and develop the architecture that will take 
experience to the next level. 
The chapter starts the discussion by analyzing the way people carry out tasks, then 
introduces a concept of knowledge and its intricate relation to experience then a series of 
architectures are presented that illustrate the way next level experience can be implemented. 
These architectures are thought out to implement the ability, very often seen in human 
reasoning, of extrapolating experience; as in the example of the TV technician. The goal of 
the presented architectures is to establish the ways in which to use the agent’s services to 
obtain the most of the agent’s capabilities and increase the chance of success when faced 
with various problems and circumstances. Then it shows the application of one of the 
architectures to a theoretical problem and ends the discussion with some final remarks 
about the practical implications of using the proposed architectures. 

2. Simplicity, fun facts of the way we do things. 
‘STOP, think on what are you about to do!’, many times we have heard mothers instruct their 
children, usually because the youngster is about to harm himself, or engage in some 
mischievous behavior. This phrase is going to be the motto for this chapter’s section.  

Taking Experience to a Whole New Level 

 

55 

Must people have certainly come across the annoying problem of having to fix a house 
appliance or an office gadget. And the resulting outcome for most of these people is to 
throw it away or call tech services. The focus of this section is the small portion of users who 
actually try to fix the broken object. For them here’s the motto:  ‘STOP!!, think on what are you 
about to do!’. Otherwise, how are we ever going to understand what’s going on in the users’ 
heads?  
The problem of fixing things is very interesting to study the way we do things, mostly 
because it involves several brain actions/properties, like experience, analysis, observation, 
decision making, and coordination of movement, among others. 

2.1 Case 1: opening the black box problem. 
Once upon a time there was a black box. This box had a lid which was screwed shut with 
flat head screws, there where four of them one on each corner. The box had a “broken” 
behavior. (At this point it is irrelevant what the problem of the box is) To fix it, the person 
who’s going to fix it (from here on, the fixer) must open the box and see what is causing the 
problem. 
Inspired by the motto, an interesting question arises: What is the sequence of steps that are 
required to get in to the box? Let’s follow a line of reasoning to find the answer to this 
question.  
First step is always observation, observe the problem in detail and get as many 
characteristics as possible. From here the fixer will know things like there’s a lid, there are 4 
flat head screws, their position and size, and so on.  It seems obvious after reading the 
problem’s description, but bear in mind that the fixer is presented with the black box and 
not the description of the black box. 
Next step is experience, the fixer must ask himself, “Have I opened THIS black box before?” if 
the answer to this question is YES, the answer to the “what is the sequence…” question is 
immediately found, the steps are somewhere in the fixer’s head. But this trivial answer is 
not what we are looking for. If we take the NO answer, the following question arises: “Have 
I opened SOMETHING LIKE this before?” In this case a YES answer would lead to compare 
the black box, with every experience of opening THINGS LIKE this one, and using the best 
match to try and open it. In essence, finding similarities with previous elements would give 
us a starting point that is further ahead in the solution process than starting from scratch. 
On the other hand, the NO answer would lead to the next step. 
Analysis, here the fixer must determine the type of tool he’s going to use to unscrew the 
screws. Probably establish if there’s a sequence to follow or just any random order will do 
the job, determine if it is sufficient to unfasten the screws or if they have to be removed 
completely.  
The final step is action: the fixer does something, for example, removes a screw, from here 
on, the road can take two paths: trial and error or a methodic process of disassembly. Either 
one will get the job done, it’s important to appreciate that in both roads the process becomes 
cyclic, as the fixer will have to stop and observe after each step is taken to determine if he’s 
going to achieve his goal and apply this sequence of steps for each particular problem 
encountered. Figure 1, shows a flow chart of the Meta algorithm of opening the black box.  
It is interesting to notice how there are two type of experiences that become very useful in 
this process. The first type of experience is very much like defined in section 1, and used 
widely in machine learning algorithms: direct experience over the event, the second type of 
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experience is an extrapolated experience, in other words, it is experience achieved in other 
events that is used to find a quick solution to the problem, a starting point further ahead in 
the road of solving the problem. As an example, opening the black box would allow the 
fixer to understand the way the computer’s cover is quickly removed. 
 

 
Fig. 1. Meta algorithm for problem solving 

Other interesting observation on this case is the way it can be compared to recursive 
programming. In recursive programming the algorithm is called several times but every 
time with a simpler task, in terms, the same thing happens in case 1, the same four basic 
steps are recalled every time with partitions of the bigger problem.  
Simplicity in this case is related to understanding that only 4 steps are needed, and that they 
repeat themselves over and over. 

2.2 Case 2: fixing the black box’s broken behavior. 
At this point the fixer has opened the black box, and needs to fix the problem, as in the 
previous case, a very similar question arises: What is the sequence of steps needed to repair 
the problem?  To find the answer to this question this time, we are going to take a different 
path; there is a meta-algorithm used widely for fixing things, it can be simplified to three 
stages as: Diagnose, repairing (replace, reposition, reconfigure, reinstall) and test. 
With this meta-algorithm it is important to subdivide the task in two types. First type, it is 
the kind that comes with a manual, in this type of fixing, the fixer only needs to follow a set 
of steps designed to pinpoint the problem and fix it. Its only reasonable to mention that on 
this type of process, the fixer needs direct experience on how to solve the little details, the 
ones the “manual” assumes the fixer knows how to do. So, only one type of experience is 
needed. This is the type of activity people train for.  
The second type of subdivision is the one with no “manual” or only limited information 
available. There are no steps or a determined sequence to follow, in this case (which is very 
interesting for this chapter), the fixer must use experience of different types to diagnose the 
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problem, and fix it. Interesting enough, if the meta-algorithm applied in case 1 is used for 
the diagnostics, repairing and testing stages, a solution to the problem can be found. 
To illustrate, let’s say the black box’s broken behavior consists of a failure on an indication 
led that informs the status of the connection to a wireless network. Assume that the problem 
is a burnt resistor from the led’s amplifying circuit. To understand what is going on 
(diagnostics stage) the fixer starts proving, looking to see if the box is actually able to 
connect, regardless of the led. The fixer must see that the box seems to work fine in this 
regard (observation), he turns to analyze the led’s circuitry, un-solders the led (action) and 
tests it by itself. This because he knows from his experience, that L.E.Ds blow out rather often 
(It is important to mention that this is based on the fixer’s experience, and only for the 
purpose of the example). When he finds that the led is not the problem, then he solders back 
the L.E.D, and starts checking for voltage level in the amplifying circuit until he finds the 
blown resistor. Again it is clear how the four basic steps of the meta-algorithm are used over 
and over again. 
Then he gets the replacement resistor (repairing stage), un-solders the blown one and 
solders the new one. Repairing is usually a trained activity, therefore, this stage usually does 
not use the meta-algorithm; rather, it will use a list of steps or procedures. However, once in 
a while, to repair something the fixer must get creative. Assume now that he doesn’t have 
the right value resistor, better yet, he has no resistors at all. He could run to the store and 
buy a new one; but again, not a very interesting solution. He could get the resistor from 
another broken gadget. In this case the meta-algorithm could be used to find and recover the 
part, and as it usually happens, the replacement is probably not a perfect fit, so he would 
have to use the meta-algorithm again to modify it and make it fit. 
Finally testing, the fixer has to undergo a procedure to figure out if the repair was well 
done. Again we stumble with the duality of procedure vs. experience. The fixer could use 
procedures if they exist. But if not, he must rely heavily on experience to test the system 
until a suitable set of possibilities for failure is tried out and pass satisfactorily. In the 
example of the black box, it is rather simple: Activate wireless communication and see if the 
L.E.D blinks as it is supposed to. 
With case 2 it becomes clear that there’s a layer-like architecture to the process of fixing 
something. Upper layers determine the general procedure to follow, and lower layers take 
care of particular tasks. Furthermore, simplicity is associated to the use of the meta-
algorithm in several occasions and contexts.  
After having “stopped and thought” on what we where about to do to the black box; it is 
important to extrapolate at this point. If all possible problems are grouped together in to 
categories based on the agent’s capacity to solve them, only three categories arise: problems 
which already have been solved, those which haven’t and those which can’t be solved by 
the agent. Those that have been solved become procedures like how to build a computer or 
a car, in the case of people, they could also become instinct, like running or dancing. Those 
that haven’t been solved are the ones that present a challenge, and there’s where the meta-
algorithm comes in action, always observing, putting all other experiences to the test, 
analyzing and acting upon.     
Although it is not the intention of this section either to undermine or to simplify the creative 
process, the act of problem solving of the human mind, which relies on creativity, can be 
approximated by understanding that a big part of the creative process comes from melding 
experiences achieved through out a series of events in a similar or even in completely 
different context than that of the problem at hand. A glance at the way any engineer’s talent 
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evolves shows that although early stages could be magnificent, the best work is always later 
in the career because is fueled in part by the new experiences achieved in the early stages. 

3. Storage, the key for knowledge. 
Although the debate on a definition of Knowledge is still on-going, for all purposes of this 
chapter knowledge would be understood as defined in the Oxford English Dictionary: (i) 
expertise, and skills acquired by a person through experience or education; the theoretical or 
practical understanding of a subject, (ii) what is known in a particular field or in total; facts 
and information or (iii) awareness or familiarity gained by experience of a fact or situation. 
It is interesting how knowledge and experience are intricately related. From the definition 
can be derived that since machine learning algorithms use a process of experience to better 
perform the given tasks, ergo, any system that uses a machine learning algorithm has 
knowledge of the specific task. The only problem with this statement is that by definition, 
knowledge seems to be a trait exclusive of a “person”. Never the less it is still valid, if we 
understand a person as the ultimate system or agent. In other words, extrapolating the 
concept of knowledge to lesser systems, such as mechanical or electronic system, to describe 
the information, expertise and familiarity obtained through experience or education. 
The term information is clear to see in current day technology, people store hundreds of 
thousands of information represented in bytes. It is also clear to see how a few fields in 
memory describing the algorithm’s results or properties can be considered valid information, 
and that such can be acquired or refined through experience or programming (the equivalent 
of education in “lesser” systems),therefore also considered as knowledge. However, what to 
make of awareness and expertise? Can they be replicated in a non human system?  
Expertise can be defined as the capacity of the system to carry out a task efficiently. 
Therefore, it can be replicated as it has been widely demonstrated that for certain tasks, 
machines are far more efficient than people. Awareness at a very primitive level has been 
replicated in machines (Bongard, Zykov, Lipson, 2006), and as a matter of fact is achieved 
through a method of experience. So, it is safe to extrapolate the term knowledge to a wider 
variety of systems. 
A system has knowledge of how to carry out the task it is meant to do, because, in the worst 
case, the system was programmed to do it, since programming was proposed equivalent to 
education, the statement becomes true by definition.  
But in the interest of this chapter, how does having knowledge take experience to the next 
level?  From section 2 it can be determined that next level experience starts when the system 
can extrapolate what was learnt in one problem and use that to solve something else, and it 
ends when the system has evaluated the level of success on solving the problem. Then, 
knowledge of other problems is useful when using next level experience. But as experience 
goes up on level, so does knowledge, because by definition, if there is experience, the 
information achieved by it is knowledge. 
A quick look on what could be seen in next level knowledge would throw probably some 
algorithms and some indicators on how efficient it was under certain circumstances. There 
would be an algorithm that would know how to choose and combine algorithms to solve 
new problems, and there must certainly be an algorithm that would store procedures that 
had effectively solved a problem. In this case, traditional machine learning algorithms and 
any algorithm designed to specifically solve a problem becomes an essential component to 
the algorithms found in next level knowledge. 
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People store information by creating interconnection between different neurons, part of that 
information, which is consider knowledge, is actually information about the way people 
carry out tasks. Some of it is fuzzy knowledge as the person knows that certain algorithm 
works well under certain cases in a certain way, while other may not work as well. There’s 
also deterministic knowledge of this kind, for example, the way a person writes; clearly 
there is certainty that the algorithm for writing works every time. 
Without the neurons’ connections the storing of information wouldn’t be possible, and 
without storage, comparison, characterization and choosing are not feasible. One of the 
reasons would be that there would be no knowledge (because there’s no information) about 
the efficiency of an algorithm, so there would be no factors in which to base the choice other 
than randomness; there would also be no information to compare any two algorithms and 
no information about any algorithm could be generated because it would be immediately 
forgotten.    
As in people, machines have various methods to store information. From the simpler latch 
or flip-flop all the way trough to quantum dots (Stick, Sterk, Monroe, 2007) and 
buckyballs(Anderson, 2007) passing by registers, and more traditional R.A.Ms, R.O.Ms, and 
magnetic hard drives. Although some neuroscientist despise the idea of comparing the 
human brain to a computer, some similarities can be pointed out; for instance, the “natural 
instinct” or “born instinct” can be compared to the functionality of the ROM in the 
computer, the short term memory to the RAM, and the long term memory to the hard drive.   
Information in the brain seems to be stored in different sectors of the brain, depending of 
where it comes from or what it does; in a system, the information also has to be structure to 
achieve functionality.  
By design artificial systems have a “natural” partition, in one hand there’s the program 
memory while on the other is the data memory. In a way, this separates the “how to” from 
information, as mentioned before a program is knowledge achieved through “education” so 
this basic natural partition could be sufficient in some cases. However, the downside of this 
storage strategy is that the size of program memory is usually limited. This lack of space 
obligates to simplify algorithms and use only a small set of them. It also implies that the 
complexity of the higher level algorithms (HLA) is reduced to simple lookup tables as the 
actual algorithms could not be changed or manipulated. 
In modern computing systems this lack of capacity is a matter of the past, today it is very 
inexpensive to have large amounts of memory available. This means a large number of 
programs and a large amount of information could be made available to a CPU or the 
processing unit of choice. Under this circumstances, HLA do not have to be limited to a look 
up table, they can be very sophisticated algorithm that could spawn new versions of basic 
level algorithms (BLA). 
It is clear at this point that in order to have knowledge, there has to be a storage system. 
And such storage system has to be capable not only of storing data, but it has to be able to 
store algorithms as well, and if the HLA are sophisticated enough, it must allow them to 
manipulate the algorithms.  
There are three characteristics intrinsic to a storage system of any kind. First of all it must 
have an appropriate capacity, not too much that the system would have trouble carrying the 
extra space not too little that algorithms could not work or be worked around easily. And 
second, the storage system has to be fast, even it means that it must compensate for latencies 
associated to slow media, it also means that it needs to be organized so it will find the data 
or algorithm that the HLA is looking for almost immediately. Last but actually the most 
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important, the storage system has to allow algorithm modification; with ever increasing 
complexity a good HLA could evolve an algorithm with time, so it is important to allow for 
such type of action over the algorithm.   
Based on the second characteristics, the way an algorithm is stored has a great impact on the 
overall performance of the system. If the storage system is not fast enough, the system is 
going to have critical waiting periods while it loads the next algorithm to execute, and if 
such times are grater than the system’s natural response time. The system could become 
unstable or collapse all together. Therefore it is crucial to structure the storage system to 
have a fast response. 
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Fig. 2. Storage system characteristics 

4. Architectures that allow for higher level algorithms. 
Any means of storage could be considered a valid architecture for HLAs; however, it is 
important to keep in mind the three qualities associated for a good storage system for 
knowledge. Furthermore, any architecture has to provide the means to evaluate or at least 
have a grading mechanism to choose the appropriate algorithm for the given set of 
circumstances. 
Without evaluation there’s no experience to be achieved, because there wouldn’t be the 
means to measure an improvement in certain task. In other words, if there is an HLA, it 
needs to keep track of how well it has resolved the problems at hand with the BLAs, 
meaning it needs to evaluate each BLA’s performance. So whether the evaluation is 
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embedded into the HLA or its part of the system design and it is made available to the HLA 
as a service, it needs to be present. 
Turning to the architectures, they can be divided into two groups, software architectures and 
hardware architectures. Although software architectures are the easiest to implement and the 
most familiar for developers, resent studies in hardware design are showing promising results. 
Software based architectures have several advantages, for starters, must of the elements 
needed to create them are intrinsic to an operating system or a program i.e. multi-thread 
multi-process operations, file management or dynamic library loading. Other important 
advantage is the level of possible manipulation; an algorithm can be disassemble and 
assemble with changed properties. But the downside is that all that preparedness has a high 
cost in size, operating systems usually take a lot of space in order to give all that 
functionality as does the additional software. 
In contrast, the speed achieved in hardware is dazzling, and with reconfigurable hardware 
techniques, drastically changing algorithms is possible. The problem is that there’s a higher 
cost in design time, because all the interfaces needed to use massive storage, and reconfigure 
hardware have to be hard wired and hard coded; also there’s less portability to other 
systems due to the hardware specificity. 
Regardless of the technical issues that embrace each technology, it is important to take a 
look at some examples as for different practical problems there’ll be a most appropriate 
implementation. 

4.1 Software architectures: using a file system. 
Despite the operating system of preference, it is going to present the developer with a file 
system. This File system allows the storage of massive amounts of information, and usually 
lets you handle multiple storage media like USB memories or hard drives with ease. 
Figure 3 illustrates the basic layout of an architecture based on a file system. The evaluation 
subsystem could be an independent module; or as mentioned before, embedded in the HLA. 
The file type of choice is a dynamically linked library that can be loaded and unloaded as 
needed. The HLA is the entity that decides which algorithm to load based on the 
information stored in the evaluation file. The execution module runs the algorithm 
achieving a change on the system’s stat; the efficiency and accuracy of the operation is 
measured by the HLA and the result is stored through the evaluation module.   
The algorithms are recommended to be stored in compiled form, in other words in an 
executable format, i.e. .dll for Windows operating systems. This ensures a faster execution 
and allows the direct interaction with all of the systems’ services; also it allows the direct use 
multi thread technology, leaving the responsibility of processor time assignment to the 
operating system.   
Interpreted formats, like a Matlab file, are not recommended for the BLA as they become 
costly to execute because they have to load the interpreter. Also the algorithm has to use the 
interface provided by the interpreter in order to access the system’s services, this usually has 
an impact on performance and some services are restricted. Things like multi threading 
depend exclusively on the interpreter of choice so it is not always available. In (Lopera, 
2005) the Matlab algorithms always caused the execution time to default to the worst case. 
When regarding direct algorithm manipulation by the HLA, a few things have to be taken 
care of. First of all naming new libraries, the HLA has to keep track of the new libraries 
created otherwise it might not keep an appropriate performance log and thus, it might not 
use the newly created algorithms even if they turn out to be more efficient. 
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Fig. 3. Basic layout of file system based architecture 

Algorithm manipulation is easier to do in interpreted formats because is a natural way to 
partition and mix functionalities, in compiled formats, it requires more steps but it can be 
done, weather is combining at a source file level and recompiling, or mixing in binary 
format; which it hasn’t been tested and requires a profound knowledge of the binary 
structure of the compiled library. This also means that the HLA has to keep track of what 
source code belongs to which library. 
One of the advantages of file system based architecture, especially when using compiled 
format, is that the system will only load what ever algorithm is executing and the system’s 
services, nothing else, so it can be very efficient in respect to memory usage. 
By designed, a file system complies with the characteristics proposed for knowledge 
storage; however is the responsibility of the HLA to keep the order and structure of the file 
system. A poorly designed HLA can end up clogging the file system surrendering it 
inefficient and ultimately halting the system. Other advantage of the file system is its 
portability; the hardware architecture is some what transparent, as long as it supports the 
operating system: it will support the file system.  
The disadvantages lie with the evaluation module; because is a file based module, all 
searches have to be carried on within files, so a lot of searching and updating functions have 
to be written in order to allow the HLA to effectively evaluate and choose BLAs. 

4.2 Software architectures: databases     
The database architecture is an expansion of the file system architecture; it seeks to improve 
where the file system presents its most weaknesses. It also takes care of the evaluation 
structure, which allows having multiple HLAs that share the same information about the 
algorithms and simplifies overall HLA development.   
A database is designed to store information, and as such it allows storage of multiple types 
of information in an orderly fashion; its internal structure is designed to relate information 
between tables so it facilitates data management and storage structure, furthermore, it also 
specializes on information retrieval; it is designed to fetch huge amounts of information in 
short periods of time. This makes it ideal to take care of storing the algorithms in binary 
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form as well as in source code form, associating all sorts of parameters that allow the HLA 
to choose the best algorithm for a more complex context.  
Figure 4 illustrates a general architecture, in this case the HLA works with the database to 
manipulate and evaluate the stored algorithms, once it has chosen one, it retrieves it and 
saves it to the file system for execution. This because most operating systems don’t allow 
executing information that is considered data, except for executable files on the file system. 
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Fig. 4. Basic layout for the database architecture 

As mentioned before, the database improves performance and facilitates the job of the 
HLAs, at the cost of having to load the database server which implies some memory usage 
and processor time; however for most systems based on pc computers this is not a problem. 
The advantages outweigh the cost. In (Lopera, 2007) there is an interesting analysis about 
the pros and cons between both architectures. 

4.3 Software architecture: when space is limited 
This type of architecture is considering systems that are developed using microcontrollers 
where access to memory resources is limited and no operating system is available or does 
not have file system capabilities much less a database server. 

Routines

Execution 
module

HLA

Evaluation

System’s Status

Algorithm Performance Record

Memory 
Bank

 
Fig. 5. basic layout for limited space architectures 



 Machine Learning 

 

62 

Dynamically linked libraries
Statically linked libraries

Execution 
module

HLA

Evaluation

System’s Status

Algorithm (File) 
Selection 

Algorithm 
Performance Record 

File 
System

 
Fig. 3. Basic layout of file system based architecture 

Algorithm manipulation is easier to do in interpreted formats because is a natural way to 
partition and mix functionalities, in compiled formats, it requires more steps but it can be 
done, weather is combining at a source file level and recompiling, or mixing in binary 
format; which it hasn’t been tested and requires a profound knowledge of the binary 
structure of the compiled library. This also means that the HLA has to keep track of what 
source code belongs to which library. 
One of the advantages of file system based architecture, especially when using compiled 
format, is that the system will only load what ever algorithm is executing and the system’s 
services, nothing else, so it can be very efficient in respect to memory usage. 
By designed, a file system complies with the characteristics proposed for knowledge 
storage; however is the responsibility of the HLA to keep the order and structure of the file 
system. A poorly designed HLA can end up clogging the file system surrendering it 
inefficient and ultimately halting the system. Other advantage of the file system is its 
portability; the hardware architecture is some what transparent, as long as it supports the 
operating system: it will support the file system.  
The disadvantages lie with the evaluation module; because is a file based module, all 
searches have to be carried on within files, so a lot of searching and updating functions have 
to be written in order to allow the HLA to effectively evaluate and choose BLAs. 

4.2 Software architectures: databases     
The database architecture is an expansion of the file system architecture; it seeks to improve 
where the file system presents its most weaknesses. It also takes care of the evaluation 
structure, which allows having multiple HLAs that share the same information about the 
algorithms and simplifies overall HLA development.   
A database is designed to store information, and as such it allows storage of multiple types 
of information in an orderly fashion; its internal structure is designed to relate information 
between tables so it facilitates data management and storage structure, furthermore, it also 
specializes on information retrieval; it is designed to fetch huge amounts of information in 
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form as well as in source code form, associating all sorts of parameters that allow the HLA 
to choose the best algorithm for a more complex context.  
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saves it to the file system for execution. This because most operating systems don’t allow 
executing information that is considered data, except for executable files on the file system. 
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Fig. 4. Basic layout for the database architecture 

As mentioned before, the database improves performance and facilitates the job of the 
HLAs, at the cost of having to load the database server which implies some memory usage 
and processor time; however for most systems based on pc computers this is not a problem. 
The advantages outweigh the cost. In (Lopera, 2007) there is an interesting analysis about 
the pros and cons between both architectures. 
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not have file system capabilities much less a database server. 
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In this case HLA must have embedded the evaluation module; it should work over a 
memory area, keeping a rather simple record of performance and link to the respective 
program counter’s position of each routine. It is recommended that the routines be 
constructed in an interrupt basis so in that way they’ll return handle to the HLA so it will be 
able to monitor the system status and the routine’s performance. 
To achieve some level of routines manipulation they should be parameterize, in that way 
the HLA can modify the parameters to fine tune the routine’s efficiency. 

4.4 Hardware architectures: reconfigurable hardware 
A typical architecture for reconfigurable hardware is the cooperation of a processor unit 
with a programmable electronic device (PED) as PSOC or FPGA. In this configuration the 
processor has the responsibility of programming the PED, and for that, the processor uses 
storage memory to store the binary files that contain the programming sequences, usually 
downloaded in to the PED through JTAG.  
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Fig. 6. basic layout for reconfigurable hardware architectures 

In this case there are several configurations that can be carried out, and they all depend on 
the capacity and speed of the processor as well as the PED. For instance the evaluation 
module can be run at the processor along with the HLA or can be programmed and 
configured in the PED so it will match its internal configuration and facilitate performance 
measurement. 
The HLA is recommended to be executing in the non-reconfigurable part of the system as it 
is pointless to load and reload every time the PED has to go through a programming. This 
takes up some time, and could compromise system’s stability.  
Some of this configurations support small operating systems, this operating systems could 
run small database servers, in this case leaving the BLA to be implemented at hardware 
level. This certainly has some performance issues that have to be evaluated based on each 
specific application.  
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One of the advantages of this architecture is that PED have become interestingly complex 
and powerful as they have grown in capacity, mixing microcontrollers with analog cells and 
digital cells. This resource availability can be used to implement high performance BLAs 
using very up to date design techniques. 

4.5 Hardware architectures: non reconfigurable hardware 
Not all types of algorithms are worth the trouble of implementing at a hardware level. In 
most cases due to the repetitiveness and the sequential nature of its internal operations a 
software architecture is more suitable. Even though, parallel processing, state machines, and 
other hardware design techniques can be embraced to implement powerful solutions. 
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Fig. 7. basic layout of non reconfigurable hardware architectures 

The way this architecture works is as follows: The HLA controls the output multiplexer and 
input buffer (or demux) it also must enable the chosen subsystem that will operate over the 
inputs and produce the appropriate outputs. This choice is based on the information stored 
in the memory bank. The evaluation subsystem is constantly monitoring the system’s state 
inputs and the outputs selected to measure the hardware algorithm’s (HA) performance; it 
also communicates the results to the HLA which in turn stores that information into the 
memory bank.  
The hardware HLA, from the hardware design point of view, could be conceived as the 
control unit of the system. The evaluation is considered a separate module in this 
architecture because based in good hardware design strategies modularity is enforced and 
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since its job is so distinctly clear and does not mix with any other process the HLA might be 
doing. The input buffer has to be designed so it will present in adequate form the inputs to 
the HBLAs, just wiring every system input to the HBLA’s input might encounter fan-in, fan-
out or loading issues. The output multiplexer is pretty straight forward, the only concern is 
the signal types, in which case, an appropriate multiplexer has to be designed.  
Unfortunately this architecture is the most expensive to implement and the most keen to 
present problems do to implementation, i.e. wiring and signal coupling issues. Despite its 
cost and arduous construction, it is worth while presenting this architecture as it illustrates 
how the HLA can be taken to the must basic level. It also reinforces the following concept: 
the importance of basic level modularity, which is going to be presented in more detail in 
section 5. In other words, regarding HBLAs inputs and outputs, they all have to talk the 
same languages, since they will be connected to the same interfaces; this becomes an 
important design restriction. 

4.6 Remarks 
The presented architectures show some alternatives of how to implement HLA and the 
evaluation mechanism, which are necessary for higher level experience. In general, Figure 8 
shows a basic hierarchical structure of how to design an architecture that is considered HLA 
enabled. 
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Fig. 8. general architecture 

Service based design is crucial for these types of architectures. This way, each BLA knows 
exactly how to talk and listen to a system service. It also allows the execution of multiple 
BLA that use independent services at any one time and simplifies the design of the BLA as it 
only needs to interface with services it requires. 

5. How to design robots with Higher Level Algorithms  
This section analyses the design procedure of a mobile robot, it does not design a robot itself 
but assumes that there is certain mechanical infrastructure, hardware, and even software at 
a service level. The center idea is to structure the general architecture at a high level. For this 
we assume that the robot is at an advanced stage, in other words the first elements of the 
design process have been taken care of, the basic physical structure, the control system and 
electronics of the individual elements like motors, arms, cameras, etc are up and running. 
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5.1 The robot 
BoBoT, which is going to be the robot’s name, has three main service subsystems: the first 
one consist of a set of four independently driven wheels; second, 2 grippers each mounted 
on a arm with 2 sections and 2 degrees of freedom for each joint (3 in total); and third it has 
a bundled dual camera system with pan, tilt and zoom capabilities. The brain of the 
operation is going to be a laptop system and the database architecture is going to be used. 
BoBoT is also equipped with a series of sensors that complement the basic instrumentation 
used to achieve control of the service subsystems: 
- A three axis accelerometer 
- An up down sensor. 
- An applied force sensor for the arms. 
- A battery charge meter. 
- A GPS 
Figure 9, Figure 10 and Figure 11 show the black box models of the service subsystems 
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Fig. 9. Black box diagram of the engine subsystem 
The engine subsystem has two ways of operation: it can turn by specifying an actual desired 
speed in meter per second; the engine will turn in the direction implied by the speed’s sign. 
The other way is to establishing the RPMs and a direction. To specify which input to listen 
to, the unwanted one has to be set to 0. If not, desired speed prevails.  In turn, the engine 
subsystem’s outputs inform of the power given to the motor and the measured RPM s. 
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Fig. 10. Black box diagram of de dual camera subsystem 

To operate the dual camera subsystem it is sufficient to specify the position in the pan and 
tilt axis, and how much zoom is desired, the cameras can not be controlled separately. The 
outputs are the two video streams in a mildly compressed digital format.  
To use the arm it is important to understand that the grip operation is independent of arm 
operation. The grip has two ways of operation: one is by establishing a desired action and a 
speed of the action, i.e. “close” “fast” and the other is by establishing the action and the 
forced to be applied, i.e. “close” “hard”. In the first example, the grip will close fast and 
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apply maximum force, in the second it will close slowly until it reaches the desired applied 
force. The system will constantly give out the grip status, i.e. opened, opening, closed, 
closing, and the actual force applied.  
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Fig. 11. Black box diagram of arm subsystem 

The arm can be operated in three different ways: In the first one, the grip can be positioned 
in a 3D space with origin at the shoulder. The second way, allows positioning each joint 
accordingly. And at last, a joint speed and direction can be specified in order to achieve 
constant movement.  And as outputs there are: the grips position with respect to the 
shoulder, joint position in their local coordinates, and an indicator if any of the joint’s limit 
sensors was reached. 
BoBoT has two arm subsystems, 4 engine subsystems and 1 dual camera subsystem. 

5.2 The things BoBoT can do: 
As part of the design process it is important to know precisely what it is expected of the 
robot. This section assumes that the robot has to carry out the following actions: 
- Vision based navigation with global positioning 
- Vision based navigation with inertial positioning 
- Vision based navigation with visual terrain recognition for positioning 
- Wide turns, forward and backwards. 
- Rotations around wheel base center 
- Pick up and place delicate objects. 
- Pick up and place sturdy object. 
- Variable speed and direction. 
- Movement with the arms 
- Swing  
- … 
These actions also show that there are commonalities between them, and also give the sense 
that there is more ways to achieve success, or that they share a common goal, i.e. the first three, 
the ones using vision based navigation, share the goal of moving from one point to another.   
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The next step is to identify the possible BLAs, as mentioned before the BLAs have to be 
extremely modular, so the expected actions not necessarily become BLAs. For instance, to 
pick up an object BoBoT will have to use vision to identify the object’s position and use that 
position to place the grip at a gripping distance, regardless if it is delicate or sturdy. Thus, 
there are at least three BLAs, one for object location, one for arm movement, and one to 
identify if the object is delicate or not so BoBoT can actually grab it. 
There can be multiple versions of the BLAs, in the picking up example, moving the arm 
could be done by controlling the trajectory in a 3D space assuming the trajectory is clear, or 
also assuming a clear trajectory but monitor the arm’s applied force sensor to detect 
collision, or use the cameras to check for obstacles. If used the latter, the importance of 
modular service design is critical as the camera would be used by two BLAs. When using 
HLAs, there’s no need to choose one of these three approaches to the same problem, instead 
you can store all three BLAs and have the evaluation subsystem evaluate them under 
different circumstances. 
To further reassure the importance of modular service design, at least three BLAs can be 
designed to use the arm modules, one for each input pair, one for 3d positioning, one that 
uses joint positioning, and other one that uses joint movement. In this case it is simple to 
develop the BLA, but if instead there were no good service design, each BLA would have to 
deal with problems related to the direct control of the arm, and maybe wouldn’t be as easily 
interchangeable or their size and complexity would increase.  
Once identified all the BLAs with their different versions, the next step is to write them, 
compile them and individually test them. Also the BLAs have to be tested in group as the 
way they are expected to be used and correct any interfacing problem that might result from 
things like resource sharing. 

5.3 The storage strategy 
Having tested all the BLAs, it is needed to gather the following information:  
- Excluding BLAs, those that perform different tasks but can not run at the same time. 
- BLAs that perform the same task but in different versions 
- Qualifiers of BLA performance 
- Environment status variables in which each BLA out performs the others in the same 

task. 
- BLA parameters if any. 
- BLAs needed to perform each action 
- Qualifiers of action’s performance; how efficient was BoBoT to perform the task. 
- Switching task times, it is easier to manage system stability at a HLA level, but it only 

matters when switching times are really critical. 
- Which subsystems are used by each BLA 
If at this point some incongruence is found among the BLAs they must be corrected before 
continuing because they might induce critical changes that force to repeat the previews 
steps. 
With this information the database tables can be created; it is recommended but not strictly 
necessary to: 1 BLA table, 1 BLA parameters table, 1BLA evaluation table, 1 action table, 1 
action evaluation table. For the action table it is recommended to use a code, if space is 
sufficient an extra table could be used to store that code, but it would only be useful for the 
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developer or generating reports, it wouldn’t have any effect on the HLA. Figure 12 shows a 
possible table setup. 
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Fig. 12. Table reference diagram 

In this setup, there’s the Actions table that stores the coding but the additional field of group 
allows identifying which actions are the same, so they can be evaluated and associate 
different, but equivalent, BLAs. Also the Actions_Eval table stores information about the 
Environment Status variables so the HLA can track which combination of BLAs worked best 
for those conditions of the environment.  
In case of using other HLA architecture, the same steps can be followed, only the storage 
structuring has to be adequate to the choice. 

5.6 Finally the HLA 
The HLA could have several roles in BoBoT, it could be in charge of fulfilling a mission, 
deciding the best way to successfully complete it. In this role the HLA would work with the 
Action tables evaluating and calculating constantly course of action, and how far it is to 
completion.   
Other role the HLA could assume is to take a course of action from a user, and follow it; in 
this case the HLA would work closely with the BLA_Evaluation table to choose the best BLA 
for the given conditions and course of action. A course of action can be expressed in terms of 
the Actions table, the corresponding BLA retrieved from the Action_BLA table and the best 
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BLA from the BLA_evaluation searching among the algorithms that share the same value in 
the task field and are none excluding.  
It is important to keep clear the role the HLA is going to take and how is going to take 
advantage of the tables, if several roles are detected it is a clear sign that the HLA has to be 
broken into modules, one for each role, and each module assume the appropriate hierarchy. 
If it turns out that there’s something on top of the HLA, those on top could be considered 
next level HLAs. 
Once the HLA’s role is established, the type has to be chosen, and there are two types HLA: 
Those that have programmatic responses, and those that have learnt responses. HLAs with 
programmatic responses are those algorithms that have transfer function or some 
mathematical equation that relates the inputs to the outputs and are programmed. In the 
second type, the HLA learns from experience, it tries actions, evaluates performance and 
start to mix accordingly to achieve better results. Thus, this type of HLA could be any of 
several machine learning algorithms, working with other algorithms and a sub set of inputs. 
Into what BoBoT is concerned, BLA of al sorts could be written, i.e. to use the four engines 
individually, in pairs or all together, to use each hand separately or gracefully coordinated, 
visually inspect the world surrounding him and use vision for a diversity of tasks. He 
‘would be able to successfully complete hundreds of mission of all sorts. 
The level of success can be associated to the complexity or smartness of the HLA, for 
instance, a very programmatic HLA that was designed for a very specific and stable 
environment would certainly fail on dynamic environments. However, an adaptive HLA 
that takes record of how the environment affects its BLA’s performance is more likely to 
succeed.  
One of the advantages of using HLAs is that they force the design to be so modular that new 
BLA could be introduced and the previous work wouldn’t be wasted, it will let the HLA 
evaluate and choose and optimize procedures, and user machine interfacing is done at a 
more natural way since it could be done by describing actions. 
The storage strategy is open for the designer to best choose the tables or structures he needs, 
and allows to be as sophisticated as to have several levels of associations, or as simple as a 
few register in the memory bank of a microcontroller. 

6. Being practical, final remarks. 
In this chapter the discussion has focused on the how to and the what, but it is important to 
reflect on the “if we should” or the “is it worth it”. 
A NASA rover sent to mars, even though it seems a promising scenario, is not the best 
candidate for HLA, at the first glance, because putting it on mars cost a lot of money; and 
just to have it start trying stuff that won’t work and that might cause an unpredictable 
failure it would be too risky. However, if once the rover has acquired the relevant 
information materials pictures etc. putting it to try out BLA becomes interesting, at least 
more interesting than letting it rot there.  
The horse gait problem proposed in (Lopera, 2007) which is actually an energy optimization 
problem is a good example of the power of modularity since each leg is driven differently 
on each gate, but is worth the trouble of installing an HLA? There’s a trick to this problem, 
and that is that depending on the terrain, especially on its slope, the gait has to be modified 
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developer or generating reports, it wouldn’t have any effect on the HLA. Figure 12 shows a 
possible table setup. 

Exclussion

Task

Source_code

Binary_code

Name

ID

BLAs

type

value

BLA

Name

ID

BLAs_Parameters

Env_Sta_Var n

Env_Sta_Var …

Env_Sta_Var 1

Qualifier …

Qualifier n

Qualifier …

Qualifier 1

BLA

BLAs_evaluation

Sequence

Action_ID

BLA

Action_BLA

Env_Sta_Var 1

Env_Sta_Var …

Env_Sta_Var n

Env_Sta_Var …

Qualifier 1

Qualifier …

Qualifier n

Qualifier …

Action_ID

Action_Eval

Group

Name

ID

Actions

 
 

Fig. 12. Table reference diagram 
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drastically thus its energy consumption. Furthermore, if the gait algorithm (BLA) can be 
parameterized in order to adjust leg position and rhythm, the HLA becomes a powerful tool 
since it will start evaluating and adjusting those parameters so the horse would be able to 
keep doing the gate. But as far as the optimization problem, there would be the need to 
generate an additional level in which to operate in terms of the speed achieved by each gate, 
the energy it consumes and the track’s layout. 
In an industrial application, there’s no need to have HLA, because once the process is 
optimized it would operate like such. The process sequence is usually determined by its 
nature and there are optimization techniques and algorithms that do this type of process 
fine tuning rather well. 
In multiprocessor/multicore architectures HLAs could be used to supervise the execution of 
several learning algorithms in parallel to find optimums in highly complex functions. Since 
it can analyze the topology of the function, it could use the best optimization algorithm for 
the area of search. In that way, it could also be used to automatically evaluate classifying 
algorithms. 
The appropriate scenarios for HLA are those that present high environment variability, or 
are highly unstructured, have several possible BLAs, and there’s good computational power 
and memory availability.  
The use of HLAs serves as implementation to the problem presented by (Van de Velde 1995) 
as to how internalize representations. As he puts it in his child example, the walk by holding 
a hand is an infant BLA that the HLA will perfect until it has a walking by own means BLA, 
thus constituting the internalization. 

7. Future research 
There’s an interesting discussion, which this chapter purposely avoided getting in to, about 
if these architectures could be considered as epistemological. It would be interesting to 
compare what experts in this area have to say.  
One line of research that emerges naturally from this proposed architectures, is the 
involvement of other natural concepts that participate in the experience process, for 
instance: What use would have concepts like pain or tiredness for a system that has the 
capacity to choose the way to solve a problem? How could they be implemented and 
interconnected with the presented architectures? 
The presented architectures have a strong hardware based, reality measuring and affecting 
feeling to it, since they where thought out for physical systems as mobile robots and such. 
However, it would be interesting to measure the effect of the architecture in purely virtual 
systems. How would it affect performance compared to more traditional implementations? 
And the last couple of question that emerges from this line of reasoning are: How to code 
creativity? And would we be able to create a HLA that has creativity as one of it biggest 
traits? 

8. Conclusion 
This chapter described a few architectures that support a higher level of experience; 
however they are not the only architectures possible. Any architecture that evaluates and 
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records the performance of basic modules and uses that information to decide which 
module to use or how to adjust the module’s parameters is considered an architecture that 
supports higher level experience. 
It is clear that the intricate relationship between knowledge and experience can be 
constructed on an artificial system. Furthermore, it can be generated by the system if its 
architecture and available resources allow it. Unfortunately, the power of the relationship 
between knowledge and experience and how the system embraces that power is only as 
good as the HLA allows it to be. In other words, a lookup table HLA would never be 
able to undertake tasks for which the environment parameters are not within the lookup 
table. 
The architecture has to be carefully chosen for the resources available and the complexity 
level of the system. As mentioned before, their use in invariant environments, invariant 
systems and where no learning is involved, becomes a waste of resource and could 
compromise development time. But, in the other hand, there is little or no knowledge 
about the environment and it is desired to maximize mission scope, then architectures 
that support next level experience could simplify the problem dramatically. This 
simplification occurs in part because the designers do not have to resolve all the possible 
problems the system could encounter. Instead they solve basic issues, and leave problem 
solving to the system.  
This type of architecture meets the definition by (Van de Velde 1995) of intelligent systems. 
As it has cognitive knowledge of its environment as evaluation criteria for the BLAs 
obtained through the inputs subsystems, and uses that knowledge to determine appropriate 
course of action, establishing a behavior in its environment. 
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1. Introduction 
The problem of learning represents a gateway to understanding intelligence in brains and 
machines. Many researchers believe that supervised learning will become a key technology 
for extracting information from the flood of data around us. The supervised learning 
techniques, i.e. learning from examples, can be seen as an implementation of the mappings 
y = F(x), relying on the fitting of given data pairs {xk ,yk}. The key point is that the fitting 
should be predictive and uncover an underlying physical law, which is then used in a 
predictive or anticipatory way. A great number of models implementing the supervised 
learning techniques have been proposed in literature. Artificial Neural Networks (ANN), 
Radial Basis Functions (RBF), Support Vector Machines (SVM) and Fuzzy Logic based 
models (ANFIS) should be here mentioned. Support Vector Machines, distinctive tools for 
data classification, are the product of statistical learning theory. Recently, a new learning 
algorithm named Regularized Least Squares Classification (RLSC) has been proposed. The 
RLSC concept relyies on multivariate function approximation with regularization theory as 
a natural framework for solving ill-posed problems of approximation. It is worth noting that 
SVM and RBF models can be regarded as special cases in the framework of approximation 
and regularization theory. On the other hand, the Hamiltonian Neural Networks (HNN) 
based orthogonal filters can be regarded as a natural implementation of the regularization 
technique. Using Hamiltonian Neural Networks based spectrum analysis, recognition, and 
memorization, gives rise to mapping implementations with skew-symmetric and symmetric 
kernels. The purpose of this chapter is to present how very large scale networks for learning 
can be designed by using HNN-based orthogonal filters and, specifically, by using 8-
dimensional (octonionic) modules. The unique feature of HNN is the fact that they can exist 
as either algorithms or physically implementable devices. In this chapter we mainly 
concentrate on algorithmic description of HNN-based networks. Moreover, since the 
structures of HNN can be based on the family of Hurwitz-Radon matrices, we present here 
how to design large scale nonlinear mappings by using neural networks with weight 
matrices determined by Hurwitz-Radon matrices. Hence, this chapter consists of the 
following issues: 
- Fundamentals of HNN  
- Family of Hurwitz-Radon matrices 
- RLSC basics 
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- Orthogonal filter-based approximation 
- Modeling classifiers, pattern recognition and associative memories via nonlinear 

mappings 
- Attractors based very large scale associative memories 
- Conclusions 
There is a large literature on the subject of networks for learning. Here we only refer to some 
comprehensive and useful, from the point of view of our presentation, reviews: (Evgeniou et 
al., 2000), (Poggio &  Smale, 2003), (Boucheron et al., 2005), (Predd et al., 2006).  

2. Hamiltonian neural networks 
It is well known that a general description form of an autonomous Hamiltonian network is 
given by the following state-space equation: 

 ( ) ( )'= =JH x ν xx�   (1) 

where: x - state vector, 2nR∈x  
 ν(x) – a nonlinear vector field 
and:    -J = JT = J-1 i.e. J is skew-symmetric and orthogonal. 
Function H(x) is a Hamiltonian (energy) of the network. Since Hamiltonian networks are 
lossless (there is no dissipation of energy), their trajectories in the state space can be very 
complex for t → ±∞ . It is, however, worth noting that Eq.(1) has constant solutions, i.e. 

every points 
0

2nR∈x such that  H’(x0) = 0 is the equilibrium and x(t) ≡ x0 is the solution. 
Equation (1) gives rise to the modeling of Hamiltonian Neural Networks, as follows: 

 ( )= +�x WΘ x d   (2) 

where:  W- (2n×2n) skew-symmetric orthogonal weight matrix 
 Θ(x) – vector of activation functions 
 d – input vector (input data) 
and:  Θ(x) ≡ H’(x) 
 E=H(x) - the energy absorbed by HNN 
It can be easy seen that HNN, as described by Eq.(2), is a compatible connection of n 
elementary building blocks – lossless neurons (Fig.1). 
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Fig.1. Structure of a lossless neuron. 
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The state-space description of a lossless neuron is as follows: 
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where the activation function Θ(xi) , i = 1, 2 has been assumed as a passive nonlinearity, i.e.: 
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A lossless neuron is an elementary Hamiltonian network with absorbed energy given by: 
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Formula (5) can be directly extended onto n-neuron HNN: 

n

i
i=1

E E= ∑  

where: Ei – energy absorbed by the i-th neuron. 
Note, that for weight matrix W skew-symmetric but nonorthogonal, Eq.(2) describes a 
lossless neural network.  The Hamiltonian neural network described by Eq.(1) cannot be 
realized as a macroscopic scale physical object.  But HNN determines a type of orthogonal 
transformation, namely: 

 ( )⋅ + =W Θ x d 0  (6) 

 ( )= =y Θ x Wd   (7) 

(y, d) = 0;   (· , ·) – scalar product 
Rows (and columns) of W constitute an orthogonal Haar basis. The components of output 
vector are Haar coefficients. Thus, Haar spectrum analysis using HNN is given by: 

 y =W d   and    d= -W y  (8) 

and formula (8) can be used as an algebraic transformation. The problem of physical 
realizability of HNN can be solved by using HNN-based orthogonal filters. A basic 
structure of such filters is shown in Fig.2. 
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Fig. 2. Structure of an orthogonal filter. 
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 ν(x) – a nonlinear vector field 
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Function H(x) is a Hamiltonian (energy) of the network. Since Hamiltonian networks are 
lossless (there is no dissipation of energy), their trajectories in the state space can be very 
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every points 
0

2nR∈x such that  H’(x0) = 0 is the equilibrium and x(t) ≡ x0 is the solution. 
Equation (1) gives rise to the modeling of Hamiltonian Neural Networks, as follows: 

 ( )= +�x WΘ x d   (2) 

where:  W- (2n×2n) skew-symmetric orthogonal weight matrix 
 Θ(x) – vector of activation functions 
 d – input vector (input data) 
and:  Θ(x) ≡ H’(x) 
 E=H(x) - the energy absorbed by HNN 
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Fig.1. Structure of a lossless neuron. 
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The state-space description of a lossless neuron is as follows: 

 11 1 1

2 1 2 2

dx 0 w Θ(x )

x w 0 Θ(x ) d
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�

� ∓
  (3) 

where the activation function Θ(xi) , i = 1, 2 has been assumed as a passive nonlinearity, i.e.: 

 i

1 2 1 2

i

Θ(x )
μ μ  ;  μ ,μ (0, )
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≤ ≤ ∈ ∞   (4) 

A lossless neuron is an elementary Hamiltonian network with absorbed energy given by: 

 
21 2

1 2 1 1 2 2
0 0

E=E +E ( )dς ( )dς 0
x x

ς ς= Θ + Θ ≥∫ ∫   (5) 

Formula (5) can be directly extended onto n-neuron HNN: 

n

i
i=1

E E= ∑  

where: Ei – energy absorbed by the i-th neuron. 
Note, that for weight matrix W skew-symmetric but nonorthogonal, Eq.(2) describes a 
lossless neural network.  The Hamiltonian neural network described by Eq.(1) cannot be 
realized as a macroscopic scale physical object.  But HNN determines a type of orthogonal 
transformation, namely: 

 ( )⋅ + =W Θ x d 0  (6) 

 ( )= =y Θ x Wd   (7) 

(y, d) = 0;   (· , ·) – scalar product 
Rows (and columns) of W constitute an orthogonal Haar basis. The components of output 
vector are Haar coefficients. Thus, Haar spectrum analysis using HNN is given by: 

 y =W d   and    d= -W y  (8) 

and formula (8) can be used as an algebraic transformation. The problem of physical 
realizability of HNN can be solved by using HNN-based orthogonal filters. A basic 
structure of such filters is shown in Fig.2. 
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Fig. 2. Structure of an orthogonal filter. 
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It is worth noting that an orthogonal filter performs the following decomposition: 

 d = u +w0 y   (9) 
where: u, y are orthogonal i.e. (u, y) = 0  
Moreover, Eq.(9) sets up the following orthogonal transformation (W2 = -1): 

 
0

0

1
( w )

1 w
= +

+
y W 1 d   (10) 

where: (d, y) ≠ 0 
The output vector y = Θ(x) constitutes the Haar spectrum of input data d. Since, however, 
y = Θ(x) is the output of a nonlinear dynamical system, Eq.(10) is true for bounded input 
only. It means, for example, that for neuron activation functions of sigmoidal type, the 
following conditions have to be fulfilled: 

│Θ(xi)│≤  bi , i = 1, 2, … , 2n 
where: bi – asymptotical value of a sigmoid 
Some orthogonal filter based transformations, given by the following formulae, are useful 
for further consideration: 

 d= (WT+w01) y  (11) 
product of transformations (w0 = 1): 

 
1 1

( ) ( )
4 2

= + ⋅ + =y W 1 W 1 d Wd   (12) 

orthogonalization of outputs for given d: 

  
1

1
( )

2
= +y W 1 d  

T

2

1
( )

2
= +y W 1 d  

hence: 

 T

1 2 1 2
( , ) 0⋅ = =y y y y   (13) 

Note that the transformations given by formulae (10), (11), (12) and (13) can be regarded 
either as algebraic algorithms or as physically implementable HNN-based orthogonal filters. 
Such an implementation is guaranteed by the stabilizing action of negative feedback loops, 
even if the weight matrix W is not exactly skew-symmetric. 

3. Hurwitz-Radon matrices 
As mentioned above, the main issue in HNN-based orthogonal filters is forming the weight 
matrices W – skew symmetric and orthogonal. The most adequate mathematical framework 
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for this task seems to be an algebraic theory of Hurwitz-Radon matrices. Renewed interest 
in this old algebraic theory of Hurwitz-Radon matrices can be recently observed. 
Particularly, a link between this important old matrix problem and refined methods of 
algebraic topology (homology theories) has been established (Eckmann, 1999), (Vakhania, 
1993). The purpose of these considerations is to show how Hurwitz-Radon matrices can be 
used in design of orthogonal filters.  Hence, we provide, below, some basic statements from 
the theory of Hurwitz-Radon matrices. Let us note that a set of real N×N matrices Aj 
fulfilling the following equation (so called Hurwitz matrix equation): 

 2

j j k k j
,   = − + =A 1 A A A A 0   (14) 

for k ≠ j, k = 1, ... , s; 1-unit matrix 
is called Hurwitz-Radon family matrices (HR family). The matrices Aj of family are 

orthogonal, i.e. T -1 T

j j j j
,   = − =A A A A , j = 1, … , s. The maximum possible number s of family 

members for given dimension N is determined by the Radon number ρ(N). It can be found, 
as follows:  
Let N = 2a b, where b is an odd number and a = 4c +d; 0 ≤ d ≤ 4; c ≥ 0. Then the Radon 
number  ρ(N) is given by: 

 ρ(N) = 8 c +2d (15) 
 

and such a family consists of smax(N×N)-matrices, where: 

 smax = ρ(N) – 1  (16) 
 

Generally: ρ(N) ≤ N and for  N = 2, 4, 8 only, ρ(N) = N and smax = N – 1. 
Thus, for example, Hurwitz-Radon family of 8-dim. matrices consists of 7 matrices. The 
following issues in Hurwitz-Radon theory, useful for further consideration, are worth 
noting: 
1. Algebra of complex numbers, quaternions and octonions, is directly related to Hurwitz-

Radon families for N = 2, 4, 8,  respectively. 
2. Maximum number of continuous orthonormal tangent vector fields on sphere 

N-1 NS R∈ is given by  smax = ρ(N) – 1. Moreover, let A1, … , As be a family of Hurwitz-
Radon integer {-1, 0, 1} matrices. Let A0 = 1 and a0, … , as be real numbers with 

s
2
i

i=1

1α =∑ . Then N×N matrix: 

                                                         i

s

i
i=1

( ) a= ∑A a A                                                 (17) 

 
is orthogonal and A(a) can be considered as a map of sphere Ss into orthogonal group 
O(N). 

3. All 8-dim. HR matrices have the following form (smax=7) 
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where: hi ∈ R, i =1, …, 7. 
Similarly for N =16 HR family consists of smax= 8 matrices and all 16-dim. matrices can 
be found according to the following structure: 
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 (19)                          

where: h8 ∈ R. 
For N = 32, ρ(N) = 10 and smax=9. All 32- dim. HR matrices can be found as: 

 16
32 9

16

h= +
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

H 0 0 1
H

0 H -1 0
  (20) 

 

Note that the number of free parameters hi in H8, H16 and H32 is equal smax. For 
dimension N = 2k, k = 6, 7, … all 2k- dim. HR matrices can be similarly found, i.e.   

 
k-1

k

k-1
K

2
2

2

h= +
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

H 0 0 1
H

0 H -1 0
  (21) 

where: hK ∈ R. 
But, then the number of free parameters is smaller than smax = ρ(N) – 1 (K < smax). HR 
matrices of dimension N = 2k are particularly interesting due to their structures-
the connections of 8-dim. blocks can be here recognized. 

4. Taking into account the definition of HNN given by Eq.(2), weight matrices W can be 
implemented by using HR matrices (e.g.

2
kH ). Moreover, adding diagonal matrix h01, 

where dim 1 = 2k, to skew-symmetric matrix 
2

kH , we obtain an implementation of the 

orthogonal transformation from Eq.(10), as follows: 
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1 h
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+
y H 1 d   (22) 

where: h0 > 0. 
It is worth noting that for 8-dim. weight matrix H8, Eq.(22) describes either the 
following orthogonal transformation: 

 
8 02

0

1
( h )

1 h
= +

+
y H 1 d   (23) 

or an equivalently 8-dim. orthogonal filter, as shown in Fig.3.  
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Fig. 3. Structure of 8-dim. orthogonal filter 

This type of orthogonal filter will be further called the octonionic module. Because in 
Eq.(23) we have in disposition eight free design parameters; h0, h1 , … , h7, so this 
equation allows us to formulate and to solve the following inverse problem: for given 
input vector d0 and given output y0 find parameters h0, h1 , … , h7 such that d0 is 
transformed  into y0 (d0 → y0). In other words, we set up a best adapted basis for given 
d0 and y0.  An adequate solution is given by:  
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(24) 

 

Thus, Eq.(24) can be regarded as a design formula for an octonionic module. It is 
interesting to note that a classical perceptron performing a scalar product of input data 
d and memory vector m can be implemented by the octanionic module with best 
adaptive basis (m → y1= [ 1, … ,1]T), as presented in Fig. 4. 
The implementation in Fig. 4 relies on a linear summing of the output flat spectrum of 
the orthogonal filter. 
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Fig. 4. Implementation of perceptron by octonionic module. 

4. RLSC basics 
The problem of learning from examples is about predicting the unknown class of 
observations generated by the underlying physical system. In the last decade the learning 
problems have been formalized by probabilistic setting, giving rise to statistical learning 
theory. As products of  learning theory, some new and effective techniques, like boosting 
and support vector machines have been developed. On the other hand, approximation 
theory, supported by regularization theory, provides a new perspective on learning theory. 
Regularization theory has been introduced as a natural framework for solving ill-posed 
problems of approximation (Evgeniou et al., 2000). The purpose of this section is to provide 
some basic knowledge of Regularization Networks (RN) and, particularly, of RLSC, useful 
for further consideration. We limit ourselves to briefly describing the main ideas in a simple 
way.  
As mentioned above, learning issues can be formulated as a problem of approximating a 

multivariate function from sparse data. Starting with training pairs { }m

i=1
,
i i

x y , where input 

vectors 
i

nX R∈ ⊂x and 
i

Y R∈ ⊂y , one can synthesize a function which represents the 
relation between the input x and y, in the best way. In the language of statistics this means 
that the probability of error f(x) ≠ y should be minimal. According to (Evgeniou et al., 2000) 
the most general framework, unifying several learning techniques can be formulated by 
considering functionals of the form: 

 
2

K

m

i=1

1
H(f ) V(y , f ( )) λ f

m
i i

= +∑ x   (25) 

where:  f : X → Y 
 V(· , ·)- loss function 
 λ - regularization parameter 

 
2
Kf - norm in a Reproducing Kernel Hilbert Space (RKHS) 

 K - kernel (positive definite function) 
The synthesized function f(x) corresponds to the minimum of functional H for different loss 
functions V. Choosing square loss V (L2 loss function): 
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the approximation scheme arises from the minimization of quadratic functional: 
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where:  λ  > 0; 
               H - Reproducing Kernel Hilbert Space (RKHS) defined by symmetric, positive 
               definite function K(x, y)  

               
2

Kf - norm in this RKHS 
Thus, Eq.(27) presents the classical Tikhonow minimization problem formulated and solved 
in his regularization theory. It can be shown that the function that solves Eq.(27), i.e. that 
minimizes the regularized quadratic functional, has the form: 

 
i

i=1
f( ) c K( , )

i

m
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where: c = [ c1, … , cm]T 

and kernels K(x, xi) are symmetric, i.e. K(x, xi) = K(xi, x), positive definite functions 
continuous on X×X. The coefficients ci are such as to minimize the error on the training set, 
i.e. they satisfy the following linear system of the equations: 

 ( )λ+ =K 1 c y   (29) 

where: K is square positive-definite matrix with elements Kij = K(xi, xj,) and y is the vector 
with coordinates yi. The equation (29) is well-posed, hence a numerical stable solution exists: 

 1( )λ −= +c K 1 y   (30) 

and, moreover, the regularization parameter λ  > 0 determines the approximation errors. It 
is worth noting that: 
1. an approximation is stable if small perturbations in the input data xi do not 

substantially change the performance of the approximator. Hence, the regularization 
parameter λ can be regarded as the stability control factor. 

2. a construction of effective kernels is a challenging task. One of the most distinctive 
kernels is the Gaussian: 
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x x   (31) 
leading to RBF networks. 

4. Orthogonal filter-based approximation 
The purpose of our considerations is to show how a function, given at limited number of 
training data xi, can be implemented in the form of composition of HNN based orthogonal 
filters. 
Define f: X→Y by: 
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Fig. 4. Implementation of perceptron by octonionic module. 
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where kernels  K(xi, x) are defined by the following function (induced by the activation 
function of neuron, Eq.(4)): 

 T

i i n
K( , ) ( )= Θx x x H x   (33) 

where:  [ ]T

i 1 n

nx ,…,x , R
i

= ∈x x  is i-th training vector 
               Hn is skew-symmetric matrix 
 Θ( · ) is an odd function 
Hence: 

 T

i n i
0=x H x   (34) 

and 

 T T

i n j j n i
= −x H x x H x   (35) 

Thus, the matrix  

 { } { }
i jijK K( , )= =K x x   (36) 

is skew-symmetric 

Notice that in the case of kernels given by Eq.(33), regulizer  
2

Kf  in Eq.(26) is seminorm i.e.:  

 
i i j j i j i j
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i j i j
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m m m m2

K
i=1 j=1 i=1 j 1

m m

j=1

c K( ,  ), c K( ,  ) c c (K( ,  ),  K( ,  ))

c c (K( ,  ) 0

f
=

= =

= = =

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ ∑ ∑∑

∑∑

x x x x

x x c Kc

i i i i

 (37) 

Despite the property given by Eq.(37), we use the key approximation algorithm as 
formulated by Eq. (29) and (30), i.e. the regularized kernel matrix takes the form: 

 
R

( )γ= +K 1 K   (38) 
where:  γ > 0 
                K –skew-symmetric kernel matrix 
Thus, the key design equation is well-posed: 

 -1 1

R
( )γ −= = +c K y 1 K y   (39) 

It is easy to see that the type of regularization proposed by Eq.(38) means that one changes 
the type of Θ( · ) function, in kernel definition, as follows: 

 
0

( ) ( ) ( ) ( )
r

γ γΘ → Θ + ⋅ = Θi i i i   (40) 
where:  γ > 0 

                γ0 (·) – distribution, e.g. 
0

2 2

0

-p /δ(p) lim e , p R
δ

γ
→

= ∈  
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In other words, the activation function Θ( · ) should be endowed with “a superconducting 
impulse γ” as shown in Fig.5. 
 

a)    b) 
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0             p                                   0             p  

Θr(p) 
   γ     

 regularization 

 
Fig. 5. Regularization by adding γ impuls. 

The mechanism of stabilization by means of Θr( · ) can be easy explained when one 
considers the solution of Eq.(39) in a dynamical manner. Such an orthogonal filter-based 
structure, solving Eq.(39), is shown in Fig.6. 
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Fig. 6. Structure of orthogonal filter for solution of Eq.(39). 

The state-space description of the filter from Fig.(6). is given by: 

 ( ) ( )γ
•

= − + +ς 1 K Θ ς y   (41) 

and the output in steady state as: 

 1( ) ( )γ −= = +c Θ ς 1 K y   (42) 

The stability of approximation in the sense mentioned above can be achieved by damping 
influence of parameter γ. One of the possible architectures implementing approximation 
equation (32) is schematically shown in Fig.7 (Sienko & Zamojski, 2006). 
 

c 
 

Perceptron-
Based Memory 

 

 

Hn 

+

+  

+

 

.

.
.
.

.

.
 
u

 

  c1 

   

  cm 

 
 

p1 

 
 
 

pm 

 
x 

 

x1 

. 

. 

. 
 

xn 

 

x1 

 
 
 

xm 

 

Θ1(⋅) 
 
 
 
 
 
 

Θm(⋅) 

 

u1 

. 

. 

. 
 

un 

 

y=f(x) 

 
 
 
 

 
 

 

 
Fig. 7. Basic structure of function approximator. 
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This structure consists of three basic blocks: 
1. Block Hn , where matrix Hn is randomly skew-symmetric or Hn belongs to Hurwitz-

Radon family, e.g. n 2k=H H  (Eq.(21)). 

2. Perceptron-Based Memory consists of m perceptrons, each designed at points xi of one 
of the m training points, for any m < ∞. Note that activation functions Θi( · ), i =1, …, m 
are odd functions (e.g. sigmoidal) allowing for error approximation at training points xi. 
Modeling a nonsmooth function only, they have to be extended by γ impulses. 

3. Block of parameters ci. Note that an implementation of a mapping y = F(x) needs l such 
blocks, where l = dim y. 
The approximation scheme, illustrated in Fig.7., can be described by: 

 m,n n= ⋅ ⋅p S H x   (43)  

and 

 Tf ( ) ( )= ⋅x Θ p c   (44) 

where:     Hn- (nxn) skew-symmetric matrix 
          Sm,n – (m×n) memory matrix,  Sm,n = [x1, x2, … ,xm]T 
          Θ( p ) = [Θ( p1 ), Θ( p2 ), … ,Θ( pm )]T 

           c = [c1, c2, … , cm]T 
Another orthogonal filter-based structure of function approximator, is shown in Fig.8 
(Sienko & Citko 2007). 
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Fig. 8. Orthogonal Filter-Based structure of an approximator. 

The structure of the approximator shown in Fig.8. relies on using the skew-symmetric 
kernels, as given by: 

 T

i i
K( , ) ( )= Θu v u v  (45) 

where: ui = (W-1) xi 
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 v = - (W+1) x 
 Θ( • ) is an odd function 
Assuming: W2 = -1, WT W = 1 i.e. W- skew-symmetric, orthogonal e.g. k2

=W H Hurwitz-

Radon matrix, Eq.(21). 
Then: ui, v – Haar spectrum of input xi and x, respectively. 
thus, elements of kernel matrix fulfill:  

T T

i j i j i j
K( , ) ( ) (2 )= Θ = Θu v u v x Wx  

and  

 K(ui,vj) = - K(vj, ui)  (46) 

Hence, matrix  

{ } { }i j i jK K( , )= =K u v   is skew-symmetric. 

Note that for the structure from Fig.8., the same key design equation (39) is relevant. 
However, the structure from Fig.8. can be seen as HNN-based dynamically implemented 
system, as well. Moreover, taking into account the implementation presented in Fig.4. one 
can formulate the following statement: 
Statement 1 
Orthogonal filter-based structures of function approximator can be implemented by 
compatible connections of octonionic modules. 
Other important remarks concluding the above described approximation scheme can be 
formulated as follows: 
Statement 2 
Due to the skew-symmetry of kernel matrix, the orthogonal filter based approximation 
scheme can be regarded as a global method. It means that the neighborhood of the training 
point xi is reconstructed by all the other training points. Exceptionally, this global method is 
completed by a pointwise local one, if the activation function of used perceptrons has a form 
Θr( · ) (Fig.5.). 
Statement 3 
Orthogonal filter-based approximation scheme can be easy reformulated as a local 
technique. Indeed, taking into considerations the kernel defined by Eq.(33), where activation 
function is an even function e.g. Gaussian function:  

 

2

2
p- 
σ1

(p) e
2 σπ

Θ =   (47) 

where: p R∈  
then the kernel matrix 

 { } { } { }T
ij i j i n js K K( , ) ( )= = = ΘK x x x H x   (48) 

is a symmetric, positive matrix. 
For Θ(p)   given by Eq.(47)  matrix { }i jK fulfils: 
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Kii > 0   for all i, 
Kii > Kij for i ≠ j 
and there is such a  σ  > 0   that   det Ks > 0. 
Thus, matrix Ks  is positive definite.  
Hence, it is clear that the key design equation is well-posed: 

 -1
s=c K y   (49) 

and the local properties of this approximation scheme can be controlled by parameter σ. It 
should be however noted that positive definiteness is not necessary for det Ks > 0 and for 
existing an inverse Ks-1. To summarize this section, let us note that by choosing a different 
type of activation functions, one generates a family of functions or mappings fulfilling: 

qi iF ( )=y x , i = 1, … , m; q = 1, 2, … 

To minimize the approximation errors, one should select a function or mapping which, in 
terms of learning, optimally transforms a neighborhood  S(xi) of xi onto yi. 

5. Modeling classifiers and associative memories 
As mentioned in the previous section, an approximation of a mapping can be obtained as an 
extended structure of a multivariate function approximation. Hence, for the sake of 
generalization, we below use a notation of mapping  approximation. 

Define mapping F: X → Y 
where  X, Y are input and output training vector spaces, respectively. The   values of 

mapping are known at training points{ }
i j

m

i=1
,x y where, dim xi = n and dim yi= l: 

Thus: 

 
i i

F( )=y x   i = 1, … , m  (50) 

where: X, Y
i i
∈ ∈x y  

Classification  issues can be seen as a special problem in mapping approximations. If output 
vectors y of mapping  F ( · ) take values from an unordered finite set, then F ( · ) performs the 
function of a classifier. In a two-class classification, one class is labeled by y = 1 and the 
other class by y = -1. The general functionality of classifiers can be then determined by the 
following equation: 

 i iF( ) =x y , i = 1, …, m  (51)  

where: 
i

x denotes a neighborhood of “center” xi 
  yi – class label  
The determination of neighborhoods ix  depends on the application of a classifier, but 
generally, to minimize the erroneous classifications, ix have to be densely covered by 
spheres belonging to ix , i = 1, … , m. Thus, the problem of classifier design can be 
formulated as follows: 

Hamiltonian Neural Networks  Based Networks for Learning 

 

89 

1. generate a family of mappings Fq( · ), q =1, 2, … fulfilling: 

 
i i

qF

X Y,     F( )→ =x y�   (52) 
where X, Y are input and output training vector spaces, respectively.  
Members of this family are created by choosing different type of kernels (antisymmetric 
or symmetric) and different values of regularization parameters γ or σ 

2. select the mapping that transforms input points onto output vectors in an optimal way 
(minimizing  approximation errors): 

optF

( X) ( Y)∈ → ∈x y  

The problem of optimal mapping selection has been recently formulated in the 
framework of statistical operators on family (52) (e.g. bagging and boosting techniques). 
We propose here to consider an optimal solution as a superposition of global and local 
schemes. In the simplest case, we have the following equation: 

 
opt G L

F ( ) (1 )F ( ) αF ( )α= − +i i i   (53) 
where: weight parameter α; 0 ≤ α ≤ 1. 
and   

G
F ( )i - a global model of mapping obtained by using antisymmetric kernels Eq.(33) and 
Eq.(45)  

L
F ( )i - a local model of mapping obtained by using symmetric kernels, Eq.(48). 
The relation (53) is motivated by the general properties of dynamical systems: a vector 
field F( · ) underlying a physical law, object or process generally consists of two 
components-global and local (recombination and selection in biological systems, 
respectively). 

To illustrate the considerations above, let us consider the following example: 
Example1 
Let us design a classification of 8-dim. vector input space X, where x = [x1, x2, … ,x8]T,    
xk ∈ [ -1 , 1], k = 1, … , 8. into 25 classes centered in randomly chosen points: xi, i =1, … , 32. 
This classification has to be error free, with probability 1, for solid spheres x∈ Sρ(xi), where 
ρ(radius) = 0.2. It has been experimentally found (i.e. by simulation) that covering randomly 
every sphere  Sρ(xi) with 10 balls, such a classifier design can be reformulated as the 
following mapping approximation (n = 8, m = 320-number of inputs points): 

ij iF( ) =x y , i = 1, … , 32; j =  1, … , 10 

where: yi = [±1, ±1, ±1 , ±1, ±1]T       (binary label of classes) 
The set of input points is given by: 
 

{ }ij ρ iS ( )∈x x , i = 1, … , 32, j = 1, … , 10 

where: ρ = 0.2 
To implement the above defined mapping F(xij), let us choose the antisymmetric kernels 
Eq.(33), where: 
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Kii > 0   for all i, 
Kii > Kij for i ≠ j 
and there is such a  σ  > 0   that   det Ks > 0. 
Thus, matrix Ks  is positive definite.  
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 -1
s=c K y   (49) 
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where  X, Y are input and output training vector spaces, respectively. The   values of 

mapping are known at training points{ }
i j

m

i=1
,x y where, dim xi = n and dim yi= l: 
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i i

F( )=y x   i = 1, … , m  (50) 

where: X, Y
i i
∈ ∈x y  
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i
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1. generate a family of mappings Fq( · ), q =1, 2, … fulfilling: 

 
i i

qF

X Y,     F( )→ =x y�   (52) 
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opt G L
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Some simulation experiments showed that the mapping  F(xij) fulfils formulated constraints 
on classification for the case: min d(xi, xj) ≥ 0.7 (distance between sphere centers) and under 
condition that regularization parameters γ   ≥ 0.75 (Eq.(38)).  
Equation (51) can be seen as a definition of associative memory as well, under the 
assumption that dim xi = dim yi, where xi is a memorized pattern. For yi ≡ xi, one gets a 
feedforward structure of an autoassociative memory, i.e.: 

 
i i

F( ) =x x , i = 1, …, m  (54) 

Hence, the problem of a nonlinear mapping-based design of the associative memory can be 
regarded as a covering problem of input space X by spheres Sρ(xi). 
Moreover, Eq.(54) determines an identity map i.e. : 

 
i i

F( ) =x x , i = 1, …, m  (55) 
and F( · ) is an expansion.  
Hence, the mapping F( · ) possesses at least one fixed point, i.e. : 

 F( ) =e e   (56) 
where: e- a fixed point of F( · ) 
Specifically, let us construct the family of identity maps for orthogonal vectors hi , i =1, …, 8, 
constituting eight columns of matrix H8 in Eq.(18), i.e.: 

 F ( )
q i i

=h h , i = 1, … , m; q = 1, 2, …  (57) 
using antisymmetric kernels Eq.(33), hi ∈ R8.  
It can be shown that in family (57) there are mappings Fq( · ) with the number of fixed points 
ne ≤ 256 (e.g. ne =144), giving rise to a feedback structure of associative memories. Indeed, let 
us embed such a Fq( · ) into a dynamical system, as shown in Fig. 9. 
The state-space equation of structure from Fig.9. is given by: 

 
q

β F ( )
•

= − +ς ς ς   (58) 
where: ς - 8-dim. state vector, 0 < β ≤1. 
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Fig. 9. Dynamical structure of an attractor type associative memory. 
Thus, one obtains a feedback type structure of an associative memory with e.g. over 144 
asymptotic stable equilibria, but generally with different diameters of attraction basins. 
Unfortunately the set {ek}of fixed points of a map F( · ), can not be found analitically but 
rather by a method of asymptotic sequences. This can be done relatively simply for 8-dim. 
identity map presented by Eq.(57) and (58). Thus, due to the exceptional topological 
properties of a 8-dim vector space, very large scale associative memories could be 
implemented by a compatible connection of the 8-dim. blocks from Fig.9. An example of 
such a connection is presented in Fig.10, where two 8-dim. blocks from Fig.9., weakly 
coupled by parameters εi > 0, create a space with a set of equilibria given by: 

{ } { } { }
k

(1) (2)
c j= ×e e e where: k =1, 2, …, 144, …; j = 1, 2, … , 144 ...  

Finally, it is worth noting that the structure from Fig.10 can be scaled up to  very large scale 
memory (by combinatorial diversity), due to its stabilizing type of connections (parameters 
εi ). More detailed analysis of the above presented feedback structures is beyond the scope of 
this chapter. 
To summarize, this section points out the main features of orthogonal filter-based mapping 
approximators: 
1. Due to regularization and stability, orthogonal filter-based classifiers can be 

implemented for any even n (dimension of input vector space) and any  m < ∞ (number 
of training vectors). Particularly for n = 2k , k ≥ 3 such classifiers can be realized by 
using octonionic modules. 

2. As mentioned above, the problem of a nonlinear mapping-based design of classifiers 
and associative memories can be regarded as a covering problem of input space X by 
spheres with centers xi . The radius of the spheres needed to cover X depends on the 
topology of X and can be changed by a suitably chosen nonlinearity of function Θ( · ). 
Using, for example, a sigmoidal function for the implementation of Θ( · )., this radius 
depends on the slope of  Θ( · ) at zero. Hence, note that antisymmetric kernels allow us 
to classify very closely placed input patterns in terms of   Θ( · )→ sgn( · ). 

6. Conclusions 
The main issue considered in this chapter is the deterministic learning of mappings. The 
learning method analysed here relies on multivariate function approximations using mainly 
skew-symmetric kernels, thus giving rise to very large scale classifiers and associative 
memories. By using HNN-based orthogonal filters, one obtains regularized and stable 
structures of networks for learning. Hence, classifiers and memories can be implemented for 
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Thus, one obtains a feedback type structure of an associative memory with e.g. over 144 
asymptotic stable equilibria, but generally with different diameters of attraction basins. 
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identity map presented by Eq.(57) and (58). Thus, due to the exceptional topological 
properties of a 8-dim vector space, very large scale associative memories could be 
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such a connection is presented in Fig.10, where two 8-dim. blocks from Fig.9., weakly 
coupled by parameters εi > 0, create a space with a set of equilibria given by: 
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Finally, it is worth noting that the structure from Fig.10 can be scaled up to  very large scale 
memory (by combinatorial diversity), due to its stabilizing type of connections (parameters 
εi ). More detailed analysis of the above presented feedback structures is beyond the scope of 
this chapter. 
To summarize, this section points out the main features of orthogonal filter-based mapping 
approximators: 
1. Due to regularization and stability, orthogonal filter-based classifiers can be 

implemented for any even n (dimension of input vector space) and any  m < ∞ (number 
of training vectors). Particularly for n = 2k , k ≥ 3 such classifiers can be realized by 
using octonionic modules. 

2. As mentioned above, the problem of a nonlinear mapping-based design of classifiers 
and associative memories can be regarded as a covering problem of input space X by 
spheres with centers xi . The radius of the spheres needed to cover X depends on the 
topology of X and can be changed by a suitably chosen nonlinearity of function Θ( · ). 
Using, for example, a sigmoidal function for the implementation of Θ( · )., this radius 
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memories. By using HNN-based orthogonal filters, one obtains regularized and stable 
structures of networks for learning. Hence, classifiers and memories can be implemented for 
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Fig. 10. Very Large Scale Structure of associative memory. 

any even n (dimension of input vectors) and any m < ∝ (number of training patterns). 
Moreover, they can be regarded as numerically well-posed algorithms or physically 
implementable devices able to perform their functions in real-time. We believe that 
orthogonal filter-based data processing can be considered as motivated by structures 
encountered in biological systems. 
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1. Introduction 
This chapter details similarity discriminant analysis (SDA), a new framework for similarity-
based classification. The two defining characteristics of the SDA classifica- tion framework 
are similarity-based and generative. The classifiers in this framework are similarity-based, 
because they classify based on the pairwise similarities of data samples, and they are 
generative, because they build class-dependent probability models of the similarities 
between samples. Similarity-based classifiers already exist; classifiers based on generative 
models already exist. SDA is a new framework for classification comprising classifiers that 
are both similarity-based and generative. 
Within the general SDA framework, this chapter describes several families of classifiers: the 
SDA classifier, the local SDA classifier, and the mixture SDA classifier. The SDA classifier is at 
the foundation of SDA. It classifies based on the class-conditional generative models of the 
similarity of the samples to representative class prototypes, or centroids. The SDA 
framework is introduced, developed, and discussed with the aid of this centroid-based SDA 
classifier. Then, the centroid-based SDA classifier is generalized beyond class centroids to 
arbitrary class-descriptive statistics. Other possible statistics are described, illustrating the 
power and generality of the SDA framework. 
The local SDA classifier is a local version of the SDA classifier. It builds similarity-based 
class-conditional generative models within a neighborhood of a test sample to be classified. 
The local class models are endowed with low bias and retain the powerful quality of 
interpretability associated with generative probability models. Local SDA is a consistent 
classifier, in the sense that its error rate converges to the Bayes error rate, which is the best 
possible error rate attainable by a classifier. 
The mixture SDA classifier draws from the well-established metric learning mixture model 
research. It generalizes the single-centroid SDA classifier to a mixture of single-centroid 
SDA components. The mixture SDA classifier can be trained with an expectation-
maximization (EM) algorithm which parallels the standard EM approach for the well-
known Gaussian mixture models. 
The problem of classifying samples based only on their pairwise similarities may be divided 
into two sub-problems: measuring the similarity between samples and classifying the 
samples based on their pairwise similarities. It is beyond the scope of this chapter to discuss 
exhaustively and in detail various ways to measure similarity and various similarity-based 
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1. Introduction 
This chapter details similarity discriminant analysis (SDA), a new framework for similarity-
based classification. The two defining characteristics of the SDA classifica- tion framework 
are similarity-based and generative. The classifiers in this framework are similarity-based, 
because they classify based on the pairwise similarities of data samples, and they are 
generative, because they build class-dependent probability models of the similarities 
between samples. Similarity-based classifiers already exist; classifiers based on generative 
models already exist. SDA is a new framework for classification comprising classifiers that 
are both similarity-based and generative. 
Within the general SDA framework, this chapter describes several families of classifiers: the 
SDA classifier, the local SDA classifier, and the mixture SDA classifier. The SDA classifier is at 
the foundation of SDA. It classifies based on the class-conditional generative models of the 
similarity of the samples to representative class prototypes, or centroids. The SDA 
framework is introduced, developed, and discussed with the aid of this centroid-based SDA 
classifier. Then, the centroid-based SDA classifier is generalized beyond class centroids to 
arbitrary class-descriptive statistics. Other possible statistics are described, illustrating the 
power and generality of the SDA framework. 
The local SDA classifier is a local version of the SDA classifier. It builds similarity-based 
class-conditional generative models within a neighborhood of a test sample to be classified. 
The local class models are endowed with low bias and retain the powerful quality of 
interpretability associated with generative probability models. Local SDA is a consistent 
classifier, in the sense that its error rate converges to the Bayes error rate, which is the best 
possible error rate attainable by a classifier. 
The mixture SDA classifier draws from the well-established metric learning mixture model 
research. It generalizes the single-centroid SDA classifier to a mixture of single-centroid 
SDA components. The mixture SDA classifier can be trained with an expectation-
maximization (EM) algorithm which parallels the standard EM approach for the well-
known Gaussian mixture models. 
The problem of classifying samples based only on their pairwise similarities may be divided 
into two sub-problems: measuring the similarity between samples and classifying the 
samples based on their pairwise similarities. It is beyond the scope of this chapter to discuss 
exhaustively and in detail various ways to measure similarity and various similarity-based 
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classifiers. The reader is referred to the references for more details; here, only a brief 
summary of relevant techniques is provided 

1.1 Measuring similarity 
Judging similarity between samples characterized by many disparate data types poses 
challenges of data representation and quantitative comparison. For example, modern 
databases store information from disparate data sources in different formats: multimedia 
databases store audio, video and text data; proteomics databases store information on 
proteins, genetic sequences, and related annotations; internet traffic databases store mouse 
click histories, user profiles, and marketing rules; homeland security databases may store 
data on individuals and organizations, annotations from intelligence reports, and maritime 
shipping records. These database objects, or samples, are described by both numerical and 
non-numerical data. For example, a security database might store cell phone records in 
textual form and voice parameters for speaker recognition in numerical form. Representing 
all these different data types with continuous-valued numbers in a geometric feature space 
is not appropriate. Thus, current metric space classifiers which rely on metric similarity 
functions may not be applicable. 
Furthermore, in some applications, only the pairwise similarities may be observed, and the 
underlying features may be inaccessible. For example, one of the datasets discussed in this 
chapter consists of human-judged similarities between pairs of sonar echoes. For this 
dataset, the putative perceptual features from which the human similarity ratings are 
generated are unknown - indeed eliciting the features remains an ongoing research problem 
(Philips et al., 2006) - but the similarity ratings are nonetheless successfully used for 
classification. In many applications, the similarity relationship between samples may lack 
the metric properties usually associated with distance (minimality, symmetry, triangle 
inequality); thus, using a metric function to express the pairwise similarities is suboptimal. 
Similarities are more general than distances and require more general functions than metrics 
(Tversky, 1977). Several researchers have addressed the problem of measuring similarity by 
rpoposing several simialrity measures. Psychologists, leacd by Tversky, have proposed 
models of similarity that take into account context and the non-metric way in which humans 
judge the similarity between complex objects (Tversky, 1977; Tversky & Gati, 1978; Gati & 
Tversky, 1984; Sattath & Tversky, 1987). The value difference metric (VDM) was originally 
designed with the goal of improving nearest-neighbor classification (Stanfill & Waltz, 1986) 
of text documents, and subsequent improvements extended it to classification of objects 
characterized by both textual and numerical features (Wilson & Martinez, 1997; Cost & 
Salzberg, 1993). Lin proposed an information-theoretic similarity (Lin, 1998) for document 
retrieval; (Cazzanti & Gupta, 2006) proposed the residual entropy similarity measure by 
extending Tversky's psychological similarity models with information-theoretic notions, and 
showed that it strongly takes into account the context in which the similarity is being 
evaluated. More comprehensive reviews of similarity measures appear in (Santini & Jain, 
1999) and (Everitt & Rabe-Hesketh, 1997). 

1.2 Similarity-based classifiers 
Similarity-based classifiers are defined as those classifiers that require only a pairwise 
similarity - a description of the samples themselves is not needed. Similarity-based 
classifiers classify test samples given a labeled set of training samples, the pairwise 
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similarity values of the training samples, and the similarity of the test sample to the training 
samples. If the description of the samples in terms of feature vectors is available, an existing 
or ad hoc similarity function that maps any two samples to a similarity value may be used 
(Bicego et al., 2006; Pekalska et al., 2001; Jacobs et al., 2000; Hochreiter & Obermayer, 2006). 
Among the existing similarity-based classifiers, the simplest method is the nearest neighbor 
classifier, which determines the most similar training sample z to the test sample x, and 
classifies x as z’s class: 

 
(1) 

where h is the set of training samples from class h. More generally, the k-nearest neighbor 
classifier (k-NN) determines a neighborhood of k most similar training samples to the test 
sample x, and classifies x as the most-frequently occurring class label among the neighbors. 
Experiments have shown that nearest neighbors can perform well on practical similarity-
based classification tasks (Cost & Salzberg, 1993; Pekalska et al., 2001; Simard et al., 1993; 
Belongie et al., 2002). For example, nearest neighbor classifiers using a tangent distortion 
metric and a shape similarity metric have both been shown to achieve very low error on the 
MNIST character recognition task. 
Condensed near-neighbor strategies replace the set of training samples for each class with a 
set of prototypes for that class. Usually the prototype set is an edited set of the original 
training samples (also called edited nearest neighbors), but the prototypes do not need to be 
from the original training set. Let ch be the number of the prototypes {µhl} for class h; then, 
the condensed nearest neighbor rule is to classify a test sample x as the class of the 
prototype to which it is most similar, 

 
(2) 

Many authors have considered strategies for condensing near-neighbors for similarity-based 
classification to increase classification speed, decrease the required memory, remove 
outliers, and possibly attain better performance (Weinshall et al., 1999; Jacobs et al., 2000; 
Lam et al., 2002; Pekalska et al., 2006; Lozano et al., 2006). A well-known strategy for 
condensing nearest neighbors in non-metric spaces is the k-medoids algorithm (Hastie et al., 
2001). Given a set of ch candidate prototypes selected from h, the remaining training 
samples z ∈ h are assigned to their nearest (most similar) prototype, so that the set h of all 
training samples from class h is partitioned in ch mutually-exclusive subsets { hl}, and each 

hl is uniquely associated with candidate prototype µhl. Then, the lth prototype for the hth 
class is updated according to the standard maximum similarity update rule, which selects 
the new µhl as the training sample in hl which is most similar to all other samples in hl, 

 
(3) 

The training samples are then reassigned to the updated prototypes, and the update rule (3) 
is repeated. The reassignment and update steps are repeated until a predetermined 
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classifiers. The reader is referred to the references for more details; here, only a brief 
summary of relevant techniques is provided 
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maximum number of iterations is reached or until the updated prototypes  = µhl for all h 
and l. The number of prototypes in each class ch is determined by cross-validation; the initial 
prototypes {µhl} are selected randomly from the training set. 
An extreme form of condensed near-neighbors is to replace each class's training samples by 
one prototypical sample, often called a centroid. The resulting nearest centroid classifier can 
be considered a simple parametric model (Weinshall et al., 1999), though it lacks a 
probabilistic structure. Let s(x, z) be the similarity between a sample x and a sample z, and 
let there be a finite set of classes 1, 2, ... ,G. The nearest centroid approach classifies x as the 
class 

 
(4) 

where µh is the representative centroid for the class h. A standard definition for the centroid 
of a set of training samples is the training sample that has the maximum total similarity to 
all the training samples of the same class (Weinshall et al., 1999; Jacobs et al., 2000): 

 
(5) 

A variation of the nearest centroid classifier is the local nearest centroid classifier, which is 
an analog to the local nearest means classifier proposed by Mitani and Hamamoto (Mitani & 
Hamamoto, 2006, 2000). In this variant, the class centroids (5) are computed from a local 
neighborhood of each test point x; they are not computed from the entire training set. The 
neighborhood may be defined in many ways. The most common definition is the k-nearest 
neighbors. In this case, local nearest centroid is like the k-NN classifier, except that it 
classifies x as the class of its nearest centroid where the centroids are computed from the k-
nearest neighbors of x. 
The nearest centroid classifier is analogous to the nearest-mean classifier in Euclidean space, 
which is the optimal Euclidean-based classifier if one assumes that the class-conditional 
distributions are Gaussian, the class priors are equal, and that each class covariance is the 
identity matrix (Duda et al., 2001; Hastie et al., 2001). 

2. Similarity discriminant analysis 
In standard metric learning, quadratic discriminant analysis (QDA) is a generative classifier 
that generalizes the nearest-mean classifier by modeling each class-conditional distribution 
as a Gaussian (Duda et al., 2001). Analogously, SDA is a generative similarity-based 
classifier that generalizes the nearest-centroid classifier (Weinshall et al., 1999) by modeling 
each class-conditional distribution with a parametric probability model (Cazzanti et al.; 
Gupta et al., 2007). The SDA class-conditional probability models have exponential form, 
because they are derived as the maximum entropy distributions subject to constraints on the 
mean similarities of the data to the class centroids. As with other parametric approaches to 
classification, the resulting log-linear SDA classifier is powerful when it effectively models 
the true generating distribution. This section introduces SDA and shows how it classifies; 
then, it extends SDA from using class centroids to using arbitrary descriptive statistics to 
discriminate between the classes, including continuous-valued statistics. 
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2.1 A generative centroid-based classifier 
Assume a class centroid µh has been determined for the hth class, where h = 1, ..., G. A 
problem with the nearest centroid classifier given in (4) is that it does not take into account 
the variability of the similarities to the centroid within a class. To take into account this 
variability, first consider a simple generalization of nearest centroid, here called the adjusted 
nearest centroid classifier : classify a test sample x as class ŷ  where 

 
(6) 

and where s hh is the average similarity of class h samples to the class h centroid, 

 
where nh = │ h│. The adjusted nearest centroid classifier is analogous to the one-
dimensional Gaussian rule of classifying based on the the variance-weighted distances to 
the class means, ║x- μ h║/σ h, where x, μ h, σ h ∈ R. The adjusted nearest centroid 
classifier is more flexible than the nearest centroid classifier, but lacks a probabilistic 
structure, and takes into account only the similarity of a sample to one class centroid. 
Thus, a generative centroid-based classifier that models the probability distribution of the 
test sample similarity statistics s(x, µh) for each h is proposed. Begin with the Bayes classifier 
(Hastie et al., 2001), which assigns a test sample x the class ŷ  that minimizes the expected 
misclassification cost, 

 
(7) 

where C(f, ) is the cost of classifying the test sample x as class f if the true class is  and 
P( │x) is the probability that sample x belongs in class . In practice the distribution 
P( │x) is generally unknown, and thus the Bayes classifier of (7) is an unattainable ideal. 
Assume that all test and training samples come from some abstract space of samples , 
which might be an ill-defined space, such as  is the set of all amino acids, or  is the set of 
all terrorist events, or  is the set of all women who gave birth to twins. Let x, µh, z ∈ , and 
let the similarity function be some function s : ×  →Ω, where Ω ⊂ R. If the set of possible 
samples  is finite, then the space of the pairwise similarities Ω will also be finite, and hence 
discrete. For simplicity, in this section assume that Ω is a finite discrete space. Continuous 
and possibly infinite spaces B, Ω are briefly discussed in Section 2.2.3. 
Consider a random test sample X with random class label Y, where x will denote a 
realization of X. Assume that the relevant information about X’s class label is captured by 
the set (X) of G descriptive statistics 
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maximum number of iterations is reached or until the updated prototypes  = µhl for all h 
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That is, the relevant information about x is captured by its similarity to each class centroid. 
Under this assumption, given a particular test sample x, the classification rule (7) becomes: 
classify x as class ŷ  that solves 
 

 
Using Bayes rule, this is equivalent to the problem 

 
(8) 

Note that P( (x)│Y = ) is the probability of seeing a particular set of similarities between 
the test sample x and the G class centroids {µ1, µ2, ...,  µG} given that x is a class  sample. 
Next, assume that each unknown class-conditional distribution P( (x)│Y = ) has the same 
average value as the training sample data from class g. That is, given a random test sample 
X there will be a random similarity s(X, µh); constrain the class-conditional distribution  
P( (x)│Y = ) such that 

 
(9) 

holds for each  and h where ng is the number of training samples of class . Each constraint 
requires that the class-conditional expectation of one of the elements of (X) is equal to the 
maximum likelihood estimate of that element given the training data. This makes for G 
constraints for each class-conditional distribution, for a total of G×G constraints because 
there are G class-conditional distributions. Given these constraints, there is some compact 
and convex feasible set of class-conditional distributions. A feasible solution will always 
exist because the constraints are based on the data. 
As prescribed by Jaynes' principle of maximum entropy (Jaynes, 1982), a unique class-
conditional joint distribution is selected by choosing the maximum entropy solution that 
satisfies (9). Maximum entropy distributions have the maximum possible uncertainty, such 
that they are as uniform as possible while still satisfying given constraints. Given a set of 
moment constraints, the maximum entropy solution is known to have exponential form 
(Cover & Thomas, 1991). For example, in standard metric learning, the Gaussian class-
conditional distribution model used in LDA and QDA is the maximum entropy distribution 
given a specific mean vector and covariance matrix (Cover & Thomas, 1991). 
The maximum entropy distribution that satisfies the moment constraints specified in (9) is 

 
(10)

where {γg, λg1, λg2, ... , λgG} are a unique set that ensures that the constraints (9) are satisfied 
and that P̂ ( (x)│Y = ) is non-negative and normalized. Rewrite equation (10) as 
 

 
(11)
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where . Let 
 

 
then (11) can be written 

 
That is, under the maximum entropy assumption, the joint distribution on (x) is the 
product of the marginal distributions on each similarity statistic comprising the set (X). 
Thus, the similarity statistics are conditionally independent given the class label under this 
model. Although one does not expect this conditional independence to be strictly valid, the 
hypothesis is that it will be an effective model, just as the naive Bayes' model that features 
are independent is optimistic but useful. 
Substituting the maximum entropy solution (10) into (8) yields the classification rule: 
classify x as the class ŷ  which solves 

 
(12)

To solve for the parameters {λgh, γgh}, one solves the G constraints individually for λgh. Then 
given {λgh}, the {γgh} are trivially found using the normalization constraint. Solving for λgh is 
straightforward; for example, one uses the Nelder-Mead optimizer built into Matlab 
(version 15) in the fminsearch()function (Mat). This is the method used throughout this 
work. As an alternative, one may find the probability mass function with maximum 
entropy, subject to the constraints, without a priori knowledge that the solution is 
exponential. 
The classifier given in (12) is termed the similarity discriminant analysis (SDA). 

2.2 General generative models for similarity-based classification 
The previous section introduced SDA for the case when the descriptive statistics are the 
similarities of the samples to the class centroids. This section generalizes SDA to arbitrary 
descriptive statistics (x) which can be used to discriminate different classes and describes 
the resulting general generative model for classifying with arbitrary statistics. 

2.2.1 Descriptive statistics 
Several possibilities for the descriptive statistics (x) are described below.  
• Centroid Definitions - A standard centroid definition was given in (5). Another choice is 

to allow a class prototype that is not constrained to be a training sample, 

 
(13)

In this case the solution  requires a description of the entire space of possible samples 
. In practice, one may not know the entire sample space , only the training samples 
, so it may not be possible to calculate . 
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A third definition of a class prototype is based on Tversky's analysis of similarity-based 
near-neighbor relationships (Tversky & Hutchinson, 1986; Schwartz & Tversky, 1980), 
and takes into account the similarity-based ranks of a training sample's near-neighbors. 
Define the neighborhood (z) ⊆  of a sample z as the set of training samples whose 
nearest neighbor in similarity space is z. The popularity of z is the size of its 
neighborhood │ (z)│. The class centroid is the sample with the highest popularity, 
that is, 

 
(14)

This centroid is the training sample that is most often the closest neighbor of the 
training samples in the class. Ties in popularity are broken by selecting the sample with 
the highest total similarity to its neighbors. 

• Higher Order and Non-Centroidal Descriptive Statistics - Given a set of class centroids 
{µh}, higher-order statistics could be used as, or added to, the set of descriptive statistics 

(X), such as (s(X, µh) - E[s(X, µh)])2, or cross-class statistics, such as (s(X, µh) - E[s(X, 
µg)])2. Or, instead of the centroid-based statistics fs(X, µh)g, it might be more appropriate 
to use the nonparametric statistics formed by the total pairwise similarity for each class 
h, such that the hth descriptive statistic in test set (X) is s(X, z). 

• Nearest Neighbor Similarity - A descriptive statistic that is not centroid-based is the nearest 
neighbor similarity: a test sample's similarity to its most similar training sample. Given a 
sample x and the training samples z ∈ , the nearest neighbor similarity is defined 

 (15)

The SDA classifier based on nearest neighbor similarity, denoted by nnSDA, may be 
viewed as a generalization of the similarity-based nearest neighbor classifier (1-NN) 
defined in 1. That classifier labels x with the same class label as its nearest neighbor 
without making use of any information about its similarity to such nearest neighbor. 
The nnSDA classifier, on the other hand, classifies x as the class of its nearest neighbor 
based on a probabilistic model of snn(x). The probability model is computed with the 
mean-constrained maximum entropy approach of Section 2.1, which results in 
exponential solutions. In this case, the constraint is that the mean of the distribution 
must be the same as the empirical average of the observed nearest neighbor similarities. 
Denote by snn,h(X) the random similarity of a random test sample X to its nearest 
neighbor in class h. For nnSDA, the constraint is written as 

 
(16)

and the classification rule becomes to classify as the class ŷ  that solves 

 

(17)
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where the parameters λgh and γgh are computed with the same numerical optimization 
method used for SDA. 

As further discussed in the next section, the SDA framework accommodates any desired set 
of descriptive statistics (x): different similarity functions could be mixed, dissimilarities 
and similarities can be mixed, and so on. 

2.2.2 Generative classifier from arbitrary descriptive statistics 
Given an arbitrary set of M descriptive statistics (x), the same reasoning of Section 2.1 
produces a generative similarity-based classifier. First, the assumption is that (x) is 
sufficient information to classify x leads to the classification rule given in (8). Second, for the 
mth descriptive statistic Tm(x) ∈ (x), m = 1, ..., M, one assumes that its mean with respect to 
the class conditional distribution of (x) is equal to the training sample mean: 

 
(18)

Third, given the M×G constraints specified by (18), one estimates the class-conditional 
distribution to be the maximum entropy distribution, 

 

(19)

Substituting the maximum entropy solution (19) into (8) yields the SDA classification rule: 
classify x as the class ŷ  which solves 

 
(20)

The parameters {λgm, γgm} are calculated as in the centroid-based SDA case described in 
Section 2.1. 

2.2.3 Continuous-valued statistics 
The generative classification models presented in this chapter can be extended to the case in 
which the statistics (x) are from a continuous set Ω. This will be the case, for example, 
when using an overlap similarity (e.g. max{x[i], z[i]}) with real-valued features, or when the 
similarity between X and z is the Euclidean distance. Then, the expectation in (18) is a 
normalized integral over the continuous set of possible similarity values. Let a and b denote 
the minimum and maximum possible similarity values (and hence the lower and upper 
bound on the expectation's integral). Then simplifying (18) yields the relationship 
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A third definition of a class prototype is based on Tversky's analysis of similarity-based 
near-neighbor relationships (Tversky & Hutchinson, 1986; Schwartz & Tversky, 1980), 
and takes into account the similarity-based ranks of a training sample's near-neighbors. 
Define the neighborhood (z) ⊆  of a sample z as the set of training samples whose 
nearest neighbor in similarity space is z. The popularity of z is the size of its 
neighborhood │ (z)│. The class centroid is the sample with the highest popularity, 
that is, 

 
(14)
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where . The solution to (21) can be computed numerically. For  the 

special case a = 0 and b = ∞, the solution is  

3. Local SDA 
This chapter introduces local SDA (Cazzanti & Gupta, 2007), a similarity-based classifier that 
is both generative and local. An advantage of generative classifiers is their interpretability: 
classes are modeled by conditional probability distributions which are assumed to have 
generated the observed data. An advantage of local classifiers it that they reduce the 
estimation bias problem which affects generative classifiers. Local SDA combines the 
qualities of both generative and local classifiers. 
For the SDA classifier, the class-conditional generative distributions are exponentials that 
model the similarities between samples - or more generally the descriptive statistics of the 
sample. The exponentials are the maximum entropy distributions subject to constraints on 
the mean values of the similarities. However, when the underlying distributions are 
complex, a particular set of empirical statistics may fail to capture the necessary information 
about a sample’s class membership. In fact, in SDA, constraining the means of the class-
conditional distributions may result in too much model bias, just as the QDA model of one 
Gaussian per class causes model bias (Hastie et al., 2001). In standard metric learning, one 
way to address the bias problem while retaining the advantages of a generative approach is 
to form more flexible Gaussian mixture models. In similarity-based learning, mixture 
models may also be formed; this approach is discussed in Section 4. 
Here, the bias in SDA is addressed by using local classifiers in similarity space. In metric 
learning, one way to avoid the bias problem is to use local classifiers, e.g. k-NN, which 
classify test samples based on the class labels of their nearest neighbors. Local classifiers do 
not estimate probabilistic models for the sample classes and consequently lack the 
interpretability of generative models. Even so, they provide an intuitive framework for 
classification through the concepts of nearest-neighbor and neighborhood. In this chapter, 
SDA is applied to a local neighborhood about the test sample. The resulting local SDA 
classifier trades-off model bias and estimation variance depending on the neighborhood 
size, while retaining the power of a generative classifier. To the author's knowledge, local 
SDA is the first example of a classifier that is both generative and local. The only arguable 
contender is the local nearest- mean classifier (Mitani & Hamamoto, 2000, 2006) for metric 
learning; however that classifier was not proposed as a generative model. 
Local SDA is a straightforward variation of SDA. The local SDA classifier model is that all of 
the relevant information about classifying a test sample x depends only on the k nearest 
(most similar) training samples to x. Thus, the local SDA classifier computes the descriptive 
statistics from a neighborhood of a test sample. More specifically, local SDA is a log-linear 
generative classifier that models the probability distribution of the similarity s(x, µh) 
between the test sample x and the class centroids {µh}, just like SDA. Unlike SDA, the class 
centroids, the class-conditional similarity probability models, and the estimates of the class 
priors are computed from a neighborhood of the test sample rather than from the entire 
training set. Thus, the class centroid definition (5) used for SDA still holds for local SDA; one 
simply redefines h as the subset of the k nearest neighbors from class h. The class priors are 
estimated using normalized class membership counts of the neighbors of x, that is P̂  (Y = h) 
= │ h│/k. The mean similarity constraints (9) for the SDA maximum entropy optimization 
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are formally the same for local SDA, except that the mean is computed from the neighbors 
of test sample x rather than the whole training set. Thus, the optimized parameters λgh and 
γgh are local. Given the set of local class centroids {µh}, the local class priors P̂ (Y = g), and 
the local class-conditional model parameters γgh the local SDA classification rule is identical 
to the SDA rule (12): 

 
A problem can occur if the hth class has few training samples in the neighborhood of test 
sample x. In this case, the local SDA model for class h is difficult to estimate. To avoid this 
problem, if the number of local training samples in any of the classes is very small, for 
example nh < 3, the local SDA classifier reverts to the local nearest centroid classifier. If nh = 0 
so that h is the empty set, then the probability of class h is locally zero, and that class is not 
considered in the classification rule (12). This strategy enables local SDA to gracefully 
handle small k and very small class priors. 
Local classification algorithms have traditionally been weighted voting methods, including 
classifying with local linear regression, which can be formulated as a weighted voting 
method (Hastie et al., 2001). These methods are by their nature non-parametric and their use 
arises in situations when the available training samples are too few to accurately build class 
models. On the other hand, it is known that the number of training samples required by 
nonparametric classifiers to achieve low error rates grows exponentially with the number of 
features (Mitani & Hamamoto, 2006). Thus, when only small training sets are available, 
nonparametric classifiers are negatively impacted by outliers. In 2000, Mitani and 
Hamamoto (Mitani & Hamamoto, 2000, 2006) were the first ones to propose a classifier that 
is both model-based and local. However, they did not develop it as a local generative 
method; instead, they proposed the classifier as a local weighted-distance method. Their 
nearest-means classifier can be interpreted as a local QDA classifier with identity 
covariances. In experiments with simulated and real data sets, the local nearest-means 
classifier was competitive with, and often better than, nearest neighbor, the Parzen classifier, 
and an artificial neural network, especially for small training sets and for high dimensional 
problems. 
Local nearest-means differs from local SDA in several aspects. First, the classifier by Mitani 
and Hamamoto in (Mitani & Hamamoto, 2006) learns a metric problem, not a similarity 
problem: the class prototypes are the local class-conditional means of the features and a 
weighted Euclidean distance is used to classify a test sample as the class of its nearest class 
mean. Second, the neighborhood definition is different than the usual k nearest neighbors: 
they select k nearest neighbors from each class, so that the total neighborhood size is k ×G. 
More recently, it was proposed to apply a support vector machine to the k nearest neighbors 
of the test sample (Zhang et al., 2006). The SVM-KNN method was developed to address the 
robustness and dimensionality concerns that a²ict nearest neighbors and SVMs. Similarly to 
the nearest-means classifier, the SVM-KNN is a hybrid local and global classifier developed 
to mitigate the high variance typical of nearest neighbor methods and the curse-of-
dimensionality. However, unlike the nearest means classifier of Mitani and Hamamoto, 
which is rooted in Euclidean space, the SVM-KNN can be used with any similarity function, 
as it assumes that the class information about the samples is captured by their pairwise 
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where . The solution to (21) can be computed numerically. For  the 

special case a = 0 and b = ∞, the solution is  
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are formally the same for local SDA, except that the mean is computed from the neighbors 
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similarities without reference to the underlying feature space. Experiments on benchmark 
datasets using various similarity functions showed that SVM-KNN outperforms k-NN and 
its variants especially for cases with small training sets and large number of classes. SVM-
KNN differs from local SDA because it is not a generative classifier. 
Finally, note that different definitions of neighborhood may be used with local SDA. One 
could use the Mitani and Hamamoto (Mitani & Hamamoto, 2006) definition described 
above, or radius-based definitions. For example, the neighborhood of a test sample x may be 
defined as all the samples that fall within a factor of 1+α of its similarity to its most similar 
neighbor, and α is cross-validated. This work employs the traditional definition of 
neighborhood, as the k nearest neighbors. 

3.1 Consistency of the local SDA classifier 
Generative classifiers with a finite number of model parameters, such as QDA or SDA, will 
not asymptotically converge to the Bayes classifier due to the model bias. This section shows 
that, like k-NN, the local SDA classifier is consistent such that its expected classification 
error E[L] converges to the Bayes error rate L* under the usual asymptotic assumptions that 
the number of training samples N → ∞, the neighborhood size k → ∞, but that the 
neighborhood size grows relatively slowly such that k=N → 0. First a lemma is proven that 
will be used in the proof of the local SDA consistency theorem. Also, the known result that 
k-NN is a consistent classifier is reviewed in terms of similarity. 
Let the similarity function be s :  ×  → Ω, where Ω ⊂ R is discrete and let the largest 
element of -Ω be termed smax. Let X be a test sample and let the training samples {X1,X2, ... 
,XN} be drawn identically and independently. Re-order the training samples according to 
decreasing similarity and label them {Z1,Z2, ..., ZN} such that Zk is the kth most similar 
neighbor of X. 
Lemma 1 Suppose s(x,Z) = smax if and only if x = Z and P(s(x,Z) = smax) > 0 where Z is a random 
training sample. Then P(s(x,Zk) = smax) → 1 as k, N →∞ and k/N → 0.  
Proof: The proof is by contradiction and is similar to the proof of Lemma 5.1 in (Devroye et 
al., 1996). Note that s(x,Zk) ≠ smax if and only if 

 
(22)

because if there are less than k training samples whose similarity to x is smax, the similarity of 
the kth training sample to x cannot be smax. The left-hand side of (22) converges to P(s(x,Z) = 
smax) as N→∞ with probability one by the strong law of large numbers, and by assumption 
P(s(x,Z) = smax) > 0. However, the right-hand side of (22) converges to 0 by assumption. 
Thus, assuming s(x,Zk) ≠ smax leads to a contradiction in the limit. Therefore, it must be that 
s(x,Zk) = smax. 
Theorem 1 Assume the conditions of Lemma 1. Define L to be the probability of error for test sample 
X given the training sample and label pairs {(Z1, Y1), (Z2, Y2), ... , (ZN, YN)}, and let L* be the Bayes 
error. If k,N → ∞ and k/N → 0, then for the local SDA classifier E[L] → L*.  
Proof: By Lemma 1, s(x,Zi) = smax for i ≤ k in the limit as N → ∞, and thus in the limit the 
centroid µh of the subset of the k neighbors that are from class h must satisfy s(x, µh) = smax, 
for every class h which is represented by at least one sample in the k neighbors. By definition 
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of the local SDA algorithm, any class h  that does not have at least one sample in the k 
neighbors is assigned the class prior probability P(Y = h ) = 0, so it is effectively eliminated 
from the possible classification outcomes. Then, the constraint (9) on the expected value of 
the class-conditional similarity for every class g that is represented in the k neighbors of x is 

 (23)

which is solved by the pmf P(s(x, µh)│Y = g) = 1 if s(x, µh) = smax, and zero otherwise. Thus 
the local SDA classifier (12) becomes 

 
(24)

where the estimated probability of each class P̂  (Y = g) is calculated using a maximum 
likelihood estimate of the class probabilities for the neighborhood. Then, P̂  (Y = g) →P(Y = 
g│x) as k →∞ with probability one by the strong law of large numbers. Thus the local SDA 
classifier converges to the Bayes classifier, and the local SDA average error E[L] → L*. 
The known result that k-NN is a consistent classifier can be stated in terms of similarity as a 
direct consequence of Lemma 1: 
Lemma 2 Assume the conditions of Lemma 1 and define L and L* as in Theorem 1. For the 
similarity-based k-NN classifier E[L] →L*. 
Proof. It follows directly from Lemma 1 that within the size-k neighborhood of x, Zi = x for i 
≤k. Thus, the k-NN classifier (1) estimates the most frequent class among the k samples 
maximally similar to x: 

 
The summation converges to the class prior P(Y = g→x) as k →∞ with probability one by the 
strong law of large numbers, and the k-NN classifier becomes that in (24). Thus the 
similarity-based k-NN classifier is consistent. 

4. Mixture SDA 
Like LDA and QDA, basic SDA may be too biased if the similarity space - or more generally 
the descriptive statistics space - is multi-modal. In analogy to metric space mixture models, 
the bias problem in similarity space may be alleviated by generalizing the SDA formulation 
with similarity-based mixture models. In the mixture SDA models, the class-conditional 
probability distribution of the descriptive statistics (x) for a test sample x is modeled as a 
weighted sum of exponential components. Generalizing the single centroid-based SDA 
classifier and drawing from the metric mixture models (Duda et al., 2001; Hastie et al., 2001), 
each class h is characterized by ch centroids {µhl}. The descriptive statistics for test sample x 
are its similarities to the centroids of class h, {s(x, µh1), s(x, µh2), ... , s(x, )}, for each class h. 
The mixture SDA model for the probability of the similarities, assuming that test sample x is 
drawn from class g, is written as 
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each class h is characterized by ch centroids {µhl}. The descriptive statistics for test sample x 
are its similarities to the centroids of class h, {s(x, µh1), s(x, µh2), ... , s(x, )}, for each class h. 
The mixture SDA model for the probability of the similarities, assuming that test sample x is 
drawn from class g, is written as 
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where wghl = 1 and wghl > 0. Then, the SDA classification rule (12) for mixture SDA 
becomes to classify x as the class ŷ  that solves the maximum a posteriori problem 

 
(26)

Note how the mixture SDA generative model (25) parallels the metric mixture formulation 
of Gaussian mixture models (GMMs), with the exponentials  in place of the 
Gaussian components. However, there are deep differences between mixture SDA and 
metric mixture models. In metric learning, the mixtures model the underlying generative 
probability distributions of the features. Due to the curse of dimensionality, high-
dimensional, multi-modal feature spaces require many training samples for robust model 
parameter estimation. For example, for d features, GMMs require that a d × 1 mean vector 
and a d × d covariance matrix be estimated for each component in each class, for a total of  
ch ×(d2 +3d)/2 parameters per mixture. Constraining each Gaussian covariance to be diagonal, 
at the cost of an increased number of mixture components, alleviates the robust estimation 
problem, but does not solve it (Reynolds & Rose, 1995). 
When relatively few training samples are available, robust parameter estimation becomes 
particularly di±cult. In similarity-based learning the modeled quantity is the similarity of a 
sample to a class centroid. The estimation problem is essentially univariate and reduces to 
estimating the exponent λghl in each component of the mixture, for a total of ch × G × 2 
parameters per mixture (the scaling parameter γghl follows trivially). This simpler classifier 
architecture allows robust parameter estimation from smaller training set depending on the 
number of centroids per class, or, more generally, the number of descriptive statistics. 
Another major difference between mixture SDA and metric mixture models is in the number 
of class-conditional probability models that must be estimated. In metric learning, G 
mixtures are estimated, one for each of the G possible classes from which a sample x may be 
drawn. In mixture SDA, G2 mixture models are estimated. Each sample x is hypothesized 
drawn from class g = 1, 2, ...G, and its similarities to each of the G classes are modeled by the 
mixture (25), with h = 1, 2. ...G. When the number of classes grows, or when the number of 
components in each mixture model grows, the quadratic growth in the number of needed 
models presents a challenge in robust parameter estimation, especially when the number of 
available training samples is relatively small. However, this problem is mitigated by the fact 
that the component SDA parameters may be robustly estimated with smaller training sets 
than in metric mixture models due to the simpler, univariate estimation problem at the heart 
of SDA classification. The next section discusses the mixture SDA parameter estimation 
procedure. 

4.1 Estimating the parameters for mixture SDA models 
Computing the SDA mixture model for the similarities of samples x ∈ g to class h requires 
estimating the number of components ch, the component centroids {µhl}, the component 
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weights {wghl} and the component SDA parameters {λghl} and {γghl}. This section describes an 
EM algorithm for estimating these mixture parameters. The algorithm parallels the EM 
approach for estimating GMM parameters (Duda et al., 2001; Hastie et al., 2001); it is first 
summarized below, and then explained in detail in the following sections. 
Let θgh = {{wghl}, {γghl}, {λghl}} for l = 1, 2 ... ch be the set of parameters for the class h mixture 
model to be estimated under the assumption that the training samples zi, for i = 1, 2, ... ng are 
drawn identically and independently. Denote by C a random component of the mixture and 
by P(C = l│s(zi, µhl), θgh) the responsibility (Hastie et al., 2001) of the lth component for the 
ith training sample similarity s(zi, µhl). Also write P(s(zi, µhl)│C = l, θgh) = . 
The proposed EM algorithm for mixture SDA is: 
1. Compute the centroids {µhl} with K-medoids algorithm. 
2. Initialize the parameters {wghl} and the components P(s(zi, µhl)│C = l, θgh). 
3. E step: compute the responsibilities 

 
(27)

4. M step: compute model parameters 
(a) Find the λghl which solves 

 
(28)

(b) Compute the corresponding scaling factor 

 

(29)

(c) Compute the component weights 

 
(30)

5. Repeat E and M steps until convergence criterion is satisfied. 
Note that, just like EM for GMMs, the EM algorithm for mixture SDA involves iterating the 
E step, which estimates the responsibilities, and the M step, which estimates the parameters 
that maximize the expected log-likelihood of the training data. At each iteration of the M 
step, the explicit expression (30) updates the component weights. However, unlike EM for 
GMMs, the update expression for the component parameters (28) is implicit and must be 
solved numerically. Another difference between the GMM and SDA EM algorithms is in 
how the centroids are estimated. For GMMs, the component means {uhl}, which are the 
metric centroids, are updated at each iteration of the M step. For mixture SDA, the centroids 
{µhl} are estimated at the beginning of the algorithm and kept constant throughout the 
iterations. 
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The update expressions for the mixture SDA parameters are derived from the expression of 
the expected log-likelihood of the observed similarities. A standard assumption in EM is 
that the observed data are independent and identically distributed given the class and 
mixture component. For mixture SDA, this assumption means that the training sample 
similarities { g(zi)} = {s(zi, µhl)}, zi ∈ g to the component centroids are identically 
distributed and conditionally independent given the lth class component. Then, the 
expected log-likelihood of { g(zi)} is 

 
(31)

Using the properties of the logarithm and rearranging the terms, L({ g(zi)}│θgh) splits into 
the terms depending on wghl and the terms depending on λghl and γghl: 

 

(32)

The standard EM approach to maximizing (32) is to set its partial derivatives with respect to 
the parameters to zero and solve the resulting equations. This is the approach adopted here 
for estimating the mixture SDA parameters θgh for all g, h. 
The derivation of the expression for the component weights {wghl} follows directly from (32); 
both the derivation of and the final expression for the component weights are identical to 
the metric mixtures case. Section 4.1.1 re-derives the well-known expression for wghl. 
Applying the EM approach, however, does not lead to explicit expressions for {λghl} and 
{γghl}. Instead, it leads to many single-parameter constraint expressions for the mean 
similarities of the training data to the mixture component centroids. These expressions are 
solved with the same numerical solver used in the single-centroid SDA classifier. 

4.1.1 Estimating the component weights 
To compute the log-likelihood-maximizing weights wghl, one uses the standard technique of 
taking the derivative of the log-likelihood with respect to wghl, setting it to zero, and solving 
the resulting expression for wghl. The constraint wghl = 1 is taken into account with the 
Lagrange multiplier η: 

 
which gives the well-known expression for the component weights of a mixture model in 
terms of the responsibilities: 
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(33)

4.1.2 Estimating γghl and λghl 
The same approach used for estimating the component weights {wghl} is adopted to estimate 
the SDA parameters {γghl} and {λghl}: Find the likelihood-maximizing values of the 
parameters by setting the corresponding partial derivatives to zero and solving the resulting 
equations. First, since each γghl is simply a scaling factor that ensures that each mixture 
component is a probability mass function, one rewrites 

 
(34)

where X ∈ g is a random sample from class g, s(X, µhl) is its corresponding random 
similarity to component centroid µhl, and Ω is the set of all possible similarity values. 
Substituting (34) into (32), setting the partial derivative of L({ h(zi)}│θgh) with respect to λghl 

to zero, and rearranging the terms gives 

 

(35)

The first term on the left side of (35) is simply the definition of the expected value of the 
similarity of samples in class g to the lth centroid of class h. Thus, one rewrites (35) 

 
(36)

Expression (36) is an equality constraint on the expected value of the similarity of samples  
zi ∈ g to the component centroids µhl of class h. This is the same type of constraint that must 
be solved in the mean-constrained, maximum entropy formulation of single-centroid SDA 
(9). In (9), the mean similarity of samples from class g to the single centroid of class h is 
constrained to be equal to the observed average similarity. Analogously, in (36), the mean 
similarity of the samples from class g to the lth centroid of class h is constrained to be equal 
to the weighted sum of the observed similarities, where each similarity is weighted by its 
normalized responsibility. To solve for λghl, one uses the same numerical procedure used to 
solve (9) and described in Section 2.1. Thus, solving for all the {λghl} requires solving the  
G ×  ch expressions of (36). 
It is not surprising that taking the EM approach to estimating λghl has lead to the same 
expressions for the mean constraints in the maximum entropy approach to density 
estimation. It is known that maximum likelihood (ML) - the foundation for EM - and 
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maximum entropy are dual approaches to estimating distribution parameters which lead to 
the same unique solution based on the observed data (Jordan, 20xx). The ML approach 
assumes exponential distributions for the similarities, maximizes the likelihood, and arrives 
at constraint expressions whose solutions give the desired values for the parameters. The 
maximum entropy approach assumes the constraints, maximizes the entropy, and arrives at 
exponential distributions whose parameters satisfy the given constraints. This powerful 
dual relationship between ML and maximum entropy extends from metric problems to 
similarity-based problems; for this reason it leads to the the constraint expression (36), from 
which λghl is numerically computed. The corresponding γghl is found by applying (34). 

4.1.3 Estimating the centroids 
Estimating the centroids of a mixture model encompasses two problems: estimating the 
number of components (i.e. centroids) {ch}, and estimating the centroids {µhl}. This work 
adopts the common metric learning practice of cross-validating the number of mixture 
components {ch}. The centroids {µhl} are estimated with the K-medoids algorithm (Hastie et 
al., 2001), using the maximum-sum-similarity criterion (3). The initial centroids are selected 
randomly from the training set samples zi ∈ h. 

4.1.4 Initializing EM for SDA 
In this work, the component weights {wghl} are uniformly initialized to wghl = 1=ch and the 
components are assigned uniform initial probability P(s(zi, µhl)│C = l, θgh) = 1/ch. This 
initialization reflects the assumption that initially the mixture components equally 
contribute to a sample's class-conditional probability: it is the least-assumptive initialization. 
Another strategy would be to initialize the weights by the fraction of training samples 
assigned to the clusters which result from estimating the centroids with K-medoids. The 
component probabilities may also be initialized by estimating the SDA parameters {λghl} and 
{γghl} from the K-medoids clusters. This is analogous to the GMM initialization strategy 
based on the results of the K-means algorithm. In practice, the simple uniform initialization 
works well. 

5. Experimental results 
SDA, local SDA, mixture SDA, and nnSDA are compared to other similarity-based 
classifiers in a series of experiments: the tested classifiers are the nearest centroid (NC), local 
nearest centroid (local NC), k-nearest neighbors (k-NN) in similarity space, condensed 
nearest neighbor (CNN) (Hastie et al., 2001) in similarity space, and the potential support 
vector machine (PSVM) (Hochreiter & Obermayer, 2006). When the features underlying the 
similarity are available, the classifiers are also compared to the naive Bayes classifier (Hastie 
et al., 2001). The counting similarity (the number of features identically shared by two 
binary vectors) and the VDM (Stanfill & Waltz, 1986; Cost & Salzberg, 1993; Wilson & 
Martinez, 1997) similarities are used to compute the similarities on which the classifiers 
operate, except for cases in which similarity is provided as part of benchmark datasets. 
The first set of comparisons involves simulated binary data, where each class is generated 
by random perturbations of one or two centroids. The perturbed centroids simulation is a 
scenario where each class is characterized by one or two prototypical samples (centroids), 
but samples have random perturbations that make them different from their class centroid 
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in some features. Thus, this simulation fits the centroid- based SDA models, in that each 
class is defined by perturbations around one or two prototypical centroids. 
Then, three benchmark datasets are investigated: the protein dataset, the voting dataset, and 
the sonar dataset. The results on the simulated and benchmark datasets show that the 
proposed similarity-based classifiers are effective in classification problems spanning 
several application domains, including cases when the similarity measures do not possess 
the metric properties usually assumed for metric classifiers and when the underlying 
features are unavailable. 
For local SDA and local NC, the class prior probabilities are estimated as the empirical 
frequency of each class in the neighborhood; for SDA, mixture SDA, nnSDA, NC, and CNN 
they are estimated as the empirical frequency of each class in the entire training data set. The 
k-NN classifier is implemented in the standard way, with the neighborhood defined by the 
test sample’s k most similar training samples, irrespective of the training samples class. Ties 
are broken by assigning a test sample to class one. 

5.1 Perturbed centroids 
In this two-class simulation, each sample is described by d binary features such that  
B = {0, 1}d. Each class is defined by one or two prototypical sets of features (one or two 
centroids). Every sample drawn from each class is a class centroid with some features 
possibly changed, according to a feature perturbation probability. Several variants of the 
simulation are presented, using different combinations of number of class centroids, feature 
perturbation probabilities, and similarity measures. Given samples x, z ∈ B, s(x, z) is either 
the counting or the VDM similarity. The simulations span several values for the feature 
dimensions d and are run several times to better estimate mean error rates. For each run of 
the simulation and for each number of features considered, the neighborhood size k for local 
SDA, local NC, and k-NN is determined independently for the three classifiers by leave-one-
out cross-validation on the training set of 100 samples; the range of tested values for k is  
{1, 2, ... 20, 29, 39, ... , 99}. The optimum k is then used to classify 1000 test samples. Similarly, 
the candidate numbers of components for mixture SDA and for CNN are {2, 3, 4, 5, 7, 10}. To 
keep the experiment run time within a manageable practical limit, five-fold cross validation 
was used to determine the number of components for mixture SDA, and the mixture SDA 
EM algorithm was limited to 30 iterations for each cross-validated mixture model. The 
parameters for the PSVM classifier are cross-validated over the range of possible values  
ε = {0.1, 0.2, ... 1} and C = {1, 51, 101, ... 951}. 
The perturbed centroid simulation results are in Tables 1-8. For each value of d, the lowest 
mean cross-validation error rate is in bold. Also in bold for each d are the error rates which 
are not statistically significantly different from the lowest mean error rate, as determined by 
the Wilcoxon signed rank test for paired differences, with a significance level of 0.05. The 
naive Bayes classifier results are also included for reference. 

5.1.1 Perturbed centroids – one centroid per class 
Each class is generated by perturbing one centroidal sample. There are two, equally likely 
classes, and each class is defined by one prototypical set of d binary features, c1 or c2, where 
c1 and c2 are each drawn uniformly and independently from {0, 1}d. A training or test sample 
z drawn from class g has the ith feature z[i] = cg[i] with probability 1 - pg, and z[i] ≠ cg[i] with 
perturbation probability pg. In one set of simulation results p1 = 1/3 and p2 = 1/30; thus, class 



 Machine Learning 

 

110 
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the metric properties usually assumed for metric classifiers and when the underlying 
features are unavailable. 
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test sample’s k most similar training samples, irrespective of the training samples class. Ties 
are broken by assigning a test sample to class one. 

5.1 Perturbed centroids 
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B = {0, 1}d. Each class is defined by one or two prototypical sets of features (one or two 
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the candidate numbers of components for mixture SDA and for CNN are {2, 3, 4, 5, 7, 10}. To 
keep the experiment run time within a manageable practical limit, five-fold cross validation 
was used to determine the number of components for mixture SDA, and the mixture SDA 
EM algorithm was limited to 30 iterations for each cross-validated mixture model. The 
parameters for the PSVM classifier are cross-validated over the range of possible values  
ε = {0.1, 0.2, ... 1} and C = {1, 51, 101, ... 951}. 
The perturbed centroid simulation results are in Tables 1-8. For each value of d, the lowest 
mean cross-validation error rate is in bold. Also in bold for each d are the error rates which 
are not statistically significantly different from the lowest mean error rate, as determined by 
the Wilcoxon signed rank test for paired differences, with a significance level of 0.05. The 
naive Bayes classifier results are also included for reference. 

5.1.1 Perturbed centroids – one centroid per class 
Each class is generated by perturbing one centroidal sample. There are two, equally likely 
classes, and each class is defined by one prototypical set of d binary features, c1 or c2, where 
c1 and c2 are each drawn uniformly and independently from {0, 1}d. A training or test sample 
z drawn from class g has the ith feature z[i] = cg[i] with probability 1 - pg, and z[i] ≠ cg[i] with 
perturbation probability pg. In one set of simulation results p1 = 1/3 and p2 = 1/30; thus, class 
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two is well-clustered around its generating centroid and the two classes are well-separated. 
In another set of simulation results, p1 = 1/3 and p2 = 1/4 and the two classes are not as well 
separated. Classifiers are trained on 100 training samples and tested on 1000 test samples 
per run; twenty runs are executed for a total of 20, 000 test samples. The number of features 
d ranges from d = 2 to d = 200 in the simulation, but the number of training samples is kept 
constant at 100, so that d = 200 is a sparsely populated feature space. This procedure was 
repeated for the counting and for the VDM similarities, so there are four sets of results for 
the one centroid simulation, depending on the perturbation probabilities and the similarity 
measure used. The results are in Tables 1-4. 
The performance of all classifiers increases as d increases. For large d, the feature space is 
sparsely populated by the training and test samples, which are segregated around their 
corresponding generating centroids. This leads to good classification performance for all 
classifiers. For small d, the feature space is densely populated by the samples, and the two 
classes considerably overlap, negatively affecting the classification performance. 
 

 
Table 1. Perturbed centroids experiment - One centroid per class. Misclasssification 
percentage for counting similarity, perturbation probabilities p1 = 1/3 and p2 = 1/30. 

Across all four sets of results, the naive Bayes classifier almost always gives the best 
performance. Its assumption that the features are independent captures the true underlying 
relationship of the sample features makes the naive Bayes classifier well suited for these 
particular data sets: indeed the samples are generated as random vectors of independent 
binary features. The consequent excellent performance of the naive Bayes classifier provides 
a reference point for the other classifiers. More generally, when a classification problem 
involves samples natively embedded in an Euclidean space, as in these perturbed centroids 
experiments, metric-space classifiers like naive Bayes can perform well. In these cases, the 
similarity-based classification framework provides no clear advantage. 
On the other hand, naive Bayes cannot be used when the samples are not described by vectors 
of independent features, either because the features are not known, the independence 
assumption is too restrictive for effective performance, or because the Euclidean 
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representation does not sufficiently capture the pairwise relationships of the samples. In 
these cases, the similarity-based techniques provide solutions to classification problems. 
Thus, in these perturbed centroids experiments, the naive Bayes classifier is a good reference 
for assessing the effectiveness of the similarity-based classifiers, but it is not considered for 
the Wilcoxon significance tests because it is not generally applicable to similarity-based 
classification. 
 

 
Table 2. Perturbed centroids experiment - One centroid per class. Misclasssification 
percentage for counting similarity, perturbation probabilities p1 = 1/3 and p2 = 1/4. 

 
Table 3. Perturbed centroids experiment - One centroid per class. Misclasssification 
percentage for VDM similarity, perturbation probabilities p1 = 1/3 and p2 = 1/30. 
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Table 4. Perturbed centroids experiment - One centroid per class. Misclasssification 
percentage for VDM similarity, perturbation probabilities p1 = 1/3 and p2 = 1/4. 

With few exceptions the PSVM performs best on the four sets of results on a wide range of d. 
This is likely because the PSVM classifies a test sample based on its similarities to the entire 
training set. In contrast, local methods such as local SDA, local NC, nnSDA, k-NN, and 
CNN make use of a subset of the training samples and thus have less information available 
to classify. Global methods based on the similarity-to-class-centroid summary statistic such 
as SDA, NC, and CNN also use less information. It is plausible that the ability to make use 
of all the similarity information in the training set and to optimally weight the similarities to 
the training samples gives the PSVM a performance advantage over the other techniques. 
However, in spite of this advantage, the results show that for low and high values of d the 
SDA-based techniques yield statistically equivalent performance to the PSVM, and in some 
cases match or exceed its results. When the PSVM statistically produces significantly 
different results from the other techniques, its performance does not hugely surpass them. 
Thus the similarity-based techniques possess the ability to produce good classification 
results using less information. This quality can be immensely useful when few training 
samples are available. 
In all four sets of results, the SDA-based algorithms generally perform better than their non-
generative counterparts: local SDA performs better than local NC and SDA performs better 
than NC. This shows that generative models based on the similarity of samples to local or 
global class centroids provide increased discriminative power over the non-generative 
centroid-based similarity models. Furthermore, in almost all cases across the four sets of 
results, local SDA performs better than SDA. While the classification performance of SDA is 
good, its inherent model bias prevents it from achieving even better performance; local SDA 
is not as susceptible to model bias, and is able to perform very well. Still, the SDA 
performance is close to that of the local SDA in all cases and sometimes it surpasses it (VDM 
similarity with p2 = 1/4), a confirmation that the single-centroid generative model at the heart 
of SDA matches well the perturbed single-centroid experimental setup for these sets of 
results. 
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The similarity-space k-NN performs well, albeit not as well as the PSVM. Compared to SDA, 
k-NN performs better only for the counting similarity and p2 = 1/4. Since SDA matches well 
the class models for the generated samples, it is not surprising that it performs better than k-
NN, which does not rely on class models. However, k-NN does better when the class two 
perturbed samples are more likely to differ from their generating class two centroid (p2 = 
1/4), that is when the classes overlap more. In this case, it is more di±cult to estimate the 
class centroids, and the SDA performance is affected. On the other hand, SDA is better than 
k-NN for the VDM similarity, for both p2 = 1/30 and p2 = 1/4. The VDM similarity is 
calculated from class-dependent lookup tables pre-computed from the training set, and this 
additional information seems to favor the SDA classifier more than the k-NN. Local SDA, 
performs slightly better than k-NN when p2 = 1/30 for both counting and VDM similarities. 
The CNN classifier generally does not perform as well as k-NN. This is expected, because, 
as for its metric learning analog, the condensing process primarily aims to reduce the size of 
large training sets and possibly eliminate outliers rather than to improve classification 
performance. The observed lower performance of CNN compared to k-NN reflects the 
expectation that classification performance will degrade when using the condensed training 
set instead of the full set of available training samples. 
The nnSDA classifier performs well for the counting similarity when p2 = 1/30, and in 
general for higher values of d. For low values of d the performance is particularly poor: for  
d = 2 the error rate is essentially equal to that of a random classifier (50%) and for d = 4 it is 
only slightly better. In fact, the nnSDA performance is limited by the interplay of its 
asymptotic behavior and the value of d. Recall that by Lemma (1) from Section 3.1,  
P(s(x,Zk) = smax) → 1 as k,N →∞ and k/N → 0, where k is the neighborhood size, N is the 
number of available training samples, and Zk is the k-th nearest neighbor of test sample x. 
Then, it follows that P(snn,h(x) = smax) → 1 for all h as k, n →∞, because snn,h(x) = s(x,Z1) for  
Z1 ∈ h as k→∞. Thus, for nnSDA, the similarities of a test sample to its nearest neighbors in 
each class are all identical in the limit of infinite number of training samples. Consequently, 
for a large training set, all class discriminants in the nnSDA classification rule (17) are 
identical and therefore uninformative. The classification rule (17) reduces to the trivial rule 
that classifies according to the cost-adjusted class priors, 

 
(37)

When 0-1 costs are used, as in this simulation, the rule (37) always classifies as the class g 
with the highest prior probability P̂ (Y = g), estimated as the empirical frequency from the 
training data: 

 
(38)

In this experiment, the samples are generated from two, a priori equally likely classes, so the 
limit misclassification rate is

 
 

The limit error rate is noticeable when d is small. In this case the similarity can take on 
values in a limited range bounded by d (s(x, z) ∈[0, 1 ...d] for the counting similarity) and the 
training set is highly redundant. Thus, a test sample x is very likely to be maximally similar 
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to its nearest neighbor from each class, and snn,h(x) is uninformative. In higher dimensions, 
the experimental results show that the training set is sufficiently sparse for effective 
classification. Thus nnSDA is a viable classifier for sparse training sets which do not cover 
the entire range of possible values for the chosen similarity. In applications when few 
training samples are available, nnSDA can be a valuable tool for achieving actionable 
classification results. 

5.1.2 Perturbed centroids – two centroids per class 
In this variation of the perturbed centroids simulation, each class is characterized by two 
prototypical samples, c11, c12 for class one, and c21, c22 for class two. Each time the simulation 
is run, the centroids c11, c12, c21, c22 are drawn independently and identically using a uniform 
distribution over . 
Every sample drawn from each class is a perturbed version of one of the two class 
prototypes, where the class labels are drawn independently and identically with probability 
1/2. A training or test sample z drawn from class one is randomly selected to be z = c11 or z = 
c12 with probability 1/2, and then for each i = 1, ... , d, z’s ith feature is probabilistically 
perturbed so that z[i] ≠ c11[i] with probability p11 (or z[i] ≠ c12[i] with probability p12). Thus on 
average, a randomly drawn sample based on c11 will have dp11 features that are different 
from the class prototype c11’s features. Likewise, a training or test sample v drawn from class 
two starts out as v = c21 or v = c22 with probability 1/2, but then for each i = 1, ..., d, v’s ith 
feature is changed so that v[i] ≠ c21[i] with probability p21 (or v[i] ≠ c22[i] with probability p22). 
The number of features d ranges from d = 2 to d = 200 in the simulation, but the number of 
training samples is kept constant at 100, so that d = 200 is a sparsely populated feature space. 
Two different sets of values of the perturbation probabilities p11, p12, p21, p22 were used: in the 
first case p11 = p12 = 1/3 and p21 = p22 = 1/30, so that the class two samples are much more 
tightly clustered around c21 and c22 than the class one samples are with respect to c11 and c12. 
In the second case, p11 = p12 = 1/3 and p21 = p22 = 1/4, resulting in a higher Bayes error. Each 
simulation was run twenty times, for a total of 20,000 test samples. The resulting mean error 
rates are given in Tables 5-8. 
 

 
Table 5. Perturbed centroids experiment - Two centroids per class. Misclassification percentage 
for counting similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/30. 
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Table 6. Perturbed centroids experiment - Two centroids per class. Misclassification percentage 
for counting similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/4. 
 

 
Table 7. Perturbed centroids experiment - Two centroids per class. Misclassification percentage 
for VDM similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/30. 

For all four sets of results, the local SDA classifier performs better than the local NC 
classifier. This result agrees with the analogous case for the single centroid experiments and 
attests to the advantage that similarity-based generative models provide over simpler 
nearest-centroid classifiers. However, the SDA classifier yields better classification than its 
counterpart NC classifier only for the VDM similarity. For the counting similarity, SDA does 
not provide an advantage over NC. There are two causes that contribute to this outcome. 
First, the single-centroid SDA is a biased model that does not match the true two-centroids-
per-class experimental setup. Consider class one and its centroids, c11 and c12. SDA at best 
correctly estimates one of the two centroids per class, let's say ĉ 11. Thus, the estimated 
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centroid- based generative model for class one is a good match for the samples which are 
generated as random perturbations of c11. The model, however, is not a good match for 
samples generated as random perturbations of c12. The model cannot distinguish the 
similarities of these class one samples to ĉ 11 from their similarities to the centroids of class 
two. The result is that the c12-generated samples are classified according to the class priors, 
that is half as class one and half as class two. The same argument applies to class two, so 
that overall about 25% of the samples are misclassified. Indeed, the SDA error rates quickly 
settle to ≈25% for the counting similarity for medium to large values of d. For lower d, the 
class overlap due to the density of the feature space dominates the misclassification rate. 
 

 
Table 8. Perturbed centroids experiment - Two centroids per class. Misclassification percentage 
for VDM similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/4. 

The second cause contributing to the observed SDA results stems from the way the class 
centroids are generated. Each class centroid is generated randomly from a multivariate 
uniform distribution over the feature space. Thus, there is no guarantee that two centroids 
from the same class be more similar to each other than two centroids from different classes, 
that is there is no guarantee that s(c1i, c1j) < s(c1i, c2j) for i, j = 1, 2. On the contrary, on average 
over many draws from the sample space, the centroids are equally similar, and 
consequently the samples generated as perturbations of c12, c21, and c22 are approximately 
equally similar to c11. This amplifies the detrimental effect of the bias in the SDA model. If 
the condition on the similarities between centroids s(c1i, c1j) < s(c1i, c2j) were enforced, then 
even the biased SDA model would produce better classification results. 
The performance of mixture SDA is comparable to that of SDA if not slightly better. For the 
particularly simple case of the counting similarity with p21 = p22 = 1/30, the mixture SDA 
provides an order of magnitude improvement over SDA, showing that it is able to alleviate 
the bias problem inherent to the single-centroid SDA. However, in all other perturbed 
centroids results the comparison between the performance of mixture SDA and SDA is 
inconclusive. For p21 = p22 = 1/4, the overlap between the classes overshadows any 
performance gains mixture SDA might obtain; for the VDM results, the advantage provided 
by the optimized similarity measure brings the performance of SDA and mixture SDA closer 
together, and thus limits the gains of mixture SDA. Given the increase in complexity of the 
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mixture SDA classifier and its inconclusive performance advantages, for these experiments 
it might be more advantageous to use local classifiers such as local SDA to obtain improved 
performance. The results show that local SDA consistently performs very well, and with 
only a few exceptions outperforms SDA and mixture SDA. 
Note that for the VDM similarity, SDA produces excellent classification results which are 
very competitive with local SDA and local NC, and consistently outperform NC. The large 
improvement is attributable to the fact that the VDM undergoes a training phase, performed 
on the training set, in which the class information is used to optimize the similarity measure 
for class discrimination. This training step greatly benefits the SDA classifier and yields 
improved classification results for all classifiers when compared to the counting similarity, 
which does not rely on such pre-computations. 
As for the single-centroid results, nnSDA is most effective at higher values of d, when the 
feature space is sparsely populated by the samples. A consistently good performer is the k-
NN classifier, which is very competitive with local SDA, local NC, and the PSVM when p21 = 
p22 = 1/30, and often outperforms them when p21 = p22 = 1/4. Using a subset of the training 
samples, as with CNN, negatively impacts the classification performance for all sets of 
simulations, consistently with the single-centroids results discussed in the previous section. 

5.2 Benchmark data sets 
Three benchmark data sets are used to analyze further the performance of various 
similarity-based classifiers: a data set of protein similarities, a data set of congressional 
voting records, and a data set of aural sonar similarities. The tested classifiers are the local 
SDA, local NC, SDA, NC, nnSDA, k-NN, and PSVM classifiers. The mixture SDA and CNN 
classifiers are not tested on these data sets, as the long time required to cross-validate their 
parameters does not justify their attainable performance. 
The performance of the classifiers on all three benchmark data sets is evaluated as the leave-
one-out error, as follows. One sample is set aside as the test sample, and all other N – 1 
samples are used for training. The parameters for each classifier are cross-validated on the N 
– 1 training samples using leave-one-out cross validation. The resulting best parameters are 
used to train each classifier on the entire N – 1 training samples, and the trained classifier 
finally classifies the test sample. The process is repeated until all available samples are 
tested by the trained classifiers. For local SDA, local NC and k-NN, the neighborhood size is 
cross-validated on the set of possible sizes {1, 2, ... 20, 30 ... 100, 150, 200}. The PSVM 
parameters are cross-validated over the sets of possible values C = {1, 51, ... 951}, and  
ε = {0.1, 0.2, ... 1}. The class priors are estimated to be the empirical probability of seeing a 
sample from each class, with Laplace correction (Jaynes, 2003). Table 9 shows the percent 
leave-one-out error for each classifier evaluated on the three benchmark datasets. The data 
sets experiments are discussed in more detail in the following sections. 
 

 
 

Table 9. Percentage of leave-one-out misclassifications on the protein data set. 
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centroid- based generative model for class one is a good match for the samples which are 
generated as random perturbations of c11. The model, however, is not a good match for 
samples generated as random perturbations of c12. The model cannot distinguish the 
similarities of these class one samples to ĉ 11 from their similarities to the centroids of class 
two. The result is that the c12-generated samples are classified according to the class priors, 
that is half as class one and half as class two. The same argument applies to class two, so 
that overall about 25% of the samples are misclassified. Indeed, the SDA error rates quickly 
settle to ≈25% for the counting similarity for medium to large values of d. For lower d, the 
class overlap due to the density of the feature space dominates the misclassification rate. 
 

 
Table 8. Perturbed centroids experiment - Two centroids per class. Misclassification percentage 
for VDM similarity, perturbation probabilities p11 = p12 = 1/3 and p21 = p22 = 1/4. 
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5.2.1 Protein data 
Many bioinformatics prediction problems are formulated in terms of pairwise similarities or 
dissimilarities. An example is the protein data set used by (Hochreiter & Obermayer, 2006). 
For this data set, pairwise dissimilarity values are calculated using the evolutionary 
distance, which is the probability that an amino acid sequence transforms into another one 
(Hofmann & Buhmann, 1997). The sample space  is not enumerated, so classification must 
be done based only on the pairwise dissimilarity values. The dataset contains 213 proteins 
with class labels “HA” (72 samples), “HB” (72 samples), “M” (39 samples) , and “G” (30 
samples). The SDA, local SDA, nearest centroid, local nearest centroid, and k-NN classifiers 
natively support multiclass classification problems, so they can be applied directly to this 
four-class experiment. The PSVM, however, is a binary classifier and cannot be applied to 
this multiclass data set. 
Guessing that all samples were from the most prevalent class would yield a 66.2% error rate. 
The simple one-centroid per class model of SDA achieves half that error, and works better 
than the more flexible local nearest centroid classifier. Local SDA, local nearest centroid and 
k-NN all have the same free parameter, the neighborhood size k. Of these, local SDA is seen 
to be best suited to this problem. 

5.2.2 Voting data set 
The UCI voting data set (Newman et al., 1998) records the voting record of 435 members of 
the US House of Representatives on 16 bills. The binary classification problem is to predict 
each member's political party affiliation given the voting records. Each of the 16 votes is 
either a yes, a no, or “neither”, so there are 16 features which can each take on 3 possible 
values. This classification problem can be treated as a similarity-based classification problem 
by applying a similarity function to the trinary feature space. The adopted similarity in this 
experiment is the counting similarity. 

5.2.3 Aural sonar echoes classification 
In the sonar echoes classification experiment, the data consist of 100 pairwise similarities 
assessed by human listeners. The listeners rated the pairwise similarities of digitized active 
sonar echoes from two classes { clutter or target { without knowledge of the class labels, and 
based their evaluation of similarity only on their perceptual judgement of how the echoes 
sounded similar; thus, the underlying features of similarity are inaccessible. Each listener 
assigned a discrete similarity value between 1 and 5 to each pair of echoes; each pair was 
rated by two different listeners, and the two assigned similarity scores were added, so that 
the range of possible values for the similarity is [2, 10]. The target and clutter classes are 
equally likely, each one containing 50 echoes. This set of echoes is particularly difficult to 
classify in that metric-space classifiers produced incorrect results. Further details on this 
data set are in (Philips et al., 2006). 

6. Summary 
The chapter introduced a new framework for classification that is both similarity-based and 
generative: similarity discriminant analysis, or SDA. The experimental results show that the 
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classifiers resulting from the proposed SDA framework have practical advantages in terms 
of performance, interpretability, and ease of use. SDA is similarity-based in that it classifies 
samples based on their pairwise similarities and does not require that the samples be 
described by numerical feature vectors, the standard sample description method in metric 
learning. SDA is generative, in that it estimates probabilistic models based on descriptive 
statistics of the classes. Having access to probability estimates is important. A probabilistic 
framework seamlessly accommodates multi-class classifiers, asymmetric misclassification 
costs, and class priors. Furthermore, probability estimates are easily fused into into larger 
systems, and can be used to identify abnormal samples that have low probability of any 
class. The generative models in the SDA family are solutions to constrained maximum 
entropy problems where the constraints are placed on the mean values of the similarity-
based descriptive statistics. As dictated by the principle of maximum entropy, the resulting 
generative class models are exponential functions of the similarity statistics. 
Di®erent choices for the descriptive statistics lead to different SDA classifiers. This chapter 
focused on the centroid-based SDA classifiers: each class is described by a prototypical 
sample, a centroid, and the generative models are based on the similarities of the samples to 
each class centroid. SDA accommodates various definitions of centroid; this chapter focused 
on the maximum-sum-similarity centroid. The nearest neighbor similarity is also explored 
as a descriptive statistic, yielding the nnSDA classifier. 
As with LDA and QDA, the power of the SDA generative classifier depends on how well its 
model matches the true class-conditional distributions. A mismatched model will be biased 
and produce erroneous classifications. The centroid-based SDA classifier is a good match for 
single-centroid distributions of objects, but is a biased model for multi-centroidal 
distributions. This chapter proposes local SDA and mixture SDA as similarity-based 
generative classifiers with reduced bias that can be used for multimodal distributions. Local 
SDA is the SDA classifier applied to a local neighborhood of a test sample. A local class 
centroid can be viewed as a representative prototype for the class in the neighborhood of a 
test sample and the class-conditional models provide an estimate of the local distribution of 
the similarities to the local centroid. Local SDA was shown to be a Bayes error-consistent 
classifier and is the first classifier to be similarity-based, generative, and local. Mixture SDA 
builds on the metric-learning mixture models by modeling each class as a linear 
combination of several single-centroid SDA models. The parameters for the mixture SDA 
classifier can be estimated with the EM algorithm. 
The family of SDA classifiers is very competitive with, and often outperforms, their 
corresponding non-generative similarity-based classifier. SDA competes with nearest 
centroid; local SDA competes with local NC. The SDA classifiers are also competitive with 
the PSVM, the state-of-the-art support vector machine for similarity-based classification. The 
PSVM bases its classification on the entire training set of pairwise similarities. This requires 
enumeration of size N × N similarity matrices, thus posing computational challenges for 
large data sets. Furthermore, PSVM is a non-generative, intrinsically binary classifier: it is 
di±cult to view it in a probabilistic framework where there are more than two possible 
classes for the data samples. The SDA classifiers remain competitive while relying on more 
parsimonious representations of the underlying similarity relationships between the 
samples. Furthermore, the generative quality of the SDA family of classifiers provides 
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intuitive information about the similarity characteristics of the data. The SDA-generated 
probability estimates are useful for interpreting the results in a probabilistic framework, and 
allow for class priors and costs to be seamlessly integrated into the classification rules. 
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1. Introduction 
We have proposed a new information-theoretic approach to competitive learning [1], [2], [3], 
[4], [5]. The information-theoretic method is a very flexible type of competitive learning, 
compared with conventional competitive learning. However, some problems have been 
pointed out concerning the information-theoretic method, for example, slow convergence. In 
this paper, we propose a new computational method to accelerate a process of information 
maximization. In addition, an information loss is introduced to detect the salient features of 
input patterns. 
Competitive learning is one of the most important techniques in neural networks with many 
problems such as the dead neuron problem [6], [7]. Thus, many methods have been 
proposed to solve those problems, for example, conscience learning [8], frequency-sensitive 
learning [9], rival penalized competitive learning [10], lotto-type competitive learning [11] 
and entropy maximization [12]. We have so far developed information-theoretic competitive 
learning to solve those fundamental problems of competitive learning. In the information-
theoretic learning, no dead neurons can be produced, because entropy of competitive units 
must be maximized. In addition, experimental results have shown that final connection 
weights are relatively independent of initial conditions. 
However, one of the major problems is that it is sometimes slow in increasing information. 
As a problem becomes more complex, heavier computation is needed. Without solving this 
problem, it is impossible for the information-theoretic method to be applied to practical 
problems. To overcome this problem, we propose a new type of computational method to 
accelerate a process of information maximization. In this method, information is supposed 
to be maximized or sufficiently high at the beginning of learning. This supposed maximum 
information forces networks to converge to stable points very rapidly. This supposed 
maximum information is obtained by using the ordinary winner-take-all algorithm. Thus, 
this method is one in which the winter-takeall is combined with a process of information 
maximization. 
We also present a new approach to detect the importance of a given variable, that is, 
information loss. Information loss is difference between information with all variables and 
information without a variable, and is used to represent the importance of a given variable. 
Forced information with information loss can be used to extract main features of input 
patterns. Connection weights can be interpreted as the main characteristics of classified 
groups. On the other hand, information loss is used to extract the features on which input 



 Machine Learning 

 

124 

H. Zhang, A. C. Berg, M. Maire, and J. Malik. SVM-KNN: discriminative nearest neighbor 
classification for visual category recognition. Proc. of the IEEE Conf. o Computer 
Vision and Pattern Recognition, pages 2126 - 2136, 2006. 

6 

Forced Information for Information-Theoretic 
Competitive Learning 

Ryotaro Kamimura 
IT Education Center, Information Technology Center, Tokai University,  

Japan 

1. Introduction 
We have proposed a new information-theoretic approach to competitive learning [1], [2], [3], 
[4], [5]. The information-theoretic method is a very flexible type of competitive learning, 
compared with conventional competitive learning. However, some problems have been 
pointed out concerning the information-theoretic method, for example, slow convergence. In 
this paper, we propose a new computational method to accelerate a process of information 
maximization. In addition, an information loss is introduced to detect the salient features of 
input patterns. 
Competitive learning is one of the most important techniques in neural networks with many 
problems such as the dead neuron problem [6], [7]. Thus, many methods have been 
proposed to solve those problems, for example, conscience learning [8], frequency-sensitive 
learning [9], rival penalized competitive learning [10], lotto-type competitive learning [11] 
and entropy maximization [12]. We have so far developed information-theoretic competitive 
learning to solve those fundamental problems of competitive learning. In the information-
theoretic learning, no dead neurons can be produced, because entropy of competitive units 
must be maximized. In addition, experimental results have shown that final connection 
weights are relatively independent of initial conditions. 
However, one of the major problems is that it is sometimes slow in increasing information. 
As a problem becomes more complex, heavier computation is needed. Without solving this 
problem, it is impossible for the information-theoretic method to be applied to practical 
problems. To overcome this problem, we propose a new type of computational method to 
accelerate a process of information maximization. In this method, information is supposed 
to be maximized or sufficiently high at the beginning of learning. This supposed maximum 
information forces networks to converge to stable points very rapidly. This supposed 
maximum information is obtained by using the ordinary winner-take-all algorithm. Thus, 
this method is one in which the winter-takeall is combined with a process of information 
maximization. 
We also present a new approach to detect the importance of a given variable, that is, 
information loss. Information loss is difference between information with all variables and 
information without a variable, and is used to represent the importance of a given variable. 
Forced information with information loss can be used to extract main features of input 
patterns. Connection weights can be interpreted as the main characteristics of classified 
groups. On the other hand, information loss is used to extract the features on which input 



 Machine Learning 

 

126 

patterns or groups are classified. Thus, forced information and information loss has a 
possibility to show clearly main features of input patterns. 
In Section 2, we present how to compute forced information as well as how to compute 
information loss. In Section 3 and 4, we present experimental results on a simple symmetric 
and Senate problem to show that one epoch is enough to reach stable points. In Section 5, we 
present experimental results on a student survey. In this section, we try to show that 
learning is accelerated more than sixty times faster, and explicit representations can be 
obtained. 

2. Information maximization 
We consider information content stored in competitive unit activation patterns. For this 
purpose, let us define information to be stored in a neural system. Information stored in a 
system is represented by decrease in uncertainty [13]. Uncertainty decrease, that is, 
information I, is defined by 

 
(1) 

where p(j), p(s) and p(j|s) denote the probability of firing of the jth unit, the probability of 
the sth input pattern and the conditional probability of the jth unit, given the sth input 
pattern, respectively. When the conditional probability p(j|s) is independent of the 
occurrence of the sth input pattern, that is, p(j|s) = p(j), mutual information becomes zero. 
 

 
Fig. 1. A single-layered network architecture for information maximization. 

Let us present update rules to maximize information content. As shown in Figure 2, a 
network is composed of input units  and competitive units . We used as the output 
function the inverse of the square of the Euclidean distance between connection weights and 
outputs for facilitating the derivation. Thus, distance is defined by 
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An output from the jth competitive unit can be computed by 

 
(3) 

where L is the number of input units, and wjk denote connections from the kth input unit to 
the jth competitive unit. The output is increased as connection weights are closer to input 
patterns. 
The conditional probability p(j|s) is computed by 

 
(4) 

where M denotes the number of competitive units. Since input patterns are supposed to be 
uniformly given to networks, the probability of the jth competitive unit is computed by 

 
(5) 

Information I is computed by 

 
(6) 

Differentiating information with respect to input-competitive connections wjk, we have 

 

(7) 

where β is the learning parameter, and 

 
(8) 

3. Maximum information-forced learning 
One of the major shortcomings of information-theoretic competitive learning is that it is 
sometimes very slow in increasing information content to a sufficiently large level. We here 
present how to accelerate learning by supposing that information is already maximized 
before learning. Thus, we have a conditional probability p(j|s) such that the probability is 
set to ε for a winner, and 1 − ε for all the other units. We here suppose that ε ranges between 
zero and unity. For example, supposing that information is almost maximized with two 
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competitive units, and this means that a conditional probability is close to unity, and all the 
other probabilities are close to zero. Thus, we should take the parameter ε as a value close to 
unity, say, 0.9. In this case, all the other cases are set to 0.1. Weights are updated so as to 
maximize usual information content. The conditional probability p(j|s) is computed by 

 
(9) 

where M denotes the number of competitive units. 

 

(10)

At this place, we suppose that information is already close to a maximum value. This means 
that if the jth unit is a winner, the probability of the jth unit should be as large as possible, 
and close to unity, while all the other units’ firing rates should be as small as possible. 
 

 
 

Fig. 2. A single-layered network architecture for information maximization. 
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This forced information is a method to include the winner-take-all algorithm inside 
information maximization. As already mentioned, the winner-take-all is a realization of 
forced information maximization, because information is supposed to be maximized. 

4. Information loss 
We now define information when a neuron is damaged by some reasons. In this case, 
distance without the mth unit is defined by 

 
(11)

where summation is over all input units except the mth unit. The output without the mth 
unit is defined by 

 
(12)

The normalized output is computed by 

 
(13)

Now, let us define mutual information without the mth input unit by 

 
(14)

where pm and pm(j|s) denote a probability and a conditional probability, given the sth input 
pattern. Information loss is defined by difference between original mutual information with 
full units and connections and mutual information without a unit. Thus, we have 
information loss 

 (15)

For each competitive unit, we compute conditional mutual information for each competitive 
unit. 
For this, we transform mutual information as follows. 

 
(16)

Conditional mutual information for each competitive unit is defined by 

 
(17)
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Thus, conditional information loss is defined by 

 (18)

We have the following relation: 

 
(19)

5. Experiment No.1: symmetric data 
In this experiment, we try to show that symmetric data can easily be classified by forced 
information. Figure 3 shows a network architecture where six input patterns are given into 
input units. These input patterns can naturally be classified into two classes. Figure 4 shows 
 

 
Fig. 3. A network architecture for the artificial data. 

 
Table 1: U.S. congressmen by their voting attitude on 19 environmental bills. The first 8 
congressmen are Republicans, while the latter 7 (from 9 to 15) congressmen are Democrats. 
In the table, 1, 0 and 0.5 represent yes, no and undecided, respectively. 
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Fig. 4. Information, forced information, probabilities and information losses for the artificial 
data. 
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information, forced information, probabilities and information losses for the symmetric 
data. When the constant ε is set to 0.8, information reaches a stable point with eight epochs. 
When the constant is increased to 0.95, just one epoch is enough to reach that point. 
However, when information is further increased to 0.99, information reaches easily a stable 
point, but obtained probabilities show rather ambiguous patterns. Compared with forced 
information, information-theoretic learning needs more than 20 epochs and as many as 30 
epochs are needed by competitive learning. We could obtain almost same probabilities 
p(j|s) except ε = 0.99. For the information loss, the first and the sixth input patterns show 
large information loss, that is, important. This represents quite well symmetric input 
patterns. 

6. Experiment No.2: senate problem 
Table 1 shows the data of U.S. congressmen by their voting attitude on 19 environmental 
bills ??. The first 8 congressmen are Republicans, while the latter 7 (from 9 to 15) 
congressmen are Democrats. In the table, 1, 0 and 0.5 represent yes, no and undecided. 
Figure 5 shows information, forced information and information loss for the senate problem. 
When the constant ε is set to 0.8, information reaches a stable point with eight epochs. When 
the constant is increased to 0.95, just one epoch is enough to reach that point. However, 
when information is further increased to 0.99, obtained probabilities show rather ambiguous 
patterns. Compared with forced information, information-theoretic learning needs more 
than 25 epochs and as many as 15 epochs are needed by competitive learning. In addition, in 
almost all cases, the information loss shows the same pattern. The tenth, eleventh and 
twelfth input unit take large losses, meaning that these units play very important roles in 
learning. By examining Table 1, we can see that these units surely divide input patterns into 
two classes. Thus, the information captures the features in input patterns quite well. 

7. Experiment 3: student survey 
7.1 Two groups analysis 
In the third experiment, we report an experimental result on a student survey. We did 
student survey about what subjects they are interested in. The number of students was 580, 
and the number of variables (questionnaires) was 58. Figure 6 shows a network architecture 
with two competitive units. The number of input units is 58 units, corresponding to 58 items 
such as computer, internet and so on. The students must respond to these items with four 
scales. 
In the previous information-theoretic model, when the number of competitive units is large, 
it is sometimes impossible to attain the appropriate level of information. Figure 7 shows 
information as a function of the number of epochs. By using simple information 
maximization, we need as many as 500 epochs to be stabilized. On the other hand, by forced 
information, we need just eight epochs to finish learning. Almost same representations 
could be obtained. Thus, we can say that forced information maximization can accelerate 
learning almost seven times faster than the ordinary information maximization. 
Figure 8 shows connection weights for two groups analysis. The first group represents a 
group with a higher interest in the items. The numbers of students in these groups are 256 
and 324.  
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Fig. 5. Information, forced information, probabilities and information loss for the senate 
problem. 
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Fig. 6. Network architecture for a student analysis. 

 
Fig. 7. Information and forced information as a function of the number of epochs by 
information-theoretic and forced-information method. 

 
Fig. 8. Connection weights for two groups analysis. 
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This means that the method can classify 580 students by the magnitude of connection 
weights. Because connection weights try to imitate input patterns directly, we can see that 
two competitive units show students with high interest and low interest in the items in the 
questionnaire. 
Table 2 represents the ranking of items for a group with a high interest in the items. As can 
be seen in the table, students respond highly to internet and computer, because we did this 
survey for the classes of information technology. Except these items, the majority is related 
to the so-called entertainment such as music, travel, movie. In addition, these students have 
some interest in human relations as well as qualification. On the other hand, these students 
have little interest in traditional and academic sciences such as physics and mathematics. 
Table 3 represents the ranking of items for a group with a low interest in the items. Except 
the difference of the strength, this group is similar to the first group. That is, students in this 
gropup respond highly to internet and computer, and they have keen interest in entertainment. 
On the other hand, these students have little interest in traditional and academic sciences 
such as physics and mathematics. Table 4 shows the information loss for the two groups. As 
can be seen in the table, two groups are separated by items such as multimedia, business. 
Especially, many terms concerning business appear in the table. This means that two groups 
are separated mainly based upon business. The most important thing to differentiate two 
groups is whether students have some interest in buisiness or multimedia. Let us see what the 
information loss represents in actual cases. Figure 9 shows the information loss (a) and 
difference between two connection weights (b). As can be seen in the figure, two figures are 
quite similar to each other. Only difference is the magnitude of two measures. Table 5 shows 
the ranking of items by difference between two connection weights. As can be seen in the 
table, the items in the list is quite similar to those in information loss. This means that the 
information loss in this case is based upon difference between two connection weights. 
 

 
Table 2. Ranking of items for a group of students who responded to items with a low level 
of interest. 
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quite similar to each other. Only difference is the magnitude of two measures. Table 5 shows 
the ranking of items by difference between two connection weights. As can be seen in the 
table, the items in the list is quite similar to those in information loss. This means that the 
information loss in this case is based upon difference between two connection weights. 
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Fig. 9. Information loss (a) and difference between two connection weights (w2k −w1k) (b). 
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Table 5. Difference between two groups of students. 

7.2 Three groups analysis 
We increase the number of competitive units from two to three units as shown in Figure 10. 
Figure 11 shows connection weights for three groups. The third group detected at this time 
shows the lowest values of connection weights. The numbers of the first, the second and the 
third groups are 216, 341 and 23. Thus, the third group represents only a fraction of the data. 
Table 6 shows connection weights for students with strong interest in the items. Similar to a 
case with two groups, we can see that students have much interest in entertainment. Table 7 
shows connection weights with moderate interest in the items. In the list, qualification and 
human relations disappear, and all the items expcet computer and internet are related to 
entertainment. Table 8 shows connection weights for the third group with low interest in the 
items. Though the scores are much lower than the other groups, this group also shows keen 
interest in entertainment. Table 9 shows conditional information losses for the first 
competitive unit. Table 10 shows information losses for the second competitive unit. Both 
tables show the same patterns of items in which business-related terms such as economics, 
stock show high values of information losses. Table 11shows a table of items for the third 
competitive units. Though the strength of information losses is small, more practical items 
such as cooking are detected. 

7.3 Results by the principal component analysis 
Figure 12 shows the contribution rates of principal components. As can be seen in the figure, 
the first principal component play a very important role in this case. Thus, we interpret the 
first principal component. Table 12 shows the ranking of items for the first principal 
component. 
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Table 11. Information loss No.3(×10−3). 

 
Fig. 12. Contribution rates for 58 variables. 

The ranking seems to be quite similar to that obtained by the information loss. This means that 
the principal component seems to represent the main features by which different groups can 
be separated. On the other hand, connection weights by forced information represent the 
absolute magnitude of students’ interest in the subjects. In forced-information maximization, 
we can see information loss as well as connection weights. The connection weights represent 
the absolute value of the importance. On the other hand, the information loss represents 
difference between several groups. This is a kind of relative importance of variables, because 
the importance of a variable in one group is measured in a relation to the other group. 
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Table 12. The first principal component. 

8. Conclusion 
In this paper, we have proposed a new computational method to accelerate a process of 
information maximization. Information-theoretic competitive learning has been introduced 
to solve the fundamental problems of conventional competitive learning such as the dead 
neuron problem, dependency on initial conditions and so on. Though information theoretic 
competitive learning has demonstrated much better performance in solving these problems, 
we have observed that sometimes learning is very slow, especially when problems become 
very complex. To overcome this slow convergence, we have introduced forced information 
maximization. In this method, information is supposed to be maximized before learning. By 
using the WTA algorithm, we have introduced forced information in information-theoretic 
competitive learning. We have applied the method to several problems. In all problems, we 
have seen that learning is much accelerated, and for the student survey case, networks 
converge more than seventy times faster. Though we need to explore the exact mechanism 
of forced information maximization, the computational method proposed in this paper 
enables information theoretic learning to be applied to more large-scale problems. 
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1. Introduction     
The automatic extraction and representation of domain knowledge has been attracting the 
interest of researchers significantly during the last years. The plethora of available 
information, the need for intelligent information retrieval, as well as the rise of the semantic 
web, have motivated information scientists to develop numerous approaches to building 
thesauri, like dictionaries and Ontologies that are specific to a given domain.  
Ontologies are hierarchical structures of domain concepts that are enriched with semantic 
relations linking the concepts together, as well as concept properties. Domain terms 
populate the ontology, as they are assigned to belong to one or more concepts, and enable 
the communication and information exchange between domain experts.  Furthermore, 
domain Ontologies enable information retrieval, data mining, intelligent search, automatic 
translation, question answering within the domain.  
Building Ontologies automatically to the largest extent possible, i.e. keeping manual 
intervention to a minimum, has first the advantage of an easily updateable extracted 
ontology, and second of largely avoiding the subjective, i.e. biased, impact of domain 
experts, which is inevitable in manually-based approaches.     
This chapter describes the knowledge-poor process of extracting ontological information in 
the economic domain mostly automatically from Modern Greek text using statistical filters 
and machine learning techniques.  Fig. 1 shows the various stages of the process. In a first 
stage, the text corpora are being pre-processed. Pre-processing includes tokenization, basic 
morphological tagging and recognition of named and other semantic entities, that are 
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related to the economic domain (e.g. values, amounts, percentages etc), and that would be 
useful in future data-mining applications.  In a second stage, content-words in the text are 
categorized into domain terms and non-terms, i.e. words that are economic terms and words 
that aren’t. Finally, domain terms are linked together with various types of semantic 
relations, such as hyponymy/hyperonymy (is-a), meronymy (part-of), and other relations of 
economic nature that don’t fit the typical profile of is-a or part-of relations.  

2. Comparison to related work 
As mentioned earlier, significant research effort has been put into the automatic extraction 
of domain-specific knowledge. This section describes the most characteristic approaches for 
every stage in the process, and compares the proposed process to them.  
Regarding named entity recognition, Hendrickx and Van den Bosch (2003) employ 
manually tagged and chunked English and German datasets, and use memory-based 
learning to learn new named entities that belong to four categories. They perform iterative 
deepening to optimize their algorithmic parameter and feature selection, and extend the 
learning strategy by adding seed list (gazetteer) information, by performing stacking and by 
making use of unannotated data. They report an average f-score on all four categories of 
78.20% on the English test set. Another approach that makes use of external gazetteers is 
described in (Ciaramita & Altun, 2005), where a Hidden Markov Model and Semi-Markov 
Model is applied to the CoNLL 2003 dataset. The authors report a mean f-score of 90%. 
Multiple stacking is also employed in (Tsukamoto et al., 2002) on Spanish and Dutch data 
and the authors report 71.49% and 60.93% mean f-score respectively. The work in (Sporleder 
et al., 2006) focuses on the Natural History domain. They employ a Dutch zoological 
database to learn three different named-entity classes, and use the contents of specific fields 
of the database to bootstrap the named entity tagger. In order to learn new entities they, too, 
train a memory-based learner. Their reported average f-measure reaches 68.65% for all three 
entity classes. Other approaches (Radu et al., 2003; Wu et al., 2006) utilize combinations of 
classifiers in order to tag new named entities by ensemble learning. 
For the automatic extraction of domain terms, various approaches have been proposed in 
the literature. Regarding the linguistic pre-processing of the text corpora, approaches vary 
from simple tokenization and part-of-speech tagging (Drouin, 2004; Frantzi et al., 2000), to 
the use of shallow parsers and higher-level linguistic processors (Hulth, 2003; Navigli & 
Velardi, 2004). The latter aim at identifying syntactic patterns, like noun phrases, and their 
structure (e.g. head-modifier), in order to rule out tokens that are grammatically impossible 
to constitute terms (e.g. adverbs, verbs, pronouns, articles, etc). The statistical filters, that 
have been employed in previous work to filter out non-terms, also vary. Using corpus 
comparison, the techniques try to identify words/phrases that present a different statistical 
behaviour in the corpus of the target domain, compared to their behaviour in the rest of the 
corpora. Such words/phrases are considered to be terms of the domain in question. In the 
simplest case, the observed frequencies of the candidate terms are compared (Drouin, 2004). 
Kilgarriff (2001) experiments with various other metrics, like the χ2 score, the t-test, mutual 
information, the Mann-Whitney rank test, the Log Likelihood, Fisher’s exact test and the 
TF.IDF (term frequency-inverse document frequency). Frantzi et al. (2000) present a metric 
that combines statistical (frequencies of compound terms and their nested sub-terms) and 
linguistic (context words are assigned a weight of importance) information. 

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help 

 

147 

In the field of taxonomy learning, previous approaches have varied from supervised to 
unsupervised clustering techniques, and from methodologies that make use of external 
taxonomic thesauri, to those that rely on no external resources. Regarding previous 
approaches that employ clustering techniques, Cimiano et al. (2004) describe a conceptual 
clustering method that is based on the Formal Concept Analysis for automatic taxonomy 
construction from text and compares it to similarity-based clustering (agglomerative and Bi-
Section-KMeans clustering). The automatically generated ontology is compared against a 
hand-crafted gold standard ontology for the tourism domain and report a maximum lexical 
recall of 44.6%. Other clustering approaches are described in (Faure & Nedellec, 1998) and 
(Pereira et al., 1993). The former uses a syntactically parsed text (verb-subcategorization 
examples) and utilize iterative clustering to form new concept graphs. The latter also makes 
use of verb-object dependencies, and relative frequencies and relative entropy as similarity 
metrics for clustering. Pekar and Staab (2002) take advantage of a taxonomic thesaurus (a 
tourism-domain ontology) to improve the accuracy of classifying new words into its classes. 
Their classification algorithm is an extension of the k-NN method, which takes into account 
the taxonomic similarity between nearest neighbors. They report a maximum overall 
accuracy of 43.2%. Lendvai (2005) identifies taxonomic relations between two sections of a 
medical document using memory-based learning. Binary vectors represent overlap between 
the two sections, and the tests are run on parts of two Dutch medical encyclopedias. A best 
overall accuracy value of 88% is reported. Witschel (2005) proposes a methodology for 
extending lexical taxonomies by first identifying domain-specific concepts, then calculating 
semantic similarities between concepts, and finally using decision trees to insert new 
concepts to the right position in the taxonomy tree. The classifier is evaluated against two 
subtrees from GermaNet. Navigli and Velardi (2004) interpret semantically the set of 
complex terms that they extract, based on simple string inclusion. They make use of a 
variety of external resources  in order to generate a semantic graph of senses. Another 
approach that makes use of external hierarchically structured textual resources is 
(Makagonov et al., 2005). The authors map an already existing hierarchical structure of 
technical documents to the structure of a domain-specific technical ontology. Words are 
clustered into concepts, and concepts into topics. They evaluate their ontology against the 
structure of existing textbooks in the given domain. Maedche and Volz (2001) make use of 
clustering, as well as pattern-based (regular expressions) approaches in order to extract 
taxonomies from domain-specific German texts. Degeratu and Hatzivassiloglou (2004) also 
make use of syntactic patterns to extract hierarchical relations, and measure the dissimilarity 
between the attributes of the terms using the Lance and Williams coefficient. They evaluate 
their methodology on a collection of forms provided by the state agencies and report a 
precision value of 73% and 85% for is-a and attributive relations respectively. 
Compared to previous approaches, the work described in this chapter includes some 
interesting novel aspects. The whole process is based on the effort to utilize as limited 
external linguistic resources as possible, in order to render the methodology easily portable 
to other languages and other thematic domains. To this purpose no semantic networks like 
WordNet, grammars, hierarchically structured corpora, or pre-existing Ontologies are 
utilized, only two unstructured corpora of free Modern Greek text: one balanced in domain 
and genre, and one domain-specific.  
Another interesting aspect of the present work is the language itself. Modern Greek is a 
relatively free-word-order language, i.e. the ordering of the constituents of a sentence is not 
strictly fixed, like it is in English. Therefore, it is primarily the rich morphology and not the 
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position of a word in a sentence that determines its syntactic and semantic role. As a result, 
the extraction of compound terms, as well as the identification of nested terms, are not 
straightforward and cannot be treated as cases of simple string concatenation. The 
grammatical case of nouns and adjectives affects their semantic labelling. Still, the language-
dependent features of the process are not so binding to not allow it to be applicable to other 
inflectional languages with relative easiness. 
Looking at each stage of the process in more detail, there are further application-specific 
interesting features to be noted. As mentioned earlier in this section, classical approaches to 
named-entity recognition are limited to names of organizations, persons and locations. The 
semantic entities in the present work, however, also cover names of stocks and bonds, as 
well as names of newspapers (due to the newswire genre of the used corpus). Furthermore, 
there are other semantic types that are important for economic information retrieval, like 
quantitative units (e.g. denoting stock and fund quantities, monetary amounts, stock 
values), percentages etc. Temporal words and expressions are also identified due to their 
importance for data mining tasks. 
Traditionally, approaches to terminology extraction make use of a domain-specific corpus 
that is to a large extent restricted in the vocabulary it contains and in the variety of syntactic 
structures it presents. The economic corpus in this work does not consist of syntactically 
standardized taglines of economic news. On the contrary, it presents a very rich variety in 
vocabulary, syntactic formulations, idiomatic expressions, sentence length, making the 
process of term extraction an interesting challenge.  
Finally, regarding semantic relation learning, related work focuses mostly on 
hyperonymy/hyponymy and meronymy, in the process described here attribute relations 
are also detected, i.e. more ‘abstract’ relations that are specific to the economic domain. For 
example, rise and drop are two attributes of the concept value, a stockholder is an attribute of 
the concept company.  

3. Advanced learning schemata 
The lack of sophisticated resources leads unavoidably to the presence of noise in the data. 
Noise is examples of useless data that not only do not help the learning of useful, interesting 
linguistic information, but they also mislead the learning algorithm, harming its 
performance. In machine learning terms, noise appears in the form of class imbalance. 
Positive class instances (instances of the class of interest that needs to be learned) in the data 
are underrepresented compared to negative instances (null class instances). Class imbalance 
has been dealt with in previous work in various ways: oversampling of the minority class 
until it consists of as many examples as the majority class (Japkowicz, 2000), undersampling 
of the majority class (random or focused), the use of cost-sensitive classifiers (Domingos, 
1999), the ROC convex hull method (Provost & Fawcett, 2001).  

3.1 One-sided sampling 
In the present methodology, One-sided sampling (Kubat & Matwin, 1997; Laurikkala, 2001) 
has been chosen to deal with the noise when learning taxonomy relations as it generally 
leads to better classification performance than oversampling, and it avoids the problem of 
arbitrarily assigning initial costs to instances that arises with cost-sensitive classifiers. One-
sided sampling prunes out redundant and misleading negative examples while keeping all 
the positive examples. Instances of the majority class can be categorized into four groups: 
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Noisy are instances that appear within a cluster of examples of the opposite class; borderline 
are instances close to the boundary region between two classes; redundant are instances that 
can be already described by other examples of the same class; safe are instances crucial for 
determining the class. Instances belonging to one of the first three groups need to be 
eliminated as they do not contribute to class prediction. Noisy and borderline examples can 
be detected using Tomek links: two examples, x and y, of opposite classes have a distance of 
δ(x,y). This pair of instances constitutes a Tomek link if no other example z exists, such that 
δ(x,z) < δ(x,y) or δ(y,z) < δ(x,y). Redundant instances may be removed by creating a consistent 
subset of the initial training set. A subset C of training set T is consistent with T, if, when 
using the nearest neighbor (1-NN) algorithm, it correctly classifies all the instances in T. To 
this end we start with a subset C of the initial dataset T, consisting of all positive examples 
and a few (e.g. 20) negative examples. We train a learner with C and try to classify the rest of 
the instances of the initial training set. All misclassified instances are added to C, which is 
the final reduced dataset. The normalized Euclidean distance function is used to detect 
noisy and borderline examples. One-sided sampling has been used in the past in several 
domains such as image processing (Kubat & Matwin, 1997), medicine (Laurikkala, 2001), 
text categorization (Lewis & Gale, 1994).  

3.2 Ensemble learning 
Ensemble learning schemata have also been experimented with to deal with the noise and 
help the learner to disregard the useless foggy examples and focus on the useful content 
data. An ensemble of classifiers is a set of individual (base) classifiers whose output is 
combined in order to classify new instances. The construction of good ensembles of 
classifiers is one of the most active areas of research in supervised learning, aiming mainly 
at discovering ensembles that are more accurate than the individual classifiers that make 
them up (Dietterich, 2002). Various schemes have been proposed for combining the 
predictions of the base classifiers into a unique output. The most important are bagging, 
boosting and stacking. Bagging entails the random partitioning of the dataset in equally sized 
subsets (bags) using resampling (Breiman, 1996). Each subset trains the same base classifier 
and produces a classification model (hypothesis). The class of every new test instance is 
predicted by every model, and the class label with the majority vote is assigned to the test 
instance. Unlike bagging, where the models are created separately, boosting works 
iteratively, i.e. each new model is influenced by the performance of those built previously 
(Freund & Schapire, 1996; Schapire et al., 2002). In other words, new models are forced, by 
appropriate weighting, to focus on instances that have been handled incorrectly by older 
ones. Finally, stacking usually combines the models created by different base classifiers, 
unlike bagging and stacking where all base models are constructed by the same classifier 
(Dietterich, 2002). After constructing the different base models, a new instance is fed into 
them, and each model predicts a class label. These predictions form the input to another, 
higher-level classifier (the so-called meta-learner), that combines them into a final prediction. 

4. The corpora  
The corpora used in our experiments were:  
1. The ILSP/ELEFTHEROTYPIA (Hatzigeorgiu et al., 2000) and ESPRIT 860 (Partners of 

ESPRIT-291/820, 1986) Corpora (a total of 300,000 words). Both these corpora are 
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balanced in genre and domain and manually annotated with complete morphological 
information. Further (phrase structure) information is obtained automatically. 

2. The DELOS Corpus (Kermanidis et al., 2002) is a collection of economic domain texts of 
approximately five million words and of varying genre. It has been automatically 
annotated from the ground up. Morphological tagging on DELOS was performed by 
the analyzer of (Sgarbas et al., 2000). Accuracy in part-of-speech and case tagging 
reaches 98% and 94% accuracy respectively. Further (phrase structure) information is 
again obtained automatically. 

All of the above corpora (including DELOS) are collections of newspaper and journal 
articles. More specifically, regarding DELOS, the collection consists of texts taken from the 
financial newspaper EXPRESS, reports from the Foundation for Economic and Industrial 
Research, research papers from the Athens University of Economics and several reports 
from the Bank of Greece. The documents are of varying genre like press reportage, news, 
articles, interviews and scientific studies and cover all the basic areas of the economic 
domain, i.e. microeconomics, macroeconomics, international economics, finance, business 
administration, economic history, economic law, public economics etc. Therefore, it presents 
richness in vocabulary, in linguistic structure, in the use of idiomatic expressions and 
colloquialisms, which is not encountered in the highly domain- and language-restricted 
texts used normally for term extraction (e.g. medical records, technical articles, tourist site 
descriptions). To indicate the linguistic complexity of the corpus, we mention that the length 
of noun phrases varies from 1 to 53 word tokens. 
All the corpora have been phrase-analyzed by the chunker described in detail in (Stamatatos 
et al., 2000). Noun, verb, prepositional, adverbial phrases and conjunctions are detected via 
multi-pass parsing. From the above phrases, noun and prepositional phrases only are taken 
into account for the present task, as they are the only types of phrases that may include 
terms. Regarding the phrases of interest, precision and recall reach 85.6% and 94.5% for 
noun phrases, and 99.1% and 93.9% for prepositional phrases respectively. The robustness 
of the chunker and its independence on extravagant information makes it suitable to deal 
with a style-varying and complicated in linguistic structure corpus like DELOS.  
It should be noted that phrases are non-overlapping. Embedded phrased are flatly split into 
distinct phrases. Nominal modifiers in the genitive case are included in the same phrase 
with the noun they modify; nouns joined by a coordinating conjunction are grouped into 
one phrase. The chunker identifies basic phrase constructions during the first passes (e.g. 
adjective-nouns, article nouns), and combines smaller phrases into lon ger ones in later 
passes (e.g. coordination, inclusion of genitive modifiers, compound phrases). As a result, 
named entities, proper nouns, compound nominal constructions are identified during 
chunking among the rest of the noun phrases. 

5. Learning semantic entities 
The tagging of semantic entities in written text is an important subtask for information 
retrieval and data mining and refers to the task of identifying the entities and assigning 
them to the appropriate semantic category. In the present work, each token in the economic 
corpus constitutes a candidate semantic entity. Each candidate entity is represented by a 
feature-value vector, suitable for learning. The features forming the vector are: 
1. The token lemma. In the case where automatic lemmatization was not able to produce 

the token lemma, the token itself is the value of this feature. 
2. The part-of-speech category of the token.  
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3. The morphological tag of the token. The morphological tag is a string of 3 characters 
encoding the case, number, and gender of the token, if it is nominal (noun, adjective or 
article). 

4. The case tag of the token. The case tag is one of three characters denoting the token case. 
5. Capitalization. A Boolean feature encodes whether the first letter of the token is 

capitalized or not.   
For each candidate entity, context information was included in the feature-value vector, by 
taking into account the two tokens preceding and the two tokens following it. Each of these 
tokens was represented in the vector by the five features described above. As a result, a total 
of 25 (5x5) features are used to form the instance vectors.  
The class label assigns a semantic tag to each candidate token. These tags represent the 
entity boundaries (whether the candidate token is the start, the end or inside an entity) as 
well as the semantic identity of the token. A total of 40,000 tokens were manually tagged 
with their class value. Table 1 shows the various values of the class feature, as well as their 
frequency among the total number of tokens. 
 

Tag Description Percentage 
AE Start of company/organization/bank name 1.4% 
ME Middle of company/organization/bank name 0.74% 
TE End of company/organization/bank name 1.4% 
E Company/organization/bank 1-word name 1.1% 
AP Start of monetary amount/price/value  0.88% 
MP Middle of monetary amount/price/value  0.63% 
TP End of monetary amount/price/value  0.88% 
AAM Start of number of stocks/bonds 0.3% 
MAM Middle of number of stocks/bonds 0.42% 
TAM End of number of stocks/bonds 0.3% 
AT Start of percentage value 0.73% 
MT Middle of percentage value 0.08% 
TT End of percentage value 0.73% 
AX Start of temporal expression 1% 
MX Middle of temporal expression 0.75% 
TX End of temporal expression 1% 
X 1-word temporal expression 0.55% 
AO Start of stock/bond name 0.16% 
MO Middle of stock/bond name 0.17% 
TO End of stock/bond name 0.16% 
ON 1-word stock/bond name 0.05% 
AL Start of location name 0.21% 
ML Middle of location name 0.48% 
TL End of location name 0.21% 
L 1-word location name 0.33% 
F 1-word newspaper/journal name 0.14% 
AN Start of person name 0.18% 
MN Middle of person name 0.02% 
TN End of person name 0.18% 
N 1-word person name 0.06% 

Table 1. Values of the semantic entities class label 
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Unlike most previous approaches that focus on labelling three or four semantic categories of 
named entities, the present work deals with a total of 30 class values plus the non-entity 
(NULL) value, as can be seen in the previous table. 
Another important piece of information provided disclosed by the previous table is the 
imbalance between the populations of the positive instances (entities) in the dataset, that 
form only 15% of the total number of instances, and the negative instances (non-entities). 
This imbalance leads to serious classification problems when trying to classify instances that 
belong to one of the minority classes (Kubat & Matwin, 1997). By removing negative 
examples, so that their number reaches that of the positive examples (Laurikkala, 2001), the 
imbalance is attacked and the results prove that classification accuracy of the positive 
instances improves considerably. 

5.1 Experimental setup and results 
Instance-based learning (1-NN) was the algorithm selected to classify the candidate semantic 
entities. 1-NN was chosen because, due to storing all examples in memory, it is able to deal 
competently with exceptions and low-frequency events, which are important in language 
learning tasks (Daelemans et al., 1999), and are ignored by other learning algorithms.  
Several experiments were conducted for determining the optimal context window size of 
the candidate entities. Sizes (-2, +2) - two tokens preceding and two following the candidate 
entity - and (-1, +1) - one token preceding and one following the candidate entity - were 
experimented with, and comparative performance results were obtained. When decreasing 
the size from (-2, +2) to (-1, +1), the number of features forming the instance vectors drops 
from 25 to 15. The results are shown in the second and third column of Table 2.  
Another set of experiments focused on comparing classification in one stage and in two 
stages, i.e. stacking. In the first stage, the Instance-based learner predicts the class labels of 
the test instances. In the second stage, the predictions of the first phase are added to the set 
of features that are described in the previous section. The total number of features in the 
second stage, when experimenting with the (-2, +2) context window, is 30. The results of 
learning in two stages with window size (-1, +1) are shown in the fourth column of Table 2. 
Comparative experiments were also performed with and without the removal of negative 
examples, in order to prove the increase in performance after applying random 
undersampling to the data. With random undersampling, random instances of the majority 
class are removed from the dataset in order for their number to reach that of the positive 
classes. The classification results, after applying the undersampling procedure and for 
context window size (-1, +1), are presented in the last column of Table 2. Testing of the 
algorithm was performed using 10-fold cross validation. 
For a qualitative analysis of the results, a set of graphs follows that groups them together 
into clusters. Fig. 2 shows the impact of the selected context window size on the 
classification process to the various classes in the initial dataset. The bars represent the 
average f-score for every semantic entity type, e.g. Stock/bond name is the average value of 
the AO, MO, TO and ON classes. Certain types of entities require a larger window for their 
accurate detection, while larger context is misleading for other types. To the former category 
belong multi-word entities like stock names, person and location names. Entities that consist 
normally of two words at the most, or one word and a symbol (like amounts, prices, etc.) 
belong to the second category. 
Fig. 3 shows the grouped results for the start, middle, end and 1–word labels in the initial 
dataset. For example, the Start bar is the average f-score over all the start labels. The Middle 
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class group presents the lowest results, especially when a small context window size is used. 
This may be attributed to the fact that tokens in the inside of an entity are normally neither 
preceded nor followed by characteristic keywords or symbols. Therefore, their detection is 
harder than that of the entity borders, as the environment surrounding the entity helps the 
classification decision for the borders. 
 

Class F-score  
(-1,+1) 

F-score  
(-2,+2) 

F-score 
Stacking 

F-score 
Undersampling

NULL 0.969 0.96 0.981 0.939
AE 0.728 0.683 0.882 0.899
ME 0.557 0.64 0.831 0.808
TE 0.768 0.74 0.871 0.903
AP 0.851 0.767 0.96 0.96
MP 0.865 0.852 0.957 0.963
TP 0.84 0.774 0.932 0.932
E 0.667 0.621 0.721 0.803
AAM 0.754 0.675 0.895 0.895
MAM 0.769 0.708 0.944 0.911
TAM 0.611 0.643 0.865 0.838
AO 0.353 0.465 0.81 0.85
MO 0.194 0.293 0.55 0.5
TO 0.143 0.35 0.629 0.611
AT 0.911 0.802 0.985 0.98
MT 0.588 0.857 0.952 0.952
TT 0.939 0.818 0.954 0.96
AX 0.585 0.558 0.755 0.806
TX 0.588 0.492 0.736 0.774
AL 0.421 0.449 0.651 0.571
ML 0.059 0.17 0.562 0.632
TL 0.278 0.293 0.524 0.465
X 0.452 0.457 0.567 0.694
F 0.889 0.947 0.944 1
AN 0.286 0.364 0.65 0.756
TN 0.378 0.632 0.65 0.579
MX 0.524 0.561 0.802 0.8
MN 0 0 0 0
ON 0 0 0 0
N 0.667 0.571 0.533 0.571
L 0.519 0.506 0.55 0.565

Table 2. Detailed experimental results 

As can be seen in Table 2, classification for certain types reaches a poor score. Looking more 
closely at Table 1, this can be attributed without a doubt to the sparseness that characterizes  
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belong multi-word entities like stock names, person and location names. Entities that consist 
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Fig. 2. The impact of the context window size 
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Fig. 3. The average results for the Start, Middle, End and 1-word class groups 

these types (multi-word person names, multi-word stock/bond names, multi-word 
locations). An interesting exception to this rule is newspaper/journal names, that reach very 
high scores, despite their low frequency, because they are normally introduced by specific 
words like ‘εφημερίδα’ (newspaper) or ‘περιοδικό’ (journal). 
Table 2 also shows the high f-score achieved for the negative (NULL) class compared to that 
of the positive classes, due to its high over-representation in the dataset. 
The fourth column of Table 2 shows the positive effects of stacking on the task at hand. The 
f-score increases up to more than 50% after applying two-phase learning. This improvement 
is due to two reasons: first, the sequential nature of the class label tags (start, middle, end). 
The class of one entity depends largely on the class of the preceding and the following 
entities. Second, the inclusion of the predicted class of the candidate entity (from the 

Learning to Build a Semantic Thesaurus from Free Text Corpora without External Help 

 

155 

previous learning stage) in the feature vector of the second stage forces the classifier to focus 
on the mistakes it made, and try to correct them. Difficult cases like multi-word locations 
and multi-word names are now dealt with satisfactorily. 
Random undersampling also proved highly beneficial for the majority of the entity 
categories. It forces the learner to pay more attention to the minority classes. The random 
nature of the undersampling process is the reason that the results for certain entity types 
were not improved, as certain useful negative examples may have been removed. 
The positive effects of stacking and undersampling are shown clearly in Figure 4. 
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Fig. 4. The average results for all semantic entity types using Stacking and Undersampling. 

One-word stock/bond names (ON) occur extremely seldom in the corpus. Person names 
consisting of more than two words (MN), are even more rare. The learner has not been able 
to detect these classes due to the sparseness.  
Given, however, the nature and complexity of the corpus, the low level of pre-processing 
(compared to previous approaches that use phrase-chunked input), and the large number of 
class labels, the results of Table 2 are very impressive when compared to the ones reported 
in the literature. 

6. Extracting economic terms 
The next step of the procedure is the automatic extraction of economic terms, following the 
methodology described in (Thanopoulos et al., 2006). Corpora comparison was employed 
for the extraction of economic terms. Corpora comparison detects the difference in statistical 
behavior that a term presents in a balanced and in a domain-specific corpus. 
Noun and prepositional phrases of the two corpora are selected to constitute candidate 
terms, as only these phrase types are likely to contain terms. The occurrences of words and 
multi-word units (n-grams), pure as well as nested, are counted. Longer candidate terms are 
split into smaller units (tri-grams into bi-grams and uni-grams, bi-grams into uni-grams). 
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high scores, despite their low frequency, because they are normally introduced by specific 
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previous learning stage) in the feature vector of the second stage forces the classifier to focus 
on the mistakes it made, and try to correct them. Difficult cases like multi-word locations 
and multi-word names are now dealt with satisfactorily. 
Random undersampling also proved highly beneficial for the majority of the entity 
categories. It forces the learner to pay more attention to the minority classes. The random 
nature of the undersampling process is the reason that the results for certain entity types 
were not improved, as certain useful negative examples may have been removed. 
The positive effects of stacking and undersampling are shown clearly in Figure 4. 
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One-word stock/bond names (ON) occur extremely seldom in the corpus. Person names 
consisting of more than two words (MN), are even more rare. The learner has not been able 
to detect these classes due to the sparseness.  
Given, however, the nature and complexity of the corpus, the low level of pre-processing 
(compared to previous approaches that use phrase-chunked input), and the large number of 
class labels, the results of Table 2 are very impressive when compared to the ones reported 
in the literature. 
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The next step of the procedure is the automatic extraction of economic terms, following the 
methodology described in (Thanopoulos et al., 2006). Corpora comparison was employed 
for the extraction of economic terms. Corpora comparison detects the difference in statistical 
behavior that a term presents in a balanced and in a domain-specific corpus. 
Noun and prepositional phrases of the two corpora are selected to constitute candidate 
terms, as only these phrase types are likely to contain terms. The occurrences of words and 
multi-word units (n-grams), pure as well as nested, are counted. Longer candidate terms are 
split into smaller units (tri-grams into bi-grams and uni-grams, bi-grams into uni-grams). 
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Due to the relative freedom in the word ordering in Modern Greek sentences, bi-gram A B 
(A and B being the two lemmata forming the bi-gram) is considered to be identical to bi-
gram B A, if the bi-gram is not a semantic entity. Their joint count in the corpora is 
calculated and taken into account. The resulting uni-grams and bi-grams are the candidate 
terms. The candidate term counts in the corpora are then used in statistical filters. 
Statistical filtering is performed in two stages: First the relative frequencies are calculated for 
each candidate term. Then, for those candidate terms that present a relative frequency value 
greater than 1, the Log Likelihood ratio (LLR) is calculated. The LLR metric detects how 
surprising (or not) it is for a candidate term to appear in the domain-specific or in the 
balanced corpus (compared to its expected appearance count), and therefore constitute an 
economic domain term (or not). 
 

Rank Word Translation Count 1 Count 2 RF LLR 
1 εταιρία company 5396 0 1845.9 852.0 
2 δρχ drachmas 3003 1 342.5 465.5 
3 μετοχή stock 2827 6 74.4 414.0 
4 αγορά buy 2330 33 11.9 257.2 
5 αύξηση growth, rise 2746 66 7.1 247.6 
6 κέρδος profit 1820 15 20.1 228.2 
7 τράπεζα bank 1367 11 20.3 171.8 
8 επιχείρηση enterprise 1969 56 6.0 162.1 
9 κεφάλαιο capital 1325 14 15.6 157.3 

10 σημαντικός important 1872 56 5.7 149.3 
11 πώληση sale 1203 11 17.9 147.3 
12 προϊόν product 1282 16 13.3 146.0 
13 όμιλος company, group 1036 5 32.2 140.0 
14 Α.Ε. INC 820 0 280.7 126. 4 
15 μετοχικός stocking 790 2 54.1 112.8 
16 τιμή price 1722 70 4.2 110.9 
17 επιτόκιο interest 821 4 31.2 110.0 
18 υψηλός high 711 0 243.4 109.2 
19 κόστος cost 1031 19 9.0 103.4 
20 κλάδος branch 833 7 19.0 103.2 

Table 3. The 20 most highly ranked terms 

Table 3 shows the relative frequency (RF) and LLR scores of the 20 most highly ranked 
economic terms, ordered by their LLR value. Count 1 and Count 2 are the term counts in the 
domain-specific and the balanced corpus respectively. An interesting term is ‘υψηλός’, the 
ancient Greek form for ‘high’, used today almost exclusively in the context of the degree of 
performance, growth, rise, profit, cost, drop (i.e. the appropriate form in economic context), 
as opposed to its modern form ‘ψηλός’, which is used in the concept of the degree of actual 
height. 
A particularity of the present work is that, unlike in most previous approaches to term 
extraction, the domain-specific corpus available to us is quite large compared to the 
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balanced corpus. As a result, several terms that appear in DELOS do not appear in the 
balanced corpus, making it impossible for the LLR statistic to detect them. In other words, 
these terms cannot be identified by traditional corpora comparison. Lidstone’s law 
(Manning & Schuetze, 1999) was applied to the candidate terms, i.e. each candidate term 
count was augmented by a value of λ=0.5 in both corpora. Thereby, terms that actually do 
not appear in the balanced corpus at all, end up having a Count 2 = 0.5. This value was 
chosen for λ because, due to the small size of the balanced corpus, the probability of coming 
across a previously unseen word is significant. 
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Fig. 5. Precision (y-axis) for the N-best candidate terms (x-axis) that appear in both corpora 

As can be seen in Fig. 5, the term extraction methodology reaches a precision of 82% for 
the 200 N-best candidate terms. In this figure, strongly economic are terms that are 
characteristic of the domain and necessary for understanding domain texts. Economic are 
terms that function as economic within a context of this domain, but may also have a 
different meaning outside this domain. Mostly non-economic are words that are connected 
to the specific domain only indirectly, or more general terms that normally appear outside 
the economic domain, but may carry an economic sense in certain limited cases. Non-
economic are terms that never appear in an economic sense or can be related to the domain 
in any way. 

7. Learning semantic relations 
The final step of the proposed methodology focuses on the identification of the taxonomic 
relations between the terms that were extracted in the previous phase. From the previous 
phase, the 250 most highly ranked terms (according to the LLR metric) were selected, and 
each one was paired with the rest. Syntactic and semantic information regarding the term 
pair has been encoded in a set of attributes that form a feature-value vector for each pair of 
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balanced corpus. As a result, several terms that appear in DELOS do not appear in the 
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As can be seen in Fig. 5, the term extraction methodology reaches a precision of 82% for 
the 200 N-best candidate terms. In this figure, strongly economic are terms that are 
characteristic of the domain and necessary for understanding domain texts. Economic are 
terms that function as economic within a context of this domain, but may also have a 
different meaning outside this domain. Mostly non-economic are words that are connected 
to the specific domain only indirectly, or more general terms that normally appear outside 
the economic domain, but may carry an economic sense in certain limited cases. Non-
economic are terms that never appear in an economic sense or can be related to the domain 
in any way. 

7. Learning semantic relations 
The final step of the proposed methodology focuses on the identification of the taxonomic 
relations between the terms that were extracted in the previous phase. From the previous 
phase, the 250 most highly ranked terms (according to the LLR metric) were selected, and 
each one was paired with the rest. Syntactic and semantic information regarding the term 
pair has been encoded in a set of attributes that form a feature-value vector for each pair of 
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terms. The proposed syntactic/semantic attributes are empirical and are described in the 
next sections. The term lemmata, their frequencies, and their part-of-speech tags were also 
included in the feature set. The semantic relations of a total of 6000 term pairs were 
manually annotated by economy and finance experts with one of the four class label values: 
is-a, part-of, attribute relation and no relation (null). 

7.1 Semantic context vectors 
The sense of a term is strongly linked to the context the term appears in. To this end, for 
each extracted term semantic context vectors have been constructed, that are comprised by 
the ten most frequent words the term co occurs with in the domain-specific corpus. A 
context window of two words preceding and two words following the term for every 
occurrence of the term in the corpus is formed. All non-content words (prepositions, articles, 
pronouns, particles, conjunctions) are disregarded, while acronyms, abbreviations, and 
certain symbols (e.g. %, €) are taken into account because of their importance for 
determining the semantic profile of the term in the given domain. Bi-grams (pairs of the 
term with each word within the con-text window) are generated and their frequency is 
recorded. The ten words that present the highest bi-gram frequency scores are chosen to 
form the context vector of the term. 

7.2 Semantic similarity 
For each pair of terms, their semantic similarity is calculated, based on their semantic 
context vectors. The smaller the distance between the context vectors, the more similar the 
terms’ semantics. The value of semantic similarity is an integer with a value ranging from 0 
to 10, which denotes the number of common words two context vectors share.  

7.3 Semantic diversity 
Another important semantic feature that is taken into account is how ‘diverse’ the semantic 
properties of a term are, i.e. the number of other terms that a term shares semantic 
properties with.  This property is important when creating taxonomic hierarchies, because, 
the more ‘shared’ the semantic behaviour of a term is, the more likely it is for the term to 
have a higher place in the hierarchy. The notion of ‘semantic diversity’ is included in the 
feature set by calculating the percentage of the total number of terms whose semantic 
similarity with the focus term (one of the two terms whose taxonomic relation is to be 
determined) is at least 1.  

7.4 Syntactic patterns 
Syntactic information, regarding the linguistic patterns that govern the co occurrence of two 
terms, is significant for extracting taxonomic information. For languages with a relatively 
strict sentence structure, like English, such patterns are easier to detect (Hearst, 1992), and 
their impact on taxonomy learning more straightforward. 
As mentioned earlier, Modern Greek presents a larger degree of freedom in the ordering of 
the constituents of a sentence, due to its rich morphology and its complex declination 
system. This freedom makes it difficult to detect syntactic patterns, and, even if they are 
detected, their contribution to the present task is not that easily observable. 
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However, two Modern Greek syntactic schemata prove very useful for learning taxonomies. 
They are the attributive modification schema and the genitive modification schema. The 
first, known in many languages, is the pattern where (usually) an adjective modifies the 
following noun. The second is typical for Modern Greek, and it is formed by two nominal 
expressions, one of which (usually following the other) appears in the genitive case and 
modifies the preceding nominal, denoting possession, property, origin, quantity, quality. 
The following phrases show examples of the first (example 1) and the second (examples 2, 3 
and 4) schemata respectively. 
 

(1) το μετοχικό[ADJ] κεφάλαιο[NOUN] 
 the stock   capital 
 

(2) η κατάθεση[NOUN] επιταγής [NOUN-GEN] 
 the deposit   check 
 (the deposit of the check) 
 

(3) πρόεδρος[NOUN] του συμβουλίου[NOUN-GEN]  
 head   the council 
 (head of the council) 
 

(4) αύξηση[NOUN] του κεφαλαίου[NOUN-GEN]   
 increase  the capital 
 (capital increase) 
 

Both these schemata enclose the notion of taxonomic relations: hyponymy relations (a check 
deposit is a type of deposit, a stock capital is a type of capital), as well as meronymy relations 
(the head is part of a council). The fourth example incorporates an attribute relation. The 
distinction among the types of relations is not always clear. In the check deposit example, 
the deposit may also be considered an attribute of check, constituting thereby an attribute 
relation. For each pair of terms, the number of times they occur in one of the two schemata 
in the domain-specific corpus is calculated. This information is basically the only language-
dependent feature that is included in the methodology. 

7.5 Experimental setup and results 
9% of the term pairs belong to the is-a class, 17% belong to the attribute class and only 0.5% 
belong to the part-of class. The instances that belong to one of the first three classes are called 
positive, while those that belong to the null class are called negative. 
Different classifiers lead to different results. Preliminary experiments have been run using 
various classification algorithms. C4.5 is Quinlan’s decision tree induction algorithm 
without pruning (Quinlan, 1993). Decision trees were chosen because of their high 
representational power, which is very significant for understanding the impact of each 
feature on the classification accuracy, and because of the knowledge that can be extracted 
from the resulting tree itself. The 1-NN instanced-based learning algorithm is chosen to 
constitute a reference to a baseline classification performance. SVM is the Support Vector 
Machines classifier with a linear kernel. SVM cope well with the sparse data problem, and 
also with noise in the data (an inevitable phenomenon due to the automatic nature of the 
procedure described so far). A first degree polynomial kernel function was selected and the 
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terms. The proposed syntactic/semantic attributes are empirical and are described in the 
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Sequential Minimal Optimization algorithm was chosen to train the Support Vector 
classifier (Platt, 1998). BN is a Bayesian Network classifier, using a hill climbing search 
algorithm, and the conditional probability tables are estimated directly from the data. 
 

 C4.5 1-NN Naïve Bayes SVM BN 
Is-a 0.808 0.694 0.419 0.728 0.762

Part-of 0.4 0 0 0 0
Attribute 0.769 0.765 0.77 0.788 0.775

Null 0.938 0.904 0.892 0.907 0.917

Table 4. Class f-score for various classifiers 

Table 4 shows the f-score for each class achieved when trying to classify new term pairs 
using 10-fold cross validation. The poor results for the part-of relation are attributed mainly 
to its extremely rare occurrence in the data. The economic domain is more ‘abstract’ and is 
governed to a large extent by other relation types. 
To overcome this problem of performance instability among the various classifiers, the 
application of ensemble learning is proposed. The combination of various disagreeing 
classifiers leads to a resulting classifier with better overall predictions (Dietterich, 2002). 
Experiments have been conducted using the aforementioned classifiers in various 
combination schemes using bagging, boosting and stacking.  
Table 5 shows the results using bagging. Experiments were run using several base classifiers 
and several bag sizes as a percentage of the dataset size. A 50% bag size leads to the best 
classification results. 50% bag size means that half of the dataset instances were randomly 
chosen to form the first training set, another random half is used to form the second training 
set etc. After repeating the process ten times (10 iterations), the datasets are used to train the 
same base learner. Majority voting determines the class label for the test instances. The best 
results are achieved with a decision tree base classifier. 
 

 C4.5 1-NN SVM BN 
Is-a 0.856 0.736 0.728 0.766

Part-of 0 0 0 0
Attribute 0.809 0.765 0.786 0.783

Null 0.962 0.912 0.908 0.909

Table 5. Results with bagging 

Table 6 shows the results using boosting. Again, various experiments were conducted with 
different base learners. The best results are again obtained with a decision tree base learner. 
It is interesting to observe the detection of some part-of relations using boosting. 
Table 7 shows the results with stacking. Different base classifiers were combined, and their 
predictions were given as input to the higher level meta-learner. The combined classifiers 
are the 1-NN instance based-learner, the C4.5 decision tree learner, the Naïve Bayes learner, 
the Bayes Network classifier and the Support Vector Machine classifier. After running 
experiments with several combinations, it became obvious, that the greater the number and 
the diversity of the base classifiers, the better the achieved results. Using the same base 
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learner combination, numerous experiments were run to compare meta-learners (shown in 
Table 7). The best results are achieved using SVM as a meta-learner, but the results are very 
satisfactory with the other meta-learners as well. It is interesting to observe that even the 
simple lazy meta-learner, IB1, reaches an f-score higher than 81% for all three classes. This is 
attributed to the predictive power of the combination of base learners. In other words, the 
sophisticated base learners do all the hard work, deal with the difficult cases, and the 
remaining work for the meta-learner is simple. 
 

 C4.5 1-NN SVM BN 
Is-a 0.772 0.719 0.611 0.826

Part-of 0.286 0 0 0
Attribute 0.762 0.744 0.732 0.798

Null 0.922 0.903 0.92 0.944

Table 6. Results with boosting 
 

Meta-learner C4.5 1-NN Naïve Bayes SVM 
Is-a 0.761 0.848 0.827 0.853

Part-of 0 0 0 0
Attribute 0.756 0.818 0.793 0.835

Null 0.94 0.952 0.947 0.957

Table 7. Results with stacking 

A further set of experiments was performed, after applying One-sided sampling to the 
dataset. Approximately 9% of the negative examples were removed (37.5% of which were 
noisy or borderline, and the remaining 62.5% were redundant). The positive effect of 
balancing the dataset is clearer especially when experimenting with the ‘simpler’ 
classification algorithms (IB1or C4.5), as they are more sensitive to class distribution 
imbalances, compared to the more ‘sophisticated’ classification schemata (SVM, boosting). 
After balancing, both sophisticated learners are able to detect part-of relations. Table 8 
shows the classification results for every class.  
 

Meta-learner C4.5 1-NN Naïve Bayes SVM 
Is-a 0.805 0.776 0.781 0.789

Part-of 0 0 0.25 0.33
Attribute 0.805 0.71 0.811 0.794

Null 0.931 0.913 0.915 0.927

Table 8. Results with One-sided sampling 

Comparing the results with ensemble learning (Tables 5, 6 and 7) and simple learning (Table 
4), the positive impact of combining multiple classifiers into a single prediction scheme 
becomes apparent. Mistakes made by one single classifier are amended through the iterative 
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process and the majority voting in bagging, through instance weighting, according to how 
difficult an instance is to predict, in boosting, and through combining the strengths of 
several distinct classifiers in stacking. 
Among the several ensemble schemes, stacking achieves the highest results. As 
mentioned earlier, class prediction performance benefits significantly from combining 
different base learners, because, roughly speaking, the weaknesses of one classifier are 
‘overshadowed’ by the strengths of another, leading to a significant improvement in 
overall prediction. 
The part-of relation proves to be very problematic, even with meta-learning. This is not 
surprising, however, taking into account that only 0.5% of the data instances were labeled as 
part-of relations. This rare occurrence leads all learning algorithms to disregard these 
instances, except for the unpruned decision tree learner, either as a stand-alone classifier or 
as base classifier in a boosting scheme. When no pruning on the decision tree is performed, 
overlooking tree paths that might be important for classification is avoided, and, thereby, 
even very low frequency events may be taken into account. 

8. Discussion and future research  
This chapter described the process of extracting economic knowledge automatically from 
Modern Greek corpora, using statistical and supervised learning techniques. The 
knowledge includes semantic entities, economic terminology, and semantic taxonomic 
relations between the extracted terms. The presented methodology makes use of no 
external resources in order for it to be easily portable to other domains. The language-
dependent features of the described approach are kept to a minimum, so that it can be 
easily adapted to other languages. The lack of sophisticated resources allows for ‘noise’ to 
penetrate the dataset, leading to an imbalance between the distribution of the positive 
(useful for learning) and the negative (useless and misleading) class instances. Advanced 
sampling and ensemble learning techniques were applied, in order to remove noisy and 
redundant examples of the majority class, or focus on the interesting, rare instances. 
Despite the use of minimal resources and the highly automated nature of the process, 
classification performance is very promising, compared to results reported in previous 
work. 
The extracted relations are useful in many ways. They form a generic semantic thesaurus 
that can be further used in several applications. First, the knowledge is important for 
economy/finance experts for a better understanding and usage of domain concepts. 
Moreover, the thesaurus facilitates intelligent search. Looking for semantically related terms 
improves the quality of the search results. The same holds for information retrieval and data 
mining applications. Intelligent question/answering systems that take into account terms 
that are semantically related to the terms appearing in queries return information that is 
more relevant, more accurate and more complete.   
The economic domain is governed by semantic relations that are characteristic of the 
domain (buy/sell, monetary/percentage, rise/drop relations etc.), and that have been 
included under the attribute relation label in this work. A more fine-grained distinction 
between these types of attribute relations is a challenging future research direction, 
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providing information that is very useful for data mining applications in the particular 
domain. 
Employing other learning algorithms, that are also able to deal with the class imbalance 
barrier, such as neural networks, and discovering the differences in their performance 
compared to the algorithms presented in this chapter, promises to be another future 
research challenge.  
Finally, another future research perspective is building an integrated ontological 
thesaurus from the learned taxonomic relations. Organizing the extracted terms into a 
hierarchical structure, e.g. a semantic network will render the extracted knowledge even 
more useful.  
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1. Introduction      
Computers and electronic devices are becoming more and more present in our day-to-day 
life. This can of course be partly explained by their ability to ease the achievement of 
complex and boring tasks, the important decrease of prices or the new entertainment styles 
they offer. Yet, this real incursion in everybody’s life would not have been possible without 
an important improvement of Human-Computer Interfaces (HCI). This is why HCI are now 
widely studied and become a major trend of research among the scientific community. 
Designing “user-friendly” interfaces usually requires multidisciplinary skills in fields such 
as computer science, ergonomics, psychology, signal processing etc. In this chapter, we 
argue that machine learning methods can help in designing efficient speech-based human-
computer interfaces.  
Speech is often considered as the most convenient and natural way for humans to 
communicate and interact with each other. For this reason, speech and natural language 
processing have been intensively studied for more than 60 years. It has now reached a 
maturity level that should enable the design of efficient voice-based interfaces such as 
Spoken Dialogue Systems (SDS).  Still, designing and optimizing a SDS is not only a matter 
of putting together speech and language processing systems such as Automatic Speech 
Recognition (ASR) (Rabiner & Juang 1993), Spoken Language Understanding (SLU) (Allen 
1998), Natural Language Generation (NLG) (Reiter & Dale 2000), and Text-to-Speech (TTS) 
synthesis (Dutoit 1997) systems. It also requires the development of dialogue strategies 
taking at least into account the performances of these subsystems (and others), the nature of 
the task (e.g. form filling (Pietquin & Dutoit 2006a), tutoring (Graesser et al 2001), robot 
control, or database querying (Pietquin 2006b)), and the user’s behaviour (e.g. 
cooperativeness, expertise (Pietquin 2004)). The great variability of these factors makes rapid 
design of dialogue strategies and reusability across tasks of previous work very complex. 
For these reasons, human experts are generally in charge of tailoring dialogue strategies 
which is costly and time-consuming. In addition, there is also no objective way to compare 
strategies designed by different experts or to objectively qualify their performance. Like for 
most software engineering tasks, such a design is a cyclic process. Strategy hand-coding, 
prototype releases and user tests are required making this process expensive and time-
consuming.  
In the purpose of obtaining automatic data-driven methods and objective performances 
measures for SDS strategy optimisation, statistical learning of optimal dialogue strategies 
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became a leading domain of research (Lemon & Pietquin, 2007). The goal of such 
approaches is to reduce the number of design cycles (Fig.1).  
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Fig. 1.Optimization for minimizing the number of design cycles 

Supervised learning for such an optimization problem would require examples of ideal 
(sub)strategies which are typically unknown. Indeed, no one can actually provide an 
example of what would have objectively been the perfect sequencing of exchanges after 
having participated to a dialogue. Humans have a greater propensity to criticize what is 
wrong than to provide positive proposals. In this context, reinforcement learning using 
Markov Decision Processes (MDPs) (Levin  et al 1998, Singh et al 1999, Scheffler & Young 
2001, Pietquin & Dutoit 2006a, Frampton & Lemon 2006) and Partially Observable MDP 
(POMDPs) (Poupart et al 2005, Young 2006) has become a particular focus.  
Such machine learning methods are very data demanding and sufficient amounts of 
annotated dialogue data are often not available for training. Different standard methods 
have therefore been investigated to deal with the data sparsity that can be split into two 
classes: statistical generation of new data by means of simulation (Schatzmann et al, 2007a) 
or generalization to unseen situations (Henderson et al, 2005). 
In this chapter, we propose to provide an overview of the state of the art in machine 
learning for spoken dialogue systems optimization. This will be illustrated on a simple train 
ticket booking application. 

2. Definitions and formalisms 
2.1 Definitions 
In this text, a dialogue will be describing an interaction between two agents based on 
sequential turn taking. We will only treat the special case of goal-directed dialogs where both 
agents cooperate in order to achieve an aim (or accomplish a task), like obtaining a train 
ticket for example. Social dialogues are out of the scope of this chapter. We will consider 
man-machine dialogs where one of the agents is a human user while the other is a computer 
(or system). In the particular case of a speech-based communication, the computer 
implements a Spoken Dialogue System (SDS). When one of the agents is an SDS, the dialogue 
consists of a sequence of utterances exchanged at each turn. A spoken utterance is the acoustic 
realisation of the intentions or concepts (or dialog acts, communicative acts) one of the agents 
wants to communicate to the other and is expressed as a word sequence. The amount of time 
between one communication and the other can be of variable length and is called a turn. 

2.2 Formal description of man-machine spoken dialog 
So as to use statistical machine learning for SDS strategy optimization, one needs to describe 
a spoken dialogue in terms of a finite number of variables. A man-machine spoken dialog 
will therefore be considered as a sequential (turn-taking) process in which a human user 
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and a Dialog Manager (DM) communicate using spoken utterances passing through speech 
and language processing modules (Fig.2). A Knowledge Base (KB) is usually connected to 
the DM and contains information about the task addressed by the system (i.e. a list of 
songs).  
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Fig. 2. Man-Machine Spoken Communication 

The DM implements the SDS strategy or policy π defining a mapping between the DM 
internal state and dialogue acts (the way to build the DM internal state will be discussed 
later). It thus takes decisions about what to say at a given time. Dialogue acts can be of 
different kinds: providing information to the user, asking for more information, closing the 
dialogue, etc. The DM decisions (so its policy) are of course of a major importance since they 
make the interaction going in one direction or another. Adopting the system’s point of view, 
the information exchange typically starts at turn t with the generation of a communicative 
act at by the DM. This act is generated according to the DM’s strategy πt and internal state st 
at turn t, and has to be transformed in a spoken output. A Natural Language Generation 
(NLG) module converts this act into a linguistic representation lt (generally a text) which in 
turn serves as an input to a Text-to-Speech (TTS) system. The output of the TTS module is a 
spoken utterance syst addressed to the user. From this, the human user produces a new 
spoken utterance ut taking into account his/her understanding of syst but also to his/her 
background knowledge kt (about the task, the interaction history, the world in general) and 
finally to the goal gt s/he is pursuing while interacting with the system. Both utterances syst 
and ut can be mixed with some additional environmental noise nt. This potentially noisy 
user utterance is then processed by an ASR system which output is a sequence of words wt 
as well as a confidence level CLASR associated to this result. The sequence wt is usually taken 
out of a so called “Nbest list” ranking the best hypotheses the system can make about what 
the user said given the speech signal. The confidence level is usually a number between 0 
and 1 providing information about the confidence the systems in the result of its processing. 
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It can also be a real number, depending on the system. Finally, the Natural Language 
Understanding (NLU) module generates a set of concepts (or communicative acts) ct also 
picked from a “Nbest list” derived from wt and again with a confidence level CLNLU. The 
observation ot passed to the DM is actually the set {ct, CLASR, CLNLU}. From this observation, 
a new internal state is computed by the DM which will be used to generate a new dialog act 
at+1. A new cycle is then started again until the end of the dialogue. This can occur when the 
user reached his/her goal or whenever the user or the system wants to stop the interaction 
for any reason (dissatisfaction, looping dialogue etc.) 

2.3 Reinforcement learning and Markov decision processes 
From the former description of a spoken dialogue system, it is clear that optimizing a SDS is 
about implementing an optimal strategy into the dialogue manager. Adopting a machine 
learning point of view, automatic optimization of a strategy is addressed by Reinforcement 
Learning (RL). The general purpose of a RL agent is to optimally control a stochastic 
dynamic system. The control problem is then described in terms of states, actions and 
rewards. In this framework, an artificial agent tries to learn an optimal control policy 
through real interactions with the system. It observes the state s of the system through an 
observation o and chooses an action a to apply on it accordingly to a current internal policy 
π mapping states to actions. A feedback signal r is provided to the agent after each 
interaction as a reward information, which is a local hint about the quality of the control. 
This reward is used by the agent to incrementally learn the optimal policy, simply by 
maximizing a function of the cumulative rewards.  
 

 
Fig. 3. Reinforcement Learning paradigm 

This can be put into the formalism of Markov Decision Processes (MDP), where a discrete-
time system interacting with its stochastic environment through actions is described by a 
finite or infinite number of states {si} in which a given number of actions {aj} can be 
performed. To each state-action pair is associated a transition probability T giving the 
probability of stepping from state s at time t to state s’ at time t+1 after having performed 
action a when in state s. To this transition is also associated a reinforcement signal (or 
reward) rt+1 describing how good was the result of action a when performed in state s. 
Formally, an MDP is thus completely defined by a 4-tuple {S, A, T, R} where S is the state 
space, A is the action set, T is a transition probability distribution over the state space and R 
is the expected reward distribution. The couple {T, R} defines the dynamics of the system: 
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These expressions assume that the Markov property is met, which means that the system’s 
functioning is fully defined by its one-step dynamics and that its behavior from state s will 
be identical whatever the path followed before reaching s. To control a system described as 
an MDP (choosing actions to perform in each state), one would need a strategy or policy π 
mapping states to actions: π(s) = P(a|s) (or π(s) = a if the strategy is deterministic).  
In this framework, a RL agent is a system aiming at optimally mapping states to actions, that 
is finding the best strategy π* so as to maximize, for each state, an overall return R which is a 
function (most often a discounted return is used i.e. a weighted sum of immediate rewards) 
of all the immediate rewards rt.  
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where γ is a discount factor (0 < γ ≤ 1). If the probabilities of equations (1) and (2) are known, 
an analytical solution can be computed by resolving the Bellman equations using dynamic 
programming (Bertsekas 1995), otherwise the system has to learn the optimal strategy by a 
trial-and-error process.  
To do so, a standard approach is to model the knowledge of the agent as a so-called Q-
function mapping state-action pairs to an estimate of the expected cumulative reward. The 
optimal Q-function maps each state-action pair to its maximum expected cumulative 
rewards and the role of the agent can therefore be summarized as learning this function 
through interactions.  

 
(5) 

Different techniques are described in the literature and in the following the Watkin’s Q(λ) 
algorithm (Watkin 1989) will be used. This algorithm performs the following update after 
each interaction:  

 
(6) 

where α is a learning rate (0 < α ≤ 1). This algorithm has been proven to converge towards 
the optimal solution. 
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3. Human-machine dialogue and Markov decision process 
A first requirement to use machine learning methods such as reinforcement learning for SDS 
optimization is to describe a man-machine dialogue in terms of random variables and 
probabilities. To do so, given the description of section 2.2, we adopt the dialogue manager 
point of view from which the interaction can probabilistically be described by the joint 
probability of the signals at, ot and st+1 given the history of the interaction (Pietquin 2005):  
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In (7), the task model term aims at describing the way the dialogue manager builds its 
internal state thanks to the perceived observation, the second term stands for the 
environment’s response to the dialogue manager’s stimulation, and the last stands for the 
dialogue manager decision process or strategy. 

3.1 Markov property and random noise 
As said in section 2.3, the Markov property has to be met so as to apply standard 
reinforcement learning methods for strategy optimization. In the case of a SDS, the Markov 
property implies that the dialogue manager choice about the communicative act at to choose 
at time t and the according transition probability for stepping to internal state st+1 at time t+1 
are only a function of the state st at time t and not of the history of interactions. It can easily 
be met by a judicious choice of the DM state representation, which should embed enough 
information about the history of the interaction into the current state description. Such a state 
representation is said informational.  
This can be easily illustrated on a simple train ticket booking system. Using such a system, a 
customer can book a ticket by providing orally information about the cities of departure and 
arrival and a desired time of departure. Three bits of information (sometimes called 
attributes) have therefore to be transferred from the human user (or caller) to the system. The 
problem can be seen as filling a 3-slot form. From this, a very simple way to build the state 
space is to represent the dialogue state as a vector of three Boolean values (e.g. [dep arr 
time]) set to true if the corresponding attribute is considered as transferred to the system and 
to false otherwise. Table 1 shows an ideal dialogue for such an application with the 
associated dialogue state evolution.  
 

Speaker Spoken Utterance Dialogue state  
System Hello, how may I help you? [false false false] 
User I’d like to go to Edinburgh.  
System What’s your departure city? [false true false] 
User I want to leave from Glasgow.  
System  When do you want to go from Glasgow to 

Edinburgh? 
[true true false] 

User On Saturday morning.   
System Ok, seats are available in train n° xxx …   [true true true] 

Table 1. Ideal dialogue in a train ticket booking application 
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To assume the Markov property is met using this state representation, one have make the 
assumption that the system adopts the same behaviour whatever the order in which the 
slots where filled (and by the way, whatever the values of the attributes). The Markov 
assumption is also made about the environment; that is the user behaves the same whatever 
the filling order as well. These are of course strong assumptions but we will see later that 
they lead to satisfactory results.  
Finally, most often the noise is considered as being random so as to have independence 
between nt and nt-1. Eq. (5) then simplifies as follow:  

 ( ) ( ) ( ) ( )
DMt.EnvironmenModelTask 

11  ttttttttttttttttt nsaPnsaoPnsaosPnsaosP ,|,,|,,,|,|,, ⋅⋅= ++   (8) 

3.2 Dialogue management as an MDP 
From paragraph 2.2, the observation ot can be regarded as the result of the processing of the 
DM dialog act at by its environment. This point of view helps putting dialogue management 
optimization into the MDP framework. As depicted on Fig. 2, a task-oriented (or goal-
directed) man-machine dialogue can be regarded as a turn-taking process in which a user 
and a dialogue manager exchange information through different channels processing speech 
inputs and outputs (ASR, TTS ...). The dialogue manager’s action (or dialogue act) selection 
strategy has to be optimized; the dialogue manager should thus be the learning agent.  
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Fig. 4. Dialogue management as an MDP 

The environment modeled by the RL agent as an MDP includes everything but the dialogue 
manager (see Fig. 4), i.e. the human user, the communication channels (ASR, TTS …), and 
any external information source (database, sensors etc.). In this context, at each turn t the 
dialogue manager has to choose an action at according to its interaction strategy so as to 
complete the task it has been designed for. The RL agent has therefore to choose an action 
among greetings, spoken utterances (constraining questions, confirmations, relaxation, data 
presentation etc.), database queries, dialogue closure etc. They result in a response from the 
DM environment (user speech input, database records etc.), considered as an observation ot, 
which usually leads to a DM internal state update according to the task model (Eq. 8). 

3.3 Reward function 
To entirely fit to the Reinforcement Learning formalism, the previous description is still 
missing a reward signal rt. Different ideas could lead to the building of this signal such as the 
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amount of money saved by using a SDS instead of having human operators or the number 
of people hanging off before the end of the interaction etc.  Singh et al in 1999 proposed to 
use the contribution of an action to the user’s satisfaction. Although this seems very 
subjective, some studies have shown that such a reward could be approximated by a linear 
combination of the task completion (TC) and objective measures ci related to the system 
performances. It is the PARADISE paradigm proposed in Walker et al 1997:  

 ( ) ( )∑ ⋅−⋅=
i

iit cTCr NwNα ,  (9) 

where N is a Z-score normalization function that normalises the results to have mean 0 and 
standard deviation 1 and wi are non-zero weights. Each weight (α and wi) thus expresses the 
relative importance of each term of the sum in the performance of the system. There are 
various ways to associate an objective measure to the task completion.  For example the 
kappa (κ) coefficient (Carletta 1996) is defined as: 

 
( ) ( )

( )EP
EPAP

−
−

=
1

κ ,  (10) 

where P(A) is the proportion of correct interpretations of user’s utterances by the system 
and P(E) is the proportion of correct interpretations occurring by chance. One can see that κ 
= 1 when the system performs perfect interpretation (P(A) = 1) and κ = 0 when the all the 
correct interpretations were obtained by chance (P(A) = P(E)).  
The weights α and wi are obtain by asking a large number of users to use a prototype system 
and to answer a satisfaction survey containing around 9 statements on a five-point Likert 
scale. The overall satisfaction is computed as the mean value of collected ratings. The 
objective costs ci are measured during the interaction. A Multivariate Linear Regression is 
then applied using the results of the survey as the dependent variable and the weights as 
independent variables. In practice, the significant performance measures ci are mainly the 
duration of the dialogue and the ASR and NLU performances. 

3.4 Partial observability 
When a direct mapping between states and observations exists, building the task model (eq. 
8) is straightforward. Yet, it is rarely the case that the observations can directly be translated 
into dialogue states. Indeed, the real dialogue state (which we have chosen informational) at 
time t is related to the information the user intended to transmit to the system until time t 
during the interaction. The statistical speech recognition and understanding systems 
processing the user speech inputs are error prone and it can occur that the observation 
doesn’t contain only the information meant by the user but a probability distribution over a 
set of possible bits of information. Indeed, as said before, the output of a speech recognition 
system can be a list of N word sequences (named N-best list), each of them being associated 
with a confidence level.  This can be considered as a probability of the word sequence being 
correct given the spoken utterance (and maybe the context). This N-bests list serves as an 
input to the natural language understanding module which in turn provides a list of concept 
sequences associated to confidence levels.  
This is typically what happens in partially observable environments where a probability 
distribution is drawn over possible states given the observations. An observation model is 
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therefore usually required. It is what we have called the task model in eq. 8 which can be a 
real probability distribution. For this reason, emerging research is focused on the 
optimization of spoken dialogue systems in the framework of Partially Observable Markov 
Decision Processes (POMDPs) (Poupart et al 2005, Young 2006) 

4. Learning dialogue policies using simulation 
Using the framework described previously, it is theoretically possible to automatically learn 
spoken dialogue policies allowing natural conversation between human users and 
computers. This learning process should be realised online, through real interactions with 
users. One could even imagine building the reinforcement signal from direct queries to the 
user about his/her satisfaction after each interaction ( Fig. 5).  
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Fig. 5. Ideal learning process 

For several reasons, direct learning through interactions is made difficult. First, a human 
user would probably react badly to some of the exploratory actions the system would 
choose since they might be completely incoherent. Anyway a very large number of 
interactions are required (typically tens of thousands of dialogues for standard dialogue 
systems) to train such a system. This is why data driven learning as been proposed so as to 
take advantage of existing databases for bootstrapping the learning process. Two methods 
were initially investigated: learning the state transition probabilities and the reward 
distribution from data (Singh et al, 1999) or learning parameters of a simulation environment 
mainly reproducing the behaviour of the user (Levin et al 2000). The second method is today 
preferred (Fig. 6). Indeed, whatever the data set available, it is unlikely that it contains every 
possible state transitions and it allows exploring the entire spaces. Dialogue simulation is 
therefore necessary for expanding the existing data sets and learning optimal policies. 
Another track of research is dealing with generalization to unseen situation. In this case, 
instead of simulating unseen situations, machine learning generalization methods are used 
to compute a Q-function over the entire state space with only a finite set of samples 
(Henderson et al 2005). 
Most often, the dialogue is simulated at the intention level rather than at the word sequence 
or speech signal level, as it would be in the real world. An exception can be found in (Lopez 
Cozar et al 2003). Here, we regard an intention as the minimal unit of information that a 
dialogue participant can express independently. Intentions are closely related to concepts, 
speech acts or dialogue acts. For example, the sentence "I'd like go to Edinburgh" is based on 
the concept go(Edinburgh). It is considered as unnecessary to model environment behavior 
at a lower level, because strategy optimization is a high level concept. Additionally, concept-
based communication allows error modeling of all the parts of the system, including natural 
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optimization of spoken dialogue systems in the framework of Partially Observable Markov 
Decision Processes (POMDPs) (Poupart et al 2005, Young 2006) 

4. Learning dialogue policies using simulation 
Using the framework described previously, it is theoretically possible to automatically learn 
spoken dialogue policies allowing natural conversation between human users and 
computers. This learning process should be realised online, through real interactions with 
users. One could even imagine building the reinforcement signal from direct queries to the 
user about his/her satisfaction after each interaction ( Fig. 5).  
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Fig. 5. Ideal learning process 

For several reasons, direct learning through interactions is made difficult. First, a human 
user would probably react badly to some of the exploratory actions the system would 
choose since they might be completely incoherent. Anyway a very large number of 
interactions are required (typically tens of thousands of dialogues for standard dialogue 
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take advantage of existing databases for bootstrapping the learning process. Two methods 
were initially investigated: learning the state transition probabilities and the reward 
distribution from data (Singh et al, 1999) or learning parameters of a simulation environment 
mainly reproducing the behaviour of the user (Levin et al 2000). The second method is today 
preferred (Fig. 6). Indeed, whatever the data set available, it is unlikely that it contains every 
possible state transitions and it allows exploring the entire spaces. Dialogue simulation is 
therefore necessary for expanding the existing data sets and learning optimal policies. 
Another track of research is dealing with generalization to unseen situation. In this case, 
instead of simulating unseen situations, machine learning generalization methods are used 
to compute a Q-function over the entire state space with only a finite set of samples 
(Henderson et al 2005). 
Most often, the dialogue is simulated at the intention level rather than at the word sequence 
or speech signal level, as it would be in the real world. An exception can be found in (Lopez 
Cozar et al 2003). Here, we regard an intention as the minimal unit of information that a 
dialogue participant can express independently. Intentions are closely related to concepts, 
speech acts or dialogue acts. For example, the sentence "I'd like go to Edinburgh" is based on 
the concept go(Edinburgh). It is considered as unnecessary to model environment behavior 
at a lower level, because strategy optimization is a high level concept. Additionally, concept-
based communication allows error modeling of all the parts of the system, including natural 
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language understanding (Pietquin & Renals 2002, Pietquin & Dutoit 2006b). More 
pragmatically, it is simpler to automatically generate concepts compared with word 
sequences (and certainly speech signals), as a large number of utterances can express the 
same intention while it should not influence the dialogue manager strategy. Table 2 
describes such a simulation process. The intentions have been expanded in the last column 
for comprehensiveness purposes. The signals column refers to notations of section 2.2.  
 

Signals Intentions Expanded Intentions 

sys0 greeting Hello! How may I help you? 
u0 arr_city = ‘Paris’ I’d like to go to Paris. 
sys1 const(arr_time) When do you prefer to arrive? 
u1 arr_time = ‘1.00 PM’ I want to arrive around 1 PM. 
sys2 rel(arr_time) Don’t you prefer to arrive later? 
u2 rel = false No. 
sys3 conf(arr_city) Can you confirm you want to go to Paris? 
u3 conf = true Yes ! 
… … … 
… … … 

Table 2. Simulated dialogue at the intention level (‘const’ stands for constraining question, 
‘rel’ for relaxation and ‘conf’ for confirmation)  

This approach requires modelling the environment of the dialogue manager as a stochastic 
system and to learn the parameters of this model from data. It has been a topic of research 
since the early 2000’s (Levin et al 2000, Scheffler & Young 2001, Pietquin 2004). Most of the 
research is now focused on simulating the user (Georgila et al 2005, Pietquin 2006a, 
Schatzmann et al 2007a) and assessing the quality of a user model for training a 
reinforcement learning agent is an important track (Schatzmann et al 2005, Rieser & Lemon 
2006, Georgila et al 2006). Modelling the errors introduced by the ASR and NLU systems is 
also a major topic of research (Scheffler & Young 2001, Lopez Cozar et al 2003, Pietquin & 
Beaufort 2005, Pietquin & Dutoit 2006b). 
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4.1 Probabilistic user simulation 
According to the conventions of  Fig. 2 and omitting the t indices, the user behavior is ruled 
by the following joined probability that can be factored and simplified: 
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These terms emphasize on the relation existing between the user’s utterance production 
process and his/her goal and knowledge, themselves linked together. The knowledge can 
be modified during the interaction through the speech outputs produced by the system. Yet, 
this modification of the knowledge is incremental (it is an update) and takes into account the 
last system utterance (which might be misunderstood, and especially in presence of noise) 
and the previous user’s knowledge state. This can be written as follow with k- standing for 
kt-1: 
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The parameter of this model can be learnt from data. In (Pietquin & Dutoit, 2006b), this 
model serves as a basis to define a Dynamic Bayesian Network (DBN) (Fig. 7). This allows 
using standard DBN tools to simulate a user model and to learn the parameters from data.  
Although the user’s knowledge k− is not directly dependent of the system state s, we kept 
this dependency in our description so as to be able to introduce a mechanism for user 
knowledge inference from system state because it is supposed to contain information about 
the history of the dialogue. This mechanism can actually be used to introduce grounding 
(Clarck et Shaefler, 1989) subdialogs in the interaction so as to obtain a good connection 
between the user’s understanding of the interaction and the system view of the same 
interaction (Pietquin, 2007). 
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The parameter of this model can be learnt from data. In (Pietquin & Dutoit, 2006b), this 
model serves as a basis to define a Dynamic Bayesian Network (DBN) (Fig. 7). This allows 
using standard DBN tools to simulate a user model and to learn the parameters from data.  
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4.2 Attribute-Value variable representation 
It is quite unclear how to model each variable present in this description (such as ut, syst, gt 
etc.) for computer-based HMD simulation. As said before, it is often argued that intention-
based communication is sufficient to internally model dialogs. Variables can then be 
regarded as finite sets of abstract concepts, related to the specific task, that have to be 
manipulated along the interactions by the SDS and the user. For this reason, we opted for a 
variable representation based on Attribute-Value (AV) pairs. This representation allows 
very high-level considerations (attributes are regarded as concepts) while values (particular 
values for the concepts) allow to some extent to come back to lower levels of 
communication. This variable description is founded on an Attribute-Value-Matrix (AVM) 
representation of the task (Walker et al, 1999) 
Each communicative act is then symbolized by a set of AV pairs. From now on, we will 
denote A the set of possible attributes (concepts) according to the task, and by V the set of all 
possible values. The system utterances sys are then modeled as sets of AV pairs in which the 
attribute set will be denoted Sys={sysσ} ⊂ A and the set of possible values for each attribute 
sysσ will be denoted Vσ = { σ

iv } ⊂ V. The system utterance attribute set contains a special 
attribute AS which values define the type of the embedded act. Allowed types can be 
constraining questions, relaxing prompts, greeting prompts, assertions, confirmation 
queries, etc. The user’s utterance u is modeled as a set of AV pairs (transmitted to the ASR 
model) in which attributes belong to U = {uυ} ⊂ A and the set of possible values for uυ is Vυ = 
{ υ

iv } ⊂ V. The user’s utterance attribute set contains a special attribute CU which value is a 
Boolean indicating whether the user wants to close the dialog or not. The ASR process 
results in an error-prone set of AV pairs w which is in turn processed and possibly modified 
by the NLU model. This process provides a new AV pair set c, which is part of the 
observation o. The user’s goal G = {[gγ, γ

igv ]} and the user’s knowledge K = {[kκ, κ
ikv ]} are 

also AV pair sets where gγ and kκ are attributes and where γ
igv  and κ

ikv are values. 

5. Experiment 
This model was developed in the aim of being used in an optimal dialog strategy learning 
process. We therefore show here a use case of dialog simulation for Reinforcement-Learning 
(RL) agent training on a simple form-filling dialog task. To do so, a reward function (or 
reinforcement signal) rt has to be defined. This reward provides information about the 
quality of each DM decision of performing an action a when in state s at time t. It is 
generally considered that the contribution of each action to the user’s satisfaction is the most 
suitable reward function (Singh et al, 1999). According to (Walker et al, 1997), the major 
contributors to user’s satisfaction are the dialog time duration (which can be approximated 
by the number of dialog turns N), the ASR performances (which we will approximate by a 
confidence level CL as in (Pietquin & Renals, 2002) and the task completion (TC). For this 
reason, we chose a reward function of the form:  

 NwCLwTCwr NCLTCt ⋅−⋅+⋅=  
where wx are positive tunable weights.  
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The task is a simplified version of a train ticket booking system that aims at delivering 
train tickets corresponding to a particular travel. Users are invited to provide information 
about the departure city (over 50 possible options) and time (over 24 possible options) as 
well as the destination city and time. The desired class (2 options) is also requested. Table 
3 shows the task structure, the user’s goal structure (AV pairs) and the knowledge 
structure which will be simply a set of counters associated to each goal AV pair and 
incremented each time the user answers to a question related to a given attribute during 
the dialog. The task completion is therefore measured as a ratio between the common 
values in the goal and the values retrieved by the system after the dialog session. The 
simulation environment includes the DBN user model, and an ASR model like in 
(Pietquin & Renals, 2002).  
The RL paradigm requires the definition of a state space. It will be defined by a set of state 
variables which are 5 Booleans (one for each attribute in the task) set to true when the 
corresponding value is known, 5 status Booleans set to true if the corresponding value is 
confirmed and 5 binary values indicating whether the Confidence Level (CL) associated to 
the corresponding value is high or low. Every combination is not possible and the state space 
size is therefore of 52 states. The DM will be allowed 5 action types: greeting, open question 
(about more than 1 attribute), closed question (about only 1 attribute), explicit confirmation, 
closing. 
 
 

Task User Goal (G) Knowledge 
(K) 

Attributes (A) #V Att. Value Count init

dep 50 gdep Glasgow kdep 0 
dest 50 gdest Edinburgh kdest 0 
t_dep 24 gt_dep 8 kt_dep 0 
t_dest 24 gt_dest 12 kt_dest 0 
class 2 gclass 1 kclass 0 

 
Table 3. AV representation of the task 

 
 

Performance 
NU TC 

5.39 0.81 

Strategy 
greet constQ openQ expC close 

1.0 0.85 1.23 1.31 1.0 
 

Table 4. Experimental results 
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The results of the learning process on 105 dialogs shown in Table 4 can be interpreted as 
follow. This experiment shows that, in our model, the user’s satisfaction relies as much on 
the duration time as on the task completion. Thus dialogues are short, but task completion is 
not optimal since one attribute is often missing in the presented data (one of the cities in 
general). There are more open-ended questions than constraining questions. Actually, 
constraining questions are present because sometimes only one argument is missing and 
there is no need of an open-ended question to retrieve it. Yet, there are explicit 
confirmations because the task completion is a factor of user satisfaction. It actually 
illustrates well the trade-off between task completion and time duration. This behaviour can 
be tuned by changing the parameters of our user model for example. 

6. Conclusion 
In this chapter, a formal probabilistic description of human-machine dialogues was 
described. This description allowed putting the optimization of spoken dialogue 
strategies in the framework of reinforcement learning. Reinforcement learning designates 
a very data-demanding class of machine learning methods. This is a major problem for 
SDS optimization since collecting and annotating data is very difficult. To solve this 
problem of data sparsity, dialogue simulation techniques are commonly used. A specific 
simulation framework based on a probabilistic description of the user’s behavior has been 
described. It can easily be translated into a dynamic Bayesian network and use the 
standard parameter learning and inference tools. The reinforcement learning framework 
also requires the definition of a reward function associating a numerical number to each 
system action. To do so, the PARADISE framework using multivariate regression has 
been described. To summarize, this chapter has shown that a large number of machine 
learning methods can be used in the context of spoken dialogue optimization. Among 
these techniques, reinforcement learning, Bayesian inference and multivariate regression 
are very common.  

7. Future works 
Statistical machine learning for spoken dialogue strategies optimization is an emerging area 
of research and lots of issues still remain. One of the first, which is common to a lot of 
reinforcement learning applications, is to find tractable algorithms for real size dialogue 
systems. The standard RL algorithms are indeed suitable for small tasks such as described in 
section 5. Yet real applications can exhibit up to several million of states, possibly with 
continuous observations (Williams et al 2005). Supervised learning (Henderson et al 2005) 
and hierarchical learning (Cuayáhuitl et al 2007) have been recently proposed to tackle this 
problem.  
In this chapter, we have essentially considered the problem of completely observable 
systems. But as said in paragraph 3.4, a spoken dialogue system should be considered as 
partially observable, because of error prone speech processing sub-systems.  Research on 
POMDP for SDS optimization are reported in (Poupart et al 2005, Young 2006), yet a lot of 
work is still necessary to anchor SDS in real life.  
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Spoken dialogue simulation is also the topic of ongoing research. Different approaches are 
being studied such as the recently proposed agenda-based user model (Schatzmann et al 
2007b) that can be trained by an Expectation-Maximisation algorithm from data, or user 
models based on dynamic Bayesian networks (Pietquin & Dutoit 2006a) such as those 
presented in this chapter. One of the major argument against the current simulation 
methods is the lack of assessment methods even though some work can be cited 
(Schatzmann et al 2005, Georgila et al 2006, Rieser & Lemon 2006).  
On another hand, it might be interesting to see how to use learned strategies to help human 
developers to design optimal strategies. Indeed, the solution may be in computer-aided 
design more than fully automated design (Pietquin & Dutoit 2003).  
The ultimate aim of this research area is to design a complete data-driven dialogue system 
using an end-to-end probabilistic framework, from speech recognition to speech synthesis 
systems automatically trained on real data, is probably the next step (Lemon & Pietquin 
2007). 
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models based on dynamic Bayesian networks (Pietquin & Dutoit 2006a) such as those 
presented in this chapter. One of the major argument against the current simulation 
methods is the lack of assessment methods even though some work can be cited 
(Schatzmann et al 2005, Georgila et al 2006, Rieser & Lemon 2006).  
On another hand, it might be interesting to see how to use learned strategies to help human 
developers to design optimal strategies. Indeed, the solution may be in computer-aided 
design more than fully automated design (Pietquin & Dutoit 2003).  
The ultimate aim of this research area is to design a complete data-driven dialogue system 
using an end-to-end probabilistic framework, from speech recognition to speech synthesis 
systems automatically trained on real data, is probably the next step (Lemon & Pietquin 
2007). 
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1. Introduction 
The changeable structures and variability of email attacks render current email filtering 
solutions useless. Consequently, the need for new techniques to harden the protection of 
users' security and privacy becomes a necessity. The variety of email attacks, namely spam, 
damages networks' infrastructure and exposes users to new attack vectors daily. Spam is 
unsolicited email which targets users with different types of commercial messages or 
advertisements. Porn-related content that contains explicit material or commercials of 
exploited children is a major trend in these messages as well. The waste of network 
bandwidth due to the numerous number of spam messages sent and the requirement of 
complex hardware, software, network resources, and human power are other problems 
associated with these attacks. Recently, security researchers have noticed an increase in 
malicious content delivered by these messages, which arises security concerns due to their 
attack potential. More seriously, phishing attacks have been on the rise for the past couple of 
years. Phishing is the act of sending a forged e-mail to a recipient, falsely mimicking a 
legitimate establishment in an attempt to scam the recipient into divulging private 
information such as credit card numbers or bank account passwords (James, 2005). Recently 
phishing attacks have become a major concern to financial institutions and law enforcement 
due to the heavy monetary losses involved. According to a survey by Gartner group, in 2006 
approximately 3.25 million victims were spoofed by phishing attacks and in 2007 the 
number increased by almost 1.3 million victims. Furthermore, in 2007, monetary losses, 
related to phishing attacks, were estimated by $3.2 billion. All the aforementioned concerns 
raise the need for new detection mechanisms to subvert email attacks in their various forms. 
Despite the abundance of applications available for phishing detection, unlike spam 
classification, there are only few studies that compare machine learning techniques in 
predicting phishing emails (Abu-Nimeh et al., 2007). We describe a new version of Bayesian 
Additive Regression Trees (BART) and apply it to phishing detection. A phishing dataset is 
constructed from 1409 raw phishing emails and 5152 legitimate emails, where 71 features 
(variables) are used in classifiers' training and testing. The variables consist of both textual 
and structural features that are extracted from raw emails. The performance of six classifiers, 
on this dataset, is compared using the area under the curve (AUC) (Huang & Ling, 2005). 
The classifiers include Logistic Regression (LR), Classification and Regression Trees (CART), 
Bayesian Additive Regression Trees (BART), Support Vector Machines (SVM), Random 
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Forests (RF), and Neural Networks (NNet). In addition to the AUC, additional measures are 
used to gauge the classifiers' performance, such as the error rate, false positive, and false 
negative rates. 

1.1 Motivation to Bayesian methodology 
We start by providing a discussion on Bayesian learning and the reasons behind choosing 
BART among another classifiers, then we illustrate the technical details of BART. BART is a 
Bayesian approach, thus it inherits all the advantages from Bayesian learning. There are 
various advantages of Bayesian learning when compared to other statistical approaches. As 
opposed to the frequentist approach for defining the probability of an uncertain event, here 
one needs a record of past information of an event. Yet, if this information is not available, 
then the frequentist approach cannot be used to define the degree of belief in the uncertain 
event. On the other hand, the Bayesian approach allows us to reason about beliefs under 
conditions of uncertainty. Thus, it helps in modeling uncertainty in a probabilistic way 
(Neal, 1995). In addition, Bayesian inference is regarded as a good approach to tackle the 
problem of data modeling (Kandola, 2001). A model is designed for a particular application 
and adapted according to the data while the data arrives from the application. The model 
then provides a representation of the prior beliefs about the application and the information 
derived from the data (Bishop, 1995). 
Another advantage of the Bayesian approach is that one does not need to update the model 
entirely when acquiring new knowledge. Yet, the new data can be used to update the 
current model instead of re-fitting the entire model. This feature comes handy especially in 
phishing detection since phishing attacks change frequently and vastly to lure filters and 
detection mechanisms. Assuming that one needs to re-fit the entire model when new batch 
of emails arrives, the procedure becomes very computationally extensive and time 
consuming, thus impractical. 
Furthermore, BART is a model-based Bayesian approach. As opposed to to those algorithm-
based learning methods, model-based approaches can provide full and accurate assessment 
of uncertainty in predictions, while remaining highly competitive in terms of predictive 
accuracy. In addition, model-based approaches are considered non-greedy, hence opposed 
to selecting the best solution at the time being and not worrying about the future (i.e. 
whether the solution is efficient or not), the solution is interchangeable accordingly. Also, 
model-based approaches are non-adhoc, hence the provided solution is not only selected to 
a particular problem; however, it can be used as a general case. 

1.2 Why Bayesian additive regression trees? 
BART automatically selects variables from a large pool of input predictors, while searching 
for models with highest posterior probabilities for future prediction, via a backfitting 
Markov chain Monte Carlo (MCMC) algorithm (see section 3.1 for further details). 
Compared to other Bayesian methods, such as Naive Bayes and Bayesian Networks, the 
latter approaches require variable selection to be done separately, otherwise they use all the 
variables supplied for training, thus the performance of the classifier will be very poor. Also, 
it is well known that variable selection in a high dimensional space is a very difficult 
problem that often requires intensive computations. As we mentioned earlier, phishing 
emails change regularly and vastly to lure detection mechanisms and the variables may 
change over time as well. Yet, the above nice feature of BART comes handy when training 
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on newly arriving emails on a regular basis. With no additional requirements to perform 
variable selection, BART simultaneously accomplishes variable selection during the training 
phase. 
In addition, in phishing detection hundreds of potential features are extracted from raw 
emails. Only an unknown subset of them are useful for prediction and others are irrelevant. 
Blindly including all the variables in the step of training often leads to overfitting, and hence 
predicting new attacks may be poor. However, with the automatic variable selection feature 
in BART this problem is solved. 
Further, many other Bayesian learning approaches require very careful prior specification, 
and hence extra effort and operational cost in training models. However, BART, as shown in 
(Chipman et al., 2006), appears to be relatively insensitive to small changes in the prior 
specification and the choice of the number of trees. According to (Chipman et al., 2006), the 
default priors work very well, which enables BART to be an objective and automatic 
training procedure. This is desirable in situations in which there is no prior information 
available or no human intervention is preferred. 
Furthermore, BART is a class of Bayesian additive models with multivariate components of 
binary trees. Using binary trees as model components makes BART more exible in practice, 
as opposed to common regression approaches, since the structure of binary trees has been 
proved to approximate well nonlinear and nonsmooth functional forms in many 
applications (Hastie et al., 2001). 
Also, BART uses a sum-of-trees-model which is more exible than any single tree model that 
can hardly account for additive effects. Each tree component is regarded as a weak learner, 
which explains a small and different part of the unknown relationship between the input 
and output. In addition, multivariate components of BART can easily incorporate high-
order interaction effects among three or more input variables, which can be dificult to 
capture by other additive models. 
Moreover, the rich structure of BART leads to its excellent learning ability, even in the 
presence of a very complicated structure embedded in data. Since phishing emails look very 
similar to legitimate emails, actually they are duplicates of legitimate emails with some 
changes, learning is a challenging problem and perhaps involves discovering an elaborate 
and subtle relationship from data. 

2. Related work 
(Chandrasekaran et al., 2006) proposed a technique to classify phishing based on structural 
properties of phishing emails. They used a total of 25 features mixed between style markers 
(e.g. the words suspended, account, and security) and structural attributes, such as the 
structure of the subject line of the email and the structure of the greeting in the body. They 
tested 200 emails (100 phishing and 100 legitimate). They applied simulated annealing as an 
algorithm for feature selection. After a feature set was chosen, they used information gain 
(IG) to rank these features based on their relevance. They applied one-class SVM to classify 
phishing emails based on the selected features. Their results claim a detection rate of 95% of 
phishing emails with a low false positive rate. 
(Fette et al., 2007) compared a number of commonly-used learning methods through their 
performance in phishing detection on a past phishing data set, and finally Random Forests 
were implemented in their algorithm PILFER. Their methods can be used to detect phishing 
websites as well. They tested 860 phishing emails and 6950 legitimate emails. The proposed 
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on newly arriving emails on a regular basis. With no additional requirements to perform 
variable selection, BART simultaneously accomplishes variable selection during the training 
phase. 
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Also, BART uses a sum-of-trees-model which is more exible than any single tree model that 
can hardly account for additive effects. Each tree component is regarded as a weak learner, 
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similar to legitimate emails, actually they are duplicates of legitimate emails with some 
changes, learning is a challenging problem and perhaps involves discovering an elaborate 
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2. Related work 
(Chandrasekaran et al., 2006) proposed a technique to classify phishing based on structural 
properties of phishing emails. They used a total of 25 features mixed between style markers 
(e.g. the words suspended, account, and security) and structural attributes, such as the 
structure of the subject line of the email and the structure of the greeting in the body. They 
tested 200 emails (100 phishing and 100 legitimate). They applied simulated annealing as an 
algorithm for feature selection. After a feature set was chosen, they used information gain 
(IG) to rank these features based on their relevance. They applied one-class SVM to classify 
phishing emails based on the selected features. Their results claim a detection rate of 95% of 
phishing emails with a low false positive rate. 
(Fette et al., 2007) compared a number of commonly-used learning methods through their 
performance in phishing detection on a past phishing data set, and finally Random Forests 
were implemented in their algorithm PILFER. Their methods can be used to detect phishing 
websites as well. They tested 860 phishing emails and 6950 legitimate emails. The proposed 
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method detected correctly 96% of the phishing emails with a false positive rate of 0.1%. They 
used ten features handpicked for training and their phishing dataset was collected in 2002 
and 2003. As pointed out by the authors themselves, their implementation is not optimal 
and further work in this area is warranted. 
(Abu-Nimeh et al., 2007) compared six machine learning techniques to classify phishing 
emails. Their phishing corpus consisted of a total of 2889 emails and they used 43 features 
(variables). They showed that, by merely using a bag-of-words approach, the studied 
classifiers could successfully predict more than 92% of the phishing emails. In addition, the 
study showed that Random Forests achieved the maximum predictive accuracy and Logistic 
Regression achieved the minimum false positives on the studied corpus. 

3. Machine learning approaches for binary classification 
In the literature, there exist several machine learning techniques for binary classification, 
e.g., logistic regression, neural networks (NNet), binary trees and their derivatives, 
discriminant analysis (DA), Bayesian networks (BN), nearest neighbor (NN), support vector 
machines (SVM), boosting, bagging, etc. The interested reader can refer to (Hastie et al., 
2001) and the references therein for a detailed overview. Here we describe the application of 
Bayesian Additive Regression Trees (BART) for learning from data, combined with a probit 
setup for binary responses, to detect phishing emails. 
Most of the machine learning algorithms discussed here are categorized as supervised 
machine learning, where an algorithm (classifier) is used to map inputs to desired outputs 
using a specific function. In classification problems a classifier tries to learn several features 
(variables or inputs) to predict an output (response). Specifically in phishing classification, a 
classifier will try to classify an email to phishing or legitimate (response) by learning certain 
characteristics (features) in the email. 
Applying any supervised machine learning algorithm to phishing detection consists of two 
steps: training and classification. During the training step a set of compiled phishing and 
non-phishing messages (with known status) is provided as training dataset to the classifier. 
Emails are first transformed into a representation that is understood by the algorithms. 
Specifically, raw emails are converted to vectors using the vector space model (VSM) (Salton 
& McGill, 1983), where the vector represents a set of features that each phishing and non-
phishing email carries. Then the learning algorithm is run over the training data to create a 
classifier. The classification step follows the training (learning) phase. During classification, 
the classifier is applied to the vector representation of real data (i.e. test dataset) to produce 
a prediction, based on learned experience. 

3.1 Bayesian additive regression trees 
Bayesian Additive Regression Trees (BART) is a new learning technique, proposed by 
(Chipman et al., 2006), to discover the unknown relationship between a continuous output 
and a dimensional vector of inputs. The original model of BART was not designed for 
classification problems, therefore, a modified version, hereafter CBART, which is applicable 
to classification problems in general and phishing classification in particular is used. Note 
that BART is a learner to predict quantitative outcomes from observations via regression. 
There is a distinction between regression and classification problems. Regression is the 
process of predicting quantitative outputs. However, when predicting qualitative 
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(categorical) outputs this is called a classification problem. Phishing prediction is a binary 
classification problem, since we measure two outputs of email either phishing =1 or 
legitimate =0 (Hastie et al., 2001). 
BART discovers the unknown relationship f between a continuous output Y and a p 
dimensional vector of inputs x = (x1, ..., xp). Assume Y = f(x) + ε, where ε ~N(0, 2) is the 
random error. Motivated by ensemble methods in general, and boosting algorithms in 
particular, the basic idea of BART is to model or at least approximate f(x) by a sum of 
regression trees, 

 
(1) 

each gi denotes a binary tree with arbitrary structure, and contributes a small amount to the 
overall model as a weak learner, when m is chosen large. An example of a binary tree 
structure is given in Figure 1, in which a is the root node, c is an internal node, and b, d and e 
are three terminal nodes that are associated with parameter μ1, μ2 and μ3, respectively. Also, 
each of the interior (i.e., non-terminal) nodes is associated with a binary splitting rule based 
on some x variable. By moving downwards from the root, an observation with given x will 
be assigned to a unique terminal node, according to the splitting rules associated with the 
nodes included in its path. In consequence, the corresponding parameter of the terminal 
node will be the value of g for this observation. 
 

 
Fig. 1. A binary tree structure 

Let Ti be the ith binary tree in the model (1), consisting of a set of decision rules (associated 
with its interior nodes) and a set of terminal nodes, for i = 1, ..., m. Let Mi be the vector 
containing all terminal node parameters of Ti such that M = {M1, ..., } and bi is the number 
of terminal nodes that Ti has. Now we can explicitly write 

 (2) 

Figure 2 depicts an example of a binary tree in the BART model. Note that the BART 
contains multiple binary trees, since it is an additive model. Each node in the tree represents 
a feature in the dataset and the terminal nodes represent the probability that a specific email 
is phishing, given that it contains certain features. For example, if an email contains HTML 
code, contains javascript, and the javascript contains form validation, then the probability 
that this email is phishing is 80% (refer to Figure 2). These features are discussed in more 
details in Section 4.1.1. 
BART is fully model-based and Bayesian in the sense that a prior is specified, a likelihood is 
defined using the data, and then a sequence of draws from the posterior using Markov chain 
Monte Carlo (MCMC) is obtained. Specifically, a prior distribution is needed for T, M, and , 
respectively. Each draw represents a fitted model f * of the form (1). 
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Figure 2 depicts an example of a binary tree in the BART model. Note that the BART 
contains multiple binary trees, since it is an additive model. Each node in the tree represents 
a feature in the dataset and the terminal nodes represent the probability that a specific email 
is phishing, given that it contains certain features. For example, if an email contains HTML 
code, contains javascript, and the javascript contains form validation, then the probability 
that this email is phishing is 80% (refer to Figure 2). These features are discussed in more 
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defined using the data, and then a sequence of draws from the posterior using Markov chain 
Monte Carlo (MCMC) is obtained. Specifically, a prior distribution is needed for T, M, and , 
respectively. Each draw represents a fitted model f * of the form (1). 
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To specify a prior distribution P(T) on T, one needs three pieces of information; (i) 
determining how likely a node will be split when a tree is created; (ii) determining which 
variable will be chosen to split the node; (iii) determining the rule that will be used for 
splitting. The main goal here is to generate small trees or “weak learners”, hence each tree 
plays a small share in the overall fit, but when combined all produce a powerful 
“committee”. 
For the prior distribution on terminal node parameters P(μ), the parameters of the terminal 
nodes are assumed independent a priori, hence the prior mean . Lastly, 
for the variance of noise 2, a prior P() is needed. The parameters of the prior on  can be 
specified from a least square linear regression of Y on the original x's. 
Now given the prior distributions a backfitting MCMC Gibbs sampler is used to sample from 
the posterior distribution as shown below. 
Repeat i = 1 to I (say I = 1000, where I is the number of simulations): 
• Sample Tj conditional on Y, all Ts but Tj , all μs, and . 
• Sample Mj given all Ts, all Ms but Mj, and . 
• Repeat the above steps m times for j = 1, ., m, where j is the total number of trees 

available. 
• Sample  given Y and all Ts, all Ms and . 
 

 
Fig. 2. Example of a binary tree. 

Since this is a Markov chain, simulation i depends on simulation i - 1. The MCMC 
simulation changes tree structures based on a stochastic tree generating process. The 
structures can be changed by randomly using any of the following four actions. Grow can be 
applied to grow a new pair of terminal nodes from a terminal node and make it become an 
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interior one. Prune can be applied to prune a pair of terminal nodes and make their parent 
node become a terminal one. Change is to change a splitting rule of a non-terminal node. 
Swap is to swap rules between a parent node and a child. By these changes, MCMC 
generates different tree structures and chooses the tree structure that provides the “best” 
sum-of-trees model according to posterior probabilities of trees. 
It is worth mentioning that BART has several appealing features, which make it competitive 
compared to other learning methods and motivate our study as well. Rather than using a 
single regression tree, BART uses a sum- of-trees model that can account for additive effects. 
Also, the binary tree structure helps in approximating well nonlinear and non-smooth 
relationships (Hastie et al., 2001). Furthermore, BART can conduct automatic variable 
selection of inputs while searching for models with highest posterior probabilities during 
MCMC simulation. In addition, by applying Bayesian learning, BART can use newly coming 
data to update the current model instead of re-fitting the entire model. 
Despite the advantages mentioned earlier, it is well known that a Bayesian approach usually 
brings heavy computation time due to its nature. Predicting the posterior probabilities via 
MCMC is usually time consuming and requires complex computations. 

3.1.1 BART for classification (CBART) 
As mentioned in Section 3.1, BART requires the output variable to be continuous, instead of 
binary. Let Y = 1 if an email is phishing; otherwise Y = 0. To use BART with binary outputs, 
we introduce a latent variable Z in connection with Y in spirit of (Albert & Chib, 1993), by 
defining 

 

(3) 

where f(x) is the sum-of-trees model in (1). Note here, we fix  at 1, due to the simple binary 
nature of Y . This yields the probit link function between the phishing probability p and f(x), 

 (4) 

where Φ(⋅) is the cumulative density function of N(0, 1). 
Under the above setup of the latent variable Z, we can use BART to learn f(x) from data, 
after appropriately modifying the prior distribution on M and the MCMC algorithm 
proposed in (Chipman et al., 2006) for posterior computation. Then we can estimate Y = 1 if 
the fitted f *(x) > 0, otherwise estimate Y = 0. Further, we can obtain the estimate of p 
through equation (4). 
Before we describe the algorithm, let T denote a binary tree consisting of a set of interior 
node decision rules and a set of terminal nodes, and let M = {μ1, μ2, ..., μb} denote a set of 
parameter values associated with each of the b terminal nodes of T. Now we explicitly 
denote the ith component of the model gi(x) by gi(x; Ti,Mi). Also, let T(j) be the set of all trees 
in the sum (1) except Tj , and M(j) the associated terminal node parameters. Let y denote the 
observed phishing status of emails in the training data. The algorithm will generate draws 
from the posterior distribution 

 (5) 
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rather than drawing from 

 
in the original algorithm. A typical draw from the new posterior (5) entails m successive 
draws of tree component(Tj ,Mj) conditionally on (T(j),M(j),Z): 

 

(6) 

followed by a draw of Z from the full conditional: 

 (7) 

Note that there is no need to draw  in our new algorithm since it is set to 1. 
We proceed to discuss how to implement (6) and (7). First, we claim that the first step is 
essentially the same as in the original algorithm. This is because in (6), no extra information 
is given by y when Z is given, since y can be completely determined by Z through (3). Hence 
we can remove the redundant y in (6), and use the original algorithm (substitute y by Z and 
set  = 1) to draw from (6). Since Z is latent, we need an extra step to draw values of Z from 
(7). It can be verified that for the jth email in the training data, Zj │(T1,M1), ..., (Tm,Mm), y is 
distributed as N(Σ  gi(x; Ti,Mi), 1) truncated at the left by 0 if yj = 1, and distributed as  
N(Σ gi(x; Ti,Mi), 1) truncated at the right by 0 if yj = 0. Thus, drawing from (7) can be 
easily done by drawing values from the normal distributions and then truncating them by 0 
either from the right or from the left based on the value of y. 
As shown above, BART is well suited for binary classification, under the probit setup with 
the use of the latent variable. In this case, it is even easier than before because  is no longer 
an unknown parameter and the draws of Z are extremely easy to obtain. 
We now briey discuss how to use BART for prediction. In an MCMC run, we can simply 
pick up the “best” f * (according to posterior probabilities or Bayes factor or other criteria) 
from the sequence of visited models, and save it for future prediction. Note that the selected 
f * perhaps involves a much less number of input variables than p since BART automatically 
screens input variables. This would allow prediction for a new email to be quickly done 
since much less information needs to be extracted from the email. A better way is to use the 
posterior mean of f for prediction, approximated by averaging the f * over the multiple 
draws from (5), and further gauge the uncertainty of our prediction by the variation across 
the draws. However, this involves saving multiple models in a physical place for future use. 
A more realistic approach is to use the best B fitted models for prediction that account for 
the 95% posterior probabilities over the space of sum-of-tree models. Usually, B is a number 
less than 20 and again, when predicting a new email is or not, a much less number of input 
variables than p are expected to be used (Abu-Nimeh et al., 2008). 

3.2 Classification and regression trees 
CART or Classification and Regression Trees (Breiman et al., 1984) is a model that describes 
the conditional distribution of y given x. The model consists of two components; a tree T 
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with b terminal nodes, and a parameter vector Θ = (θ1, θ2, ... , θb) where θi is associated with 
the ith terminal node. The model can be considered a classification tree if the response y is 
discrete or a regression tree if y is continuous. A binary tree is used to partition the predictor 
space recursively into distinct homogenous regions, where the terminal nodes of the tree 
correspond to the distinct regions. The binary tree structure can approximate well non-
standard relationships (e.g. non-linear and non-smooth). In addition, the partition is 
determined by splitting rules associated with the internal nodes of the binary tree. Should 
the splitting variable be continuous, a splitting rule in the form {xi ∈ C} and {xi ∉ C} is 
assigned to the left and the right of the split node respectively. However, should the 
splitting variable be discrete, a splitting rule in the form {xi ≤ s} and {xi > s} is assigned to the 
right and the left of the splitting node respectively (Chipman et al., 1998). 
CART is exible in practice in the sense that it can easily model nonlinear or nonsmooth 
relationships. It has the ability of interpreting interactions among predictors. It also has 
great interpretability due to its binary structure. However, CART has several drawbacks 
such as it tends to overfit the data. In addition, since one big tree is grown, it is hard to 
account for additive effects. 

3.3 Logistic regression 
Logistic regression is the most widely used statistical model in many fields for binary data 
(0/1 response) prediction, due to its simplicity and great interpretability. As a member of 
generalized linear models it typically uses the logit function. That is 

 
where x is a vector of p predictors x = (x1, x2, ... , xp), y is the binary response variable, and β 
is a p × 1 vector of regression parameters. 
Logistic regression performs well when the relationship in the data is approximately linear. 
However, it performs poorly if complex nonlinear relationships exist between the variables. 
In addition, it requires more statistical assumptions before being applied than other 
techniques. Also, the prediction rate gets affected if there is missing data in the data set. 

3.4 Neural networks 
A neural network is structured as a set of interconnected identical units (neurons). The 
interconnections are used to send signals from one neuron to the other. In addition, the 
interconnections have weights to enhance the delivery among neurons (Marques de Sa, 
2001). The neurons are not powerful by themselves, however, when connected to others 
they can perform complex computations. Weights on the interconnections are updated 
when the network is trained, hence significant interconnection play more role during the 
testing phase. Figure 3 depicts an example of neural network. The neural network in the 
figure consists of one input layer, one hidden layer, and one output layer. Since 
interconnections do not loop back or skip other neurons, the network is called feedforward. 
The power of neural networks comes from the nonlinearity of the hidden neurons. In 
consequence, it is signi_cant to introduce nonlinearity in the network to be able to learn 
complex mappings. The commonly used function in neural network research is the sigmoid 
function, which has the form (Massey et al., 2003) 
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with b terminal nodes, and a parameter vector Θ = (θ1, θ2, ... , θb) where θi is associated with 
the ith terminal node. The model can be considered a classification tree if the response y is 
discrete or a regression tree if y is continuous. A binary tree is used to partition the predictor 
space recursively into distinct homogenous regions, where the terminal nodes of the tree 
correspond to the distinct regions. The binary tree structure can approximate well non-
standard relationships (e.g. non-linear and non-smooth). In addition, the partition is 
determined by splitting rules associated with the internal nodes of the binary tree. Should 
the splitting variable be continuous, a splitting rule in the form {xi ∈ C} and {xi ∉ C} is 
assigned to the left and the right of the split node respectively. However, should the 
splitting variable be discrete, a splitting rule in the form {xi ≤ s} and {xi > s} is assigned to the 
right and the left of the splitting node respectively (Chipman et al., 1998). 
CART is exible in practice in the sense that it can easily model nonlinear or nonsmooth 
relationships. It has the ability of interpreting interactions among predictors. It also has 
great interpretability due to its binary structure. However, CART has several drawbacks 
such as it tends to overfit the data. In addition, since one big tree is grown, it is hard to 
account for additive effects. 

3.3 Logistic regression 
Logistic regression is the most widely used statistical model in many fields for binary data 
(0/1 response) prediction, due to its simplicity and great interpretability. As a member of 
generalized linear models it typically uses the logit function. That is 

 
where x is a vector of p predictors x = (x1, x2, ... , xp), y is the binary response variable, and β 
is a p × 1 vector of regression parameters. 
Logistic regression performs well when the relationship in the data is approximately linear. 
However, it performs poorly if complex nonlinear relationships exist between the variables. 
In addition, it requires more statistical assumptions before being applied than other 
techniques. Also, the prediction rate gets affected if there is missing data in the data set. 

3.4 Neural networks 
A neural network is structured as a set of interconnected identical units (neurons). The 
interconnections are used to send signals from one neuron to the other. In addition, the 
interconnections have weights to enhance the delivery among neurons (Marques de Sa, 
2001). The neurons are not powerful by themselves, however, when connected to others 
they can perform complex computations. Weights on the interconnections are updated 
when the network is trained, hence significant interconnection play more role during the 
testing phase. Figure 3 depicts an example of neural network. The neural network in the 
figure consists of one input layer, one hidden layer, and one output layer. Since 
interconnections do not loop back or skip other neurons, the network is called feedforward. 
The power of neural networks comes from the nonlinearity of the hidden neurons. In 
consequence, it is signi_cant to introduce nonlinearity in the network to be able to learn 
complex mappings. The commonly used function in neural network research is the sigmoid 
function, which has the form (Massey et al., 2003) 
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Although competitive in learning ability, the fitting of neural network models requires some 
experience, since multiple local minima are standard and delicate regularization is required. 
 

 
Fig. 3. Neural Network. 

3.5 Random forests 
Random forests are classi_ers that combine many tree predictors, where each tree depends 
on the values of a random vector sampled independently. Furthermore, all trees in the forest 
have the same distribution (Breiman, 2001). In order to construct a tree we assume that n is 
the number of training observations and p is the number of variables (features) in a training 
set. In order to determine the decision node at a tree we choose k << p as the number of 
variables to be selected. We select a bootstrap sample from the n observations in the training 
set and use the rest of the observations to estimate the error of the tree in the testing phase. 
Thus, we randomly choose k variables as a decision at a certain node in the tree and 
calculate the best split based on the k variables in the training set. Trees are always grown 
and never pruned compared to other tree algorithms. 
Random forests can handle large numbers of variables in a data set. Also, during the forest 
building process they generate an internal unbiased estimate of the generalization error. In 
addition, they can estimate missing data well. A major drawback of random forests is the 
lack of reproducibility, as the process of building the forest is random. Further, interpreting 
the final model and subsequent results is difficult, as it contains many independent 
decisions trees. 

3.6 Support vector machines 
Support Vector Machines (SVM) are one of the most popular classifiers these days. The idea 
here is to find the optimal separating hyperplane between two classes by maximizing the 
margin between the classes closest points. Assume that we have a linear discriminating 
function and two linearly separable classes with target values +1 and -1. A discriminating 
hyperplane will satisfy: 

 
Now the distance of any point x to a hyperplane is │ w’xi+w0 │ / ║ w ║ and the distance to 
the origin is │ w0 │ / ║ w ║. As shown in Figure 4 the points lying on the boundaries are 
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called support vectors, and the middle of the margin is the optimal separating hyperplane 
that maximizes the margin of separation (Marques de Sa, 2001). 
Though SVMs are very powerful and commonly used in classification, they suffer from 
several drawbacks. They require high computations to train the data. Also, they are 
sensitive to noisy data and hence prone to overfitting. 
 

 
Fig. 4. Support Vector Machines. 

4. Quantitative evaluation 
4.1 Phishing dataset 
The phishing dataset constitutes of 6561 raw emails. The total number of phishing emails in 
the dataset is 1409 emails. These emails are donated by (Nazario, 2007) covering many of the 
new trends in phishing and collected between August 7, 2006 and August 7, 2007. The total 
number of legitimate email is 5152 emails. These emails are a combination of financial-
related and other regular communication emails. The financial-related emails are received 
from financial institutions such as Bank of America, eBay, PayPal, American Express, Chase, 
Amazon, AT&T, and many others. As shown in Table 1, the percentage of these emails is 3% 
of the complete dataset. The other part of the legitimate set is collected from the authors' 
mailboxes. These emails represent regular communications, emails about conferences and 
academic events, and emails from several mailing lists. 
 

 
Table 1. Corpus description. 

4.1.1 Data standardization, cleansing, and transformation 
The analysis of emails consists of two steps: First, textual analysis, where text mining is 
performed on all emails. In order to get consistent results from the analysis, one needs to 
standardize the studied data. Therefore, we convert all emails into XML documents after 
stripping all HTML tags and email header information. Figure 5 shows an example of a 
phishing email after the conversions. Text mining is performed using the text-miner 
software kit (TMSK) provided by (Weiss et al., 2004). Second, structural analysis. In this step 
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we analyze the structure of emails. Specifically, we analyze links, images, forms, javascript 
code and other components in the emails. 
 

 
Fig. 5. Phishing email after conversion to XML. 

Afterwards, each email is converted into a vector x = 〈x1, x2, ..., xp〉, where x1, ..., xp are the 
values corre- sponding to a specific feature we are interested in studying (Salton & McGill, 
1983). Our dataset consists of 70 continuous and binary features (variables) and one binary 
response variable, which indicates that email is phishing=1 or legitimate=0. The first 60 
features represent the frequency of the most frequent terms that appear in phishing emails. 
Choosing words (terms) as features is widely applied in the text mining literature and is 
referred to as “bag-of-words”. In Table 2 we list both textual and structural features used in 
the dataset. As shown in Figure 6, we start by striping all attachments from emails in order to 
facilitate the analysis of emails. The following subsections illustrate the textual and 
structural analysis in further details. 

4.1.2 Textual analysis 
As we mentioned earlier we start by stripping all attachments from email messages. Then, we 
extract the header information of all emails keeping the email body. Afterwards, we extract 
the html tags and elements from the body of the emails, leaving out the body as plain text. 
Now, we standardize all emails in a form of XML documents. The <DOC> </DOC> tags 
indicate the beginning and ending of a document respectively. The <BODY> </BODY> tags 
indicate the starting and ending of an email body respectively. The <TOPICS> </TOPICS> 
tags indicate the class of the email, whether it is phish or legit (see Figure 5). 
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Table 2. Feature description. 

 
Fig. 6. Building the phishing dataset. 

Thus, we filter out stopwords from the text of the body. We use a list of 816 commonly used 
English stopwords. Lastly, we find the most frequent terms using TF/IDF (Term Frequency 
Inverse Document Frequency) and choose the top 60 most frequent terms that appear in 
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Fig. 6. Building the phishing dataset. 

Thus, we filter out stopwords from the text of the body. We use a list of 816 commonly used 
English stopwords. Lastly, we find the most frequent terms using TF/IDF (Term Frequency 
Inverse Document Frequency) and choose the top 60 most frequent terms that appear in 
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phishing emails. TF/IDF calculates the number of times a word appears in a document 
multiplied by a (monotone) function of the inverse of the number of documents in which the 
word appears. In consequence, terms that appear often in a document and do not appear in 
many documents have a higher weight (Berry, 2004). 

4.1.3 Structural analysis 
Textual analysis generates the first 60 features in the dataset and the last 10 features are 
generated using structural analysis. Unlike textual analysis, here we only strip the 
attachments of emails keeping HTML tags and elements for further analysis. First, we 
perform HTML analysis, in which we analyze form tags, javascript tags, and image tags. 
Legitimate emails rarely contain form tags that validate the user input. Phishing emails, on 
the other hand, use this techniques to validate victims' credentials before submitting them to 
the phishing site. In consequence, if an email contains a form tag, then the corresponding 
feature in the dataset is set to 1, otherwise it is set to 0. Figure 7 shows an example of a 
Federal Credit Union phish which contains a form tag. 
 

 
Fig. 7. Form validation in phishing email. 

Similarly, legitimate emails rarely contain javascript, however, phishers use javascript to 
validate users input or display certain elements depending on the user input. If the email 
contains javascript, then the corresponding feature in the dataset is set to 1, otherwise it is 
set to 0. Figure 8 shows an example of javascript that is used by a phisher to validate the 
victims account number. 
 

 
Fig. 8. Javascript to validate account number. 

Spammers have used images that link to external servers in their emails, also dubbed as Web 
beacons, to verify active victims who preview or open spam emails. Phishers also have been 
following the same technique to verify active victims and also to link to pictures from 
legitimate sites. We analyze emails that contain image tags that link to external servers. If the 
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email contains such an image, then the corresponding feature in the dataset is set to 1, 
otherwise it is set to 0. Figure 9 shows an example of a image tag with an external link. 
 

 
Fig. 9. Image linking to an external server. 

The second part in structural analysis involves the link analysis process. Here we analyze 
links in emails. It is well known that phishers use several techniques to spoof links in emails 
and in webpages as well to trick users into clicking on these links. When analyzing links we 
look for link mismatch, URL contains IP address, URL uses non-standard ports, the 
maximum total number of dots in a link, total number of links in an email, URL redirection, 
and URL encoding. In what follows we describe these steps in more details. 
When identifying a link mismatch we compare links that are displayed to the user with their 
actual destination address in the <a href> tag. If there is a mismatch between the 
displayed link and the actual destination in any link in the email, then the corresponding 
feature in the dataset is set to 1, otherwise, it is set to 0. Figure 10 shows an example of a 
PayPal phish, in which the phisher displays a legitimate Paypal URL to the victim; however, 
the actual link redirects to a Paypal phish. 
 

 
Fig. 10. URL mismatch in link. 

A commonly used technique, but easily detected even by naive users, is the use of IP 
addresses in URLs (i.e. unresolved domain names). This has been and is still seen in many 
phishing emails. It is unlikely to see unresolved domain names in legitimate emails; 
however, phishers use this technique frequently, as it is more convenient and easier to setup 
a phishing site. If the email contains a URL with an unresolved name, then the 
corresponding feature in the dataset is set to 1, otherwise, it is set to 0. Phishers often trick 
victims by displaying a legitimate URL and hiding the unresolved address of the phishing 
site in the <a href> tag as shown in the example in Figure 10. 
Since phishing sites are sometimes hosted at compromised sites or botnets, they use non-
standard port numbers in URLs to redirect the victim's traffic. For example instead of using 
port 80 for http or port 443 for https traffic, they use different port numbers. If the email 
contains a URL that redirects to a non-standard port number, then the corresponding 
feature in the dataset is set to 1, otherwise it is set to 0. Figure 11 shows an example of a 
phishing URL using a non-standard port number. 
 

 
Fig. 11. Phishing URL using non-standard port number. 

We count the number of links in an email. Usually, phishing emails contain more links 
compared to legitimate ones. This is a commonly used technique in spam detection, where 
messages that contain a number of links more than a certain threshold are filtered as spam. 
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We count the number of links in an email. Usually, phishing emails contain more links 
compared to legitimate ones. This is a commonly used technique in spam detection, where 
messages that contain a number of links more than a certain threshold are filtered as spam. 
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However, since phishing emails are usually duplicate copies of legitimate ones, this feature 
might not help in distinguishing phishing from financial-related legitimate emails; however, 
it helps in distinguishing phishing from other regular legitimate messages. 
Since phishing URLs usually contain multiple sub-domains so the URL looks legitimate, the 
number of dots separating sub-domains, domains, and TLDs in the URLs are usually more 
than those in legitimate URLs. Therefore, in each email we find the link that has the 
maximum number of dots. The maximum total number of dots in a link in an email thus is 
used as a feature in the dataset. Figure 12 shows an example of a Nationwide spoof link. 
Note the dots separating different domains and sub-domains. 
 

 
Fig. 12. Number of dots in a Nationwide spoof URL. 

Phishers usually use open redirectors to trick victims when they see legitimate site names in 
the URL. Specifically, they target open redirectors in well known sites such as aol.com, 
yahoo.com, and google.com. This technique comes handy when combined with other 
techniques, especially URL encoding, as naive users will not be able to translate the 
encoding in the URL. Figure 13 shows an example of an AOL open redirector. 
 

 
Fig. 13. Open redirector at AOL. 

The last technique that we analyze here is URL encoding. URL encoding is used to transfer 
characters that have a special meaning in HTML during http requests. The basic idea is to 
replace the character with the “%” symbol, followed by the two-digit hexadecimal 
representation of the ISO-Latin code for the character. Phishers have been using this 
approach to mask spoofed URL and hide the phony addresses of these sites. However, they 
encode not only special characters in the URL, but also the complete URL. As we mentioned 
earlier, when this approach is combined with other techniques, it makes the probability of 
success for the attack higher, as the spoofed URL looks more legitimate to the naive user. 
Figure 14 shows an example of URL encoding combined with URL redirection. 
 

 
Fig. 14. URL encoding combined with URL redirection. 

Figure 6 depicts a block diagram of the approach used in building the dataset. It shows both 
textual and structural analysis and the procedures involved therein. 

4.2 Evaluation metrics 
We use the area under the receiver operating characteristic (ROC) curve (AUC) to measure 
and compare the performance of classifiers. According to (Huang & Ling, 2005), AUC is a 
better measure than accuracy when comparing the performance of classifiers. The ROC 
curve plots false positives (FP) vs. true positives (TP) using various threshold values. It 
compares the classifiers' performance across the entire range of class distributions and error 
costs (Huang & Ling, 2005). 
Let NL denote the total number of legitimate emails, and NP denote the total number of 
phishing emails. Now, let nL→L be the number of legitimate messages classified as legitimate, 
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nL→P be the number of legitimate messages misclassified as phishing, nP→L be the number of 
phishing messages misclassified as legitimate, and nP→P be the number of phishing messages 
classified as phishing. False positives are legitimate emails that are classified as phishing, 
hence the false positive rate (FP) is denoted as: 

 
(8) 

True positives are phishing emails that are classified as phishing, hence the true positive rate 
(TP) is denoted as: 

 
(9) 

False negatives are phishing emails that are classified as legitimate, hence the false negative 
rate (FN) is denoted as: 

 
(10)

True negatives are legitimate emails that are classified as legitimate, hence the true negative 
rate (TN) is denoted as: 

 
(11)

Further we evaluate the predictive accuracy of classifiers, by applying the weighted error 
(WErr) measure proposed in (Sakkis et al., 2003) and (Zhang et al., 2004). We test the 
classifiers using λ = 1 that is when legitimate and phishing emails are weighed equally. 
Hence the weighted accuracy (WAcc), which is 1 - WErr(λ), can be calculated as follows 

 
(12)

In addition, we use several other measures to evaluate the performance of classifiers. We use 
the phishing recall(r), phishing precision(p), and phishing f1 measures. According to (Sakkis et 
al., 2003), spam recall measures the percentage of spam messages that the filter manages to 
block (filter's effectiveness). Spam precision measures the degree to which the blocked 
messages are indeed spam (filter's safety). F-measure is the weighted harmonic mean of 
precision and recall. Here we use f1 when recall and precision are evenly weighted. For the 
above measures, the following equations hold 

 
(13)

 
(14)
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Since phishing URLs usually contain multiple sub-domains so the URL looks legitimate, the 
number of dots separating sub-domains, domains, and TLDs in the URLs are usually more 
than those in legitimate URLs. Therefore, in each email we find the link that has the 
maximum number of dots. The maximum total number of dots in a link in an email thus is 
used as a feature in the dataset. Figure 12 shows an example of a Nationwide spoof link. 
Note the dots separating different domains and sub-domains. 
 

 
Fig. 12. Number of dots in a Nationwide spoof URL. 

Phishers usually use open redirectors to trick victims when they see legitimate site names in 
the URL. Specifically, they target open redirectors in well known sites such as aol.com, 
yahoo.com, and google.com. This technique comes handy when combined with other 
techniques, especially URL encoding, as naive users will not be able to translate the 
encoding in the URL. Figure 13 shows an example of an AOL open redirector. 
 

 
Fig. 13. Open redirector at AOL. 

The last technique that we analyze here is URL encoding. URL encoding is used to transfer 
characters that have a special meaning in HTML during http requests. The basic idea is to 
replace the character with the “%” symbol, followed by the two-digit hexadecimal 
representation of the ISO-Latin code for the character. Phishers have been using this 
approach to mask spoofed URL and hide the phony addresses of these sites. However, they 
encode not only special characters in the URL, but also the complete URL. As we mentioned 
earlier, when this approach is combined with other techniques, it makes the probability of 
success for the attack higher, as the spoofed URL looks more legitimate to the naive user. 
Figure 14 shows an example of URL encoding combined with URL redirection. 
 

 
Fig. 14. URL encoding combined with URL redirection. 

Figure 6 depicts a block diagram of the approach used in building the dataset. It shows both 
textual and structural analysis and the procedures involved therein. 

4.2 Evaluation metrics 
We use the area under the receiver operating characteristic (ROC) curve (AUC) to measure 
and compare the performance of classifiers. According to (Huang & Ling, 2005), AUC is a 
better measure than accuracy when comparing the performance of classifiers. The ROC 
curve plots false positives (FP) vs. true positives (TP) using various threshold values. It 
compares the classifiers' performance across the entire range of class distributions and error 
costs (Huang & Ling, 2005). 
Let NL denote the total number of legitimate emails, and NP denote the total number of 
phishing emails. Now, let nL→L be the number of legitimate messages classified as legitimate, 
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nL→P be the number of legitimate messages misclassified as phishing, nP→L be the number of 
phishing messages misclassified as legitimate, and nP→P be the number of phishing messages 
classified as phishing. False positives are legitimate emails that are classified as phishing, 
hence the false positive rate (FP) is denoted as: 

 
(8) 

True positives are phishing emails that are classified as phishing, hence the true positive rate 
(TP) is denoted as: 

 
(9) 

False negatives are phishing emails that are classified as legitimate, hence the false negative 
rate (FN) is denoted as: 

 
(10)

True negatives are legitimate emails that are classified as legitimate, hence the true negative 
rate (TN) is denoted as: 

 
(11)

Further we evaluate the predictive accuracy of classifiers, by applying the weighted error 
(WErr) measure proposed in (Sakkis et al., 2003) and (Zhang et al., 2004). We test the 
classifiers using λ = 1 that is when legitimate and phishing emails are weighed equally. 
Hence the weighted accuracy (WAcc), which is 1 - WErr(λ), can be calculated as follows 

 
(12)

In addition, we use several other measures to evaluate the performance of classifiers. We use 
the phishing recall(r), phishing precision(p), and phishing f1 measures. According to (Sakkis et 
al., 2003), spam recall measures the percentage of spam messages that the filter manages to 
block (filter's effectiveness). Spam precision measures the degree to which the blocked 
messages are indeed spam (filter's safety). F-measure is the weighted harmonic mean of 
precision and recall. Here we use f1 when recall and precision are evenly weighted. For the 
above measures, the following equations hold 
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We use the AUC as the primary measure, as it allows us to gauge the trade off between the 
FP and TP rates at different cut-off points. Although the error rate WErr (or accuracy) has 
been widely used in comparing classifiers’ performance, it has been criticized as it highly 
depends on the probability of the threshold chosen to approximate the positive classes. Here 
we note that we assign new classes to the positive class if the probability of the class is 
greater than or equal to 0.5 (threshold=0.5). In addition, in (Huang & Ling, 2005) the authors 
prove theoretically and empirically that AUC is more accurate than accuracy to evaluate 
classi_ers' performance. Moreover, although classifiers might have different error rates, 
these rates may not be statistically significantly different. Therefore, we use the Wilcoxon 
signed-ranks test (Wilcoxon, 1945) to compare the error rates of classifiers and find whether 
the di_erences among these accuracies is significant or not (Demšar, 2006). 

4.3 Experimental studies 
We optimize the classifiers’ performance by testing them using different input parameters. 
In order to find the maximum AUC, we test the classifiers using the complete dataset 
applying different input parameters. Also, we apply 10-fold-cross-validation and average the 
estimates of all 10 folds (sub-samples) to evaluate the average error rate for each of the 
classifiers, using the 70 features and 6561 emails. We do not perform any preliminary 
variable selection since most classifiers discussed here can perform automatic variable 
selection. To be fair, we use L1-SVM and penalized LR, where variable selection is 
performed automatically. 
We test NNet using different numbers of units in the hidden layer (i.e. different sizes (s)) 
ranging from 5 to 35. Further, we apply different weight decays (w) on the interconnections, 
ranging from 0.1 to 2.5. We find that a NNet with s = 35 and w = 0.7 achieves the maximum 
AUC of 98.80%. 
RF is optimized by choosing the number of trees used. Specifically, the number of trees we 
consider in this experiment is between 30 and 500. When using 50 trees on our dataset, RF 
achieves the maximum AUC of 95.48%. 
We use the L1-SVM C-Classification machine with radial basis function (RBF) kernels. L1-
SVM can automatically select input variables by suppressing parameters of irrelevant 
variables to zero. To achieve the maximum AUC over different parameter values, we 
consider cost of constraints violation values (i.e. the “c” constant of the regularization term 
in the Lagrange formulation) between 1 and 16, and values of the γ parameter in the kernels 
between 1 ×10-8 and 2. We find that  γ= 0.1 and c = 12 achieve the maximum AUC of 97.18%. 
In LR we use penalized LR and apply different values of the lambda regularization 
parameter under the L2 norm, ranging from 1 × 10-8 to 0.01. In our dataset λ = 1 × 10-4 

achieves the maximum AUC of 54.45%. 
We use two BART models; the first is the original model and as usual, we refer to this as 
“BART”. The second model is the one we modify so as to be applicable to classification, 
referred to as “CBART”. We test both models using different numbers of trees ranging from 
30 to 300. Also, we apply different power parameters for the tree prior, to specify the depth 
of the tree, ranging from 0.1 to 2.5. We find that BART with 300 trees and power = 2.5 
achieves the maximum AUC of 97.31%. However, CBART achieves the maximum AUC of 
99.19% when using 100 trees and power = 1. 
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4.4 Experimental results 
In this section we present the experimental results be measuring the AUC using the 
complete dataset. In addition, we compare the precision, recall, f1, and WErr measures using 
the optimum parameters achieved from the previous section. Figure 15 illustrates the ROCs 
for all classifiers. 
 

 
Fig. 15. ROC for all classifiers using the complete dataset. 

Table 3 illustrates the AUC, FP, FN, presicion, recall, f1, and WErr for all classi_ers. Note that 
the FPrate = 1 - precision and the FNrate = 1 - recall. 
 

 
Table 3. Classifiers AUC, WErr, precision, recall, f1, false positive, false negative. 

In Table 4, we compare p-value of the error rate for each subsample among the 10 
subsamples in cross validation by applying the Wilcoxon signed-rank test. Since CBART has 
a comparable error rate to that of RF, SVM, and NNet, we merely compare these three 
classifiers. 

 
Table 4. Comparing the p-value using the Wilcoxon-signed ranked test 

4.5 Discussion 
Here we investigate the application of a modified version of BART for phishing detection. 
The results demonstrate that CBART outperforms other classifiers on the phishing dataset, 
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achieving the maximum AUC of 99.19%. The results show that CBART has the highest 
AUC, followed by NNet with 98.80%, BART with 97.31%, SVM with 97.18%, CART with 
96.06%, RF with 95.48%, and LR with 54.45% respectively. Apparently the AUC for CBART 
has improved by 1.88% compared to the original BART model. 
The results show that CBART's error rate is comparable to other classifiers (merely RF, SVM, 
and NNet). When the error rates for the 10 subsamples are compared using the Wilcoxon-
singed ranked test, the p-value of the tests for SVM and NNet are greater than 0.05, which is 
an indication that the difference in the results is not statistically significantly different (see 
Table 4). However, for RF, the p-value is less than 0.05, which is an indication that the error 
rates may be statistically significantly different. Table 3 illustrates that the AUC for CBART is 
greater than RF by approximately 4%, therefore, we conclude that CBART's performance is 
better than RF. 
SVM achieves the minimum error rate (maximum accuracy) of 2.39%, followed by RF with 
3.68%, NNet with 4.31%, CBART with 4.41%, BART with 4.74%, LR with 5.34%, and CART 
with 7% respectively. Note that the accuracy of CBART has improved, insignificantly 
though, by 0.33%. 
CBART achieves the minimum FP rate of 2.98%, followed by RF with 4.24%, SVM with 
5.43%, NNet with 6.16%, BART with 6.18%, LR with 7.29%, and CART with 11.55%. The 
minimum FN rate is achieved by CBART with 11.14%, followed by RF with 13.20%, SVM 
with 13.77%, NNet 14.32%, BART 16.48%, LR 18.38%, and CART 22.10% respectively. 
It is well known that LR performs very well when the relationship underlying data is linear. 
We believe that the comparatively low predictive accuracy of LR is an indication of a non-
linear relationship among the features and the response in the dataset. 
With its superior classification performance, relatively high predictive accuracy, relatively 
low FP rate, and distinguished features, CBART proves to be a competitive and a practical 
method for phishing detection. 

5. Conclusions 
A modified version of Bayesian Additive Regression Trees (CBART) proved to be suitable as 
a phishing detection technique. The performance of CBART was compared against well-
known classification methods on a phishing dataset with both textual and structural 
features. 
The results showed that CBART is a promising technique for phishing detection and it has 
several features that make it competitive. Further, the results demonstrated that the 
performance of the modified BART model outperforms other well-known classifiers and 
comparatively achieves low error rate and false positives. CBART outperformed all the 
other classifiers and achieved the maximum AUC of 99.19% on the phishing dataset we 
built, decreasing by 1.88% compared to AUC of BART prior to the modification. SVM 
achieved the minimum error rate of 2.39% leaving behind, RF with 3.68% and NNet with 
4.31% followed by CBART with 4.41%. In addition, CBART achieved the minimum FP rate 
of 2.98% followed by RF with 4.25%, SVM with 5.43%, NNet with 6.16%, and BART with 
6.18%. 
Automatic variable selection in BART motivates future work to explore BART as a variable 
selection technique. This includes comparing its performance to other well known variable 
selection methods. 
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1. Introduction  
The emergence of the World Wide Web has lead to growing needs for interacting 
components capable of achieving – together – complex requests on the Web. Service 
oriented Systems (SoS) are a response to this issue, given available standards for describing 
individual services and interaction between them, and the attention to interoperability 
combined with an uptake in industry. A service is a self-describing and self-contained 
modular application designed to execute a well-delimited task, and that can be described, 
published, located, and invoked over a network (McIlraith & Martin, 2003; Papazoglou & 
Georgakopoulos, 2003). A web service is a service made available on the Internet via tailored 
technologies such as WSDL, SOAP or UDDI (Walsh, 2002). To fulfill elaborate requests that 
involve many execution steps, web services participate in web services compositions. To 
optimize such compositions, each step of the execution is achieved by the most competitive 
available web service. The most competitive web service is the one who performs the given 
task while fulfilling its functional requirements and providing the best observed values of 
quality of service (QoS). 
QoS are the nonfunctional properties of a web service and refer to concerns such as 
availability, reliability, cost or security (Menascé, 2002). The selection of all web services that 
can participate in a composition (i.e., web services that will perform at least one step of the 
execution) is under the responsibility of the service composer. To achieve QoS-aware service 
selection, we rely on a Multi-Criteria Randomized Reinforcement Learning approach 
(MCRRL). MCRRL authorizes automated continuous optimization of service monitoring 
and leads the system to respond to the variation of the availability of web services without 
human involvement. 
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The emergence of the World Wide Web has lead to growing needs for interacting 
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selection, we rely on a Multi-Criteria Randomized Reinforcement Learning approach 
(MCRRL). MCRRL authorizes automated continuous optimization of service monitoring 
and leads the system to respond to the variation of the availability of web services without 
human involvement. 
This paper focuses on the composition of services under the constraint of openness, resource 
distribution, and adaptability to changing web service availability w.r.t. multiple criteria. To 
enable such system characteristics, a fit between the system architecture and services 
composition behavior is needed, that is: (1) To support openness, few assumptions can be 
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made about the behavior of the web services that may participate in compositions. It thus 
seems reasonable to expect services composition responsibility not to be placed on any web 
service: the architecture ought to integrate a special set of web services, the service 
composers, that coordinate services composition. (2) To allow the distribution of web 
services, no explicit constraints should be placed on the origin of entering services. (3) To 
enable adaptability, composer behavior should be specified along with the architecture. (4) 
Since there is no guarantee that web services will execute tasks at performance levels 
advertised by the providers, composition should be grounded in empirically observed 
service performance and such observations executed by the composers. (5) The variety of 
stakeholder expectations requires services composition to be driven by multiple criteria. (6) 
To ensure continuous adaptability at runtime, composition within the architecture should 
involve continual observation of service performance, the use of available information to 
account for service behavior and exploration of new options to avoid excessive reliance on 
historical information. 
Contributions. We provide a complete composition process involving several steps: (1) The 
service user requests a service that involves several tasks that can be fulfilled by different 
web services. These tasks and all possible execution paths are described on on a statechart. 
(2) The service composer observes available web services and rejects those that can not 
achieve one of the existing task of the statechart. It then builds the resulting execution plan 
as a Directed Acyclic Hypergraph, on which it represents all services available for each task. 
(3) The service requester expresses its quality expectations with the help of our QoS model. 
(4) The composer rejects services that do no meet quality requirements and scores each 
candidate web service with our proposed QoS aggregation model to get a multi criteria 
measure of their performance. (5) This value is the one that the service composer maximizes 
in our RRL algorithm. The result of the computation gives us web services to select to get 
the most competitive composite web service. 
Organization. We present our conceptual foundations for the remaining of the paper in 
Section 2. That section covers the case study used throughout this paper and our 
composition model with its statechart representation and its Directed Acyclic Hypergraph 
derivation. It also proposes our QoS model applied by the service user to specify its 
priorities and preferences about QoS. Section 3 presents how multiple quality criteria are 
aggregated into a single measure of performance. The method is illustrated with the 
previously introduced case study. Section 4 introduces our Reinforcement Learning solution 
to the composition problem by liken it to the task allocation problem. Section 5 presents 
experiments that we made on our Multi-Criteria Randomized Reinforcement Learning 
proposal. Section 6 outlines the related work. Finally Section 7 concludes this paper and 
exposes our future work. 

2. Baseline 
This section presents the different conceptual elements used through the paper. Our case 
study is introduced in Subsection 2.1. Our services composition model is proposed in 
Subsection 2.2 and involves two steps. The first is to define the possible composition process 
with a statechart as described in Subsection 2.2.1. We illustrate the statechart representation 
with the composition of web services introduced in the case study. The second is to 
represent candidate services for each elementary task of the whole composition. This 
representation is derived from statecharts with Directed Acyclic Hypergraph. The 
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procedure for doing so is explained and illustrated with our case study in Subsection 2.2.2. 
We present in Subsection 2.3 the QoS model dedicated to the service user to make its 
particular requirements about its QoS priorities and preferences. 

2.1 Case study 
To illustrate our selection of services entering in a composition, we propose a case study 
subsequently used throughout the paper. The European Space Agency's (ESA) program on 
Earth observation allows researchers to access and use infrastructure operated and data 
collected by the agency.1 Our case study focuses on the information provided by the MERIS 
instrument on the Envisat ESA satellite. MERIS is a programmable, medium-spectral 
resolution imaging spectrometer operating in the solar reflective spectral range. MERIS is 
used in observing ocean color and biology, vegetation and atmosphere and in particular 
clouds and precipitation. In relation to MERIS, web services are made available by the ESA 
for access to the data the instrument sends and access and use of the associated computing 
resources. 

 
Fig. 1. Graphical user interface of the ENVISAT/MERIS MGVI web service 

                                                 
1http://gpod.eo.esa.int 
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aggregated into a single measure of performance. The method is illustrated with the 
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to the composition problem by liken it to the task allocation problem. Section 5 presents 
experiments that we made on our Multi-Criteria Randomized Reinforcement Learning 
proposal. Section 6 outlines the related work. Finally Section 7 concludes this paper and 
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2. Baseline 
This section presents the different conceptual elements used through the paper. Our case 
study is introduced in Subsection 2.1. Our services composition model is proposed in 
Subsection 2.2 and involves two steps. The first is to define the possible composition process 
with a statechart as described in Subsection 2.2.1. We illustrate the statechart representation 
with the composition of web services introduced in the case study. The second is to 
represent candidate services for each elementary task of the whole composition. This 
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2.1 Case study 
To illustrate our selection of services entering in a composition, we propose a case study 
subsequently used throughout the paper. The European Space Agency's (ESA) program on 
Earth observation allows researchers to access and use infrastructure operated and data 
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1http://gpod.eo.esa.int 



 Machine Learning 

 

210 

Among available functionalities delivered by these web services, we focus our attention to 
services enabling to extract the vegetation index, or more precisely, the Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR) from MERIS data. The graphical interface 
used to determine the requested information for the vegetation index on a given region is 
illustrated in Figure 1. The graphical output produced for the world-wide map is given in 
Figure 2. 
Two main services allow the extraction of such data, one processing the information for the 
world-wide map and the other computing information for a given area of the world. The 
graphical user interface of the service providing regional data differs from the world wide 
one with a bounding box enabling to select an area on the map. World-wide data is much 
often requested than data for a given region of the world, so World-wide data can be more 
rapidly retrieved than the regional. Moreover, some services authorize the extraction of 
regional data from world-wide data. 
 

 
Fig. 2. Output provided by the world-wide vegetation service 

2.2 Web services composition model 
Service requests pointed out that various criteria can be used in specifying a service request; 
namely, QoS concepts cover deadline, reputation, monetary cost, and explicit requester 
preferences. Reputation and trust receive considerable attention in the literature (e.g., 
(Maximilien & Singh, 2005; Zacharia & Maes, 2000)). In AOSS, the ideas underlying 
Maximilien and Singh's approach (Maximilien & Singh, 2005) can be followed, with two 
caveats: they use “trust” to select services from a pool of competing services and exploit user-
generated opinions to calculate reputation, whereas herein WS are selected automatically and 
reputation can be generated by comparing WS behavior observed by the composer and the 
advertised behavior of the WS. The following is one way to define reputation in AOSS.2 

                                                 
2Reputation is used here instead of trust since no user opinions are accounted for. 
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have been made over a quality parameter k .  
It is apparent that many other criteria can be accounted for when selecting among 
alternative WS compositions. Decision making in presence of multiple criteria does not 
require full specification of all possible criteria for each WS---instead, it is up to the requester 
to choose what criteria to specify. The algorithm thus optimizes a single normalized variable 
(i.e., taking values in the interval [0,1] ). An aggregation function for the criteria relevant to 
the service requester is applied, so that the result of the function is what the algorithm will 
optimize. The process providing the aggregation function is presented in Section 3. 

2.2.1 Statechart representation 
A services composition is a succession of elementary tasks, whose exution fulfills a complex 
request. We assume the request describes a process to execute. Individual web services are 
combined together according to their functional specifications. Compositions support 
alternative possibilities and concurrency of elementary tasks. Similarly to Zeng and 
colleagues, our service process is defined as a statechart (Zeng et al., 2003). Statecharts offer 
well defined syntax and semantics so that rigorous analysis can be performed with formal 
tools to check specification concordance between services. Another advantage is that they 
incorporate flow constructs established in process modeling languages (i.e, sequence, 
concurrency, conditional branching, structured loops, and inter-thread synchronization). 
Consequently, standardized process modeling languages, such as, e.g., BPMN (OMG, 
2006a), can be used to specify the process model when selecting services that will enter in 
the composition. Statecharts offer the possibility to model alternatives and a composite task 
can be achieved by different paths in the statechart. Such paths are named execution paths ant 
their definition in relation to statecharts is given in Definition 2.2.1. The statechart is a useful 
representation of a process that a WS composition needs to execute, most selection 
algorithms cannot process a statechart in its usual form. Instead, a statechart is mapped onto 
a Directed Acyclic Hypergraph (DAH), using Definition 2.2.1 and the technique for 
constructing DAH, described below. 
 (Adapted from (Zeng et al., 2003)) An execution path of a statechart is a sequence of states 

1 2[ , , , ]nt t t… , such that 1t  is the initial state, nt  the final state, and for every state 
(1 < < )it i n , the following holds:   

• it  is a direct successor of one of the states in 1 1[ , , ]it t −… .  
• it  is not a direct successor of any of the states in 1[ , , ]i nt t+ … .  
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2.2.1 Statechart representation 
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request. We assume the request describes a process to execute. Individual web services are 
combined together according to their functional specifications. Compositions support 
alternative possibilities and concurrency of elementary tasks. Similarly to Zeng and 
colleagues, our service process is defined as a statechart (Zeng et al., 2003). Statecharts offer 
well defined syntax and semantics so that rigorous analysis can be performed with formal 
tools to check specification concordance between services. Another advantage is that they 
incorporate flow constructs established in process modeling languages (i.e, sequence, 
concurrency, conditional branching, structured loops, and inter-thread synchronization). 
Consequently, standardized process modeling languages, such as, e.g., BPMN (OMG, 
2006a), can be used to specify the process model when selecting services that will enter in 
the composition. Statecharts offer the possibility to model alternatives and a composite task 
can be achieved by different paths in the statechart. Such paths are named execution paths ant 
their definition in relation to statecharts is given in Definition 2.2.1. The statechart is a useful 
representation of a process that a WS composition needs to execute, most selection 
algorithms cannot process a statechart in its usual form. Instead, a statechart is mapped onto 
a Directed Acyclic Hypergraph (DAH), using Definition 2.2.1 and the technique for 
constructing DAH, described below. 
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• There is no state jt  in 1 1[ , , ]it t −…  such that jt  and it  belong to two alternative branches 
of the statechart.  

 

 
 

Fig. 3. Statechart representation of the composite service 

We concentrate our efforts here on the description of elementary tasks of a composite 
service processing the FAPAR for a given region of the world. Two main paths of tasks 
allow to achieve this composite service. Besides elementary tasks stepping in both paths, the 
first path uses services allowing to process data for a given region of the world while the 
second path process the world-wide data and restrains the information to the given area. 
The composite service and its elementary tasks are illustrated with the corresponding 
statechart in Figure 2.2.1. 

2.2.2 Directed acyclic hypergraph instantiation 
It is apparent that an acyclic statechart has a finite number of execution paths. If the 
statechart is not acyclic, it must be “unfolded” (Zeng et al., 2003): logs of past executions 
need to be examined in order to determine the average number of times that each cycle is 
taken. The states between the start and end of a cycle are then duplicated as many times as 
the cycle is taken on average. Assuming for simplicity here that the statechart is acyclic, an 
execution path can be represented as a Directed Acyclic Hypergraph. 
Given a set of distinct execution paths 1, ,{[ , , ]}k n kt t…  ( k  is the index for execution paths), 
the Directed Acyclic Hypergraph (DAH) is obtained as follows: 
• DAH has an edge for every pair ( , )task WS  which indicates the allocation of WS to the 

given task. DAH thus has as many edges as there are possible allocations of WS to 
tasks. 

• DAH has a node for every state of the task allocation problem. Such a state exists 
between any two sequentially ordered tasks of the task allocation problem (i.e., a node 
connecting two sets of edges in the DAH, whereby the two tasks associated to the two 
sets of edges are to be executed in a sequence).  

Note that: (i) the DAH shows all alternative allocations and all alternative execution paths 
for a given statechart; (ii) conditional branchings in a statechart are represented with 
multiple execution paths. 
Available web services for fulfilling individual tasks of our composite service proposed in 
Figure 2.2.1 need to be represented in a DAH to apply our selection approach. Each state of 
the statechart will become a node in the DAH with an additional starting node depicting the 
initial state. The resulting DAH is available in Figure 3 with each edge standing for a service 
able to fulfill the task specified in the outgoing node of the edge. Several services provided 
by the ESA are able to fulfill each individual tasks of the composite service providing the 
FAPAR index. The DAH representation gather web services which can be used at different 
steps of the execution. 
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Fig. 4. DAH representation of the composite service    

2.3 Specification of user priorities and preferences 
We suggest a QoS model that enables the user to express accurately its needs about quality 
properties of its required service. To account for various aspects of user expectations, this 
model must include advanced concepts such as priorities over quality characteristics or 
preferences on offered values. To enable specifying these concepts, the model contains 
modeling constructs dedicated to various facets of user expectations. 
Among multiple available QoS models (D’Ambrogio, 2006; Keller & Ludwig, 2003; Zhou et 
al., 2004), we base our model on the UML QoS Profile. The original UML QoS Framework 
metamodel, introduced by the Object Management Group (OMG, 2006b), includes modeling 
constructs for the description of QoS considerations. It has some advantages over other 
models: it is based on the Unified Modeling Language (UML); it is a standard provided by 
the Object Management Group (OMG); it is a metamodel that can be instantiated in respect 
to users needs; and it covers numerous modeling constructs and allows to add some 
extensions. This model with our extensions are shown in Figure 2.3. 
In that metamodel, a QoS Characteristic is a description for some quality consideration, such 
as e.g., latency, availability, reliability or capability. Extensions and specializations of such 
elements are available with the sub-parent self-relation. A characteristic has the ability to be 
derived into various other characteristics as suggested by the templates-derivations self-
relation. A QoS Dimension specifies a measure that quantifies a QoS Characteristic. The unit 
attribute specifies the unit for the value dimension. QoS Values are instantiations of QoS 
Dimensions that define specific values for dimensions depending on the value definitions 
given in QoS DimensionSlots. A QoS DimensionSlot represents the value of QoSValue. It can 
be either a primitive QoS Dimension or a referenced value of another QoSValue. While 
constraints usually combine functional and non-functional considerations about the system, 
QoS Context is used to describe the context in which quality expression are involved. A 
context includes several QoS Characteristics and model elements. The aim of QoS Constraints 
is to restrict values of QoS Characteristics. Constraints describe limitations on characteristics 
of modeling elements identified by application requirements and architectural decisions. 
In comparison with the original OMG metamodel, we make some additional assumptions:   
• In the OMG standard, QoS Characteristics are quantified by means of one or several QoS 

Dimensions. We assume that the value of a QoS Dimension can similarly be calculated 
with quantitative measures of other QoS Dimensions. This assumption is expressed in 
the metamodel in Figure 2.3 through the Compose-Composed by relationship of the QoS 
Dimension metaclass. 
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Dimensions that define specific values for dimensions depending on the value definitions 
given in QoS DimensionSlots. A QoS DimensionSlot represents the value of QoSValue. It can 
be either a primitive QoS Dimension or a referenced value of another QoSValue. While 
constraints usually combine functional and non-functional considerations about the system, 
QoS Context is used to describe the context in which quality expression are involved. A 
context includes several QoS Characteristics and model elements. The aim of QoS Constraints 
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Dimensions. We assume that the value of a QoS Dimension can similarly be calculated 
with quantitative measures of other QoS Dimensions. This assumption is expressed in 
the metamodel in Figure 2.3 through the Compose-Composed by relationship of the QoS 
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Fig. 5. UML metaclasses to user modeling 

• We allow the user to express its priorities over QoS Characteristics and over QoS 
Dimensions by means of, respectively, QoS Charact Priority and QoS Dim Priority 
metaclasses whose are specializations of the QoS Priority metaclass. Its attribute rules 
concerns QoS Characteristics or QoS Dimensions involved in the priority and the 
direction of the priority while the attribute strength indicates the relative importance of 
the priority. QoS Priority Condition indicates conditions that need to hold in order for the 
priority to become applicable.  

• To enable the user to express its preferences over values of QoS Characteristics and QoS 
Dimensions, we add a specific metaclass: QoS Preference. Preferences over values are 
defined with some attributes: direction states if the value has to be minimized or 
maximized; max value indicates the maximal value expected by the user and defines its 
preference.  

  

 
Fig. 6. User specifications 

To illustrate our scoring model, we suppose a service requester who wishes to use our 
composite service processing FAPAR for a given area of the world while optimizing the 
following QoS Characteristics: availability, cost, latency, reliability, reputation and security. 
Some of these quality considerations are not directly quantifiable, and are measured with 
help of multiple QoS Dimensions (e.g.: latency is quantified by network time and execution 
time), others are measured with a single QoS Dimension (e.g.: the availability is a measure 
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provided in %). All these information are specified by the service requester with the help of 
our proposed QoS model. Parts of the complete specification of the user are illustrated in 
Figure 2.3. 

3. QoS scoring of services 
In order to select web services that will fulfill the different elementary tasks of the 
composition, the service composer must decide between them. Because web services 
represented in the DAH meet functional requirements, their discrimination will be made on 
their quality properties. To account for multiple quality properties in the reinforcement 
learning composition process, QoS need to be adequately aggregated. We explain in this 
section how the composer give an aggregated QoS score to each available service of the 
composition with help of Multi-Criteria Decision Making (MCDM) techniques. The QoS 
score is calculated by considering quality requirements expressed by the service user. To 
express such requirements, that must be interpretable by the service composer, the user 
needs an appropriate quality model. We present our QoS model and illustrate its utilization 
with the earth observation composite service of the ESA introduced in Subsection 2.2. 
The service composer uses information specified with the QoS model in combination with 
Multi-Criteria Decision Making (MCDM) techniques to establish an aggregated measure of 
quality properties on all available services. This measure must be calculated for each service 
candidate of the composition. However multiple execution paths are available in the DAH 
representation of the composite service and, these paths can be subject to major variations in 
quality performance. In our ESA case study, we observed that services used to generate 
world-wide data are slower than services providing regional data but are also more reliable. 
Anyway, scores of services need to be comparable to service candidates on all paths of the 
composition. To achieve this global measurement, the scoring will be established by 
pairwise comparisons on all services suitable for any tasks of the composition. 
The scoring process involves the following steps: (1) apply hard constraints on services, to 
restrict the set of services upon whose MCDM calculation will be made. (2) establish the 
hierarchy of quality properties with information related to characteristics and dimensions 
decomposition, each property being considered as a criterion of the MCDM model. 
Moreover, two distinct hierarchies are build, the first dedicated to benefits, i.e.: criteria to 
maximize, the second dedicated to costs, i.e.: criteria to minimize. (3) fix the priorities of 
quality properties by applying the Analytic Hierarchy Process (AHP) on both hierarchies. 
(4) give a score to each service alternative for both benefits and costs hierarchies. This step is 
done with the Simple Additive Weighting (SAW) process, which gives us the opportunity to 
score alternatives with few information given on criteria. (5) for each alternative, the ratio 
benefits/costs is computed by service composer and a score is linked to each available 
service. 

3.1 Fixing hard constraints 
Hard constraints on quality properties (i.e.: QoS Characteristics or QoS Dimensions) are 
defined by the user to restrict the set of accepted services. These are specified with the QoS 
Constraint metaclass and fix thresholds to values of a QoS Dimension. While the service 
composer assigns best available services to the service requester, services that do not fulfill 
thresholds values for the different QoS Dimensions taken into account are considered 



 Machine Learning 

 

214 

 
Fig. 5. UML metaclasses to user modeling 

• We allow the user to express its priorities over QoS Characteristics and over QoS 
Dimensions by means of, respectively, QoS Charact Priority and QoS Dim Priority 
metaclasses whose are specializations of the QoS Priority metaclass. Its attribute rules 
concerns QoS Characteristics or QoS Dimensions involved in the priority and the 
direction of the priority while the attribute strength indicates the relative importance of 
the priority. QoS Priority Condition indicates conditions that need to hold in order for the 
priority to become applicable.  

• To enable the user to express its preferences over values of QoS Characteristics and QoS 
Dimensions, we add a specific metaclass: QoS Preference. Preferences over values are 
defined with some attributes: direction states if the value has to be minimized or 
maximized; max value indicates the maximal value expected by the user and defines its 
preference.  

  

 
Fig. 6. User specifications 

To illustrate our scoring model, we suppose a service requester who wishes to use our 
composite service processing FAPAR for a given area of the world while optimizing the 
following QoS Characteristics: availability, cost, latency, reliability, reputation and security. 
Some of these quality considerations are not directly quantifiable, and are measured with 
help of multiple QoS Dimensions (e.g.: latency is quantified by network time and execution 
time), others are measured with a single QoS Dimension (e.g.: the availability is a measure 

Learning Optimal Web Service Selections in Dynamic Environments when  
Many Quality-of-Service Criteria Matter 

 

215 

provided in %). All these information are specified by the service requester with the help of 
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score is calculated by considering quality requirements expressed by the service user. To 
express such requirements, that must be interpretable by the service composer, the user 
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decomposition, each property being considered as a criterion of the MCDM model. 
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done with the Simple Additive Weighting (SAW) process, which gives us the opportunity to 
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Constraint metaclass and fix thresholds to values of a QoS Dimension. While the service 
composer assigns best available services to the service requester, services that do not fulfill 
thresholds values for the different QoS Dimensions taken into account are considered 
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irrelevant. Constraints allow us to decrease the number of alternative services to consider 
when applying MCDM - all services that do not satisfy the constraints are not considered for 
comparison. 
The complete specification made by the service requester with the QoS model is transmitted 
to the service composer that will process all steps of the selection. The composer starts by 
rejecting services that do not fulfill hard constraints. For example, in specification given in 
Figure 2.3, the composer restrains available services to those that have an Availability higher 
than 80%. 

3.2 Characteristics and dimensions hierarchies 
Decomposition of QoS Characteristics into QoS Dimensions and QoS Dimensions into others 
QoS Dimensions may be used by the service composer to build a complete hierarchy of QoS 
properties. This information is expressed with help of the relations Type - Typed between the 
QoS Characteristic and the QoS Dimension metaclasses and Compose - Composed by defined 
over the QoS Dimension metaclass. The hierarchy established by the service composer 
allows to bind weights to QoS properties at different levels. This way, their relative 
importance is aggregated in accordance with the QoS properties that these quantify. To 
account for measurement of QoS Characteristics by QoS Dimensions and quantification of 
QoS Dimensions, we classify them into two separate hierarchies. The first is dedicated to 
benefits, all quality properties that have to be maximized: availability, reliability, reputation, 
etc. The second is designed for costs, involving quality properties to minimize: execution 
time, failures, cost, etc. Modality (maximize or minimize) of QoS properties is defined with 
the attribute direction of the QoS Value class. These two hierarchies are linked to the same 
global optimization goal. This top-down organization clearly indicates the contributions of 
lower levels of quality properties to upper ones. The final hierarchy obtained takes the form 
of a tree. 
The second step of the service composer is to establish benefits and costs hierarchies with 
the information provided by the service requester. The hierarchy corresponding to 
expectations formulated by the requester for the ESA composite service is illustrated in 
Figure 3.2. 
 

 
Fig. 7. Benefits and costs hierarchies 
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3.3 Priorities over criteria 
Priorities information is used to bind weights to QoS Characteristics and QoS Dimensions, 
reflecting their respective relative importance. These weights are defined using QoS 
Priorities specifications given by the service user and are linked to the corresponding QoS 
properties. Once the hierarchy is established, the relative importance of each QoS property 
has to be fixed with a weight reflecting its contribution to the main optimization goal. These 
weights must be fixed independently for benefits criteria and for costs criteria to consider 
separately positive and negative QoS properties. To fix weights on such hierarchies, we use 
the Analytic Hierarchy Process (AHP) (Saaty, 1980). The Analytic Hierarchy Process fixes 
weights to criteria with help of comparison matrices provided for each level of criteria. For a 
same level, each criterion is compared with other criteria of its level on a scale fixed between 
1/9 and 9. Each matrix is build with QoS Priority specifications: rules express direction of 
pairwise comparisons of criteria and strength fixes the value chosen by the user on the scale 
for the comparison. Next, weights of QoS properties are obtained with the computation of 
the right eigenvector of the matrix. The eigenvector is computed by raising the pairwise 
matrix to powers that are successively squared each time. The rows sums are then calculated 
and normalized. The computation is stopped when the difference between these sums in 
two consecutive calculations is smaller than a prescribed value. The service composer 
adopts a top-down approach, the weights of each level being multiplied by the weight of the 
quality property of its upper level to determine its relative importance on the whole 
hierarchy. This process is performed on both sides of the tree, for positive and negative 
quality properties. 
The third step of the composer is to fix weights for each level of criteria with the AHP 
method. With the information provided by QoS Priority instance in Figure 2.3, the service 
composer is able to build a comparison matrix for dimensions quantifying the Latency. In the 
case or our composite service computing the FAPAR index for a given area of the world, the 
service requester favors the Execution time rather than the Network time. In fact, Execution time 
is the main bottleneck of the service execution due to huge quantity of data processed. This 

matrix is 1 4
1/ 4 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

. The composer computes its eigenvector to obtain weights for this level, 

in the example: 0.2 for Network Time and 0.8 for Execution Time. These weights are multiplied 
by weights of upper levels to determine weights of the whole hierarchy that are illustrated 
in Figure 3.2. 

3.4 QoS scoring with user preferences 
Preferences information specified by the user on QoS Values is used by the service composer 
to compute the score of the service. We use this information to determine what values are 
preferred for a given QoS Characteristic or QoS Dimension. The priorities of quality 
properties have been fixed with weights reflecting their relative importance. Preferences on 
values allow us to discriminate services on a given criterion. To quantify these preferences, 
we rely on a specific class of MCDM methods: scoring methods (Figueira et al., 2005) and 
more specifically the Simple Additive Weighting (SAW) method (Hwang & Yoon, 1981). 
This method is based on the weighted average. An evaluation score is calculated for each 
alternative by multiplying the scaled value given to the alternative of that attribute with the 
weights given by the AHP method. Next, these products are summed for all criteria 
involved in the decision making process. Each service alternative is evaluated on both 
hierarchies, i.e.: benefits and costs, with the following formula: 
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 Where iw  is the weight of the QoS property i get with the AHP method and *
uix  is the 

scaled score of the service alternative u on the QoS property i. 
The scores for the QoS properties are measured with different scales, i.e.: percentage, 
second, level, etc. Such measurement scales must be standardized to a common 
dimensionless unit before applying the SAW method. The scaling of a service alternative for 
a given QoS property is evaluated with the following formula: 

 max
i
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where *
uix  is the scaled score of the service alternative u on the QoS property i . uix  is the 

score of the service alternative u on the QoS property i expressed with its original unit. max
ix  

is the maximal possible score on the QoS property i. This maximal score is expressed by the 
user with help of the max value attribute of the QoS Preference class illustrated in Figure 2.3. 
When the unit of the QoS Property is a percentage, the maximal value is systematically 
equal to 100. If the unit is a time period as second, the user defines himself the maximal 
value. So, the scaled scores will reflect the preferences of the user with means of the relative 
importance of the maximal value by contrast to observed values. 
Once weights reflecting the relative importance of each QoS property have been fixed, the 
fourth step of the service composer is to define the score of each alternative for both benefits 
and costs hierarchies with user preferences. It uses the SAW method and begins by scaling 
the score of all alternatives on all QoS properties involved in the selection process. For 
example, in Figure 2.3, the max value proposed by the service user for the Network time is 
20 sec. With a service alternative offering a Network Time of 13 sec, the scaled score of this 
service for the Network Time QoS property is 65%. This score is then multiplied by 0,13333, 
the weight of the Network Time. This process is summed for all QoS properties considered 
and repeated for all existing service alternatives on both hierarchies. 

3.5 Benefits/costs analysis 
Scores of services alternatives get with the SAW method on both hierarchies define the 
relative performance of services on positive properties (benefits) and negative properties 
(costs). Benefits should be maximized while costs have to be minimized, to aggregate both 
considerations into a single measure of performance, the AHP MCDM method proposes to 
execute the benefits/costs ratio (Figueira et al., 2005). The benefits/costs ratio is evaluated 
with the following formula: 

 costs
u

benefits
u

u s
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where ur  is the final score of the service alternative u. benefits
us  is the score of the service u on 

the benefits hierarchy and costs
us  is the score of the service a  on the costs hierarchy. 
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The last step of the composer is then to compute the benefits/costs ratio of each alternative 
as suggested by some AHP variations. E.g.: if a service alternative has a score of 0,8126  for 
its benefits hierarchy and a score of 0,7270 for its costs hierarchy, the final score of its service 

is 
0,8126 = 1,1177
0,7270

. The respective score of each service is then linked to reflect its relative 

performance. 

4. Web services composition with randomized RL algorithm 
An important issue is the selection of WS that are to participate in performing the process 
described in the composition model. This problem is referred to as the task allocation 
problem in the remainder. 
Reinforcement Learning (RL) (see, e.g., (Sutton & Barto, 1998) for an introduction) is a 
particularly attractive approach to allocating tasks to WS. RL is a collection of methods for 
approximating optimal solutions to stochastic sequential decision problems (Sutton & Barto, 
1998). An RL system does not require a teacher to specify correct actions. Instead, the 
learning agent tries different actions and observes the consequences to determine which are 
best. More specifically, in the RL framework, a learning agent interacts with an environment 
over some discrete time scale = 0,1, 2,3t , ... . At each time step t , the environment is in 
some state, tk . The agent chooses an action, tu , which causes the environment to transition 
to state 1tk +  and to emit a feedback, 1tr+ , called ``reward''. A reward may be positive or 
negative, but must be bounded and it informs the agent on the performance of the selected 
actions. The next state and reward depend only on the preceding state and action, but they 
may depend on it in a stochastic fashion. The objective of reinforcement learning is to use 
observed rewards to learn an optimal (or nearly optimal) mapping from states to actions, 
which is called an optimal policy, Π . An optimal policy is a policy that maximizes the 
expected total reward (see, §  4.2, Eq. 5). More precisely, the objective is to choose action tu , 
for all 0t ≤ , so as to maximize the expected return. Using the terminology of this paper, RL 
can be said to refer to trial-and-error methods in which the composer learns to make good 
allocations of WS to tasks through a sequence of " interactions" . In task allocation, an 
interaction consists of the following: 
1. The composer identifies the task to which a WS is to be allocated. 
2. The composer chooses the WS to allocate to the task. 
3. The composer receives a reward after the WS executes the task. Based on the reward, 

the composer learns whether the allocation of the given WS to the task is appropriate or 
not. 

4. The composer moves to the next task to execute (i.e., the next interaction takes place).  
One advantage of RL over, e.g., queuing-theoretic algorithms (e.g., (Urgaonkar et al., 2005)), 
is that the procedure for allocating WS to tasks is continually rebuilt at runtime: i.e., the 
composition procedure changes as the observed outcomes of prior composition choices 
become available. The WS composer tries various allocations of WS to tasks, and learns from 
the consequences of each allocation. Another advantage is that RL does not require an 
explicit and detailed model of either the computing system whose operation it manages, nor 
of the external process that generates the composition model. Finally, being grounded in 
Markov Decision Processes, the RL is a sequential decision theory that properly treats the 
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where ur  is the final score of the service alternative u. benefits
us  is the score of the service u on 

the benefits hierarchy and costs
us  is the score of the service a  on the costs hierarchy. 
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The last step of the composer is then to compute the benefits/costs ratio of each alternative 
as suggested by some AHP variations. E.g.: if a service alternative has a score of 0,8126  for 
its benefits hierarchy and a score of 0,7270 for its costs hierarchy, the final score of its service 

is 
0,8126 = 1,1177
0,7270

. The respective score of each service is then linked to reflect its relative 

performance. 

4. Web services composition with randomized RL algorithm 
An important issue is the selection of WS that are to participate in performing the process 
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1998). An RL system does not require a teacher to specify correct actions. Instead, the 
learning agent tries different actions and observes the consequences to determine which are 
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actions. The next state and reward depend only on the preceding state and action, but they 
may depend on it in a stochastic fashion. The objective of reinforcement learning is to use 
observed rewards to learn an optimal (or nearly optimal) mapping from states to actions, 
which is called an optimal policy, Π . An optimal policy is a policy that maximizes the 
expected total reward (see, §  4.2, Eq. 5). More precisely, the objective is to choose action tu , 
for all 0t ≤ , so as to maximize the expected return. Using the terminology of this paper, RL 
can be said to refer to trial-and-error methods in which the composer learns to make good 
allocations of WS to tasks through a sequence of " interactions" . In task allocation, an 
interaction consists of the following: 
1. The composer identifies the task to which a WS is to be allocated. 
2. The composer chooses the WS to allocate to the task. 
3. The composer receives a reward after the WS executes the task. Based on the reward, 

the composer learns whether the allocation of the given WS to the task is appropriate or 
not. 

4. The composer moves to the next task to execute (i.e., the next interaction takes place).  
One advantage of RL over, e.g., queuing-theoretic algorithms (e.g., (Urgaonkar et al., 2005)), 
is that the procedure for allocating WS to tasks is continually rebuilt at runtime: i.e., the 
composition procedure changes as the observed outcomes of prior composition choices 
become available. The WS composer tries various allocations of WS to tasks, and learns from 
the consequences of each allocation. Another advantage is that RL does not require an 
explicit and detailed model of either the computing system whose operation it manages, nor 
of the external process that generates the composition model. Finally, being grounded in 
Markov Decision Processes, the RL is a sequential decision theory that properly treats the 
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possibility that a decision may have delayed consequences, so that the RL can outperform 
alternative approaches that treat such cases only approximately, ignore them entirely, or 
cast decisions as a series of unrelated optimizations. 
One challenge in RL is the tradeoff between exploration and exploitation. Exploration aims to 
try new ways of solving the problem, while exploitation aims to capitalize on already well-
established solutions. Exploration is especially relevant when the environment is changing: 
good solutions can deteriorate and better solutions can appear over time. In WS 
composition, exploitation consists of learning optimal allocations of WS to tasks, and 
systematically reusing learned allocations. Without exploration, the WS composer will not 
consider allocations different than those which proved optimal in the past. This is not 
desirable, since in absence of exploration, the WS composer is unaware of changes in the 
availability of WS and appearance of new WS, so that the performance at which the 
composition is fulfilled inevitably deteriorates over time in an open and distributed service-
oriented system. 
Two forms of exploration can be applied: preliminary and continual online exploration. The 
aim with preliminary exploration is to discover the state to reach, and to determine a first 
optimal way to reach it. As the composition model specifies the state to reach in WS 
composition, continual online exploration is of particular interest: therein, the set of WS that 
can be allocated to tasks is continually revised, so that future allocations can be performed 
by taking into account the availability of new WS, or the change in availability of WS used in 
prior compositions. Preliminary exploration is directed if domain-specific knowledge is used 
to guide exploration (e.g., (Thrun, 1992b; Thrun, 1992a; Thrun et al., 2005; Verbeeck, 2004)). 
In undirected preliminary exploration, the allocation of new WS to tasks is randomized by 
associating a probability distribution to the set of competing WS available for allocation to a 
given task. 
To avoid domain-specificity in this paper, the RL algorithm in MCRRL relies on undirected 
continual exploration. Both exploitation and undirected continual exploration are used in WS 
composition: exploitation uses available data to ground the allocation decision in 
performance observed during the execution of prior compositions, whereas exploration 
introduces new allocation options that cannot be identified from past performance data. 
This responds to the first requirement on WS composition procedures (item 1, §  1), namely 
that optimal WS compositions will be built and revised at runtime, while accounting for 
change in the availability of WS and the appearance of new WS. As shown in the remainder 
(see, §  4.1), the WS composition problem can be formulated as a global optimization 
problem which follows either a deterministic shortest-path (in case the effects of WS 
executions are deterministic) or a stochastic shortest-path formulation. Requirement 4 ( §  1) is 
thus also addressed through the use of RL to guide WS composition. Since the RL approach 
can be based on observed performance of WS in compositions, and the algorithm in MCRRL 
accepts multiple criteria and/or constraints (see, §  3 and §  4.1), requirements 2 and 3 ( §  1) 
are fulfilled as well. 

4.1 Task-allocation problem 
If RL is applied to task allocation, the exploration/ exploitation issue can be addressed by 
periodically readjusting the policy for choosing task allocations and re-exploring up-to-now 
suboptimal execution paths (Mitchell, 1997; Sutton & Barto, 1998). Such a strategy is, 
however, suboptimal because it does not account for exploration. The Randomized 
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Reinforcement Learning (RRL) algorithm introduced in (Saerens et al., 2004) is adapted 
herein to task allocation in WS composition, allowing the assignment of tasks to WS while: 
(i) optimizing criteria, (ii) satisfying the hard constraints, (iii) learning about the 
performance of new agents so as to continually adjust task allocation, and (iv) exploring 
new options in task allocation. The exploration rate is quantified with the Shannon entropy 
associated to the probability distribution of allocating a task to a task specialist. This permits 
the continual measurement and control of exploration. 
The task-allocation problem that the RRL resolves amounts to the composer determining the 
WS to execute the tasks in a given process model. By conceptualizing the process of the 
composition model as a DAH (see, §  2.2.2), the task-allocation problem amounts to a 
deterministic shortest-path problem in a directed weighted hypergraph. In the hypergraph, 
each node is a step in WS composition problem and an edge corresponds to the allocation of a 
task kt  to a WS ,

WS
k uw , where u  ranges over WS that can execute kt  according to the criteria 

set with the QoS model. Each individual allocation of a task to a WS incurs a cost ,( , )WS
k k uc t w , 

whereby this " cost"  is a function of the aggregated criteria (as discussed earlier §  3) 
formulated so that the minimization of cost corresponds to the optimization of the 
aggregated criteria (i.e., minimization or maximization of aggregation value). For 
illustration, consider the DAH representation of our composite ESA service in Figure 3. 
The task allocation problem is a global optimization problem: learn the optimal complete 
probabilistic allocation that minimizes the expected cumulated cost from the initial node to 
the destination node while maintaining a fixed degree of exploration, and under a given set 
of hard constraints (specified with the QoS model). At the initial node in the graph (in Fig.3, 
blank node), no tasks are allocated, whereas when reaching the destination node (last 'Pd' 
node in the same figure), all tasks are allocated. 
The remainder of this Section is organized as follows: §  4.2 introduces the notations, the 
standard deterministic shortest-path problem, and the management of continual 
exploration. §  4.3 introduces the unified framework integrating exploitation and 
exploration presented in (Achbany et al., 2005). Finally, §  4.3 describes our procedure for 
solving the deterministic shortest-path problem with continual exploration. 

4.2 RL formulation of the problem 
At a state ik  of the task allocation problem, choosing an allocation of ,k li

t  (where l  ranges 
over tasks available in state ik ) to ,

WS
k ui
w  (i.e., moving from ik  to another state) from a set of 

potential allocations ( )iU k  incurs a cost , ,( , )WS
k l k ui i

c t w . Cost is an inverse function of the 
aggregated criteria the user wishes to optimize (see, §  3), say r . The cost can be positive 
(penalty), negative (reward), and it is assumed that the service graph is acyclic (Christofides, 
1975). Task allocation proceeds by comparing WS over estimated r̂  values and the hard 
constraints to satisfy (see, s 3.1). The allocation , ,( , )WS

k l k ui i
t w  is chosen according to a Task 

Allocation policy (TA) Π  that maps every state ik  to the set ( )iU k  of admissible allocations 
with a certain probability distribution ( )ki

uπ , i.e., ( )iU k : { ( ), = 0,1, 2, , }ki
u i nπΠ ≡ … . It is 

assumed that: (i) once the action (i.e., allocation of a given task to a WS) has been chosen, the 
sate next to ik , denoted 'i

k , is known deterministically, = ( )' kii
k f u  where f  is a one-to-

one mapping from states and actions to a resulting state; (ii) different actions lead to 
different states; and (iii) as in (Bertsekas, 2000), there is a special cost-free destination state; 
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possibility that a decision may have delayed consequences, so that the RL can outperform 
alternative approaches that treat such cases only approximately, ignore them entirely, or 
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desirable, since in absence of exploration, the WS composer is unaware of changes in the 
availability of WS and appearance of new WS, so that the performance at which the 
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oriented system. 
Two forms of exploration can be applied: preliminary and continual online exploration. The 
aim with preliminary exploration is to discover the state to reach, and to determine a first 
optimal way to reach it. As the composition model specifies the state to reach in WS 
composition, continual online exploration is of particular interest: therein, the set of WS that 
can be allocated to tasks is continually revised, so that future allocations can be performed 
by taking into account the availability of new WS, or the change in availability of WS used in 
prior compositions. Preliminary exploration is directed if domain-specific knowledge is used 
to guide exploration (e.g., (Thrun, 1992b; Thrun, 1992a; Thrun et al., 2005; Verbeeck, 2004)). 
In undirected preliminary exploration, the allocation of new WS to tasks is randomized by 
associating a probability distribution to the set of competing WS available for allocation to a 
given task. 
To avoid domain-specificity in this paper, the RL algorithm in MCRRL relies on undirected 
continual exploration. Both exploitation and undirected continual exploration are used in WS 
composition: exploitation uses available data to ground the allocation decision in 
performance observed during the execution of prior compositions, whereas exploration 
introduces new allocation options that cannot be identified from past performance data. 
This responds to the first requirement on WS composition procedures (item 1, §  1), namely 
that optimal WS compositions will be built and revised at runtime, while accounting for 
change in the availability of WS and the appearance of new WS. As shown in the remainder 
(see, §  4.1), the WS composition problem can be formulated as a global optimization 
problem which follows either a deterministic shortest-path (in case the effects of WS 
executions are deterministic) or a stochastic shortest-path formulation. Requirement 4 ( §  1) is 
thus also addressed through the use of RL to guide WS composition. Since the RL approach 
can be based on observed performance of WS in compositions, and the algorithm in MCRRL 
accepts multiple criteria and/or constraints (see, §  3 and §  4.1), requirements 2 and 3 ( §  1) 
are fulfilled as well. 

4.1 Task-allocation problem 
If RL is applied to task allocation, the exploration/ exploitation issue can be addressed by 
periodically readjusting the policy for choosing task allocations and re-exploring up-to-now 
suboptimal execution paths (Mitchell, 1997; Sutton & Barto, 1998). Such a strategy is, 
however, suboptimal because it does not account for exploration. The Randomized 
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Reinforcement Learning (RRL) algorithm introduced in (Saerens et al., 2004) is adapted 
herein to task allocation in WS composition, allowing the assignment of tasks to WS while: 
(i) optimizing criteria, (ii) satisfying the hard constraints, (iii) learning about the 
performance of new agents so as to continually adjust task allocation, and (iv) exploring 
new options in task allocation. The exploration rate is quantified with the Shannon entropy 
associated to the probability distribution of allocating a task to a task specialist. This permits 
the continual measurement and control of exploration. 
The task-allocation problem that the RRL resolves amounts to the composer determining the 
WS to execute the tasks in a given process model. By conceptualizing the process of the 
composition model as a DAH (see, §  2.2.2), the task-allocation problem amounts to a 
deterministic shortest-path problem in a directed weighted hypergraph. In the hypergraph, 
each node is a step in WS composition problem and an edge corresponds to the allocation of a 
task kt  to a WS ,
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k uw , where u  ranges over WS that can execute kt  according to the criteria 

set with the QoS model. Each individual allocation of a task to a WS incurs a cost ,( , )WS
k k uc t w , 

whereby this " cost"  is a function of the aggregated criteria (as discussed earlier §  3) 
formulated so that the minimization of cost corresponds to the optimization of the 
aggregated criteria (i.e., minimization or maximization of aggregation value). For 
illustration, consider the DAH representation of our composite ESA service in Figure 3. 
The task allocation problem is a global optimization problem: learn the optimal complete 
probabilistic allocation that minimizes the expected cumulated cost from the initial node to 
the destination node while maintaining a fixed degree of exploration, and under a given set 
of hard constraints (specified with the QoS model). At the initial node in the graph (in Fig.3, 
blank node), no tasks are allocated, whereas when reaching the destination node (last 'Pd' 
node in the same figure), all tasks are allocated. 
The remainder of this Section is organized as follows: §  4.2 introduces the notations, the 
standard deterministic shortest-path problem, and the management of continual 
exploration. §  4.3 introduces the unified framework integrating exploitation and 
exploration presented in (Achbany et al., 2005). Finally, §  4.3 describes our procedure for 
solving the deterministic shortest-path problem with continual exploration. 

4.2 RL formulation of the problem 
At a state ik  of the task allocation problem, choosing an allocation of ,k li

t  (where l  ranges 
over tasks available in state ik ) to ,
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w  (i.e., moving from ik  to another state) from a set of 
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c t w . Cost is an inverse function of the 
aggregated criteria the user wishes to optimize (see, §  3), say r . The cost can be positive 
(penalty), negative (reward), and it is assumed that the service graph is acyclic (Christofides, 
1975). Task allocation proceeds by comparing WS over estimated r̂  values and the hard 
constraints to satisfy (see, s 3.1). The allocation , ,( , )WS
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Allocation policy (TA) Π  that maps every state ik  to the set ( )iU k  of admissible allocations 
with a certain probability distribution ( )ki

uπ , i.e., ( )iU k : { ( ), = 0,1, 2, , }ki
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assumed that: (i) once the action (i.e., allocation of a given task to a WS) has been chosen, the 
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k , is known deterministically, = ( )' kii
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one mapping from states and actions to a resulting state; (ii) different actions lead to 
different states; and (iii) as in (Bertsekas, 2000), there is a special cost-free destination state; 
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once the composer has reached that state, the task allocation process is complete. Although 
the current discussion focuses on the deterministic case, extension to the stochastic case is 
discussed elsewhere (Achbany et al., 2005) due to format constraints. 
As remind, one of the key features of reinforcement learning is that it explicitly addresses 
the exploration/exploitation issue as well as the online estimation of the probability 
distributions in an integrated way. Then, the exploration/ exploitation tradeoff is stated as a 
global optimization problem: find the exploration strategy that minimizes the expected 
cumulated cost, while maintaining fixed degrees of exploration at same nodes. In other 
words, exploitation is maximized for constant exploration. To control exploration, entropy is 
defined at each state. 
The degree of exploration ki

E  at state ik  is quantified as: 

 
( )

= ( ) log ( )k k ki i iu U ki

E u uπ π
∈

− ∑   (4) 

which is the entropy of the probability distribution of the task allocations in state ik  (Cover 
& Thomas, 1991; Kapur & Kesavan, 1992). ki

E  characterizes the uncertainty about the 
allocation of a task to a WS at ik . It is equal to zero when there is no uncertainty at all 
( ( )ki

uπ  reduces to a Kronecker delta); it is equal to log( )kin , where ki
n  is the number of 

admissible allocations at node ik , in the case of maximum uncertainty, ( ) = 1/k ki i
u nπ  (a 

uniform distribution).  
The exploration rate 0,1]r

ki
E ∈  is the ratio between the actual value of ki

E  and its 

maximum value: = / log( )r
k k ki i i
E E n .  

Fixing the entropy at a state sets the exploration level for the state; increasing the entropy 
increases exploration, up to the maximal value in which case there is no more exploitation---
the next action is chosen completely at random (using a uniform distribution) and without 
taking the costs into account. Exploration levels of composers can thus be controlled 
through exploration rates. Service provision then amounts to minimizing total expected cost 

0( )V kπ  accumulated over all paths from the initial 0k  to the final state: 

 0
=0

( ) = ( , )i i
i

V k E c k uπ π

∞⎡ ⎤
⎢ ⎥⎣ ⎦
∑   (5) 

The expectation Eπ  is taken on the policy Π  that is, on all the random choices of action iu  
in state ik . 

4.3 Computation of the Optimal Policy 
The composer begins with task allocation from the initial state and chooses from state ki the 
allocation of a WS u  to a task ,k li

t  with a probability distribution ( )ki
uπ , which aims to 

exploration. The composer then performs the allocation of the task ,k li
t  to a WS u  and the 

associated aggregated quality score, the cost ,( , )WS
k l ui

c t w  is incurred and is denoted, for 

simplicity ( , )ic k u  (note that this score may also vary over time in a dynamic environment); 
the composer then moves to the new state, 'i

k . This allows the composer to update the 
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estimates of the aggregated quality score of the policy, and of the average aggregated 
quality value until destination; these estimates will be denoted by ( , )ic k i , ( )ki

iπ  and 

( )iV k . The RRL for an acyclic graph, where the states are ordered in such a way that there is 
no edge going backward (i.e., there exists no edge linking a state 'i

k  to a state ik  where 'i
k  

is a successor state of ik  ( >' ii
k k  ), is as follows (a detailed treatment can be found in 

(Achbany et al., 2005)): 
1. Initialization phase: Set  ( ) 0dV k = , which is the expected cost at the destination state. 
2. Computation of the TA policy and the expected cost under exploration constraints: For 

= ( 1)i dk k −  to the initial state 0k , compute:  
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( )

,

,
( )

,
( )

exp ( , ) ( )
( ) = ,

exp ( , ) ( )

( ) = ( ) ( , ) ( ) for

'
k i i ui

ki ' '
k i 'i i u'u U ki

'
i k i i u i diu U ki

c k u V k
u

c k u V k

V k u c k u V k k k

θ
π

θ

π
∈

∈

⎧ ⎡ ⎤− +⎣ ⎦⎪
⎪ ⎡ ⎤− +⎢ ⎥⎨ ⎣ ⎦
⎪
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⎩

∑
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  (6) 

where , = ( )'
i u kk f u , 

,

'
'i u

k = ( )'kf u  and ki
θ  is set in order to respect the prescribed degree of 

entropy at each state (see Eq.4 which can be solved by a simple bisection search).   
Various approaches can be applied to update the estimated criterion ûr ; e.g., exponential 
smoothing leads to: 

 (1 )u u ur r rα α← + −   (7)  

where ur  is the observed value of the criterion for WS
uw  and ]0,1[α ∈  is the smoothing 

parameter. Alternatively, various stochastic approximation updating rules could also be 
used. The composer updates its estimates of the criterion each time a WS performs a task 
and the associated cost is updated accordingly. 

5. Simulation results 

Experimental setup. Task allocation for the service provision problem diplayed in Fig.3 was 
performed. A total of three distinct WS were made available for each distinct task. Each ,k uw  
is characterized by its actual ur  which is an indicator of the WS's performance over the 
optimization criterion (see, §  4.2). In this simulation, it will simply be the probability of 
successfully performing the task (1 -- probability of failure). In total, 42 WS are available to 
the Composer for task allocation. For all WS u , ur  takes its value 0,1]∈ ; for 70% of the WS, 
the actual ur  is hidden (assuming it is unknown to the Composer) and its initial expected 
value, ur , is set, by default, to 0.3  (high probability of failure since the behavior of the WS 
has never been observed up to now), while actual ur  value is available to the Composer for 
the remaining 30% (assuming these WS are well known to the Composer). Actual ur  is 
randomly assigned from the interval [0.5,1.0]  following a uniform probability distribution. 
It has been further assumed that ( , ) = ( )i u uc t w ln r− , meaning that it is the product of the ur  
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once the composer has reached that state, the task allocation process is complete. Although 
the current discussion focuses on the deterministic case, extension to the stochastic case is 
discussed elsewhere (Achbany et al., 2005) due to format constraints. 
As remind, one of the key features of reinforcement learning is that it explicitly addresses 
the exploration/exploitation issue as well as the online estimation of the probability 
distributions in an integrated way. Then, the exploration/ exploitation tradeoff is stated as a 
global optimization problem: find the exploration strategy that minimizes the expected 
cumulated cost, while maintaining fixed degrees of exploration at same nodes. In other 
words, exploitation is maximized for constant exploration. To control exploration, entropy is 
defined at each state. 
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which is the entropy of the probability distribution of the task allocations in state ik  (Cover 
& Thomas, 1991; Kapur & Kesavan, 1992). ki

E  characterizes the uncertainty about the 
allocation of a task to a WS at ik . It is equal to zero when there is no uncertainty at all 
( ( )ki

uπ  reduces to a Kronecker delta); it is equal to log( )kin , where ki
n  is the number of 

admissible allocations at node ik , in the case of maximum uncertainty, ( ) = 1/k ki i
u nπ  (a 

uniform distribution).  
The exploration rate 0,1]r

ki
E ∈  is the ratio between the actual value of ki

E  and its 

maximum value: = / log( )r
k k ki i i
E E n .  

Fixing the entropy at a state sets the exploration level for the state; increasing the entropy 
increases exploration, up to the maximal value in which case there is no more exploitation---
the next action is chosen completely at random (using a uniform distribution) and without 
taking the costs into account. Exploration levels of composers can thus be controlled 
through exploration rates. Service provision then amounts to minimizing total expected cost 

0( )V kπ  accumulated over all paths from the initial 0k  to the final state: 

 0
=0

( ) = ( , )i i
i

V k E c k uπ π

∞⎡ ⎤
⎢ ⎥⎣ ⎦
∑   (5) 

The expectation Eπ  is taken on the policy Π  that is, on all the random choices of action iu  
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4.3 Computation of the Optimal Policy 
The composer begins with task allocation from the initial state and chooses from state ki the 
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uπ , which aims to 
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associated aggregated quality score, the cost ,( , )WS
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c t w  is incurred and is denoted, for 
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estimates of the aggregated quality score of the policy, and of the average aggregated 
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where , = ( )'
i u kk f u , 

,

'
'i u

k = ( )'kf u  and ki
θ  is set in order to respect the prescribed degree of 

entropy at each state (see Eq.4 which can be solved by a simple bisection search).   
Various approaches can be applied to update the estimated criterion ûr ; e.g., exponential 
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along a path that is optimized (this is a standard measure of the reliability of a system). 
After all tasks are allocated, the selected WS execute their allocated tasks according to their 
actual ur  value (with failure 1 ur− ). The estimated WS criterion ûr  is then updated by 
exponential smoothing, according to Eq.7. In Eq.7, ur  equals 1 if uw  is successful at 
executing the task it has been allocated, 0 otherwise. Estimated costs are of course updated 
in terms of the ur  and each time a complete allocation occurs, the probability distributions 
of choosing a WS are updated according to Eq.6. 10,000 complete allocations were simulated 
for exploration rate 20%. 
 

 
Fig. 8. Success rate in terms of run number, for an exploration rate of 20%, and for the five 
methods (no exploration, actual r  known, ε -greedy, naive Boltzmann, RRL). 

Results. The RRL is compared to two other standard exploration methods, ε -greedy and 
naive Boltzmann (see (Achbany et al., 2005) for details), while tuning their parameters to 
ensure the same exploration level as for RRL. The success rate is defined as the proportion of 
services that are successfully completed (i.e., all tasks composing the service are allocated 
and executed successfully) and is displayed in Fig. 4 in terms of the run number (one run 
corresponding to one complete assignment of tasks, criterion estimation and probability 
distribution update). Fig. 4 shows the RRL behaves as expected. Its performance converges 
almost to the success rate of the RRL in which all actual r  are known from the outset (i.e., 
need not be estimated)---and indicate that exploration clearly helps by outperforming the 
allocation system without exploration (which has a constant 75% success rate). Fig.5 
compares the three exploration methods by plotting the average absolute difference 
between actual ur  and estimated ur  criterion values for a 30% exploration rate. Exploration 
is therefore clearly helpful when the environment changes with the appearance of new 
agents---i.e., exploration is useful for directing Composer behavior in dynamic, changing, 
and open architectures, i.e., in the SCA. 

Learning Optimal Web Service Selections in Dynamic Environments when  
Many Quality-of-Service Criteria Matter 

 

225 

 
Fig. 9. Average absolute difference between actual ( r ) and estimated ( r ) criterion values in 
terms of run number, for three exploration methods ( ε -greedy, naive Boltzmann, RRL). 

6. Related work 
Various possibilities for representation of web services composition have already been 
addressed. Jaeger et al. use composition patterns (sequence, loop, xor, and, or , etc.) to 
represent structural elements of the composition. Hamadi (Hamadi & Benatallah, 2003) and 
Benetallah and Fu et al. (Fu et al., 2006) approaches refer both to Petri nets for modeling web 
services control flow. Rather than using such patterns and their associated aggregation 
rules, we choose, as Zeng et al. (Zeng et al., 2003b; Zeng et al., 2004), Benatallah and Dumas 
(Benatallah et al., 2002) and Zhang et al. (Zhang et al., 2007), to control services composition 
with the help of statecharts. 
While statecharts and their associated formal semantic are used to represent the different 
tasks entering in the composition, Directed Acyclic Graph (DAG) (Gu & Nahrstedt, 2002) are 
used to represent alternative web services allowing to fulfill these tasks. Zeng (Zeng et al., 
2004) proposes to model alternatives with multiple execution paths derived from statecharts 
possibilities. We choose to represent our composition possibilities with a Directed Acyclic 
Hypergraph (DAH) where nodes represent functional steps of execution and edges are web 
services alternatives to fulfill a given task. 
Our selection of services that will enter in the services composition is based on their 
quality properties, i.e., their QoS. To lead the selection from the requester view, we 
provide him a QoS model enabling to specify its expectations about quality behavior. This 
behavior is expressed by relationships between characteristics and dimensions, priorities 
between quality properties and preferences over values. The preference over values has 
already been addressed in other approaches under the form of a direction attribute 
indicating if a property has to be maximized or minimized (Jaeger et al., 2004; Liu et al., 
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exponential smoothing, according to Eq.7. In Eq.7, ur  equals 1 if uw  is successful at 
executing the task it has been allocated, 0 otherwise. Estimated costs are of course updated 
in terms of the ur  and each time a complete allocation occurs, the probability distributions 
of choosing a WS are updated according to Eq.6. 10,000 complete allocations were simulated 
for exploration rate 20%. 
 

 
Fig. 8. Success rate in terms of run number, for an exploration rate of 20%, and for the five 
methods (no exploration, actual r  known, ε -greedy, naive Boltzmann, RRL). 

Results. The RRL is compared to two other standard exploration methods, ε -greedy and 
naive Boltzmann (see (Achbany et al., 2005) for details), while tuning their parameters to 
ensure the same exploration level as for RRL. The success rate is defined as the proportion of 
services that are successfully completed (i.e., all tasks composing the service are allocated 
and executed successfully) and is displayed in Fig. 4 in terms of the run number (one run 
corresponding to one complete assignment of tasks, criterion estimation and probability 
distribution update). Fig. 4 shows the RRL behaves as expected. Its performance converges 
almost to the success rate of the RRL in which all actual r  are known from the outset (i.e., 
need not be estimated)---and indicate that exploration clearly helps by outperforming the 
allocation system without exploration (which has a constant 75% success rate). Fig.5 
compares the three exploration methods by plotting the average absolute difference 
between actual ur  and estimated ur  criterion values for a 30% exploration rate. Exploration 
is therefore clearly helpful when the environment changes with the appearance of new 
agents---i.e., exploration is useful for directing Composer behavior in dynamic, changing, 
and open architectures, i.e., in the SCA. 

Learning Optimal Web Service Selections in Dynamic Environments when  
Many Quality-of-Service Criteria Matter 

 

225 

 
Fig. 9. Average absolute difference between actual ( r ) and estimated ( r ) criterion values in 
terms of run number, for three exploration methods ( ε -greedy, naive Boltzmann, RRL). 

6. Related work 
Various possibilities for representation of web services composition have already been 
addressed. Jaeger et al. use composition patterns (sequence, loop, xor, and, or , etc.) to 
represent structural elements of the composition. Hamadi (Hamadi & Benatallah, 2003) and 
Benetallah and Fu et al. (Fu et al., 2006) approaches refer both to Petri nets for modeling web 
services control flow. Rather than using such patterns and their associated aggregation 
rules, we choose, as Zeng et al. (Zeng et al., 2003b; Zeng et al., 2004), Benatallah and Dumas 
(Benatallah et al., 2002) and Zhang et al. (Zhang et al., 2007), to control services composition 
with the help of statecharts. 
While statecharts and their associated formal semantic are used to represent the different 
tasks entering in the composition, Directed Acyclic Graph (DAG) (Gu & Nahrstedt, 2002) are 
used to represent alternative web services allowing to fulfill these tasks. Zeng (Zeng et al., 
2004) proposes to model alternatives with multiple execution paths derived from statecharts 
possibilities. We choose to represent our composition possibilities with a Directed Acyclic 
Hypergraph (DAH) where nodes represent functional steps of execution and edges are web 
services alternatives to fulfill a given task. 
Our selection of services that will enter in the services composition is based on their 
quality properties, i.e., their QoS. To lead the selection from the requester view, we 
provide him a QoS model enabling to specify its expectations about quality behavior. This 
behavior is expressed by relationships between characteristics and dimensions, priorities 
between quality properties and preferences over values. The preference over values has 
already been addressed in other approaches under the form of a direction attribute 
indicating if a property has to be maximized or minimized (Jaeger et al., 2004; Liu et al., 



 Machine Learning 

 

226 

2004; Naumann et al., 1999; Zeng et al., 2004). Our preference structure offers more 
information, we allow the user to specify conditions and indifference thresholds. The 
priority relationship is defined in some proposals with means of a weight attribute 
associated to quality properties (Jaeger et al., 2004; Zeng et al., 2004). Our model 
authorizes weights binded to quality properties at different levels and we define a method 
to fix adequately these weights. 
Most QoS composition approaches aim at summing QoS values of services entering in the 
composition rather than computing their individual performance (Cardoso et al., 2004; 
Cheng et al., 2006; Jaeger et al., 2005; Yu & Lin, 2004; Yu & Lin, 2005; Zeng et al., 2003b; 
Zhang et al., 2007). In our MCRRL proposal, we focus on the individual evaluation of each 
web service candidate to the whole composition. Rather than using Reinforcement 
Learning computation, Zeng and colleagues (Zeng et al., 2003b) proceed to finding 
optimal WS compositions through linear programming techniques. In contrast to RL, their 
approach considers each WS composition as a new problem to solve, so that there is no 
learning. Canfora and colleagues (Canfora et al., 2004) use genetic algorithms, avoiding 
thus the need for a linear objective function and/or linear constraints in the search for the 
optimal WS composition (required for the linear programming approach (Zeng et al., 
2003b)). MCRRL improves responsiveness of the system to varying availability and 
appearance of new WS because of exploration. MCRRL allows the execution of potentially 
complex processes, permits concurrency, while assuming that the set of available WS is 
changing. One distinctive characteristic the composer's behavior suggested in the present 
paper is that the MCRRL accounts for a vector of criteria when allocating tasks, including 
QoS, service provision deadline, provision cost, explicit user preferences, and agent 
reputation. Feedback mechanisms are also used by Maximilien and Singh (Maximilien & 
Singh, 2005) that propose service selection driven by trust values assigned to individual 
services. Trust is extracted from user-generated reports of past service performance (as 
usual in reputation systems) over qualities defined by a system-specific QoS ontology. 
Level of trust depends on the degree to which reputation and quality levels advertised by 
the provider match. Similar approaches have been proposed, yet fail to address service 
selection in open, distributed MAS architecture, furthermore without dynamic allocation 
so that autonomic requirements are not fulfilled. By basing selection on trust only and 
generating levels of trust from advertised and user-observed behavior, Maximilien and 
Singh's approach involves learning driven by exploitation of historical information, 
without exploration. 

7. Conclusions and future work 
This paper advocates that WS compositions optimal w.r.t. a set of criteria need to be learned 
at runtime and revised as new WS appear and availability of old WS changes, whereby the 
learning should be based on observed WS performance, and not the performance values 
advertised by the service providers. To enable such learning, a selection procedure is 
needed which both exploits the data on observed WS performance in the past, and explores 
new composition options to avoid excessive reliance on past data. 
As a response, this paper proposes the Multi-Criteria Randomized Reinforcement Learning 
(MCRRL) approach to WS composition. MCRRL combines a generic service request and the 
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Randomized Reinforcement Learning (RRL), a reinforcement learning algorithm. The SR 
model describes the process to execute by the WS composition and the criteria and 
constraints to meet when executing it. The RRL selects the WS for performing tasks specified 
in the service request. The algorithm decides on the WS to select among competing WS 
based on multiple criteria, while both exploiting available WS performance data and 
exploring new composition options. 
MCRRL responds to four common requirements when defining a task allocation 
procedure for WS composition. First, the RRL uses both exploitation and undirected 
continual exploration in WS composition: exploitation uses available data to ground the 
allocation decision in performance observed during the execution of prior compositions, 
whereas exploration introduces new allocation options that cannot be identified from past 
performance data. Optimal WS compositions are thus identified revised at runtime. 
Second, the generic SR model combined with the optimization approach in the RRL allow 
many criteria for comparing alternative task allocations. Third, the comparison over 
various criteria relies on observed performance over the given criteria, instead of vales 
advertised by service providers. Finally, the algorithm can be extended to allow 
underterministic outcomes of WS executions (as explained elsewhere (Achbany et al., 
2005)). 
Since undirected exploration may be costly in actual applications, future work will 
investigate the performance of MCRRL within realistic applications, so that the approach 
can be optimized for practical settings. 
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1. Introduction 
This chapter deals with supervised learning problems under the ranking framework. 
Ranking algorithms are typically introduced as a tool for personalizing the order in which 
document recommendations or search results - in the web, for example - are presented. That 
is, the more important a result is to the user, the earlier it should be listed. To this end, two 
possible settings can be considered : 
i. the algorithm tries to interactively rearrange the results of one search such that relevant 

results come the closer to the top the more (implicit) feedback the user provides, 
ii. the algorithm tries to generalize over several queries and presents the results of one 

search in an order depending on the feedback obtained from previous searches. 
The first setting deals with an active learning while the second setting deals with a passive 
supervised learning. This kind of problems have gain major attention given the nowadays 
amount of available informations. This is without doubt a challenging task in the medium 
and large scale context. 
Several methods have been proposed to solve these problems. For the passive setting, the 
Rankboost algorithm (Freund et al. (2003)) is an adaptation from the Adaboost algorithm to 
the ranking problem. This is a boosting algorithm which works by iteratively building a 
linear combination of several “weak” algorithms to form a more accurate algorithm. The 
Pranking algorithm (Crammer & Singer (2001)) is an online version of the weighted 
algorithm. The SVRank and RankSVMalgorithms are the adaptation of the Support Vector 
machines for classification and regression, respectively, while the MPRank (Cortes et al. 
(2007)) is a magnitude-preserving algorithm, which searches not only to keep the relative 
position of each sample but also to preserve the distance given by the correct ordering. This 
last algorithm has as well the form of a regularization problem as the two previous with a 
different cost function. 
Later, the Ranking SVM (RankSVM) algorithm was proposed by Herbrich et al. (2000) and 
Joachims (2002) as an optimization problem with constraints given by the induced graph of 
the ordered queries’ results. This algorithm forms part of the family of kernel algorithms of 
the SVM type (Boser et al. (1992); Schölkopf & Smola (2002)). 
Kernel methods like the SVM or the ranking SVM solve optimization problems of the form 
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(1) 

where V : H → R+ is a loss function, λ ∈ R+ is a regularization parameter, Ω: H → R+ is the 
regularizer (which allows to enforce some nice properties as smoothness or simplicity of f) 
and H represents the hypothesis space. Usually H is chosen as a reproducing kernel Hilbert 
space. Although a key bottleneck for applying such algorithms in the real-world is choosing 
λ, research often ignores this. As empirical results, however, strongly depend on the chosen 
λ, runtime intensive repeated cross-validations have to be performed. Hence, in this chapter 
we concentrate on speeding up and automating this choice by building on the regularization 
path for SVMs (Hastie et al. (2004)). 

2. Piecewise linear solutions 
This framework is a kind of a more generic regularized optimization problems, already 
studied for regularization problems (Rosset & Zhu (2007)) and for parametric quadratic 
programming (Markowitz (1959)) for portfolio optimization. We are interested by the 
efficient computation of the regularization path. Hence, let us define first this notion. 
Definition 2.1 (Regularization path) 
The regularization path of Problem (1) is the set of all solutions obtained when varying λ over R+ i.e. 

Path = {fλ, with λ ∈ [0,+∞]}. 
As one can see, with this definition, the pursued policy can have a high computational price. 
In order to gain in efficiency, the family of piecewise linear solution path is of particular 
interest. To highlight this fact, we consider the following definition. 
Definition 2.2 (piecewise linear solution path) 
The solution path is said to be piecewise linear when there exists a strictly decreasing (or increasing) 
sequence λt, t = 1, . . . , N such that : 

 (2)

where ht, t = 1, . . . , N denotes a sequence of functions in H. 
With such property, it is easy to efficiently generate the whole path of solution. Indeed, in 
such case, one only needs the sequence λt and the corresponding ht. Any other functions in-
between can be simply obtained by linear interpolation. Hence, owing to such property, the 
computational cost of obtaining the whole path of solution may be of the order of a single 
solution computation. 
The question induced by this remark is to find which kind of objective functions makes the 
solution path piecewise linear. In Rosset and Zhu (2007), the necessary conditions were 
given for Problem (1) to admit a linear solution path. The main result is summarized by the 
theorem below. 
Theorem 1 
Assume the loss V(f) and the regularizer Ω(f) are convex functions. If one objective function (either 
V(f) or Ω(f)) is piecewise linear and the other one piecewise quadratic then the solution path of the 
Problem (1) is piecewise linear. 
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Proof Assume V(f) and Ω(f)) are twice differentiable in a neighborhood of  solution of (1) 
corresponding to λt. Let also λ = λt +δλ and its related solution fλ . Consider finally J(f) = V(fλ) 
+λ Ω(fλ). The optimality conditions associated to  and fλ are respectively 

 (3)

 (4)

where ∇f J(f) represents the functional derivative of J in H. For small values of δλ we can 
consider the following second order Taylor expansion of (4) around  

 
with  Using it we have the following limit 

 
that gives 

 
The piecewise behavior is possible if  is constant. To fulfill this condition, it requires 

 (independence with respect to λ) and  to be constant. The latter 
condition is satisfied as the loss or the regularizer are assumed linear or quadratic. These 
requirements achieve the proof. 
In fact, similar to SVM classification, it turns out that  as a function of λ is piecewise linear 
and hence forms a regularization path. Indeed, in the RankSVM algorithm, the loss function 
V(f) is the hinge loss (which is a L1 type-function) and the regularizer Ω(f) is chosen as a 
quadratic or L1 function (see Figure 1). These choices therefore fulfill the requirements of the 
theorem. 
 

 
Fig. 1. Illustration of the typical choices of loss function and regularizer in SVM framework. 
Left) Hinge loss, Right) Square regularizer. 
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As in SVM classification, the breakpoints of this path correspond to certain events 
(described in more detail in Section 5). Points of the regularization path which are not 
breakpoints can not be distinguished in terms of margin-errors of the training data. To 
choose a particular regularization parameter, and hence a particular solution to the ranking 
problem, we evaluate  on a validation set for each breakpoint of the regularization path. 
Before delving into the details of solution path computation, the next two sections present 
the ranking SVM algorithm. 

3. Ranking SVM 
For clarity and simplification sakes, let consider the example of web pages search in ranking 
problems like (i) and (ii) from the introduction. To this purpose, we consider a set of query-
document samples x = (q, d) ∈ X, together with a label y  that induces a relative order or 
preference between the documents d accordingly to a query q. Each query induces a directed 
acyclic graph (X, E), with E ⊆ X2 (See Figure 2). 
 

 
Fig. 2. Induced graph from ranking constraints for a particular query 

For (i) the set of web pages forms the vertex set X of the digraph and we are also given some 
further information about the web pages (like a bag-of-words representation). For (ii) each 
vertex of the graph is a pair containing a query (q ∈ Q) and a document (d ∈ D). Hence, the 

vertex set is X � Q × D and edges of the form ((q, d), (q, d′)) ∈ E with d, d′ ∈ D;  

q ∈ Q represent that d was more relevant than d′ for an user asking query q. In addition one 
typically assumes some joint representations of queries and web pages. 
The beauty of these problems is that classification and ordinal regression problems can be 
written as a ranking problem, therefore, the ranking SVM framework can be as well used for 
this kind of problems. The exact decision frontier can be calculated via a ROC curve, for 
example. 
In both cases, ranking algorithms aim to find an ordering (permutation) of the vertex  
π : X →  where n = |X| and  = {1, . . . , n} such that the more relevant a document is, 
the higher it is placed after the permutation, while as few as possible preferences are 
violated by the permutation. 
Ranking SVM approaches such learning problems by solving the following primal 
optimization problem : 
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(5)

Here, H is a reproducing kernel Hilbert space (RKHS), λ ∈ R+ is a regularization parameter, 
and the square norm  in the Hilbert space serves as the regularizer. As in SVM for 
classification, the slack variables ξvu, (u, v) ∈ E traduce the cost related to the violation of the 
constraints (u, v). The final permutation π is then obtained by sorting X according to f and 
resolving ties randomly. 
Now, to easy the notation, let k : X × X → R be the reproducing kernel of H and denote the 

vertex by xi such that X = {xi | i ∈ }. The set of violated constraints is {(xi, xj) ∈ E | π(xi) < 
π(xj)}. The decision function will have the form  with βi ∈ R. With 

slight abuse of notation we write k(x) = (k(x, x1), k(x, x2), ..., k(x, xn))T. Using this notation, a 
ranking problem (5) with m preferences  can be written as : 

 

(6)

with K = [Kij
 = k(xi, xj)] ∈ Rn×n the Gram matrix and β = [β1 ... βn]T. 

The complexity of the problem comes from the fact that the number of such preference 
constraints m is of order the square of the training set size that is m = O(n2). The Lagrangian 
L of problem (6) is given by : 

 
with αi ≥ 0, γi

 ≥ 0. A matrix P ∈ Rm×n can be defined with entries 

 

(7)

so that the Lagrangian can be expressed as : 

 
 

with α ≥ 0, γ ≥ 0 (the vectors α and γ contain respectively the Lagrange parameters αi and γi). 
Using the Karush-Kuhn-Tucker (KKT) conditions, we obtain: 
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These equations result in conditions,  so that 

 
Finally, the dual of Problem (6) is: 

 
(8)

4. RankSVM singularity 
As mentioned in the introduction, the Ranking SVM optimization problem induces a 
directed graph for each query. This structure constraints an edge for each relationship of 
relevance between samples that has to be satisfied. These constraints include as well all 
transitive relationships that could in fact be induced by other ones. This redundancy in the 
constraints setting cause the Hessian matrix in Problem (8) to be singular. 
This issue can be overcome by designing for each query a sample as the maximum of all his 
rank for this query, so that edges from the chosen sample will be added to the other 
samples. For the immediate upper level, all samples in it will be joint to the maximum of the 
previous rank and so on. The obtained graph would look as in Figure (3). 
 

 
Fig. 3. New graph that will generate a non singular Hessian on the dual problem 

The advantage of this new formulation is that the number of constraints is significantly 
smaller than in the original RankSVMalgorithm. The first one can be of order O(n2), while 
the second one is of order O(n) This will lead to a smaller problem and faster training time 
with a consistent problem equivalence. 

5. Regularization path for ranking SVM 
Following the arguments developed in Rosset and Zhu (2007), it can be shown that the 
solution (λ) of the above dual problem is a piecewise linear function of λ. Hence the 
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problem admits a piecewise linear regularization path. A regularization path has 
breakpoints λ1 > λ2 > . . . such that for an interval [λt+1, λt] (i.e., with no breakpoint) the 
optimal solutions  (λ) and (λ) can easily be obtained for all λ ∈ [λt+1, λt]. 
Following the work of Hastie et al. (2004) we now derive the regularization path of ranking 
SVM. For given λ, and to simplify the notations, let f(x) and α be the decision function and 
the optimal solution for Problems (6) and (8), respectively (i.e. (x) ≡ f(x) and (λ) ≡ α). 
Then, the following partition derived from the KKT optimality conditions can be made : 

 
 

The set I0
 represents the satisfied constraints whereas I1

 is devoted to the violated 

constraints and Iα includes the “margin constraints”. 

Similarly, we will denote by αt and f t(x) the optimal solution of the dual Problem (6) for the 
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These equations result in conditions,  so that 
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If we define  a vector of ones of size | |, then it can finally 
be seen that αi, i ∈  changes piecewise linearly in λ as follows : 

 (12)

For all λ ∈ [λt+1, λt], the optimal solution α (and consequently the decision function f(x)) can 
be easily obtained until the sets change, i.e., an event occurs. From any optimal solution 
α for λ, the corresponding sets Iα, I0, and I1 can be deduced and thereon the successive 
solutions for different λ. 

5.1 Initialization 
If λ is very large, β = 0 minimizes Problem (6). This implies that ξi

 = 1, ∀i and because of the 
strict complementary and KKT conditions, γi

 = 0 ⇒ αi = 1. To have at least one element in Iα, 

we need a pair  that verifies 1. We know that 
 and therefore α = 1I solves , for all pairs, the equation 

 
Hence, initially all pairs will be in I1 and, as initial λ value, we take 

 
The set Iα will contain the pairs which maximize the value of λ0. 

5.2 Event detection 
At step t the optimal solution αt defines a partition Iα, I1, I0. If these sets remain fixed for all 
λ in a given range then the optimal solution α(λ) is a linear function of λ. If an event occurs, 
i.e., the sets change, then the linear equation has to be readjusted. Two types of events have 
to be determined: 
- a pair in Iα goes to I1 or I0 
- a pair in I1 or I0 goes to Iα. 

5.2.1 Pair in Iα goes to I1 or I0 

This event can be determined by analyzing at which value of λ the corresponding αi turns 
zero or one. Eq. (12) is used and the following systems are solved for λi : 

 (13)

 (14)

Using these last equations, the exact values for λi that produces an event on pairs in 
Iα moving to I0 ∪ I1 can be determined. 
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5.2.2 Pair in I1 or I0 goes to Iα 

To detect this event, note that Equation (11) can also be written as follows : 

 

(15)

Plugging Eq. (15) in Eq. (9), we can write f(x) in a convenient manner: 

 
If we let 

 
then 

 
(16)

 

An event on pair (ki, li) ∈ I0 ∪ I1 � Iα means that  and can be detected 
by using Equation (16). The corresponding λi that generates this event is calculated as 
follows: 

 
(17)

 

Finally, λt+1 will be the largest resulting λi
 < λt from Equations (13), (14) and (17). In a cross 

validation framework, model selection can be done by learning the parameters in the 
training sets, an estimation of the generalization error (or ranking accuracy) can be taken by 
applying each model to the validation set.  
The path computation is summarized by the pseudo-code of Algorithm 1. 

5.3 Remarks and comments 
Here we discuss briefly some issues of the algorithm related to the piecewise variation, the 
numerical complexity and how to address the emptiness of the set Iα. 
On the functional piecewise variation 
Let the function g = λf corresponding to the regularization parameter λ. In a similar manner, 
consider the function gt = λtf t which corresponds to the solution for the value λt. From Eq. 
(16), one derives easily the relation g = gt +(λ−λt)ht. Therefore, we recover the piecewise 
linear variation stated in theorem 1. This linear variation formally concerns the function g 
instead of f. However the parameters α involved in f evolves linearly with λ. 
On the numerical complexity 
The numerical complexity of the algorithm can be analyzed as follows. We assume the 
whole matrix P K PT is available beforehand as it can be built and stored at the beginning of  
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the algorithm and this computation requires O(mn2) operations from the knowledge of the 
matrices P and K. At each iteration, solving the linear system (11) involves a cost of order 
O(|Iα|3). The calculation of all next values λt+1 (using Eq. 13-14 and 17) has a numerical 

complexity of O(m|Iα|) whereas the detection of the next event is of order O(m). Let 
 the evaluation of the preference , i ∈ . According to (16), 

the update of all yi is O(m). We can note that the computational complexity is essentially 
related to the cardinality of Iα|. The cubic complexity of the linear system can be decreased 
to square complexity using a Sherman-Morrison rule to update the inverse of the matrix 

 or a Choleski update procedure. The exact complexity of the algorithm is hard to 
predict since the total number of events needed for exploring entirely the regularization 
path is data-dependent and the mean size of |Iα| is difficult to guess beforehand. However, 
the total complexity is few multiples of the cost for solving directly the dual problem (8). 
On the emptiness of Iα 

It may happen during the algorithm that the set Iα becomes empty. In such situation, a 
new initialization of the algorithm is needed. We apply the procedure developed in 
Subsection 5.1 except the fact we consider solely the pairs in I1 keeping unchanged the set 

I0. 
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6. Experimental results 
Several datasets where used to measure the accuracy and time to process the regularization 
path for the RankSVM algorithm. Firstly, a toy example generated from Gaussian 
distributions (Hastie et al. (2001)) was applied. Some invetisgations on real life datasets 
taken from the UCI repository1 are further presented. 
The mixtures dataset of Hastie et al. (2004) was originally designed for binary classification 
with instances xi and corresponding labels yi ∈ {±1}. However, it can be viewed as a ranking 
problem with E = {(xi, xj) | yi > yj}. It contains 100 positive and 100 negative points which 
would induce 10000 constraints. The regularization path was run on this dataset and a 
decision function was taken on zero. This decision boundary can still be improved by 
observing the generated ROC curve at each level. Figure (4) illustrates the decision function 
 

 
                              (a) Initialization                                (b) Solution after some iterations 

 
                      (c) Solution after more iterations                    (d) Solution for the smallest λ 

Fig. 4. Illustration of the regularization path for the mixture dataset, all red points must be 
ranked higher than the blue points. As λ decreases, the margin gets smaller and the distance 
between pairs tends to be larger than one. 
                                                 
1 http ://archive.ics.uci.edu/ml/datasets.html 
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for different breakpoints of the regularization path. The initial solution (a) is poor but after 
some iterations the results are improved as shown in subfigure (b). The most interesting 
solution is illustrated on subfigure (c) where almost constraints are satisfied. 
The others datasets are regression problems and can also be viewed as ranking problems by 
letting E = {(xi, xj) | yi > yj}. 
The number of induced constraints on the complete dataset and those obtained after 
following the graph design in Figure (3) are compared in Table 1. 
For the experiments, a training, a validation and a test sets where built, being the last two of 
about half the size of the training set each. The number of involved features, training and 
test instances, and training and test constraints are summarized in Table 2. 
Finally, the experiment was run 10 times, the error is measured as the percentage of 
misclassified samples. The size of A tells the number of support vectors and finally the time, 
is the average time (in seconds) to train a regularization path. The results are gathered in 
Table 3. We can see that the computation cost needed to obtain all possible soultions and 
their evaluation on test samples (in order to pick up the best one) is fairly cheaper making 
the approach particularly interesting. 

7. Conclusions 
Regularization parameter search for the ranking SVM can be efficiently done by calculating 
the regularization path. This approach calculates efficiently the optimal solution for all 
possible regularization parameters by solving (in practice) small linear problems. This 
approach has the advantage of overcoming local minimum of the regularization function. 
These advantages make the parameter selection considerably less time consuming and the 
obtained optimal solution for each model more robust. 
 
 

 
 

Table 1. Number of training instances under the original RankSVM and the ones obtained 
after the graph reformulation 

 
 

 
 
Table 2. Summary of the features of the training, validation and test sets 
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Table 3. Obtained results by running the regularization path on the datasets described in 
Table 1. The results are averaged over 10 trials. 

The numerical complexity of the algorithm depends on the number of iterations needed to 
explore the overall solution path and the mean size of Iα. At each iteration, a linear 
system is solved to get η which has complexity O(|Iα|2). Empirically we observed that 
the number of iterations is typically only 2-3 times larger than the number of training 
pairs 
Another key point is the determination of kernel hyper-parameter. This problem was not 
tackled here. However, one can seek to combine our regularisation path with the kernel 
parameter path developed in Gang Wang and Lochovsky (2007). 
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1. Introduction  
Recently, studies of human face recognition have been conducted vigorously (Fasel & 
Luettin, 2003; Yang et al., 2002; Pantic & Rothkrantz, 2000a; Zhao et al., 2000; Hasegawa et 
al., 1997; Akamatsu, 1997). Such studies are aimed at the implementation of an intelligent 
man-machine interface. Especially, studies of facial expression recognition for human-
machine emotional communication are attracting attention (Fasel & Luettin, 2003; Pantic & 
Rothkrantz, 2000a; Tian et al., 2001; Pantic & Rothkrantz, 2000b; Lyons et al., 1999; Lyons et 
al., 1998; Zhang et al., 1998). 
The shape (static diversity) and motion (dynamic diversity) of facial components such as the 
eyebrows, eyes, nose, and mouth manifest expressions. Considering facial expressions from 
the perspective of static diversity because facial configurations differ among people, it is 
presumed that a facial expression pattern appearing on a face when facial expression is 
manifested includes person-specific features. In addition, from the viewpoint of dynamic 
diversity, because the dynamic change of facial expression originates in a person-specific 
facial expression pattern, it is presumed that the displacement vector of facial components 
has person-specific features. The properties of the human face described above reveal the 
following tasks. 
The first task is to generalize a facial expression recognition model. Numerous conventional 
approaches have attempted generalization of a facial expression recognition model. They 
use the distance of motion of feature points set on a face and the motion vectors of facial 
muscle movements in its arbitrary regions as feature values. Typically, such methods assign 
that information to so-called Action Units (AUs) of a Facial Action Coding System (FACS) 
(Ekman & Friesen, 1978). In fact, AUs are described qualitatively. Therefore, no objective 
criteria pertain to the setting positions of feature points and regions. They all depend on a 
particular researcher’s experience. However, features representing facial expressions are 
presumed to differ among subjects. Accordingly, a huge effort is necessary to link 
quantitative features with qualitative AUs for each subject and to derive universal features 
therefrom. It is also suspected that a generalized facial expression recognition model that is 
applicable to all subjects would disregard person-specific features of facial expressions that are 
borne originally by each subject. For all the reasons described above, it is an important task to 
establish a method to extract person-specific features using a common approach to every 
subject, and to build a facial expression recognition model that incorporates these features. 



 Machine Learning 

 

244 

Rosset, S. and Zhu, J. (2007). Piecewise linear regularized solution paths. Annals of Statistics, 
35(3) :1012–1030. 

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels. MIT Press. 

12 

Generation of Facial Expression Map using 
Supervised and Unsupervised Learning 

Masaki Ishii1, Kazuhito Sato1, Hirokazu Madokoro1 and Makoto Nishida2 
1Akita Prefectural University,  

2Akita University 
Japan 

1. Introduction  
Recently, studies of human face recognition have been conducted vigorously (Fasel & 
Luettin, 2003; Yang et al., 2002; Pantic & Rothkrantz, 2000a; Zhao et al., 2000; Hasegawa et 
al., 1997; Akamatsu, 1997). Such studies are aimed at the implementation of an intelligent 
man-machine interface. Especially, studies of facial expression recognition for human-
machine emotional communication are attracting attention (Fasel & Luettin, 2003; Pantic & 
Rothkrantz, 2000a; Tian et al., 2001; Pantic & Rothkrantz, 2000b; Lyons et al., 1999; Lyons et 
al., 1998; Zhang et al., 1998). 
The shape (static diversity) and motion (dynamic diversity) of facial components such as the 
eyebrows, eyes, nose, and mouth manifest expressions. Considering facial expressions from 
the perspective of static diversity because facial configurations differ among people, it is 
presumed that a facial expression pattern appearing on a face when facial expression is 
manifested includes person-specific features. In addition, from the viewpoint of dynamic 
diversity, because the dynamic change of facial expression originates in a person-specific 
facial expression pattern, it is presumed that the displacement vector of facial components 
has person-specific features. The properties of the human face described above reveal the 
following tasks. 
The first task is to generalize a facial expression recognition model. Numerous conventional 
approaches have attempted generalization of a facial expression recognition model. They 
use the distance of motion of feature points set on a face and the motion vectors of facial 
muscle movements in its arbitrary regions as feature values. Typically, such methods assign 
that information to so-called Action Units (AUs) of a Facial Action Coding System (FACS) 
(Ekman & Friesen, 1978). In fact, AUs are described qualitatively. Therefore, no objective 
criteria pertain to the setting positions of feature points and regions. They all depend on a 
particular researcher’s experience. However, features representing facial expressions are 
presumed to differ among subjects. Accordingly, a huge effort is necessary to link 
quantitative features with qualitative AUs for each subject and to derive universal features 
therefrom. It is also suspected that a generalized facial expression recognition model that is 
applicable to all subjects would disregard person-specific features of facial expressions that are 
borne originally by each subject. For all the reasons described above, it is an important task to 
establish a method to extract person-specific features using a common approach to every 
subject, and to build a facial expression recognition model that incorporates these features. 
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The second task is to verify the validity of categorizing emotions into six basic emotions: 
anger, sadness, disgust, happiness, surprise, and fear. In general, facial expressions rarely 
appear as a pure and solitary basic emotion, but they often appear as a mixture of various 
emotions. Moreover, the variety of motions of facial parts and forms is not unique; motions 
are diverse patterns of facial expression. Facial expressions are presumed to be classifiable 
into categories whose number is determined as optimal for each subject. Consequently, the 
categorization of facial expressions is attributed to a problem of classification into an 
unknown number of categories. Accordingly, it is necessary to establish a method for 
determining the optimal number of categories for each subject. 
An ideal facial expression recognition system is expected to be capable of categorizing facial 
expressions into as many types as possible. For that purpose, it is desirable that a facial 
expression pattern be categorized with its operator’s subjectivity excluded, and that the 
operator be able to attribute emotions uniquely to the categories. That is, because an 
emotion in one universal category might yield different patterns of facial expression in each 
subject, a system is expected to be capable of varying criteria for facial expression 
categorization according to the subjective interpretation of an operator. 
For this chapter, we assume categorization of facial expression as a classification problem 
into an unknown number of categories. We propose a generation method of a person-
specific Facial Expression Map (FEMap) using the Self-Organizing Maps (SOM) (Kohonen, 
1995) of unsupervised learning and Counter Propagation Networks (CPN) (Nielsen, 1987) of 
supervised learning together. The proposed method consists of an extraction phase of 
person-specific facial expression categories using a SOM and a generation phase of an 
FEMap using a CPN. During the first phase, we particularly examine the unsupervised 
learning function and data compression function using the SOM of a narrow mapping 
space. The topological change of a face pattern in the expressional process of facial 
expression is learned hierarchically using the SOM of a narrow mapping space. The number 
of person-specific facial expression categories is generated along with the representative 
images of each category. Next, psychological significance based on a neutral expression and 
those of six basic emotions (anger, sadness, disgust, happiness, surprise, and fear) is 
assigned to each category. In the latter phase, we specifically address the supervised 
learning function and data extension function using the CPN of a large mapping space. The 
categories and the representative images described above are learned using the CPN of a 
large mapping space; a category map that expresses the topological characteristics of facial 
expression is generated. This study defines this category map as an FEMap. Experimental 
results for six subjects illustrate that the proposed method can generate a person-specific 
FEMap based on topological characteristics of facial expression appearing on face images. 

2. Algorithms of SOM and CPN 
2.1 Self-Organizing Maps (SOM) 
The SOM is a learning algorithm that models the self-organizing and adaptive learning 
capabilities of a human brain (Kohonen, 1995). A SOM comprises two layers: an input layer, 
to which training data are supplied; and a Kohonen layer, in which self-mapping is 
performed by competitive learning. The learning algorithm of a SOM is described below. 
1. Let wi,j(t) be a weight from an input layer unit i to a Kohonen layer unit j at time t. 

Actually, wi,j is initialized using random numbers. 
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2. Let xi(t) be input data to the input layer unit i at time t; calculate the Euclidean distance 
dj between xi(t) and wi,j(t) using (1). 
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3. Search for a Kohonen layer unit to minimize dj, which is designated as a winner unit. 
4. Update the weight wi,j(t) of a Kohonen layer unit contained in the neighborhood region 

of the winner unit Nc(t) using (2), where α(t) is a learning coefficient. 
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5. Repeat processes 2)–4) up to the maximum iteration of learning. 

2.2 Counter Propagation Networks (CPN) 
The CPN is a learning algorithm that combines the Grossberg learning rule with the SOM 
(Nielsen, 1987). A CPN comprises three layers: an input layer to which training data are 
supplied; a Kohonen layer in which self-mapping is performed by competitive learning; 
and a Grossberg layer, which labels the Kohonen layer by the counter propagation of 
teaching signals. A CPN is useful for automatically determining the label of a Kohonen 
layer when a category in which training data will belong is predetermined. This labeled 
Kohonen layer is designated as a category map. The learning algorithm of a CPN is 
described below. 
1. Let win,m(t) and wjn,m(t) respectively indicate weights to a Kohonen layer unit (n, m) at 

time t from an input layer unit i and from a Grossberg layer unit j. In fact, win,m and wjn,m 
are initialized using random numbers. 

2. Let xi(t) be input data to the input layer unit i at time t, and calculate the Euclidean 
distance dn,m between xi(t) and win,m(t) using (3). 
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3. Search for a Kohonen layer unit to minimize dn,m, which is designated as a winner unit. 
4. Update weights win,m(t) and wjn,m(t) of a Kohonen layer unit contained in the 

neighborhood region of the winner unit Nc(t) using (4) and (5), where α(t), β(t) are 
learning coefficients, and tj(t) is a teaching signal to the Grossberg layer unit j. 
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5. Repeat processes 2)–4) up to the maximum iteration of learning. 
6. After learning is completed, compare weights wjn,m observed from each unit of the 

Kohonen layer; and let the teaching signal of the Grossberg layer with the maximum 
value be the label of the unit. 
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assigned to each category. In the latter phase, we specifically address the supervised 
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large mapping space; a category map that expresses the topological characteristics of facial 
expression is generated. This study defines this category map as an FEMap. Experimental 
results for six subjects illustrate that the proposed method can generate a person-specific 
FEMap based on topological characteristics of facial expression appearing on face images. 

2. Algorithms of SOM and CPN 
2.1 Self-Organizing Maps (SOM) 
The SOM is a learning algorithm that models the self-organizing and adaptive learning 
capabilities of a human brain (Kohonen, 1995). A SOM comprises two layers: an input layer, 
to which training data are supplied; and a Kohonen layer, in which self-mapping is 
performed by competitive learning. The learning algorithm of a SOM is described below. 
1. Let wi,j(t) be a weight from an input layer unit i to a Kohonen layer unit j at time t. 
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2. Let xi(t) be input data to the input layer unit i at time t; calculate the Euclidean distance 
dj between xi(t) and wi,j(t) using (1). 
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5. Repeat processes 2)–4) up to the maximum iteration of learning. 
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The CPN is a learning algorithm that combines the Grossberg learning rule with the SOM 
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layer when a category in which training data will belong is predetermined. This labeled 
Kohonen layer is designated as a category map. The learning algorithm of a CPN is 
described below. 
1. Let win,m(t) and wjn,m(t) respectively indicate weights to a Kohonen layer unit (n, m) at 

time t from an input layer unit i and from a Grossberg layer unit j. In fact, win,m and wjn,m 
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3. Search for a Kohonen layer unit to minimize dn,m, which is designated as a winner unit. 
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5. Repeat processes 2)–4) up to the maximum iteration of learning. 
6. After learning is completed, compare weights wjn,m observed from each unit of the 

Kohonen layer; and let the teaching signal of the Grossberg layer with the maximum 
value be the label of the unit. 
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3. Proposed method 
Figure 1 depicts the procedure used for the proposed method. The proposed method 
consists of two steps: extraction of person-specific facial expression categories using a SOM 
and generation of FEMap using a CPN. The proposed method is explained in detail below. 
 

Step1:  SOM (Extraction of facial expression categories)

Step2:  CPN (Generation of Facial Expression Map)

Facial Expression Map

Facial Expression Images

Assignment of emotion category by visual check (Six Basic Emotions and Neutral).

Facial Expression Categories Representative Images

SOM Learning

CPN Learning

Teach Signals Input Images

 
Fig. 1. Flow chart of proposal method. 

3.1 Extraction of person-specific facial expression categories with SOM 
The proposed method was used in an attempt to extract a person-specific facial expression 
category hierarchically using a SOM with a narrow mapping space. A SOM is an 
unsupervised learning algorithm; it classifies given facial expression images in a self-
organized manner based on their topological characteristics. For that reason, it is suitable for 
classification problems with an unknown number of categories. Moreover, a SOM 
compresses the topological information of facial expression images using a narrow mapping 
space and performs classification based on features that roughly divide the training data. 
We speculate that repeating these hierarchically renders the classified amount of change of 
facial expression patterns comparable; thereby, a person-specific facial expression category 
can be extracted. Figure 2 depicts the extraction procedure of a facial expression category. 
Details of the process are explained below. 
1. Expression images described in Section 4 were used as training data. The following 

processing was performed for each facial expression. The number of training data is 
assumed as N frames. 

2. The facial expression topological characteristics of the training data were learned using 
the 1-D SOM of the Kohonen layer consisting of five units (Fig. 2(a)). The brightness 
value of images was used as input data because the brightness distribution represents 
the topological structure of the facial expression. The unit number of the input layer 
corresponds to the input image size. 
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3. The weight of the Kohonen layer Wi,j(0 ≤ Wi,j ≤ 1) was converted to a value of 0–255 after 
the end of learning; visualized images were generated (Fig. 2(b)), where n1 − n5 are the 
numbers of training data classified into each unit. 
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(d) Generation of binary-tree structure.  
Fig. 2. Extraction procedure of facial expression category. 

4. Five visualized images can be considered as representative vectors of the training data 
classified into each unit (n1 − n5). Therefore, the images of five units were verified 
visually. All images were regarded as belonging to one category; processing was 
terminated if they were considered to represent the same facial expression. Subsequent 
processing was continued if multiple facial expressions were found to be mixed in the 
visualized images. 

5. The correlation coefficient of weight Wi,j between each adjacent unit in the Kohonen 
layer was calculated. The Kohonen layer was then divided into two borders between 
the unit pair where the coefficient was minimal because the input group categorized 
into both sides of the border was presumed to have a large difference in topological 
characteristics; the weight of an adjacent unit pair would be updated by the 
neighborhood learning of the SOM to a similar value (Fig. 2(b)). 

6. The groups of training data categorized into both sides of the divided Kohonen layers 
(N1 and N2, where N = N1 + N2) can be considered as two independent sub-problems 
(Fig. 2(b)). Actually, N1 and N2 were used as new training data, and processes 2)–5) 
were repeated recursively (Fig. 2(c)). 
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Details of the process are explained below. 
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processing was performed for each facial expression. The number of training data is 
assumed as N frames. 

2. The facial expression topological characteristics of the training data were learned using 
the 1-D SOM of the Kohonen layer consisting of five units (Fig. 2(a)). The brightness 
value of images was used as input data because the brightness distribution represents 
the topological structure of the facial expression. The unit number of the input layer 
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3. The weight of the Kohonen layer Wi,j(0 ≤ Wi,j ≤ 1) was converted to a value of 0–255 after 
the end of learning; visualized images were generated (Fig. 2(b)), where n1 − n5 are the 
numbers of training data classified into each unit. 
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4. Five visualized images can be considered as representative vectors of the training data 
classified into each unit (n1 − n5). Therefore, the images of five units were verified 
visually. All images were regarded as belonging to one category; processing was 
terminated if they were considered to represent the same facial expression. Subsequent 
processing was continued if multiple facial expressions were found to be mixed in the 
visualized images. 

5. The correlation coefficient of weight Wi,j between each adjacent unit in the Kohonen 
layer was calculated. The Kohonen layer was then divided into two borders between 
the unit pair where the coefficient was minimal because the input group categorized 
into both sides of the border was presumed to have a large difference in topological 
characteristics; the weight of an adjacent unit pair would be updated by the 
neighborhood learning of the SOM to a similar value (Fig. 2(b)). 

6. The groups of training data categorized into both sides of the divided Kohonen layers 
(N1 and N2, where N = N1 + N2) can be considered as two independent sub-problems 
(Fig. 2(b)). Actually, N1 and N2 were used as new training data, and processes 2)–5) 
were repeated recursively (Fig. 2(c)). 
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7. By repeating the processes described above, a hierarchical structure of the SOM (binary-
tree structure) was generated (Fig. 2(d)). The lowermost layer of the hierarchical 
structure was defined as a facial expression category and five visualized images were 
defined as representative images of each category. Then the photographer of the facial 
expression images performed visual confirmation to each facial expression category and 
inferred their associated emotion categories. 

The proposed method set the iterations of learning as 200,000 times. The radius of the 
neighborhood region Nc(t) was fixed as the first neighborhood of the winner unit. The 
learning coefficient α(t) was defined to decrease linearly from the initial value of 0.5–0.02 for 
learning iterations of 100,000 times; then subsequently to 0 at an iteration of learning of 
200,000 times. The updating ratio of weights was set to 1 for the winner unit, and to 0.5 for 
its neighborhood units. 

3.2 Generation of facial expression map with CPN 
It is considered that recognition to a natural facial expression requires generation of a facial 
expression pattern (mixed facial expression) that interpolates each emotion category. The 
proposed method used the representative image obtained in Section 3.1 as training data and 
carried out data expansion of facial expression patterns among emotion categories using 
CPN with a large mapping space. The reason for adopting CPN, a supervised learning 
algorithm, is that the teaching signal of training data is known by processing in Section 3.1. 
The mapping space of CPN has a greater number of units than the number of training data; 
in addition, it has a toroidal structure because it is presumed that a large mapping space 
allows CPN to perform data expansion based on the similarity and continuity of training 
data. Figure 3 depicts the FEMap generation procedure. The processing details are described 
below. 
1. The categories and representative images obtained in Section 3.1 were used as teaching 

signals and input data, which were then adopted as CPN training data. 
2. The facial expression topological characteristics of an input group were learned using 

CPN with a two-dimensional Kohonen layer of 30 × 30 units and a Grossberg layer 
having as many units as the categories obtained in Section 3.1. The brightness values of 
the representative images were used as input data. Teaching signals to the Grossberg 
layer were set to 1 for units representing categories and 0 for the rest. The unit number 
of the input layer corresponded to the input image size. 

3. The process described above was repeated until the maximum iterations of learning. 
4. The weights (Wg) of the Grossberg layer were compared for each unit of the Kohonen 

layer after learning completion; an emotion category of the greatest value was used as 
the unit label. 

5. A category map generated by the process described above was defined as a person-
specific FEMap. 

The proposed method set the iterations of learning as 20,000 times. The radius of the 
neighborhood region Nc(t) was defined to decrease linearly from the initial value of the 14th 
to the first neighborhood of the winner unit at an iteration of learning of 10,000 times, and to 
be fixed at the first neighborhood of the winner unit for the subsequent 10,000 iterations. 
The learning coefficients α(t) and β(t) were defined to decrease linearly from the initial value 
of 0.5–0.02 at an iteration of learning of 10,000 times; then subsequently to 0 at an iteration of 
learning of 20,000 times. The updating ratio of weights was set to 1 for the winner unit, and 
to 0.5 for its neighboring units. 
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Fig. 3. Generation procedure of FEMap. 

4. Facial expression images 
Examples of facial expression images used in this study are presented in Fig. 4. This paper 
presents a discussion of six basic facial expressions and a neutral facial expression that six 
subjects manifested intentionally. Each subject’s front face image was photographed under 
normal indoor conditions (lighting by fluorescent lamps) with the head enclosed inside the 
frame. Basic facial expressions were obtained as motion videos including a process in which 
a neutral facial expression and facial expressions were manifested five times respectively by 
turns for each facial expression. Neutral facial expressions were obtained as a motion video 
for about 10 s. The motion videos were converted into static images (10 frame/s, 8 bit gray, 
320×240 pixels). Regions containing facial components, i.e., eyebrows, eyes, nose, and 
mouth, were extracted from each frame and used as training data. Table 1 presents the 
number of frames of all subjects’ training data. 
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Fig. 4. Examples of facial expression images (ID, Subject; An., Anger; Sa., Sadness; Di., 
Disgust; Ha., Happiness; Su., Surprise; Fe., Fear; Ne., Neutral). 

Open facial expression databases are generally used in conventional studies (Pantic et al., 
2005; Gross, 2005). These databases contain a few images per expression and subject. For this 
study, we obtained facial expression images of ourselves because the proposed method 
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7. By repeating the processes described above, a hierarchical structure of the SOM (binary-
tree structure) was generated (Fig. 2(d)). The lowermost layer of the hierarchical 
structure was defined as a facial expression category and five visualized images were 
defined as representative images of each category. Then the photographer of the facial 
expression images performed visual confirmation to each facial expression category and 
inferred their associated emotion categories. 

The proposed method set the iterations of learning as 200,000 times. The radius of the 
neighborhood region Nc(t) was fixed as the first neighborhood of the winner unit. The 
learning coefficient α(t) was defined to decrease linearly from the initial value of 0.5–0.02 for 
learning iterations of 100,000 times; then subsequently to 0 at an iteration of learning of 
200,000 times. The updating ratio of weights was set to 1 for the winner unit, and to 0.5 for 
its neighborhood units. 

3.2 Generation of facial expression map with CPN 
It is considered that recognition to a natural facial expression requires generation of a facial 
expression pattern (mixed facial expression) that interpolates each emotion category. The 
proposed method used the representative image obtained in Section 3.1 as training data and 
carried out data expansion of facial expression patterns among emotion categories using 
CPN with a large mapping space. The reason for adopting CPN, a supervised learning 
algorithm, is that the teaching signal of training data is known by processing in Section 3.1. 
The mapping space of CPN has a greater number of units than the number of training data; 
in addition, it has a toroidal structure because it is presumed that a large mapping space 
allows CPN to perform data expansion based on the similarity and continuity of training 
data. Figure 3 depicts the FEMap generation procedure. The processing details are described 
below. 
1. The categories and representative images obtained in Section 3.1 were used as teaching 

signals and input data, which were then adopted as CPN training data. 
2. The facial expression topological characteristics of an input group were learned using 

CPN with a two-dimensional Kohonen layer of 30 × 30 units and a Grossberg layer 
having as many units as the categories obtained in Section 3.1. The brightness values of 
the representative images were used as input data. Teaching signals to the Grossberg 
layer were set to 1 for units representing categories and 0 for the rest. The unit number 
of the input layer corresponded to the input image size. 

3. The process described above was repeated until the maximum iterations of learning. 
4. The weights (Wg) of the Grossberg layer were compared for each unit of the Kohonen 

layer after learning completion; an emotion category of the greatest value was used as 
the unit label. 

5. A category map generated by the process described above was defined as a person-
specific FEMap. 

The proposed method set the iterations of learning as 20,000 times. The radius of the 
neighborhood region Nc(t) was defined to decrease linearly from the initial value of the 14th 
to the first neighborhood of the winner unit at an iteration of learning of 10,000 times, and to 
be fixed at the first neighborhood of the winner unit for the subsequent 10,000 iterations. 
The learning coefficients α(t) and β(t) were defined to decrease linearly from the initial value 
of 0.5–0.02 at an iteration of learning of 10,000 times; then subsequently to 0 at an iteration of 
learning of 20,000 times. The updating ratio of weights was set to 1 for the winner unit, and 
to 0.5 for its neighboring units. 
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Fig. 3. Generation procedure of FEMap. 

4. Facial expression images 
Examples of facial expression images used in this study are presented in Fig. 4. This paper 
presents a discussion of six basic facial expressions and a neutral facial expression that six 
subjects manifested intentionally. Each subject’s front face image was photographed under 
normal indoor conditions (lighting by fluorescent lamps) with the head enclosed inside the 
frame. Basic facial expressions were obtained as motion videos including a process in which 
a neutral facial expression and facial expressions were manifested five times respectively by 
turns for each facial expression. Neutral facial expressions were obtained as a motion video 
for about 10 s. The motion videos were converted into static images (10 frame/s, 8 bit gray, 
320×240 pixels). Regions containing facial components, i.e., eyebrows, eyes, nose, and 
mouth, were extracted from each frame and used as training data. Table 1 presents the 
number of frames of all subjects’ training data. 
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A
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Fig. 4. Examples of facial expression images (ID, Subject; An., Anger; Sa., Sadness; Di., 
Disgust; Ha., Happiness; Su., Surprise; Fe., Fear; Ne., Neutral). 

Open facial expression databases are generally used in conventional studies (Pantic et al., 
2005; Gross, 2005). These databases contain a few images per expression and subject. For this 
study, we obtained facial expression images of ourselves because the proposed method 
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extracts person-specific facial expression categories and the representative images of each 
category from large quantities of data. 
 

ID An. Sa. Di. Ha. Su. Fe. Ne. Total 

A 136 198 143 169 127 140 100 1013 
B 152 136 153 162 154 190 100 1047 
C 192 173 154 158 153 156 100 1086 
D 152 158 178 177 158 170 100 1093 
E 95 113 108 112 109 108 100 745 
F 165 197 198 163 165 167 100 1155 

Table 1. Numbers of frames of all subjects' training data. 

5. Results and discussion 
5.1 Extraction of person-specific facial expression categories 
Figure 5 shows binary-tree structures generated with the proposed method applied to six 
subjects. Table 2 shows quantities of categories of facial expressions and representative 
images extracted from Fig. 5. Figure 5 shows that the binary-tree structure differs for each 
subject. Table 2 presents that the number of categories for each facial expression also differs 
for each subject. 
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Fig. 5. Binary-tree structures generated with the proposed method. 
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ID An. Sa. Di. Ha. Su. Fe. Ne. Extracted 
Categories 

Representative 
Images 

A 1 1 1 1 1 1 2 8 40 ( 5 units * 8 ) 
B 1 1 1 1 1 - 2 7 35 ( 5 units * 7 ) 
C 1 1 1 3 1 2 6 15 75 ( 5 units * 15 ) 
D 1 1 1 3 1 1 7 15 75 ( 5 units * 15 ) 
E 1 2 1 1 1 1 3 10 50 ( 5 units * 10 ) 
F 1 1 1 1 1 1 3 9 45 ( 5 units * 9 ) 

Table 2. Numbers of facial expression categories and representative images. 

For Subject A, 8 categories are generated and 40 representative images are extracted. In fact, 
Subject A presented stable facial expression patterns within training data, and his six basic 
emotions were generated as one category each. A neutral expression was generated as two 
categories. 
On the other hand, 15 categories were generated and 75 representative images were 
extracted for Subject D. Regarding happiness, three categories were generated from her one 
facial expression. Figure 6 shows representative images of happiness of Subject D, which 
reveals that three types of categories representing happiness were generated: (a) eyes are 
closed and the mouth is opened (showing teeth), (b) smiling, and (c) mouth is opened 
widely. These images suggest that the facial expression for the happiness of Subject D had 
multiple facial expression patterns, which were learned as different facial expression 
topological characteristics, and which were categorized into different categories in the 
binary-tree structure of SOM. 
 

(b) Smiling.

(a) Eyes are closed and mouth is opened
(showing teeth).

(c) Mouth is opened widely.

Ha.1 Di. Ne.3

Sa. Ne.2 Su.

Ne.1

Ne.4 Ha.2 Ne.5 Ha.3

An. Ne.6 Ne.7 Fe.

(a) (b) (c)

 
Fig. 6. Representative images of happiness of Subject D (Detail of Fig. 5(d)). 

For Subject B, 7 categories were generated and 35 representative images were extracted. 
Regarding disgust and fear, both were classified into a single category (Fig. 7). Comparison 
of disgust and fear as facial expressions of Subject B shown in Fig. 4 suggests similarities in 
the patterns of facial expression and the consequent difficulty in visual distinction between 
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extracts person-specific facial expression categories and the representative images of each 
category from large quantities of data. 
 

ID An. Sa. Di. Ha. Su. Fe. Ne. Total 

A 136 198 143 169 127 140 100 1013 
B 152 136 153 162 154 190 100 1047 
C 192 173 154 158 153 156 100 1086 
D 152 158 178 177 158 170 100 1093 
E 95 113 108 112 109 108 100 745 
F 165 197 198 163 165 167 100 1155 

Table 1. Numbers of frames of all subjects' training data. 

5. Results and discussion 
5.1 Extraction of person-specific facial expression categories 
Figure 5 shows binary-tree structures generated with the proposed method applied to six 
subjects. Table 2 shows quantities of categories of facial expressions and representative 
images extracted from Fig. 5. Figure 5 shows that the binary-tree structure differs for each 
subject. Table 2 presents that the number of categories for each facial expression also differs 
for each subject. 
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Fig. 5. Binary-tree structures generated with the proposed method. 

Generation of Facial Expression Map using Supervised and Unsupervised Learning 

 

253 

ID An. Sa. Di. Ha. Su. Fe. Ne. Extracted 
Categories 

Representative 
Images 

A 1 1 1 1 1 1 2 8 40 ( 5 units * 8 ) 
B 1 1 1 1 1 - 2 7 35 ( 5 units * 7 ) 
C 1 1 1 3 1 2 6 15 75 ( 5 units * 15 ) 
D 1 1 1 3 1 1 7 15 75 ( 5 units * 15 ) 
E 1 2 1 1 1 1 3 10 50 ( 5 units * 10 ) 
F 1 1 1 1 1 1 3 9 45 ( 5 units * 9 ) 

Table 2. Numbers of facial expression categories and representative images. 

For Subject A, 8 categories are generated and 40 representative images are extracted. In fact, 
Subject A presented stable facial expression patterns within training data, and his six basic 
emotions were generated as one category each. A neutral expression was generated as two 
categories. 
On the other hand, 15 categories were generated and 75 representative images were 
extracted for Subject D. Regarding happiness, three categories were generated from her one 
facial expression. Figure 6 shows representative images of happiness of Subject D, which 
reveals that three types of categories representing happiness were generated: (a) eyes are 
closed and the mouth is opened (showing teeth), (b) smiling, and (c) mouth is opened 
widely. These images suggest that the facial expression for the happiness of Subject D had 
multiple facial expression patterns, which were learned as different facial expression 
topological characteristics, and which were categorized into different categories in the 
binary-tree structure of SOM. 
 

(b) Smiling.

(a) Eyes are closed and mouth is opened
(showing teeth).

(c) Mouth is opened widely.
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Fig. 6. Representative images of happiness of Subject D (Detail of Fig. 5(d)). 

For Subject B, 7 categories were generated and 35 representative images were extracted. 
Regarding disgust and fear, both were classified into a single category (Fig. 7). Comparison 
of disgust and fear as facial expressions of Subject B shown in Fig. 4 suggests similarities in 
the patterns of facial expression and the consequent difficulty in visual distinction between 
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both, which indicates that the binary-tree structure of SOM generated the facial expression 
of similar topological characteristics as one category. 
The following were revealed. The proposed method enables classification of multiple facial 
expression patterns into separate different categories even if they are of the same facial 
expression. On the other hand, visually similar facial expressions are classifiable into one 
category. 
 

Ha. Ne.1 Su. An. Ne.2 Di.
Fe.

Sa.

 
Fig. 7. Representative images of “disgust” and “fear” (Subject B, Detail of Fig. 5(b)). 

Psychological significance is assigned to every category obtained with the binary-tree 
structure in this study. The operator might also assign importance to categories that are 
selected according to personal subjectivity. Moreover, intentional further hierarchization 
permits us to subdivide categories (subdivision of facial expression categorization). For 
example, Fig. 8 shows the subdivision result of the surprise category related to Subject E. 
The fourth layer, Fig. 8(a), was defined as a surprise category. Classification based on local 
and small changes of a facial expression pattern was performed by further intentional 
hierarchization: eyebrows are raised greatly (Fig. 8(b)), eyebrows are raised slightly (Fig. 
8(c)), the mouth is opened narrowly (Figs. 8(d) and 8(f)), and the mouth is opened widely 
(Figs. 8(e) and 8(g)). 

(c) Eyebrows are raised slightly.(b) Eyebrows are raised greatly. 

(a) Category defined as Surprise.

(d) Mouth are opened narrowly.

(e) Mouth is opened widely.

(f) Mouth is opened narrowly.

(g) Mouth is opened widely.

Su. (a)

Ne.1 Ha.

( b ) ( c )

( d ) ( e ) ( f ) ( g )

(d) Mouth is opened narrowly.     

 
 

Fig. 8. Subdivision of a surprise category of Subject E (Detail of Fig. 5(e)). 
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5.2 Generation of facial expression map 
The categories and representative images extracted in Section 5.1 were used respectively as 
teacher signals and input data of the CPN; the FEMaps shown in Fig. 9 were generated 
using the proposed method. Units with a round mark in the figures denote winner units 
when training data were input into the CPN after learning. These figures suggest that the 
area size of facial expression categories (number of labels) on FEMaps differs for each 
subject. Even within one subject, differences are apparent in the number of labels for each 
facial expression category. 
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Fig. 9. FEMaps generated with the proposed method. 

The percentages of the number of labels for each subject are listed in Table 3. Sadness and 
disgust occupy 4.1% and 25.2%, respectively, for Subject A. Even though training data of the 
same number for both categories (five images per category) are being used, great differences 
are apparent in the number of labels. Figure 9(a) portrays that winner units of training data 
for sadness are crowded, whereas those for disgust are dispersed widely, which are 
presumed to suggest the following Regarding sadness, the topological characteristics of 
training data are very similar compared to other facial expressions that the facial expression 
pattern changes little. However, for disgust, differences in the topological characteristics of 
training data are so large that the facial expression pattern changes greatly. For Subject D, 
the facial expression of happiness, for which three categories were generated, changes 
greatly (15.6%), although that of surprise shows little change (3.0%). For Subject F, the facial 
expression of fear changes greatly (20.2%), whereas that of disgust shows little change 
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both, which indicates that the binary-tree structure of SOM generated the facial expression 
of similar topological characteristics as one category. 
The following were revealed. The proposed method enables classification of multiple facial 
expression patterns into separate different categories even if they are of the same facial 
expression. On the other hand, visually similar facial expressions are classifiable into one 
category. 
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Fe.

Sa.

 
Fig. 7. Representative images of “disgust” and “fear” (Subject B, Detail of Fig. 5(b)). 

Psychological significance is assigned to every category obtained with the binary-tree 
structure in this study. The operator might also assign importance to categories that are 
selected according to personal subjectivity. Moreover, intentional further hierarchization 
permits us to subdivide categories (subdivision of facial expression categorization). For 
example, Fig. 8 shows the subdivision result of the surprise category related to Subject E. 
The fourth layer, Fig. 8(a), was defined as a surprise category. Classification based on local 
and small changes of a facial expression pattern was performed by further intentional 
hierarchization: eyebrows are raised greatly (Fig. 8(b)), eyebrows are raised slightly (Fig. 
8(c)), the mouth is opened narrowly (Figs. 8(d) and 8(f)), and the mouth is opened widely 
(Figs. 8(e) and 8(g)). 

(c) Eyebrows are raised slightly.(b) Eyebrows are raised greatly. 

(a) Category defined as Surprise.

(d) Mouth are opened narrowly.

(e) Mouth is opened widely.

(f) Mouth is opened narrowly.

(g) Mouth is opened widely.
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Fig. 8. Subdivision of a surprise category of Subject E (Detail of Fig. 5(e)). 
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5.2 Generation of facial expression map 
The categories and representative images extracted in Section 5.1 were used respectively as 
teacher signals and input data of the CPN; the FEMaps shown in Fig. 9 were generated 
using the proposed method. Units with a round mark in the figures denote winner units 
when training data were input into the CPN after learning. These figures suggest that the 
area size of facial expression categories (number of labels) on FEMaps differs for each 
subject. Even within one subject, differences are apparent in the number of labels for each 
facial expression category. 
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Fig. 9. FEMaps generated with the proposed method. 

The percentages of the number of labels for each subject are listed in Table 3. Sadness and 
disgust occupy 4.1% and 25.2%, respectively, for Subject A. Even though training data of the 
same number for both categories (five images per category) are being used, great differences 
are apparent in the number of labels. Figure 9(a) portrays that winner units of training data 
for sadness are crowded, whereas those for disgust are dispersed widely, which are 
presumed to suggest the following Regarding sadness, the topological characteristics of 
training data are very similar compared to other facial expressions that the facial expression 
pattern changes little. However, for disgust, differences in the topological characteristics of 
training data are so large that the facial expression pattern changes greatly. For Subject D, 
the facial expression of happiness, for which three categories were generated, changes 
greatly (15.6%), although that of surprise shows little change (3.0%). For Subject F, the facial 
expression of fear changes greatly (20.2%), whereas that of disgust shows little change 
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(3.3%). These results suggest that the number of labels on an FEMap express the extent of 
difference of topological characteristics within a category, i.e., expressiveness of person-
specific facial expressions. 
Figure 10 portrays a magnified view of a part of surprise in the FEMap of Subject E, with the 
weights of each unit visualized. Units with the white frame in the figure denote winner 
units when training data were input into the CPN after learning. This figure suggests that 
facial expressions whose patterns differ slightly are generated in the neighborhood of five 
winner units. These results suggest that data expansion is performed based on the similarity 
and continuity of training data, and that more facial expression patterns such as mixed facial 
expressions between categories can be generated in the CPN mapping space. 
 

ID An.(%) Sa. (%) Di. (%) Ha. (%) Su. (%) Fe. (%) Ne. (%) 
A 17.7 4.1 25.2 7.2 9.4 11.9 24.4 
B 18.0 11.7 9.2 13.3 14.8 - 33.0 
C 6.3 6.6 7.1 17.1 5.0 10.7 47.2 
D 9.1 6.8 9.2 15.6 3.0 11.0 45.3 
E 11.6 16.2 11.6 9.4 8.0 15.7 27.6 
F 9.1 13.9 3.3 12.8 7.1 20.2 33.6 

Table 3. Percentages of number of labels in the FEMap. 
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Fig. 10. Magnified view of a part of surprise in the FEMap of Subject E (Detail of Fig. 9(e)). 

6. Conclusion 
On the assumption that facial expression is a problem of classification into an unknown 
number of categories, this chapter describes an investigation of a generation method of a 
person-specific FEMap. The essential results obtained in this study are the following. 
Hierarchical use of SOM with a narrow mapping space enables extraction of person-specific 
facial expression categories and representative images for each category. Psychological 
significance is assigned to every category obtained with the binary-tree structure in this 
study. The operator might also give special importance to categories selected according to 
personal subjectivity. Moreover, intentional further hierarchization of a binary-tree structure 
permits the additional subdivision of facial expression categorization. 
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The categories and category representative images obtained from the binary-tree structure 
were used as training data of a CPN with a large mapping space. Results revealed that data 
expansion is performed based on the similarity and continuity of training data, and that 
more facial expression patterns such as mixed facial expressions between categories can be 
generated in the CPN mapping space. It is expected that the use of an FEMap generated 
using the proposed method can be useful as a classifier in facial expression recognition that 
contributes to improvement in generalization capability. 
This chapter specifically described a generation method of an FEMap and used facial 
expression images obtained during the same period. However, it is difficult to obtain all of a 
subject’s facial expression patterns at one time; in addition, faces age with time. In future 
studies, we intend to take aging of a facial expression pattern into consideration, and study 
an automatic FEMap updating method using additional learning functions. 
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1. Introduction 
Facial expression, resulting from movements of the facial muscles, is one of the most 
powerful, natural, and immediate means for human beings to communicate their emotions 
and intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was 
the first to describe in detail the specific facial expressions associated with emotions in 
animals and humans; he argued that all mammals show emotions reliably in their faces. 
Psychological studies (Mehrabian, 1968; Ambady & Rosenthal, 1992) indicate that facial 
expressions, with other non-verbal cues, play a major and fundamental role in face-to-face 
communication. 
 

 
Fig. 1. Facial expressions of George W. Bush. 

Machine analysis of facial expressions, enabling computers to analyze and interpret facial 
expressions as humans do, has many important applications including intelligent human-
computer interaction, computer animation, surveillance and security, medical diagnosis, 
law enforcement, and awareness system (Shan, 2007). Driven by its potential applications 
and theoretical interests of cognitive and psychological scientists, automatic facial 
expression analysis has attracted much attention in last two decades (Pantic & Rothkrantz, 
2000a; Fasel & Luettin, 2003; Tian et al, 2005; Pantic & Bartlett, 2007). It has been studied in 
multiple disciplines such as psychology, cognitive science, computer vision, pattern 
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recognition, and human-computer interaction. Although much progress has been made, it is 
still difficult to design and develop an automated system capable of detecting and 
interpreting human facial expressions with high accuracy, due to their subtlety, complexity 
and variability. 
Many machine learning techniques have been introduced for facial expression analysis, such 
as Neural Networks (Tian et al, 2001), Bayesian Networks (Cohen et al, 2003b), and Support 
Vector Machines (SVM) (Bartlett et al, 2005), to name just a few. Meanwhile, appearance-
based statistical subspace learning has been shown to be an effective approach to modeling 
facial expression space for classification. This is because that despite a facial image space 
being commonly of a very high dimension, the underlying facial expression space is usually 
a sub-manifold of much lower dimensionality embedded in the ambient space. Subspace 
learning is a natural approach to resolve this problem. Traditionally, linear subspace 
methods including Principal Component Analysis (PCA) (Turk & Pentland, 1991), Linear 
Discriminant Analysis (LDA) (Belhumeur et al, 1997), and Independent Component 
Analysis (ICA) (Bartlett et al, 2002) have been used to discover both facial identity and 
expression manifold structures. For example, Lyons et al (1999) adopted PCA based LDA 
with the Gabor wavelet representation to classify facial images, and Donato et al (1999) 
explored PCA, LDA, and ICA for facial action classification. 
Recently a number of nonlinear techniques have been proposed to learn the structure of a 
manifold, e.g., Isomap (Tenenbaum et al, 2000), Local Linear Embedding (LLE) (Roweis & 
Saul, 2000; Saul & Roweis, 2003), and Laplacian Eigenmaps (Belkin & Niyogi, 2001, 2003). 
These methods have been shown to be effective in discovering the underlying manifold. 
However, they are unsupervised in nature and fail to discover the discriminant structure in 
the data. Moreover, these techniques yield maps that are defined only on the training data, 
and it is unclear how to evaluate the maps for new test data. So they may not be suitable for 
pattern recognition tasks such as facial expression recognition. To address this problem, 
some linear approximations to these nonlinear manifold learning methods have been 
proposed to provide an explicit mapping from the input space to the reduced space (He & 
Niyogi, 2003; Kokiopoulou & Saad, 2005). He and Niyogi (2003) developed a linear subspace 
technique, known as Locality Preserving Projections (LPP), which builds a graph model that 
reflects the intrinsic geometric structure of the given data space, and finds a projection that 
respects this graph structure. LPP can be regarded as a linear approximation to Laplacian 
Eigenmaps; it can easily map any new data to the reduced space by using a transformation 
matrix. By incorporating the priori class information into LPP, we presented a Supervised 
LPP (SLPP) approach to enhance discriminant analysis on a manifold structure (Shan et al, 
2005a). Cai et al (2006) further introduced a Orthogonal LPP (OLPP) approach to produce 
orthogonal basis vectors, which potentially have more discriminating power. 
Orthogonal Neighborhood Preserving Projections (ONPP) is another interesting linear 
subspace technique proposed recently (Kokiopoulou & Saad, 2005, 2007). ONPP aims to 
preserve the intrinsic geometry of the local neighborhoods; it can be regarded as a linear 
approximation to LLE. ONPP constructs a weighted k-nearest neighbor graph which models 
explicitly the data topology, and, similarly to LLE, the weights are decided in a data-driven 
fashion to capture the geometry of local neighborhoods. In contrast to LLE, ONPP computes 
an explicit linear mapping from the input space to the reduced space. ONPP can be 
performed in either an unsupervised or a supervised setting. More recently Cai et al (2007) 
introduced a linear subspace method called Locality Sensitive Discriminant Analysis 
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(LSDA), which finds a projection that maximizes the margin between data points from 
different classes at each local area. LSDA constructs a nearest neighbor graph to model the 
geometrical structure of the underlying manifold, and then split it into within-class graph 
and between-class graph by using the class labels. LPP, ONPP, LSDA are all linear subspace 
learning techniques which aim at preserving locality of data samples, relying on a nearest 
neighbor graph to capture the data topology. However, they adopt totally different objective 
functions, so potentially they will provide different subspace learning power. 
As different linear subspace techniques have been developed, the researchers are therefore 
confronted with a choice of algorithms with significantly different strengthes. However, to 
our best knowledge, there is no comprehensive comparative study on these linear subspace 
methods using the same data and experimental settings, although they were individually 
evaluated. In particular, for the task of facial expression analysis, it is necessary and 
important to identify the most effective linear subspace technique for facial expression 
representation and classification. In this chapter, we investigate and evaluate a number of 
linear subspace techniques for modeling facial expression subspace. Specifically we compare 
LPP and its variants SLPP and OLPP, ONPP, LSDA with the traditional PCA and LDA 
using different facial representations on several public databases. We find in our extensive 
study that the supervised LPP provides the best results in learning facial expression 
subspace, resulting in superior facial expression recognition performance. A short version of 
our work was presented in (Shan et al, 2006a). 
The remainder of this chapter is organized as follows. We first survey the state of the art of 
facial expression analysis with machine learning (Section 2). Different linear subspace 
techniques compared in this chapter are described in Section 3. We present extensive 
experiments on different databases in Section 4, and finally Section 5 concludes the chapter. 

2. State of the art 
After Suwa et al (1978) made an early attempt to automatically analyze facial expressions 
from image sequences, machine analysis of facial expressions has received much attention in 
last two decades (Pantic & Rothkrantz, 2000a; Fasel & Luettin, 2003; Tian et al, 2005; Pantic 
& Bartlett, 2007). In this section, we review the state of the art on applying machine learning 
techniques for facial expression analysis. 
Facial expressions can be described at different levels. Two mainstream description methods 
are facial affect (emotion) and facial muscle action (action unit) (Pantic & Bartlett, 2007). 
Most of facial expression analysis systems developed so far target facial affect analysis, 
attempting to analyze a set of prototypic emotional facial expressions (Pantic & Rothkrantz, 
2000a, 2003). To describe subtle facial changes, Facial Action Coding System (FACS) (Ekman 
et al, 2002) has been used for manually labeling of facial actions. FACS associates facial 
changes with actions of the muscles that produce them. It defines 44 different action units 
(AUs). Another possible descriptor is the bipolar dimensions of Valence and Arousal (Russell, 
1994). Valence describes the pleasantness, with positive (pleasant) on one end (e.g. 
happiness), and negative (unpleasant) on the other (e.g. disgust). The other dimension is 
arousal or activation, for example, sadness has low arousal, whereas surprise has a high 
arousal level. 
The general approach to automatic facial expression analysis consists of three steps: face 
acquisition, facial data extraction & representation, and facial expression recognition. In the 
following sections, we discuss these steps respectively. 
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(LSDA), which finds a projection that maximizes the margin between data points from 
different classes at each local area. LSDA constructs a nearest neighbor graph to model the 
geometrical structure of the underlying manifold, and then split it into within-class graph 
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confronted with a choice of algorithms with significantly different strengthes. However, to 
our best knowledge, there is no comprehensive comparative study on these linear subspace 
methods using the same data and experimental settings, although they were individually 
evaluated. In particular, for the task of facial expression analysis, it is necessary and 
important to identify the most effective linear subspace technique for facial expression 
representation and classification. In this chapter, we investigate and evaluate a number of 
linear subspace techniques for modeling facial expression subspace. Specifically we compare 
LPP and its variants SLPP and OLPP, ONPP, LSDA with the traditional PCA and LDA 
using different facial representations on several public databases. We find in our extensive 
study that the supervised LPP provides the best results in learning facial expression 
subspace, resulting in superior facial expression recognition performance. A short version of 
our work was presented in (Shan et al, 2006a). 
The remainder of this chapter is organized as follows. We first survey the state of the art of 
facial expression analysis with machine learning (Section 2). Different linear subspace 
techniques compared in this chapter are described in Section 3. We present extensive 
experiments on different databases in Section 4, and finally Section 5 concludes the chapter. 

2. State of the art 
After Suwa et al (1978) made an early attempt to automatically analyze facial expressions 
from image sequences, machine analysis of facial expressions has received much attention in 
last two decades (Pantic & Rothkrantz, 2000a; Fasel & Luettin, 2003; Tian et al, 2005; Pantic 
& Bartlett, 2007). In this section, we review the state of the art on applying machine learning 
techniques for facial expression analysis. 
Facial expressions can be described at different levels. Two mainstream description methods 
are facial affect (emotion) and facial muscle action (action unit) (Pantic & Bartlett, 2007). 
Most of facial expression analysis systems developed so far target facial affect analysis, 
attempting to analyze a set of prototypic emotional facial expressions (Pantic & Rothkrantz, 
2000a, 2003). To describe subtle facial changes, Facial Action Coding System (FACS) (Ekman 
et al, 2002) has been used for manually labeling of facial actions. FACS associates facial 
changes with actions of the muscles that produce them. It defines 44 different action units 
(AUs). Another possible descriptor is the bipolar dimensions of Valence and Arousal (Russell, 
1994). Valence describes the pleasantness, with positive (pleasant) on one end (e.g. 
happiness), and negative (unpleasant) on the other (e.g. disgust). The other dimension is 
arousal or activation, for example, sadness has low arousal, whereas surprise has a high 
arousal level. 
The general approach to automatic facial expression analysis consists of three steps: face 
acquisition, facial data extraction & representation, and facial expression recognition. In the 
following sections, we discuss these steps respectively. 
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2.1 Face acquisition 
Face acquisition is a pre-processing stage to automatically detect or locate the face region in 
the input images or sequences. Numerous techniques have been proposed for face detection 
(Yang et al, 2002), due to its practical importance in many computer vision applications. 
Most of existing methods emphasize statistical learning techniques and use appearance 
features. The real-time face detection scheme proposed by Viola and Jones (2001) is arguably 
the most commonly employed face detector, which consists of a cascade of classifiers trained 
by AdaBoost employing Harr-wavelet features. AdaBoost (Freund & Schapire, 1997; 
Schapire & Singer, 1999) is one of the most successful machine learning techniques applied 
in computer vision area, which provides a simple yet effective approach for stagewise 
learning of a nonlinear classification function. AdaBoost learns a small number of weak 
classifiers whose performance are just better than random guessing, and boosts them 
iteratively into a strong classifier of higher accuracy. Lienhart et al (2003) later made some 
extensions to this face detector. Many other machine learning techniques such as Neural 
Networks and SVM have also been introduced for face detection; details can be found in 
(Yang et al, 2002). 
Most of face detectors can only detect faces in frontal or near-frontal view. To handle large 
head motion in video sequences, head tracking and head pose estimation can be adopted. 
The tasks of head tracking and pose estimation can be performed sequentially or jointly. 
Different approaches have been developed for head pose estimation (Murphy-Chutorian & 
Trivedi, 2008). Given the success of frontal face detectors, a natural extension is to estimate 
head pose by training multiple face detectors, each to specific a different discrete pose. For 
example, cascade AdaBoost detectors have been extended for pose estimation (Jones & 
Viola, 2003). Recently manifold learning approaches have been adopted to seek low-
dimensional manifolds that model the continuous variation in head pose; new images can 
then be embedded into these manifolds for pose estimation. Nonlinear methods such as 
Isomap, LLE, and Laplacian Eigenmaps or their linear approximations have been exploited 
for pose estimation (Fu & Huang, 2006; Balasubramanian et al, 2008). 

2.2 Facial feature extraction & representation 
Facial feature extraction and representation is to derive a set of features from original face 
images which are used for representing faces. Two types of features, geometric features and 
appearance features, are usually considered for facial representation. Geometric features 
deal with the shape and locations of facial components (including mouth, eyes, brows, and 
nose), which are extracted to represent the face geometry (Zhang et al, 1998; Pantic & 
Rothkrantz, 2000b; Tian et al, 2001; Kaliouby & Robinson, 2004; Zhang & Ji, 2005; Pantic & 
Bartlett, 2007). Appearance features present the appearance changes (skin texture) of the 
face (including wrinkles, bulges and furrows), which are extracted by applying image filters 
to either the whole face or specific facial regions (Lyons et al, 1999; Donato et al, 1999; 
Bartlett et al, 2003; Shan et al, 2005c; Littlewort et al, 2006; Gritti et al, 2008). The geometric 
features based facial representations commonly require accurate and reliable facial feature 
detection and tracking, which is difficult to accommodate in real-world unconstrained 
scenarios, e.g., under head pose variation. In contrast, appearance features suffer less from 
issues of initialization and tracking errors, and can encode changes in skin texture that are 
critical for facial expression modeling. However, most of the existing appearance-based 
facial representations still require face registration based on facial feature detection, e.g., eye 
detection. 
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Machine learning techniques have been exploited to select the most effective features for 
facial representation. Donato et al (1999) compared different techniques to extract facial 
features, which include PCA, LDA, LDA, Local Feature Analysis, and local principal 
components. The experimental results provide evidence for the importance of using local 
filters and statistical independence for facial representation. Bartlett et al (2003, 2005) 
presented to select a subset of Gabor filters using AdaBoost. Similarly, Wang et al (2004) 
learned a subst of Harr features using Adaboost. Whitehill and Omlin (2006) compared 
Gabor filters, Harr-like filters, and the edge-oriented histogram for AU recognition, and 
found that AdaBoost performs better with Harr-like filters, while SVMs perform better with 
Gabor filters. Valstar and Pantic (2006) recently presented a fully automatic AU detection 
system that can recognize AU temporal segments using a subset of most informative spatio-
temporal features selected by AdaBoost. In our previous work (Shan et al, 2005b; Shan & 
Gritti, 2008), we also adopted boost learning to learn discriminative Local Binary Patterns 
features for facial expression recognition. 

2.3 Facial expression recognition 
The last stage is to classify different expressions based on the extracted facial features. Facial 
expression recognition can be generally divided into image-based or sequence-based. The 
image-based approaches use features extracted from a single image to recognize the 
expression of that image, while the sequence-based methods aim to capture the temporal 
pattern in a sequence to recognize the expression for one or more images. Different machine 
learning techniques have been proposed, such as Neural Network (Zhang et al, 1998; Tian et 
al, 2001), SVM (Bartlett et al, 2005, 2003), Bayesian Network (Cohen et al, 2003b,a), and rule-
based classifiers (Pantic & Rothkrantz, 2000b) for image-based expression recognition, or 
Hidden Markov Model (HMM) (Cohen et al, 2003b; Yeasin et al, 2004) and Dynamic 
Bayesian Network (DBN) (Kaliouby & Robinson, 2004; Zhang & Ji, 2005) for sequence-based 
expression recognition. 
Pantic and Rothkrantz (2000b) performed facial expression recognition by comparing the 
AU-coded description of an observed expression against rule descriptors of six basic 
emotions. Recently they further adopted the rule-based reasoning to recognize action units 
and their combination (Pantic & Rothkrantz, 2004). Tian et al (2001) used a three-layer 
Neural Network with one hidden layer to recognize AUs by a standard back-propagation 
method. Cohen et al (2003b) adopted Bayesian network classifiers to classify a frame in 
video sequences to one of the basic facial expressions. They compared Naive-Bayes 
classifiers where the features are assumed to be either Gaussian or Cauchy distributed, and 
Gaussian Tree-Augmented Naive Bayes classifiers. Because it is difficult to collect a large 
amount of training data, Cohen et al (2004) further proposed to use unlabeled data together 
with labeled data using Bayesian networks. As a powerful discriminative machine learning 
technique, SVM has been widely adopted for facial expression recognition. Recently Bartlett 
et al (2005) performed comparison of AdaBoost, SVM, and LDA, and best results were 
obtained by selecting a subset of Gabor filters using AdaBoost and then training SVM on the 
outputs of the selected filters. This strategy is also adopted in (Tong et al, 2006; Valstar & 
Pantic, 2006). 
Psychological experiments (Bassili, 1979) suggest that the dynamics of facial expressions are 
crucial for successful interpretation of facial expressions. HMMs have been exploited to 
capture temporal behaviors exhibited by facial expressions (Oliver et al, 2000; Cohen et al, 
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2003b; Yeasin et al, 2004). Cohen et al (2003b) proposed a multi-level HMM classifier, which 
allows not only to perform expression classification in a video segment, but also to 
automatically segment an arbitrary long video sequence to the different expressions 
segments without resorting to heuristic methods of segmentation. DBNs are graphical 
probabilistic models which encode dependencies among sets of random variables evolving 
in time. HMM is the simplest kind of DBNs. Zhang and Ji (2005) explored the use of 
multisensory information fusion technique with DBNs for modeling and understanding the 
temporal behaviors of facial expressions in image sequences. Kaliouby and Robinson (2004) 
proposed a system for inferring complex mental states from videos of facial expressions and 
head gestures in real-time. Their system was built on a multi-level DBN classifier which 
models complex mental states as a number of interacting facial and head displays. Facial 
expression dynamics can also be captured in low dimensional manifolds embedded in the 
input image space. Chang et al (2003, 2004) made attempts to learn the structure of the 
expression manifold. In our previous work (Shan et al, 2005a, 2006b), we presented to model 
facial expression dynamics by discovering the underlying low-dimensional manifold. 

3. Linear subspace methods 
The goal of subspace learning (or dimensionality reduction) is to map the data set in the 
high dimensional space to the lower dimensional space such that certain properties are 
preserved. Examples of properties to be preserved include the global geometry and 
neighborhood information. Usually the property preserved is quantified by an objective 
function and the dimensionality reduction problem is formulated as an optimization 
problem. The generic problem of linear dimensionality reduction is the following. Given a 
multi-dimensional data set x1,x2, ... ,xm in Rn, find a transformation matrix W that maps these 
m points to y1,y2, ... ,ym in Rl(l n), such that yi represent xi, where yi =WT

 xi. In this section, we 
briefly review the existing linear subspace methods PCA, LDA, LPP, ONPP, LSDA, and 
their variants. 

3.1 Principle Component Analysis (PCA) 
Two of the most popular techniques for linear subspace learning are PCA and LDA. PCA 
(Turk & Pentland, 1991) is an eigenvector method designed to model linear variation in 
high-dimensional data. PCA aims at preserving the global variance by finding a set of 
mutual orthogonal basis functions that capture the directions of maximum variance in the 
data. 
Let w denote a transformation vector, the objective function is as follows: 

 
(1) 

The solution w0, ... ,wl-1 is an orthonormal set of vectors representing the eigenvector of the 
data’s covariance matrix associated with the l largest eigenvalues. 

3.2 Linear Discriminant Analysis (LDA) 
While PCA is an unsupervised method and seeks directions that are efficient for 
representation, LDA (Belhumeur et al, 1997) is a supervised approach and seeks directions 
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that are efficient for discrimination. LDA searches for the projection axes on which the data 
points of different classes are far from each other while requiring data points of the same 
class to be close to each other. 
Suppose the data samples belong to c classes, The objective function is as follows: 

 (2) 

 (3) 

 
(4) 

where m is the mean of all the samples, ni is the number of samples in the ith class, m(i) is the 
average vector of the ith class, and 

 
is the jth sample in the ith class. 

3.3 Locality Preserving Projections (LPP) 
LPP (He & Niyogi, 2003) seeks to preserve the intrinsic geometry of the data by preserving 
locality. To derive the optimal projections preserving locality, LPP employs the same 
objective function with Laplacian Eigenmaps: 

 
(5) 

where Si j evaluates a local structure of the data space, and is defined as: 

 
(6) 

or in a simpler form as 

 
(7) 

where “close” can be defined as ║xi−xj║2 < ε , where ε is a small constant, or xi is among k 
nearest neighbors of x j or x j is among k nearest neighbors of xi. The objective function with 
symmetric weights Si j(Si j = Sji) incurs a heavy penalty if neighboring points xi and x j are 
mapped far apart. Minimizing their distance is therefore an attempt to ensure that if xi and xj 

are “close”, yi(= wT
 xi) and yj(= wT

 x j) are also “close”. The objective function of Eqn. (5) can 
be reduced to: 

 

(8) 
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where X = [x1,x2, ... ,xm] and D is a diagonal matrix whose entries are column (or row, since S 
is symmetric) sums of S, Dii = ∑j Sji. L = D–S is a Laplacian matrix. D measures the local 
density on the data points. The bigger the value Dii is (corresponding to yi), the more 
important is yi. Therefore, a constraint is imposed as follows: 

 (9) 

The transformation vector w that minimizes the objective function is given by the minimum 
eigenvalue solution to the following generalized eigenvalue problem: 

 (10)

Suppose a set of vectors w0, ... ,wl-1 is the solution, ordered according to their eigenvalues, λ0, 
... ,λl–1, the transformation matrix is derived as W =[w0,w1, ... ,wl–1]. 

3.3.1 Supervised Locality Preserving Projections (SLPP) 
When the class information is available, LPP can be performed in a supervised manner. We 
introduced a Supervised LPP to encode more discriminative power than the original LPP for 
improving classification capacity (Shan et al, 2005a). SLPP preserves the class information 
when constructing a neighborhood graph such that the local neighborhood of a sample xi 

from class c is composed of samples belonging to class c only. This can be achieved by 
increasing the distances between samples belonging to different classes, but leaving them 
unchanged if they are from the same class. Let Dis(i, j) denote the distance between xi and x j, 
the distance after incorporating the class information is then 

 (11)

where M = maxi, j Dis(i, j), and δ (i, j) = 1 if xi and xj belong to different classes, and 0 
otherwise. In this way, distances between samples in different classes will be larger than the 
maximum distance in the entire data set, so neighbors of a sample will always be picked 
from the same class. SLPP preserves both local structure and class information in the 
embedding, so that it better describes the intrinsic structure of a data space containing 
multiple classes. 

3.3.2 Orthogonal Locality Preserving Projections (OLPP) 
The basis vectors derived by LPP can be regarded as the eigenvectors of the matrix  
(XDXT)-1XLXT

 corresponding to the smallest eigenvalues. Since (XDXT )-1XLXT is not 
symmetric in general, these basis vectors are non-orthogonal. Cai et al (2006) presented 
Orthogonal LPP to enforce the mapping to be orthogonal. The orthogonal basis vectors 
{w0,w1, ... ,wl-1} are computed as follows.  
• Compute w0 as the eigenvector of (XDXT )-1XLXT

 associated with the smallest 
eigenvalue.  

• Compute wk as the eigenvector of 

 
(12)
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associated with the smallest eigenvalue, where 

 (13)

 (14)

OLPP can be applied under supervised or unsupervised mode. In this chapter, for facial 
expression analysis, OLPP is performed in the supervised manner as described in Section 
3.3.1. 
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where the weights vi j are fixed. The optimization problem can be reduced to 

 

(17)

where M = (I–VT
 )(I–V). By imposing an additional constraint that the columns of W are 
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where X = [x1,x2, ... ,xm] and D is a diagonal matrix whose entries are column (or row, since S 
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ONPP can be performed in either an unsupervised or a supervised setting. In the supervised 
ONPP, when building the data graph, an edge exists between xi and x j if and only if xi and xj 
belong to the same class. This means that the adjacent data samples in the nearest neighbor 
graph belong to the same class. So there is no need to set parameter k in the supervised 
ONPP. 

3.5 Locality Sensitive Discriminant Analysis (LSDA) 
Given a data set, LSDA (Cai et al, 2007) constructs two graphs, within-class graph Gw and 
between-class graph Gb, in order to discover both geometrical and discriminant structure of 
the data. For each data sample xi, let N(xi) be the set of its k nearest neighbors. N(xi) can be 
naturally split into two subsets, Nb(xi) and Nw(xi). Nw(xi) contains the neighbors sharing the 
same label with xi, while Nb(xi) contains neighbors have different labels. Let Sw and Sb be the 
weight matrices of Gw and Gb respectively, which can be defined as follows 
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To derive the optimal projections, LSDA optimizes the following objective functions  
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Similar to Eqn (8), the objective function (21) can be reduced to 
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where Dw is a diagonal matrix, and its entries Dw,ii = ∑j Sw, ji. Similarly, the objective function 
(22) can be reduced to 
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Similar to LPP, a constraint is imposed as follows: 
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The transformation vector w that minimizes the objective function is given by the maximum 
eigenvalue solution to the generalized eigenvalue problem: 
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In practice, the dimension of the feature space (n) is often much larger than the number of 
samples in a training set (m), which brings problems to LDA, LPP, ONPP, and LSDA. To 
overcome this problem, the data set is first projected into a lower dimensional space using PCA. 

4. Experiments 
In this section, we evaluate the above linear subspace methods for facial expression analysis 
with the same data and experimental settings. We use implementations of LPP, SLPP, OLPP, 
ONPP and LSDA provided by the authors. 
Psychophysical studies indicate that basic emotions have corresponding universal facial 
expressions across all cultures (Ekman & Friesen, 1976). This is reflected by most current 
facial expression recognition systems that attempt to recognize a set of prototypic emotional 
expressions including disgust, fear, joy, surprise, sadness and anger (Lyons et al, 1999; 
Cohen et al, 2003b; Tian, 2004; Bartlett et al, 2005). In this study, we also focus on these 
prototypic emotional expressions. We conducted experiments on three public databases: the 
Cohn-Kanade Facial Expression Database (Kanade et al, 2000), the MMI Facial Expression 
Database (Pantic et al, 2005), and the JAFFE Database (Lyons et al, 1999), which are the most 
commonly used databases in the current facial-expression-research community. 
In all experiments, we normalized the original face images to a fixed distance between the 
two eyes. Facial images of 110×150 pixels, with 256 gray levels per pixel, were cropped from 
original frames based on the two eyes location. No further alignment of facial features such 
as alignment of mouth (Zhang et al, 1998), or removal of illumination changes (Tian, 2004) 
was performed in our experiments. Fig. 2 shows an example of the original image and the 
cropped face image. 
 

 
Fig. 2. The original face image and the cropped image. 

4.1 Facial representation 
To perform facial expression analysis, it is necessary to derive an effective facial 
representation from original face images. Gabor-wavelet representations have been widely 
adopted to describe appearance changes of faces (Tian, 2004; Bartlett et al, 2005). However, 
the computation of Gabor features is both time and memory intensive. In our previous work 
(Shan et al, 2005c), we proposed Local Binary Patterns (LBP) features as low-cost 
discriminant appearance features for facial expression analysis. The LBP operator, originally 
introduced by Ojala et al (2002) for texture analysis, labels the pixels of an image by 
thresholding a neighborhood of each pixel with the center value and considering the results 
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discriminant appearance features for facial expression analysis. The LBP operator, originally 
introduced by Ojala et al (2002) for texture analysis, labels the pixels of an image by 
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as a binary number. The histogram of the labels computed over a region can be used as a 
texture descriptor. The most important properties of the LBP operator are its tolerance 
against illumination changes and its computational simplicity. LBP features recently have 
been exploited for face detection and recognition (Ahonen et al, 2004). 
In the existing work (Ahonen et al, 2004; Shan et al, 2005c), the face image is equally divided 
into small regions from which LBP histograms are extracted and concatenated into a single 
feature histogram (as shown in Fig. 3). However, this LBP feature extraction scheme suffers 
from fixed LBP feature size and positions. By shifting and scaling a sub-window over face 
images, many more LBP histograms could be obtained, which yields a more complete 
description of face images. To minimize the large number of LBP histograms necessarily 
introduced by shifting and scaling a sub-window, we proposed to learn the most effective 
LBP histograms using AdaBoost (Shan et al, 2005b). The boosted LBP features provides a 
compact and discriminant facial representation. Fig. 4 shows examples of the selected 
subregions (LBP histograms) for each basic emotional expression. It is observed that the 
selected sub-regions have variable sizes and positions. 
 

 
Fig. 3. A face image is divided into small regions from which LBP histograms are extracted 
and concatenated into a single, spatially enhanced feature histogram. 

In this study, three facial representations were considered: raw gray-scale image (IMG), LBP 
features extracted from equally divided sub-regions (LBP), and Boosted LBP features 
(BLBP). On IMG features, for computational efficiency, we down-sampled the face images to 
55×75 pixels, and represented each image as a 4,125(55×75)-dimensional vector. For LBP 
features, as shown in Fig. 3, we divided facial images into 42 sub-regions; the 59-bin  
operator (Ojala et al, 2002) was applied to each sub-region. So each image was represented 
by a LBP histogram with length of 2,478(59×42). For BLBP features, by shifting and scaling a 
sub-window, 16,640 sub-regions, i.e., 16,640 LBP histograms, were extracted from each face 
image; AdaBoost was then used to select the most discriminative LBP histograms. AdaBoost 
training continued until the classifier output distribution for the positive and negative 
samples were completely separated. 
 

 
Fig. 4. Examples of the selected sub-regions (LBP histograms) for each of the six basic 
emotions in the Cohn-Kanade Database (from left to right: Anger, Disgust, Fear, Joy, 
Sadness, and Surprise). 

Linear Subspace Learning for Facial Expression Analysis 

 

271 

4.2 Cohn-Kanade database 
The Cohn-Kanade Database (Kanade et al, 2000) consists of 100 university students in age 
from 18 to 30 years, of which 65% were female, 15% were African-American, and 3% were 
Asian or Latino. Subjects were instructed to perform a series of 23 facial displays, six of 
which were prototypic emotions. Image sequences from neutral face to target display were 
digitized into 640×490 pixel arrays. Fig. 5 shows some sample images from the database. 
 

 
Fig. 5. The sample face expression images from the Cohn-Kanade Database. 

In our experiments, 320 image sequences were selected from the database. The only 
selection criterion is that a sequence can be labeled as one of the six basic emotions. The 
sequences come from 96 subjects, with 1 to 6 emotions per subject. Two data sets were 
constructed: (1) S1: the three peak frames (typical expression at apex) of each sequence were 
used for 6-class expression analysis, resulting in 960 images (108 Anger, 120 Disgust, 99 
Fear, 282 Joy, 126 Sadness, and 225 Surprise); (2) S2: the neutral face of each sequence was 
further included for 7-class expression analysis, resulting in 1,280 images (960 emotional 
images plus 320 neutral faces). 

4.2.1 Comparative evaluation on subspace learning 
As presented in (Shan et al, 2006a), we observed in our experiments on all databases that 
ONPP and the supervised ONPP achieve comparable performance in expression subspace 
learning and expression recognition. It seems that the label information used in the 
supervised ONPP does not provide it with more discriminative power than ONPP for facial 
expression analysis. Therefore, in this chapter, we focus on the evaluation of the supervised 
ONPP. We also found in our experiments that the supervised OLPP provides similar results 
with SLPP, so we mainly focus on the evaluation of SLPP in this chapter. 
The 2D visualization of embedded subspaces of data set S1 is shown in Fig. 6. In the six 
methods compared, PCA and LPP are unsupervised techniques, while LDA, SLPP, ONPP, 
and LSDA perform in a supervised manner. It is evident that the classes of different 
expressions are heavily overlapped in 2D subspaces generated by unsupervised methods 
PCA and LPP (with all three facial representations), therefore are poorly represented. The 
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Fig. 6. (Best viewed in color) Images of data set S1 are mapped into 2D embedding spaces. 
Different expressions are color coded as: Anger (red), Disgust (yellow), Fear (blue), Joy 
(magenta), Sadness (cyan), and Surprise (green). 

projections of PCA are spread out since PCA aims at maximizing the variance. In the cases 
of LPP, although it preserves local neighborhood information, as expression images contain 
complex variations and significant overlapping among different classes, it is difficult for  
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LPP to yield meaningful projections in the absence of class information. For supervised 
methods, it is surprising to observe that different expressions are still heavily overlapped in 
the 2D subspace derived by ONPP. In contrast, the supervised methods LDA, SLPP and 
LSDA yield much meaningful projections since images of the same class are mapped close 
to each other. SLPP provides evidently best projections since different classes are well 
separated and the clusters appear cohesive. This is because SLPP preserves the locality and 
class information simultaneously in the projections. On the other hand, LDA discovers only 
the Euclidean structure therefore fails to capture accurately any underlying nonlinear 
manifold that expression images lie on, resulting in its discriminating power being limited. 
LSDA obtains better projections than LDA as the clusters of different expressions are more 
cohesive. On comparing facial representation, BLBP provides evidently the best 
performance with projected classes more cohesive and clearly separable in the SLPP 
subspace, while IMG is worst. 
Fig. 7 shows the embedded OLPP subspace of data set S1.We can see that OLPP provides 
much similar projections to SLPP. The results obtained by SLPP and OLPP reflect human 
observation that Joy and Surprise can be clearly separated, but Anger, Disgust, Fear and 
Sadness are easily confused. This reenforces the findings in other published work (Tian, 
2004; Cohen et al, 2003a). 
 

 
Fig. 7. (Best viewed in color) Images of data set S1 are mapped into 2D embedding spaces of 
OLPP. 

For a quantitative evaluation of the derived subspaces, following the methodology in (Li et 
al, 2003), we investigate the histogram distribution of within-class pattern distance and 
between-class pattern distance of different techniques. The former is the distance between 
expression patterns of the same expression class, while the latter is the distance between 
expression patterns belonging to different expression classes. Obviously, for a good 
representation, the within-class distance distribution should be dense, close to the origin, 
having a high peak value, and well-separated from the between-class distance 
distribution.We plot in Fig. 8 the results of different methods on S1. It is observed that SLPP 
consistently provides the best distributions for different facial representations, while those 
of PCA, LPP, and ONPP are worst. The average within-class distance dw and between-class 
distance db are shown in Table 1. To ensure the distance measures from different methods 
are comparable, we compute a normalized difference between the within- and between-
class distances of each method as  which can be regarded as a relative measure 
on how widely the within-class patterns are separated from the between-class patterns. A 
high value of this measure indicates success. It is evident in Table 1 that SLPP has the best 
separating power whilst PCA, LPP and ONPP are the poorest. The separating power of 
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LDA and LSDA is inferior to that of SLPP, but always outperform those of PCA, LPP, and 
ONPP. Both Fig. 8 and Table 1 reinforce the observation in Fig. 6. 
 

 
Table 1. The average within-class and between-class distance and their normalization 
difference values on data set S1. 

The 2D visualization of embedded subspaces of data set S2 with different subspace 
techniques and facial representations is shown in Fig. 9. We observe similar results to those 
obtained in 6-class problem. SLPP outperforms the other methods in derive the meaningful 
projections. Different expressions are heavily overlapped in 2D subspaces generated by 
PCA, LPP, and ONPP, and the discriminating power of LDA is also limited.We further 
show in Fig. 10 the embedded OLPP subspace of data set S2, and also observe that OLPP 
provides much similar projections to SLPP. Notice that in the SLPP and OLPP subspaces, 
after including neutral faces, Anger, Disgust, Fear, Sadness, and Neutral are easily confused, 
while Joy and Surprise still can be clearly separated. 

4.2.2 Comparative evaluation on expression recognition 
To further compare these methods, we also performed facial expression recognition in the 
derived subspaces. We adopted the k nearest-neighbor classifier for its simplicity. The 
Euclidean metric was used as the distance measure. The number of nearest neighbors was 
set according to the size of the training set. To evaluate the algorithms’ generalization 
ability, we adopted a 10-fold cross-validation test scheme. 
That is, we divided the data set randomly into ten groups of roughly equal numbers of 
subjects, from which the data from nine groups were used for training and the left group 
was used for testing. The process was repeated ten times for each group in turn to be tested. 
We reported the average recognition results (with the standard deviation) here.  
The recognition performance of subspace learning techniques varies with the dimensionality 
of subspace (note that the dimension of the reduced LDA subspace is at most c–1, where c is 
the number of classes). Moreover, the graph-based techniques rely on the parameter k, the 
number of nearest neighbors used when building the graph; how to set the parameter is still 
an open problem. In our cross-validation experiments, we tested different combinations of 
the parameter k with the subspace dimensionality, and the best performance obtained are 
shown in Tables 2 and 3. It is observed that the supervised approaches perform robustly 
better than the unsupervised methods. For unsupervised methods, PCA performs better 
than LPP, with all three facial representations. For supervised methods, it is evident that 
SLPP has a clear margin of superiority over LDA (12-38% better), ONPP (25-64% better), and 
LSDA (6-13% better). Both LSDA and LDA perform better than ONPP, and LSDA 
outperforms LDA. On comparing the standard deviation of 10-fold cross validation, SLPP  
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Fig. 8. (Best viewed in color) Histogram distribution of within-class pattern distance (solid 
red lines) and between-class pattern distances (dotted blue line) on data set S1 

always produces the smallest deviation (one exception with IMG on S2). This demonstrates 
that SLPP is much more robust than other methods. The recognition results reinforce our 
early observations shown in Fig. 6, Fig. 8 and Table 1. To clearly compare recognition rates 
of different methods with different facial representations, we plot the bar graphes of  
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LDA and LSDA is inferior to that of SLPP, but always outperform those of PCA, LPP, and 
ONPP. Both Fig. 8 and Table 1 reinforce the observation in Fig. 6. 
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difference values on data set S1. 
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Fig. 9. (Best viewed in color) Images of data set S2 are mapped into 2D embedding spaces. 
Neutral expression is color coded as black. 

recognition rates in Fig. 11. On comparing feature representations, it is clearly observed that 
BLBP features perform consistently better than LBP and IMG features. LBP outperforms 
IMG most of the time except with LPP, IMG has a slight advantage over LBP. 
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Fig. 10. (Best viewed in color) Images of data set S2 are mapped into 2D embedding spaces 
of OLPP. 

 
Table 2. Averaged recognition rates (with the standard deviation) of 6-class facial expression 
recognition on data set S1. 

 
Table 3. Averaged recognition rates (with the standard deviation) of 7-class facial expression 
recognition on data set S2. 

 
Fig. 11. Comparison of recognition rates using different subspace methods with different 
features. Left: data set S1; Right: data set S2. 
We show in Fig. 12 the averaged recognition rates versus dimensionality reduction by 
different subspace schemes using BLBP features. As the dimension of the reduced subspace 
of LDA is at most c–1, we plot only the best achieved recognition rate by LDA across the 
various values of the dimension of subspace.We observe that SLPP outperforms other 
methods. The performance difference between SLPP and LDA is conspicuous when the 
dimension of subspace is small. But when the dimension increases, their performances 
become rather similar. The performances of PCA, LPP, and ONPP is inferior to that of LDA 
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consistently across all values of the subspace dimension. LSDA has similar trend with SLPP, 
but much worse performance. The performance of PCA and ONPP eventually become 
stable and similar when the dimension increase. On the other hand, the performance of LPP 
degrades when the dimension increases, and is the worst overall. 
The best result of 94.7% in 6-class facial expression recognition, achieved by BLBP based 
SLPP, is to our best knowledge the best recognition rate reported so far on the database in 
the published literature. Previously Tian (2004) achieved 94% performance using Neural 
Networks with combined geometric features and Gaborwavelet features. With regard to 7-
class facial expression recognition, BLBP based SLPP achieves the best performance of 
92.0%, which is also very encouraging given that previously published 7-class recognition 
performance on this database were 81- 83% (Cohen et al, 2003a). The confusion matrix of 7-
class facial expression in data set S2 is shown in Table 4, which shows that most confusion 
occurs between Anger, Fear, Sadness, and Neutral. 
 

 
Fig. 12. (Best viewed in color) Averaged recognition accuracy versus dimensionality 
reduction (with BLBP features). Left: data set S1; Right: data set S2. 

 
Table 4. Confusion matrix of 7-class expression recognition on data set S2. 

4.3 MMI database 
The MMI Database (Pantic et al, 2005) includes more than 20 subjects of both sexes (44% 
female), ranging in age from 19 to 62, having either a European, Asian, or South American 
ethnic background. Subjects were instructed to display 79 series of facial expressions that 
included a single AU or a combination of AUs, or a prototypic emotion. Image sequences 
have neutral faces at the beginning and at the end, and were digitized into 720×576 pixels. 
Some sample images from the database are shown in Fig. 13. As can be seen, the subjects 
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displayed facial expressions with and without glasses, which make facial expression 
analysis more difficult. 
 

 
Fig. 13. The sample face expression images from the MMI Database. 

In our experiments, 96 image sequences were selected from the MMI Database. The only 
selection criterion is that a sequence can be labeled as one of the six basic emotions. The 
sequences come from 20 subjects, with 1 to 6 emotions per subject. 
The neutral face and three peak frames of each sequence (384 images in total) were used to 
form data set S3 for 7-class expression analysis. 

4.3.1 Comparative evaluation on subspace learning 
The 2D visualization of embedded subspaces of data set S3 is shown in Fig. 14. We observe 
similar results to those obtained in the Cohn-Kanade Database. SLPP consistently has the 
best performance, and different facial expressions are well clustered and represented in the 
derived 2D subspaces. In contrast, different expressions are heavily overlapped in 2D 
subspaces generated by PCA, LPP, and ONPP. The LDA and LSDA projections can not 
represent different facial expressions clearly, either. Notice also that in the SLPP subspaces, 
Anger, Disgust, Fear, Sadness, and Neutral are easily confused, while Joy and Surprise can 
be clearly separated. 
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Fig. 14. (Best viewed in color) Images of data set S3 are mapped into 2D embedding spaces. 

4.3.2 Comparative evaluation on expression recognition 
We report the average recognition results in Table 5. We observe similar recognition results 
to that in the Cohn-Kanade Database. With regard to unsupervised methods, PCA 
outperforms LPP with all three facial representations. For supervised methods, it is seen that 
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SLPP has a clear margin of superiority over LDA (19-50% better), ONPP (28-52% better) and 
LSDA (16-33% better). We further plot the bar graphes of recognition rates in the left side of 
Fig. 15, which demonstrate that BLBP features perform better than LBP and IMG features 
(except with LPP and LSDA), while LBP features have better or comparable performance 
with IMG features. 
 

 
Table 5. Averaged recognition rates (with the standard deviation) of 7-class facial expression 
recognition on data set S3. 

 
Fig. 15. (Best viewed in color) (Left) Comparison of recognition rates on data set S3; (Right) 
Averaged recognition accuracy versus dimensionality reduction (with BLBP features) on 
data set S3. 

We show in the right side of Fig. 15 the averaged recognition rates with respect to the 
reduced dimension of different subspace techniques using BLBP features. We observe that 
SLPP performs much better than LDA when the reduced dimension is small, but their 
performance become similar, and SLPP is even inferior to LDA when the subspace 
dimension increases. LSDA provides consistently worse performance than LDA. The 
performances of PCA and ONPP are similar and stable consistently. In contrast, the 
performance of LPP degrades when the dimension increases, and is the worst overall. The 
plot in the right side of Fig. 15 is overall consistent with that of the Cohn-Kanade Database 
shown in Fig. 12. 

4.4 JAFFE database 
The JAFFE Database (Lyons et al, 1999) consists of 213 images of Japanese female facial 
expression. Ten expressers posed 3 or 4 examples for each of the seven basic expressions (six 
emotions plus neutral face). The image size is 256×256 pixels. Fig. 16 shows some sample 
images from the database. 
In our experiments, all 213 images of the JAFFE database were used to form data set S4 for 
7-class facial expression analysis. 
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Fig. 16. The sample face expression images from the JAFFE Database. 

4.4.1 Comparative evaluation on subspace learning 
The 2D visualization of embedded subspaces of data set S4 is shown in Fig. 17. Once again 
we observe that SLPP provides the best projections, in which different facial expressions are 
well separated. Similar to those in the Cohn-Kanade Database and the MMI Database, PCA, 
LPP, and ONPP do not provide meaningful projections, as different expressions are heavily 
overlapped in their 2D subspaces. 

4.4.2 Comparative evaluation on expression recognition 
The facial expression recognition results are reported in Table 6. We once again observe that 
SLPP outperform other subspace techniques with a clear margin of superiority, e.g., 14-38% 
better than LDA, 11-46% better than ONPP, and 22-38% better than LSDA. In this data set, 
LDA and ONPP have parallel performance, and are all superior to PCA and LPP. LPP still 
provides the worst results. The bar graphes of recognition rates is plotted in the left side of 
Fig. 18, which once again demonstrate that BLBP features provide the best performance, and 
LBP features perform better or comparably to IMG features. 
Recognition performance on data set S4 is much poorer than that on data sets S1, S2, and 
S3, and this is possibly because that there are fewer images in the data set resulting in a poor 
sampling of the underlying latent space. The effect of the small training set size may be also 
reflected on the standard deviation of 10-fold crossvalidation, as the standard deviations on 
data set S4 are larger than those of data sets S1, S2, and S1, and the standard deviations of 
S3 are larger than those of S1 and S2 as well. So the recognition performance of linear 
subspace methods on the small training sets is not robust and reliable. 
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Fig. 17. (Best viewed in color) Images of data set S4 are mapped into 2D embedding spaces. 
We also plot in the right side of Fig. 18 the averaged recognition rates of different subspace 
techniques as the function of the reduced dimension when using BLBP features. It is 
observed the performances of SLPP and LDA become comparable when the reduced 
dimension increases. On the other hand, ONPP and PCA have similar performance. The 
plots for S4 shows greater variations compared to those of S1 and S2 (shown in Fig. 12). 
This may also be due to the small size of the training set. 
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Table 6. Averaged recognition rates (with the standard deviation) of 7-class facial expression 
recognition on data set S4. 
 

 
 

Fig. 18. (Best viewed in color) (Left) Comparison of recognition rates on data set S4; (Right) 
Averaged recognition accuracy versus dimensionality reduction (with BLBP features) on 
data set S4. 

5. Conclusions and discussions 
In this chapter, we review and evaluate a number of linear subspace methods in the context 
of automatic facial expression analysis, which included recently proposed LPP, SLPP, OLPP, 
ONPP, LSDA, and the traditional PCA and LDA. These techniques are compared using 
different facial feature representations on several databases. Our experiments demonstrate 
that the supervised LPP performs best in modeling the underlying facial expression 
subspace resulting in the best expression recognition performance. We believe that this 
study is helpful and necessary for further research in linear subspace methods and facial 
expression analysis. 
It is believed that images of facial expressions lies on a non-linear low-dimensional 
manifold. Therefore, although linear subspace learning methods have been shown to be 
effective , non-linear manifold learning could potentially perform better for modeling facial 
expression space. For future work, we would expect to see research on discriminant non-
linear manifold learning techniques for facial expression analysis. 
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Fig. 18. (Best viewed in color) (Left) Comparison of recognition rates on data set S4; (Right) 
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1. Introduction     
Two important tasks of machine learning are the statistical learning from sample data (SL) 
and the unsupervised learning from unlabelled data (UL) (Hastie et al., 2001; Theodoridis & 
Koutroumbas, 2006). The synthesis of the two parts – the unsupervised statistical learning 
(USL) – is frequently used in the cyclic process of inductive and deductive scientific 
inference. This applies especially to those fields of science where promising, testable 
hypotheses are unlikely to be obtained based on manual work, the use of human senses or 
intuition. Instead, huge and complex experimental data have to be analyzed by using 
machine learning (USL) methods to generate valuable hypotheses. A typical example is the 
field of functional genomics (Kell & Oliver, 2004).  
When machine learning methods are used for the generation of hypotheses, human 
intelligence is replaced by artificial intelligence and the proper functioning of is this type of 
‘intelligence’ has to be validated. This chapter is focused on the  validation of cluster analysis 
which is an important element of USL. 
It is assumed that the data set is a sample from a mixture population which is statistically 
modeled as a mixture distribution. Cluster analysis is used to ‘learn’ the number and 
characteristics of the components of the mixture distribution (Hastie et al., 2001). For this 
purpose, similar elements of the sample are assigned to groups (clusters).  
Ideally, a cluster represents all of the elements drawn from one population of the mixture. 
However, clustering results often contain errors due to lacking robustness of the algorithms. 
Rather different partitions may result even for samples with small differences. That is, the 
obtained clusters have a random character. In this case, the generalization from clusters of a 
sample to the underlying populations is inappropriate. If a hypothesis derived from such 
clustering results is used to design an experiment, the outcome of this experiment will 
hardly lead to a model with a high predictive power. Thus, a new study has to be performed 
to find a better hypothesis. Even a single cycle of hypothesis generation and hypothesis 
testing can be time-consuming and expensive  (e.g., a gene expression study in cancer 
research, with 200 patients, lasts more than a year and costs more than 100.000 dollars). 
Therefore, it is desirable to increase the efficiency and effectiveness of the scientific progress 
by using suitable validation tools. 
An approach for the statistical validation of clustering results is data resampling 
(Lunneborg, 2000). It can be seen as a special Monte Carlo method that is, as a method for 
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finding solutions to statistical problems by simulation (Borgelt & Kruse, 2006). The choice of 
a suitable resampling method for any cluster validation task is not trivial. On the one hand, 
such a method is expected to simulate random samples that have the same structure that 
underlies the original sample – even though the true structure is unknown. On the other 
hand, it is undesired that the method introduces any additional structure into the simulated 
data, because this kind of error can not be recognized from the clustering results in the 
absence of the ground truth.  
Once, clustering results (partitions) have been generated for a set of resamples, three steps 
are usually performed. i) The stability of the partitions under the influence of resampling is 
calculated. When desired, stability scores can be obtained also for single clusters and 
individual assignments of data points to clusters. ii) A consensus partition is determined that 
best possible represents the characteristics which are common to the resample partitions. iii) 
The number of clusters is estimated, typically based on the maximization of a partition 
stability score. For methods that can be used to perform the steps i) to iii) see, for example, 
(Strehl & Gosh, 2002; Topchy et al., 2005; Fred & Jain, 2006 and Ayad & Kamel, 2008). 
Resampling-based cluster validation is not yet common standard. In many software tools for 
cluster analysis, resampling methods are missing. Some new methods were published only 
recently. The choice of the appropriate resampling technique depends on the data 
properties, the goal and constraints of the study and on the clustering methods used. The 
purpose of this contribution is to review available techniques, to summarize existing 
benchmark results and to give recommendations for the selection and use of the methods. 
Furthermore, a new method called nearest neighbor resampling is presented. 
In statistics resampling schemes are subdivided into parametric and non-parametric 
methods. The use of parametric methods for cluster validation will be briefly characterized 
in section 2. In section 3 non-parametric methods will be reviewed. Section 4 is a summary 
of  benchmarking tests of different resampling techniques. Section 5 refers to results of the 
new resampling method previously described in section 3.5. Finally, section 6 contains a 
discussion of the described methods and conclusions for their future application. 

2. Parametric resampling 
Parametric resampling is also known as parametric bootstrapping. Methods of this type are 
used to fit a parametric model to the data. That is, the hypothesis is made that the data 
follow a theoretical distribution and certain parameters of this distribution (mean, variance 
etc.) are estimated. Then resample data sets are sampled from the distribution with the 
parameter values set to the obtained estimates. In cluster analysis a mixture distribution P = 
ΣiεiPi is assumed, where Pi, i = 1,…,C, are the C distributions generating C “true” clusters 
respectively, and εi is the probability that a sample point from Pi is drawn. 
In principle, this approach has attractive properties. Examples for the validation of  
clustering results obtained from gene expression data are contained in (McLachlan & Khan, 
2004). However, there exist also arguments against the use of parametric resampling for 
cluster validation. One argument concerns the lack of justification for the (more or less 
arbitrary) selection of a particular theoretical distribution as a model for real data with an 
unknown distribution (Yu et al. 1999; Lunneborg, 2000). Hennig (2007) argued that 
parametric bootstrapping does not suggest itself for the aim of cluster validation, because 
parametric methods discover structures generated by the assumed model much better than 
patterns in real data for which the model does not hold.  This could lead to overoptimistic 
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assessments of the stability of clustering structures. If the original sample has clearly more 
dimensions than data points, model fitting may be impaired by the “curse of 
dimensionality”. Further arguments can be found in  (Tseng & Wong, 2005). In the sequel, 
we consider non-parametric resampling methods that may be used in cluster analysis. 

3. Non-parametric resampling 
3.1 Sampling from a sample 
Several methods can be referred to as re-sampling in the literal sense according to the 
common (non-statistical) definition of the word sample 1. In such methods the data points of  
a resample are drawn from the set of data points contained in the original sample. 
Bootstrapping. The non-parametric version of bootstrapping is usually described as 
“drawing with replacement”. That is, each bootstrap sample is obtained by drawing N data 
points randomly and with replacement from the original sample, where N is the number of 
data points in this sample. If the population size Np is finite and relatively small compared 
to N, (i.e., NP / N < 20), another procedure is conventionally used (see Lunneborg, 2000). 
This procedure guarantees that the empirical distribution of the union of all bootstrap 
resamples agrees accurately with the empirical distribution of the original sample. In any 
case some original data points are likely represented more than once in a bootstrap sample, 
while accordingly, other original points are missing in the resample. 
It has been shown that for increasing values of N, the percentage of original data which are 
not contained in a bootstrap sample converges to about 37%. If this information loss is 
considered to large for an adequate recognition of the data structure, the bootstrap scheme 
could be applied to M randomly selected points of the sample X (M < N), while the 
resample is completed by the N−M points of X not used for the bootstrapping. This 
modification would allow to control the degree of information loss associated with the 
bootstrap scheme (Möller & Radke, 2006a). Moreover, this resampling version could be 
performed by using random numbers Mr for the generation of r = 1, 2, … bootstrap samples 
with reasonable boundaries of the interval from which the values Mr are drawn. This 
selection could make the results less depending on the heuristic choice of parameter M. 
Subsampling. The original data set X is used to draw random subsets Yr ⊂ X, r = 1, 2,…  The 
size of a drawn subset, S = card(Yr), is a control parameter. Usually, S is fixed for all 
subsamples to be used in an application. If S is not much smaller than the original sample 
size N, clustering results of different subsamples may be very similar and not informative. 
The choice of S clearly smaller than N can be recommended if the information retained on 
average in a subsample is sufficient to obtain reasonable estimates of the unknown 
underlying distribution. Resampling-based clustering methods have been introduced 
including the subsampling of 70% (Tseng & Wong, 2005), 80% (Monti et al., 2003) and 90% 
(Fred & Jain, 2006) of the data. It may not be easy to select an optimal subsample size in a 
particular application. To avoid an inappropriate choice for this parameter, the subsample 
size could be varied from subsample to subsample. For example, the subsample size is 
uniformly drawn from an interval that represents 75-90% of the size of the original sample. 

                                                 
1 A sample of things is a number of them that are chosen at random out of a larger group 
and then used to test ideas or to provide information about the whole group (Collins 
Cobuild Dictionary, 1987). 
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finding solutions to statistical problems by simulation (Borgelt & Kruse, 2006). The choice of 
a suitable resampling method for any cluster validation task is not trivial. On the one hand, 
such a method is expected to simulate random samples that have the same structure that 
underlies the original sample – even though the true structure is unknown. On the other 
hand, it is undesired that the method introduces any additional structure into the simulated 
data, because this kind of error can not be recognized from the clustering results in the 
absence of the ground truth.  
Once, clustering results (partitions) have been generated for a set of resamples, three steps 
are usually performed. i) The stability of the partitions under the influence of resampling is 
calculated. When desired, stability scores can be obtained also for single clusters and 
individual assignments of data points to clusters. ii) A consensus partition is determined that 
best possible represents the characteristics which are common to the resample partitions. iii) 
The number of clusters is estimated, typically based on the maximization of a partition 
stability score. For methods that can be used to perform the steps i) to iii) see, for example, 
(Strehl & Gosh, 2002; Topchy et al., 2005; Fred & Jain, 2006 and Ayad & Kamel, 2008). 
Resampling-based cluster validation is not yet common standard. In many software tools for 
cluster analysis, resampling methods are missing. Some new methods were published only 
recently. The choice of the appropriate resampling technique depends on the data 
properties, the goal and constraints of the study and on the clustering methods used. The 
purpose of this contribution is to review available techniques, to summarize existing 
benchmark results and to give recommendations for the selection and use of the methods. 
Furthermore, a new method called nearest neighbor resampling is presented. 
In statistics resampling schemes are subdivided into parametric and non-parametric 
methods. The use of parametric methods for cluster validation will be briefly characterized 
in section 2. In section 3 non-parametric methods will be reviewed. Section 4 is a summary 
of  benchmarking tests of different resampling techniques. Section 5 refers to results of the 
new resampling method previously described in section 3.5. Finally, section 6 contains a 
discussion of the described methods and conclusions for their future application. 

2. Parametric resampling 
Parametric resampling is also known as parametric bootstrapping. Methods of this type are 
used to fit a parametric model to the data. That is, the hypothesis is made that the data 
follow a theoretical distribution and certain parameters of this distribution (mean, variance 
etc.) are estimated. Then resample data sets are sampled from the distribution with the 
parameter values set to the obtained estimates. In cluster analysis a mixture distribution P = 
ΣiεiPi is assumed, where Pi, i = 1,…,C, are the C distributions generating C “true” clusters 
respectively, and εi is the probability that a sample point from Pi is drawn. 
In principle, this approach has attractive properties. Examples for the validation of  
clustering results obtained from gene expression data are contained in (McLachlan & Khan, 
2004). However, there exist also arguments against the use of parametric resampling for 
cluster validation. One argument concerns the lack of justification for the (more or less 
arbitrary) selection of a particular theoretical distribution as a model for real data with an 
unknown distribution (Yu et al. 1999; Lunneborg, 2000). Hennig (2007) argued that 
parametric bootstrapping does not suggest itself for the aim of cluster validation, because 
parametric methods discover structures generated by the assumed model much better than 
patterns in real data for which the model does not hold.  This could lead to overoptimistic 
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assessments of the stability of clustering structures. If the original sample has clearly more 
dimensions than data points, model fitting may be impaired by the “curse of 
dimensionality”. Further arguments can be found in  (Tseng & Wong, 2005). In the sequel, 
we consider non-parametric resampling methods that may be used in cluster analysis. 

3. Non-parametric resampling 
3.1 Sampling from a sample 
Several methods can be referred to as re-sampling in the literal sense according to the 
common (non-statistical) definition of the word sample 1. In such methods the data points of  
a resample are drawn from the set of data points contained in the original sample. 
Bootstrapping. The non-parametric version of bootstrapping is usually described as 
“drawing with replacement”. That is, each bootstrap sample is obtained by drawing N data 
points randomly and with replacement from the original sample, where N is the number of 
data points in this sample. If the population size Np is finite and relatively small compared 
to N, (i.e., NP / N < 20), another procedure is conventionally used (see Lunneborg, 2000). 
This procedure guarantees that the empirical distribution of the union of all bootstrap 
resamples agrees accurately with the empirical distribution of the original sample. In any 
case some original data points are likely represented more than once in a bootstrap sample, 
while accordingly, other original points are missing in the resample. 
It has been shown that for increasing values of N, the percentage of original data which are 
not contained in a bootstrap sample converges to about 37%. If this information loss is 
considered to large for an adequate recognition of the data structure, the bootstrap scheme 
could be applied to M randomly selected points of the sample X (M < N), while the 
resample is completed by the N−M points of X not used for the bootstrapping. This 
modification would allow to control the degree of information loss associated with the 
bootstrap scheme (Möller & Radke, 2006a). Moreover, this resampling version could be 
performed by using random numbers Mr for the generation of r = 1, 2, … bootstrap samples 
with reasonable boundaries of the interval from which the values Mr are drawn. This 
selection could make the results less depending on the heuristic choice of parameter M. 
Subsampling. The original data set X is used to draw random subsets Yr ⊂ X, r = 1, 2,…  The 
size of a drawn subset, S = card(Yr), is a control parameter. Usually, S is fixed for all 
subsamples to be used in an application. If S is not much smaller than the original sample 
size N, clustering results of different subsamples may be very similar and not informative. 
The choice of S clearly smaller than N can be recommended if the information retained on 
average in a subsample is sufficient to obtain reasonable estimates of the unknown 
underlying distribution. Resampling-based clustering methods have been introduced 
including the subsampling of 70% (Tseng & Wong, 2005), 80% (Monti et al., 2003) and 90% 
(Fred & Jain, 2006) of the data. It may not be easy to select an optimal subsample size in a 
particular application. To avoid an inappropriate choice for this parameter, the subsample 
size could be varied from subsample to subsample. For example, the subsample size is 
uniformly drawn from an interval that represents 75-90% of the size of the original sample. 
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and then used to test ideas or to provide information about the whole group (Collins 
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An alternative way, without an explicit specification of the subsampling size, would be to 
generate a bootstrap sample and to discard the identically replicated points (Hennig, 2007). 
Subdivision. The original sample X is split into two disjoint subsets Y ∪ Z = X. Clustering is 
used to generate the partitions πY and πZ, from Y and Z, respectively. In addition, a classifier 
CY is build from the subset Y and the label set πY. Then CY is applied to the subset Z 
providing the partition πYZ. Finally, the predictability of πZ based on πYZ is assessed. For the 
success of this strategy it has to be ensured that in general each subset Y and Z contain 
sufficient information about the underlying distribution necessary to infer a reasonable 
model from the data. Dudoit and Fridlyand (2003) presented an example, where the 
‘training’ set Y and the ‘test’ set Z consist respectively of 2/3 and 1/3 of the original sample. 

3.2 Jittering 
Real data samples contain random measurement errors. Even if the same objects were 
observed multiple times under the same experimental conditions, the data are likely to be 
different. These differences can be simulated by generating copies of the original sample 
and adding random values to each of these data sets. The normal distribution with zero 
mean is traditionally used for this purpose. If estimates of the measurement error exist, 
these information can be utilized to define the parameters of the error distribution. 
Otherwise, heuristic rules can be applied. 
Hennig (2007) defined such a resampling scheme as follows. 1) For all p dimensions of the 
original sample data X = (x1,…, xN), compute the N−1 differences dij between neighboring 
data values in dimension p: for i = 1,…, N−1, j = 1,…, p, dij is the difference between the (i+1)-
th and the i-th order statistic of the j-th dimension. For j = 1,…, p, let qj be the empirical 
quantile of the dij, where q is a tuning constant. 2) Draw noise en, n = 1,…, N, independent 
and identically distributed from a normal distribution with a zero mean and a diagonal 
matrix as covariance matrix with diagonal elements σ12 = q12,…, σp2 = qp2 and compute the 
resample points yn = xn + en for n = 1,…, N. (For an example see section 4).  

3.3 Combination of bootstrapping and jittering 
When using the (non-parametric) bootstrapping scheme, about one third of the resample 
points will be identical replicates of original sample points. Each group of such identical 
points could be seen as a mini-cluster. The occurrence of these artificial clusters, generated 
by a statistical analysis tool, may induce inappropriate models of the true data structure. In 
particular, when clustering the resample data, the artificially replicated data points may be 
misinterpreted as true clusters (Monti et al., 2003). Moreover, for some implementations of 
clustering and multidimensional scaling methods the identical bootstrap replicates may 
cause numerical problems. Hennig (2007) proposed the combination of bootstrapping and 
jittering as a way to avoid or to reduce these problems. 

3.4 Perturbation 
Data sets for applications of statistical machine learning are usually generated with a 
precision that is high enough to measure intra-population variability. Therefore, any data 
point of a sample is likely to be different from any data point of another (disjoint) sample − 
even if the measurement error was zero. This type of inter-sample differences is not 
realistically simulated when using the above non-parametric methods. (Sampling from a 
sample provides highly overlapping data sets that all consist of random selections from the 
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same set of original points, while jittering leads to data sets that simulate differences 
comparable to those caused by measurement errors.) Another resampling strategy may be 
desired for a better (non-parametric) simulation of inter-sample differences due to intra-
population variability. Estimates of intra-population variability that could be used for such a 
simulation are usually unavailable prior to cluster analysis. Under these circumstances, a 
simple simulation is the addition of random values onto the data. Here this approach is 
called ‘perturbation’.  
Let X ∈ℜN×p be the original p-dimensional sample consisting of N data points. Then for r = 1, 
2, …, resample r is obtained as follows. Yr = X + ξr, where ξr ∈ℜN×p is a sample of size N 
from a p-dimensional distribution. The parameters of this distribution, such as variance, can 
be specified based on an estimate obtained from the original sample. For example, the 
random variable ξ may be selected to have a normal distribution with zero mean vector and 
c⋅σ ∈ℜp, where c denotes a constant, σ = (σ1,…, σp) is an empirical estimate of the variability 
of the data. Bittner et al. (1999), chose c = 0.15 and σ being the median standard deviation of 
the entire sample. Möller and Radke (2006a) used several values of c equal to 0.01, 0.05 and 
0.1, where σ represented the standard deviation from the grand mean of the data. 
Perturbation and jittering are conceptually similar resampling techniques. However, their 
implementation may differ quantitatively in the values of statistical parameters used to 
simulate intra-population variability and measurement error based on external knowledge, 
estimates or assumptions. 

3.5 Nearest neighbor resampling 
The perturbation technique has two shortcomings in a cluster validation study. First, the 
method will induce inappropriate inter-resample differences if the true intra-population 
variability differs between several populations of the mixture population. The reason is that 
the random values used to perturb every data point are drawn from the same distribution. 
Therefore, the data points originally drawn from some populations are perturbed too 
strongly or too weakly or both types of error may occur simultaneously. Second, even if the 
intra-population variability is constant across all populations within the mixture, it is 
difficult to adjust the parameter(s) of the distribution used for drawing the random values. 
An overestimation of the proper perturbation strength would have the consequence that 
true data structures which are present in the original sample may not be retained in any 
resample. Otherwise, an underestimation of the perturbation strength would lead to very 
similar resamples and spurious, high cluster stability. To avoid false interpretations of a 
perturbation-based clustering study, it may be appropriate to repeat the analysis with 
different values of the perturbation strength (e.g., Möller & Radke, 2006a). A non-parametric 
resampling approach where the choice of the perturbation strength is less critical is nearest 
neighbor resampling (NNR). 
The idea behind NNR can be explained as follows. A high intra-population variability is 
characterized by a wide distribution and a low probability of drawing a point from the 
respective part of the hyperspace. Accordingly, the distances between sample points  in this 
part of the hyperspace are high. For low intra-population variability the opposite is true. 
Clearly, if two or more populations of a mixture population have overlapping distributions, 
the total probability is increased and sample points will have decreased inter-point distances 
compared to those obtained from any single population. The relationship between 
population variability and inter-point distances can be utilized to simulate random samples, 
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An alternative way, without an explicit specification of the subsampling size, would be to 
generate a bootstrap sample and to discard the identically replicated points (Hennig, 2007). 
Subdivision. The original sample X is split into two disjoint subsets Y ∪ Z = X. Clustering is 
used to generate the partitions πY and πZ, from Y and Z, respectively. In addition, a classifier 
CY is build from the subset Y and the label set πY. Then CY is applied to the subset Z 
providing the partition πYZ. Finally, the predictability of πZ based on πYZ is assessed. For the 
success of this strategy it has to be ensured that in general each subset Y and Z contain 
sufficient information about the underlying distribution necessary to infer a reasonable 
model from the data. Dudoit and Fridlyand (2003) presented an example, where the 
‘training’ set Y and the ‘test’ set Z consist respectively of 2/3 and 1/3 of the original sample. 

3.2 Jittering 
Real data samples contain random measurement errors. Even if the same objects were 
observed multiple times under the same experimental conditions, the data are likely to be 
different. These differences can be simulated by generating copies of the original sample 
and adding random values to each of these data sets. The normal distribution with zero 
mean is traditionally used for this purpose. If estimates of the measurement error exist, 
these information can be utilized to define the parameters of the error distribution. 
Otherwise, heuristic rules can be applied. 
Hennig (2007) defined such a resampling scheme as follows. 1) For all p dimensions of the 
original sample data X = (x1,…, xN), compute the N−1 differences dij between neighboring 
data values in dimension p: for i = 1,…, N−1, j = 1,…, p, dij is the difference between the (i+1)-
th and the i-th order statistic of the j-th dimension. For j = 1,…, p, let qj be the empirical 
quantile of the dij, where q is a tuning constant. 2) Draw noise en, n = 1,…, N, independent 
and identically distributed from a normal distribution with a zero mean and a diagonal 
matrix as covariance matrix with diagonal elements σ12 = q12,…, σp2 = qp2 and compute the 
resample points yn = xn + en for n = 1,…, N. (For an example see section 4).  

3.3 Combination of bootstrapping and jittering 
When using the (non-parametric) bootstrapping scheme, about one third of the resample 
points will be identical replicates of original sample points. Each group of such identical 
points could be seen as a mini-cluster. The occurrence of these artificial clusters, generated 
by a statistical analysis tool, may induce inappropriate models of the true data structure. In 
particular, when clustering the resample data, the artificially replicated data points may be 
misinterpreted as true clusters (Monti et al., 2003). Moreover, for some implementations of 
clustering and multidimensional scaling methods the identical bootstrap replicates may 
cause numerical problems. Hennig (2007) proposed the combination of bootstrapping and 
jittering as a way to avoid or to reduce these problems. 

3.4 Perturbation 
Data sets for applications of statistical machine learning are usually generated with a 
precision that is high enough to measure intra-population variability. Therefore, any data 
point of a sample is likely to be different from any data point of another (disjoint) sample − 
even if the measurement error was zero. This type of inter-sample differences is not 
realistically simulated when using the above non-parametric methods. (Sampling from a 
sample provides highly overlapping data sets that all consist of random selections from the 
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same set of original points, while jittering leads to data sets that simulate differences 
comparable to those caused by measurement errors.) Another resampling strategy may be 
desired for a better (non-parametric) simulation of inter-sample differences due to intra-
population variability. Estimates of intra-population variability that could be used for such a 
simulation are usually unavailable prior to cluster analysis. Under these circumstances, a 
simple simulation is the addition of random values onto the data. Here this approach is 
called ‘perturbation’.  
Let X ∈ℜN×p be the original p-dimensional sample consisting of N data points. Then for r = 1, 
2, …, resample r is obtained as follows. Yr = X + ξr, where ξr ∈ℜN×p is a sample of size N 
from a p-dimensional distribution. The parameters of this distribution, such as variance, can 
be specified based on an estimate obtained from the original sample. For example, the 
random variable ξ may be selected to have a normal distribution with zero mean vector and 
c⋅σ ∈ℜp, where c denotes a constant, σ = (σ1,…, σp) is an empirical estimate of the variability 
of the data. Bittner et al. (1999), chose c = 0.15 and σ being the median standard deviation of 
the entire sample. Möller and Radke (2006a) used several values of c equal to 0.01, 0.05 and 
0.1, where σ represented the standard deviation from the grand mean of the data. 
Perturbation and jittering are conceptually similar resampling techniques. However, their 
implementation may differ quantitatively in the values of statistical parameters used to 
simulate intra-population variability and measurement error based on external knowledge, 
estimates or assumptions. 

3.5 Nearest neighbor resampling 
The perturbation technique has two shortcomings in a cluster validation study. First, the 
method will induce inappropriate inter-resample differences if the true intra-population 
variability differs between several populations of the mixture population. The reason is that 
the random values used to perturb every data point are drawn from the same distribution. 
Therefore, the data points originally drawn from some populations are perturbed too 
strongly or too weakly or both types of error may occur simultaneously. Second, even if the 
intra-population variability is constant across all populations within the mixture, it is 
difficult to adjust the parameter(s) of the distribution used for drawing the random values. 
An overestimation of the proper perturbation strength would have the consequence that 
true data structures which are present in the original sample may not be retained in any 
resample. Otherwise, an underestimation of the perturbation strength would lead to very 
similar resamples and spurious, high cluster stability. To avoid false interpretations of a 
perturbation-based clustering study, it may be appropriate to repeat the analysis with 
different values of the perturbation strength (e.g., Möller & Radke, 2006a). A non-parametric 
resampling approach where the choice of the perturbation strength is less critical is nearest 
neighbor resampling (NNR). 
The idea behind NNR can be explained as follows. A high intra-population variability is 
characterized by a wide distribution and a low probability of drawing a point from the 
respective part of the hyperspace. Accordingly, the distances between sample points  in this 
part of the hyperspace are high. For low intra-population variability the opposite is true. 
Clearly, if two or more populations of a mixture population have overlapping distributions, 
the total probability is increased and sample points will have decreased inter-point distances 
compared to those obtained from any single population. The relationship between 
population variability and inter-point distances can be utilized to simulate random samples, 
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where the advantages of a perturbation approach are utilized and knowledge, estimates or 
assumptions about the distributions of existing populations are not required. 
Here we consider the following strategy for NNR. 1) For each original sample point xn, n = 
1,…, N, an estimate of the inter-point distances in the neighborhood of xn is obtained. This 
neighborhood is defined by the k nearest neighbors of xn according to a user-selected metric. 
2) The direction vector for the perturbation of xnr with respect to xn is selected. 3) Resample 
point xnr is generated by adding a random vector to xn with the direction as selected in step 
two and the vector length being a function of the estimated inter-point distances in the 
neighborhood of xn. The rationale underlying the choice of a k-NN approach is the same as 
in supervised learning. Most of the k nearest neighbors of data point xn are assumed to 
belong to the same class (population) as xn. Therefore, the neighboring points of xn are 
assumed to provide an estimate of intra-population variability. Below, two versions of NNR 
are described. 
Nearest neighbor resampling 1 (NNR1). (Möller & Radke, 2006b) 
0. Let X = (x1,…, xN) ⊂ ℜp be the original sample. Chose k ≥ 2 and a metric for calculating 

the distance between elements of X.  
1. For each sample point xn, n = 1,…, N, determine Yn, that is, the set containing xn and its k 

nearest neighbors. Calculate dn, the mean of the distances between each member and 
the center (mean) of the set Yn. 

2. For each resample r, r = 1, 2, …, and each sample point xn, n = 1,…, N, perform the 
following steps. 

3. Chose a random direction vector ξnr in the p-dimensional data space (i.e., ξnr is a p-
dimensional random variable uniformly distributed over the hyper-rectangle [−1, 1]p). 

4. Rescale the direction vector ξnr to have the vector length equal to dn (calculated in step 
1). 

5. Generate point n of resample r: xnr = xn + ξnr. 
The fixed point-wise perturbation strength (dn) has been selected to ensure an effective 
perturbation of each sample point (i.e., to avoid spurious high cluster stability). The method 
NNR1 can be used to simulate random samples from an unknown mixture population with 
different intra-population variability and a diagonal matrix as covariance matrix of each 
population. However, the latter assumption may be too strong for a number of real data 
sets. For example, the NNR1 method may simulate resample clusters with a hyper-globular 
shape also in cases where the corresponding clusters in the original sample have a hyper-
ellipsoidal shape. (This is a consequence of the fixed perturbation strength in conjunction 
with the uniformly distributed direction vector.)  
Therefore, the user should have other choices for calculating the amount and direction of the 
perturbation. Experiments have shown that the unintentional generation of artificial outliers 
by the resampling method may prevent reasonable clustering results of the resamples, while 
the original sample may have been clustered appropriately.  For example, in some cases the 
fuzzy C-means (FCM) clustering algorithm provided ‘missing clusters’ for NNR1-type 
resamples, but not for the original sample (data not shown). Missing clusters were 
introduced in (Möller, 2007) as being inappropriate clustering results of the FCM. As a 
conclusion, another method, NNR2, was developed for the analysis of high-dimensional 
data sets. In NNR2, a data point can be ‘shifted’ only towards and not beyond one of its 
nearest neighbors (i.e., into a region of the feature space that  actually contains some data). 
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Furthermore, the mean-based estimate dn in step 2 of the NNR1 method could be biased if 
the neighbors of xn contain outliers or if they contain data points which have been drawn 
from a population different than the one from which xn has been drawn. This source of bias 
can be reduced or avoided by using a robust estimate of the typical inter-point distance such 
as the median. 
Nearest neighbor resampling 2 (NNR2). 
0. Let X = (x1,…, xN) ⊂ ℜp be the original sample. Chose k ≥ 2, two constants c1 ≥ 0 and c2 > 

c1 for a data-specific calibration of the perturbation strength and a metric for calculating 
the distance between elements of X. 

1. For each sample point xn, n = 1,…, N, determine the k nearest neighbors of xn and 
calculate dn, the median distance between all pairs of these k neighbors. 

2. For each resample r, r = 1, 2, …, and each sample point xn, n = 1,…, N, perform the 
following steps. 

3. Chose one of the k nearest neighbors of xn at random. This data point is denoted by xm.  
The direction vector from xn to xm is used as the direction vector ξnr for the perturbation 
of the sample point xn to generate the resample point xnr. 

4. Draw the value cnr from the uniform distribution over the interval [c1, c2]. Calculate the 
distance dnm between the sample points xn and xm. If dnm is larger than dn, set the amount 
of perturbation |ξnr|= cnr⋅dn, otherwise set |ξnr| = cnr⋅dnm, where |.|denotes the vector 
length. Briefly, |ξnr|= cnr ⋅ min(dn, dnm).  

5. Generate point n of resample r: xnr = xn + ξnr. 
The NNR2 method restricts the positions of simulated (resample) points to the set of points 
that lie on the lines interconnecting an original sample point and its k nearest neighbors. 
Real samples are not constrained in this way. However, the application of this constraint 
leads to the simulation of resample points that cover only those regions of the feature space 
which are actually occupied by observed data. NNR2 has two advantages in cluster 
validation studies. Artificial outliers and resulting biases of resample clusterings can be 
largely avoided. More importantly, there may be data structures which are recognized from 
a clustering of the original sample, but are no longer separable after a perturbation like that 
in section 3.4 or that induced by the NNR1 method. The constrained perturbation by the 
NNR2 method is likely to simulate samples in which such (weakly separable) structures are 
preserved. 
NNR2-type perturbation can be calibrated by adjusting the parameters k, c1 and c2. A higher 
maximal perturbation strength is achieved by increasing the values of k and/or c2. When 
choosing c2 = 1 the maximum amount of perturbation for each point equals the median 
distance between the k nearest neighbors of the respective point. The minimum amount of 
perturbation of each point can be adjusted by choosing c1 > 0. 

3.6 Outlier simulation 
Real data sets may contain outliers – even though the data has been processed by a method 
for the detection and removal of outliers. Therefore, it is desirable to know how robust the 
result of a clustering algorithm is with respect to the presence of outliers. This knowledge 
can then be used to select a robust result among a number of candidate results obtained by 
different clustering algorithms or the same algorithm with different settings of a control 
parameter (especially, the number of clusters). 
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where the advantages of a perturbation approach are utilized and knowledge, estimates or 
assumptions about the distributions of existing populations are not required. 
Here we consider the following strategy for NNR. 1) For each original sample point xn, n = 
1,…, N, an estimate of the inter-point distances in the neighborhood of xn is obtained. This 
neighborhood is defined by the k nearest neighbors of xn according to a user-selected metric. 
2) The direction vector for the perturbation of xnr with respect to xn is selected. 3) Resample 
point xnr is generated by adding a random vector to xn with the direction as selected in step 
two and the vector length being a function of the estimated inter-point distances in the 
neighborhood of xn. The rationale underlying the choice of a k-NN approach is the same as 
in supervised learning. Most of the k nearest neighbors of data point xn are assumed to 
belong to the same class (population) as xn. Therefore, the neighboring points of xn are 
assumed to provide an estimate of intra-population variability. Below, two versions of NNR 
are described. 
Nearest neighbor resampling 1 (NNR1). (Möller & Radke, 2006b) 
0. Let X = (x1,…, xN) ⊂ ℜp be the original sample. Chose k ≥ 2 and a metric for calculating 

the distance between elements of X.  
1. For each sample point xn, n = 1,…, N, determine Yn, that is, the set containing xn and its k 

nearest neighbors. Calculate dn, the mean of the distances between each member and 
the center (mean) of the set Yn. 

2. For each resample r, r = 1, 2, …, and each sample point xn, n = 1,…, N, perform the 
following steps. 

3. Chose a random direction vector ξnr in the p-dimensional data space (i.e., ξnr is a p-
dimensional random variable uniformly distributed over the hyper-rectangle [−1, 1]p). 

4. Rescale the direction vector ξnr to have the vector length equal to dn (calculated in step 
1). 

5. Generate point n of resample r: xnr = xn + ξnr. 
The fixed point-wise perturbation strength (dn) has been selected to ensure an effective 
perturbation of each sample point (i.e., to avoid spurious high cluster stability). The method 
NNR1 can be used to simulate random samples from an unknown mixture population with 
different intra-population variability and a diagonal matrix as covariance matrix of each 
population. However, the latter assumption may be too strong for a number of real data 
sets. For example, the NNR1 method may simulate resample clusters with a hyper-globular 
shape also in cases where the corresponding clusters in the original sample have a hyper-
ellipsoidal shape. (This is a consequence of the fixed perturbation strength in conjunction 
with the uniformly distributed direction vector.)  
Therefore, the user should have other choices for calculating the amount and direction of the 
perturbation. Experiments have shown that the unintentional generation of artificial outliers 
by the resampling method may prevent reasonable clustering results of the resamples, while 
the original sample may have been clustered appropriately.  For example, in some cases the 
fuzzy C-means (FCM) clustering algorithm provided ‘missing clusters’ for NNR1-type 
resamples, but not for the original sample (data not shown). Missing clusters were 
introduced in (Möller, 2007) as being inappropriate clustering results of the FCM. As a 
conclusion, another method, NNR2, was developed for the analysis of high-dimensional 
data sets. In NNR2, a data point can be ‘shifted’ only towards and not beyond one of its 
nearest neighbors (i.e., into a region of the feature space that  actually contains some data). 
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Furthermore, the mean-based estimate dn in step 2 of the NNR1 method could be biased if 
the neighbors of xn contain outliers or if they contain data points which have been drawn 
from a population different than the one from which xn has been drawn. This source of bias 
can be reduced or avoided by using a robust estimate of the typical inter-point distance such 
as the median. 
Nearest neighbor resampling 2 (NNR2). 
0. Let X = (x1,…, xN) ⊂ ℜp be the original sample. Chose k ≥ 2, two constants c1 ≥ 0 and c2 > 

c1 for a data-specific calibration of the perturbation strength and a metric for calculating 
the distance between elements of X. 

1. For each sample point xn, n = 1,…, N, determine the k nearest neighbors of xn and 
calculate dn, the median distance between all pairs of these k neighbors. 

2. For each resample r, r = 1, 2, …, and each sample point xn, n = 1,…, N, perform the 
following steps. 

3. Chose one of the k nearest neighbors of xn at random. This data point is denoted by xm.  
The direction vector from xn to xm is used as the direction vector ξnr for the perturbation 
of the sample point xn to generate the resample point xnr. 

4. Draw the value cnr from the uniform distribution over the interval [c1, c2]. Calculate the 
distance dnm between the sample points xn and xm. If dnm is larger than dn, set the amount 
of perturbation |ξnr|= cnr⋅dn, otherwise set |ξnr| = cnr⋅dnm, where |.|denotes the vector 
length. Briefly, |ξnr|= cnr ⋅ min(dn, dnm).  

5. Generate point n of resample r: xnr = xn + ξnr. 
The NNR2 method restricts the positions of simulated (resample) points to the set of points 
that lie on the lines interconnecting an original sample point and its k nearest neighbors. 
Real samples are not constrained in this way. However, the application of this constraint 
leads to the simulation of resample points that cover only those regions of the feature space 
which are actually occupied by observed data. NNR2 has two advantages in cluster 
validation studies. Artificial outliers and resulting biases of resample clusterings can be 
largely avoided. More importantly, there may be data structures which are recognized from 
a clustering of the original sample, but are no longer separable after a perturbation like that 
in section 3.4 or that induced by the NNR1 method. The constrained perturbation by the 
NNR2 method is likely to simulate samples in which such (weakly separable) structures are 
preserved. 
NNR2-type perturbation can be calibrated by adjusting the parameters k, c1 and c2. A higher 
maximal perturbation strength is achieved by increasing the values of k and/or c2. When 
choosing c2 = 1 the maximum amount of perturbation for each point equals the median 
distance between the k nearest neighbors of the respective point. The minimum amount of 
perturbation of each point can be adjusted by choosing c1 > 0. 

3.6 Outlier simulation 
Real data sets may contain outliers – even though the data has been processed by a method 
for the detection and removal of outliers. Therefore, it is desirable to know how robust the 
result of a clustering algorithm is with respect to the presence of outliers. This knowledge 
can then be used to select a robust result among a number of candidate results obtained by 
different clustering algorithms or the same algorithm with different settings of a control 
parameter (especially, the number of clusters). 
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For the investigation of cluster stability with respect to outliers Hennig (2007) proposed the 
replacement of a subset of data points by noise, where “noise points should be allowed to lie 
far away from the bulk (or bulks) of the data, but it may also be interesting to have noise 
points in between the clusters, possibly weakening their separation”. The author cited 
Donoho’s and Huber’s concept of the finite sample replacement breakdown point as a 
related methodological basis. 
Replacing points by noise. Choose M, the number of data points to be replaced by noise, 
where 1 ≤ M < N with N being the size of the original sample X. Select a noise distribution 
and replace M elements of X by points drawn from the noise distribution. For example, the 
uniform distribution on a hyperrectangle [-c, c]p ⊂ ℜp , C > 1, may be used, where X had 
been transformed before the replacement to have a zero mean vector and the identity matrix 
as covariance matrix. 
Addition of noise points. The replacement of original points by noise causes a loss of 
information which may impair the modeling of the data structure based on a resample 
clustering. Therefore, an alternative method is proposed here. The M points drawn from the 
noise distribution could also be added to the data set (i.e., without eliminating any original 
point). The artificial increase of the resample size in comparison to the original sample size 
may be less problematic for the purpose of cluster validation than it could be for other 
resampling applications. It is also possible to find a balance between the artificial increase of 
the resample size and the information loss: MR points are replaced, while MA points are 
added, where MR + MA = M. Reasonable choices for MR and MA may have to be sought 
experimentally by the user. 

3.7 Feature resampling 
Data randomization schemes can also be applied to the set of features used to characterize 
the population. Such methods will be subsumed below under the term ‘feature resampling’. 
Two of the subsequently described methods (feature subsampling and leave on feature out) 
leave the information about one or more features unused when generating a resample. 
These methods may be useful if the number of features p is larger than the number of data 
points N, where the N points in the p-dimensional coordinate system actually span a data 
space with less than p (i.e., at most N−1) dimensions. An example is the clustering of 
biological tissues based on gene expression data, where often 40 ≤ N ≤ 300 and p ≥ 1000  (cf. 
Monti et al. 2007). In such cases the clustering may become a more effective (because 
redundant information are eliminated) and the computational effort of the clustering would 
decrease (owing to the dimension reduction). 
Feature subsampling. For r = 1, 2, …, select a subset of sr features randomly from the entire 
set of p features (1 ≤ sr < p). Resample r is obtained by extracting the data of the original 
sample for the selected features only. The value of sr can be fixed for generating all 
resamples (e.g., Smolkin & Gosh, 2003). Alternatively, sr can be a random variable. Yu et al. 
(2007) defined the value of sr to be uniformly distributed over the integer range between 
0.75p and 0.85p. 
Feature multiscale bootstrapping.  There exists a version of bootstrapping which is similar 
to feature subsampling with variable subsampling size. In this method bootstrap resamples 
of a variable size M ≤ N are drawn from the original sample. This method has been applied 
to the set of features (gene expression values) when clustering tumor samples (Suzuki & 
Shimodaira, 2004). An implementation of the method is available in the free statistical 
software R (Suzuki & Shimodaira, 2006). 
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Leave one feature out. Generate a set of i = 1,…, p resamples, where p is the number of all 
features. Resample i contains the original data of all features except feature i. If the number 
of features is large, the p resamples are relatively similar. Accordingly, a resample clustering 
is likely to generate p similar partitions and a cluster stability assessment of these partitions 
may not be informative. A cluster validation approach developed for ‘leave one feature out’ 
resamples is the ‘figure of merit’ (FOM), motivated by Efron’s jackknife approach. The FOM 
quantifies how well the data clustering based on all features except feature i can predict the 
clustering based on only the data of feature i. For the details see (Yeung et al., 2001). 
Feature mapping. Several methods exist for the mapping of a data set into a lower-
dimensional space. Among these methods randomized maps suggest themselves for the 
application to resampling-based cluster validation due to their attractive properties. First, 
these projections generate random variations of the input data, where the strength of 
variation can be adjusted almost arbitrarily. Second, some characteristics of the data in the 
original space, such as the distances between points, are approximately preserved in the 
projected space (i.e., metric distortions are bounded according to the Johnson-Lindenstrauss 
theory). Third, the number of dimensions of the projected space can be slightly or 
considerably smaller than the number of dimensions of the original space. The 
dimensionality of the projected subspace in which a limited distortion can be obtained 
depends only on the cardinality of the data and the magnitude of the admissible distortion. 
For details see (Bertoni & Valentini, 2006).  For potential users an implementation of some of 
these methods is available in the free statistical software R (Valentini, 2006). 
Feature weighting. The features to be included into a resample data set can also be 
randomly weighted. When using continuous positive weights, the information of every 
feature is included at a certain degree. The lognormal distribution with the mean μ = −log2 
and the variance σ2 = 2*log2 can be used for the drawing of the weights. The method can be 
interpreted as an alternative approach to bootstrapping. The use of the lognormal 
distribution can be motivated based on relationships of this distribution with the Poisson 
distribution and the binomial distribution, where the latter is the underlying distribution of 
a drawing with replacement. The authors of this method (Gana Dresen et al., 2008) called 
their approach resampling based on continuous weights. 

4. Results of benchmarking studies 
The performance of the above resampling methods is not easily predicted based on a 
theoretical analysis. Therefore, empirical comparisons of different methods provide useful 
information for the selection of a method in future applications. This section is a summary 
of main results reported in five studies which included benchmarking tests of different 
resampling schemes in a clustering context. In the next section these results will be 
discussed aiming at general suggestions for the use and choice of resampling methods 
applied to cluster validation. 
In the sequel, the term bootstrapping always refers to its non-parametric version. The 
bootstrap scheme (drawing with replacement) was always applied to the full original 
sample. To keep the reported information concise the following symbols will be used. 
Symbols / abbreviations  
N  number of observations (data points) in an original sample 
p   number of dimensions (i.e., features used to describe the members of a population) 
R   number of resamples generated by using one of the resampling schemes 
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For the investigation of cluster stability with respect to outliers Hennig (2007) proposed the 
replacement of a subset of data points by noise, where “noise points should be allowed to lie 
far away from the bulk (or bulks) of the data, but it may also be interesting to have noise 
points in between the clusters, possibly weakening their separation”. The author cited 
Donoho’s and Huber’s concept of the finite sample replacement breakdown point as a 
related methodological basis. 
Replacing points by noise. Choose M, the number of data points to be replaced by noise, 
where 1 ≤ M < N with N being the size of the original sample X. Select a noise distribution 
and replace M elements of X by points drawn from the noise distribution. For example, the 
uniform distribution on a hyperrectangle [-c, c]p ⊂ ℜp , C > 1, may be used, where X had 
been transformed before the replacement to have a zero mean vector and the identity matrix 
as covariance matrix. 
Addition of noise points. The replacement of original points by noise causes a loss of 
information which may impair the modeling of the data structure based on a resample 
clustering. Therefore, an alternative method is proposed here. The M points drawn from the 
noise distribution could also be added to the data set (i.e., without eliminating any original 
point). The artificial increase of the resample size in comparison to the original sample size 
may be less problematic for the purpose of cluster validation than it could be for other 
resampling applications. It is also possible to find a balance between the artificial increase of 
the resample size and the information loss: MR points are replaced, while MA points are 
added, where MR + MA = M. Reasonable choices for MR and MA may have to be sought 
experimentally by the user. 

3.7 Feature resampling 
Data randomization schemes can also be applied to the set of features used to characterize 
the population. Such methods will be subsumed below under the term ‘feature resampling’. 
Two of the subsequently described methods (feature subsampling and leave on feature out) 
leave the information about one or more features unused when generating a resample. 
These methods may be useful if the number of features p is larger than the number of data 
points N, where the N points in the p-dimensional coordinate system actually span a data 
space with less than p (i.e., at most N−1) dimensions. An example is the clustering of 
biological tissues based on gene expression data, where often 40 ≤ N ≤ 300 and p ≥ 1000  (cf. 
Monti et al. 2007). In such cases the clustering may become a more effective (because 
redundant information are eliminated) and the computational effort of the clustering would 
decrease (owing to the dimension reduction). 
Feature subsampling. For r = 1, 2, …, select a subset of sr features randomly from the entire 
set of p features (1 ≤ sr < p). Resample r is obtained by extracting the data of the original 
sample for the selected features only. The value of sr can be fixed for generating all 
resamples (e.g., Smolkin & Gosh, 2003). Alternatively, sr can be a random variable. Yu et al. 
(2007) defined the value of sr to be uniformly distributed over the integer range between 
0.75p and 0.85p. 
Feature multiscale bootstrapping.  There exists a version of bootstrapping which is similar 
to feature subsampling with variable subsampling size. In this method bootstrap resamples 
of a variable size M ≤ N are drawn from the original sample. This method has been applied 
to the set of features (gene expression values) when clustering tumor samples (Suzuki & 
Shimodaira, 2004). An implementation of the method is available in the free statistical 
software R (Suzuki & Shimodaira, 2006). 
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Leave one feature out. Generate a set of i = 1,…, p resamples, where p is the number of all 
features. Resample i contains the original data of all features except feature i. If the number 
of features is large, the p resamples are relatively similar. Accordingly, a resample clustering 
is likely to generate p similar partitions and a cluster stability assessment of these partitions 
may not be informative. A cluster validation approach developed for ‘leave one feature out’ 
resamples is the ‘figure of merit’ (FOM), motivated by Efron’s jackknife approach. The FOM 
quantifies how well the data clustering based on all features except feature i can predict the 
clustering based on only the data of feature i. For the details see (Yeung et al., 2001). 
Feature mapping. Several methods exist for the mapping of a data set into a lower-
dimensional space. Among these methods randomized maps suggest themselves for the 
application to resampling-based cluster validation due to their attractive properties. First, 
these projections generate random variations of the input data, where the strength of 
variation can be adjusted almost arbitrarily. Second, some characteristics of the data in the 
original space, such as the distances between points, are approximately preserved in the 
projected space (i.e., metric distortions are bounded according to the Johnson-Lindenstrauss 
theory). Third, the number of dimensions of the projected space can be slightly or 
considerably smaller than the number of dimensions of the original space. The 
dimensionality of the projected subspace in which a limited distortion can be obtained 
depends only on the cardinality of the data and the magnitude of the admissible distortion. 
For details see (Bertoni & Valentini, 2006).  For potential users an implementation of some of 
these methods is available in the free statistical software R (Valentini, 2006). 
Feature weighting. The features to be included into a resample data set can also be 
randomly weighted. When using continuous positive weights, the information of every 
feature is included at a certain degree. The lognormal distribution with the mean μ = −log2 
and the variance σ2 = 2*log2 can be used for the drawing of the weights. The method can be 
interpreted as an alternative approach to bootstrapping. The use of the lognormal 
distribution can be motivated based on relationships of this distribution with the Poisson 
distribution and the binomial distribution, where the latter is the underlying distribution of 
a drawing with replacement. The authors of this method (Gana Dresen et al., 2008) called 
their approach resampling based on continuous weights. 

4. Results of benchmarking studies 
The performance of the above resampling methods is not easily predicted based on a 
theoretical analysis. Therefore, empirical comparisons of different methods provide useful 
information for the selection of a method in future applications. This section is a summary 
of main results reported in five studies which included benchmarking tests of different 
resampling schemes in a clustering context. In the next section these results will be 
discussed aiming at general suggestions for the use and choice of resampling methods 
applied to cluster validation. 
In the sequel, the term bootstrapping always refers to its non-parametric version. The 
bootstrap scheme (drawing with replacement) was always applied to the full original 
sample. To keep the reported information concise the following symbols will be used. 
Symbols / abbreviations  
N  number of observations (data points) in an original sample 
p   number of dimensions (i.e., features used to describe the members of a population) 
R   number of resamples generated by using one of the resampling schemes 
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S    subsampling size (percentage of data randomly drawn from the original data sample) 
KR  number of clusters generated when clustering each resample data set 
K   number of clusters of a consensus partition obtained from the set of resample partitions 
Kt   true (known) number of classes (populations) represented by a benchmarking data set 
Minaei-Bidgoli et al. (2004) compared bootstrapping and subsampling for five 
benchmarking data sets with N >> p. The number of resamples R varied from 5 to 1000 and 
S ∈ [5%, 75%]. All resample partitions were obtained by using the K-means clustering 
algorithm. Resampling performance was measured based on the misassignment (error) 
obtained for the clustering partitions in comparison to the a priori known class structure of 
benchmark data sets. The error rate was always calculated for a partition representing the 
consensus of the R resample partitions. Four different methods from the literature were 
used providing four consensus partitions in each case. While the generation of resample 
partitions was repeated for different pre-specified values of the number of clusters (KR = [2, 
20], KR > Kt), each consensus partitions was calculated to have exactly the true number of 
clusters (K = Kt). The error was calculated after finding the optimal assignment between the 
obtained consensus clusters and the known classes. All experiments were repeated at least 
10 times and average errors were reported for some of the best parameter settings of the 
entire procedure (resampling, resample clustering and consensus clustering). 
The error rates obtained for bootstrapping and subsampling were similar. Because the 
results for subsampling were based on only 5 to 75%  of the data sets (parameter S), the 
authors considered subsampling as a flexible method that can be used to reduce the 
computational cost in many data mining tasks. 
Möller & Radke (2006) compared bootstrapping, subsampling (S = 80%) and perturbation  
(with three values of the perturbation strength, see section 3.4). R = 20 was fixed in all 
experiments. Resampling performance was measured based on the rate of false estimates of 
the number of clusters obtained for the set of the R resample partitions. For each data set 458 
estimates of the number of clusters were obtained, resulting from the application of 12 
clustering techniques and 41 cluster validity indices. The clustering methods included 
different hierarchical agglomeration schemes and different metrics, a so-called K-medoid 
clustering and two versions of fuzzy C-means clustering. Only those of the 458 results were 
used for the final interpretation where the correct (a priori known) number of clusters was 
obtained for the original sample as well as for the majority of the resamples. (These 
constraints were used to exclude errors due to poor original sampling, poor cluster analysis 
and/or poor configuration of the resampling scheme.) The following data were analyzed:  
five realizations of each of the stochastic models 2, 3, 4, 6 and 7 described in (Dudoit and 
Fridlyand, 2003), three microarray data sets with the 200 most differentially expressed genes 
(Leukemia, CNS and Novartis data described in Monti et al., 2003), the data sets Iris, Liver, 
Thyroid and Wine from the UCI repository (Asuncion & Newman, 2007), and a data set of 
functional magnetic resonance imaging data. Data sets with N >> p as well as N << p were 
included.  
In general, the error rates obtained for the perturbation technique were smaller than the 
error rates for subsampling. Both perturbation and subsampling led to clearly smaller error 
rates than bootstrapping. The same ranking was obtained when considering all (about 
15.000) estimates of the number of clusters without applying the mentioned constraints. The 
occurrence of false estimates even for a perturbation with 1% noise indicated that the small 
errors obtained for the perturbation scheme are not spurious results (i.e., the perturbation 
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was effective). The authors concluded that the increased errors for subsampling and 
bootstrapping may have been a consequence of the information loss (i.e., 20% and about 
37% of the original sample were not used for the generation of a resample in the 
subsampling and bootstrapping schemes, respectively). The authors further concluded that 
resampling schemes without this information loss are more useful in cluster validation 
studies, in particular, when the original samples have a small size. 
Hennig (2007) compared bootstrapping, subsampling (S = 50%), the replacement of sample 
points by noise (M = 0.05N, c = 3 and M = 0.2N, c = 4, see section 3.6), two versions of 
jittering (parameter q was set respectively to the 0.1- and 0.25-quantiles of the values dij, see 
section 3.2), and the combination of bootstrapping and jittering (q = 0.1). R = 20 was fixed in 
all experiments. Resampling performance was measured based on several types of results. 
First, cluster stability was assessed by calculating the agreement between the partition 
generated from each resample and the partition obtained for the original sample (The 
agreement between clusters of two partitions was measured by the Jaccard index (cf. 
Theodoridis & Koutroumbas, 2006).) Second, for model data with true cluster memberships, 
it was measured how well the clustering of an original sample represented the model 
structure. (The Jaccard index was applied to the cluster memberships of each original 
sample and the true cluster memberships.) Third, the correlation between the two 
aforementioned types of results was calculated. Different clustering methods were used, 
namely, a method called normal mixture plus noise, K-means, 10% trimmed K-means and 
average linkage hierarchical agglomeration. 50 original samples were generated for each of 
two stochastic models (Kt = {3, 6}, N >> p). One model included outliers. One biological data 
set (N = 366, p = 306) was analyzed that was known to contain substructure – without exact 
knowledge about the ‘true’ cluster composition. 
Due to the choice of the analysis design, three types of results were distinguished. 1) 
partitions of original samples with a fairly good representation of the model structure and a 
stable clustering of the resample data that corresponded to this model structure, 2) 
partitions of original samples with a relatively poor representation of the model structure 
and an unstable clustering of the resample data and 3) partitions of original samples with a 
relatively poor representation of the model structure and, nevertheless, a stable clustering of 
the resample data. The results of the types 1 and 2 are desirable, because they permit 
appropriate conclusions about the performance of clustering of unknown data based on 
resample cluster stability scores. Results of type 3 are problematic. If the original sample 
does not adequately represent the true population structure, also the clustering of this 
sample may not represent the true structure. Even though it is desirable to obtain an 
indication of the poor modeling result, namely, an unstable clustering for the resample data. 
Otherwise, this kind of inappropriate modeling cannot be distinguished from proper 
clustering models when the true population is unknown. 
Based on all results, subsampling was considered as being the best method, followed by the 
combination of bootstrapping/jittering and bootstrapping alone. The replacement of data 
points by noise was also useful in a number of case, including some cases where the other 
methods did not perform well (i.e., they provided a number of type-3 results). Jittering 
showed generally a poor performance (i.e., a relatively large fraction of type-3 results for 
most of the data sets and clustering algorithms). The author concluded that a good strategy 
in practice can be the use of one of the schemes bootstrapping, bootstrapping/jittering and 
subsampling together with one scheme for replacing data by noise. 
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S    subsampling size (percentage of data randomly drawn from the original data sample) 
KR  number of clusters generated when clustering each resample data set 
K   number of clusters of a consensus partition obtained from the set of resample partitions 
Kt   true (known) number of classes (populations) represented by a benchmarking data set 
Minaei-Bidgoli et al. (2004) compared bootstrapping and subsampling for five 
benchmarking data sets with N >> p. The number of resamples R varied from 5 to 1000 and 
S ∈ [5%, 75%]. All resample partitions were obtained by using the K-means clustering 
algorithm. Resampling performance was measured based on the misassignment (error) 
obtained for the clustering partitions in comparison to the a priori known class structure of 
benchmark data sets. The error rate was always calculated for a partition representing the 
consensus of the R resample partitions. Four different methods from the literature were 
used providing four consensus partitions in each case. While the generation of resample 
partitions was repeated for different pre-specified values of the number of clusters (KR = [2, 
20], KR > Kt), each consensus partitions was calculated to have exactly the true number of 
clusters (K = Kt). The error was calculated after finding the optimal assignment between the 
obtained consensus clusters and the known classes. All experiments were repeated at least 
10 times and average errors were reported for some of the best parameter settings of the 
entire procedure (resampling, resample clustering and consensus clustering). 
The error rates obtained for bootstrapping and subsampling were similar. Because the 
results for subsampling were based on only 5 to 75%  of the data sets (parameter S), the 
authors considered subsampling as a flexible method that can be used to reduce the 
computational cost in many data mining tasks. 
Möller & Radke (2006) compared bootstrapping, subsampling (S = 80%) and perturbation  
(with three values of the perturbation strength, see section 3.4). R = 20 was fixed in all 
experiments. Resampling performance was measured based on the rate of false estimates of 
the number of clusters obtained for the set of the R resample partitions. For each data set 458 
estimates of the number of clusters were obtained, resulting from the application of 12 
clustering techniques and 41 cluster validity indices. The clustering methods included 
different hierarchical agglomeration schemes and different metrics, a so-called K-medoid 
clustering and two versions of fuzzy C-means clustering. Only those of the 458 results were 
used for the final interpretation where the correct (a priori known) number of clusters was 
obtained for the original sample as well as for the majority of the resamples. (These 
constraints were used to exclude errors due to poor original sampling, poor cluster analysis 
and/or poor configuration of the resampling scheme.) The following data were analyzed:  
five realizations of each of the stochastic models 2, 3, 4, 6 and 7 described in (Dudoit and 
Fridlyand, 2003), three microarray data sets with the 200 most differentially expressed genes 
(Leukemia, CNS and Novartis data described in Monti et al., 2003), the data sets Iris, Liver, 
Thyroid and Wine from the UCI repository (Asuncion & Newman, 2007), and a data set of 
functional magnetic resonance imaging data. Data sets with N >> p as well as N << p were 
included.  
In general, the error rates obtained for the perturbation technique were smaller than the 
error rates for subsampling. Both perturbation and subsampling led to clearly smaller error 
rates than bootstrapping. The same ranking was obtained when considering all (about 
15.000) estimates of the number of clusters without applying the mentioned constraints. The 
occurrence of false estimates even for a perturbation with 1% noise indicated that the small 
errors obtained for the perturbation scheme are not spurious results (i.e., the perturbation 
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was effective). The authors concluded that the increased errors for subsampling and 
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methods did not perform well (i.e., they provided a number of type-3 results). Jittering 
showed generally a poor performance (i.e., a relatively large fraction of type-3 results for 
most of the data sets and clustering algorithms). The author concluded that a good strategy 
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Gana Dresen et al. (2008) compared bootstrapping and feature weighting. R = 1000 was fixed 
in all experiments. Resampling performance was measured based on the stability of branches 
of cluster trees (dendrograms) obtained from hierarchical agglomerative clustering of the 
resample data sets. Furthermore, a majority consensus tree was generated from the resample 
cluster trees and this consensus tree was compared with the cluster tree obtained from the 
original sample (based on the Rand index; cf. (Theodoridis & Koutroumbas, 2006)). For the 
comparison, gene expression data from  24 chromosomes (p = 8 to 648 probe sets) of N = 20 
tumor patients were used. For a subset of the data, knowledge about actual clustering 
structure was available. A data set containing p = 7 features of N = 22 primates was also 
analyzed. In addition, it was investigated how well groups of simulated differentially 
expressed genes can be robustly detected based on bootstrapping and feature weighting. 
In a number of cases bootstrapping and feature weighting showed comparable performance. 
However, in several cases bootstrapping led to inappropriate consensus cluster trees. That 
is, the structure was inappropriate, many spurious singleton clusters were obtained and 
especially the false clusters proved to be stable under the bootstrap procedure.  The authors 
concluded that resampling with continuous weights is strongly recommended because it 
performed at least as well as bootstrapping and in some cases it surpassed bootstrapping. In 
particular, feature weighting was more appropriate than bootstrapping to cluster small size 
samples. 
 Möller and Radke (2006b) reported results of estimating the number of clusters based on 
two different approaches, denoted here by A and B. In approach A (Monti et al., 2003) 
resampling is performed by subsampling (S = 80%). In approach B (Möller & Radke, 2006b) 
nearest neighbor resampling (NNR1) was used. Approach B led to better results than A on 
high-dimensional gene expression benchmark data (N << p). In particular, a fairly good 
recovery of known tumor classes was possible based on just R = 10 nearest neighbor 
resamples in approach B, while approach A led to similar or worse results based on R = 200 
or R = 500 subsamples (with R depending on the clustering algorithm). These results 
indicated the usefulness of nearest neighbor resampling; however, the performance 
differences may partly be attributable to the different methods selected in the approaches A 
and B, respectively, for clustering and for estimating the number of clusters. 

5. Results of nearest neighbor resampling 
Results of a direct benchmarking of NNR and other resampling methods are currently not 
available. However, several cluster validation results based on NNR have been obtained. 
Ulbrich (2006) used the NNR1 algorithm to identify robust and prognostic gene expression 
patterns by clustering of tumor patients. Guthke et al. (2007) performed clustering to find 
co-expression patterns of genes for the subsequent utilization in systems biology. They 
showed that the NNR1-based cluster stability analysis can be used to complement and 
confirm the results of a different quality assessment, namely the vote of so-called cluster 
validity indices (Bezdek and Pal, 1998). 
The use of the NNR2 method has provided strong indications that (estrogen receptor 
positive) breast cancer can be robustly subdivided into three, perhaps four, classes which  
are represented by different prognostic gene expression profiles. This result has been 
consistently obtained for gene expression data and survival time data generated in four 
different studies based on two different DNA microarray platforms and including the data 
from more than 700 tumor patients (Iffert, 2007). 
In combination with methods presented by Fred and Jain (2006), the NNR2 algorithm was 
recently applied to the gene expression benchmark data sets of known tumor classes 
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published by Monti et al. (2003). In several cases the obtained class recovery scores were 
higher than those obtained by Monti et al. based on subsampling and those obtained by Yu 
et al. (2007) who analyzed the same data based on feature subsampling (Möller, 2008). 
However, the cluster analysis methods used in these studies were also different. 

6. Discussion and conclusions 
Bootstrapping (drawing with replacement) is perhaps the most widely known and 
recommended resampling approach, because it is a standard approach in for statistical 
inference methods (Efron & Tibshirani, 1993). If the sample size is large and the true 
distribution is well represented by the data, bootstrapping may also be useful for the 
validation of clustering results. That is, other resampling schemes may not lead to more 
accurate results (cf. Minaei-Bidgoli et al., 2004). Under these circumstances the user may 
prefer bootstrapping, because no control parameter has to be set. 
However, as shown in complementary investigations (section 4), for statistical cluster 
validation it is recommended to prefer other methods than bootstrapping. When the sample 
size is large, subsampling is likely to perform as well as bootstrapping (Minaei-Bidgoli et al., 
2004; Hennig, 2007) or even better (Möller & Radke, 2006a), where the clustering of 
subsamples requires a lower computing effort. If the clustering result is to be used as the 
basis for a classifier of unknown samples, the subdivision scheme (e.g., Dudoit & Fridlyand, 
2003) may be the best choice, because it is focused on minimizing the prediction error, while 
subsampling results are commonly used for assessing cluster stability (e.g., Tseng and 
Wong, 2005; Fred & Jain, 2006). When the sample size was small, perturbation and 
resampling with continuous weights have been shown to outperform bootstrapping (Radke 
& Möller, 2006a; Gana Dresen et al., 2008). 
If the sample size is small, a further decrease by drawing subsamples prevents the 
“learning” of a good model from the resample data. In this case, perturbation methods are 
more suitable than sampling from a sample (Radke & Möller, 2006a). However, the user 
should be aware that this type of perturbation works best only if all populations of the 
hypothesized mixture population have equal variability. Furthermore, this method requires 
an estimate or guess of the proper perturbation strength. Therefore, it may be recommended 
to search for stable clusters by using different values of the perturbation strength. This could 
increase the confidence in the validity of the obtained clusters and their completeness with 
respect to the true structures. 
Nearest neighbor resampling (NNR) is an attractive alternative to the perturbation described 
in section 3.4. In the absence of prior knowledge, the parameter setting for the NNR2 method 
is less critical than the specification of a global perturbation strength.  According to the 
author’s knowledge, the NNR methods were described here for the first time in detail. 
Especially, the NNR2 method has provided promising results when clustering data with 
complex structures (see section 5). Therefore, based on practical experience, the author 
recommends the NNR approach for applications of unsupervised machine learning. Even 
though, more comprehensive simulations and benchmarking studies with other methods are 
desired know the performance of the NNR approach in a more general context. 
Feature resampling may be a way to bypass some of the problems associated with the above 
resampling schemes. However, the successful use of some of these techniques is limited to 
applications where the assumptions underlying these techniques are fulfilled. This 
argument applies, for example, to feature subsampling and leave one feature out which involve 
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a loss of original information (cf. Yeung et al., 2001). Feature mapping (Bertoni & Valentini, 
2006) appears to be a promising approach due to the combination of dimension reduction 
and the distance–preserving character of the mapping. It would be interesting to have 
empirical results indicating the relative merits of this kind of mapping in comparison to 
several other methods presented above. Another promising method is resampling with 
continuous weights (Gana Dresen et al., 2008). As stated by the authors it would be interesting 
to investigate the performance of this method in combination with other clustering 
algorithms than the hierarchical ones used. 
The resampling methods for the simulation of measurement errors (jittering) and outliers are 
useful if the user wants to confirm the robustness of the final clustering result with respect 
to these factors of influence. However, robust results of such an analysis are only a pre-
condition for a good clustering model. The fact that clusters are stable under jittering and 
the insertion of artificial outliers must not be interpreted over-optimistically as the 
indication of a real mixture population.  
Hennig (2007) argued that “Generally, large stability values do not necessarily indicate valid 
clusters, but small stability values are informative. Either they correspond to meaningless 
clusters (in terms of the true underlying models), or they indicate inherent instabilities in 
clusters or clustering methods.” Following this view, any stable cluster and any good 
prediction based on the subdivision approach (section 3.1) may have to be verified by 
repeating the cluster analysis with an increasing amount of (random) change made to the 
data. One criterion for stopping these repetitions is that some clusters ‘disappear’ under the 
influence of resampling, while other clusters can still be recovered. This observation would 
not be expected in the absence of any true structure. Another termination criterion is 
fulfilled if the clustering structures ‘disappear’ only if the amount of random change has 
become clearly larger compared to the effect of the measurement error. This fact may be  
deducible even if the measurement error can only be roughly estimated. 
An inevitable decision that has to be made by the user is the selection of the number of 
resamples, R. A proper value of R depends on both the structure of the investigated data 
and the resampling method used. In fact, compact and well separated clusters would be 
robustly detected based on fewer resamples than overlapping, noisy clusters. In addition, 
the more original sample information is utilized for generating each resample, the fewer 
resamples are likely to be required. For example, R = 10,..., 30 resamples obtained from NNR 
methods have been sufficient to robustly recover clustering structures of small high-
dimensional samples (Ulbrich, 2006; Iffert, 2007; Möller & Radke, 2006b). In contrast, R = 
100,…, 1000 resamples have often been used for the cluster validation based on 
bootstrapping or subsampling (cf. section 4). If the information loss of the mapping from the 
original sample to the resample exceeds a data specific-threshold, the lack of information in 
the individual resamples may not be compensable by any increase in the number of 
resamples.  
Computerized observation techniques in an increasing number of research areas generate 
high-dimensional data (e.g., DNA microarray data, spectral data with a high frequency 
resolution and complex image and video data). High-dimensional data sets are more likely 
than others to provide clusterings which are not significant and meaningful. Especially in 
those cases, but also when clustering any other sample data, the use of resampling methods 
is recommend as a valuable aid for a statistical model quality assessment. 
The above description and review of resampling schemes and their performance as well as 
the presentation of a new approach (NNR) may help users to select an appropriate method 
in future studies. 
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1. Introduction 
Content-based 3D model retrieval (CB3DMR) aims at augmenting the text-based search 
with the ability to search 3D data collections by using examples, sketches, as well as 
geometric and structural features. In recent years there is an increasing demand on such 
tools as 3D graphics technology is becoming widely accessible and a large amount of 3D 
contents is being created and shared. 
Usually an algorithm for 3D model classification and retrieval requires: (1) an efficient 
representation of the 3D data that is suited for search, and (2) a good similarity function in 
order to measure distances between entities in the feature space. The first step involves 
feature extraction, feature selection strategy to keep only the most relevant features, and a 
method for encoding the features as real-valued vectors called shape descriptors. Shape 
descriptors provide a numerical representation of the salient features of the data. They 
should be an abstraction of the semantics of the shape and shape category. Many descriptors 
have been proposed for content-based 3D model classification and retrieval but none of 
them has achieved high-level performance on all shape classes. For instance: 
• Global geometric features, which are easy to compute and compare, are poor in terms of 

discrimination power since they are unable to capture the intra-class shape variability. 
Alternatively, local features, such as spin images (Johnson, 1997) and shape contexts 
(M.Kortgen et al., 2003) are more effective for intraclass retrieval. However, their 
extraction and comparison are expensive in terms of computation and storage 
requirements. A key observation is that many of these features are redundant and only 
a small subset of them, called representative feature set, is really discriminative. Thus, 
there is a need for selecting automatically the optimal set of features. The selected set 
should be specific to each class of shapes, and adapted to different types of user queries 
and data classifications. 

• Geometry-based features, such as Light Fields (LFD) (Chen et al., 2003) and spherical 
harmonic (Funkhouser et al., 2003) descriptors, represent shapes with their global 
geometric characteristics. On the other hand, graph-based descriptors, such as Reeb-
graphs and skeleton representations (Hilaga et al., 2001; T.Tung & F.Schmitt, 2005), 
encode the structural characteristics of the shape, and therefore are more suitable for 
indexing articulated shapes. Consequently, there is a need for combining heterogeneous 



 Machine Learning 

 

304 

McLachlan, G.J. & Khan, N. (2004). On a resampling approach for tests on the number of 
clusters with mixture model-based clustering of tissue samples. Journal of 
Multivariate Analysis, Vol. 90, 90-105 

Minaei-Bidgoli, B.; Topchy, A. & Punch, W.F. (2004). A comparison of resampling methods 
for clustering ensembles. Proceedings of the International Conference on Machine 
Learning; Models, Technologies and Applications (MLMTA), pp. 939-945, Las Vegas, 
Nevada, June 2004 

Möller, U. & Radke, D. (2006a). Performance of data resampling methods for robust class 
discovery based on clustering. Intelligent Data Analysis Vol. 10, No. 2, 139-162 

Möller, U. & Radke, D. (2006b). A cluster validity approach based on nearest neighbor 
resampling, Proceedings of the Int. Conf. on Pattern Recognition (ICPR), pp. 892-895, 
ISBN 0-7695-2521-0, Hong-Kong, August 2006, IEEE Computer Society Press 

Möller, U. (2007). Missing clusters indicate poor estimates or guesses of a proper fuzzy 
exponent. In: Applications of Fuzzy Sets Theory, Masulli, F.; Mitra, S.; Pasi, G. (Ed.), 
Lecture Notes in Artificial Intelligence 4578, 161-169, Springer, ISBN 978-3-540-73399-
7, Berlin-Heidelberg 

Möller, U. (2008). Methods for robust class discovery in gene expression profiles of tissue 
samples. Poster presentation at the conference Bioinformatics Research and 
Development (BIRD), July 2008, Vienna, Austria 

Monti, S.; Tamayo, P.; Mesirov, J. & Golub, T. (2003). Consensus clustering: A resampling-
based method for class discovery and  visualization of gene expression microarray 
data. Machine Learning, Vol. 52, 91−118 

Smolkin, M. & Ghosh, D. (2003). Cluster stability scores for microarray data in cancer 
studies. BMC Bioinformatics, 4:36, www.biomedcentral.com/1471-2105/4/36 

Strehl, A. & Gosh, J. (2002). Cluster ensembles: A knowledge reuse framework for 
combining multiple partitions, J. of Machine Learning Research, Vol. 3, 583–617 

Suzuki, R. & Shimodaira, H. (2004). An application of multiscale bootstrap resampling to 
hierarchical clustering of microarray data: How accurate are these clusters? 
Proceedings of the Int. Conf. on Genome Informatics (GIW), p. P034 

Suzuki, R. & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in 
hierarchical clustering. Bioinformatics, Vol.  22, No. 12, 1540-1542 

Theodoridis S. & Koutroumbas, K. (2006). Pattern recognition. 3rd ed., Academic Press, ISBN 
0-12-369531-7, San Diego 

Topchy, A.; Jain, A.K. & Punch, W. (2005). Clustering ensembles: models of consensus and 
weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.  
27, No. 12, 1866-1881 

Tseng, G.C. & Wong, W.H. (2005). Tight clustering: a resampling-based approach for 
identifying stable and tight patterns in data. Biometrics, Vol. 61, 10-16 

Ulbrich, B. (2006). Improvements of tumor classification based on molecular-biological 
patterns by using new methods of unsupervised learning. (in German), Diploma 
Thesis in Bioinformatics, August 2007, Friedrich Schiller University, Jena, Germany 

Valentini, G. (2006). Clusterv: a tool for assessing the reliability of clusters discovered in 
DNA microarray data. Bioinformatics, Vol. 22 No. 3, 369-370 

Yeung, K.Y.; Haynor, D.R. & Ruzzo, W.L. (2001). Validating clustering for gene expression 
data. Bioinformatics, Vol. 17, No. 4, 309-318 

Yu, Z.; Wong, H.-S. & Wang, H. (2007). Graph-based consensus clustering for class 
discovery from gene expression data. Bioinformatics, Vol. 23, No. 21, 2888-2896 

15 

3D Shape Classification and Retrieval Using 
Heterogenous Features  

and Supervised Learning 
Hamid Laga 

Tokyo Institute of Technology 
Japan 

1. Introduction 
Content-based 3D model retrieval (CB3DMR) aims at augmenting the text-based search 
with the ability to search 3D data collections by using examples, sketches, as well as 
geometric and structural features. In recent years there is an increasing demand on such 
tools as 3D graphics technology is becoming widely accessible and a large amount of 3D 
contents is being created and shared. 
Usually an algorithm for 3D model classification and retrieval requires: (1) an efficient 
representation of the 3D data that is suited for search, and (2) a good similarity function in 
order to measure distances between entities in the feature space. The first step involves 
feature extraction, feature selection strategy to keep only the most relevant features, and a 
method for encoding the features as real-valued vectors called shape descriptors. Shape 
descriptors provide a numerical representation of the salient features of the data. They 
should be an abstraction of the semantics of the shape and shape category. Many descriptors 
have been proposed for content-based 3D model classification and retrieval but none of 
them has achieved high-level performance on all shape classes. For instance: 
• Global geometric features, which are easy to compute and compare, are poor in terms of 

discrimination power since they are unable to capture the intra-class shape variability. 
Alternatively, local features, such as spin images (Johnson, 1997) and shape contexts 
(M.Kortgen et al., 2003) are more effective for intraclass retrieval. However, their 
extraction and comparison are expensive in terms of computation and storage 
requirements. A key observation is that many of these features are redundant and only 
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encode the structural characteristics of the shape, and therefore are more suitable for 
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features in order to achieve best performance. By heterogeneous we mean features of 
different types and scales. 

From the machine learning point-of-view, efficient selection and combination of 
heterogeneous features for classification and retrieval poses many challenges. The first issue 
is how to choose among a large set of features, a subset that allows to achieve high-level 
performance. The second issue is the feature normalization problem. Heterogenous features 
are often of different scales. Therefore, incorporating them directly into the similarity 
function will result in low retrieval performance as higher scale features will influence more 
the similarity. This issue is related to the feature weighting strategy. 
The goal of this chapter is to develop an effective 3D shape classification and retrieval 
method that uses discriminative shape features automatically selected from a large set of 
heterogeneous features. The construction of the representative set can be regarded as a 
machine learning task. Particularly, supervised learning allows to capture the high-level 
semantic concepts of the data using low-level geometric features. Our key idea is to use a 
large set of local and global features, eventually not orthogonal, then use a supervised 
learning algorithm to select only the most efficient ones. We experimented with AdaBoost 
which provides a mean for feature selection and classifier combination. Boosting, like many 
machine-learning methods, is entirely data-driven in the sense that the classifier it generates 
is derived exclusively from the evidence present in the training data itself (Schapire, 2003). 
Moreover, allowing redundancy and overlapping in the feature set has been proven to be 
very efficient in recognition and classifications tasks than orthogonal features (Tieu & Viola, 
2004). Specifically, we make the following contributions: 
• An algorithm for learning the discriminative features of a class of shapes from a 

training set. The algorithm allows also to quantify the discrimination ability of a shape 
feature with respect to the underlying classification. Features of high discrimination 
ability of each class of shapes will be used for processing unseen objects (classification 
of the query, and retrieving the most similar shapes to the query). 

• A method for matching shapes using only the most relevant features to each class of 
shapes. This approach can be used with either a flat or a hierarchical classification of the 
data resulting in a multi-scale organization of the feature space. 

• The ability to use heterogeneous features for classification is a major deviation from 
previous work. 

The remainder of this paper is organized as follows: the next section reviews the related 
work. Section 2.3 gives and overview of the proposed framework and outlines the main 
contributions. In Section 3 we describe the type of 3D shape descriptors we will use in this 
chapter. Section 4 details the developed algorithm for feature selection and combination in 
the case of a binary classification (Section 4.1), and its generalization to a multi-class 
problem (Section 4.2). In Section 5 we detail the query processing method for classification 
and retrieval. Experimental results and evaluations are given in Section 6. Section 7 
concludes the paper and outlines the major issues for future work. 

2. Related work 
3D shape analysis, classification and retrieval received significant attention in recent years. 
In the following we review the most relevant techniques to our work. For more details, we 
refer the reader to the recent surveys of the topic (Lew et al., 2006; Tangelder & Veltkamp, 
2004; Iyer et al., 2005). 
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2.1 Descriptors for 3D model retrieval 
For efficient comparison and similarity estimation, 3D models can be represented with a set 
of meaningful descriptors that encode the salient geometric and topological characteristics 
of their shapes. The database objects are then ranked according to their distance to the 
descriptors of the query model. These descriptors are either global, local, or structural. 
Structural descriptors such as Reeb graphes (Hilaga et al., 2001; T.Tung & F.Schmitt, 2005) 
aim at encoding the topological structure of the shape. They can be used for global matching 
as well as partial matching (Biasotti et al., 2006). 
Global descriptors describe an entire 3D shape with one single feature vector. In this family, 
the Light Fields (LFD) (Chen et al., 2003) are reported to be the most effective (Shilane et al., 
2004). (Funkhouser et al., 2003) map a 3D shape to unit spheres and use spherical harmonics 
(SH) to analyze the shape function. Spherical harmonics can achieve rotation invariance by 
taking only the power spectrum of the harmonic representation, and therefore, discarding 
the rotation dependent information (Kazhdan et al., 2003). (Novotni & Klein, 2003) use 3D 
Zernike moments (ZD) as a natural extension of SH. (Laga et al., 2006) introduced flat 
octahedron parameterization and spherical wavelet descriptors to eliminate the singularities 
that appear in the two poles when using latitude-longitude parameterization, and therefore, 
achieve a fully rotation invariant description of the 3D shapes. Recently, (Reuter et al., 2006) 
introduced the notion of shape DNA as fingerprints for shape matching. The fingerprints 
are computed from the spectra of the Laplace-Beltrami operators. They are invariant under 
similarity transformations and are very efficient in matching 2D and 3D manifold shapes. 
However, it is not clear how they can be extended to polygon soup models. 
Global descriptors are very compact, easy to compute, and efficient for broad classification 
of 3D shapes. However, they cannot capture the variability of the shapes and their subtle 
details necessary for intra-class retrieval. Local feature-based methods can overcome these 
limitations by computing a large set of features at different scales and locations on the 3D 
model. Spin images (Johnson, 1997) and shape contexts (M.Kortgen et al., 2003) have been 
used for shape retrieval as well as for matching and registering 3D scans. Local features are 
very efficient to discriminate objects within the same class. However, similarity estimation 
requires combinatorial comparison, making them not suitable for realtime applications such 
as retrieval. 

2.2 Feature selection and relevance feedback 
3D model retrieval by matching low level features does not fully reflect the semantics of the 
data. For instance, most of the previous techniques cannot distinguish between a flying bird 
and a commercial airplane. This is commonly known as the semantic gap. Recent progress in 
pattern recognition suggested the use of supervised learning to narrow the semantic gap. 
This allows the automatic selection of salient features of a single 3D model within a class of 
shapes, and also the use of the results of classification to improve the performance of 
retrieval algorithms. 
The basic learning approach is the Nearest Neighbor classifier. It has been used for the 
classification of 3D protein databases (Ankerst et al., 1999), and also 3D engineering parts (Ip 
et al., 2003). 
Hou et al. (2005) introduced a semi-supervised semantic clustering method based on 
Support Vector Machines (SVM) to organize 3D models semantically. The query model is 
first labeled with some semantic concepts such that it can be assigned to a single cluster. 
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first labeled with some semantic concepts such that it can be assigned to a single cluster. 
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Then the search is conducted only in the corresponding cluster. Supervised learning and 
ground-truth data are used to learn the patterns of each semantic cluster off-line. Later, 
(Hou & Ramani, 2006) combine both semantic concepts and visual content in a unified 
framework using a probability-based classifier. They use a linear combination of several 
classifiers, one per descriptor. The individual classifiers are trained in a supervised manner, 
and output an estimate of the probability of data being classified to a specific class. The 
output of the training stage is used to estimate the optimal weights of the combination 
model. The retrieval is performed in two stages; first they begin by estimating the 
conditional probability of each class of shapes given the query. Then they perform shape 
search inside each candidate class. The new similarity measure is a unified distance that 
integrates the probability estimation from the classifiers, a combination of classifiers learned 
off-line, and a shape similarity distance. This is the closest work to ours. In this approach 
features and type of classifiers are set manually. In our case, we aim at selecting 
automatically the most salient features. 
(Shilane & Funkhouser, 2006) investigated on how to select local descriptors from a query 
shape that are most distinctive and therefore most relevant for retrieval. Their approach 
uses supervised learning to predict the retrieval performance of each feature, and select only 
a small set of the most effective ones to be used during the retrieval. (Funkhouser & Shilane, 
2006) introduced priority-driven search for partial matching of 3D shapes. The algorithm 
produces a ranked list of c-best target objects sorted by how well any subset of k features on 
the query matches features on the target object. As reported by the authors, the timing 
results is dominated by the number of features for each target object and the number of 
scales for each feature. The algorithm we propose can deal with large set of features while 
maintaining the processing time at interactive rates. 
The approach most similar to our own is that of (Tieu and Viola, 2004) where they applied 
the AdaBoost algorithm (Schapire, 2003) to online learning of the similarity of a given query 
to the target objects in image retrieval. It has been recently extended to learn the intrinsic 
features for boosting 3D face recognition (Xu et al., 2006). AdaBoost enables the use of a very 
large set of features while keeping the processing time at the run-time very attractive. We 
improve over this approach in two important ways. First we investigate the application of 
AdaBoost to the general problem of 3D model retrieval. Second, we learn, off-line, the 
optimal salient and discriminative set of features for each class of shapes with respect to 
objects in the entire database. These improvements allow our 3D model retrieval algorithm 
to achieve high-level performance in terms of retrieval efficiency and computation time. 

2.3 Overview 
Figure 1 gives an overview of our approach. At the training stage a strong classifier is 
learned using AdaBoost. The classifier returns the likelihood that a given 3D model O 
belongs to a class of shapes C. First a large set of features are extracted from every model in 
the database. Then a set of binary classifiers are trained using AdaBoost. Each binary 
classifier learns one class of shapes and its optimal set of salient features. Finally, the binary 
classifiers are combined into one multi-class classifier. In our implementation we 
experimented with the Light Field Descriptors (LFD) (Chen et al., 2003) (100 descriptors per-
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descriptors per-shape, each descriptor is computed on a concentric sphere of radius r, 0 ≤ r ≤ 
1), and a combination of the two descriptors which will be referred by LFD-GEDT. 
At the run-time, given a query model Q, a ranked list of k–best matches is produced in a 
two-stage process that involves classification and search. First, a large set of features are 
computed from the query model Q, in the same manner as for the database models. Then in 
the classification stage, a set of highly relevant classes to Q is found. Each binary classifier Ci 

decides wether the class Ci is relevant to the query Q or not. In the retrieval stage, the 
similarity between Q and the models in every relevant class Ci is estimated and a ranked list 
of the best matches is returned. 
 

 
Fig. 1. Overview of AdaBoost-based 3D model classification and retrieval. At the training 
stage a strong classifier is learned using AdaBoost. The strong classifier is based on a 
combination of the most discriminative features of the shape. At the run-time, a query is 
first classified into a set of candidate classes, then the search for the best matches is 
performed inside the candidate classes. 

The key step in this process is the way we predict the saliency of each feature with respect to 
a class of shapes in the training set. More formally, the saliency of a feature  with respect 
to a class of shapes C is the ability of this feature to discriminate the shapes of class C from 
the shapes of other classes in the database. Mathematically, given the binary classifier   
trained with the feature , the saliency of  is directly related to the overall classification 
error of  on the data set. However, none of the existing classifiers that are based on a 
single feature can achieve zero classification error. Therefore none of the features is 
sufficiently salient. AdaBoost provides a way for combining weak classifiers and shape 
features, eventually of different types and saliency degrees, into a single strong classifier 
with high classification performance. There are several advantages of this approach: 
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classifier learns one class of shapes and its optimal set of salient features. Finally, the binary 
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Although a large set of features is extracted both at the training and online stages, only a 
small subset of the features (between 10 to 50) is used during the similarity estimation. This 
allows retrieval at interactive rates. 
• The algorithm selects automatically the representative set of features for each class of 

shapes, and provides a mean for automatic combination of the selected features. This 
has potential applications in shape classification and recognition. 

• The algorithm provides an automatic way to truncate the list of the k−best matches, i.e, 
it provides a mean for saying wether the database contains models which are similar to 
a given query or not. 

• This approach allows to perform both inter-class and intra-class retrieval. 
AdaBoostbased classifier allows to find the relevant classes to the query. Then, in a 
second step, the search can be performed inside each relevant class using, eventually, 
different types of descriptors. 

For feature extraction, we use the Light Field descriptors (LFD) (Chen et al., 2003) and 
Gaussian Euclidean Distance Transform (GEDT) (Shilane et al., 2004). However, a further 
investigation is required to test the efficiency of other descriptors when boosted, which is 
beyond the scope of this paper. 

3. 3D shape descriptors 
The process starts by computing a large set of features for each model in the training set, 
which is the content of the database to search. There are many requirements that the 
features should fulfill: (1) compactness, (2) computation speed, and (3) the ability to 
discriminate between dissimilar shapes. However, in real applications it is hard to fulfill 
these requirements when the goal is to achieve high retrieval accuracy. In fact, compact 
features, which are easy to compute, are not discriminative enough to be used for high 
accuracy retrieval. We propose to extract a large set of features following the same idea as in 
(Tieu & Viola, 2004). 
There are many shape descriptors that can be computed from a 3D model. A large set of 
Spherical harmonics (Funkhouser & Shilane, 2006) and spherical waveletbased descriptors 
(Laga et al., 2006) can be computed by moving the center of the sphere across different 
locations on the shape’s surface or on a 3D grid. However, in the literature, it has been 
proven that view-based descriptors outperform significantly the spherical descriptors. In 
our implementation we considered two shape descriptors evaluated in the Princeton Shape 
Benchmark: the Light Fields Descriptor (LFD), and the Gaussian Euclidean Distance 
Transform Descriptor (GEDT). For the completeness purpose we give a brief overview of these 
descriptors but the reader can find further details in the original paper (Shilane et al., 2004): 
• Light Field Descriptor (LFD) (Chen et al., 2003): a view-based descriptor computed 

from 100 images rendered from cameras positioned on the vertices of a regular 
dodecahedron. Each image is encoded with 35 Zernike moments, and 10 Fourier 
coefficients. In this paper we use our own implementation. 

• Gaussian Euclidean Distance Transform (GEDT) (Shilane et al., 2004): a 3D function 
whose values at each point is given by composition of a Gaussian with the Euclidean 
Distance Transform of the surface. It is computed on 64×64×64 axial grid, translated 
such as the origin is at the point (32, 32, 32), scaled by a factor of 32, and then 
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represented by 32 spherical descriptors representing the intersection of the voxel grid 
with concentric spherical shells. Values within each shell were scaled by the square-root 
of the corresponding area and represented by their spherical harmonic coefficients up 
to order 16. 

To evaluate the performance of the feature selection algorithm we will consider also a 
combination of the two descriptors, herein after referred by LFD-GEDT. Notice that these 
two descriptors are encoding different properties of the shape and may have different 
scales. Also, the set of features contains many redundancies: in the case of LFD for example, 
two symmetric view points will have the same 2D projection, and close points in the 
Euclidean sense will have their associated LFDs very similar. On one hand, this will increase 
significantly the storage and computation time required for matching and retrieval. 
However, on the other hand, it will guarantee that the feature set can capture the shape 
variability. Therefore, we rely on the learning stage to select the salient ones that achieve 
best classification and retrieval performance. 

4. Supervised classification 

The first task in our approach is to build a classifier C that decides wether a given 3D model 
O belongs to a class of shapes C or not. The challenge is to define a feature space such that 
3D shapes belonging to the same class are mapped into points close to each other in the new 
feature space. Clusters in the new space correspond to classes of 3D models. There are many 
feature spaces that have been proposed in the literature, but it has been proven that none of 
them achieved best performance on all classes of shapes. We propose to follow a machine 
learning approach where each classifier is obtained by the mean of training data. 

4.1 Boosting the binary classification 
A brute force approach for comparing a large set of features is computationally very 
expensive, and in the best case, it requires M ×d×N comparisons, where M is the number of 
feature vectors used to describe each 3D model, d is the dimension of the feature space, and 
N is the number of models in the database. 
Previous works consider this problem from the dimensionality reduction point of view. 
(Ohbuchi et al., 2007) provide an overview and performance evaluation of six linear and 
non-linear dimensionality reduction techniques in the context of 3D model retrieval. They 
demonstrated that non-linear techniques improve significantly the retrieval performance. 
There have been also a lot of research in classifiers that have a good generalization 
performance by maximizing the margin. Speed is the main advantage of boosting over other 
classification algorithms such as Support Vector Machines (SVM) (Hou et al., 2005), and 
non-linear dimensionality reduction techniques (Ohbuchi et al., 2007; Ohbuchi & Kobayashi, 
2006). It can be also used as a feature selection algorithm, and provides a good theoretical 
quantification of the upper bound of the error rate, therefore a good generalization 
performance. 
We use AdaBoost version of boosting. Every weak classifier is based on a single feature of a 
3D shape (recall that we have computed a large set of features for each 3D model). The final 
strong classifier, a weighted sum of weak classifiers, is based on the most discriminating 
features weighted by their discriminant power. The algorithm is summarized in Algorithm 1. 
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represented by 32 spherical descriptors representing the intersection of the voxel grid 
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of the corresponding area and represented by their spherical harmonic coefficients up 
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To evaluate the performance of the feature selection algorithm we will consider also a 
combination of the two descriptors, herein after referred by LFD-GEDT. Notice that these 
two descriptors are encoding different properties of the shape and may have different 
scales. Also, the set of features contains many redundancies: in the case of LFD for example, 
two symmetric view points will have the same 2D projection, and close points in the 
Euclidean sense will have their associated LFDs very similar. On one hand, this will increase 
significantly the storage and computation time required for matching and retrieval. 
However, on the other hand, it will guarantee that the feature set can capture the shape 
variability. Therefore, we rely on the learning stage to select the salient ones that achieve 
best classification and retrieval performance. 
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The first task in our approach is to build a classifier C that decides wether a given 3D model 
O belongs to a class of shapes C or not. The challenge is to define a feature space such that 
3D shapes belonging to the same class are mapped into points close to each other in the new 
feature space. Clusters in the new space correspond to classes of 3D models. There are many 
feature spaces that have been proposed in the literature, but it has been proven that none of 
them achieved best performance on all classes of shapes. We propose to follow a machine 
learning approach where each classifier is obtained by the mean of training data. 

4.1 Boosting the binary classification 
A brute force approach for comparing a large set of features is computationally very 
expensive, and in the best case, it requires M ×d×N comparisons, where M is the number of 
feature vectors used to describe each 3D model, d is the dimension of the feature space, and 
N is the number of models in the database. 
Previous works consider this problem from the dimensionality reduction point of view. 
(Ohbuchi et al., 2007) provide an overview and performance evaluation of six linear and 
non-linear dimensionality reduction techniques in the context of 3D model retrieval. They 
demonstrated that non-linear techniques improve significantly the retrieval performance. 
There have been also a lot of research in classifiers that have a good generalization 
performance by maximizing the margin. Speed is the main advantage of boosting over other 
classification algorithms such as Support Vector Machines (SVM) (Hou et al., 2005), and 
non-linear dimensionality reduction techniques (Ohbuchi et al., 2007; Ohbuchi & Kobayashi, 
2006). It can be also used as a feature selection algorithm, and provides a good theoretical 
quantification of the upper bound of the error rate, therefore a good generalization 
performance. 
We use AdaBoost version of boosting. Every weak classifier is based on a single feature of a 
3D shape (recall that we have computed a large set of features for each 3D model). The final 
strong classifier, a weighted sum of weak classifiers, is based on the most discriminating 
features weighted by their discriminant power. The algorithm is summarized in Algorithm 1. 
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The sample weights , i = 1, . . . , N, t = 1, . . . , T are very important; at step t, the weights of 
the samples with high classification error at step t − 1 is increased, while the weights of 
samples with smaller classification error is decreased (Algorithm 1). This will let the 
classifier at step t focus on difficult samples which have not been correctly classified in the 
previous step. The output of the strong classifier can be interpreted as the posterior 
probability of a class C given the shape O and it is given by: 

 
(1) 

The AdaBoost algorithm requires two parameters to tune: the type of weak classifier, and the 
maximum number of iterations. The weak classifier is required to achieve better classification 
than random. We experimented with the decision stumps and Least Mean Squares (LMS) 
classifier for their simplicity. The parameter T can be set such that E[fC], the upper bound of the 
classification error on the training data of the strong classifier fC, is less than a threshold θ. In 
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our experiments we found that a value of T between 20 and 50 is sufficient to achieve an upper 
bound of the classification error on the training set less than 1.0%. 
Building the training set 
We use as positive and negative examples for our training set the relevant and nonrelevant 
models provided in the Princeton Shape Benchmark (PSB) classification. For example, to 
build a strong classifier that learns the decision boundary between the biped human objects 
and non-biped human objects, the positive examples are set to all models that belong to the 
class biped human, while the negative examples are the remaining models in the database. 
The PSB is provided with a train and test classifications. We use the train classification to 
train our classification and the test classification to assess the performance of the 
classification and retrieval. 

4.2 Generalization to multiple classes 
Two straightforward extension schemes are the one-vs-all classifier and the pairwise 
classifier (Hao & Luo, 2006). The pairwise classifier uses L(L − 1)/2 binary classifiers where L 
is the number of classes in the training set, to separate every two classes. A voting scheme at 
the end is used to determine the correct classification. With the one-vs-all classifier, L binary 
classifiers are trained, each of which is able to distinguish one class from all the others. The 
pairwise classifier has a smaller area of confusion in the feature space compared to the one-
vs-all. However, the number of the required binary classifiers increases quadratically with 
the number of classes in the database, while the one-vs-all increases linearly. 
In our implementation we used a one-vs-all classifier for its simplicity. The output of the 
training stage is a set of L binary classifiers, where L is the number of classes in the database. 
Given a query model Q each binary classifier will return a vote for a certain class. We use 
the positive votes to construct the set of candidate classes to which the query Q may belong. 
Notice that when a new 3D model or a new class of models are added to the database, only 
the classifier that corresponds to the model’s class that needs training. 
It is important to outline that the algorithm is data-driven that is different classifiers are 
obtained when given a different classification of the data. This allows to capture the 
semantics of the data. Furthermore, existing 3D model collections are often provided with 
multiple classifications. We plan in the future to extend the framework to handle 
hierarchical classifications of the data. 
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4.3 Interpretation of the selected features 
Boosting algorithm can be used as a feature selection and combination technique. Each 
iteration learns a new weak classifier that is based on the most discriminative feature 
according to the probability distribution of the training data. In the case of LFD, the selected 
feature is the descriptor of a 2D projection of the 3D model. Therefore, by adopting a 
Boosting approach we provide a tool for best view selection and view ordering based on 
their ability to discriminate the shapes of a certain class from the other classes in the 
database. Here we assume that the quality of a view is quantified as its discrimination 
ability, i.e, the ability of the 2D view to discriminate the shape from other shapes that belong 
to different classes. 
The interpretation of the weak classifier may differ according to the type of descriptor used 
for training. In the case of the GEDT, which computes the restriction of the shape to 
concentric sphere, the selected feature can be seen as the radius of the concentric sphere on 
which the most important features of the class lie. Furthermore, the weight of each weak 
classifier can be considered as a measure of the saliency of the selected feature. Recall also 
that AdaBoost is a stochastic approach. Therefore, different runs of the algorithm on the 
same data will generate different sets of selected features. This is the case when the problem 
has many solutions (local optima). At each run it finds a different solution but with similar 
performance. 
Figure 2 shows the top-best views selected with our algorithm. We can see that the 
important features of each class of shapes are visible from the selected views. This shows 
first that the selected views are consistent across all models of a same class, and the selected 
views are visually plausible. Hence, boosting captures some high semantic features of the 
data set. Best view selection has many applications in Computer Graphics and also online 
browsing of digital media contents. The framework we proposed provides an easy method 
to achieve this. We plan in the future to evaluate the quality of the selected views compared 
to other algorithms (Lee et al., 2005; Yamauchi et al., 2006). 
 

 
Fig. 2. Boosted LFD descriptor allows for automatic best-view selection. The first and second 
rows show respectively the first and second best views of objects belonging to different 
classes of shapes. Automatic best view selection can be used for visual browsing of large 
collections of 3D models. 
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4.4 Combining heterogeneous features 
One important property of the developed classification algorithm is its ability to combine 
heterogeneous features in a straightforward manner; at each step of the training process, a 
set of weak classifiers are trained on the features, one-per basic feature, and the one with 
minimum training error is picked. Therefore, the features are considered independently. 
Although this may ignore possible correlations between basic features, it allows however to 
handle features of different types. We use this property to combine heterogeneous features 
for efficient classification. 

5. Query processing 
At the run time, the user specifies a query Q and seeks either to classify it into one of the 
shape classes (classification), or retrieve models in the database that are most similar to the 
query (retrieval). 
To classify the query Q, we compute a set of M feature vectors (LFD and GEDT descriptors 
in our case) in the same manner as in the training stage (Section ??). Then we let each binary 
classifier Cl vote for a the class Cl, l = 1, . . . , L. The candidate classes are determined by the 
classifiers that have positive response to the query Q. We build the candidate classes set by 
collecting the indices of classes whose classifiers gave positive response, and we order them 
in descending order of the class posterior probabilities given in Equation 1. 
We perform the retrieval in two steps combining classification and search: first we find the 
candidate classes Ci to which the query Q may belong. Then, we run a search operation 
inside each candidate class by computing the similarity between the query Q and every 
model in the candidate class Ci. The 3D models of the candidate classes are sorted according 
to their similarity to the query model. We return one ranked list per class. The ranked lists 
are merged to form the k-best matches to the query. Here we use only the salient features of 
the class Ci, and the matching is performed only on a subset of the entire database. This 
reduces significantly the computation time. 
Search inside classes requires the use of a distance function which measures the distance 
between the descriptor of the query and the descriptors of the class’s shapes. In our 
implementation we used the Euclidean distance when working with a single descriptor 
type, i.e., LFD or GEDT. When using heterogeneous features however(ex. LFD-GEDT), the 
descriptor with larger scale will have higher impact on the Euclidean distance. To overcome 
this limitation we modify slightly the distance measure as follows; first we compute the 
Euclidean distance between the query model and the candidate models using each 
descriptor independently. The final distance is then taken as the minimum over the 
computed distances. 
Examples of retrieval results are shown in Figures 4 and 5 with queries that are not part of 
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4.3 Interpretation of the selected features 
Boosting algorithm can be used as a feature selection and combination technique. Each 
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to different classes. 
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Fig. 2. Boosted LFD descriptor allows for automatic best-view selection. The first and second 
rows show respectively the first and second best views of objects belonging to different 
classes of shapes. Automatic best view selection can be used for visual browsing of large 
collections of 3D models. 
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4.4 Combining heterogeneous features 
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polygon soup models, divided into the training set (907 models) and the test set (907 
models). Every set contains four classification levels; the base train classification contains 
129 classes while the coarsest classification (coarse3) contains two classes: man-made vs. 
natural objects. 

6.1 Classification performance 
Figure 3 summarizes the classification performance of the developed AdaBoost classifier. In 
this figure, the average classification performance is the ratio between the number of 
correctly classified models of a class C to the total number of models in the class. We see 
that, for the coarse3 classification (Figure 3-(d)), which contains only two classes with very 
high shape variability within each class, the classification performance is at 65.3% for 
natural shape and 73% for man-made models. This clearly proves that the training 
procedure captures efficiently the semantic concepts of the shape classes and generalizes 
relatively well to unseen samples. 
 

 
Fig. 3. Average classification performance of the Boosted-LFD for each class of shapes in the 
test set of the Princeton Shape Benchmark. Class labeled by (-1) contains models that cannot 
be classified to any of the other classes. 

The performance on the other classification levels: base, coarse1 and coarse2 are shown in 
Figure 3-(a),(b) and (c). In this experiments we show only the classification results on the 
classes of the test set that exist in the training set. On the base classification (Figure 3-(a)), we 
can see that the classifiers achieve 100% classification performance on space ship entreprise 
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like, dining chair and sea vessel. The worst performance is on the plant tree models. This is 
probably because of the high shape variability within the class , which cannot be captured 
by the LFD descriptors. 

6.2 Retrieval performance 
To evaluate the retrieval performance we train our classifier with the entire base 
classification (train and test sets) of the PSB. This classification contains 160 shape categories 
with varying number of samples in each class. For testing, we use the 30 queries of the 
SHREC2006. Each query contains a set of highly relevant and relevant models in the 
database. Recall that these queries do not belong the database, and therefore, have not been 
used during the training of the AdaBoost classifiers. We measure the retrieval performance 
using the SHREC2006 tools and compare to the other descriptors used in contest. 
Tables 1, 2, and 3 summarize the performance of our descriptors on the mean average 
precision, mean first tier, mean second tier, dynamic average recall, mean normalized 
cumulative gain (MNCG), and the mean normalized discounted cumulative gain (MNDCG) 
measures. We tested the GEDT and LFD descriptors without boosting, the Boosted-GEDT 
and Boosted-LFD (i.e., the GEDT and LFD descriptors after boosting), and combination of 
LFD and GEDT denoted by Boosted-LFD-GEDT. 
We can see first that the boosted versions of the LFD and GEDT algorithms perform much 
better than before boosting. This confirms that learning the salient features of the data by the 
mean of supervised learning improves the performance of the descriptors as it captures the 
semantic structure of the database to query. Although we tested only the LFD and GEDT, 
our approach is more general and it can be applied to other types of descriptors. 
The second observation is that the Boosted-LFD-GEDT descriptor outperforms the Boosted-
LFD and Boosted-GEDT in most of the measures. This shows that combining different types 
of features precision as well as the the mean dynamic average recall of the retrieval 
algorithm. In our implementation we used a simple similarity measure for intra-class search 
for the combined descriptor. We believe that there is a window for improvement by 
investigating more elaborated similarity measures. 
Finally, Figures 4 and 5 some retrieval results of the Boosted-LFD and Boosted-GEDT 
descriptors. We use the SHREC2006 queries (first column) and we show the top-10 best 
matches. Notice that for some queries (the dolphine for the Boosted-LFD and the horse for 
the Boosted-GEDT), the algorithm returned less then 10 results. This is an important 
property of our algorithm: it is able to say whether a model is relevant to the query or not 
and therefore discard irrelevant models from the retrieval list. 

7. Conclusion 
We proposed in this chapter a new framework for 3D model retrieval based on an off-line 
learning of the most salient features of the shapes. By using a boosting approach we are able 
to use a large set of features, which can be heterogeneous, in order to capture the high-level 
semantic concepts of different shape classes. The retrieval process is a combination of 
classification and intra-class search. The experimental results showed that (1) the boosted 
descriptors outperform their non-boosted counter part, and (2) an efficient combination of 
descriptors of different types improves significantly the retrieval performance. 
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Table 1. Mean Average precision, Mean First Tier and Second Tier performance. 
As future work, there are many avenues for improvements. First, most of existing 3D model 
repositories are often provided with a hierarchical classification. We plan to extend our 
framework to handle such structure of the data as well as fuzzy classification, since in 
nature a same model may belong to several categories simultaneously. Also we plan to 
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investigate on the meaning of the selected feature space for each shape class and extend the 
framework to the problem of building creative prototypes of 3D models. The prototype 
should capture the high-level semantic features of the class. 

8. Acknowledgement 
The implementation of the GEDT descriptor has been kindly provided by Philip Shilane. 
Models that appear in this chapter are from the Princeton Shape Benchmark, courtesy of the 
Shape Analysis Group of the Princeton University. The query models and the evaluation 
tools used in this chapter are part of SHREC2006: the first Shape Retrieval Evaluation 
Contest (http://www.aimatshape.net/event/SHREC/shrec06). 
This research is supported by the Japanese Ministry of Education, Culture, Sports, Science and 
Technology (MEXT) program Promotion of Environmental Improvement for Independence of Young 
Researchers under the Special Coordination Funds for Promoting Science and Technology. 

9. References 
Ankerst, M., Kastenmoller, G., Kriegel, H.-P. and Seidl, T. (1999), Nearest neighbor 

classification in 3D protein databases, in ‘the Seventh International Conference on 
Intelligent Systems for Molecular Biology’, AAAI Press, pp. 34–43. 

Biasotti, S., Marini, S., Spagnuolo, M. and Falcidieno, B. (2006), “Sub-part correspondence by 
structural descriptors of 3D shapes.”, Computer-Aided Design , Vol. 38, pp. 1002–1019. 

Chen, D.-Y., Tian, X.-P., Shen, Y.-T. and Ouhyoung, M. (2003), “On visual similarity based 
3D model retrieval.”, Computer Graphics Forum , Vol. 22, pp. 223–232. 

Funkhouser, T. A., Min, P., Kazhdan, M. M., Chen, J., Halderman, J. A., Dobkin, D. P. and 
Jacobs, D. P. (2003), “A search engine for 3D models.”, ACM Transactions on 
Graphics , Vol. 22, pp. 83–105. 

Funkhouser, T. and Shilane, P. (2006), Partial matching of 3D shapes with prioritydriven 
search, in ‘SGP ’06: Proceedings of the fourth Eurographics Symposium on 
Geometry Processing’, Eurographics Association, pp. 131–14. 

Hao, W. and Luo, J. (2006), Generalized multiclass adaboost and its applications to multimedia 
classification, in ‘CVPRW ’06: Proceedings of the 2006 Conference on Computer 
Vision and Pattern Recognition Workshop’, IEEE Computer Society, p. 113. 

Hilaga, M., Shinagawa, Y., Kohmura, T. and Kunii, T. L. (2001), Topology matching for fully 
automatic similarity estimation of 3D shapes, in ‘Proceedings of the 28th annual 
conference on Computer graphics and interactive techniques’, ACM Press, pp. 203–
212. 

Hou, S., Lou, K. and Ramani, K. (2005), “SVM-based semantic clustering and retrieval of a 
3D model database”, Journal of Computer Aided Design and Application , Vol. 2, pp. 
155–164. 

Hou, S. and Ramani, K. (2006), A probability-based unified 3D shape search, in ‘European 
Commission International Conference on Semantic and Digital Media 
Technologies, Lecture notes in computer science’, Vol. 4306, pp. 124–137. 

Ip, C. Y., Regli, W. C., Sieger, L. and Shokoufandeh, A. (2003), Automated learning of model 
classifications, in ‘SM ’03: Proceedings of the eighth ACM symposium on Solid 
modeling and applications’, ACM Press, pp. 322–327. 

Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y. and Ramani, K. (2005), “Threedimensional 
shape searching: state-of-the-art review and future trends.”, Computer-Aided Design, 
Vol. 37, pp. 509–530. 



 Machine Learning 

 

318 

 
Table 1. Mean Average precision, Mean First Tier and Second Tier performance. 
As future work, there are many avenues for improvements. First, most of existing 3D model 
repositories are often provided with a hierarchical classification. We plan to extend our 
framework to handle such structure of the data as well as fuzzy classification, since in 
nature a same model may belong to several categories simultaneously. Also we plan to 

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning 

 

319 

investigate on the meaning of the selected feature space for each shape class and extend the 
framework to the problem of building creative prototypes of 3D models. The prototype 
should capture the high-level semantic features of the class. 

8. Acknowledgement 
The implementation of the GEDT descriptor has been kindly provided by Philip Shilane. 
Models that appear in this chapter are from the Princeton Shape Benchmark, courtesy of the 
Shape Analysis Group of the Princeton University. The query models and the evaluation 
tools used in this chapter are part of SHREC2006: the first Shape Retrieval Evaluation 
Contest (http://www.aimatshape.net/event/SHREC/shrec06). 
This research is supported by the Japanese Ministry of Education, Culture, Sports, Science and 
Technology (MEXT) program Promotion of Environmental Improvement for Independence of Young 
Researchers under the Special Coordination Funds for Promoting Science and Technology. 

9. References 
Ankerst, M., Kastenmoller, G., Kriegel, H.-P. and Seidl, T. (1999), Nearest neighbor 

classification in 3D protein databases, in ‘the Seventh International Conference on 
Intelligent Systems for Molecular Biology’, AAAI Press, pp. 34–43. 

Biasotti, S., Marini, S., Spagnuolo, M. and Falcidieno, B. (2006), “Sub-part correspondence by 
structural descriptors of 3D shapes.”, Computer-Aided Design , Vol. 38, pp. 1002–1019. 

Chen, D.-Y., Tian, X.-P., Shen, Y.-T. and Ouhyoung, M. (2003), “On visual similarity based 
3D model retrieval.”, Computer Graphics Forum , Vol. 22, pp. 223–232. 

Funkhouser, T. A., Min, P., Kazhdan, M. M., Chen, J., Halderman, J. A., Dobkin, D. P. and 
Jacobs, D. P. (2003), “A search engine for 3D models.”, ACM Transactions on 
Graphics , Vol. 22, pp. 83–105. 

Funkhouser, T. and Shilane, P. (2006), Partial matching of 3D shapes with prioritydriven 
search, in ‘SGP ’06: Proceedings of the fourth Eurographics Symposium on 
Geometry Processing’, Eurographics Association, pp. 131–14. 

Hao, W. and Luo, J. (2006), Generalized multiclass adaboost and its applications to multimedia 
classification, in ‘CVPRW ’06: Proceedings of the 2006 Conference on Computer 
Vision and Pattern Recognition Workshop’, IEEE Computer Society, p. 113. 

Hilaga, M., Shinagawa, Y., Kohmura, T. and Kunii, T. L. (2001), Topology matching for fully 
automatic similarity estimation of 3D shapes, in ‘Proceedings of the 28th annual 
conference on Computer graphics and interactive techniques’, ACM Press, pp. 203–
212. 

Hou, S., Lou, K. and Ramani, K. (2005), “SVM-based semantic clustering and retrieval of a 
3D model database”, Journal of Computer Aided Design and Application , Vol. 2, pp. 
155–164. 

Hou, S. and Ramani, K. (2006), A probability-based unified 3D shape search, in ‘European 
Commission International Conference on Semantic and Digital Media 
Technologies, Lecture notes in computer science’, Vol. 4306, pp. 124–137. 

Ip, C. Y., Regli, W. C., Sieger, L. and Shokoufandeh, A. (2003), Automated learning of model 
classifications, in ‘SM ’03: Proceedings of the eighth ACM symposium on Solid 
modeling and applications’, ACM Press, pp. 322–327. 

Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y. and Ramani, K. (2005), “Threedimensional 
shape searching: state-of-the-art review and future trends.”, Computer-Aided Design, 
Vol. 37, pp. 509–530. 



 Machine Learning 

 

320 

Johnson, A. (1997), Spin-Images: A Representation for 3-D Surface Matching, PhD thesis, 
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. 

Kazhdan, M., Funkhouser, T. and Rusinkiewicz, S. (2003), Rotation invariant spherical 
harmonic representation of 3D shape descriptors, in ‘SGP ’03: Proceedings of the 2003 
Eurographics/ACM SIGGRAPH symposium on Geometry processing’, pp. 156–164. 

Laga, H., Takahashi, H. and Nakajima, M. (2006), Spherical wavelet descriptors for content-
based 3D model retrieval, in ‘SMI ’06: Proceedings of the IEEE International 
Conference on Shape Modeling and Applications 2006 (SMI’06)’, pp. 75–85. 

Lee, C. H., Varshney, A. and Jacobs, D.W. (2005), Mesh saliency, in ‘SIGGRAPH ’05: ACM 
SIGGRAPH 2005 Papers’, ACM Press, New York, NY, USA, pp. 659–666. 

Lew, M. S., Sebe, N., Djeraba, C. and Jain, R. (2006), “Content-based multimedia information 
retrieval: State of the art and challenges”, ACM Trans. Multimedia Comput. Commun. 
Appl. , Vol. 2, ACM Press, New York, NY, USA, pp. 1–19.  

M.Kortgen, G-J.Patrick, M.Novotni and R.Klein (2003), 3D shape matching with 3D shape 
contexts, in ‘the 7th Central European Seminar on Computer Graphics’. 

Novotni, M. and Klein, R. (2003), 3D Zernike descriptors for content based shape retrieval, 
in ‘SM ’03: Proceedings of the eighth ACM symposium on Solid modeling and 
applications’, ACM Press, New York, NY, USA, pp. 216–225. 

Ohbuchi, R. and Kobayashi, J. (2006), Unsupervised learning from a corpus for shapebased 
3D model retrieval, in ‘MIR ’06: Proceedings of the 8th ACM international 
workshop on Multimedia information retrieval’, ACM Press, pp. 163–172. 

Ohbuchi, R., Kobayashi, J., Yamamoto, A. and Shimizu, T. (2007), Comparison of dimension 
reduction method for database-adaptive 3D model retrieval, in ‘Fifth International 
Workshop on Adaptive Multimedia Retrieval (AMR 2007)’. 

Reuter, M., Wolter, F.-E. and Peinecke, N. (2006), “Laplace-Beltrami spectra as ”shape-
DNA” of surfaces and solids”, Computer-Aided Design , Vol. 38, pp. 342– 366. 

Schapire, R. E. (2003), The boosting approach to machine learning: An overview., in ‘In D. D. 
Denison, M. H. Hansen, C. Holmes, B. Mallick, B. Yu, editors, Nonlinear Estimation 
and Classification’, Springer. 

Shilane, P. and Funkhouser, T. (2006), “Selecting Distinctive 3D Shape Descriptors for Similarity 
Retrieval”, IEEE International Conference on Shape Modeling and Applications 
(SMI2006) , Vol. 0, IEEE Computer Society, Los Alamitos, CA, USA, p. 18. 

Shilane, P., Min, P., Kazhdan, M. and Funkhouser, T. (2004), The princeton shape 
benchmark, in ‘SMI’04: Proceedings of the Shape Modeling International 2004 
(SMI’04)’, pp. 167–178. 

Tangelder, J. W. and Veltkamp, R. C. (2004), A survey of content based 3D shape retrieval, in 
‘Shape Modeling International 2004, Genova, Italy’, pp. 145–156. 

Tieu, K. and Viola, P. (2004), “Boosting image retrieval”, International Journal of Computer 
Vision , Vol. 56, Kluwer Academic Publishers, Hingham, MA, USA, pp. 17–36. 

T.Tung and F.Schmitt (2005), “The augmented multiresolution reeb graph approach for 
content-based retrieval of 3D shapes”, International Journal of Shape Modeling (IJSM) , 
Vol. 11, pp. 91–120. 

Veltkamp, R. C., Ruijsenaars, R., Spagnuolo, M., van Zwol, R. and ter Haar, F. (2006), 
SHREC2006: 3D Shape Retrieval Contest, Technical Report UU-CS- 2006-030, 
Department of Information and Computing Sciences, Utrecht University. 

Xu, C., Tan, T., Li, S. Z., Wang, Y. and Zhong, C. (2006), Learning effective intrinsic features 
to boost 3D-based face recognition, in ‘ECCV 2006, 9th European Conference on 
Computer Vision’, Springer, pp. 416–427. 

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning 

 

321 

Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A. and Seidel, H.- P. (2006), Towards 
stable and salient multi-view representation of 3D shapes, in ‘Proceedings of the IEEE 
International Conference on Shape Modeling and Applications 2006 (SMI’06)’, p. 40. 

 

 
Table 2. Dynamic Average Recall and, Mean Normalized Cumulated Gain (MNCG) 
performance. 



 Machine Learning 

 

320 

Johnson, A. (1997), Spin-Images: A Representation for 3-D Surface Matching, PhD thesis, 
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. 

Kazhdan, M., Funkhouser, T. and Rusinkiewicz, S. (2003), Rotation invariant spherical 
harmonic representation of 3D shape descriptors, in ‘SGP ’03: Proceedings of the 2003 
Eurographics/ACM SIGGRAPH symposium on Geometry processing’, pp. 156–164. 

Laga, H., Takahashi, H. and Nakajima, M. (2006), Spherical wavelet descriptors for content-
based 3D model retrieval, in ‘SMI ’06: Proceedings of the IEEE International 
Conference on Shape Modeling and Applications 2006 (SMI’06)’, pp. 75–85. 

Lee, C. H., Varshney, A. and Jacobs, D.W. (2005), Mesh saliency, in ‘SIGGRAPH ’05: ACM 
SIGGRAPH 2005 Papers’, ACM Press, New York, NY, USA, pp. 659–666. 

Lew, M. S., Sebe, N., Djeraba, C. and Jain, R. (2006), “Content-based multimedia information 
retrieval: State of the art and challenges”, ACM Trans. Multimedia Comput. Commun. 
Appl. , Vol. 2, ACM Press, New York, NY, USA, pp. 1–19.  

M.Kortgen, G-J.Patrick, M.Novotni and R.Klein (2003), 3D shape matching with 3D shape 
contexts, in ‘the 7th Central European Seminar on Computer Graphics’. 

Novotni, M. and Klein, R. (2003), 3D Zernike descriptors for content based shape retrieval, 
in ‘SM ’03: Proceedings of the eighth ACM symposium on Solid modeling and 
applications’, ACM Press, New York, NY, USA, pp. 216–225. 

Ohbuchi, R. and Kobayashi, J. (2006), Unsupervised learning from a corpus for shapebased 
3D model retrieval, in ‘MIR ’06: Proceedings of the 8th ACM international 
workshop on Multimedia information retrieval’, ACM Press, pp. 163–172. 

Ohbuchi, R., Kobayashi, J., Yamamoto, A. and Shimizu, T. (2007), Comparison of dimension 
reduction method for database-adaptive 3D model retrieval, in ‘Fifth International 
Workshop on Adaptive Multimedia Retrieval (AMR 2007)’. 

Reuter, M., Wolter, F.-E. and Peinecke, N. (2006), “Laplace-Beltrami spectra as ”shape-
DNA” of surfaces and solids”, Computer-Aided Design , Vol. 38, pp. 342– 366. 

Schapire, R. E. (2003), The boosting approach to machine learning: An overview., in ‘In D. D. 
Denison, M. H. Hansen, C. Holmes, B. Mallick, B. Yu, editors, Nonlinear Estimation 
and Classification’, Springer. 

Shilane, P. and Funkhouser, T. (2006), “Selecting Distinctive 3D Shape Descriptors for Similarity 
Retrieval”, IEEE International Conference on Shape Modeling and Applications 
(SMI2006) , Vol. 0, IEEE Computer Society, Los Alamitos, CA, USA, p. 18. 

Shilane, P., Min, P., Kazhdan, M. and Funkhouser, T. (2004), The princeton shape 
benchmark, in ‘SMI’04: Proceedings of the Shape Modeling International 2004 
(SMI’04)’, pp. 167–178. 

Tangelder, J. W. and Veltkamp, R. C. (2004), A survey of content based 3D shape retrieval, in 
‘Shape Modeling International 2004, Genova, Italy’, pp. 145–156. 

Tieu, K. and Viola, P. (2004), “Boosting image retrieval”, International Journal of Computer 
Vision , Vol. 56, Kluwer Academic Publishers, Hingham, MA, USA, pp. 17–36. 

T.Tung and F.Schmitt (2005), “The augmented multiresolution reeb graph approach for 
content-based retrieval of 3D shapes”, International Journal of Shape Modeling (IJSM) , 
Vol. 11, pp. 91–120. 

Veltkamp, R. C., Ruijsenaars, R., Spagnuolo, M., van Zwol, R. and ter Haar, F. (2006), 
SHREC2006: 3D Shape Retrieval Contest, Technical Report UU-CS- 2006-030, 
Department of Information and Computing Sciences, Utrecht University. 

Xu, C., Tan, T., Li, S. Z., Wang, Y. and Zhong, C. (2006), Learning effective intrinsic features 
to boost 3D-based face recognition, in ‘ECCV 2006, 9th European Conference on 
Computer Vision’, Springer, pp. 416–427. 

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning 

 

321 

Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A. and Seidel, H.- P. (2006), Towards 
stable and salient multi-view representation of 3D shapes, in ‘Proceedings of the IEEE 
International Conference on Shape Modeling and Applications 2006 (SMI’06)’, p. 40. 

 

 
Table 2. Dynamic Average Recall and, Mean Normalized Cumulated Gain (MNCG) 
performance. 



 Machine Learning 

 

322 

 
 

 
 
 

Table 3. Mean Normalized Discounted Cumulated Gain (MNDCG) performance. 

3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning 

 

323 

 
Fig. 4. Some retrieval results using the Boosted-LFD Descriptors. The models in the first 
column are used as query models2.2The 10-best matches are displayed. 
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Fig. 5. Retrieval results using the Boosted-GEDT Descriptors. The models in the first column 
are used as query models. T2h3e 10-best matches are displayed. 
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1. Introduction  
Most of the power systems protection techniques are related to the definition of system 
states by means of the identification of patterns from waveform of voltage and associated 
current. This means that the development of an adaptive protection can essentially be 
treated as a problem about classification/recognition of patterns (Song et al., 1997). 
Nevertheless, because the main causes of faults and the operation of nonlinear devices 
under certain conditions of fault, the methods of recognition of conventional patterns are 
unsatisfactory in some applications, particularly, in the case of high complexity electrical 
systems.  In this sense, neural networks play an important role due to their unique ability of 
mapping nonlinear relations.  
Some successful applications of neural networks in the area of electrical engineering (Song 
et al., 1996), (Dillon & Niebur, 1996) have demonstrated that they can be used like an 
alternative method to solve certain problems of great complexity where the conventional 
techniques have experienced difficulties. Nevertheless, when giving a glance to the different 
applications of neural networks to electric power systems, it is clear that almost all the 
developments that have been carried out are based on the multi-layers perceptron with 
retro-propagation learning algorithms (BP). Although, BP can provide very compact 
distributed representations of complex data sets, it has some disadvantages such as the 
following: it exhibits slow learning, it requires great sets of training, they easily fall in local 
minimums, and in general it shows little robustness (Song et al., 1997).  
Another type of learning is the non-supervised one that surrounds the learning of patterns 
without a target. A typical non-supervised learning network is the Self-Organized Mapping 
(SOMs) developed by Teuvo Kohonen. A SOM network has the advantage of fast learning 
and small sets of training. Nevertheless, due to the absence of an output “truth” layer in the 
SOM, its use is not recommendable for the classification of patterns. Instead, it is used as an 
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initial procedure ("front-end") to an output layer with a supervised training, that is, 
combined non-supervised/supervised learning.  
The networks that combine non-supervised and supervised learning have the powerful 
ability to organize any complexity of highly nonlinear patterns recognition problem. This 
type of neural network is insensitive to noise due to the low internal dimensional 
representation (Song et al., 1996). Based on this kind of characteristics the present research 
developed a hybrid model entitled Artificial Intelligence Adaptive Model (AIAM) 
(Calderón,  2007). 
Next, it will be initially described the basic functionality of the several models analyzed in 
the research, the respective main results, and finally the AIAM model and conclusions.  

2. Neural networks models 
With the purpose of selecting the most appropriate neural network model to be used for the 
classification of faults in an Electrical Power System (EPS) an exploration of alternatives on 
models of neural networks was carried out based on the state-of-the-art of the subject (El-
Sharkawi & Niebur, 1996), (Aggarwal & Song, 1997), (Aggarwal & Song, 1998a), (Aggarwal 
& Song, 1998b), (Kezunovic, 1997), (Dalstein & Kulicke, 1995), (Keerthipala et al, 1997), 
(Sidhu & Mitai, 2000), (Fernandez & Ghonaim, 2002), (Dalstein et al, 1996), (Zahra et al, 
2000), (Ranaweera, 1994), (Oleskovicz et al., 2001), (Song et al, 1997), (Song et al, 1996), 
(Dillon & Niebur, 1996), (Dillon & Niebur, 1999),(Badrul et al., 1996).   
Next, four important classifiers, based on neural networks, will be briefly described. Special 
emphasis was placed on the basic principles and differences, instead of a detailed 
description itself.  

2.1 Back-Propagation classifier (BP) 
BP classifiers are the most popular and widely applied neural networks. They train with 
supervision using the descending gradient algorithm to diminish the error between the real 
exits and the wished exits of the network.  
In Fig. 1. the general architecture of this type of network is illustrated.  
 

 
Fig. 1. General architecture used by the model of retro-propagation training. (Matlab 
educational license). 

Many articles provide good introductions to the methods and successful applications of this 
type of neural networks applied to the power systems. Nevertheless, in general, most of the 
BP classifiers are (1) of prolonged training time; (2) of difficult selection for the optimal size, 
and (3) potentially with tendency to be caught in a local minimum (Song et al., 1996). 
For this reason, improvements have been developed in recent years, particularly in the 
aspect concerning the learning process. In this sense, it is valuable to mention the fuzzy 
algorithms of controlled learning and the training based on genetic algorithms. 
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2.2 Feature Mapping classifier (FM) 
One of the most important algorithms of non-supervised learning is the Self-Organized 
Feature Mapping (SOFM) proposed by Kohonen shown in Fig. 2. The SOFM is used to map 
non-supervised input vectors in a bi-dimensional space where the vectors are self-organized 
in groups that represent the different types.  
 

 
Fig. 2. General architecture used by the Kohonen model of SOMF. (Matlab educational 
license). 

The SOFM learns to classify input vectors according to the form that they are grouped in the 
input space. This method differs from the competitive method of layers in which the 
neighboring neurons in the SOFM learn to recognize also adjacent sections in the input 
space. Thus, the self-organized maps learn so much the distribution (as the competitive 
method of layers makes it) as well as the topology of the input vectors that train. Neurons in 
the layer of a SOFM are originally organized in physical positions according to a topological 
function. The distances between neurons are calculated from their positions with a distance 
function.  
In these networks there is no target for the error evaluation. That is, the learning of the 
synaptic weights is non-supervised, which means that, under the presentation of new input 
vectors, the network dynamically determines these weights, in such a way that, input 
vectors that are closely related will excite neurons that are closely grouped (Badrul et al., 
1996). It is able to separate data in a specified number of categories and therefore able to act 
like a classifier. In the Kohonen network there are only two layers: an input layer where the 
patterns of the variables are placed and an output layer that has a neuron for each possible 
category or type.  

2.3 Radial Base Function classifier (RBF) 
The construction of a RBF in its most basic form considers three layers entirely different, as 
in Fig. 3. The first layer consists of the input nodes. The second layer is composed by the 
denominated Kernel nodes (base radial layer) which functions are different from those of a 
BP network. The Kernel nodes based on the radial base functions calculate symmetrical 
functions which are a maximum when the input is near the centroid of a node. The output 
nodes are simple sums. 
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Fig. 3. General architecture used by the RBF model. (Matlab educational license). 

This particular architecture of RBF has been proven to improve the training time but at the 
expense of considering many nodes in the radial base layer and connections of weights (in 
critical cases the number of neurons of this layer could get to be equal to the number of 
training samples, that is to say, a neuron per input pattern). 

2.4 Vector Quantification Learning classifier (LVQ)  
The Vector Quantification Learning network (LVQ) is a form of adaptive classifier which 
structure is shown in Fig. 4. This classifier requires a final stage of supervised training to 
improve its performance. LVQ contains an input layer, a Kohonen layer and the output 
layer. The number of nodes of the entrance layer is equal to the number of entrance 
parameters. The number of nodes of the Kohonen layer is based on the number of input 
vectors in the training data. The output layer contains a node for each type. 
 

 
Fig. 4. General architecture used by the LVQ model. (Matlab educational license). 

Based on the analysis of the previous neural networks models the research was oriented into 
two ways:  
• To complement the neural model BP with a learning method that allowed improving 

the generalization and the resulting classification error. In order to do this the Bayesian 
Regularization methodology (BR) described in (Foresee and Hagan, 1997), (Hagan et al, 
2002), (MacKay, 1998), was used.  

• The search of an Adaptive model that would take advantage of the kindnesses of the 
combination of the non-supervised learning with the supervised learning but, as well as 
looking for to fix the weaknesses found in LVQ and RBF methods.  To get this, the 
doctorate thesis (Vasilic, 2004), consisting in the Adaptive Resonance Theory (ART), 
was used as the starting point.  

2.5 BP neural network model with Bayesian regularization  
Taking into account the considerations of the previous concept, it was implemented the 
performance evaluation of the neural network BP incorporating additional training 
techniques to improve its performance. With the purpose of obtaining a high capacity of 
generalization of the network, it was considered (Foresee and Hagan, 1997), (Hagan et al, 
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2002), (MacKay, 1998), the approach known as the Bayesian regularization in which the 
weights of the network are assumed as random variables with specific distributions so that 
the parameters of stabilization get associated to the unknown variances connected to these 
distributions. In this way, it is possible to consider the parameters using technical statistics. 
A more a detailed description of this approach and its combination with other techniques 
can be found in (Foresee & Hagan, 1997). 
In MATLAB it is possible to use this methodology by means of the trainbr algorithm that 
can be established as argument at the time of defining the network by means of the function 
newff.  
For the detection and classification of the fault, a feed-forward network was used with a 
single hidden layer of s neurons (Foresee & Hagan, 1997), (Hagan et al, 2002), (MacKay, 
1998). 7 neurons were considered for the input layer that corresponds to the rms values of 
the voltages and currents of the 3 phases, plus the sequence zero current. For the output 
layer, 4 neurons were considered corresponding to the binary values that indicate the failed 
phase (the 3 first bits) and if it is or not grounded (last bit). In this case, the used value of s 
was of 12 (value that was obtained after doing different tests of verification trying to 
diminish the resulting error, but at the same time guaranteeing a suitable level of 
generalization).  
The general model of this network it is shown in Fig. 5. The functions of activation of 
MATLAB Tansig were used in the hidden layer and in the output layer the linear 
transference Purelin. 
 

 

 
Fig. 5. Diagram of the classifier algorithm and the used neural network architecture BR. 
(Matlab educational license).  

2.6 ART model (adaptive resonance theory) 
ART Model does not have a defined typical structure with a specified number of neurons. 
Instead, it is made up of an adaptive structure with auto-evolving neurons. The structure 
solely depends on the characteristics and order of presentation of the patterns in the input 
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data set.  In Fig. 6. the diagram of the complete procedure used for the training of the 
neuronal network type ART is explained in (Vasilic, 2004). 
 

 
Fig. 6. Combined learning of Supervised and Non- supervised Neural Networks (Vasilic, 
2004). 

The training consists in numerous iterations in the stages of supervised and non-supervised 
learning, suitably combined to obtain a maximum efficiency. Groups of similar patterns lay 
in groups, defined as hyper-spheres in a multidimensional space, where the dimension of 
the space is determined by means of the length of the input patterns. The neural network 
initially uses non-supervised learning with input patterns not tagged in order to form 
unstable fugitive groups. This is an attempt to discover the patterns density by means of 
getting them in groups to consider prototypes of groups that can serve as prototypes of the 
typical input patterns. The category tags are assigned later on to the groups during the stage 
of supervised learning. The tuning parameter called “threshold of monitoring” or “radio”, 
controls the size of the group and therefore the number of generated groups, and it is 
consecutively reduced during the iterations. If the monitoring threshold is high, many 
different patterns within a group can then be incorporated, and this generates a small 
number of heavy groups. If the monitoring threshold is low, they only activate the same 
group patterns that are very similar, and this generates a great number of fine groups. 
Subsequent to the training, the centers of the groups serve as typical neurons of the neural 
network. The structure of prototypes only depends on the density of the input patterns. 
Each training pattern has been located in only one group, at the same time as each group 
contains one or more similar input patterns. A prototype is centrally located in the 
respective group, and it is either identical to one of the real patterns or identical to a 
synthesized prototype of the found patterns. A category tag is assigned to each group 
symbolizing a type of groups with a symbolic characteristic, meaning that each group 
belongs to one of the existing categories. The number of categories corresponds to the 
desired number of outputs of the neural network. Finally, during the implementation phase 
of the trained network, the distance between each new pattern and the established 
prototypes is calculated, and using a fuzzy classifier of the nearest neighbors, it is assigned 
the most representative category to the pattern in evaluation.  
In Fig. 7 it is shown the steps carried out for the mapping of the input space  in categories 
decision regions using algorithm ART2 proposed by (Vasilic, 2004).  Initially, using non-
supervised/supervised learning, the space of the training patterns is transferred within a 
level of initial abstraction that contains a set of groups with the corresponding prototypes, 
size and category. Later, the groups are fuzzyficated and transformed into an intermediate 
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level of abstraction. Finally, by means of the defuzzyfication, regions of refined decision are 
established, and a level of final abstraction is obtained. 
 

 
Fig. 7. Mapping of the patterns space using supervise/non-supervised training through the 
ART2 algorithm. (Vasilic, 2004). 

It is observed in Fig. 8, the classification obtained from homogenous groups of the same 
category using the ART1 methodology (which allows the overlapping of groups and the 
presence of elements in this zone) and which it is obtained by means of the ART2 
methodology (which reduces the radios until no longer elements in the zones of overlaps are 
present). By means of this modification, the model ART2 tries to improve its performance in 
relation to the classification error, since it reduces the ambiguity that appears when there are 
elements in the zones of overlaps that could produce erroneous classification of some 
pattern. However, it is important to outline that as the radios get more restricted, the 
network loses capacity of generalization. The final ideal model is a commitment between the 
needs of precision in the classification with the generalization capacity of the model. 
 

 
Fig. 8. Comparison between ART1 and ART2 models. (Vasilic, 2004). 
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level of abstraction. Finally, by means of the defuzzyfication, regions of refined decision are 
established, and a level of final abstraction is obtained. 
 

 
Fig. 7. Mapping of the patterns space using supervise/non-supervised training through the 
ART2 algorithm. (Vasilic, 2004). 

It is observed in Fig. 8, the classification obtained from homogenous groups of the same 
category using the ART1 methodology (which allows the overlapping of groups and the 
presence of elements in this zone) and which it is obtained by means of the ART2 
methodology (which reduces the radios until no longer elements in the zones of overlaps are 
present). By means of this modification, the model ART2 tries to improve its performance in 
relation to the classification error, since it reduces the ambiguity that appears when there are 
elements in the zones of overlaps that could produce erroneous classification of some 
pattern. However, it is important to outline that as the radios get more restricted, the 
network loses capacity of generalization. The final ideal model is a commitment between the 
needs of precision in the classification with the generalization capacity of the model. 
 

 
Fig. 8. Comparison between ART1 and ART2 models. (Vasilic, 2004). 
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3. Art2 model improved 
As a contribution of the current research, the model ART2 of (Vasilic, 2004), was improved 
by introducing a formal methodology for the “reduction of the radios” and by introducing a 
novel concept denominated “learning on line”. 

3.1 Formal methodology for reduction of radios  
With the purpose of trying to solve the ambiguity that appears when clusters belonging to 
different categories are present, and with a region of non-zero intersection among them (that 
is to say, that there are a certain number of training patterns in that region), (Vasilic, 2004), 
proposes a solution to this problem (ART2) consisting of introducing some rule during the 
phase of supervised training to construct homogenous clusters that covers solely patterns of 
exactly one category (valid rule of homogenous intersected clusters), allowing regions of 
intersection between clusters of different categories as long as patterns do not exist in those 
regions. 
It is outlined in (Vasilic, 2004), the ART2 methodology expressed in natural language, but it 
is not formally described the algorithm, nor details on its implementation provided. In the 
current research work, a formal proposal was developed to carry out the implementation of 
the model classification ART2 and be able to go from the obtained clusters with ART1 to the 
obtained clusters with ART2, as seen in Fig. 8.  
Next, it is presented the procedure used and the formal description of the implemented 
algorithm.  Initially, homogenous intersected valid cluster rule is defined and then the rules 
to make the reduction of the radios. 

3.1.1 Homogenous intersected valid clusters rule 
Let to ch be a homogenous cluster of the form [r, P, C, CP], where:  
r:  is the radius of cluster. r belongs to the real numbers.  
P: a vector of dimension n, is the cluster prototype found with the training patterns; each 
input of this vector belongs to the real numbers set.  
C:  is the type of cluster, C pertaining to the integer numbers.  
CP:  is a set of vectors of dimension n where each input of each vector belongs to the real 
numbers, (training patterns which conform the cluster). 
Let to @: [V1 x V2 R] be a function that delivers the Euclidian distance between two   
vectors, where V1 and V2 are vectors of dimension n.  
 

Let to A be a finite set of homogenous clusters without training patterns in their intersection 
regions, A = {ch1, ch2, ch3, ....., chn}.  
 

Let to ch1[r1,P1,C1,CP1] and ch2[r2,P2,C2,CP2] be a pair of homogenous clusters of A. 
 

Let to M be the number of patterns in CP1, let to K be the number of patterns in CP2 .  
 

Then:  
 

ch1, ch2  belong to A  
IF, AND ONLY IF: 
(P1@P2 < r1 + r2)  and (C1 ≠ C2) and  
FOR EVERYTHING (cpm є CP1) { P2@cpm > r2 } and 
FOR EVERYTHING (cpk є CP2) { P1@cpk > r1 } ; k = 1, 2, …, K ; m = 1, 2,.., M 
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The rule of homogenous intersected valid clusters is fulfilled if the clusters belong to A.  
During the supervised training (phase of stabilization), once the homogenous clusters are 
obtained, it must be verified that no patterns exist inside some region of intersection among 
the clusters found, that is to say, that the homogenous intersected valid clusters rule is 
fulfilled; if this rule is not accomplished, the reduction of radios rule should be applied, 
analyzing the possibility of reducing the radius of any of both clusters in conflict, or of both, 
if it is necessary, assuring not to exclude any pattern, and having this way the rule fulfilled, 
to later on  add these new optimized clusters to the final set of  clusters. 

3.1.2 Reduction of radios rule  
Let to min (): [Rn  R] be a function that receives a set of real numbers and delivers the 
minor. 
Le to max() : [Rn  R]  be a function that receives a set of real numbers and delivers the 
major. 
If ch1, ch2 does not belong to   A  
It is verified if patterns of ch1 in ch2 exist, and if it is possible the reduction of its radius is 
done. 
 

1 If 
2 EXIST (cpm є CP1) { P2@cpm < r2 } ; m = 1, 2, …, M   
3 then 
4  r2max = min(P2@cpm=1, P2@cpm=2, ..., P2@cpm=M) 
5            r2min = max(P2@cpk=1, P2@cpk=2, ..., P2@cpk=K) 
6  si r2min > r2max 
7  then 
8   r2 = r2max - (r2max - r2min)/L 
 

It is verified if patterns of ch1 in ch2 exist, and if it is possible, the reduction of its radius is 
done. 
 

1 If 
2 EXIST (cpk є CP2) { P1@cpk < r1 } ; k = 1, 2, …, K 
3 then 
4            r1max = min(P1@cpk=1, P1@cpk=2, ..., P1@cpk=k) 
5           r1min = max(P1@cpm=1, P1@cpm=2, ..., P1@cpm=M) 
6           si r1min < r1max 
7  then 
8   r1 = r1max - (r1max – r1min)/L 
 

Where L is an arbitrary constant inverse to the magnitude in which the radius is reduced. If 
the given restriction in line 6 is fulfilled the radius can be reduced, and add the cluster to the 
final set of homogenous clusters. This operation is done for all the homogenous clusters 
found after the stabilization, and also done against the homogenous clusters that previously 
have been added in set A.  
In Fig. 9 to Fig. 11 it is graphically illustrated what can happen in the intersection of the 
clusters. 
Notice that in Fig. 10 cluster 2 (yellow) cannot reduce its radius since it would exclude the 
most distant pattern, for this reason these patterns must be part of the following iteration in 
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The rule of homogenous intersected valid clusters is fulfilled if the clusters belong to A.  
During the supervised training (phase of stabilization), once the homogenous clusters are 
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Where L is an arbitrary constant inverse to the magnitude in which the radius is reduced. If 
the given restriction in line 6 is fulfilled the radius can be reduced, and add the cluster to the 
final set of homogenous clusters. This operation is done for all the homogenous clusters 
found after the stabilization, and also done against the homogenous clusters that previously 
have been added in set A.  
In Fig. 9 to Fig. 11 it is graphically illustrated what can happen in the intersection of the 
clusters. 
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the non-supervised & supervised training of ART. Cluster 1 can reduce its radius, and it is 
included in the set of the final cluster, this is illustrated in Fig. 11. 
 

  

Fig. 9. To the left two homogeneous clusters without intersection.  To the right two 
homogeneous clusters with intersection and without patterns in this region. 
      

 
Fig. 10. Two homogeneus clusters with intersection and patterns inside this region. 
 

 
Fig. 11. Reduction of radios is applied to the left cluster and the right cluster is disregarded 
because it is not possible to do it. 

3.2 On-line learning methodology 
By means of this technique an adaptive model is obtained, that gradually accommodate its 
structure to the changes that provide the actual enviroment where this adaptive model 
develops. That is to say, whenever the algorithm makes an erroneous classification, it will 
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have the opportunity of re-training it and learning on line with the appropriate type 
provided by the expert. In this way, the algorithm will be learning out more and more from 
the experiences to improve along its life time. In Fig. 12 to Fig. 15 the used procedure is 
shown.  
 

 
Fig. 12. Erroneous Classification. (Calderón, 2007). 

 
Fig. 13. Selection of the nearest neighboring K-clusters. (Calderón, 2007). 

 
Fig. 14. New set of patterns for re-training. (Calderón, 2007). 
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Fig. 15. Resulting set of clusters after on-line re-training. (Calderón, 2007). 

Initially, the patterns for the re-training are prepared, extracting the cluster that made the 
erroneous classification (see Fig. 12) and the nearest neighboring k clusters (see Fig. 13), to 
form a reduced set of patterns for re-training (Fig. 14). With this set of patterns, the phases of 
non-supervised learning and supervised learning are implemented again illustrated in Fig. 
6. This time the re-training is very efficient now that from the beginning, a subgroup of 
reduced clusters it is taking into account, all of them homogenous (the time of re-training 
takes a few seconds). 

4. Design of faults classifiers based on neural networks 
 4.1 Generation of training and validation data 
With the purpose of obtaining training samples of the signals of currents of phase and of 
zero-sequence the tool of simulation ATP was used (Alternative Transient Program) which 
has been validated at world-wide level as one of the most adapted to analyze electrical 
power systems (Electric Power Research Institute, 1989), (CanAm EMTP User Group, 1992). 
In Fig. 16 the electrical system used for systematic exploration of the considered cases is 
illustrated. 
With the purpose of automatically generating the data file with the ATP cases of variability 
of conditions of the SEP was developed a module in MATLAB that constructs the ATP 
format for the sensitivity analysis. Then, this file is run by means of the ATP program to 
generate the samples of Training, Validation and Checking of the studied models. In Fig. 17 
all the flow of information from simulations with ATP and MATLAB until the model of 
neural network is schematically shown.   
Initially, by means of the interface MATLAB-ATP, 508 patterns for training and 246 patterns 
for validation and checking were simulated. These cases of validation and checking were 
simulated as intermediate conditions of the training patterns with the purpose of verifying 
that over-training (validation stage) and the capacity of generalization of the model 
(checking stage) do not happen. Sensitivity was made on several parameters such as the 
impedances of source, chargeability of the transmission line, location of the fault, impedance 
of fault, and the type of fault: mono-phase (A, B, C), two-phase isolated (AB, BC and CA), 
two-phase to earth (AB-g, BC-g, CA-g) and three-phase (ABC). 
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Fig. 16. Typical electrical circuit for analyzing conditions of faults in a SEP. (Alternative 
Transient Program-ATP). 

 
Fig. 17. Integrated software tools for the simulation of electrical power system by means of 
ATP and MATLAB. 
After that, this interface was used to generate 46996 simulated ATP cases of which 36500 
were used for training,  5248 for validation, and 5248 for checking. Such the BR model as the 
ART 2 improved model were verified with these cases. 

4.2 Inputs and outputs of the neural networks 
The application of a patterns classifier requires first of all the selection of characteristics that 
contain information necessary to distinguish between the classes, it must be insensitive to 
the input variability, it must be limited in number to allow efficient calculation, and to limit 
the amount of required data of training.  
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As signals of input to the neural network can be selected different parameters from the 
system. The outputs of the neural network must indicate the type of fault. In general, two 
types of definition of outputs can be adopted. The first format is that the outputs are 
compound of A, B, C and G, which indicates that the fault was in the phase a, b or c and 
there is a connection with earth (G).  
 

A   B   C   G 
0    0    0   0 -  normal condition 
1    0    0   1 -  phase to earth fault  
1    1    0   0 -  phases a and b without earth fault 
1    1    1   0 -  phases a, b and c without earth fault. 
 

The second type has 11 outputs, the first that represents the normal condition and each one 
of the remain ten is responsible for a type of fault, for example:  
 

1000000000   normal condition. 
0100000000   fault phase A. 

4.3 Comparison of performance of the classifiers 
4.3.1 Size of the neural network 
The number of inputs such as the first four neural networks of study as to BR and ART 2 
improved model were chosen equal to 7 consisting of three RMS (Root Mean Square) 
voltages, the three RMS phase currents and RMS zero sequence current. For the number of 
outputs BP, BR, ART 2 improved and RBF the first type of output was used, for the LVQ the 
second type and for network MF the output chose like a bi-dimensional Kohonen matrix of 
dimension 8x8. 
As it is well-known, the selection of an optimal number of hidden layers and nodes for a 
continue BP network being point of research although numerous articles in these areas have 
been published. For the present study it was only used a hidden layer that turned out to be 
adapted for this individual application. 
For the BP model a hidden layer was used that was to be adapted for this individual 
application. The number of nodes analyzed was considered from 10 to 16. Finally, with a 
selection of 12 neurons for the hidden layer a good performance was obtained. This size was 
used to BR model getting excellent performance too.  The size of the matrix for the Kohonen 
model depends to a great extent on the kind of problem and the availability of training 
vectors. In this study, a matrix of 8x8 was selected after running a series of simulations and 
comparing the obtained results. 
In order to determine the optimal structure of a RBF, a set of RBF models were trained and 
validated. In these simulations was carried out an analysis of sensitivity of the number of 
Kernel nodes varying from 300 to 508 based on the global performance of the network and it 
was found that with 357 neurons in the hidden layer a suitable performance is obtained. 
In the adjustment of LVQ structure, the critical part is the selection of the number of neurons 
of the layer of Kohonen (competitive layer). In this analysis the total number of training 
vectors is to be kept in mind and select the number of neurons of the Kohonen layer like a 
multiple of the number of output nodes. In this study the number of nodes of Kohonen was 
selected based on the total of training vectors and the number of the eleven outputs. After 
several simulations were carried out it was found that an optimal number of neurons for the 
hidden layer of Kohonen for this application are 150.  

Performance Analysis of Hybrid Non-Supervised & Supervised Learning Techniques  
Applied to the Classification of Faults in Energy Transport Systems 

 

339 

Finally, the structure of ART 2 model is so different than the previous models and in this 
case the final number of clusters is automatically determined according to algorithm and is 
dependent of the threshold assigned by the user.  

4.3.2 Learning process  
In the study of BP network and BR model were used the functions of MATLAB tansig 
transference for the neurons of the hidden layer and the function purelin for the output 
linear layer. The learning factor that controls the rate of convergence and stability was 
chosen equal to 0.05. Initially, all the weights and bias were put in small random values. The 
input values were presented to the network and the output variables were specified. The 
training process took place until the value of error RMS (Root Mean Square) between the 
real output and the wished output reached an inferior acceptable value of 0.1. For the 
Kohonen layer was chosen equal to 0,9 for the phase of initial ordering and 0,02 for the final 
phase of tuning. 1000 steps were simulated in the ordering phase and it was considered a 
neighboring radius of 1 for tuning phase. A grille form was used for the space distribution 
of the neurons in the matrix of two dimensions.  
The parameters of the units of RBF network were determined by means of the function 
newrb of MATLAB. First a subtractive grouping of the data by means of the function 
subclust of MATLAB with the purpose of estimating an average spread that complied most 
of the considered data was carried out. From this analysis was obtained a spread value of 
0.19. Later, the centers of the radial units were determined by means of an algorithm of 
adaptive group that uses the function dist of MATLAB combined with a parameter of 
bias=0.833/spread. Once the centers are determined the algorithm newrb of MATLAB 
makes an iterative procedure of addition of new neurons until obtaining an error adapted 
between the real outputs of the model and targets of training assigned. 
In LVQ network the function newlvq of MATLAB was used. The algorithm newlvq 
constructs an LVQ neural network like the one presented in Fig. 4. It is used as input 
criterion to consider the percentage of samples that each class has. For example, in this study 
10 classes corresponding to 10 conditions of fault were considered. For the 508 samples each 
fault condition has associated 50 samples (0,1 p.u).  All together, the sum must be equal to 1 
p.u (100% of the 508 samples). For the learning process the function learnlv1 of MATLAB 
was used considering a learning rate of 0.01. 
The ART 2 model training was explained in detail above and is depicted in Fig.6.  

4.3.3 Training and validation error  
The error often is used like a criterion to finish the learning process. It has been possible to 
find that, for a given set of training data and structures of network, the error of minimum 
learning that can be reached is similar for all the networks. Nevertheless, the time to reach 
the value of the error (speed of learning) is entirely different (Song et al., 1997).  It is 
important to notice that obtaining the smaller error during the learning does not necessarily 
imply the best performance of the network. That is, there must be commitment between 
learning error and error during the validation phase.  

4.3.4 Precision of classification  
Initially, the BP, FM, RBF and LVQ neural networks trained were validated with 246 cases 
generated by means of ATP program under several conditions of the system and 
intermediate conditions of fault to the 508 cases considered in the training. 
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As signals of input to the neural network can be selected different parameters from the 
system. The outputs of the neural network must indicate the type of fault. In general, two 
types of definition of outputs can be adopted. The first format is that the outputs are 
compound of A, B, C and G, which indicates that the fault was in the phase a, b or c and 
there is a connection with earth (G).  
 

A   B   C   G 
0    0    0   0 -  normal condition 
1    0    0   1 -  phase to earth fault  
1    1    0   0 -  phases a and b without earth fault 
1    1    1   0 -  phases a, b and c without earth fault. 
 

The second type has 11 outputs, the first that represents the normal condition and each one 
of the remain ten is responsible for a type of fault, for example:  
 

1000000000   normal condition. 
0100000000   fault phase A. 

4.3 Comparison of performance of the classifiers 
4.3.1 Size of the neural network 
The number of inputs such as the first four neural networks of study as to BR and ART 2 
improved model were chosen equal to 7 consisting of three RMS (Root Mean Square) 
voltages, the three RMS phase currents and RMS zero sequence current. For the number of 
outputs BP, BR, ART 2 improved and RBF the first type of output was used, for the LVQ the 
second type and for network MF the output chose like a bi-dimensional Kohonen matrix of 
dimension 8x8. 
As it is well-known, the selection of an optimal number of hidden layers and nodes for a 
continue BP network being point of research although numerous articles in these areas have 
been published. For the present study it was only used a hidden layer that turned out to be 
adapted for this individual application. 
For the BP model a hidden layer was used that was to be adapted for this individual 
application. The number of nodes analyzed was considered from 10 to 16. Finally, with a 
selection of 12 neurons for the hidden layer a good performance was obtained. This size was 
used to BR model getting excellent performance too.  The size of the matrix for the Kohonen 
model depends to a great extent on the kind of problem and the availability of training 
vectors. In this study, a matrix of 8x8 was selected after running a series of simulations and 
comparing the obtained results. 
In order to determine the optimal structure of a RBF, a set of RBF models were trained and 
validated. In these simulations was carried out an analysis of sensitivity of the number of 
Kernel nodes varying from 300 to 508 based on the global performance of the network and it 
was found that with 357 neurons in the hidden layer a suitable performance is obtained. 
In the adjustment of LVQ structure, the critical part is the selection of the number of neurons 
of the layer of Kohonen (competitive layer). In this analysis the total number of training 
vectors is to be kept in mind and select the number of neurons of the Kohonen layer like a 
multiple of the number of output nodes. In this study the number of nodes of Kohonen was 
selected based on the total of training vectors and the number of the eleven outputs. After 
several simulations were carried out it was found that an optimal number of neurons for the 
hidden layer of Kohonen for this application are 150.  
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Finally, the structure of ART 2 model is so different than the previous models and in this 
case the final number of clusters is automatically determined according to algorithm and is 
dependent of the threshold assigned by the user.  

4.3.2 Learning process  
In the study of BP network and BR model were used the functions of MATLAB tansig 
transference for the neurons of the hidden layer and the function purelin for the output 
linear layer. The learning factor that controls the rate of convergence and stability was 
chosen equal to 0.05. Initially, all the weights and bias were put in small random values. The 
input values were presented to the network and the output variables were specified. The 
training process took place until the value of error RMS (Root Mean Square) between the 
real output and the wished output reached an inferior acceptable value of 0.1. For the 
Kohonen layer was chosen equal to 0,9 for the phase of initial ordering and 0,02 for the final 
phase of tuning. 1000 steps were simulated in the ordering phase and it was considered a 
neighboring radius of 1 for tuning phase. A grille form was used for the space distribution 
of the neurons in the matrix of two dimensions.  
The parameters of the units of RBF network were determined by means of the function 
newrb of MATLAB. First a subtractive grouping of the data by means of the function 
subclust of MATLAB with the purpose of estimating an average spread that complied most 
of the considered data was carried out. From this analysis was obtained a spread value of 
0.19. Later, the centers of the radial units were determined by means of an algorithm of 
adaptive group that uses the function dist of MATLAB combined with a parameter of 
bias=0.833/spread. Once the centers are determined the algorithm newrb of MATLAB 
makes an iterative procedure of addition of new neurons until obtaining an error adapted 
between the real outputs of the model and targets of training assigned. 
In LVQ network the function newlvq of MATLAB was used. The algorithm newlvq 
constructs an LVQ neural network like the one presented in Fig. 4. It is used as input 
criterion to consider the percentage of samples that each class has. For example, in this study 
10 classes corresponding to 10 conditions of fault were considered. For the 508 samples each 
fault condition has associated 50 samples (0,1 p.u).  All together, the sum must be equal to 1 
p.u (100% of the 508 samples). For the learning process the function learnlv1 of MATLAB 
was used considering a learning rate of 0.01. 
The ART 2 model training was explained in detail above and is depicted in Fig.6.  

4.3.3 Training and validation error  
The error often is used like a criterion to finish the learning process. It has been possible to 
find that, for a given set of training data and structures of network, the error of minimum 
learning that can be reached is similar for all the networks. Nevertheless, the time to reach 
the value of the error (speed of learning) is entirely different (Song et al., 1997).  It is 
important to notice that obtaining the smaller error during the learning does not necessarily 
imply the best performance of the network. That is, there must be commitment between 
learning error and error during the validation phase.  

4.3.4 Precision of classification  
Initially, the BP, FM, RBF and LVQ neural networks trained were validated with 246 cases 
generated by means of ATP program under several conditions of the system and 
intermediate conditions of fault to the 508 cases considered in the training. 
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From the results obtained from the research for networks analyzed it was possible to 
observe that the rates of error vary with respect to the type of fault. As it was expected, the 
classification error is greater for the faults phase-phase without earth, which is the type of 
fault more difficult to detect.  
The network that had the smaller error of classification was the RBF (only a 7% of the 
validation cases did not have suitable classification). In Fig. 18 the results of the training of 
RBF network are shown, where it can be noticed that the error between what is wished and 
what is real is very low. 
 

 
Fig. 18. Vector target (o) vs. Network output (+) during the training of RBF network. (Matlab 
educational license). 

Although the previous models are, in general, good for classification purposes, these had 
some difficulties when certain conditions of the electrical system were considered (for 
example, high impedances faults).  In some of these cases, the classification error was not 
suitable. 
Due to this, based in the previous results, the research was oriented in the search of a hybrid 
model that was able to adapt itself to many expected conditions from the electrical power 
system and at the same time had a low classifcation error, and high level of generalization.  
The BR and ART 2 improved models were developed and then trained and validated using 
the methology described and ilustrated in Fig. 6. 
By using the BR model the training error was 0% for the 36500 cases considered, 0.74% for 
the 5248 validation cases and 1,39% for the 5248 checking cases. 
By using the ART 2 model the training error was 0.1% for the 36500 cases considered and 
3.7% for the 10496 validation and checking cases. 

4.3.5 Robustness 
For many reasons, it is not possible to assume that the cases presented to the classifier 
during the phase of application are complete and precisely represented by the training set. It 
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is particularly certain in the classifiers of fault of transmission lines. The patterns of training 
are normally limited, and in most cases are generated by means of simulation in computer 
that does not exactly match the real data of field. In general the data that enter the 
algorithms will be affected by the transducers and the noise from the atmosphere. Also, the 
parameters of the power system and the conditions change continuously. Thus, then 
actually a good robustness of the trained classifier is required. It includes deviations in the 
measurements and superposed white noise. The rates of undesired classification are 
considerably greater in BP network for the different cases considered, whereas the error 
rates for FM, RBF, LVQ and ART 2 improved neural networks increased moderately or very 
little. This is due to the purely supervised nature of BP network. The surfaces of decision of 
BP networks can take non intuitive forms because the space regions that are not occupied by 
the training data are classified arbitrarily.  One way to improve this problem could be to 
combine BP with BR method (Bayesian regularization) in order to reduce the classification 
errors. Instead, the other networks analyzed are governed by non-supervised learning in 
which the regions of the input space occupied by the training data are not classified 
according to the proximity that commonly exists among the training data.  
In summary, it is important to underline that a classifier has to be evaluated by its time of 
training, error rate, calculation, adaptation, and its real time implementation requirements. 
At the time of making a decision related to the selection of a network in particular it must be 
taken into account the combination of all these aspects and the possibility of considering 
new changes in the algorithms that allow improvement of the performance for the specific 
applications that are considered. 

5. Conclusions and future work 
The design of power systems protections can be essentially treated like a problem of pattern 
classification/recognition. The neural networks can be used like an attractive alternative for 
the development of new protection relays as much as the complexity of the electrical power 
systems grows. Different strategies of learning have to be explored before adopting a 
particular structure to a specific application, and establishing a commitment between the 
off-line training and the real time implementation.  
In general, the combined non-supervised/supervised learning techniques offers better 
performance than the purely supervised training. In the present study it was possible to 
verify that FM, RBF and LVQ networks have a greater speed of training, similar error rate, 
better robustness to consider variations of both the system and the environment, and require 
much less amount of training data compared with BP network (Song et al., 1997). . On the 
other hand, the BP network is more compact and it is hoped to be faster when it is placed in 
operation under the real time performance.  
This study, additionally showed, that in spite of those models have good performance to 
classify faults in electrical power systems in some special cases (for example, high 
impedances faults) the resultant error is not suitable.  In order to take this fact into account, 
it is necessary to consider BP with BR or ART 2 improved models which resolve this kind of 
conflict. 
It is important noticing that the present study focused in the performance of different 
models of neural networks applied to the classification of faults in electrical power systems. 
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example, high impedances faults).  In some of these cases, the classification error was not 
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Due to this, based in the previous results, the research was oriented in the search of a hybrid 
model that was able to adapt itself to many expected conditions from the electrical power 
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is particularly certain in the classifiers of fault of transmission lines. The patterns of training 
are normally limited, and in most cases are generated by means of simulation in computer 
that does not exactly match the real data of field. In general the data that enter the 
algorithms will be affected by the transducers and the noise from the atmosphere. Also, the 
parameters of the power system and the conditions change continuously. Thus, then 
actually a good robustness of the trained classifier is required. It includes deviations in the 
measurements and superposed white noise. The rates of undesired classification are 
considerably greater in BP network for the different cases considered, whereas the error 
rates for FM, RBF, LVQ and ART 2 improved neural networks increased moderately or very 
little. This is due to the purely supervised nature of BP network. The surfaces of decision of 
BP networks can take non intuitive forms because the space regions that are not occupied by 
the training data are classified arbitrarily.  One way to improve this problem could be to 
combine BP with BR method (Bayesian regularization) in order to reduce the classification 
errors. Instead, the other networks analyzed are governed by non-supervised learning in 
which the regions of the input space occupied by the training data are not classified 
according to the proximity that commonly exists among the training data.  
In summary, it is important to underline that a classifier has to be evaluated by its time of 
training, error rate, calculation, adaptation, and its real time implementation requirements. 
At the time of making a decision related to the selection of a network in particular it must be 
taken into account the combination of all these aspects and the possibility of considering 
new changes in the algorithms that allow improvement of the performance for the specific 
applications that are considered. 

5. Conclusions and future work 
The design of power systems protections can be essentially treated like a problem of pattern 
classification/recognition. The neural networks can be used like an attractive alternative for 
the development of new protection relays as much as the complexity of the electrical power 
systems grows. Different strategies of learning have to be explored before adopting a 
particular structure to a specific application, and establishing a commitment between the 
off-line training and the real time implementation.  
In general, the combined non-supervised/supervised learning techniques offers better 
performance than the purely supervised training. In the present study it was possible to 
verify that FM, RBF and LVQ networks have a greater speed of training, similar error rate, 
better robustness to consider variations of both the system and the environment, and require 
much less amount of training data compared with BP network (Song et al., 1997). . On the 
other hand, the BP network is more compact and it is hoped to be faster when it is placed in 
operation under the real time performance.  
This study, additionally showed, that in spite of those models have good performance to 
classify faults in electrical power systems in some special cases (for example, high 
impedances faults) the resultant error is not suitable.  In order to take this fact into account, 
it is necessary to consider BP with BR or ART 2 improved models which resolve this kind of 
conflict. 
It is important noticing that the present study focused in the performance of different 
models of neural networks applied to the classification of faults in electrical power systems. 
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Nevertheless, for the effects of being considered as protection alternatives of electrical 
power systems the techniques presented have to be integrally evaluated, considering in 
addition several practical issues. For example, it has to be combined with real field tests and 
the implementation of corresponding hardware. 
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1. Introduction      
Evolutionary Computation is well-known for producing the solutions in optimization 
problems based on change, composition and selection. We have proposed Genetic Network 
Programming (GNP) [1, 2] as an extended method of Genetic Algorithm (GA) [3, 4] and 
Genetic Programming (GP) [5, 6]. It has been clarified that GNP is an effective method 
mainly for dynamic problems since GNP represents its solutions using graph structures, 
which contributes to creating quite compact programs and implicitly memorizing past 
action sequences in the network flows. Moreover, we proposed an extended algorithm of 
GNP which combines evolution and reinforcement learning [7] (GNP-RL). GNP-RL has two 
advantages, and one of them is online learning. Since original GNP is based on evolution 
only, the programs are evolved mainly after task execution or enough trial, i.e., offline 
learning. On the other hand, the programs in GNP-RL can be changed incrementally based 
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There are three important points in this paper. First, we combine GNP and Sarsa Learning 
[11] which is one of the reinforcement learning methods, while Importance Index (IMX) and 
Candlestick Charts [12–15] are introduced for efficient stock trading decision making. 
Concretely speaking, Sarsa is used to select appropriate actions (buying/selling), stock price 
information obtained from IMX and candlestick charts through the experiences during the 
trading. IMX and candlestick charts tell GNP whether or not the buying or selling signals 
are likely to appear at the current day. Second, although there are so many technical indices 
in the technical analysis, GNP with Sarsa can select appropriate indices and also select 
candlestick charts to judge the buying and selling timing of stocks. In other words, GNP 
with Sarsa could optimize the combinations of the information obtained by technical indices 
and candlestick charts. The third important point is that sub-nodes are introduced in each 
node to determine appropriate actions (buying/selling) and to select appropriate stock price 
information depending on the situation. 
This paper is organized as follows: In Section 2, the related works are described. In Section 
3, the algorithm of the proposed method is described. Section 4 shows simulation 
environments, conditions and results. Section 5 is devoted to conclusions. 

2. Related works 
Prediction in financial domains, especially in stock market is quite difficult for a number of 
reasons. First, the ultimate goal of our research is not to minimize the prediction error, but 
to maximize the profits. It forces us to consider a large number of independent variables, 
thereby increasing the dimensionality of the search space. Second, the weak relationships 
among variables tend to be nonlinear, and may hold only in limited areas of the search 
space. Especially, the data in stock markets are highly time-variant and changing every 
minute. Third, the stock market data are given in an event-driven way. They are highly 
influenced by the indeterminate dealing. In financial practice, the key is to find the hidden 
interactions among variables [16].  
Stock market analysis has been one of the most actively pursued avenues of Machine 
Learning (ML) research and applications. The most recent literature in the related fields 
exposed Portfolio Optimization, Investment Strategy Determination, and Market Risk 
Analysis as three major trends in the utilization of Machine Learning approaches. Portfolio 
Optimization focuses on the correlative properties of stock market data in order to extract 
mutual dependency (or independency) information [17–19]. Investment Strategy 
Determination addresses financial prediction based on financial index analysis for the 
purposes of investment decision-making. Various Neural Network approaches are by far the 
most commonly taken route in the related works. However, other alternative methods exist, 
such as Support Vector Machines [20], Genetic Algorithms [21] and statistical analysis [22]. The 
Market Risk Analysis concentrates on the evaluation of the risk factors involved in various 
investment options, such as expected return and volatility. An example of an overall market 
risk evaluation system is described in [23]. Our research focuses on the problem of Investment 
Strategy Determination through the use of GNP with reinforcement learning technique. 
In recent years, evolutionary algorithms have been applied to several financial problems.  
There have been several applications of Genetic Algorithms (GA) to the financial problems, 
such as portfolio optimization, bankruptcy prediction, financial forecasting, fraud detection 
and scheduling [24]. Genetic Programming (GP) has also been applied to many problems in 
the time-series prediction. 
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Fig. 1. Basic structure of GNP with Sarsa 

In our research, we propose Genetic Network Programming with Sarsa Learning for 
creating trading rules on stock markets. GNP has the following advantages in the financial 
prediction field. First, GNP has a memory function because of its graph structure, i.e., 
judgment nodes and processing node are connected to each other in a network. As stock 
markets are highly influenced by the time, we can consider the information in the past well 
by the memory function of GNP for creating the effective programs. Second, GNP works 
extremely well for dealing with the stock market problems. That is because GNP has quite 
compact structure and it can reuse the nodes for many times. By using GNP we can create 
effective trading rules in the stock market, and we can also save the calculation time and 
memory consumption because of the compact structures of GNP. By combining GNP with 
Sarsa Learning in this paper, we get more advantages such as the combination of online 
learning and offline learning, diversified search and intensified search. 

3. GNP with Sarsa (GNP-Sarsa) and its trading algorithm 
3.1 Basic structure of GNP-Sarsa 
Figure 1 shows a basic structure of GNP-Sarsa and Fig. 2 shows judgment node and 
processing node structures. GNP-Sarsa consists of judgment nodes and processing nodes, 
which are connected to each other. Judgment nodes have if-then type branch decision 
functions. They return judgment results for assigned inputs and determine the next node.   
Processing nodes take actions (buying or selling stocks). While judgment nodes have 
conditional branches, processing nodes have no conditional branches. The role of a start 
node is to determine the first node to be executed. The graph structure of GNP has some 
inherent characteristics such as compact structures and an implicit memory function that 
contributes to creating effective action rules as described in section 2. GNP-Sarsa has two 
kinds of time delays: time delays GNP-Sarsa spend on judgment or processing, and the ones 
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it spends on node transitions. In this paper, the role of time delays is to determine the 
maximum number of technical indices and candlestick information to be considered when 
GNP-Sarsa determines buying or selling at a certain day. 
 

 
Fig. 2. Node Structure 

In the table of node gene, Ki represents the node type, Ki = 0 means start node, Ki = 1 means 
judgment node and Ki = 2 means processing node. IDi represents an identification number of 
the node function, e.g., Ki = 1 and IDi = 2 mean the node is J2. aip is a parameter which 
represents the threshold for determining buying or selling stocks in a processing node. Qip 
means Q value which is assigned to each state and action pair. In this method, “state” means 
a current node, and “action” means a selection of a sub-node (node function). In general 
reinforcement learning framework, the current state is determined by the combination of the 
current information, and action is an actual action an agent takes, e.g., buying or selling 
stocks. However, in GNP-Sarsa, the current node is defined as the current state, and a 
selection of a sub-node is defined as an action. dip (1 ≤ p ≤ mi, mi is the number of subnodes in 
judgment and processing nodes) is the time delay spent on the judgment or processing at 
node i, while dipA, dipB, … are time delays spent on the node transition from node i to the next 
node. In this paper, dipA, dipB, … are set at zero time unit, dip of each judgment node is set at 
one time unit, dip of each processing node is set at five time units. We suppose that the trade 
in one day ends when GNP uses five or more time units, which means the trade in one day 
ends when GNP executes fewer than five judgment nodes and one processing node, or five 
judgment nodes. CipA, CipB, … show the node number of the next node. Judgment node 
determines the upper suffix of the connection genes to refer to depending on the judgment 
result. If the judgment result is “B,” GNP-Sarsa refers to CipB and dipB. Processing nodes 
always refer to CipA and dipA because processing nodes have no conditional branch. 
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Fig. 3.  IMX functions in judgment nodes (in case of ROD and RCI) 

3.2 Judgment and processing functions of GNP-Sarsa 
The node transition of GNP-Sarsa starts from a start node and continues depending on the 
node connections and judgment results. Fig. 2 shows node structures of a judgment node 
and a processing node. 
(1) Judgment node: When a current node i is a judgment node, first, one Q value is selected 
from Qi1, …, Qimi based on ε-greedy policy. That is, a maximum Q value among Qi1, …, Qimi 
is selected with the probability of 1-ε , or a random one is selected with the probability of ε. 
Then corresponding function (IDip) is selected. The gene IDip shows a technical index or a 
candlestick GNP judges at node i. Each technical index has its own IMX function shown in 
Fig. 3. x axis shows the value of each technical index, and the sections A, B, C, ... correspond 
to judgment results. Suppose Qi1 and the corresponding IDi1 = 1 (judgment of rate of 
deviation) are selected, and if the rate is more than 0.1, the judgment result becomes E, and 
the next node number becomes Ci1E. y axis shows the output of the IMX function and it is 
used at a processing node. However, the IMX output of golden cross, dead cross and MACD 
could be 1, 0 or -1 based on the cross of the lines, and the values correspond to judgment 
results A, B and C, respectively. Concretely speaking, for three days after a golden cross 
appears, the IMX output becomes 1, and for three days after a dead cross appears, it 
becomes -1, otherwise 0. Furthermore, for three days After MACD passes through the signal 
from the lower side to the upper side, the IMX output becomes 1, and for three days after it 
does from the upper to the lower, the IMX output becomes -1, otherwise it becomes 0. 
Generally, golden cross indicates buying signals and dead cross indicates selling signals, 
therefore, buying signals become stronger as the IMX output is close to 1, and selling signals 
become stronger as it is close to -1. 
In this paper, candlestick chart is used as one of judgment functions. As we know, 
candlestick chart has been winning international recognition for its good indication of stock 
prices, and it has been widely used as the means of indicating the fluctuations of the stocks.  
The proposed method has judgment nodes which check candlestick chart patterns. The 
judgment function of candlestick chart is executed as follows. When the selected sub-node 
has a judgment function of candlestick chart, GNP judges yesterday’s candlestick and the 
candlestick of the day before yesterday. There are eight patterns of candlestick charts as 
shown in Fig. 4 according to two kinds of rules: (A) Judge whether there is a gap or not 
between yesterday’s lowest price and the highest price of the day before yesterday, or 
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between yesterday’s highest price and the lowest price of the day before yesterday. (B) 
Judge whether or not yesterday’s closing price is higher than the opening price of the day 
before yesterday. Especially, when the opening price equals to the closing price, the case is 
treated as black body candlestick. As an example, when the candlestick pattern is “3”, GNP-
Sarsa selects third branch to transfer to the next node. However, judgment nodes of 
candlestick chart do not have IMX function. 
 

                       
Fig. 4. Candlestick chart patterns 

(2) Processing node: When a current node is a processing node, Qip, the corresponding IDip 
and aip are selected based on ε -greedy policy. The selected aip is a threshold for determining 
buying or selling stocks. We explain the procedure of buying and selling stocks using Fig. 5, 
where the current node at time t is a processing node. 
1. First, one Q value is selected from Qi1, … Qimi based on ε-greedy policy. That is, a 

maximum Q value among Qi1, … Qimi is selected with the probability of 1-ε , or a 
random one is selected with the probability of ε . Then the corresponding aip is selected. 

2. Calculate an average of the IMXs obtained at the judgment nodes executed in the node 
transition from the previous processing node to the current processing node. 

' '

1 ( ')
't
i I

A IMX i
I ∈

= ∑  

where, I’ shows a set of suffixes of the judgment node numbers executed in the node 
transition from the previous processing node to the current processing node. IMX(i’) 
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shows an IMX output at node i’ ∈ I’. However, when a judgment node of the 
candlestick chart was executed or an IMX output is zero at a judgment node of golden 
cross, dead cross and MACD, the node number is excluded from I’ for calculating At . 

 

 
Fig. 5. An example of node transition 

3. determine buying or selling: 
In the case of IDip = 0 (buy): if At ≥ aip and we do not have any stocks, GNP buys as 
much stocks as possible. Otherwise, GNP takes no action. 
In the case of IDip = 1 (sell): if At < aip and we have stocks, GNP sells all the stocks. 
Otherwise, GNP takes no action. 

4. The current node is transferred to the next node. If aip is selected, the next node number 
becomes CipA. 

The above procedure puts the information of the technical indices together into At, and 
GNP-Sarsa determines buying or selling stocks by comparing At with aip. Therefore, the 
points of this paper are 1) to find appropriate aip in the processing nodes by evolution and 
Sarsa, and 2) to determine I’ by evolution, in other words, what kinds of judgments 
(technical indices and candlestick charts) should be considered is determined automatically. 

3.3 Learning phase 
First we explain Sarsa algorithm briefly. Sarsa can obtain Q values which estimate the sum 
of the discounted rewards obtained in the future. Suppose an agent selects an action at at 
state st at time t, a reward rt is obtained and an action at+1 is taken at the next state st+1. Then 
Q (st, at) is updated as follows.  

1 1( , ) ( , ) [ ( , ) ( , )]t t t t t t t t tQ s a Q s a r Q s a Q s aα γ + +← + + −  

α is a step size parameter, and γ is a discount rate which determines the present value of 
future rewards: a reward received k time steps later is worth only γ k-1 times of the reward 
supposed to receive at the current step. 
As described before, a state means the current node and an action means the selection of a 
sub-node. Here, we explain the procedure for updating Q value in this paper. 
1. At time t, GNP refers to Qi1, …, Qimi and selects one of them based on ε -greedy. 

Suppose that GNP selects Qip and the corresponding function IDip. 
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1 1( , ) ( , ) [ ( , ) ( , )]t t t t t t t t tQ s a Q s a r Q s a Q s aα γ + +← + + −  

α is a step size parameter, and γ is a discount rate which determines the present value of 
future rewards: a reward received k time steps later is worth only γ k-1 times of the reward 
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1. At time t, GNP refers to Qi1, …, Qimi and selects one of them based on ε -greedy. 
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2. GNP executes the function IDip, gets the reward rt and suppose the next node j becomes 
CipA. 

3. At time t+1, GNP selects one Q value in the same way as step1. Suppose that Qjp’ is 
selected. 

4. Q value is updated as follows.  

'[ ]ip ip t jp ipQ Q r Q Qα γ← + + −  

5. t ← t + 1, i ← j, p ← p’ then return step 2. 
 

 
Fig. 6. Flowchart of GNP-Sarsa 

3.4 Evolution phase 
Figure 6 shows the whole flowchart of GNP-Sarsa. In this sub-section, the genetic operators 
in the evolution phase are introduced. The role of evolution is to change graph structures 
and randomly change node parameters aip. 

3.4.1 Crossover 
Crossover is executed between two parents and generates two offspring [Fig. 7]. The 
procedure of crossover is as follows. 
1. Select two individuals using tournament selection twice and reproduce them as parents. 
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2. Each node is selected as a crossover node with the probability of Pc. 
3. Two parents exchange the genes of the corresponding crossover nodes, i.e., the nodes 

with the same node number. 
4. Generated new individuals become the new ones of the next generation. 
Figure 7 shows a crossover example of the graph structure with three processing nodes for 
simplicity. If GNP exchanges the genes of judgment nodes, it must exchange all the genes 
with suffix A, B, C, … simultaneously. 

3.4.2 Mutation 
Mutation is executed in one individual and a new one is generated [Fig. 8]. The procedure of 
mutation is as follows. 
1. Select one individual using tournament selection and reproduce it as a parent. 
2. Mutation operation 

a. change connection: Each node branch (CipA, CipB, …) is selected with the probability 
of Pm, and the selected branch is reconnected to another node. 

b. change parameters (aip): Each aip is changed to other value with the probability of Pm. 
c. change node function: Each node function (IDip) is selected with the probability of 

Pm, and the selected function is changed to another one. 
3. Generated new individual becomes the new one of the next generation. 

4. Simulation 
To confirm the effectiveness of GNP-Sarsa, we carried out the trading simulations using 16 
brands selected from the companies listed in the first section of Tokyo stock market in Japan 
(see Table 3). The simulation period is divided into two periods; one is used for training and 
the other is used for testing simulation. 
Training: January 4, 2001–December 30, 2003 (737 days) 
Testing: January 5, 2004–December 30, 2004 (246 days) 
We suppose that the initial funds is 5,000,000 Japanese yen in both periods, and the order of 
buying or selling is executed at the opening of the trading day, i.e., we can buy and sell 
stocks with the opening price. 

4.1 Fitness and reward 
Reward shows a capital gain of one trade (one set of buying and selling) and is used for 
learning. Fitness is the sum of the rewards obtained in the trading period. 
Reward=selling price - purchase price 
Fitness=Σ Reward 

4.2 Conditions of GNP-Sarsa 
GNP-Sarsa uses judgment nodes which judge the technical indices shown in Table 1 and 
candlestick charts. The technical indices are calculated using three kinds of calculation 
periods except Golden/Dead cross and MACD. Therefore, the number of kinds of judgment 
nodes is 21 (including one candlestick judgment). The number of processing functions is 
two: buying and selling. Table 2 shows simulation conditions. The total number of nodes in 
each individual is 31 including 20 judgment nodes, 10 processing nodes and one start node. 
However, the functions IDip in sub-nodes are determined randomly at the beginning of the 
first generation, and changed appropriately by evolution. 
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Technical index period1          period2          period3 
Rate of deviation 
RSI 
ROC 
Volume ratio 
RCI 
Stochastics 

5                      13                   26 
5                      13                   26  
5                      13                   26 
5                      13                   26 
9                      18                   27 
12                    20                   30 

Golden/Dead cross 
MACD 

5 (short term),  26 (long term) 
5 (short term), 26 (long term), 9 (signal) 

Table 1. Calculation periods of the technical indices [day] 
 

Number of individuals = 300  
(mutation: 179, crossover:120, elite:1) 
Number of nodes = 31   
( Judgment node:20, Processing node:10, start node:1) 
Number of sub-node in each node = 2 
Pc=0.1, Pm=0.03, α=0.1, γ=0.4, =0.1 

Table 2. Simulation conditions 

The initial connections between nodes are also determined randomly at the first generation. 
At the end of each generation, 179 new individuals are produced by mutation, 120 new 
individuals are produced by crossover, and the best individual is preserved. The other 
parameters are the ones showing good results in the simulations. The initial Q values are set 
at zero. 

4.3 Simulation results 
First, 300 individuals are evolved for 300 generations using the training data. Fig. 9 shows 
the fitness curve of the best individual at each generation in the training term using the data 
of Toyota motor, and the line is the average over 30 independent simulations. From the 
Figure, we can see that GNP-Sarsa can obtain larger profits for the training data as the 
generation goes on. The fitness curves of the other companies have almost the same 
tendency as that of Toyota Motor. 
Next, the test simulation is carried out using the best individual at the last generation in the 
training term. Table 3 shows the profits and losses in the testing term. The values in Table 3 
are the average of the 30 independent simulations with different random seeds. For the 
comparison, the table also shows the results of Buy&Hold which is often considered to be a 
benchmark in trading stocks simulations. Buy&Hold buys as much stocks as possible at the 
opening of the market on the first day in the simulations, and sells all the stocks at the 
opening on the last day. From the table, the proposed method can obtain larger profits than 
Buy&Hold in the trade of 12 brands out of 16. By comparing with original GNP, the 
proposed method can get larger profits than traditional GNP in the trade of 13 brands out of 
16. Especially, the stock prices of NEC, Fuji Heavy Ind., KDDI, Nomura Holdings, Shin-Etsu 
Chemical Co., Ltd. are down trend, so Buy&Hold always makes a loss, however the 
proposed method can obtain profits in five all brands. 
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Profit[yen](profit rate[%]) 
Brand GNP-Sarsa GNP Buy&Hold 
Toyota Motor                  
Mitsubishi Estate            
Showa Shell Sekiyu        
East Japan Railway  
NEC Corporation 
Fuji Heavy Ind. 
Sekisui House, Ltd. 
Mitsu & Co. 
Sony 
Tokyo Gas 
KDDI 
Tokyo Electric Power 
Daiwa House 
Nomura Holdings 
Shin-Etsu Chemical 
Nippon Steel 

522,333(10.4)  
444,733(8.9)   

 263,100(5.3)
413,833(8.3)
36,600(0.7)

217,133(4.3)
582,466(11.6)
473,033(9.5)
148,733(3.0)

669,733(13.4)
199,400(4.0)

570,266(11.4)
612,633(12.3)
366,033(7.3)

562,700(11.3)
469,866(9.4)

480,500(9.6)   
405,700(8.1)   
294,755(5.9)
491,500(9.8)

-126,150(-2.5)
97,700(2.0)
54,600(1.1)

118,450(2.4)
280,500(5.6)
382,000(7.6)
-76,600(-1.5)
210,000(4.2)
235,400(4.7)

-293,785(5.9)
7,250(0.1)

-27,350(0.5)

520,000 (10.4) 
664,000(13.3) 
319,200(6.4) 
477,000(9.5) 

-1,026,000(-20.5) 
-189,000(-3.8) 

264,000(5.3) 
240,000(4.8) 
150,000(3.0) 
372,000(7.4) 

-576,000(-11.5) 
262,500(5.3) 
32,000(0.6) 

-985,500(-19.7) 
-264,000(-5.3) 

399,000(8.0) 
Average 409,537(8.2) 158,404(3.2) 41,200(0.8) 

Table 3. Profits in the test simulations 

Figure 10 shows the change of the price of Toyota motor in the testing term and also shows 
typical buying and selling points by the proposed method. Fig. 11 shows the change of the 
funds as a result of the trading. From these figures, we can see that GNP-Sarsa can buy 
stocks at the lower points and sell at the higher points. 
 

 
Fig. 9. Fitness curve in the training period (Toyota Motor) 

Figure 12 shows the average ratio of the nodes used in the test period over 30 independent 
simulations in order to see which nodes are used and which are most efficient for stock 
trading model. The total number of node function is 23, while each processing node has a 
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node number (0–1), and each judgment node has a node number (2–22). The x-axis shows 
the kinds of the nodes while the y-axis shows the average ratio of the used nodes. From the 
figure, we can see that the processing nodes are used to determine buying and selling 
stocks, and the judgment nodes of “Rate of deviation1” corresponding to period1 and 
“Volume ratio3” corresponding to period3 are frequently used. 
Thus it can be said that GNP-Sarsa judges that these nodes are important to determine stock 
trading. GNP-Sarsa can automatically determine which nodes should be used in the current 
situation by evolving node functions and connections between nodes, in other words, GNP-
Sarsa can optimize the combination of technical indices and candlestick charts used for stock 
trading model. 
 

   
Fig. 10. Stock price of Toyota Motor and typical buying/selling points in 2004 (test period) 
 

 
Fig. 11. Change of funds in the test simulation (Toyota Motor) 
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Fig. 12. Ratio of nodes used by GNP-Sarsa in the test period (Toyota Motor) 

5. Conclusions 
In this paper, a stock trading model using GNP-Sarsa with important index and candlestick 
charts is proposed. First, a newly defined IMX function is assigned to each technical index to 
tell GNP-Sarsa whether buying or selling stocks is recommended or not. Second, Sarsa 
learns Q values to select appropriate sub-nodes/functions used to judge the current stock 
price information and determine buying and selling timing. We carried out simulations 
using stock price data of 16 brands for four years. From the simulation results, it is clarified 
that the fitness becomes larger as the generation goes on and the profits obtained in the 
testing term are better than Buy&Hold in the simulations of 12 brands out of 16. By 
comparing with original GNP, the proposed method can get larger profits than traditional 
GNP in the trade of 13 brands out of 16. When there is downtrend, Buy&Hold makes a loss 
in five brands, but the proposed method can obtain profits in five all brands. 
There remain some problems to be solved. First, in this paper, the calculation period of each 
technical index is fixed in advance. However, to improve the performance of the proposed 
method, we should develop a new method that can learn appropriate calculation periods. 
Next, it is necessary to consider the way of classifying the candlestick chart body type, and 
create more efficient judgment functions to judge current stock price appropriately. Also, we 
will evaluate the proposed method comparing with other methods using many data of other 
brands. 

6. References 
[1] Mabu, S., Hirasawa, K. & Hu, J. (2007), A graph-based evolutionary algorithm: Genetic 

network programming and its extension using reinforcement learning, Evolutionary 
Computation, MIT Press, Vol.15, No.3, pp. 369-398. 

Genetic Network Programming with Reinforcement Learning  
and Its Application to Creating Stock Trading Rules 

 

359 

[2] Eguchi, T., Hirasawa, K., Hu, J. & Ota N. (2006), Study of evolutionary multiagent 
models based on symbiosis,  IEEE Trans. Syst., Man and Cybern. B, Vol.36, No.1, pp. 
179-193. 

[3] Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor, University 
of Michigan Press. 

[4] Goldberg, D. E. (1989), Genetic Algorithm in search, optimization and machine learning, 
Addison-Wesley. 

[5] Koza, J. R. (1992), Genetic Programming, on the programming of computers by means of natural 
selection, Cambridge, Mass., MIT Press. 

[6] Koza, J. R. (1994), Genetic Programming II, Automatic Discovery of Reusable Programs, 
Cambridge, Mass., MIT Press. 

[7] Sutton, R. S. & Barto, A. G. (1998), Reinforcement Learning -An Introduction, Cambridge, 
Massachusetts, London, England, MIT Press. 

[8] Baba, N., Inoue, N. & Yanjun, Y. (2002), Utilization of soft computing techniques for 
constructing reliable decision support systems for dealing stocks, Proceedings of Int. 
Joint Conf. on Neural Networks. 

[9] Potvin, J. -Y., Soriano, P. & Vallee, M. (2004), Generating trading rules on the stock 
markets with genetic programming, Computers & Operations Research, Vol.31, pp. 
1033-1047. 

[10] Oh, K. J., Kim, T. Y., Min, S. -H. & Lee, H. Y. (2006), Portfolio algorithm based on 
portfolio beta using genetic algorithm, Expert Systems with Application, Vol.30, pp. 
527-534. 

[11] Mabu, S., Hatakeyama, H., Thu, M. T., Hirasawa, K. & Hu, J. (2006), Genetic Network 
Programming with Reinforcement Learning and Its Application to Making Mobile 
Robot Behavior, IEEJ Trans. EIS, Vol.126, No.8, pp. 1009-1015. 

[12] Lee, K. H. & Jo,  G.S. (1999), Expert system for predicting stock market timing using a 
candlestick chart, Expert Systems with Applications, Vol.16, pp. 357-364. 

[13] Izumi, Y., Yamaguchi, T., Mabu, S., Hirasawa, K. & Hu, J. (2006), Trading Rules on the 
Stock Market using Genetic Network Programming with Candlestick Chart, 
Proceedings of 2006 IEEE Congress on Evolutionary Computation, Sheraton Vancouver 
Wall Centre Hotel, Vancouver, BC, Canada, pp. 8531-8536, July 16-21. 

[14] Mabu, S., Izumi, Y., Hirasawa, K. & Furuzuki, T. (2007), Trading Rules on Stock Markets 
Using Genetic Network Progamming with Candle Chart, T. SICE, Vol.43, No.4, pp. 
317-322, (in Japanese). 

[15] Izumi, Y., Hirasawa, K. & Furuzuki, T. (2006), Trading Rules on the Stock Markets 
Using Genetic Network Progamming with Importance Index, T. SICE, Vol.42, No.5, 
pp. 559-566, (in Japanese). 

[16] Dhar, V. (2001), A Comparison of GLOWER and Other Machine Learning Methods for 
Investment Decision Making, Springer Berlin Press, pp.208-220. 

[17] Duerson, S., Khan, F. S., Kovalev, V. & Malik, A. H. (2005), Reinforcement Learning in 
Online Stock Trading Systems.  

        http://www.cc.gatech.edu/grads/h/hisham/projects/ml7641/RLStockTrading. pdf 
[18] Pafka, S., Potters, M. & Kondor, I. (2004), Exponential Weighting and Random-Matrix-

Theory-Based Filtering of Financial Covariance Matrices for Portfolio Optimization, 
arXiv:cond-mat/0402573v1, 2004. Quantitative Finance, (to be appeared). 



 Machine Learning 

 

358 

 
Fig. 12. Ratio of nodes used by GNP-Sarsa in the test period (Toyota Motor) 

5. Conclusions 
In this paper, a stock trading model using GNP-Sarsa with important index and candlestick 
charts is proposed. First, a newly defined IMX function is assigned to each technical index to 
tell GNP-Sarsa whether buying or selling stocks is recommended or not. Second, Sarsa 
learns Q values to select appropriate sub-nodes/functions used to judge the current stock 
price information and determine buying and selling timing. We carried out simulations 
using stock price data of 16 brands for four years. From the simulation results, it is clarified 
that the fitness becomes larger as the generation goes on and the profits obtained in the 
testing term are better than Buy&Hold in the simulations of 12 brands out of 16. By 
comparing with original GNP, the proposed method can get larger profits than traditional 
GNP in the trade of 13 brands out of 16. When there is downtrend, Buy&Hold makes a loss 
in five brands, but the proposed method can obtain profits in five all brands. 
There remain some problems to be solved. First, in this paper, the calculation period of each 
technical index is fixed in advance. However, to improve the performance of the proposed 
method, we should develop a new method that can learn appropriate calculation periods. 
Next, it is necessary to consider the way of classifying the candlestick chart body type, and 
create more efficient judgment functions to judge current stock price appropriately. Also, we 
will evaluate the proposed method comparing with other methods using many data of other 
brands. 

6. References 
[1] Mabu, S., Hirasawa, K. & Hu, J. (2007), A graph-based evolutionary algorithm: Genetic 

network programming and its extension using reinforcement learning, Evolutionary 
Computation, MIT Press, Vol.15, No.3, pp. 369-398. 

Genetic Network Programming with Reinforcement Learning  
and Its Application to Creating Stock Trading Rules 

 

359 

[2] Eguchi, T., Hirasawa, K., Hu, J. & Ota N. (2006), Study of evolutionary multiagent 
models based on symbiosis,  IEEE Trans. Syst., Man and Cybern. B, Vol.36, No.1, pp. 
179-193. 

[3] Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor, University 
of Michigan Press. 

[4] Goldberg, D. E. (1989), Genetic Algorithm in search, optimization and machine learning, 
Addison-Wesley. 

[5] Koza, J. R. (1992), Genetic Programming, on the programming of computers by means of natural 
selection, Cambridge, Mass., MIT Press. 

[6] Koza, J. R. (1994), Genetic Programming II, Automatic Discovery of Reusable Programs, 
Cambridge, Mass., MIT Press. 

[7] Sutton, R. S. & Barto, A. G. (1998), Reinforcement Learning -An Introduction, Cambridge, 
Massachusetts, London, England, MIT Press. 

[8] Baba, N., Inoue, N. & Yanjun, Y. (2002), Utilization of soft computing techniques for 
constructing reliable decision support systems for dealing stocks, Proceedings of Int. 
Joint Conf. on Neural Networks. 

[9] Potvin, J. -Y., Soriano, P. & Vallee, M. (2004), Generating trading rules on the stock 
markets with genetic programming, Computers & Operations Research, Vol.31, pp. 
1033-1047. 

[10] Oh, K. J., Kim, T. Y., Min, S. -H. & Lee, H. Y. (2006), Portfolio algorithm based on 
portfolio beta using genetic algorithm, Expert Systems with Application, Vol.30, pp. 
527-534. 

[11] Mabu, S., Hatakeyama, H., Thu, M. T., Hirasawa, K. & Hu, J. (2006), Genetic Network 
Programming with Reinforcement Learning and Its Application to Making Mobile 
Robot Behavior, IEEJ Trans. EIS, Vol.126, No.8, pp. 1009-1015. 

[12] Lee, K. H. & Jo,  G.S. (1999), Expert system for predicting stock market timing using a 
candlestick chart, Expert Systems with Applications, Vol.16, pp. 357-364. 

[13] Izumi, Y., Yamaguchi, T., Mabu, S., Hirasawa, K. & Hu, J. (2006), Trading Rules on the 
Stock Market using Genetic Network Programming with Candlestick Chart, 
Proceedings of 2006 IEEE Congress on Evolutionary Computation, Sheraton Vancouver 
Wall Centre Hotel, Vancouver, BC, Canada, pp. 8531-8536, July 16-21. 

[14] Mabu, S., Izumi, Y., Hirasawa, K. & Furuzuki, T. (2007), Trading Rules on Stock Markets 
Using Genetic Network Progamming with Candle Chart, T. SICE, Vol.43, No.4, pp. 
317-322, (in Japanese). 

[15] Izumi, Y., Hirasawa, K. & Furuzuki, T. (2006), Trading Rules on the Stock Markets 
Using Genetic Network Progamming with Importance Index, T. SICE, Vol.42, No.5, 
pp. 559-566, (in Japanese). 

[16] Dhar, V. (2001), A Comparison of GLOWER and Other Machine Learning Methods for 
Investment Decision Making, Springer Berlin Press, pp.208-220. 

[17] Duerson, S., Khan, F. S., Kovalev, V. & Malik, A. H. (2005), Reinforcement Learning in 
Online Stock Trading Systems.  

        http://www.cc.gatech.edu/grads/h/hisham/projects/ml7641/RLStockTrading. pdf 
[18] Pafka, S., Potters, M. & Kondor, I. (2004), Exponential Weighting and Random-Matrix-

Theory-Based Filtering of Financial Covariance Matrices for Portfolio Optimization, 
arXiv:cond-mat/0402573v1, 2004. Quantitative Finance, (to be appeared). 



 Machine Learning 

 

360 

[19] Basalto, N., Bellotti, R., De Carlo, F., Facchi, P. & Pascazio, S. (2005), Clustering stock 
market companies via chaotic map synchronization, Physica A, 345, p. 196, 
arXiv:cond-mat/0404497v1. 

[20] Huang, W., Nakamori, Y. & Wang, S. Y. (2005), Forecasting stock market movement 
direction with support vector machine Source, Computers and Operations Research, 
Vol.32, Issue 10, pp. 2513-2522. 

[21] Porecha, M. B., Panigrahi, P. K., Parikh, J. C., Kishtawal, C. M. & Basu, S. (2005), 
Forecasting non-stationary financial time series through genetic algorithm, 
arXiv:nlin/0507037v1. 

[22] Jensen, M. H., Johansen, A., Petroni, F. & Simonsen, I. (2004), Inverse Statistics in the 
Foreign Exchange Market, Physica A, 340, p. 678, arXiv:cond-mat/0402591v2. 

[23] Mikosch, T. & Starica, C. (2004), Stock Market Risk-Return Inference. An Unconditional 
Non-parametric Approach, SSRN Working Paper Series. 

[24] Iba, H. & Sasaki, T. (2001), Using Genetic Programming to Predict Financial Data, 
Proceedings of the Congress of Evolutionary Computation, pp. 244-251. 

18 

Heuristic Dynamic Programming Nonlinear 
Optimal Controller 

Asma Al-tamimi,  Murad Abu-Khalaf and Frank Lewis 
The Hashemite University, Math work, The  University of Texas at Arlington 

Jordan, USA 

1. Introduction      
This chapter is concerned with the application of approximate dynamic programming 
techniques (ADP) to solve for the value function, and hence the optimal control policy, in 
discrete-time nonlinear optimal control problems having continuous state and action spaces. 
ADP is a reinforcement learning approach (Sutton & Barto, 1998) based on adaptive critics 
(Barto et al., 1983), (Widrow et al., 1973) to solve dynamic programming problems utilizing 
function approximation for the value function.  ADP techniques can be based on value 
iterations or policy iterations. In contrast with value iterations, policy iterations require an 
initial stabilizing control action, (Sutton & Barto, 1998).  (Howard, 1960) proved convergence 
of policy iteration for Markov Decision Processes with discrete state and action spaces.  
Lookup tables are used to store the value function iterations at each state.  (Watkins, 1989) 
developed Q-learning for discrete state and action MDPs, where a ‘Q function’ is stored for 
each state/action pair, and model dynamics are not needed to compute the control action.   
ADP was proposed by (Werbos, 1990,1991,1992) for discrete-time dynamical systems having 
continuous state and action spaces as a way to solve optimal control problems, (Lewis & 
Syrmos, 1995), forward in time. (Bertsekas & Tsitsiklis, 1996) provide a treatment of 
Neurodynamic programming, where neural networks (NN) are used to approximate the 
value function.  (Cao, 2002) presents a general theory for learning and optimization. 
 (Werbos, 1992) classified approximate dynamic programming approaches into four main 
schemes: Heuristic Dynamic Programming (HDP), Dual Heuristic Dynamic Programming 
(DHP), Action Dependent Heuristic Dynamic Programming (ADHDP), (a continuous-state-
space generalization of Q-learning (Watkins, 1989)), and Action Dependent Dual Heuristic 
Dynamic Programming (ADDHP). Neural networks are used to approximate the value 
function (the critic NN) and the control (the action NN), and backpropagation is used to 
tune the weights until convergence at each iteration of the ADP algorithm.  An overview of 
ADP is given in (Si et al., 2004) (e.g. (Ferrari & Stengel, 2004), and also (Prokhorov & 
Wunsch, 1997), who deployed new ADP schemes known as Globalized-DHP (GDHP) and 
ADGDHP.   
ADP for linear systems has received ample attention.  An off-line policy iteration scheme for 
discrete-time systems with known dynamics was given in (Hewer, 1971) to solve the 
discrete-time Riccati equation. In (Bradtke et al, 1994) implemented an (online) Q-learning 
policy iteration method for discrete-time linear quadratic regulator (LQR) optimal control 
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Syrmos, 1995), forward in time. (Bertsekas & Tsitsiklis, 1996) provide a treatment of 
Neurodynamic programming, where neural networks (NN) are used to approximate the 
value function.  (Cao, 2002) presents a general theory for learning and optimization. 
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space generalization of Q-learning (Watkins, 1989)), and Action Dependent Dual Heuristic 
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function (the critic NN) and the control (the action NN), and backpropagation is used to 
tune the weights until convergence at each iteration of the ADP algorithm.  An overview of 
ADP is given in (Si et al., 2004) (e.g. (Ferrari & Stengel, 2004), and also (Prokhorov & 
Wunsch, 1997), who deployed new ADP schemes known as Globalized-DHP (GDHP) and 
ADGDHP.   
ADP for linear systems has received ample attention.  An off-line policy iteration scheme for 
discrete-time systems with known dynamics was given in (Hewer, 1971) to solve the 
discrete-time Riccati equation. In (Bradtke et al, 1994) implemented an (online) Q-learning 
policy iteration method for discrete-time linear quadratic regulator (LQR) optimal control 
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problems. A convergence proof was given. (Hagen, 1998) discussed, for the LQR case, the 
relation between the Q-learning method and model-based adaptive control with system 
identification. (Landelius, 1997) applied HDP, DHP, ADHDP and ADDHP value iteration 
techniques, called greedy policy iterations therein, to the discrete-time LQR problem and 
verified their convergence. It was shown that these iterations are in fact equivalent to 
iterative solution of an underlying algebraic Riccati equation, which is known to converge 
(Lancaster & Rodman, 1995).  (Lu & Balakrishnan, 2000) showed convergence of DHP for 
the LQR case. 
(Morimoto et al, 2003) developed differential dynamic programming, a Q-learning method, 
to solve optimal zero-sum game problems for nonlinear systems by taking the second-order 
approximation to the Q function. This effectively provides an exact Q-learning formulation 
for linear systems with minimax value functions.  In our previous work (Al-tamimi et al, 
2007), we studied ADP value iteration techniques to solve the zero-sum game problem for 
linear discrete-time dynamical systems using quadratic minimax cost.  HDP, DHP, ADHDP 
and ADDHP formulations were developed for zero-sum games, and convergence was 
proven by showing the equivalence of these ADP methods to iterative solution of an 
underlying Game Algebraic Riccati Equation, which is known to converge.  Applications 
were made to H-infinity control. 
For nonlinear systems with continuous state and action spaces, solution methods for the 
dynamic programming problem are more sparse. Policy iteration methods for optimal 
control for continuous-time systems with continuous state space and action spaces were 
given in (Abu-khalaf & Lewis, 2005) (Abu-Khalaf at el, 2004), but complete knowledge of the 
plant dynamics is required.  The discrete-time nonlinear optimal control solution relies on 
solving the discrete-time (DT) Hamilton-Jacobi-Bellman (HJB) equation (Lewis & Syrmos, 
1995), exact solution of which is generally impossible for nonlinear systems.  Solutions to the 
DT HJB equation with known dynamics and continuous state space and action space were 
given in (Huang, 1999), where the coefficients of the Taylor series expansion of the value 
function are systematically computed.  In (Chen & Jagannathan, 2005), the authors show 
that under certain conditions a second-order approximation of the discrete-time (DT) 
Hamilton-Jacobi-Bellman (HJB) equation can be considered; under those conditions 
discussed in that paper, the authors solve for the value function that satisfies the second 
order expansion of the DT HJB instead of solving for the original DT HJB. The authors apply 
a policy iteration scheme on this second order DT HJB and require an initially stable policy 
to start the iterations scheme. The authors also used a single (critic) neural network to 
approximate the value function of the second order DT HJB.  These are all off-line methods 
for solving the HJB equations that require full knowledge of the system dynamics. 
Convergence proofs for the on-line value-iteration based ADP techniques for nonlinear 
discrete-time systems are even more limited.  (Prokhorov & Wunsch, 1997) use NN to 
approximate both the value (e.g. a critic NN) and the control action.  Least mean squares is 
used to tune the critic NN weights and the action NN weights.  Stochastic approximation is 
used to show that, at each iteration of the ADP algorithm, the critic weights converge.  
Likewise, at each iteration the action NN weights converge, but overall convergence of the 
ADP algorithm to the optimal solution is not demonstrated.  A similar approach was used in 
(Si et al., 2004). 
In (He & Jagannathan, 2005), a generalized or asynchronous version of ADP (in the sense of 
(Sutton & Barto, 1998) was used whereby the updates of the critic NN and action NN are 
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interleaved, each NN being updated at each time step.  Tuning was performed online.  A 
Lyapunov approach was used to show that the method yields uniform ultimate bounded 
stability and that the weight estimation errors are bounded, though convergence to the exact 
optimal value and control was not shown.  The input coupling function must be positive 
definite. 
In this chapter, we provide a full, rigorous proof of convergence of the online value-iteration 
based HDP algorithm, to solve the DT HJB equation of the optimal control problem for 
general nonlinear discrete-time systems.  It is assumed that at each iteration, the value 
update and policy update equations can be exactly solved.  Note that this is true in the 
specific case of the LQR, where the action is linear and the value quadratic in the states.  For 
implementation, two NN are used- the critic NN to approximate the value and the action 
NN to approximate the control.  Full knowledge of the system dynamics is not needed to 
implement the HDP algorithm; in fact, the internal dynamics information is not needed.  As 
a value iteration based algorithm, of course, an initial stabilizing policy is not needed for 
HDP. 
The point is stressed that these results also hold for the special LQR case of linear systems 
x Ax Bu= +  and quadratic utility.  In the general folklore of HDP for the LQR case, only a 
single NN is used, namely a critic NN, and the action is updated using a standard matrix 
equation derived from the stationarity condition (Lewis & Syrmos1995).  In the DT case, this 
equation requires the use of both the plant matrix A, e.g. the internal dynamics, and the 
control input coupling matrix B .  However, by using a second action NN, the knowledge of 
the A  matrix is not needed.  This important issue is clarified herein. 
Section two of the chapter starts by introducing the nonlinear discrete-time optimal control 
problem.  Section three demonstrates how to setup the HDP algorithm to solve for the 
nonlinear discrete-time optimal control problem.  In Section four, we prove the convergence 
of HDP value iterations to the solution of the DT HJB equation. In Section five, we introduce 
two neural network parametric structures to approximate the optimal value function and 
policy.  As is known, this provides a procedure for implementing the HDP algorithm. We 
also discuss in that section how we implement the algorithm without having to know the 
plant internal dynamics. Finally, Section six presents two examples that show the practical 
effectiveness of the ADP technique. The first example in fact is a LQR example which uses 
HDP with two NNs to solve the Riccati equation online without knowing the A matrix. The 
second example considers a nonlinear system and the results are compared to solutions 
based on State Dependent Riccati Equations (SDRE). 

2. The discrete-time HJB equation  
Consider an affine in input nonlinear dynamical-system of the form 

 1 ( ) ( ) ( )k k k kx f x g x u x+ = + .  (1) 

where nx ∈ , ( ) nf x ∈ , ( ) n mg x ×∈  and the input mu ∈ . Suppose the system is drift-free 
and, without loss of generality, that 0x =  is an equilibrium state, e.g. (0) 0f = , (0) 0g = .  
Assume that the system (1) is stabilizable on a prescribed compact set nΩ∈ . 
Definition 1. Stabilizable system: A nonlinear dynamical system is defined to be stabilizable 
on a compact set nΩ∈  if there exists a control input mu ∈  such that, for all initial 
conditions 0x ∈Ω  the state 0kx →  as k →∞ . 
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It is desired to find the control action ( )ku x  which minimizes the infinite-horizon cost 
function given as 

 ( ) ( ) ( ) ( )T
k n n nn k

V x Q x u x Ru x∞

=
= +∑  (2) 

for all xk, where ( ) 0Q x >  and 0 m mR ×> ∈ .  The class of controllers needs to be stable and 
also guarantee that (2) is finite, i.e. the control must be admissible (Abu-Khalaf & Lewis, 
2005). 
Definition 2. Admissible Control: A control ( )ku x  is defined to be admissible with respect 
to (2) on Ω  if ( )ku x  is continuous on a compact set nΩ∈ , (0) 0u = , u  stabilizes (1) on Ω , 
and 0 0,  ( )x V x∀ ∈Ω  is finite. 
Equation (2) can be written as 

 1

1

( )

( )

T T T T
k k k k k n n n nn k

T T
k k k k k

V x x Qx u Ru x Qx u Ru

x Qx u Ru V x

∞

= +

+

= + + +

= + +

∑  (3) 

where we require the boundary condition ( 0) 0V x = =  so that ( )kV x  serves as a Lyapunov 
function.  From Bellman’s optimality principle (Lewis & Syrmos, 1995), it is known that for 
the infinite-horizon optimization case, the value function ( )kV x∗  is time-invariant and 
satisfies the discrete-time Hamilton-Jacobi-Bellman (HJB) equation 

 1( ) min( ( ))
k

T T
k k k k k ku

V x x Qx u Ru V x∗ ∗
+= + +   (4) 

Note that the discrete-time HJB equation develops backward-in time.  
The optimal control u ∗  satisfies the first order necessary condition, given by the gradient of 
the right hand side of (4) with respect to u  as 

 1 1

1

( ) ( ) 0
TT T

k k k k k k

k k k

x Qx u Ru x V x
u u x

∗
+ +

+

∂ + ∂ ∂
+ =
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  (5) 

and therefore 

 1 1

1

1 ( )( ) ( )
2

T k
k k

k

V xu x R g x
x

∗
∗ − +

+

∂
=

∂
  (6) 

Substituting (6) in (4), one may write the discrete-time HJB as 

 11 1
1

1 1

1 ( ) ( )( ) ( ) ( ) ( )
4

T
T Tk k

k k k k k k
k k

V x V xV x x Qx g x R g x V x
x x

∗ ∗
∗ − ∗+ +

+
+ +

∂ ∂
= + +

∂ ∂
  (7) 

where ( )kV x∗  is the value function corresponding to the optimal control policy ( )ku x∗ . 
This equation reduces to the Riccati equation in the linear quadratic regulator (LQR) case, 
which can be efficiently solved.  In the general nonlinear case, the HJB cannot be solved 
exactly. 
In the next sections we apply the HDP algorithm to solve for the value function V ∗  of the 
HJB equation (7) and present a convergence proof. 
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3. The HDP algorithm  
The HDP value iteration algorithm (Werbos, 1990) is a method to solve the DT HJB online.  
In this section, a proof of convergence of the HDP algorithm in the general nonlinear 
discrete-time setting is presented. 

3.1 The HDP algorithm 
In the HDP algorithm, one starts with an initial value, e.g. 0 ( ) 0V x =  and then solves for 0u  
as follows 

 0 1( ) arg min( ( ))T T
o k k k ku
u x x Qx u Ru V x += + +   (8) 

Once the policy 0u  is determined, iteration on the value is performed by computing 
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The HDP value iteration scheme therefore is a form of incremental optimization that requires 
iterating between a sequence of action policies ( )iu x  determined by the greedy update 
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and a sequence ( ) 0iV x ≥  where 
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with initial condition 0 ( ) 0kV x = . 
Note that, as a value-iteration algorithm, HDP does not require an initial stabilizing gain.  
This is important as stabilizing gains are difficult to find for general nonlinear systems. 
Note that i  is the value iterations index, while k  is the time index. The HDP algorithm 
results in an incremental optimization that is implemented forward in time and online.  
Note that unlike the case for policy iterations in (Hewer, 1971), the sequence ( )i kV x  is not a 
sequence of cost functions and are therefore not Lyapunov functions for the corresponding 
policies ( )i ku x  which are in turn not necessarily stabilizing.  In Section four it is shown that 

( )i kV x  and ( )i ku x  converges to the value function of the optimal control problem and to 
the corresponding optimal control policy respectively. 

3.2 The special case of linear systems 
Note that for the special case of linear systems, it can be shown that the HDP algorithm is 
one way to solve the Discrete-Time Algebraic Riccati Equation (DARE) (Landelius, 1997)). 
Particularly, for the discrete-time linear system 
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It is desired to find the control action ( )ku x  which minimizes the infinite-horizon cost 
function given as 
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where we require the boundary condition ( 0) 0V x = =  so that ( )kV x  serves as a Lyapunov 
function.  From Bellman’s optimality principle (Lewis & Syrmos, 1995), it is known that for 
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Note that the discrete-time HJB equation develops backward-in time.  
The optimal control u ∗  satisfies the first order necessary condition, given by the gradient of 
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Substituting (6) in (4), one may write the discrete-time HJB as 
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where ( )kV x∗  is the value function corresponding to the optimal control policy ( )ku x∗ . 
This equation reduces to the Riccati equation in the linear quadratic regulator (LQR) case, 
which can be efficiently solved.  In the general nonlinear case, the HJB cannot be solved 
exactly. 
In the next sections we apply the HDP algorithm to solve for the value function V ∗  of the 
HJB equation (7) and present a convergence proof. 
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 1k k kx Ax Bu+ = +   (12) 

the DT HJB equation (7) becomes the DARE 

 1( )T T T TP A PA Q A PB R B PB B PA−= + − +   (13) 

with ( ) T
k k kV x x Px∗ = . 

In the linear case, the policy update (10) is 

 1( ) ( )T T
i k i i ku x R B P B B P Ax−= − +   (14) 

Substituting this into (11), one sees that the HDP algorithm (10), (11) is equivalent to 
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1
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( )
0

T T T T
i i i i iP A P A Q A P B R B P B B P A
P

−
+ = + − +
=

  (15) 

It should be noted that the HDP algorithm (15) solves the DARE forward in time, whereas 
the dynamic programming recursion appearing in finite-horizon optimal control [21] 
develops backward in time 

 
1

1 1 1 1( )
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T T T T
k k k k k

N

P A P A Q A P B R B P B B P A
P

−
+ + + += + − +

=
  (16) 

where N  represents the terminal time. Both equations (15) and (16) will produce the same 
sequence of iP  and kP  respectively. It has been shown in (Lewis & Syrmos, 1995) and 
(Lancaster, 1995) that this sequence converges to the solution of the DARE after enough 
iterations. 
It is very important to point out the difference between equations (14) and (15) resulting 
from HDP value iterations with 

 1( ) ( )
i

T T
i k i i k

K

u x R B P B B P A x−= − +   (17) 

 1 1

0 0

( ) ( )
( , ) :  Initial stable control policy with corresponding Lyapunov function

T T
i i i i i iA BK P A BK P Q K RK

P u
+ ++ + − = − −

  (18) 

resulting from policy iterations, those in(Hewer, 1971). Unlike iP  in (15), the sequence iP  in 
(18) is a sequence of Lyapunov functions. Similarly the sequence of control policies in (17) is 
stabilizing unlike the sequence in (14). 

4. Convergence of the HDP algorithm 

In this section, we present a proof of convergence for nonlinear HDP.  That is, we prove 
convergence of the iteration (10) and (11) to the optimal value, i.e. iV V ∗→  and iu u ∗→  as 
i →∞ .  The linear quadratic case has been proven by (Lancaster, 1995) for the case of 
known system dynamics. 
Lemma 1.  Let iμ  be any arbitrary sequence of control policies and iΛ  be defined by 
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Let iu  and iV  be the sequences defined by (10) and (11). If 0 0( ) ( ) 0k kV x x= Λ = , then 
( ) ( )i k i kV x x≤ Λ  i∀ . 

Proof: Since ( )i ku x  minimizes the right hand side of equation (11) with respect to the control 
u , and since 0 0( ) ( ) 0k kV x x= Λ = , then by induction it follows that ( ) ( )i k i kV x x≤ Λ  i∀ . ■ 
Lemma 2.  Let the sequence iV  be defined as in (11). If the system is controllable, then: 
There exists an upper bound ( )kY x  such that 0 ( ) ( )i k kV x Y x≤ ≤  i∀ . 
If the optimal control problem (4) is solvable, there exists a least upper bound 

( ) ( )k kV x Y x∗ ≤  where ( )kV x∗  solves (7), and that : 0 ( ) ( ) ( )i k k ki V x V x Y x∗∀ ≤ ≤ ≤ . 
Proof: Let ( )kxη  be any stabilizing and admissible control policy, and Let 

0 0( ) ( ) 0k kV x Z x= =  where iZ  is updated as 
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It follows that the difference 
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Since 0 ( ) 0kZ x = , it then follows that 
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and equation (22) can be written as 
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Since ( )kxη  is an admissible stabilizing controller, 0k nx + →  as n →∞  and 

1 10
: ( ) ( ) ( )i k k i ki
i Z x Z x Y x∞

+ +=
∀ ≤ =∑  
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and equation (22) can be written as 
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Since ( )kxη  is an admissible stabilizing controller, 0k nx + →  as n →∞  and 

1 10
: ( ) ( ) ( )i k k i ki
i Z x Z x Y x∞
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Using Lemma 1 with ( ) ( )i k kx xμ η=  and ( ) ( )i k i kx Z xΛ = , it follows that 

: ( ) ( ) ( )i k i k ki V x Z x Y x∀ ≤ ≤  

which proves part a). Moreover if ( ) ( )k kx u xη ∗= , then 

0 0

( )( )

( ( ) ( ) ( )) ( ( ) ( ) ( ))
kk

T T
k n k n k n k n k n k nn n

Y xV x

Q x u x Ru x Q x x R xη η
∗

∞ ∞∗ ∗
+ + + + + += =

+ ≤ +∑ ∑  

and hence ( ) ( )k kV x Y x∗ ≤  which proves part b) and shows that : 0 ( ) ( ) ( )i k k ki V x V x Y x∗∀ ≤ ≤ ≤  
for any ( )kY x  determined by an admissible stabilizing policy ( )kxη . ■ 
Theorem 1.  Consider the sequence iV  and iu  defined by (11) and (10) respectively. If 

0 ( ) 0kV x = , then it follows that iV  is a non-decreasing sequence 

1: ( ) ( )i k i ki V x V x+∀ ≥  

and as i →∞  

iV V ∗→ , iu u ∗→  

that is the sequence iV  converges to the solution of the DT HJB (7). 
Proof: From Lemma 1, let iμ  be any arbitrary sequence of control policies and iΛ  be defined by 

1

1( ) ( ) ( ( ) ( ) ( ))
k

T
i k k i i i k k i k

x

x Q x R f x g x xμ μ μ
+

+Λ = + + Λ +  

If 0 0( ) ( ) 0k kV x x= Λ = , it follows that ( ) ( )i k i kV x x≤ Λ  i∀ . Now assume that 

1( ) ( )i k i kx u xμ +=  such that 

 1

1 1 1

( ) ( ) ( ( ) ( ) ( ))

( ) ( ( ) ( ) ( ))

T
i k k i i i k k i k

T
k i i i k k i k

x Q x R f x g x x

Q x u Ru f x g x u x

μ μ μ+

+ + +

Λ = + + Λ +

= + + Λ +
  (24) 

and consider 

 1( ) ( ) ( ( ) ( ) ( ))T
i k k i i i k k i kV x Q x u Ru V f x g x u x+ = + + +   (25) 

It will next be proven by induction that if 0 0( ) ( ) 0k kV x x= Λ = , then 1( ) ( )i k i kx V x+Λ ≤ . 
Induction is initialized by letting 0 0( ) ( ) 0k kV x x= Λ =  and hence 

1 0

1 0

( ) ( ) ( )
0

( ) ( )

k k k

k k

V x x Q x

V x x

− Λ =

≥
≥ Λ

 

Now assume that 1( ) ( )i k i kV x x−≥ Λ , then subtracting (24) from (25) it follows that  

1 1 1 1( ) ( ) ( ) ( ) 0i k i k i k i kV x x V x x+ + − +− Λ = − Λ ≥  
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and this completes the proof that 1( ) ( )i k i kx V x+Λ ≤ . 
From 1( ) ( )i k i kx V x+Λ ≤  and ( ) ( )i k i kV x x≤ Λ , it then follows that 

1: ( ) ( )i k i ki V x V x+∀ ≤ . 

From part a) in Lemma 2 and the fact that iV  is a non-decreasing sequence, it follows that 
iV V ∞→  as i →∞ . From part b) of Lemma 2, it also follows that ( ) ( )k kV x V x∗

∞ ≤ . 
It now remains to show that in fact V ∞  is V ∗ . To see this, note that from (11) it follows that 

( ) ( ) ( ) ( ( ) ( ) ( ))T T
k k k k k k k kV x x Qx u x Ru x V f x g x u x∞ ∞ ∞ ∞ ∞= + + +  

and hence 

( ( ) ( ) ( )) ( ) ( ) ( )T T
k k k k k k k kV f x g x u x V x x Qx u x Ru x∞ ∞ ∞ ∞ ∞+ − = − −  

and therefore ( )kV x∞  is a Lyapunov function for a stabilizing and admissible policy 
( ) ( )k ku x xη∞ = . Using part b) of Lemma 2 it follows that ( ) ( ) ( )k k kV x Y x V x∗

∞ = ≥ . This 
implies that ( ) ( ) ( )k k kV x V x V x∗ ∗

∞≤ ≤  and hence ( ) ( )k kV x V x∗
∞ = , ( ) ( )k ku x u x∗

∞ = . ■ 

5. Neural network approximation for Value and Action 
We have just proven that the nonlinear HDP algorithm converges to the value function of 
the DT HJB equation that appears in the nonlinear discrete-time optimal control.   
It was assumed that the action and value update equations (10), (11) can be exactly solved at 
each iteration.  In fact, these equations are difficult to solve for general nonlinear systems.  
Therefore, for implementation purposes, one needs to approximate ,i iu V  at each iteration.  
This allows approximate solution of (10), (11). 
In this section, we review how to implement the HDP value iterations algorithm with two 
parametric structures such as neural networks (Werbos, 1990) and (Lewis & Jaganathan, 
1999). The important point is stressed that the use of two NN, a critic for value function 
approximation and an action NN for the control, allows the implementation of HDP in the 
LQR case without knowing the system internal dynamics matrix A. This point is not generally 
appreciated in the folklore of ADP. 

5.1 NN approximation for implementation of HDP algorithm for nonlinear systems 
It is well known that neural networks can be used to approximate smooth functions on 
prescribed compact sets (Hornik & Stinchcombe, 1990). Therefore, to solve (11) and (10), 

( )iV x is approximated at each step by a critic NN 

 
1
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i vi j Vi
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V x w x W xφ

=

= =∑ φ  (26) 

and ( )iu x  by an action NN 
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Using Lemma 1 with ( ) ( )i k kx xμ η=  and ( ) ( )i k i kx Z xΛ = , it follows that 

: ( ) ( ) ( )i k i k ki V x Z x Y x∀ ≤ ≤  

which proves part a). Moreover if ( ) ( )k kx u xη ∗= , then 
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and hence ( ) ( )k kV x Y x∗ ≤  which proves part b) and shows that : 0 ( ) ( ) ( )i k k ki V x V x Y x∗∀ ≤ ≤ ≤  
for any ( )kY x  determined by an admissible stabilizing policy ( )kxη . ■ 
Theorem 1.  Consider the sequence iV  and iu  defined by (11) and (10) respectively. If 

0 ( ) 0kV x = , then it follows that iV  is a non-decreasing sequence 

1: ( ) ( )i k i ki V x V x+∀ ≥  

and as i →∞  

iV V ∗→ , iu u ∗→  

that is the sequence iV  converges to the solution of the DT HJB (7). 
Proof: From Lemma 1, let iμ  be any arbitrary sequence of control policies and iΛ  be defined by 
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If 0 0( ) ( ) 0k kV x x= Λ = , it follows that ( ) ( )i k i kV x x≤ Λ  i∀ . Now assume that 
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and consider 

 1( ) ( ) ( ( ) ( ) ( ))T
i k k i i i k k i kV x Q x u Ru V f x g x u x+ = + + +   (25) 

It will next be proven by induction that if 0 0( ) ( ) 0k kV x x= Λ = , then 1( ) ( )i k i kx V x+Λ ≤ . 
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Now assume that 1( ) ( )i k i kV x x−≥ Λ , then subtracting (24) from (25) it follows that  

1 1 1 1( ) ( ) ( ) ( ) 0i k i k i k i kV x x V x x+ + − +− Λ = − Λ ≥  
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and this completes the proof that 1( ) ( )i k i kx V x+Λ ≤ . 
From 1( ) ( )i k i kx V x+Λ ≤  and ( ) ( )i k i kV x x≤ Λ , it then follows that 

1: ( ) ( )i k i ki V x V x+∀ ≤ . 

From part a) in Lemma 2 and the fact that iV  is a non-decreasing sequence, it follows that 
iV V ∞→  as i →∞ . From part b) of Lemma 2, it also follows that ( ) ( )k kV x V x∗

∞ ≤ . 
It now remains to show that in fact V ∞  is V ∗ . To see this, note that from (11) it follows that 
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∞ = . ■ 

5. Neural network approximation for Value and Action 
We have just proven that the nonlinear HDP algorithm converges to the value function of 
the DT HJB equation that appears in the nonlinear discrete-time optimal control.   
It was assumed that the action and value update equations (10), (11) can be exactly solved at 
each iteration.  In fact, these equations are difficult to solve for general nonlinear systems.  
Therefore, for implementation purposes, one needs to approximate ,i iu V  at each iteration.  
This allows approximate solution of (10), (11). 
In this section, we review how to implement the HDP value iterations algorithm with two 
parametric structures such as neural networks (Werbos, 1990) and (Lewis & Jaganathan, 
1999). The important point is stressed that the use of two NN, a critic for value function 
approximation and an action NN for the control, allows the implementation of HDP in the 
LQR case without knowing the system internal dynamics matrix A. This point is not generally 
appreciated in the folklore of ADP. 

5.1 NN approximation for implementation of HDP algorithm for nonlinear systems 
It is well known that neural networks can be used to approximate smooth functions on 
prescribed compact sets (Hornik & Stinchcombe, 1990). Therefore, to solve (11) and (10), 

( )iV x is approximated at each step by a critic NN 
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where the activation functions are respectively 1( ), ( ) ( )j jx x Cφ σ ∈ Ω .  Since it is required 
that ( 0) 0iV x = =  and ( 0) 0iu x = = , we select activation functions with (0) 0, (0) 0j jφ σ= = .  

Moreover, since it is known that V ∗  is a Lyapunov function, and Lyapunov proofs are 
convenient if the Lyapunov function is symmetric and positive definite, it is convenient to 
also require that the activation functions for the critic NN be symmetric, i.e. ( ) ( )j jx xφ φ= − . 

The neural network weights in the critic NN (26) are j
viw . L  is the number of hidden-layer 

neurons. The vector [ ]1 2( ) ( ) ( ) ( ) TLx x x xφ φ φ≡φ  is the vector activation function and 
1 2 TL

Vi vi vi viW w w w⎡ ⎤≡ ⎣ ⎦  is the weight vector at iteration i .  Similarly, the weights of the 

neural network in (27) are j
uiw . M  is the number of hidden-layer neurons. 

[ ]1 2( ) ( ) ( ) ( ) TLx x x xσ σ σ≡σ  is the vector activation function, and 1 2 TL
ui ui ui uiW w w w⎡ ⎤≡ ⎣ ⎦  is 

the vector weight. 
According to (11), the critic weights are tuned at each iteration of HDP to minimize the 
residual error between 1

ˆ ( )i kV x+  and the target function defined in equation (28) in a least-
squares sense for a set of states kx  sampled from a compact set nΩ⊂ . 

 1 1

1

ˆˆ ˆ( , , , ) ( ) ( ) ( )
ˆ ˆ( ) ( ) ( )
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T T T
k k i k i k Vi k

d x x W W x Qx u x Ru x V x

x Qx u x Ru x W x
+ +

+

= + +

= + + φ
  (28) 

The residual error (c.f. temporal difference error) becomes 

 ( )1 1( ) ( , , , ) ( )T
Vi k k k Vi ui LW x d x x W W e x+ +− =φ . (29) 

Note that the residual error in (29) is explicit, in fact linear, in the tuning parameters 1ViW + .  
Therefore, to find the least-squares solution, the method of weighted residuals may be used 
[11]. The weights 1ViW +  are determined by projecting the residual error onto 1( )L Vide x dW +  
and setting the result to zero x∀ ∈Ω  using the inner product, i.e. 

 ( ) , ( ) 0L
L

Vi +1

de x e x
dW

= ,  (30) 

where f,g Tfg dx
Ω

= ∫  is a Lebesgue integral. One has 

 ( )1 10 ( ) ( ) ( , , , )T T
k k Vi k k Vi ui kx x W d x x W W dxφ φ + +

Ω

= −∫  (31) 

Therefore a unique solution for 1ViW +  exists and is computed as 

 
1

1 ( ) ( ) ( ) ( ( ), , )T T
Vi k k k k Vi uiW x x dx x d x W W dxφ φ φ φ

−

+
Ω Ω

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∫ ∫  (32) 

To use this solution, it is required that the outer product integral be positive definite.  This is 
known as a persistence of excitation condition in system theory.  The next assumption is 
standard in selecting the NN activation functions as a basis set. 
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Assumption 1.  The selected activation functions { }( )
L

j xφ  are linearly independent on the 

compact set  nΩ⊂ . 
Assumption 1 guarantees that excitation condition is satisfied and hence ( ) ( )Tk kx x dxφ φ

Ω
∫  is 

of full rank and invertible and a unique solution for (32) exists. 
The action NN weights are tuned to solve (10) at each iteration.  The use of ˆ ( , )i k uiu x W  from 
(27) allows the rewriting of equation (10) as  

 ( )1
ˆˆ ˆarg min ( , ) ( , ) ( )T T i

ui k k i k i k i kw
W x Qx u x w Ru x w V x +

Ω
= + +   (33) 

where 1 ˆ( ) ( ) ( , )i
k k k i kx f x g x u x w+ = +  and the notation means minimization for a set of points 

kx  selected from the compact set nΩ∈ . 
Note that the control weights uiW  appear in (33) in an implicit fashion, i.e. it is difficult to 
solve explicitly for the weights since the current control weights determine 1kx + . Therefore, 
one can use an LMS algorithm on a training set constructed from Ω . The weight update is 
therefore 

 

1
1

1
1

1

ˆˆ ˆ( ( , ) ( , ) ( )

( )ˆ( ) 2 ( , ) ( )

ui m

T T
k k i k ui i k ui i km m

ui uim m
ui W

T
T k

ui ui k i k ui k Vim m m
k

x Qx u x W R u x W V x
W W

W

xW W x Ru x W g x W
x

α

φασ

+

+

+
+

+

∂ + +
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= − +⎜ ⎟

∂⎝ ⎠

 (34) 

where α  is a positive step size and m  is the iteration number for the LMS algorithm. By a 
stochastic approximation type argument, the weights ui uim

W W⇒  as m ⇒∞ , and satisfy 
(33). Note that one can use alternative tuning methods such as Newton’s method and 
Levenberg-Marquardt in order to solve (33). 
In Figure 1, the flow chart of the HDP iteration is shown. Note that because of the neural 
network used to approximate the control policy the internal dynamics, i.e. ( )kf x  is not 
needed.  That is, the internal dynamics can be unknown. 
Remark. Neither ( )f x  nor ( )g x  is needed to update the critic neural network weights 
using (32). Only the input coupling term ( )g x  is needed to update the action neural 
network weights using (34). Therefore the proposed algorithm works for system with 
partially unknown dynamics- no knowledge of the internal feedback structure ( )f x  is 
needed. 

5.2 HDP for Linear Systems Without Knowledge of Internal Dynamics 
The general practice in the HDP folklore for linear quadratic systems is to use a critic NN to 
approximate the value, and update the critic weights using a method such as the batch 
update (32), or a recursive update method such as LMS. In fact, the critic weights are 
nothing but the elements of the Riccati matrix and the activation functions are quadratic 
polynomials in terms of the states.  Then, the policy is updated using  
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where the activation functions are respectively 1( ), ( ) ( )j jx x Cφ σ ∈ Ω .  Since it is required 
that ( 0) 0iV x = =  and ( 0) 0iu x = = , we select activation functions with (0) 0, (0) 0j jφ σ= = .  

Moreover, since it is known that V ∗  is a Lyapunov function, and Lyapunov proofs are 
convenient if the Lyapunov function is symmetric and positive definite, it is convenient to 
also require that the activation functions for the critic NN be symmetric, i.e. ( ) ( )j jx xφ φ= − . 

The neural network weights in the critic NN (26) are j
viw . L  is the number of hidden-layer 

neurons. The vector [ ]1 2( ) ( ) ( ) ( ) TLx x x xφ φ φ≡φ  is the vector activation function and 
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the vector weight. 
According to (11), the critic weights are tuned at each iteration of HDP to minimize the 
residual error between 1

ˆ ( )i kV x+  and the target function defined in equation (28) in a least-
squares sense for a set of states kx  sampled from a compact set nΩ⊂ . 
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Note that the residual error in (29) is explicit, in fact linear, in the tuning parameters 1ViW + .  
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To use this solution, it is required that the outer product integral be positive definite.  This is 
known as a persistence of excitation condition in system theory.  The next assumption is 
standard in selecting the NN activation functions as a basis set. 
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Assumption 1.  The selected activation functions { }( )
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Ω
∫  is 

of full rank and invertible and a unique solution for (32) exists. 
The action NN weights are tuned to solve (10) at each iteration.  The use of ˆ ( , )i k uiu x W  from 
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where α  is a positive step size and m  is the iteration number for the LMS algorithm. By a 
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(33). Note that one can use alternative tuning methods such as Newton’s method and 
Levenberg-Marquardt in order to solve (33). 
In Figure 1, the flow chart of the HDP iteration is shown. Note that because of the neural 
network used to approximate the control policy the internal dynamics, i.e. ( )kf x  is not 
needed.  That is, the internal dynamics can be unknown. 
Remark. Neither ( )f x  nor ( )g x  is needed to update the critic neural network weights 
using (32). Only the input coupling term ( )g x  is needed to update the action neural 
network weights using (34). Therefore the proposed algorithm works for system with 
partially unknown dynamics- no knowledge of the internal feedback structure ( )f x  is 
needed. 

5.2 HDP for Linear Systems Without Knowledge of Internal Dynamics 
The general practice in the HDP folklore for linear quadratic systems is to use a critic NN to 
approximate the value, and update the critic weights using a method such as the batch 
update (32), or a recursive update method such as LMS. In fact, the critic weights are 
nothing but the elements of the Riccati matrix and the activation functions are quadratic 
polynomials in terms of the states.  Then, the policy is updated using  



 Machine Learning 

 

372 

Updating the value function

Start of the  HDP

Initialization

Solving the  minimizing problem

Finish

0 0V =

1
ˆ ˆ
i iV V ε+ <−

Yes

No1+→ ii

ˆ ˆ( , ) ( , )
arg min

ˆ ˆ( ( ) ( ) ( , ))

T T
k k k k

ui
i k k k

x Qx u x Ru x
W

V f x g x u xα

α α

α
Ω

⎛ ⎞+ +
= ⎜ ⎟⎜ ⎟+⎝ ⎠

1

1 1
ˆ( ) ( ) ( ) ( ( ), )T

Vi k k k i k ViW x x dx x V x W dxφ φ φ φ
−

+ +
Ω Ω

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∫ ∫

ˆ ( , ) ( )T
i k Vi Vi kV x W W xφ=

ˆ ( , ) ( )T
i k ui ui ku x W W xσ=

 
Fig. 1.  Flow chart shows the proposed algorithm 

 1( ) ( )T T
i k i i ku x R B P B B P Ax−= − +  (35) 

Note that this equation requires the full knowledge of both the internal dynamics matrix A  
and the control weighting matrix B . However, we have just seen (see remark above) that 
the knowledge of the A  matrix can be avoided by using, instead of the action update(35), a 
second NN for the action 

ˆ ( ) ( )T
i uiu x W x= σ  

In fact the action NN approximates the effects of A  and B  given in (35), and so effectively 
learns the A  matrix. 
That is, using two NN even in the LQR case avoids the need to know the internal dynamics 
A.  In fact, in the next section we give a LQR example, and only the input coupling matrix B 
is needed for the HDP algorithm. Nevertheless, the HDP converges to the correct LQR 
Riccati solution matrix P. 
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6. Simulation examples 
In this section, two examples are provided to demonstrate the solution of the DT HJB 
equation. The first example will be a linear quadratic regulator, which is a special case of the 
nonlinear system.  It is shown that using two NN allows one to compute the optimal value 
and control (i.e. the Riccati equation solution) online without knowing the system matrix A .  
The second example is for a DT nonlinear system. MATLAB is used in the simulations to 
implement some of the functions discussed in the chapter. 

6.1 Unstable multi-input linear system example 
In this example we show the power of the proposed method by using an unstable multi-
input linear system.  We also emphasize that the method does not require knowledge of the 
system A matrix, since two neural networks are used, one to provide the action. = This is in 
contrast to normal methods of HDP for linear quadratic control used in the literature, where 
the A  matrix is needed to update the control policy. 
Consider the linear system 

 1k k kx Ax Bu+ = + .  (36) 
 

It is known that the solution of the optimal control problem for the linear system is 
quadratic in the state and given as  

( ) T
k k kV x x Px∗ =  

 

where P  is the solution of the ARE. This example is taken from (Stevens & Lewis, 2003), a 
linearized model of the short-period dynamics of an advanced (CCV-type) fighter aircraft. 
The state vector is 

[ ]Te fx qα γ δ δ=  
 

where the state components are, respectively, angel of attack, pitch rate, flight-path, elevator 
deflection and flaperon deflection. The control input are the elevator and the flaperon and 
given as 

[ ]Tec fcu δ δ=  
 

The plant model is a discretized version of a continuous-time model given in (Bradtke & 
Ydestie, 1994)]  

1.0722    0.0954        0    -0.0541    -0.0153
    4.1534    1.1175          0    -0.8000    -0.1010

A=     0.1359    0.0071      1.0     0.0039     0.0097
         0         0                 0     0.1353         0
         0         0                 0        0          0.1353

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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6. Simulation examples 
In this section, two examples are provided to demonstrate the solution of the DT HJB 
equation. The first example will be a linear quadratic regulator, which is a special case of the 
nonlinear system.  It is shown that using two NN allows one to compute the optimal value 
and control (i.e. the Riccati equation solution) online without knowing the system matrix A .  
The second example is for a DT nonlinear system. MATLAB is used in the simulations to 
implement some of the functions discussed in the chapter. 

6.1 Unstable multi-input linear system example 
In this example we show the power of the proposed method by using an unstable multi-
input linear system.  We also emphasize that the method does not require knowledge of the 
system A matrix, since two neural networks are used, one to provide the action. = This is in 
contrast to normal methods of HDP for linear quadratic control used in the literature, where 
the A  matrix is needed to update the control policy. 
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where the state components are, respectively, angel of attack, pitch rate, flight-path, elevator 
deflection and flaperon deflection. The control input are the elevator and the flaperon and 
given as 
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The plant model is a discretized version of a continuous-time model given in (Bradtke & 
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         0         0                 0     0.1353         0
         0         0                 0        0          0.1353

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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-0.0453   -0.0175
-1.0042   -0.1131

B=  0.0075    0.0134
  0.8647         0
     0       0.8647

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Note that system is not stable and with two control inputs. The proposed algorithm does not 
require a stable initial control policy. The ARE solution for the given linear system is 

 

 55.8348    7.6670   16.0470   -4.6754  -0.7265
    7.6670    2.3168    1.4987   -0.8309   -0.1215
   16.0470    1.4987   25.3586   -0.6709    0.0464
   -4.6754   -0.8309   -0.6709    1.5394    0.0782

P =

   -0.7265   -0.1215    0.0464    0.0782    1.0240

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (37) 

and the optimal control  k ku Lx∗ = , where L  is 

 
-4.1136   -0.7170   -0.3847    0.5277   0.0707
-0.6315   -0.1003    0.1236    0.0653   0.0798

L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  (38) 

For the LQR case the value is quadratic and the control is linear. Therefore, we select linear 
activation functions for the action NN and quadratic polynomial activations for the critic 
NN.  The control is approximated as follows  

 ˆ ( )T
i ui ku W xσ=   (39) 

where uW  is the weight vector, and the ( )kxσ  is the vector activation function and is given by 

1 2 3 4 5( )T x x x x x xσ ⎡ ⎤= ⎣ ⎦  

and the weights are 

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5
T u u u u u
u

u u u u u

w w w w w
W

w w w w w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

The control weights should converge to 

1,1 1,2 1,3 1,4 1,5
11 12 13 14 15

2,1 2,2 2,3 2,4 2,5
21 22 23 24 25

u u u u u

u u u u u

L L L L Lw w w w w
L L L L Lw w w w w

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 

The approximation of the value function is given as  

ˆ ( , ) ( )T
i k Vi Vi kV x W W xφ=  

where VW  is the weight vector of the neural network given by 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T
V v v v v v v v v v v v v v v vW w w w w w w w w w w w w w w w⎡ ⎤= ⎣ ⎦  
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and ( )kxφ  is the vector activation function given by 

1 2

2 2 2 2 2
1 2 1 3 1 4 1 5 2 3 4 2 2 5 3 3 4 3 5 4 4 5 5

( )T x

x x x x x x x x x x x x x x x x x x x x x x x x x

φ =

⎡ ⎤⎣ ⎦
 

In the simulation the weights of the value function are related to the P  matrix given in (37) 
as follows 

1 2 3 4 5
11 12 13 14 15

2 6 7 8 9
21 22 23 24 25

3 7 10 11 12
31 32 33 34 35

4 8 11 13
41 42 43 44 45

51 52 53 54 55

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0

v v v v v

v v v v v

v v v v v

v v v v

P P P P P w w w w w
P P P P P w w w w w
P P P P P w w w w w
P P P P P w w w w
P P P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

14

5 9 12 14 15

.5
0.5 0.5 0.5 0.5

v

v v v v v

w
w w w w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The value function weights converge to 

[55.5411   15.2789   31.3032   -9.3255   -1.4536    2.3142    2.9234   -1.6594   -0.2430
 
   24.8262   -1.3076    0.0920    1.5388    0.1564    1.0240]

T
VW =

. 

The control weights converge to 

4.1068    0.7164    0.3756   -0.5274   -0.0707
 0.6330    0.1005   -0.1216   -0.0653   -0.0798uW
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Note that the value function weights converge to the solution of the ARE (37), also the 
control weights converge to the optimal policy (38) as expected. 

6.2 Nonlinear system example 
Consider the following affine in input nonlinear system 

 1 ( ) ( )k k k kx f x g x u+ = +   (40) 
where 

2

3

00.2 (1)exp( (2))
( )      ( )

.2.3 (2)
k k

k k
k

x x
f x g x

x
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦
 

The approximation of the value function is given as 

1 1 1
ˆ ( , ) ( )T
i k Vi Vi kV x W W xφ+ + +=  

The vector activation function is selected as 

2 2 4 3
1 1 2 2 1 1 2

2 2 3 4 6 5 4 2
1 2 1 2 2 1 1 2 1 2
3 3 2 4 5 6
1 2 1 2 1 2 2

( ) [

]

x x x x x x x x

x x x x x x x x x x

x x x x x x x

φ =
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⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Note that the value function weights converge to the solution of the ARE (37), also the 
control weights converge to the optimal policy (38) as expected. 

6.2 Nonlinear system example 
Consider the following affine in input nonlinear system 

 1 ( ) ( )k k k kx f x g x u+ = +   (40) 
where 
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The approximation of the value function is given as 

1 1 1
ˆ ( , ) ( )T
i k Vi Vi kV x W W xφ+ + +=  

The vector activation function is selected as 
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x x x x x x x x x x

x x x x x x x

φ =

 



 Machine Learning 

 

376 

and the weight vector is 

1 2 3 4 15.....T
V v v v v vW w w w w w⎡ ⎤= ⎣ ⎦ . 

 

The control is approximated by 

ˆ ( )T
i ui ku W xσ=  

 

where the vector activation function is 

3 2 2
1 2 1 1 2 1 2

3 5 4 3 2 2 3
2 1 1 2 1 2 1 2

4 5
1 2 2

( ) [

  ]

T x x x x x x x x

x x x x x x x x

x x x

σ =

 

 

and the weights are 

1 2 3 4 12.....T
u u u u u uW w w w w w⎡ ⎤= ⎣ ⎦ . 

 

The control NN activation functions are selected as the derivatives of the critic activation 
functions, since the gradient of the critic activation functions appears in (34). The critic 
activations are selected as polynomials to satisfy ˆ ( 0) 0iV x = =  at each step.  Note that then 
automatically one has ˆ ( 0) 0iu x = =  as required for admissibility.  We decided on 6th order 
polynomials for VFA after a few simulations, where it came clear that 4th order polynomials 
are not good enough, yet going to 8th order does not improve the results. 
The result of the algorithm is compared to the discrete-time State Dependent Riccati 
Equation (SDRE) proposed in (Cloutier, 1997). 
The training sets is 1 [ 2,2]x ∈ − , 2 [ 1,1]x ∈ − . The value function weights converged to the 
following 

[1.0382   0  1.0826   .0028  -0  -.053  0 -.2792   
-.0004  0  -.0013  0   .1549  0  .3034]

T
VW =  

 

and the control weights converged to  

=[ 0  -.0004  0   0   0  .0651  0   0   0  -.0003  0  -.0046]T
uW  

 

The result of the nonlinear optimal controller derived in this chapter is compared to the 
SDRE approach. Figure 2 and Figure 3 show the states trajectories for the system for both 
methods. 
In Figure 4, the cost function of the SDRE solution and the cost function of the proposed 
algorithm in this chapter are compared. It is clear from the simulation that the cost function 
for the control policy derived from the HDP method is lower than that of the SDRE method. 
In Figure 5, the control signals for both methods are shown. 
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Fig. 4.  The cost function for both methods 
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and the control weights converged to  

=[ 0  -.0004  0   0   0  .0651  0   0   0  -.0003  0  -.0046]T
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The result of the nonlinear optimal controller derived in this chapter is compared to the 
SDRE approach. Figure 2 and Figure 3 show the states trajectories for the system for both 
methods. 
In Figure 4, the cost function of the SDRE solution and the cost function of the proposed 
algorithm in this chapter are compared. It is clear from the simulation that the cost function 
for the control policy derived from the HDP method is lower than that of the SDRE method. 
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Fig. 5.  The control signal input for both methods 

7. Conclusion 
We have proven convergence of the HDP algorithm to the value function solution of 
Hamilton-Jacobi-Bellman equation for nonlinear dynamical systems, assuming exact 
solution of value update and the action update at each iteration. 
Neural networks are used as parametric structures to approximate at each iteration the 
value (i.e. critic NN), and the control action.  It is stressed that the use of the second neural 
network to approximate the control policy, the internal dynamics, i.e. ( )kf x , is not needed 
to implement HDP. This holds as well for the special LQR case, where use of two NN avoids 
the need to know the system internal dynamics matrix A.  This is not generally appreciated 
in the folkloric literature of ADP for the LQR.  In the simulation examples, it is shown that 
the linear system critic network converges to the solution of the ARE, and the actor network 
converges to the optimal policy, without knowing the system matrix A. In the nonlinear 
example, it is shown that the optimal controller derived from the HDP based value iteration 
method outperforms suboptimal control methods like those found through the SDRE 
method. 
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1. Introduction 
When we try to accomplish a collaborative task, e.g., playing football or carrying large 
tables, we have to share a goal and a way of achieving the goal. Although people 
accomplish such tasks, achieveing such cooperation is not so easy in the context of a 
computational multi-agent learning system because participating agents cannot observe 
another person’s intention directly. We cannot know directly what other participants intend 
to do and how they intend to achieve that. Therefore, we have to notice another participant’s 
intention by utilizing other hints or information. In other words, we have to estimate 
another’s intention to accomplish collaborative tasks. 
In particular, in multi-agent reinforcement learning tasks, when another’s intention is 
unobservable the learning process is fatally harmed. When a participating agent of a 
collaborative task changes its intention and switches or modifies its controller, system 
dynamics for each agent will inevitably change. If other agents learn on the basis of simple 
reinforcement learning architecture, they cannot keep up with changes in the task 
environment because most reinforcement learning architectures assume that environmental 
dynamics are fixed. To overcome the problem, each agent must have a simple reinforcement 
learning architecture and some additional capability, which solves the problem. We take the 
capability of “estimation of another’s intention” as an example of such a capability. 
Human beings can perform several kinds of collaborative tasks. This means that we have 
some computational skills, which enable us to estimate another’s intention to some extent 
even if we cannot observe another’s intention directly. 
The computational model for implicit communication is described in this chapter on the 
basis of a framework of modular reinforcement learning. The computational model is called 
situation-sensitive reinforcement learning (SSRL), which is a type of modular reinforcement 
learning architecture. We assumed that such a distributed learning architecture would be 
essential for an autonomous agent to cope with a physically dynamic environment and a 
socially dynamic environment that included changes in another agent’s intentions. The skill, 
estimation of another’s intention, seems to be a social skill. However, human adaptability, 
which we believe our selves to be equipped with to deal with a physically dynamic 
environment, enables an agent to deal with such a dynamic social environment, including 
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intentional changes of collaborators. Determining clearlify the computational relationship 
between the two skills is also a purpose of this study. 
The mathematical basis for the implicit estimation of another’s intention based on the 
framework of reinforcement learning is also provided. Furthermore, a simple truck-pushing 
task performed by a pair of agents is presented to evaluate the learning architecture. 

2. Communication and estimation of another’s intention 
Communicating one’s intention to another person enables the other person to estimate one’s 
intention. Therefore, communication and estimation of another’s intention are different 
aspects of the same phenomenon. Implicit estimation is a key idea to supplement the 
classical communication model, i.e., Shannon-Weaver communication model. Additionally, 
it is also important to understand a computational mechanism of emergence of 
communication. 
 

 
Fig. 1. Schematic diagram of general communication system 

We describe the background in this section. In addition to that, an abstract mechanism of the 
implicit estimation is described on the basis of the notion of multiple internal models. 

2.1 Communication models 
Shannon formulated “communication” in mathematical terms [5]. In Shannon’s 
communication model, a sender’s messages encapsulated in signals or signs are carried 
through an information channel to a receiver. An encoder owned by the sender encodes the 
message to the signal by referring to its code table. When a receiver receives the signal, the 
receiver’s decoder decodes the signal back to a message by referring to its code table. After 
that, the receiver understands the sender’s intention and determines what to do. The general 
communication system described by Shannon is shown in Fig. 1 schematically. 
In contrast to Shannon, Peirce, who started “semiotics,” insisted that the basis of 
communication is symbols, and he defined a symbol as a triadic relationship among “sign,” 
“object,” and “interpretant”[2]. A “sign” is a signal that represents something to an 
interpreter. An “object” is something that is represented by the sign, and an “interpretant” is 
something that relates the sign to the object. In other words, an “interpretant” is a mediator 
between a “sign” and an “object.” The words “sign” and “object” are easy for most people 
to understand. However, “interpretant” may be difficult to understand. An “interpretant” is 
sometimes a concept an interpreter comes up with, an action the interpreter takes, or culture 
in which people consider the sign and object to be related. The important point of Peirce’s 
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semiotics is that the relationship between “sign” and “object” is not fixed. The relationship 
can be dynamically changing. The relationship simply depends on the “interpretant.” The 
dynamic process by which a sign represents an object mediated by an interpretant is called 
“semiosis.” Peirce’s semiotics is thoroughly constructed from the viewpoint of an 
interpreter. In the framework of Peirce’s semiotics, the third element, “interpretant,” plays 
an essential role in communication. In Shannon’s communication model, one premise is that 
a shared code table is required. However, an autonomous agent cannot observe other 
agents’ internal goals or code table. In contrast, Peirce’s semiosis does not require such a 
premise. Semiosis is a phenomenon that emerges inside of an autonomous agent. The 
participants in a communication must create meaning from incoming signs based on their 
physical and social experience. Such an individual learning process is considered to 
supplement symbolic communication. However, semiosis requires autonomous agents to 
have sufficient adaptability and capability to create meanings from superficial meaningless 
signs. 
 

 
Fig. 2. Semiotic triad 

In a human collaborative task, a human participant becomes able to distinguish several 
situations, which are modified by another’s changing intentions. In such a case, the kind of 
policy the participant should follow in each situation is not clear beforehand. However, if 
the team continues to collaborate through trial and error, some kind of shared rules will be 
formed as a kind of habit of the team, and a follwer on the team becomes able to perform 
adequately by referring to the situation and the habit. This process corresponds to 
“semiosis” in Peirce’s semiotics. Here, “sign,” “object,” and “interpretant” correspond to a 
“situation,” “the leader’s intention,” and “acquired rule” or “the follower’s action,” 
respectively. 
An important point in this scenario is that the “situation” has no meaning before the 
follower distinguishes situation, performs adequately, and a tacit rule is established 
between the two agents. 
In this chapter, we describe candidates for computational communication models, which are 
based on Peirce’s semiosis. 

2.2 Estimation of another’s intention 
Roughly speaking, we assume there are two ways in which we estimate another’s intention. 
Here, we explain the difference between the two ways of estimating another’s intention. 
For illustrative purposes, we assume that there is a leader in an organization who makes 
decisions. The leader makes decisions to direct the team, and followers play their roles 
based on the decision. 
In such a case, the leader communicates his/her intention to the follwers, and followers in 
the organization have to estimate a leading agent’s intention to cope with cooperative tasks. 
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The communication and the estimation of another’s intention are different aspects of the 
same phenomenon, as we described above. How can followers members estimate the 
leader’s intention? This is the problem. 
Here, we take two kinds of estimation of another’s intention into consideration. One is 
“explicit estimation,” and the other is “implicit estimation.” 

2.2.1 Explicit estimation of another’s intention 
One solution for communicating one’s intention to another person is to express one’s 
intention directly with predefined signals, e.g., by pointing to the goal and by commanding 
the other person to act. The method of communication requires a shared symbolic system as 
a basic premise. The symbolic system is often called a code table. If the symbolic system 
used in this communication must be completely shared by the participants in the 
cooperativetask environment, a participant who receives a message understands exactly 
what the person transmitting the message wants to do. The receiver of the message can 
estimate the sender’s intentions based on externalized signs. We call this process the 
“explicit estimation” because the intention of the leader is explicitly expressed as 
externalized signals. In this communication model, both agents have to share a predefined 
code table before the tasks. In the explicit estimation model, the accuracy of the 
communication is measured by the coincidence between the transmitted message and the 
receiver’s interpretation of the sender’s message, which is obtained by decoding the 
incoming signal utilizing the shared code table. The process of estimating another’s 
intention in a collaborative task is shown in Figure 3 schematically. A leader and a follower 
carry a truck collaboratively. How can the follower estimate the leader’s goal using explicit 
estimation when the leader changes his goal? 
 

 
Fig. 3. explicit estimation 

First, the leader agent changes his goal. In the explicit estimation scheme, this seems like a 
natural framework of communication. After Shannon formulated “communication” 
mathematically, many sociologists and computer scientists have described “communication” 
as above. However, the communication model based on explicit estimation of another’s 
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intention has two shortcomings. One is that the method of sharing the code table between 
the two agetns is unknown. If we consider the two agents to be autonomous, neither agent 
can observe the other agent’s internal goals and code table. Therefore, neither agent can 
utilize a “teacher signal” as feedback of its interpretation to upgrade its code table. The 
second shortcoming is that the leader agent has to display his intention whenever he 
changes his goal. These are two problems of explicit estimation of another’s intention. 
In contrast, when we review what we do in collaborative tasks, we find that we do not 
always send verbal messages representing our intention to our collaborators. We sometimes 
execute a collaborative task without saying anything. In this case, the leader’s intention is 
not transmitted to the follower by sending the explicit linguistic sign but through the shared 
environmental dynamics implicitly. Explicit estimation of another’s intention is not the only 
way of communication. To complement or to support the explicit estimation, implicit 
estimation is necessary. 
 

 
Fig. 4. Implicit communication 

2.2.2 Implicit estimation of another’s intention 
People occasionally undertake collaborative tasks without saying anything. Even if a leader 
says nothing to members of his organization, they can often perform the task by estimating 
the leader’s intentions on the basis of their observation. We call such an estimation process 
“implicit estimation” of another’s intention. However, if there were no pathways through 
which information about the leader’s intention goes to the followers, the followers could 
never estimate the leader’s intention. One reason followers can estimate the leader’s 
intention is that the action and sensation of the followers are causally related to the leader’s 
intentions. 
In other words, sensations a participating agent has after he/she performs actions are 
affected by the leader’s way of acting and another agents’ ways of acting. Therefore, 
subjective environmental dynamics for a participating agent are causally affected by the 
leader’s intention because other agents are assumed to behave based on the leader’s 
intention. 
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which information about the leader’s intention goes to the followers, the followers could 
never estimate the leader’s intention. One reason followers can estimate the leader’s 
intention is that the action and sensation of the followers are causally related to the leader’s 
intentions. 
In other words, sensations a participating agent has after he/she performs actions are 
affected by the leader’s way of acting and another agents’ ways of acting. Therefore, 
subjective environmental dynamics for a participating agent are causally affected by the 
leader’s intention because other agents are assumed to behave based on the leader’s 
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We assume none of the members can observe any information except for their own sensory-
motor information. However, they can estimate the leader’s intentions. We call this process 
“implicit estimation.” Implicit estimation is achieved by watching how the agent’s sensation 
changes. In control tasks, an agent usually observes state variables. 
In what follows, we assume that an agent obtains state variables, e.g., position, velocity, and 
angle. State variables are usually considered to be objectives to be controlled in many 
control tasks. However, in implicit communication, state variables also become information 
media of another agent’s intention. An participating agent can estimate another’s intention 
by observing changes in state variables. The information goes through their shared 
dynamics. 
The process of implicit estimation of another’s intention is showen in Figure 4, 
schematically. First, the leader changes his goal. When the leader’s goal has changed, his 
controller, which produces his behavior, is switched. That, of course, affects physical 
dynamics of the dynamical system shared between the leader and the follower. If a 
participating agent has a state predictor, he will become aware of the qualitative change in 
the shared dynamics because his prediction of the state value collapses If physical dynamics 
are stable, he can predict his state variables consistently. If the follower agent notices the 
change in subjective physical dynamics, the follower can notice the change in the leader’s 
intention based on the causal relationship between the leader’s intention and his facing 
dynamical system. 
Therefore, the capability to predict state variables seems to be required for physical skills 
and social skills. This scenario suggests the process of learning physical skills to control the 
target system and the method to communicate with the partner agent might be quite similar 
in such cooperative tasks. 

3. Multiple internal models 
Our computational model of implicit estimation of another’s intention is based on modular 
reinforcement learning architecture including multiple internal models. To achieve implicit 
estimation of another’s intention described in the previous section, an agent must have a 
learning architecture that includes state predictors. We focus on multiple internal models as 
neural architectures that achieve such an adaptive capability. 

3.1 Multiple internal models and social adaptability 
Relationships between the human brain’s social capability and physical capability are 
commanding interest. From the viewpoint of computational neuroscience, Wolpert et al. [17, 
3] suggested that MOSAIC, which is a modular learning architecture representing a part of 
the human central nervous system (CNS), acquires multiple internal models that play an 
essential role in adapting to the physical dynamic environment as well as other roles. We 
regard this as a candidate for a brain function that connects human physical capability and 
social capability. An internal model is a learning architecture that predicts the state 
transition of the environment or other target system. This is a belief that a person can 
operate his/her body and his/her grasping tool by utilizing an obtained internal model[16]. 
The internal model is acquired in the cerebellum through interactions. The learning system 
of internal models is considered to be a kind of schema that assimilates exterior dynamics 
and accommodates the internal memory system, i.e., internal model. If a person encounters 
various kinds of environments and/or tools, which have different dynamical properties, the 
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human brain needs to differentiate them and acquire several internal models. However, 
segmentation of dynamics is not given a priori. Therefore, a learning architecture 
representing multiple internal models should generate and learn internal models, and 
recognize changes in physical dynamics in its facing environment at the same time. To 
describe such a learning system, several computational models have been proposed, e.g., 
MPFIM [17], the mixture of RNNs[10], RNNPB[9], and the schema model [13]. Most of them 
are comprised of several learning predictors. The learning architecture switches the 
predictors and accommodates them through interactions with the environment. Such a 
learning architecture is often called a modular learning system. The RNNPB is not a 
modular learning system. Tani insisted internal models should be obtained in a single 
neural network in a distributed way[9]. In most modular learning architecture, a Bayesian 
rule is used to calculate the posterior probability in which a current predictor is selected. In 
contrast, the schema model [13] is a modular learning architecture that does not use a 
Bayesian rule but hypothesis-testing theory. At the moment, multiple internal models are 
usually considered to be a learning system for an autonomous system to cope with a 
physically dynamic environment. Meanwhile, Wolpert et al. addressed a hypothesis that a 
person utilizes multiple internal models to estimate another’s intention from the observation 
of another’s movement. Although these internal models described in the hypothesis seem to 
add a slightly different feature to the original definition of an internal model, interestingly, 
the hypothesis tries to connect neural architectures for physical adaptability and social 
adaptability. Doya et al. [1] proposed a modular learning architecture that enables robots to 
estimate another’s intention and to communicate with each other in a reinforcement 
learning task. 
In addition, when a person performs a collaborative task with others, one can notice changes 
in another agent’s intention by recognizing the change in his/her facing dynamical system 
without any direct observation of the other agent’s movement. This means multiple internal 
models enable an agent to notice changes in another agent’s intention. This usage of 
multiple internal models does not require adding any features to the original definition of 
multiple internal models. 

3.2 Implicit estimation of another’s intention based on multiple internal models 
“Intention” in everyday language denotes a number of meanings. Therefore, a perfect 
computational definition of “intention” is impossible. In this chapter, we simply consider an 
“intention” as a goal the agent is trying to achieve. In the framework of reinforcement 
learning, an agent’s goal is represented by a reward function. Therefore, an agent who has 
several intentions has several internal goals, i.e., several internal reward functions, Gm. If an 
internal reward function, Gm, is selected, a policy, um, is selected and modified to maximize 
the cumulative future internal reward through interactions with the task environment. 
In the following, we assume that the collaborative task involves two agents. The system is 
described as 

 (1) 

                          (2) 

                           (3) 
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human brain needs to differentiate them and acquire several internal models. However, 
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learning architecture is often called a modular learning system. The RNNPB is not a 
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Here, x is a state variable, ui is the i-th agent’s motor output, and n is a noise term. We 
assumed that an agent would not be able to observe another agent’s motor output directly. 
In such cases, environmental dynamics seem to be Eq. 3 to the first agent. If the second agent 
changes its policy, environmental dynamics for the first agent change. Therefore, in a 
physically stationary environment, the first agent can establish that the second agent has 
changed its intention by noticing changes in environmental dynamics. 
The discussion can be summarized as follows. If physical environmental dynamics, f, is 
fixed, agents who have multiple internal models can detect changes in another agent’s 
intentions by detecting changes in subjective environmental dynamics, F. The computational 
process is equal to the process by which an agent detects changes in the original physical 
dynamics. 
We define “situation” as “how state variable x and motor output u change observed output 
y.” In this case, a change in an agent’s intentions leads to a change in the subjective situation 
of another agent. By utilizing multiple internal models, an agent is expected to differentiate 
situations and execute adequate actions. In the next section, we describe a concrete modular 
reinforcement learning architecture named Situation-Sensitive Reinforcement Learning 
(SSRL). 

4. Situation-sensitive reinforcement learning architecture 
It is important for autonomous agents to accumulate the results of adaptation to various 
environments to cope with dynamically changing environments. Acquired concepts, 
models, and policies should be stored for similar situations that are expected to occur in the 
near future. Not only learning a certain behavior and/or a certain model, but also the 
obtained behaviors, policies, and models is essential to describe such a learning process. 
Many modular learning architectures [7, 4] and hierarchical learning architectures [10, 8] 
have been proposed to describe this kind of learning process. This section introduces such a 
modular-learning architecture called the situation-sensitive reinforcement learning 
architecture (SSRL). This enables an autonomous agent to distinguish changes the agent is 
facing in situations, and to infer the partner agent’s intentions without any teacher signals 
from the partner. 

4.1 Discrimination of intentions based on changes in dynamics 
Fig. 5 is an overview of SSRL. SSRL has several state predictors, Fm, representing situations 
and internal goals, Gm, representing intentions. Each state predictor Fm corresponds to each 
situation. 

 (4) 

 
(5) 

 
(6) 
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where  is the temporal average of the prediction error, , of the j-th state predictor, Fj . If 
averaged error  has a normal distribution and the system dynamics is Fj , the posterior 
probability, P(j| ), can be defined based on the Bayesian framework above under the 
condition that there is no other information. If there are no adequate state predictors in 
SSRL, the SSRL allocates one more state predictor based on hypothesis-testing theory [13]. 
 

 
Fig. 5. Situation-Sensitive Reinforcement Learning architecture 

We model the state predictors by using locally linear predictors, and we don’t estimate the 
standard deviation σ . The updating rule are switched based on hypothesis testing.  
Case 1:  

In this case, the learning system considers that incoming sample data are normal 
samples for the existing predictors, decides the curret situation j*, and update the 
corresponding function F j* by using assimilated samples. 

Case 2:  
In this case, the learning system considers that incoming sample data are outliers for the 
existing predictors, and prepare a new fnction Fp+1. It decides the curret situation jp+1. 
However, the new predictor is considered as a exeptional state predictor until < δl. 
If the predictor’s averaged error reaches under δl, the function Fp+1 is taken into a list of 
existing predictors, and p ← p + 1. 

Case 3:  
In this case, the system take no account of the incoming sample. 

This is an intermediate method for the MOSAIC model [17, 15], which is based on the Basian 
framework, and the schema model [13], which is based on hypothesis-testing theory. SSRL 
detects the current situation based on Eq. 6. During this an adequate state predictor is 
selected and assimilates the incoming experiences; SSRL acquires the state predictors by 
ridge regression based on the assimilated experiences. 
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4.2 Reinforcement learning 
Each policy corresponding to a goal is acquired by using reinforcement learning [6]. SSRL 
uses Q-Learning [14] in this paper. This method can be used to estimate the state-action 
value function, Q(s, a), through interactions with the agent’s environment. The optimal 
state-action value function directly gives the optimal policy. When we define S as a set of 
state variables and A as a set of motor outputs, and we assume the environment consists of 
a Markov decision process, the algorithm for Q-learning is described as 

                                      

 
(7) 

 
(8) 

where s ∈ S is a state variable, a ∈A is a motor output, r(s, a) is a reward, and s’ is a state 
variable at the next time step. In these equations,  is the learning rate and γ is a discount 
factor. After an adequate Q is acquired,the agent can utilize an optimal policy, u, as in Eq. 8. 
Boltzmann selection is employed during the learning phase. 

 
(9) 

4.3 Switching architecture of internal goals 
An agent can detect changes in the other agent’s intentions by distinguishing between 
situations he/she faces. However, the goals themselves cannot be estimated even if 
switching between several goals can be detected. Here, we describe a learning method, 
which enables an agent to estimate the another’s intentions implicitly. The method requires 
three assumptions to be made. 
A1 Physical environmental dynamics f do not change. 
A2 Every internal goal is equally difficult to achieve. 
A3 The leader agent always selects each optimal policy for each intention. 
The mathematical explanation for these assumptions will be described in the next section. 
We employes Boltzmann selection for internal goal switch. The rule to select the internal 
goals are described as 

 
(10)

where p(m|j) is the probability that Gm will be selected under situation, F j , and B is the 
inverse temperature. The network connection, wjm, between the current situation, F j , and 
the current internal goal, Gm, is modified by the sum of the obtained reward, , during a 
certain period during the t-th trial, i.e., 
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Here, ν is the learning rate of the internal goal switching module. Eq. 11 shows that 
connection wjm

 becomes strong if internal goal Gm is more easy to accomplish when the 
situation is F j . Eq. 10 shows that an internal goal is more likely to be selected if its network 
connection is stronger than the other’s. The abstract figure for the switching module is 
shown in Fig. 6. If the learning process for the switching architecture of internal goals is 
preceded and converged, a certain internal goal corresponding to a situation is selected. 
 

 
Fig. 6. Internal goal switching module 

4.4 Mathematical basis for internal goal switching module 
This section provides the mathematical basis for the learning rule ofr the implicit 
communication. First, the Bellman equation for the i-th (i = 1, 2) agent of a system involving 
two agents are described as1. 

 
(12)

where Gλ is a reward function for the λ-th goal, ui
 is the i-th agent’s motor output, and x’ is 

the x in the next step. Gλ in this framework is not assumed to have motor outputs as 
variables of the function. The optimal value function for the i-th agent depends on the other 
agent’s policy, uj

 . Here, we define  as the i-th agent’s policy that maximizes the j-th 
agent’s maximized value function whose goal is Gλ. 

 
(13)

 
(14)

                                                 
1 In this section, we have assumed i ≠ j without making any remarks. 
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The assumptions, A2 and A3, we made in the previous section can be translated into the 
following, 
A’2 : We assumed the j-th agent would use the controller, , and 

A’3 :  
where x0 is the initial point of the task. The following relationship can easily be derived from 
the definition. 

 
(15)

Therefore, the i-th agent’s internal goal becomes the same as j-th agent’s goal, if the i-th 
agent select a reward function that maximizes the value function under the condition that 
the j-th agent uses controller . When the initial point is not fixed, Vi(x0) is substituted by 
the averaged cumulative sum of rewards the i−th agent obtains, who starts the task around 
the initial point, x0. This leads us to the algorithm eq.11. 

5. Experiment 
We evaluate SSRL in this section. To fulfill all the assumptions made in Section 4 completely 
is difficult in a realistic task environment. The task described in this section roughly satisfies 
the assumptions, A’2 and A’3. 

5.1 Conditions 
We applied the proposed method to the truck-pushing task shown in Fig. 7. Two agents in 
the task environment, “Leader” and “Follower,”cooperatively push a truck to various 
locations. Both agents can adjust the truck’s velocity and the angle of the handle. However, a 
single agent cannot achieve the task alone because its control force is limited. In addition, 
the Leader has all fixed policies for all sub-goals beforehand, and holds a stake in deciding 
the next goal. However, the agents cannot communicate with each other. Therefore, the 
agents cannot “explicitly” communicate their intentions. The Follower perceives situation F j 

by using SSRL, changes its internal goal Gm
 based on the situation, and learns how to 

achieve the collaborative task. The two agents output the angle of the handle, θL, θF, and the 
wheel’s rotating speed, ωL, ωF. Here，the final motor output to the truck, θ, ω, is defined as 

 (16)

 (17)

where Kθ and Kω are the gain parameters of the truck. Kθ and Kω were set to 0.5 in this 
experiment. The Leader’s controller was designed to approximately satisfy the assumptions 
in Section 3. The controller in this experiment was a simple PD controller. The Follower’s 
state, s, was defined as s = [ρ, ]. The state space was digitized into 10 × 8 parts. The action 
space was defined as θF = {−π/4,−π/8, 0, π/8, π/4} and ωF = {0.0, 3.0}. As a result of the two 
agents’ actions, the truck’s angular velocity, Ω, was observed by the Follower agent. Ω, θ, 
and ω have a relationship of 

 (18)
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The agents can carry the truck to a certain goal by cooperatively controlling Ω. The main 
state variables are shown in Fig. 8. Internal reward function Gm is defined as 

 
(19)

where C is the position of the truck, and Goalm is the position of the m-th goal. 
 

 
Fig. 7. Simple truck-pushing task by pair of agents 

 
Fig. 8. State variables and parameters in task environment 

5.2 Experiment 1: implicit estimation of another’s intention 
Wwe fisrt conducted an experiment in which the Follower estimated the Leader’s goal, 
where the Leader selected one of three sub-goals, and learned how to achieve the 
collaborative task (Fig. 9, top). There were three goals, and the Leader changed its goals 
from G1− > G2− > G3 alternately every 1000 trials. 
In contrast to simple reinforcement learning, the Follower agent not only has to learn the 
policies for the goals but also the state for predictors the relationship between the current 
situation and the internal goal by updating these parameters. 
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The assumptions, A2 and A3, we made in the previous section can be translated into the 
following, 
A’2 : We assumed the j-th agent would use the controller, , and 

A’3 :  
where x0 is the initial point of the task. The following relationship can easily be derived from 
the definition. 

 
(15)
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 (16)

 (17)

where Kθ and Kω are the gain parameters of the truck. Kθ and Kω were set to 0.5 in this 
experiment. The Leader’s controller was designed to approximately satisfy the assumptions 
in Section 3. The controller in this experiment was a simple PD controller. The Follower’s 
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agents’ actions, the truck’s angular velocity, Ω, was observed by the Follower agent. Ω, θ, 
and ω have a relationship of 

 (18)
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The agents can carry the truck to a certain goal by cooperatively controlling Ω. The main 
state variables are shown in Fig. 8. Internal reward function Gm is defined as 

 
(19)

where C is the position of the truck, and Goalm is the position of the m-th goal. 
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The 1000 trajectories of the truck corresponding to all 1000 trials in this experiment are 
shown in Figs. 10 and 11. Simple Q-learning with explicitly given internal goals and SSRL 
are compared. Fig. 10 shows the results obtained from the experiment using Q-learning, and 
Fig. 11 shows those from the experiment using SSRL. The task success rate is indicated in 
each figure. The red curves represent the trajectories for the team that reached the goal, and 
the gray curves represent the trajectories for the team that did not reach the goal. This shows 
that simple Q-learning achieves a single task. However, the Follower could not coordinate 
with the Leader agent after it had changed its goal because it could not discover the Leader 
agent’s intentions. SSRL performs better when the Leader changes its intentions. Fig.13 
shows that three predictors were generated that discover the Leader’s intentions. 
Furthermore, Fig. 12 shows that appropriate internal goals were selected inside the Follower 
agent. 
 

 
Fig. 9. Top: cooperative action is acquired by Follower, bottom: plan toward the goal is 
acquired by Leader 

 
Fig. 10. Behaviors of truck at Follower’s learning stage with single Q-table and internal goal-
switching module without state predictors 
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Fig. 11. Behaviors of truck at Follower’s learning stage with SSRL 

 
Fig. 12. Time course of probabilities where m-th internal goal is selected 

 
Fig. 13. Time course of probabilities that environment being faced is the i-th situation 
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Fig. 14. Reward function for Follower’s internal goals 

These results show that SSRL enabled the Follower to implicitly estimate the Leader’s 
intention. 

5.3 Experiment 2: sequential collaborative task 
After the follower had acquired the ability to implicitly estimate the leader’s intentions, the 
next experiment was carried out. The experimental environment is shown at the bottom of 
Fig. 9. The task required the agents to go through several checkpoints (sub-goals), and reach 
the final goal. The Follower in the next experiment exploited the SSRL acquired through 
Experiment 1, and the Leader explored and planed the path to the final goal. The Leader 
agent can chose the next sub-goal out of three check points that correspond to three goals in 
Experiment 1, i.e., “up,” “upper right,” and “right,” from the current checkpoint as shown in 
Fig. 9. There are also two “cliffs” in this task environment. If the truck enters the cliffs, it can 
no longer move. The Leader learned the path to the final goal by using a simple Q-learning. 
The reward function for the Leader is shown in Fig. 15. Two kinds of Follower agents are 
compared in this experiment. The first has a single Q-learning architecture and a perfect 
internal goal switch. The second has SSRL. 
Fig. 16 shows the results for the experiment using simple Q-learning. Fig. 17 shows the 
results for the experiment using SSRL. Fig. 18 shows the success rate representing the 
probability that the team will finally reach the final goal. The results reveal that the team 
whose Follower agent could not discriminate the Leader’s intentions performed worse than 
the team whose Follower agent could distinguish the Leader’s intentions. Without such a 
distributed memory system like SSRL, the Follower would not be able to up with in the 
Leader’s intentions. In addition to disadvantage, the poor performance of the Follower 
agent adversely affects the Leader’s learning process. However, the Follower with SSRL 
could estimate the Leader’s intentions and keep up with the Leader’s plans although there 
was no explicit communication between the two agents. 
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Fig. 15. Reward function for Leader agent for planning path 
 

 
Fig. 16. Behaviors of truck at Leader’s learning stage with single Q-table and internal goal 
switching module without Situation Recognizer 

However, the success rate for the collaborative task saturated at about 40%. The reason for 
this is that the Follower notices changes in the Leader’s intentions after these changes have 
sufficiently affected the state variables. The delay until the Follower becomes aware of the 
changes is sometimes critical, and the truck occasionally fell into the cliffs. To estimate the 
other’s intentions without any explicit signs outside the state variables, the information has 
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Fig. 17. Behaviors of truck at Leader’s learning stage with SSRL 
 

 
Fig. 18. Success rate for cooperative task 

to be embedded in the state variables, which are the objectives of the team’s control task. 
Our results suggest that it is not impossible to implicitly estimate the other’s intentions, but 
it is important to have a communication channel whose variables are not related to the state 
variables, which are the objectives of the task, e.g., voice, colar sign, or marker. This must be 
the reason why we use explicit sign in collaborative tasks. As we mentioned, the “implicit 
estimation” must back up and complement “explicit estimation.” “Explicit estimation” must 
be faster and better than “implicit estimation” as far as a code table was shared in a team. 
However, this does not mean “explicit estimation” is superior to“implicit estimation.” They 
are complementary architectures. 
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6. Conclusion 
We described a framework for implicitly estimating another’s intentions based on modular 
reinforcement learning. We applied the framework to a truckpushing task by two agents as 
a concrete example. In the experiment, the Follower agent could perceive changes in the 
Leader’s intentions and estimate his intentions without observing any explicit signs on any 
action outputs from the Leader. This demonstrated that autonomous agents can 
cooperatively achieve a task without any explicit communication. Self-enclosed autonomous 
agents can indirectly perceive the other’s changes in intentions from changes in their 
surrounding environment. It is revealed that multiple internal models help an autonomous 
agent to achieve collaborative task. 
In the context of artificial intelligence, “symbol grounding problem” is considered as an 
important problem. The problem deals with how robots and people can relate their 
symbolic system to their physical and embodied experiences. The symbolic system 
mentioned here is also used in communication, usually. Takamuku et al. presented a system 
for lexicon acquisition through behavior learning which is based on a modified multi-
module reinforcement. The robot in their work is able to automatically associate words to 
objects with various visual features based on similarities in features of dynamics[8]. At the 
same time, Taniguchi et al. described an integrative learning architecture for spike timing-
dependent plasticity (STDP) and the reinforcement learning schemata model (RLSM) [12, 
11]. The learning architecture enables an autonomous robot to acquire behavioral concepts 
and signs representing the situation where the robot should initiate the behavior. They 
called this process “symbol emergence.” The symbolic system plays a important role in 
human social communication.They also utilize modular learning architecture to describe the 
process of symbol organization. However, they treat bottomup organization of “explicit 
symbols,” which is assumed to be used explicit communication. 
In many researches, “symbolic communication” means exchanging discrete signals. 
However, the essential point of symbolic communication is not such an externalized signs, 
but an adaptive formation of “interpretant” from the viewpoint of Peirce’s semiotics. 
Therefore, we focus on the implicit communication and its bottom-up process of 
organization. 
However, the system we treated in this chapter is constrained to some extent. This 
framework for implicit estimates does not always work well. If the system does not satisfy 
the assumptions made in Section 4, the framework is not guaranteed to work. The Leader’s 
policies are fixed when the Follower agent is learning its policies, predictors, and network 
connections in our framework. The model described in this chapter may not work in the 
simultaneous multi-agent reinforcement learning environment. We intend to take these into 
account in future work. 
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1. Introduction 
In the information era, as computer networks and related applications become more and 
more popular, security problems are more and more serious in global information 
infrastructure. It was reported that in the past two years, large amounts of network attacks 
and computer viruses caused great damages to global economy and the potential threats to 
the global information infrastructure have increased a lot. To defend various cyber attacks 
and computer viruses, lots of computer security techniques have been studied, which 
include cryptography, firewalls and intrusion detection, etc. As an important computer 
security technique, intrusion detection [1,2] has been considered to be more promising for 
defending complex computer attacks than other techniques such as cryptography, firewalls, 
etc. The aim of intrusion detection is to find cyber attacks or non-permitted deviations of the 
characteristic properties in a computer system or monitored networks. Thus, one of the 
central problems for intrusion detection systems (IDSs) is to build effective behavior models 
or patterns to distinguish normal behaviors from abnormal behaviors by observing collected 
audit data. To solve this problem, earlier IDSs usually rely on security experts to analyze the 
audit data and construct intrusion detection rules manually [2]. However, since the amount 
of audit data, including network data, process execution traces and user command data, etc., 
increases vary fast, it becomes a time-consuming, tedious and even impossible work for 
human experts to analyze dynamic, huge volumes of audit data and extract attack 
signatures or detection rules. Furthermore, detection rules constructed by human experts 
are usually based on fixed features or signatures of existing attacks, so it will be very 
difficult for these rules to detect deformed or even completely new attacks. 
According to the differences in the monitored data, IDSs can be mainly classified into two 
categories, i.e., network-based intrusion detection and host-based intrusion detection. 
Network-based intrusion detection observes data from network packets and extracts various 
features from them, which usually include connection features, traffic features, and content 
features. A systematic discussion on feature representation in network-based intrusion 
detection can be found in [3]. For host-based intrusion detection, various observation data 
from the corresponding operation systems are collected, which mainly include system call 
data and shell command data [4], etc. Despite of having different observation data, both 
host-based and network-based intrusion detection need to improve the detection accuracy 
for large volumes and variability of normal and attack behaviors. Aiming at this problem, 
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lots of research work has been devoted to develop intrusion detection systems (IDSs) using 
various artificial intelligence (AI) methods and tools [3-5]. Thus, the motivations for 
applying AI techniques in IDSs are due to large amounts of dynamic behaviors and the lack 
of a priori knowledge for unknown attacks. How to establish appropriate behavior models 
has been a central problem in the development of IDSs since the distinctions between 
normal behaviors and computer attacks are usually very vague. In earlier research on IDSs, 
it was very popular to separately construct behavior models either for normal usages or 
attacks. To model intrusion behaviors alone is called misuse detection and anomaly 
detection refers to establish profiles of normal usages. In misuse detection, behavior patterns 
or models of known attacks are constructed and alarms are raised when the patterns of 
observation data match the attack models. On the other hand, anomaly detection only 
models the patterns of normal behaviors and detects any possible attacks as deviations from 
the normal behavior model. Until now, although there have been many advances in misuse 
detection and anomaly detection, some significant challenges still exist to meet the 
requirements of defending computer systems from attacks with increasing complexity, 
intelligence, and variability. For misuse detection, the inability of detecting new attacks is its 
inevitable weakness and it is very hard to improve the performance of pure misuse 
detection systems for the sake of increasing amounts of novel attacks. Although anomaly 
detection has the ability of detecting new attacks, it usually suffers from high rates of false 
alarms since it is very difficult to obtain a complete model of normal behaviors. 
To solve the above problems in IDSs, machine learning and data mining methods for 
intrusion detection have received a lot of research interests in recent years [4-10]. One 
motivation for applying machine learning and data mining techniques in IDSs is to 
construct and optimize detection models automatically, which will eliminate the tedious 
work of human experts for data analysis and model building in earlier IDSs. To detect novel 
attacks, several adaptive anomaly detection methods were proposed by employing data 
mining methods based on statistics [7], or clustering techniques [10]. Recently, there have 
been several efforts in designing anomaly detection algorithms using supervised learning 
algorithms, such as neural networks [8], support vector machines [11], etc. In addition to 
supervised or inductive learning methods for misuse and anomaly detection, another 
approach to adaptive intrusion detection is to use unsupervised learning methods. Unlike 
supervised learning methods, where detection models are constructed by careful labeling of 
normal behaviors, unsupervised anomaly detection tries to detect anomalous behaviors 
with very little a priori knowledge about the training data. However, as studied in [12], the 
performance of pure unsupervised anomaly detection approaches is usually unsatisfactory, 
e.g., it was demonstrated in [12] that supervised learning methods significantly outperform 
the unsupervised ones if the test data contains no unknown attacks. 
Despite of many advances that have been achieved, existing IDSs still have some difficulties 
in improving their performance to meet the needs of detecting increasing types of attacks in 
high-speed networks. One difficulty is to improve detection abilities for complex or new 
attacks without increasing false alarms. Since misuse IDSs employ signatures of known 
attacks, it is hard for them to detect deformed attacks, notwithstanding completely new 
attacks. On the other hand, although anomaly detection can detect new types of attacks by 
constructing a model of normal behaviors, the false alarm rates in anomaly-based IDSs are 
usually high. How to increase the detecting ability while maintaining low false alarms is still 
an open problem of IDS research. 
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In addition to the ability of realizing automatic model construction for misuse detection and 
anomaly detection, another promising application of machine learning methods in intrusion 
detection is to build dynamic behavior modeling frameworks which can combine the 
advantages of misuse detection and anomaly detection while eliminate the weakness of 
both. Many previous results on misuse detection and anomaly detection were usually based 
on static behavior modeling, i.e., normal behaviors or attack behaviors were modeled as 
static feature patterns and the intrusion detection problem was transformed to a pattern 
matching or classification procedure. However, dynamic behavior modeling is different 
from static behavior modeling approaches in two aspects. One aspect is that the 
relationships between temporal features are explicitly modeled in dynamic modeling 
approaches while static modeling only considers time independent features. The other 
aspect is that probabilistic frameworks are usually employed in dynamic behavior models 
while most static models make use of deterministic decision functions. Furthermore, many 
complex attacks are composed of multiple stages of behaviors, for example, a remote-to-
local (R2L) attack commonly performs probe attacks to find target computers with 
vulnerabilities at first, and later realizes various buffer overflow attacks by utilizing the 
vulnerabilities in the target host computers. Therefore, sequential modeling approaches will 
be more beneficial to precisely describe the properties of complex multi-stage attacks. In [4], 
dynamic behavior modeling and static behavior modeling approaches were discussed and 
compared in detail, where a Hidden Markov Model was proposed to establish dynamic 
behavior models of audit data in host computers including system call data and shell 
command data. It was demonstrated in [4] that dynamic behavior modeling is more suitable 
for sequential data patterns such as system call data of host computers. However, the main 
difficulty for applying HMMs in real-time IDS applications is that the computational costs of 
HMM training and testing increase very fast with the number of states and the length of 
observation traces. 
In this Chapter, some recently developed machine learning techniques for sequential 
behavior modeling and prediction are studied, where adaptive intrusion detection in 
computer systems is used as the application case. At first, a general framework for applying 
machine learning to computer intrusion detection is analyzed. Then, reinforcement learning 
algorithms based on Markov reward models as well as previous approaches using Hidden 
Markov Models (HMMs) are studied for sequential behavior modeling and prediction in 
adaptive intrusion detection. At last, the performance of different methods are evaluated 
and compared. 

2. A general framework of ML applications in intrusion detection 
In [9], based on a comprehensive analysis for the current research challenges in intrusion 
detection, a framework for adaptive intrusion detection using machine learning techniques 
was presented, which is shown in Fig.1. The framework is composed of three main parts. 
The first one is for data acquisition and feature extraction. Data acquisition is realized by a 
data sensing module that observes network flow data or process execution trajectories from 
network or host computers. After pre-processing of the raw data, a feature extraction 
module is used to convert the raw data into feature vectors that can be processed by 
machine learning algorithms and an extraction model based on unsupervised learning can 
be employed to extract more useful features or reduce the dimensionality of feature vectors. 
This process for automated feature extraction is a component of the machine learning part in 
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models the patterns of normal behaviors and detects any possible attacks as deviations from 
the normal behavior model. Until now, although there have been many advances in misuse 
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been several efforts in designing anomaly detection algorithms using supervised learning 
algorithms, such as neural networks [8], support vector machines [11], etc. In addition to 
supervised or inductive learning methods for misuse and anomaly detection, another 
approach to adaptive intrusion detection is to use unsupervised learning methods. Unlike 
supervised learning methods, where detection models are constructed by careful labeling of 
normal behaviors, unsupervised anomaly detection tries to detect anomalous behaviors 
with very little a priori knowledge about the training data. However, as studied in [12], the 
performance of pure unsupervised anomaly detection approaches is usually unsatisfactory, 
e.g., it was demonstrated in [12] that supervised learning methods significantly outperform 
the unsupervised ones if the test data contains no unknown attacks. 
Despite of many advances that have been achieved, existing IDSs still have some difficulties 
in improving their performance to meet the needs of detecting increasing types of attacks in 
high-speed networks. One difficulty is to improve detection abilities for complex or new 
attacks without increasing false alarms. Since misuse IDSs employ signatures of known 
attacks, it is hard for them to detect deformed attacks, notwithstanding completely new 
attacks. On the other hand, although anomaly detection can detect new types of attacks by 
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static feature patterns and the intrusion detection problem was transformed to a pattern 
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from static behavior modeling approaches in two aspects. One aspect is that the 
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approaches while static modeling only considers time independent features. The other 
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while most static models make use of deterministic decision functions. Furthermore, many 
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vulnerabilities at first, and later realizes various buffer overflow attacks by utilizing the 
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computer systems is used as the application case. At first, a general framework for applying 
machine learning to computer intrusion detection is analyzed. Then, reinforcement learning 
algorithms based on Markov reward models as well as previous approaches using Hidden 
Markov Models (HMMs) are studied for sequential behavior modeling and prediction in 
adaptive intrusion detection. At last, the performance of different methods are evaluated 
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The first one is for data acquisition and feature extraction. Data acquisition is realized by a 
data sensing module that observes network flow data or process execution trajectories from 
network or host computers. After pre-processing of the raw data, a feature extraction 
module is used to convert the raw data into feature vectors that can be processed by 
machine learning algorithms and an extraction model based on unsupervised learning can 
be employed to extract more useful features or reduce the dimensionality of feature vectors. 
This process for automated feature extraction is a component of the machine learning part in 
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the framework. In the machine learning part, audit data for training are stored in databases 
and they can be dynamically updated by human analysts or by machine learning 
algorithms. The third part in the framework depicted in Fig.1 is for real-time detection, 
which is to make use of the detection models as well as the extracted feature vectors to 
determine whether an observed pattern or a sequence of patterns is normal or abnormal. 
To automatically construct detection models from the audit data, various machine learning 
methods can be applied, which include unsupervised learning, supervised learning and 
reinforcement learning. In addition, there are three perspectives of research challenges for 
intrusion detection, which include feature extraction, classifier construction and sequential 
behavior prediction. Although various hybrid approaches may be employed, it was 
illustrated that these three perspectives of research challenges are mainly suitable for 
machine learning methods using unsupervised, supervised and reinforcement learning 
algorithms, respectively. In contrast, in the previous adaptive IDS framework in [13], feature 
selection and classifier construction of IDSs were mainly tackled by traditional association 
data mining methods such as the Apriori algorithm. 

2.1 Feature extraction 
As illustrated in Fig.1, feature extraction is the basis for high-performance intrusion 
detection using data mining since the detection models have to be optimized based on the 
selection of feature spaces. If the features are improperly selected, the ultimate performance 
of detection models will be influenced a lot. This problem has been studied during the early 
work of W.K. Lee and his research results lead to the benchmark dataset KDD99 [13-14], 
where a 41-dimensional feature vector was constructed for each network connection. The 
feature extraction method in KDD99 made use of various data mining techniques to identify 
some of the important features for detecting anomalous connections. The features employed 
in KDD99 can serve as the basis of further feature extraction. 
In KDD99, there are 494,021 records in the 10% training data set and the number of records 
in the testing data set is about five million, with a 10 percent testing subset of 311028 
records. The data set contains a total of 22 different attack types. There are 41 features for 
each connection record that have either discrete values or continuous values. The 41-
dimensional feature can be divided into three groups. The first group of features is called 
basic or intrinsic features of a network connection, which include the duration, prototype, 
service, number of bytes from source IP addresses or from destination IP addresses, and 
some flags in TCP connections. The second group of features in KDD99 is composed of the 
content features of network connections and the third group is composed of the statistical 
features that are computed either by a time window or a window of certain kind of 
connections. 
The feature extraction method in the KDD99 dataset has been widely used as a standard 
feature construction method for network-based intrusion detection. However, in the later 
work of other researchers, it was found that the 41-dimensional features are not the best 
ones for intrusion detection and the performance of IDSs may be further improved by 
studying new feature extraction or dimension reduction methods [11]. In [11], a 
dimension reduction method based on principal component analysis (PCA) was 
developed so that the classification speed of IDSs can be improved a lot without much 
loss of detection precision. 
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Fig. 1. A framework for adaptive IDSs based on machine learning 

2.2 Classifier construction 
After performing feature extraction of network flow data, every network connection record 
can be denoted by a numerical feature vector and a class label can be assigned to the record, 
i.e., 

 
For the extracted features of audit data such as KDD99, when labels were assigned to each 
data record, the classifier construction problem can be solved by applying various 
supervised learning algorithms such as neural networks, decision trees, etc. However, the 
classification precision of most existing methods needs to be improved further since it is 
very difficult to detect lots of new attacks by only training on limited audit data. Using 
anomaly detection strategy can detect novel attacks but the false alarm rate is usually very 
high since to model normal patterns very well is also hard. Thus, the classifier construction in 
IDSs remains another technical challenge for intrusion detection based on machine learning. 

2.3 Sequential behavior prediction 
As discussed above, host-based IDSs are different from network-based IDSs in that the 
observed trajectories of processes or user shell commands in a host computer are sequential 
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the framework. In the machine learning part, audit data for training are stored in databases 
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where a 41-dimensional feature vector was constructed for each network connection. The 
feature extraction method in KDD99 made use of various data mining techniques to identify 
some of the important features for detecting anomalous connections. The features employed 
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In KDD99, there are 494,021 records in the 10% training data set and the number of records 
in the testing data set is about five million, with a 10 percent testing subset of 311028 
records. The data set contains a total of 22 different attack types. There are 41 features for 
each connection record that have either discrete values or continuous values. The 41-
dimensional feature can be divided into three groups. The first group of features is called 
basic or intrinsic features of a network connection, which include the duration, prototype, 
service, number of bytes from source IP addresses or from destination IP addresses, and 
some flags in TCP connections. The second group of features in KDD99 is composed of the 
content features of network connections and the third group is composed of the statistical 
features that are computed either by a time window or a window of certain kind of 
connections. 
The feature extraction method in the KDD99 dataset has been widely used as a standard 
feature construction method for network-based intrusion detection. However, in the later 
work of other researchers, it was found that the 41-dimensional features are not the best 
ones for intrusion detection and the performance of IDSs may be further improved by 
studying new feature extraction or dimension reduction methods [11]. In [11], a 
dimension reduction method based on principal component analysis (PCA) was 
developed so that the classification speed of IDSs can be improved a lot without much 
loss of detection precision. 

Machine Learning for Sequential Behavior Modeling and Prediction 

 

405 

 
Fig. 1. A framework for adaptive IDSs based on machine learning 

2.2 Classifier construction 
After performing feature extraction of network flow data, every network connection record 
can be denoted by a numerical feature vector and a class label can be assigned to the record, 
i.e., 

 
For the extracted features of audit data such as KDD99, when labels were assigned to each 
data record, the classifier construction problem can be solved by applying various 
supervised learning algorithms such as neural networks, decision trees, etc. However, the 
classification precision of most existing methods needs to be improved further since it is 
very difficult to detect lots of new attacks by only training on limited audit data. Using 
anomaly detection strategy can detect novel attacks but the false alarm rate is usually very 
high since to model normal patterns very well is also hard. Thus, the classifier construction in 
IDSs remains another technical challenge for intrusion detection based on machine learning. 
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observed trajectories of processes or user shell commands in a host computer are sequential 
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patterns. For example, if we use system call traces as audit data, a trajectory of system calls 
can be modeled as a state transition sequence of short sequences. In the following Fig. 2, it is 
shown that every state is a short sequence of length 3 and different system call traces can 
form different state transitions, where a, b, and c are symbols for system calls in a host 
computer. 
 

 
Fig. 2. A sequential state transition model for host-based IDSs 

Therefore, the host-based intrusion detection problem can be considered as a sequential 
prediction problem since it is hard to determine a single short sequence of system calls to be 
normal and normal and there are intrinsic temporal relationships between sequences. 
Although we can still transform the above problem to a static classification problem by 
mapping the whole trace of a process to a feature vector [15], it has been shown that 
dynamic behavior modeling methods, such as Hidden Markov Models (HMMs) [4], are 
more suitable for this kind of intrusion detection problem. In the following, a host-based 
intrusion detection method will be studied based on reinforcement learning, where a 
Markov reward model is established for sequential pattern prediction and temporal 
difference (TD) algorithms [16] are used to realize high-precision prediction without many 
computational costs. At first, the popular HMMs for sequential behavior modeling will be 
introduced in the next section. 

3. Hidden Markov Models (HMMs) for sequential behavior modeling 
Due to the large volumes of audit data, to establish and modify detection models manually 
by human experts becomes more and more impractical. Therefore, machine learning and 
data mining methods have been widely considered as important techniques for adaptive 
intrusion detection, i.e., to construct and optimize detection models automatically. Previous 
work using supervised learning mainly focused on static behavior modeling methods based 
on pre-processed training data with class labels. However, training data labeling is one of 
the most important and difficult tasks since it is hard to extract signatures precisely even for 
known attacks and there are still increasing amounts of unknown attacks. In most of the 
previous works using static behavior modeling and supervised learning algorithms, every 
single sample of the training data was either labeled as normal or abnormal. However, the 
distinctions between normal and abnormal behaviors are usually very vague and improper 
labeling may limit or worsen the detection performance of supervised learning methods. 
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More importantly, for complex multi-stage attacks, it is very difficult or even impossible for 
static behavior models based on supervised learning to describe precisely the temporal 
relationships between sequential patterns. The above problems become the main reasons 
leading to the unsatisfactory performance of previous supervised learning approaches to 
adaptive IDSs, especially for complex sequential data. The recent works on applying HMMs 
[4] and other sequence learning methods [17] have been focused on dynamic behavior 
modeling for IDSs, which tried to explicitly estimate the probabilistic transition model of 
sequential patterns. For the purpose of comparisons, in the following, a brief introduction 
on HMM-based methods for intrusion detection will be given. 
As a popular sequential modeling approach, HMMs have been widely studied and applied 
in lots of areas such as speech recognition [18], protein structure prediction, etc. A discrete 
state, discrete time, first order hidden Markov model describes a stochastic, memory-less 
process. A full HMM can be specified as a tuple: λ = (N, M, A, B, π), where N is the number 
of states, M is the number of observable symbols, A is the state transition probability matrix 
which satisfies the Markov property: 

 (1) 

B is the observation probability distribution 

 (2) 

and π is the initial state distribution. The initial state distribution π satisfies: 

 (3) 

 (4) 

 
(5) 

For discrete state HMMs, we can let Q = {q1, q2, …,qM} denote the set of all states, O = {O1, O2, 
… ,ON} denote the set of all observation symbols. A typical trace of HMMs is shown in the 
following Fig.3, where Oi (i=1,2,…,T) are observation symbols and qi (i=1,2,…,T) are the 
corresponding states. 
 

 
Fig. 3. An HMM model 
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In practice, there might be a priori reasons to assign certain values to each of the initial state 
probabilities. For example, in some applications, one typically expects HMMs to start in a 
particular state. Thus, one can assign probability one to that state and zero to others. 
For HMMs, there are two important algorithms to compute the data likelihood when the 
model of an HMM is given. One algorithm is the Forward-Backward algorithm which 
calculates the incomplete data likelihood and the other is the Viterbi algorithm which 
calculates the complete data likelihood. Implicitly, both Forward-Backward and Viterbi find 
the most likely sequence of states, although differently defined. For detailed discussion on 
the two algorithms, please refer to [8]. 
Another important problem in HMMs is the model learning problem which is to estimate 
the model parameters when the model is unknown and only observation data can be 
obtained. The model learning problem is essential for HMMs to be applied in intrusion 
detection since a detection model must be constructed only by training data samples. For 
model learning in HMMs, the Expectation-Maximization (EM) algorithm is the most 
popular one which finds maximum a posteriori or maximum likelihood parameter estimate 
from incomplete data. The Baum-Welch algorithm is a particular form of EM for maximum 
likelihood parameter estimation in HMMs. For a detailed discussion on HMMs, the readers 
may refer to [18]. 
In intrusion detection based on HMMs, the Baum-Welch algorithm can be used to establish 
dynamic behavior models of normal data and after the learning process is completed, attack 
behaviors can be identified as deviations from the normal behavior models. 

4. Reinforcement learning for sequential behavior prediction 
4.1 Intrusion detection using Markov reward model and temporal-difference learning 
In HMM-based dynamic behavior modeling for intrusion detection, the probabilistic 
transition model of the IDS problem is explicitly estimated, which is computationally 
expensive when the number of states and the length of traces increase. In this Section, an 
alternative approach to adaptive intrusion detection will be presented. In the alternative 
approach, Markov state transition models are also employed but have an additional 
evaluative reward function, which is used to indicate the possibility of anomaly. Therefore, 
the intrusion detection problem can be tackled by learning prediction of value functions of a 
Markov reward process, which have been widely studied in the reinforcement learning 
community. To explain the principle of the RL-based approach to intrusion detection, the 
sequential behavior modeling problem in host-based IDSs using sequences of system calls is 
discussed in the following. 
For host-based intrusion detection, the audit data are usually obtained by collecting the 
execution trajectories of processes or user commands in a host computer. As discussed in 
[19], host-based IDSs can be realized by observing sequences of system calls, which are 
related to the operating systems in the host computer. The execution trajectories of different 
processes form different traces of system calls. Each trace is defined as the list of system calls 
issued by a single process from the beginning of its execution to the end. If a state at a time 
step is defined as m successive system calls and a sliding window with length l is defined, 
the traces of system calls can be transformed to a state transition sequences and different 
traces correspond to different state transition sequences. For example, if we select a 
sequence of 4 system calls as one state and the sliding length between sequences is 1, the 
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state transitions corresponding to a short trace tr={ open, read, mmap, mmap, open, read, 
mmap} are: 

 
Then the state transition sequence of the above trace tr is: 

 
As studied and verified in [4], dynamic behavior models for sequential pattern prediction 
are superior to static models when temporal relationships between feature patterns need to 
be described accurately. Different from the previous work in [4], where an HMM-based 
dynamic behavior modeling approach was studied, the following dynamic behavior 
modeling method for intrusion detection is based on learning prediction using Markov 
reward models. The method is focused on a learning prediction approach, which has been 
popularly studied in RL research [21-22], by introducing a Markov reward model of the IDS 
problem so that high accuracy and low computational costs can both be guaranteed [20]. 
Firstly, the Markov reward model for the IDS problem is introduced as follows. 
Markov reward processes are popular stochastic models for sequential modeling and 
decision making. A Markov reward process can be denoted as a tuple {S, R, P}, where S is 
the state space, R is the reward function, P is the state transition probability. Let  
{xt |t=0,1,2,…; xt ∈S} denote a trajectory generated by a Markov reward process. For each 
state transition from xt to xt+1, a scalar reward rt is defined. The state transition probabilities 
satisfy the following Markov property: 

 (6) 

The reward function of the Markov reward plays an important role for dynamic behavior 
modeling in intrusion detection problems. As described in the following Fig.2, in a Markov 
reward model for intrusion detection based on system calls, each state is defined as a short 
sequence of successive system calls and after each state transition, a scalar reward rt is given 
to indicate whether there is a possibility to be normal or attack behaviors. The design of the 
reward function can make use of available a priori information so that the anomaly 
probability of a whole state trajectory can be estimated based on the accumulated reward 
function. In one extreme case, we can indicate every state to be normal or abnormal with 
high confidence and the immediate reward of each state is designed as 

 
(7) 

The above extreme case is identical to transform the dynamic behavior modeling problem to 
a static pattern classification problem since we have class labels for every possible states, 
where the reward becomes a class label for every state. However, in fact, due to the 
sequential properties of system call data and the vague distinctions between normal traces 
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In practice, there might be a priori reasons to assign certain values to each of the initial state 
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sequence of 4 system calls as one state and the sliding length between sequences is 1, the 
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sequential properties of system call data and the vague distinctions between normal traces 



 Machine Learning 

 

410 

and abnormal traces, it is usually not appropriate or even impossible to tell whether an 
intermediate state to be normal or abnormal definitely. Moreover, even if it is reasonable to 
assign precise class labels to every states, it is also very hard to obtain precise class labels for 
large amounts of audit data. Therefore, it is more reasonable to develop dynamic behavior 
modeling approaches which not only incorporate the temporal properties of state transitions 
but also need little a priori knowledge for class labeling. An extreme case toward this 
direction is to provide evaluative signals to a whole state transition trajectory, i.e., only a 
whole state trajectory is indicated to be normal or abnormal while the intermediate states 
are not definitely labeled. For example, in the following Fig.4, the reward at the terminal 
state rT can be precisely given as: 

 
(8) 

For intermediate states s1,…, sT-1, a zero reward can be given to each state when there is no a 
priori knowledge about the anomaly of the states. However, in more general cases, the 
intermediate rewards can be designed based on available prior knowledge on some features 
or signatures of known attacks. 
 

 
Fig. 4. A Markov reward process for intrusion detection 

According to the above Markov reward process model, the detection of attack behaviors can 
be tackled by the sequential prediction of expected total rewards of a state in a trajectory 
since the reward signals, especially the terminal reward at the end of the trajectory provide 
information about whether the trajectory is normal or abnormal. Therefore, the intrusion 
detection problem becomes a value function prediction problem of a Markov reward 
process, which has been popularly studied by many researchers in the framework of 
reinforcement learning [21-24]. Among the learning prediction methods studied in RL, 
temporal difference learning (TD) is one of the most important one and in the following 
discussions, we will focus on the TD learning prediction algorithm for intrusion detection. 
Firstly, some basic definitions on value functions and dynamic programming are given as 
follows. 
In order to predict the expected total rewards received after a state trajectory starting from a 
state x, the value function of state x is defined as follows: 

 
(9) 

where x ∈ S , 0 < γ ≤ 1 is the discount factor, rt is the reward received after state transition  
xt → xt+1 and E{.} is the expectation over the state transition probabilities. 
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According to the theory of dynamic programming, the above value function satisfies the 
following Bellman equation. 

 (10)

where Rt is the expected reward received after state transition xt → xt+1 . 
The aim of RL is to approximate the optimal or near-optimal policies from its experiences 
without knowing the parameters of this process. To estimate the optimal policy of an MDP, 
RL algorithms usually predict the value functions by observing data from state transitions 
and rewards. Thus, value function prediction of Markov reward models becomes a central 
problem in RL since optimal policies or optimal value functions can be obtained based on 
the estimation of value functions. However, in RL, learning prediction is more difficult that 
in supervised learning. As pointed out by Sutton [22], the prediction problems in supervised 
learning are single-step prediction problems while learning prediction in reinforcement 
learning belongs to multi-step prediction, which is to predict outcomes that depend on a 
future sequence of decisions. 
Until now, temporal difference learning or TD learning has been considered as one of the 
most efficient approaches to value function prediction without any a priori model 
information about Markov reward processes. Different from supervised learning for 
sequential prediction such as Monte Carlo estimation methods, TD learning is to update the 
estimations based on the differences between two temporally successive estimations, which 
constitutes the main ideas of a popular class of TD learning algorithms called TD( λ ) [22]. In 
TD( λ ), there are two basic mechanisms which are the temporal difference and the eligibility 
trace, respectively. Temporal differences are defined as the differences between two 
successive estimations and have the following form 

 (11)

where xt+1 is the successive state of xt, V (x) denotes the estimate of value function V(x) and 
rt is the reward received after the state transition from xt to xt+1. 
As discussed in [22], the eligibility trace can be viewed as an algebraic trick to improve 
learning efficiency without recording all the data of a multi-step prediction process. This 
trick is originated from the idea of using a truncated reward sum of Markov reward 
processes. In TD learning with eligibility traces, an n-step truncated return is defined as 

 (12)

For an absorbing Markov reward process whose length is T, the weighted average of 
truncated returns is 

 
(13)

where 0 ≤ λ ≤1 is a decaying factor and 

 (14)
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According to the theory of dynamic programming, the above value function satisfies the 
following Bellman equation. 
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where xt+1 is the successive state of xt, V (x) denotes the estimate of value function V(x) and 
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RT is the Monte-Carlo return at the terminal state. In each step of TD( λ ), the update rule of 
value function estimation is determined by the weighted average of truncated returns 
defined above, i.e., 

 (15)

where αt is a learning factor. 
The update equation (25) can be used only after the whole trajectory of the Markov reward 
process is observed. To realize incremental or online learning, eligibility traces are defined 
for each state as follows: 

 

(16)

The online TD( λ ) update rule with eligibility traces is 

 (17)

where δt is the temporal difference at time step t, which is defined in (21) and z0(s)=0 for all s. 
Based on the above TD learning prediction principle, the intrusion detection problem can be 
solved by a model learning process and an online detection process. In the model learning 
process, the value functions are estimated based on the online TD( λ ) update rules and in 
the detection process, the estimated value functions are used to determine whether a 
sequence of states belongs to a normal trajectory or an abnormal trajectory. For the reward 
function defined in (18), when an appropriate threshold μ is selected, the detection rules of 
the IDS can be designed as follows: 

If V (x) > μ , then raise alarms for attacks, 

Else there are no alarms. 
Since the state space of a Markov reward process is usually large or infinite in practice, 
function approximators such as neural networks are commonly used to approximate the 
value function. Among the existing TD learning prediction methods, TD( λ ) algorithms with 
linear function approximators are the most popular and well-studied ones, which can be 
called linear TD( λ ) algorithms. 
In linear TD( λ ), consider a general linear function approximator with a fixed basis function 
vector 

 (18)

The estimated value function can be denoted as 

 (19)

where Wt =(w1, w2,…,wn)T is the weight vector. 
The corresponding incremental weight update rule is 
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 (20)

where the eligibility trace vector  is defined as 

 (21)

In [19], the above linear TD( λ ) algorithm is proved to converge with probability 1 under 
certain assumptions and the limit of convergence W* is also derived, which satisfies the 
following equation 

 (22)

where Xt =(xt,xt+1,zt+1) (t=1,2,…) form a Markov process, E0[· ] stands for the expectation with 
respect to the unique invariant distribution of {Xt}, and A(Xt), b(Xt) are defined as 

 (23)

 (24)

Then, based on a set of observation data {(xt, rt)} (t=1,2,…,T), a least-squares solution to the 
above problem can be obtained as [24]: 

 
(25)

4.2 Kernel-based RL for sequential behavior learning 
After introducing the above Markov reward model, the intrusion detection problem using 
system call traces can be solved by a class of reinforcement learning algorithms called 
temporal-difference (TD) learning. The aim of TD learning is to predict the state value 
functions of a Markov reward process by updating the value function estimations based on 
the differences between temporally successive predictions rather than using errors between 
the real values and the predicted ones. And it has been verified that TD learning is more 
efficient than supervised learning in multi-step prediction problems [22]. 
Until now, TD learning algorithms with linear function approximators have been widely 
studied in the literature [23-24]. In [24], a linear TD learning algorithm was applied to host-
based intrusion detection using sequences of system calls and very promising results have 
been obtained. Nevertheless, the approximation ability of linear function approximators is 
limited and the performance of linear TD learning is greatly influenced by the selection of 
linear basis functions. In the following, a sparse kernel-based LS-TD(λ) algorithm will be 
presented for value function prediction in host-based IDSs [25]. The sparse kernel-based LS-
TD algorithm was recently developed in [26] and it was demonstrated that by realizing 
least-squares TD learning in a kernel-induced high-dimensional feature space, nonlinear 
value function estimation can be implicitly implemented by a linear form of computation 
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TD algorithm was recently developed in [26] and it was demonstrated that by realizing 
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value function estimation can be implicitly implemented by a linear form of computation 



 Machine Learning 

 

414 

with high approximation accuracy. Therefore, by making use of the kernel-based LS-TD 
learning algorithm, the predictions of anomaly probabilities for intrusion detection will have 
higher precision and it will be more beneficial to realize high-performance IDSs based on 
dynamic behavior modeling. 
In the kernel-based LS-TD learning method [26], the same solution to the following LS-TD 
problem was considered: 

 (26)

where the corresponding value functions are estimated by 

 
Using the average value of observations as the estimation of expectation E0[· ], equation (26) 
can be expressed as follows: 

 
(27)

Based on the idea of kernel methods, a high-dimensional nonlinear feature mapping can be 
constructed by selecting a Mercer kernel function k(x1, x2) in a reproducing kernel Hilbert 
space (RKHS). In the following, the nonlinear feature mapping based on the kernel function 
k(.,.) is also denoted by φ(s) and according to the Mercer Theorem [27], the inner product of 
two feature vectors is computed by 

 (28)

Due to the properties of RKHS [27], the weight vector W can be represented by the weighted 
sum of the state feature vectors: 

 
(29)

where xi (i = 1,2,..., N) are the observed states, N is the total number of states and  
α = [α1, α2 ,...,αN ]T are the corresponding coefficients, and the matrix notation of the feature 
vectors is denoted as 

 (30)

For a state sequence xi (i = 1, 2,..., N) , let the corresponding kernel matrix K be denoted as 
K=(kij) N×N , where kij=k(xi, xj). 

 (31)

By substituting (28), (29) and (30) into (27), and multiplying the two sides of (27) with 
T
NΦ we can get 
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 (32)

 (33)

 

(34)

In (34), the values of βi (i=1,2,…,N-1) are determined by the following rule: when state xi-1 is 
not an absorbing state, βi is equal to -1, otherwise, βi is set to zero. 
As discussed in [26], by using the techniques of generalized inverse matrix in [28], the 
kernel-based LS-TD solution to (26) is as follows: 

 (35)

where (.)+ denotes the generalized inverse of a matrix. 
One problem remained for the above kernel-based LS-TD learning algorithm is that the 
dimension of the kernel-based LS-TD solution is equal to the number of state transition 
samples, which will cause huge computational costs when the number of observation data is 
large. To make the above algorithm be practical, one key problem is to decrease the 
dimension of kernel matrix K as well as the dimensional of α. The problem has been studied 
in [29] by employing an approximately linear dependence (ALD) analysis method [30] for 
the sparsification of kernel matrix K. 
The main idea of ALD-based sparcification is to represent the feature vectors of the original 
data samples by an approximately linearly independent subset of feature vectors, which is 
to compute the following optimization problem 

 

(36)

During the sparsification procedure, a data dictionary is incrementally constructed and 
every new data sample xt is tested by compute the solution δt of (36). Only if δt is greater than 
a predefined threshold, the tested data sample xt will be added to the dictionary. For 
detailed discussion of the sparsification process, please refer to [29] and [30]. After the 
sparsification procedure, a data dictionary DN with reduced number of feature vectors will 
be obtained and the approximated state value function can be represented as: 

 
(37)

where n(DN) is the size of the dictionary. 
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where n(DN) is the size of the dictionary. 
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When the above learning and sparcification process is completed, a value function model of 
the IDS problem can be obtained. And the accumulated anomaly probability of a state 
sequence Sn={x1, x2,…xn} can be computed as 

 
(38)

By selecting an appropriate threshold μ, the detection output of the adaptive IDS can be 
simply determined as follows: 

 

4.3 Performance evaluations 
Generally speaking, previous works on machine learning methods for adaptive intrusion 
detection can be mainly classified into four categories, i.e., supervised learning methods, 
unsupervised learning methods, semi-supervised methods and statistical modeling 
methods. Compared with the supervised learning methods in intrusion detection, the 
proposed model does not require precise labeling of every observed feature, which is a 
difficult task and may usually lead to the poor performance of supervised methods, 
especially for complex sequential attacks. For unsupervised learning algorithms in intrusion 
detection, e.g., SOM, clustering, due to the lack of prior information, the performance of 
IDSs can not be optimized adequately [12]. 
The proposed RL-based dynamic behavior modeling approach for intrusion detection 
estimates the anomaly probability of states based on the learning prediction of state value 
functions. Therefore, it can be applied to detect complex attack behaviors with complex 
sequential patterns. The computational complexity of TD learning algorithms is linear with 
respect to the number k of state features and the length m of traces, i.e., it has time 
complexity of O(km), which is lower than the training algorithm for HMMs, which runs in 
time O(nm2), where n is the number of states in the HMM and m is the size of the trace. 
Furthermore, since TD learning prediction methods using function approximators are 
commonly used, the number k of state features can become much smaller than n and the 
computational efficiency will be further improved. 
For the RL-based approach, the most related methods are based on Markov chain modeling 
or Hidden Markov models (HMMs), which are anomaly detection techniques that aim to 
establish the probabilistic structure model of the normal data sequences explicitly. However, 
the Markov reward model and the TD prediction method are based on hybrid modeling 
strategy where the intrusion data can be combined with normal data to train the detection 
model. Moreover, the RL-based method only implicitly constructs the probabilistic model 
and the detection of anomalies is based on the estimated value functions. In [31], the 
robustness of Markov chain modeling techniques was studied and it was shown that when 
explicitly estimating the probabilistic structure of the Markov chain model for normal data, 
the detection accuracy was very sensitive to the noise of data, i.e., when the intrusion data 
were mixed with normal data, the performance of the Markov chain model would become 
worse. Nevertheless, in our approach, the detection accuracy is not influenced by the mixing 
of normal and abnormal data due to the hybrid modeling strategy. 
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To compare the performance between the previous HMM-based approach and the RL-based 
approach, experiments on host-based intrusion detection using system calls were 
conducted. In the experiments, two types of data sets were used, which include system call 
traces from the “live” lpr and the Sendmail programs. Table 1 shows some of the details of 
the data, which include two kinds of attack data and corresponding normal data. All of 
these data sets are publicly available at the website of University of New Mexico [32]. 
In the data sets, each trace is a sequence of system calls generated by a single process from 
the beginning of its execution to the end. Since the traces were generated by different 
programs under different environments, the number of system calls per trace varies widely. 
In the MIT environment, lpr was traced by running the program on 77 different hosts, each 
running SunOS, for two weeks, to obtain traces of a total of 2766 print jobs. For detailed 
discussion of the properties of the data sets, please refer to [32-33]. 
The two types of system call traces were divided into two parts. One part is for model 
training and threshold determination and the other part is for performance evaluation. 
Table 1 shows the numbers of normal and attack traces for training and testing. As can be 
seen in the table, the numbers of testing traces are usually larger than those of testing 
traces. 
 
 

 
 
Table 1. Experimental data for host-based IDS 

During the threshold determination process, the same data sets were used as the training 
process, i.e., the training data sets and the data sets for threshold determination are the 
same. For performance testing, the data sets are different from those in model training and 
their sizes are usually larger than the training data. In the testing stage, two criterions for 
performance evaluations were used, which are the detection rate Dr and the false alarm or 
false positive rate Fp, and they are computed as follows: 
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When the above learning and sparcification process is completed, a value function model of 
the IDS problem can be obtained. And the accumulated anomaly probability of a state 
sequence Sn={x1, x2,…xn} can be computed as 
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where nd is the number of abnormal traces that have been correctly identified by the 
detection model and na is the total number of abnormal traces, Na is the number of normal 
states that have been incorrectly identified as anomaly by the detection model, and N is the 
total number of normal states. In the computation of false alarm rates, we use the same ideas 
discussed in [4], where every possible false alarms during a long state traces are all counted 
and the total sum of false alarms is divided by the number of all states in traces. Therefore, 
the false positives were measured differently from the detection rates or true positives. To 
detect an intrusion, it is only required that the anomaly probabilities exceed a preset 
threshold at some point during the intrusion. However, making a single decision as to 
whether a normal trace is abnormal or not is not sufficient, especially for very long traces. 
For example, if a program runs for several days or more, each time that it is flagged as 
anomalous must be counted separately. As pointed out in [17], the simplest way to measure 
this is to count all the individual decisions. Then, the false-positive rate is selected as the 
percentage of decisions in which normal data were detected as anomalous. 
In the experiments, the TD learning prediction method was applied to the above data sets. 
Every state in the Markov reward model has a system-call sequence length of 6, which has 
been widely employed in previous works. The reward function is defined by (18). A linear 
function approximator, which is a polynomial function of the observation states and has a 
dimension of 24, was used as the value function approximator. To compare the performance 
of TD learning prediction and previous approaches, the experimental results in [4], where 
HMM-based dynamic behavior modeling methods were applied to the same data sets, are 
also shown in the following Table 2. 
 
 

 
 
 

Table 2. Performance comparisons between TD and HMM methods 

To compare the performance between the kernel LS-TD approach with the linear LS-TD [16] 
and the HMM-based approach [4], experiments on host-based intrusion detection using 
system calls were conducted. In the experiments, the data set of system call traces generated 
from the Sendmail program was used. The system call traces were divided into two parts. 
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One part is for model training and threshold determination and the other part is for 
performance evaluation. The normal trace numbers for training and testing are 13 and 67, 
respectively. The numbers of attack traces used for training and testing are 5 and 7. The total 
number of system calls in the data set is 223733. During the threshold determination 
process, the same traces were used as the training process. The testing data are different 
from those in model training and their sizes are usually larger than the training data. 
In the learning prediction experiments for intrusion detection, the kernel LS-TD algorithm 
and previous linear TD(λ) algorithms, i.e., LS-TD(λ), are all implemented for the learning 
prediction task. In the kernel-based LS-TD algorithm, a radius basis function (RBF) kernel is 
selected and its width parameter is set to 0.8 in all the experiments. A threshold parameter 
δ=0.001 is selected for the sparsification procedure of the kernel-based LS-TD learning 
algorithm. The LS-TD(λ) algorithm uses a linear function approximator, which is a 
polynomial function of the observation states and has a dimension of 24. 
 
 

 
 
* The false alarm rates were only computed for trace numbers, not for single state 
 

Table 3. Performance comparisons between different methods 

The experimental results are shown in Table 3. It can be seen from the results that both of 
the two RL methods, i.e., the kernel LS-TD and linear LS-TD, have 100% detection rates and 
the kernel-based LS-TD approach has better performance in false alarm rates than the linear 
LS-TD method. The main reason is due to the learning prediction accuracy of kernel-based 
LS-TD for value function estimation. It is also illustrated that the two TD learning prediction 
methods have much better performance than the previous HMM-based method. Therefore, 
the applications of kernel-based reinforcement learning methods, which are based on the 
Markov reward model, will be very promising to realize dynamic behavior modeling and 
prediction for complex multi-stage attacks so that the performance of IDSs can be efficiently 
optimized. 

5. Conclusions 
Although in recent years, there are many research works on applying machine learning 
and statistical modeling methods to intrusion detection problems, the sequential 
modeling problem in intelligent intrusion detection has not been well solved yet. In this 
Chapter, the TD learning prediction method is introduced to construct detection models 
and improve the performance of IDSs only by simplified labeling schemes using 
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evaluative signals or feedbacks for sequential training data. It is illustrated that compared 
with previous anomaly detection approaches using machine learning, the TD learning and 
prediction method can obtain comparable or even better detection accuracies for complex 
sequential attacks. More importantly, the proposed TD learning and prediction approach 
provides an efficient anomaly detection technique with simplified labeling procedure and 
reduced computational complexity. Future work may need to be focused on the extension 
of the proposed method to more general intrusion detection systems with real-time 
applications. 
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prediction method can obtain comparable or even better detection accuracies for complex 
sequential attacks. More importantly, the proposed TD learning and prediction approach 
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of the proposed method to more general intrusion detection systems with real-time 
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