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Abstract

Recent developments in Deep Reinforcement Learning (DRL) have shown tremendous progress in

robotics control, Atari games, board games such as Go, etc. However, model free DRL still has limited use

cases due to its poor sampling efficiency and generalization on a variety of tasks. In this thesis, two particular

drawbacks of DRL are investigated: 1) the poor generalization abilities of model free DRL. More specifically,

how to generalize an agent’s policy to unseen environments and generalize to task performance on different

data representations (e.g. image based or graph based) 2) The reality gap issue in DRL. That is, how to

effectively transfer a policy learned in a simulator to the real world.

This thesis makes several novel contributions to the field of DRL which are outlined sequentially in

the following. Among these contributions is the generalized value iteration network (GVIN) algorithm, which

is an end-to-end neural network planning module extending the work of Value Iteration Networks (VIN). GVIN

emulates the value iteration algorithm by using a novel graph convolution operator, which enables GVIN to

learn and plan on irregular spatial graphs. Additionally, this thesis proposes three novel, differentiable kernels

as graph convolution operators and shows that the embedding-based kernel achieves the best performance.

Furthermore, an improvement upon traditional n-step Q-learning that stabilizes training for VIN and GVIN is

demonstrated. Additionally, the equivalence between GVIN and graph neural networks is outlined and shown

that GVIN can be further extended to address both control and inference problems. The final subject which

falls under the graph domain that is studied in this thesis is graph embeddings. Specifically, this work studies a

general graph embedding framework GEM-F that unifies most of the previous graph embedding algorithms.

Based on the contributions made during the analysis of GEM-F, a novel algorithm called WarpMap which

outperforms DeepWalk and node2vec in the unsupervised learning settings is proposed.

The aforementioned reality gap in DRL prohibits a significant portion of research from reaching the

real world setting. The latter part of this work studies and analyzes domain transfer techniques in an effort to

bridge this gap. Typically, domain transfer in RL consists of representation transfer and policy transfer. In
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this work, the focus is on representation transfer for vision based applications. More specifically, aligning the

feature representation from source domain to target domain in an unsupervised fashion. In this approach, a

linear mapping function is considered to fuse modules that are trained in different domains. Proposed are two

improved adversarial learning methods to enhance the training quality of the mapping function. Finally, the

thesis demonstrates the effectiveness of domain alignment among different weather conditions in the CARLA

autonomous driving simulator.
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Chapter 1

Introduction

Over the past decade, the digital revolution has enabled vast amounts of data to be accessible. Massive

amounts of data created by social media and scientific/engineering applications open new doors for analyzing

economic value, unearthing scientific truth, and improving customer services. Data processing and data

analysis have become a crucial challenge. Research in academia and industry is mainly concentrated on how

to extract knowledge from big data using techniques including Machine Learning, data mining, operational

research, etc [3, 96, 93].

Machine Learning is the study of how to design a machine that can learn from data. Industry

leaders have invested significant effort into mining latent information from available data via machine

learning techniques. However, traditional machine learning capabilities have reached an upper bound, even

after increasing the scale of datasets. In general, Machine Learning is categorized as Supervised Learning,

Unsupervised Learning, and Reinforcement Learning (RL). Supervised Learning algorithms analyze the

training data and infers a function mapping to predict unseen instances. Unsupervised Learning finds hidden

structure in unlabeled data, such as clustering, dimensional reduction, feature extraction and so on. RL is

concerned with how an agent should react in an environment so that the agent can maximize accumulated

rewards.

A methodology known as Deep Learning has emerged as a promising research area that outper-

forms state-of-the-art published results and approaches human-level performance in several applications.

Deep learning is positioned for a promising future in Big Data analytics, allowing computational models

composed of a multitude of processing layers to learn representations of data through several levels of ab-

straction. Deep learning has achieved tremendous success in numerous supervised learning tasks, including

1



speech recognition [5, 106], object recognition [51, 127, 72], semantic segmentation [98], natural language

processing [122, 55, 73] and much more.

Reinforcement learning (RL) is a learning technique that solves sequential decision making problems

that lack explicit rules and labels [124]. Recent developments in Deep Reinforcement Learning (DRL) have

lead to enormous progress in autonomous driving [13], innovation in robot control [78], and human-level

performance in both Atari games [87, 48] and the board game Go [115]. Given a reinforcement learning task,

the agent explores the underlying Markov Decision Process (MDP) [11, 12] and attempts to learn a mapping

of high-dimensional state space data to an optimal policy that maximizes the expected return.

In this thesis, we are specially interested in the Deep Reinforcement Learning (DRL) technique, which

introduces Deep Learning into Reinforcement Learning settings. Conventional RL use tabular representation

to hold the model information, whereas DRL uses neural networks as a function approximator to backup the

policy information. Under the theory of RL, one of the important factors is whether the agent has access to

(or learns) a model of the environment. By the model, we mean the function of state transitions and rewards.

Algorithms that use a model are called model-based RL and those that do not are called model-free RL. If

the agent knows the model beforehand, the agent could plan ahead, which means see what would happen in

the future and decide among multiple choices. However, in practice, the true model of the environment is

not available to the agent. In this case, the agent must learn the model from the sampled data, which is also

called system identification. The biggest drawback is that the learned model often is often biased or inaccurate,

resulting an agent policy that is optimized on the learned model and behaves sub-optimally.

On the other hand, model-free RL is more popular in the DRL community since they are easier to

implement and do not encounter the model compounded error issue found in model-based RL. The samples

from policy are unbiased true experiences, which are used to update the policy network. Typically, there are

three approaches to train the agent by using model-free RL: policy-based, value-based, and actor-critic. The

policy-based and actor-critic methods are usually on-policy learning, meaning that the sampled data is directly

used to train the current policy function. Value-based methods, such as Q-learning or Deep Deterministic

Policy Gradient (DDPG), are usually off-policy learning, that is learning current policy by using the samples

from other policies, such as old policy [88] or expert’s policy [56]. In practice, on-policy learning normally

provides more stable training, whereas off-policy reuse data more effectively, offering better sample efficiency.
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1.1 Dissertation Research

Even though model-free RL has been popular in the research community and shows great success in

variety of applications, recent researchers [61, 82] show that the current DRL approach is not a path towards

Artifical General Intelligence (AGI). In the following, we list limitations from a variety perspectives:

• Model-free RL shows poor sample efficiency: the task of RL aims to maximize the accumulated

rewards. In most applications, reward signals are very sparse, such that when a policy search is

conducted on the parameter space, most of time the agent receives no feedback at all. In other words, it

is hard to track any gradient information during optimization since the policy is searching a Kronecker

delta function. Therefore, the agent spends most of the sampled trajectories doing random search,

which is highly inefficient. Additionally, DRL becomes worse when employing a neural network as the

function approximator: current Deep Learning is inherently data hungry, that is deep learning requires

large-scale datasets with high-quality labels even in supervised learning settings.

• Model-free RL is hard to train: When using a neural network as a non-linear function approximator,

the convergence of a model-free RL algorithm cannot be guaranteed theoretically. A comparison is

shown in Table 1.1. The main reason that RL is difficult to train is that it is a multi-level optimization

problem. The inner loop optimizes the policy to maximize the total returns and the outer loop optimize

the parameters of the policy network to minimize the gradient loss.

On/Off-Policy Algorithm Table Lookup Linear Non-Linear

MC ! ! !

On-Policy TD(0) ! ! 7

TD(λ) ! ! 7

MC ! ! !

Off-Policy TD(0) ! 7 7

TD(λ) ! 7 7

Table 1.1: Algorithm Convergence [125]

• Model-free RL shows poor generalization: [63] shows that even a tiny visual differences or envi-

ronment variations could lead to total failure of a state-of-the-art model-free DRL. The model-free

DRL makes no assumption about the domain structures since the deep neural network system is simply

memorizing the mapping relationships between inputs and outputs, thus it is capable of highly limited

generalization, reasoning, and planning capabilities.
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• Model-based RL has inherent problem of modeling errors: The advantage of model-based RL is

that it improves the sample efficiency compared with a model-free RL. However, the model-based

method requires system identification step to map the observations to a dynamics model. Then, a

learned model is used to solve the policy. In many applications, such as robotic manipulation and

locomotion, accurate system identification is difficult, and modelling errors can severely degrade the

policy performance.

• DRL has a reality gap issue: The pre-assumption of RL is that the agent is designed to interact with

the environment, and in many business applications, it is too expensive or even impossible for an agent

to interact with hypothetical trial and error scenarios. For example, training an autonomous car in the

real world might damage the car or hit the pedestrian. The central question is how to solve this reality

gap issue. That is, how to effectively transfer a policy learned in a simulator to the real world.

The aforementioned limitations are also current active research topics. Methods such as Hindsight

Experience Replay (HER) [6], model-based RL [116], and planning algorithms [94] are proposed to solve

the sample efficiency. The combination of model-based RL and model-free RL [145, 116] could further

improve the compound error of learned environment dynamics. Meta learning [34] and planning [94, 128]

could effectively generalize to environment variants. Also, transfer learning and meta learning provide the

possibility to transfer the learned knowledge from a simulator to the real world.

1.2 Methods of Study

Among these limitations and their corresponding research proposals, one question remains: what is

the fundamental problem behind these drawbacks? And is there an universal approach to solving the above

problems that shares the same properties? Further, we think this is also one of the key factors towards AGI.

The central theme among the above problems is that state-of-the-art deep learning models lack, ironically,

a ’model’ from which to learn: when humans begin solve a complicated task, he or she often first builds a

world knowledge or ’model’ in his or her mind, then performs inference or planning upon that model. The

model can be naturally represented as a graph. The graph is a discrete data structure model of the instance

relationships. Unlike current deep learning systems, which learn the function mapping between two variables,

a graphical model takes consideration of the dependencies among latent variables, the relationships among the

latent variables essentially forms the conditional probability or potential function, which is already widely used
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in the probabilistic graphical model (PGM) [69]. However, the inference in PGM is commonly intractable,

using different approximation or reduction techniques. On the other hand, a neural network introduces a fully

differentiable method to do inference based on backpropagation in a convenient way. Then, it is natural to

combine the graphical model and neural network together to model the dependencies, while using a neural

network for inference task.

Additionally, the reality gap is a typical problem of domain transfer/adaption. Ideally, we are

interested in learning adaption with a set of unlabeled source examples and a set of unlabeled target examples.

The goal is to find or construct a common representation space for the two domains. One possible way is by

using adversarial learning methods [45], which learn feature representations from samples in different domains

that are indistinguishable.

According to this analysis, our research can be abstracted as three sub-tasks:

• Dynamic graph planning based on neural networks: Here dynamic means the graph contains un-

known dynamics, for example, traffic on the map, or network bandwidth state on network routing. The

graph can be viewed as a semi-model and the model transition probability remains unknown. Therefore,

we explore a RL model between model-free and model-based.

• Graph embedding: In the previous bullet, we assume that the graph structure features are given a priori.

Our research investigates how to obtain the structure features from the raw graph for a variety of tasks

including control, classification, clustering, etc.

• Domain adaption between different environments: How to bridge the gap between RL training in a

simulator to a real world environment without any supervision signal. Also, for practical reason, our

interests also lie on the domain transfer with light computational cost.

1.2.1 Dynamic graph planning based on neural networks

RL can be categorized as model-free [80, 86, 87] and model-based approaches [124, 30, 108]. Model-

free approaches learn the policy directly by trial-and-error and attempt to avoid bias caused by a suboptimal

environment model [124]. Model-based approaches, on the other hand, allow for an agent to explicitly learn

the mechanisms of an environment, which can lead to strong generalization abilities. A recent work, the value

iteration networks (VIN) [128] combines recurrent convolutional neural networks and max-pooling to emulate

the process of value iteration [11, 12]. As VIN learns an environment, it can plan shortest paths for unseen

mazes.
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The input data fed into deep learning systems is usually associated with regular structures. For

example, speech signals and natural language have an underlying 1D sequential structure; images have an

underlying 2D lattice structure. To take advantage of this regularly structured data, deep learning uses a series

of basic operations defined for the regular domain, such as convolution and uniform pooling. However, not all

data is contained in regular structures. In urban science, traffic information is associated with road networks;

in neuroscience, brain activity is associated with brain connectivity networks; in social sciences, users’ profile

information is associated with social networks. To learn from data with irregular structure, some recent works

have extended the lattice structure to general graphs [29, 68] and redefined convolution and pooling operations

on graphs; however, most works only evaluate data that has both a fixed and given graph. In addition, most

lack the ability to generalize to new, unseen environments.

In this subsection of research, we aim to enable an agent to self-learn and plan the optimal path in

new, unseen spatial graphs by using model-based DRL and graph-based techniques. This task is relevant to

many real-world applications, such as route planning of self-driving cars and web crawling/navigation. The

proposed method is more general than classical DRL, extending for irregular structures. Furthermore, the

proposed method is scalable (computational complexity is proportional to the number of edges in the testing

graph), handles various edge weight settings and adaptively learns the environment model. Note that the

optimal path can be self-defined, and is not necessarily the shortest one. Additionally, the proposed work

differs from conventional planning algorithms; for example, Dijkstra’s algorithm requires a known model,

while our proposed method aims to learn a general model via trial and error, then apply said model to new,

unseen irregular graphs.

1.2.2 Graph embedding

A graph embedding is a collection of feature vectors associated with nodes in a graph; each feature

vector describes the overall role of the corresponding node. Through a graph embedding as shown in Figure 1.1,

we are able to visualize a graph in a 2D/3D space and transform problems from a non-Euclidean space to a

Euclidean space, where numerous machine learning and data mining tools can be applied. The applications

of graph embedding include graph visualization [54], graph clustering [141], node classification [111, 151],

link prediction [79, 8], recommendation [148], anomaly detection [4], and many others. A desirable graph

embedding algorithm should (1) work for various types of graphs, including directed, undirected, weighted,

unweighted and bipartite; (2) preserve the symmetry between the graph node domain and the graph embedding

domain, that is, when two nodes are close/far away in the graph node domain, their corresponding embeddings
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are close/far away in the graph embedding domain; (3) be scalable to large graphs; and (4) be interpretable,

that is, we understand the role of each building block in the graph embedding algorithm.

(a) Input graph. (b) Adjacency matrix.

(c) Linear embedding through SVD. (d) WarpMap.

Figure 1.1: Our proposed graph embedding algorithm WarpMap introduces a warping function, which
significantly improves the quality of a graph embedding. We expect the nodes in the blue community should
be close in proximity in the graph embedding domain because their connections are strong, which is shown by
WarpMap.

1.2.3 Domain adaption between different environments

Most DRL [87, 80, 74, 35] studies are conducted in a simulated environment from scratch. Training

an agent in a real world environment is often too expensive or even unrealistic. An alternative is to apply

the model learned from the simulator to the real world. However, directly adopting the model trained from

the simulator to a real physical system commonly leads to poor performance. How to perform transfer from

simulation to the real world plays a key role in robotics since the simulator can be a source of practically

infinite cheap data with flawless labels.

Since multiple factors could contribute to performance degradation from the simulator to the real

world, we summarize from the macro-view as two main points: 1) the mismatch of perception or sensory

feature representation and 2) the policy bias that is caused by mismatched dynamics between the simulator
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and real environment.

The model of the agent can be partitioned as two parts: the representation module and the policy

module. The representation module performs feature extraction, and the policy module could be either

model-free or model-based [124]. Many recent efforts in RL domain transfer [129] focus on the policy transfer,

where their applications simplify state by using low dimensional sensor input data such as IMU. On the

other hand, most of the work regarding representation transfer [136, 14] in RL settings attempts to learn the

generator function to adapt the images from the source domain to appear as possible to those sampled from the

target domain. However, this method is relatively cumbersome and it is typically specific to robotics.

As [113] demonstrated, good representation allows a trained policy to be quickly adapted and

recovered even when the policy network is obliterated. The robust representation greatly eases the learning

difficulties when performing domain transfer in RL problems. In this research, we propose to develop an

adversarial learning for the feature-level domain transfer, in which the features from the source domain can be

aligned to the target domain without any labels. Particularly, our work mainly focuses on image-based input

for the agent since the real world environment largely involves image-based state and the computer vision

community already provides large amounts of data and advanced neural network based models for image

classification [51], object detection [101, 51], and segmentation [22].

1.3 Contributions and Outline

The reminder of this dissertation is organized as follows: Chapter 2 provides background information

related to Machine Learning, deep generative model, and RL. Chapter 3 presents the details and design

architectures of the aforementioned three sub-taskes including GVIN, WarpMap graph embedding, and domain

alignment based on adversarial learning. Chapter 4 presents literature review and related state-of-the-art work.

Chapter 5 presents experiments and results, which we studies the empirical results and offers the corresponding

analysis. Note that this chapter is also divided into three parts, each of them corresponding to one task in

Chapter 3. Finally, conclusions and future work are discussed in Chapter 6.
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Chapter 2

Background

In this chapter, we will cover the background knowledge used in this thesis. Much of the work in this

thesis is based on Deep Learning, and hence we introduce Deep Learning techniques that are widely used in

supervised learning. We will also review the concept of Deep Generative Model and its extensions, which is

used in the proposed domain alignment algorithms for visual based input (Section 3.3). Additionally, we will

go through the reinforcement learning basics and related state-of-the-art techniques, which is used in GVIN

(Section 3.1). Finally, we will talk about the graph convolutional neural network (GCNN) and its extensions

that are used later in Sections 3.1 and 3.2

2.1 Deep Learning

Deep Learning or deep neural networks (DNN) have shown great success in a variety of applications

including image processing [72], speech processing [58], natural language processing [140], control [116]

problems and others. These tasks can be modeled as either supervised learning or unsupervised learning. In this

subsection, we will discuss popular supervised learning techniques, a variety of neural network architectures,

and the auto differentiable system such as Tensorflow [3] which has lead to the explosive growth of Deep

Learning applications.

2.1.1 Supervised Learning

From the point of view of supervised learning, many practical problems can be simply formulated as

a computing mapping function f : X → Y , where X is in the input space and Y is in the output space. Here

9



we list several popular applications that fall into this mapping function framework:

• Image recognition in image recognition, X is the space of image and Y represents object probability

• Machine translation for machine translation, X is source language (ex: English) and Y is the target

language (ex: German)

• Image captioning in image captioning, X is query image and Y is corresponding caption of that image

• Speech recognition in speech recognition, X represents the audio wave data and Y indicates the

transcripts of the corresponding audio wave

• Question answering in question answering application, X denotes the questions and stories and Y is

the answer

In supervised learning, all of the above tasks become searching for a function that can exactly

or approximately map from X to Y . Concretely, we assume that we have a training set with n samples

{< x1, y1 >, ...,< xn, yn >} where x1...n ∈X and y1..g.n ∈ Y , and each sample is independent and identically

distributed (i.i.d.). Then, the learning process aims to search over the mapping function f so that f maintains

the consistent mapping among all < xi, yi > pairs. Hence, we define an objective/loss function L(ŷi, yi) to

measure how consistent it is among the training set, where ŷi represents the prediction from f , and yi denotes

the ground truth value. In the general case, the loss function can be defined as:

f∗ = arg min
f

E<x,y>L(f(x), y) (2.1)

where f∗ is the optimal function configuration; L(⋅, ⋅) represents the loss function; and ŷ = f(x)

denotes the prediction. Equation 2.1 indicates that the goal is to find the configuration of f to minimize the

expected loss over the training sample. Across the machine learning community, f has a variety of hypotheses.

For example, in the linear model, f = x⊺θ + ε and the configuration is parameter θ. In the decision tree model,

f is a tree, and the configuration indicates how the tree is split based on the loss criteria. In a neural network,

f is a multi-layer perceptron and the parameters of the perceptron represent the configuration.

Searching the parameters of the function f is an optimization problem. Unfortunately, optimizing

on Equation 2.1 often yields poor performance on different datasets, such as the testing set versus real

world deployment. In other words, the optimized f does not generalize to all < x, y > pairs, which is often

referred to as overfitting. In order to choose a generalized solution from the set of optimized f configurations,
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regularization techniques are introduced to overcome overfitting. Therefore, the Equation 2.1 is written as:

f∗ = arg min
f

E<x,y>[L(f(x), y)] +R(f) (2.2)

where R(f) is a scalar value added to the original loss function. Regularization follows the principle

of Occam’s razor: "Suppose there exist two explanations for an occurrence. In this case, the one that requires

the least speculation is usually better". In Equation 2.2, R(f) measures the model complexity. During the

optimization, the loss function balances the objective loss and model complexity.

Nevertheless, directly optimizing Equation 2.2 is not tractable since the optimization needs to operate

on all sample data. Therefore, stochastic gradient descent (SGD) is introduced to make the optimization

scalable. Then, Equation 2.3 is more practical for ML applications:

f∗ = arg min
f

1

N

N

∑
i=1
L(f(xi), yi) +R(f) (2.3)

Several popular optimization methods for ML algorithms are provided in the following discussion.

Linear Regression Assuming we have a regression task such that the target label is a continuous

value Y ∈ R and input features are m dimension X ∈ Rm. The loss function uses the mean squared error

(MSE) between the predicted value ŷ and the target value y, where ŷ = θ⊺x + θ0. Assuming the model follows

a Gaussian, which is L2 regularization, putting each piece together, we have:

θ∗ = arg min
θ

1

N

N

∑
i=1

∣∣θ⊺xi + θ0 − yi∣∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
training objective

+λ
m

∑
j=0

∣∣θj ∣∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
regularization

(2.4)

λ is the coefficient that determines how much regularization effect should be added. Equation 2.4 is

also called the ridge regression. When the feature exhibits the sparsity property, the model can use the Laplace

prior, which is L1 regularization, and we could replace the term ∑mj=0 ∣∣θj ∣∣2 with ∑mj=0 ∣∣θj ∣∣. The optimization

of linear regression has a closed form solution and can be solved in one-step by θ∗ = (X⊺X)−1X⊺y.

Logistic Regression Logistic regression is a classical model for solving the binary classification

problem. Consider Y to be a discrete value, specifically in Logistic regression it is a binary value {0,1}. The

hypothesis is ŷ = 1
1+e−φ(x)) and φ(x) = θ⊺x + θ0. To optimize the parameters of logistic regression, the loss
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function contains binary cross-entropy as the objective function and L2 norm as regularization:

θ∗ = arg min
θ

1

N

N

∑
i=1

(−yi ∗ log ŷi − (1 − yi) ∗ log(1 − ŷi))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
training objective

+λ
m

∑
j=0

∣∣θj ∣∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
regularization

(2.5)

The optimization upon θ, which we call training in later sections, uses SGD to update the parameter

by θnew = θold − α∇L(θold), where α is a hyper-parameter called the learning rate that defines the gradient

step size in each iteration.

Support Vector Machine Classification Consider a binary classification problem with labels y and

features x. We will use y ∈ {−1,1} to denote the class labels. Given each training sample < xi, yi >, SVM

aims to find the optimal or robust decision boundary that maximize the geometric margins. Assuming the

parameter θ = {w, b}, the loss function becomes a constrained optimization:

max
w,b

1

2
∣∣w∣∣2

s.t. yi(w⊺xi + b) ≥ 1, i = 1, ...,m

(2.6)

Typically, by using Lagrange duality, the above quadratic programming (Equation 2.6) can be

eventually constructed as follows:

L(w, b) = 1

2
∣∣w∣∣2

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
regularization

+C
m

∑
i=1

max(0,1 − yi(w⊺xi + b))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
training objective

(2.7)

The above loss function (Equation 2.7) is also called hinge loss. However, the operator max(⋅, ⋅) is

not differentiable. The sub-gradient is computed to optimize the objective function.

Neural Network Classification Neural networks extend logistic regression to a more complex

hypothesis. Logistic regression could be viewed as a special case of neural networks that contains one neuron

output with a single layer. Neural networks stack multiple layers and we are free to choose from a variety

of non-linearity activation functions including sigmoid, hyperbolic tangent tanh, rectifier relu, etc. The non-

linearity enables neural networks with more powerful model expressiveness. [114] shows that a single layer

of sigmoid or tanh functions is Turing-complete, which means the neural network can approximate arbitrary

function mapping. Similarly, the loss function of the neural network could also be formed as Equation 2.3.

However, with direct multi-layer optimization it is difficult to search the optimal parameters via SGD. The
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Backpropagation algorithm allows the gradient to be passed back to the previous layer based on the chain

rule, updating the neural network weights layer by layer. Therefore, Backpropagation enables the research

community to train very large scale networks for a variety of applications, such as image processing, speech

processing, text processing, etc.

2.1.2 Different Neural Architectures

Here we briefly show three basic and commonly used neural network architectures in different

applications.

2.1.2.1 Multi-layer Neural Network

Figure 2.1: Multi-layer neural network model [1]

Multi-layer neural networks receive the input feature and transform it through a series of hidden

layers. Each hidden layer is made up of a set of neurons, where the neurons in a single layer are completely

independent (do not share connections) as shown in Figure 2.1. Each neuron is a linear transformation of the

input features with non-linear activation. In a conventional multi-layer perceptron, the sigmoid is a popular

activation function but recent models show that the sigmoid experiences a gradient vanishing problem and is

therefore replaced with a rectifier function.

2.1.2.2 Convolutional Neural Network

Convolution neural networks (CNN) specifically handle the data that consists of the spatial invariant

property, such as image, video, etc. Figure 2.2 shows an example of image data to illustrate its mechanism.

The input color image is of size 128 × 128 × 3 (length and height are 128, 3 color channels for rgb). The input

image is convolved with CNN learned filters and each channel is independently computed. However, directly

applying a fully connected neural network requires a very large number of parameters. Instead, CNN require

13



Figure 2.2: Convolutional neural network model [1]

two assumptions: 1) image data has local connectivity, that is the current pixel is only related to its local

region of the input, and 2) the parameters in the sliding window is shared among the entire image. These two

assumptions allow for a dramatic reduction in the number of parameters for CNN.

2.1.2.3 Recurrent Neural Network

Figure 2.3: Recurrent neural network model [2]

Many applications contain a sequence of data, such as time series, natural language, speech recogni-

tion, etc. A recurrent neural network (RNN) shown in Figure 2.3 accepts input sequence {x1, ...xT } and has

the feedback loop using a recurrence formula ht = f(ht−1, xt; θ). The parameter θ is shared at every time step,

allowing the network to process arbitrary sequence lengths. As shown in Figure 2.3, RNNs can be unfolded

as a chained feed-forward neural network, which could potentially cause the gradient vanishing problem. In

order to overcome the gradient drawbacks, long short term memory (LSTM) [59] and gated recurrent units

(GRU) [25] utilize gating and memory to address the limitations. LSTM and GRU model are summarized as:
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LSTM

ft = σ(Wf [ht−1, xt] + bf)

it = σ(Wi[ht−1, xt] + bi)

C̄t = tanh (WC[ht−1, xt] + bC)

Ct = ft ∗Ct−1 + it ∗ C̄t

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh (Ct)

GRU

zt = σ(Wz[ht−1, xt])

rt = σ(Wr[ht−1, xt])

h̄t = tanh (W [rt ∗ ht−1, xt])

ht = (1 − zt) ∗ ht−1 + zt ∗ h̄t

2.1.3 Auto Differentiable System

Neural networks provide an elegant way to train the deep network by the chain rule. It is natural

to think about the neural network as a computational graph, which lead the research community to redefine

the artificial neural network. The graph is not necessary limited to the bipartite graph, but rather it could

be any directed acyclic graph (DAG) of operations: input feature vectors flow along edges and vertices

which are differentiable operators, output flows out to another differentiable module or loss function. In the

implementation, the vertices objects implement forward() and backward(⋅) function, where forward(⋅) function

propagates the graph in topological order producing the prediction based on the network parameters, and

backward() function passes the gradient from the next layer to the previous layer in reverse order. When

vertices among the computational graph are connected, each gradient in the neuron are chained and training

can be fully automated.

The computational graph concept is one of biggest reasons why Deep Learning has been such

a significant achievement: 1) it allows developers to define neural networks in a modular fashion, where

each module can be highly customized to specific problems; and 2) the developer does not need to derive

backpropagation from scratch, many auto differentiable systems such as Tensorflow [3] and Pytorch [96]

automate the backpropagation process for users.

2.2 Deep Generative Model

Often typical generative models consist of two types of variables: observed/visible variable x and

latent/hidden variables z. x is commonly pre-given during the training phase, where variable z is used to

describe the structure in x. z depends on the model parameters that are trained through the learning algorithms.
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Generative models directly learn the data distribution which can be used in variety of scenarios. Figure 2.4

shows the result from a few samples generated from a generative adversarial network (GAN) [45]; note that

every picture is generated via the neural network and the input is random noise.

Figure 2.4: Generative adverserial network (GAN) results from [64]. Note that both samples above are
generated samples from a neural network, that is to say, none of the figures actually exist in the real world. All
pictures are "created" or drawn via a Deep Generative Model, which is a GAN in this case.

We use the following notations:

• x represents an observed random variable

• p(x) represents the probability over the variable x

• X ∼ p(x) denotes a valueX sampled from the probability distribution p(x); symbol ∼ denotes sampling

• P (x) represents the density function of the distribution of x

According to the Bayesian rule:

p(z∣x) = p(x∣z)p(z)
p(x) = p(x, z)

∫ p(x, z)dz
(2.8)

where p(x∣z) is the likelihood, p(z) is the prior probability, p(z∣x) is the posterior probability,

and p(x) is the evidence. Equation 2.8 represents how to perform an inference over the graphical model.

∫ p(x, z)dz integrates all possible configurations over the latent variables, which is a NP-hard problem. To

overcome the computational limitations, the research community proposes exact inference and approximate

inference. Since we are mainly focused on the approximate inference approach, we omit background

information for exact inference research.
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Approximate inference could be divided into two types: Monte Carlo Markov Chain (MCMC) and

variational inference. Instead of computing the true posterior distribution, MCMC constructs a markov chain

to obtain samples of the desired distribution after a number of steps. While variational inference provides an

approximation to the posterior based on known distribution. Since our research utilizes deep implicit density

estimation (ex: GAN), we only discuss the variational inference and variational autoencoder that is currently

popular among the Deep Learning domains.

2.2.1 Variational Inference

The posterior distribution p(z∣x) is often computationally intractable in many models and thereby

we use a parametric distribution qφ(z∣x) such as a Gaussian to approximate the true distribution p(z∣x).

Performing inference on the known distribution is computationally tractable, then our task has converted

inference as an optimization problem where we train the parameters φ so that q is as close to p as possible.

To measure the distance between q and p, variational inference uses the reverse KL Divergence:

KL(q∣∣p) =∑
z

qφ(z∣x) log
qφ(z∣x)
p(z∣x) (2.9)

where p(z∣x) = p(x,z)
p(x) is from Equation 2.8, then:

KL(q∣∣p) =∑
z

qφ(z∣x) log
qφ(z∣x)p(x)
p(z, x)

=∑
z

qφ(z∣x)(log
qφ(z∣x)
p(z, x) + log p(z))

= (∑
z

qφ(z∣x) log
qφ(z∣x)
p(z, x) ) + (∑

z

log p(x)qφ(z∣x))

= (∑
z

qφ(z∣x) log
qφ(z∣x)
p(z, x) ) + (log p(x)∑

z

qφ(z∣x))

= (∑
z

qφ(z∣x) log
qφ(z∣x)
p(z, x) ) + log p(x) (2.10)

Therefore, in order to minimize KL(q∣∣p) over parameters φ, the objective is to minimize the term
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∑z qφ(z∣x) log
qφ(z∣x)
p(z,x) since log p(x) is fixed. Therefore, the objective function becomes:

∑
z

qφ(z∣x) log
qφ(z∣x)
p(z, x) = Ez∼qφ(z∣x)[log

qφ(z∣x)
p(z, x) ]

= Ez∼qφ(z∣x)[log qφ(z∣x) − log p(z, x)]

= Ez∼qφ(z∣x)[log qφ(z∣x) − log p(x∣z) − log p(z)] (2.11)

Here, minimizing the above equation is equivalent to maximizing:

maxL = Ez∼qφ(z∣x)[− log qφ(z∣x) + log p(x∣z) + log p(z)]

= Ez∼qφ(z∣x)[log p(x∣z) + log
p(z)
qφ(z∣x)

] (2.12)

where L is variational evidence lower bound (ELBO), which is computationally feasible since we

can evaluate p(x∣z), p(z) and q(z∣x). The ELBO could be reformulated as:

L = Ez∼qφ(z∣x)[log p(x∣z) + log
p(z)
qφ(z∣x)

]

= Ez∼qφ(z∣x)[log p(x∣z)] −KL(Q(z∣x)∣∣P (z)) (2.13)

In another point of view, when substituting L back to Equation 2.9, we have:

KL(q∣∣p) = log p(x) −L

log p(x) = L +KL(q∣∣p) (2.14)

where log p(x) is the log likelihood of true data distribution and it remains constant over the parame-

ters φ. Therefore, to minimize the KL divergence KL(q∣∣p) as KL(q∣∣p) ≥ 0 is equivalent to maximizing L.

In summary, the variational inference intends to optimize the following objective function:

L = Ez∼qφ(z∣x)[log p(x∣z)] −KL(Q(z∣x)∣∣P (z)) (2.15)
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Figure 2.5: Graphical model of the generative process in VAE [32]

2.2.2 Variational Auto-Encoder

Variational auto encoder (VAE) [67] provides an elegant amortized inference approach extended

from the variational inference. VAE use two neural networks to parameterize the variational parameters

φ and generative process θ, where the graphical model is shown in Figure 2.5. Therefore, we rewrite the

Equation 2.15 as follows for the optimization objective function:

L(x; θ, φ) = Ez∼qφ(z∣x)[log pθ(x∣z)] −KL(Qφ(z∣x)∣∣Pθ(z)) (2.16)

The first term Ez∼qφ(z∣x)[log pθ(x∣z)] denotes the log likelihood that the Auto-Encoder can be used

for reconstruction loss, where the second term is the regularization term. It describes that by using an arbitrarily

high capacity model for q(z∣x), we adjust q(z∣x) to actually match p(z∣x); the KL-divergence term becomes

zero when the perfect match.

The KL(Qφ(z∣x)∣∣Pθ(z) term is not analytically formed for computation. In practice, we assume

both Qφ(z∣x) and Pθ(z) are two Gaussian distributions. Then the problem becomes a density estimation to

infer the Gaussian parameters. Neural networks can be viewed as a powerful function approximator, therefore

we can combine a simple distribution with a learned neural network to emulate an arbitrary distribution.

Therefore, the prior distribution could be set as N (0, I), where I is the identity matrix. For each

latent Gaussian, the latent dimension could be in k dimension. To simplify the assumption, VAE assumes that

each latent dimension is independent, where the covariance matrix is a diagonal matrix.

Therefore, the KL-divergence between two multivariate Gaussian distributions can be computed in
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closed form as follows:

KL[Qφ(z∣x)∣∣Pθ(z)] = ∫ qφ(z∣x)(log pθ(z) − log qφ(z∣x))dz

= 1

2
ΣJj=1(1 + log((σj)2) − (µj)2 − (σj)2) (2.17)

where written in matrix form as follows:

KL[N (µ(x),Σ(x))∣∣N (0, I)] = 1

2
(tr(Σ(x) + (µ(x))⊺(µ(x))) − k − log det(Σ(x))) (2.18)

After we have the analytic computation form (Equation 2.18), the loss function in Equation 2.16 can

be iteratively trained via the stochastic gradient descent algorithm. And VAE can fit into the Auto-encoder

framework, where qφ is the encoder and pθ is the decoder.

However, one typical problem in VAE is that the sampling process is non-differentiable. To overcome

the gradient estimation issue, [67] introduces a reparameterization trick: converting the sampling process to a

differentiable operator as follows:

z = µ(x) + ε ∗Σ(x) where ε ∼ N (0, I) (2.19)

Equation 2.19 is equivalent to z ∼ N (µ(x),Σ(x)) and is widely used for continuous random

variables. In the case of categorical distribution, Gumbel-softmax [62] can be adopted, which shares a similar

idea as continuous variables. Assuming that each categorical variable probability is πi, to draw the sample z,

the reparameterization trick becomes:

z = one_hot (arg max
i

[gi + logπi]) (2.20)

where gi is the noise gi ∼ Gumbel (0,1). Then, the VAE is fully differentiable in both continuous

variables and discrete variables, and thereby could be directly trained based on the backpropagation algorithm.
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2.2.3 Generative Adversarial Learning

VAE is an explicit density estimation where the latent distribution is a Gaussian distribution. Gen-

erative adversarial network (GAN) [45] is a recently proposed implicit density estimation method. Unlike

the variational inference, which uses another distribution (ex: Gaussian) to approximate the posterior, GAN

does not contain any explicit probability distributions, but instead, using one neural network to mimic any data

distribution while another one to evaluate the distribution quality. The generator defines a process to simulate

data and does not require tractable densities.

Figure 2.6: Generative Adversarial Network model

As shown in Figure 2.6, the GAN model consists of two neural networks: generator and discriminator.

The input to the generator is from a simple prior, which could be a high dimensional vector generated from a

random uniform distribution. To evaluate the generated samples, instead of using likelihood to evaluate the

generator, GAN utilizes another neural network (discriminator) to measure how good the sample is. This

becomes a two player game for implicit density estimation, where two networks are optimizing opposite

objectives. The overall loss function is:

min
G

max
D

V (D,G) (2.21)

where:

V (D,G) = Ex∼pdata(x)[logD(x; θD)] +Ez∼pz(z)[log(1 −D(G(z; θG); θD))] (2.22)

pz(z) is the prior distribution, which could be set as N (0, I). Equation 2.22 is a standard binary

cross entropy loss when training a standard binary classifier with a sigmoid output. However, compared with
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conventional classifier, the framework takes two minibatches of data where one is from the true distribution

and the other one is from the generator. The intuition is that the discriminator tries to distinguish between the

real data and generated one, whereas the generator tries to fool the discriminator that it cannot distinguish

between them. The cost used for the discriminator is:

J(D)(θD, θG) = −1

2
Ex∼pdata(x)[logD(x; θD)] − 1

2
Ez∼pz(z)[log(1 −D(G(z; θG); θD))] (2.23)

The generator and discriminator are parameterized through θG and θD. During the training phase,

the generator and discriminator are learned iteratively. At each step, a minibatch of x values from the true

dataset and a minibatch of a z values drawn from the generator’s prior over latent variables are sampled, and

then two stochastic gradient descent (SGD) steps are applied: one updating θD by minimizing J(D) and the

other updating θG by maximizing J(D).

However, the Equation 2.23 is mainly used for theoretical analysis. In practical applications, the

gradient of the generator could quickly vanish when the discriminator rejects the fake samples. One common

improvement modifies the generator loss function as follows:

J(G) = −1

2
Ez∼pz(z)[logD(G(z; θG); θD)] (2.24)

A further improvement is to do maximum likelihood learning with GANs in practice as follows:

J(G) = −1

2
Ez∼pz(z)[eσ

−1(D(G(z;θG);θD))] (2.25)

where σ denotes the logistic sigmoid function.

State-of-the-art GAN research [7, 47, 64, 18] mainly focuses on two points: 1) how to produce the

sample as realistic as possible and 2) how to stabilize the GAN training process and also avoid the mode

collapse issue. Mode collapse represents the generator collapses, which produce limited modes and sample

variety. We will discuss state-of-the-art approaches that overcome these drawbacks in Section 4.

Compared with results from VAE, which often produce blurry samples, GAN generates more sharp

and realistic samples. Many researchers believe that the effect comes from the VAE minimizing the asymmetric

divergence (ex: KL divergence) between the data and the model, whereas the GAN minimizes the Jensen-

Shannon (JS) divergence, which is symmetric. Some clues [44] show that even using different divergence,
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the model still encounters the sample quality, training stability, and mode collapse problems. Therefore,

specifically why GAN produces more realistic samples is still not clear to the current research community.

2.3 Reinforcement Learning

Figure 2.7: RL environment settings

Reinforcement learning (RL) is primarily used to solve the sequential decision making problem,

which is also a typical control problem. Compared with supervised learning or unsupervised learning that

collects large amounts of data for training, RL (shown in Figure 2.7) requires an interactive query in the

environment to learn the optimal policy, which is maximizing the accumulated rewards. The learning process

was originally inspired from neuro-psychology.

Unlike conventional control methodology which uses domain knowledge to build a mathematical

model of the system dynamics, RL is a data-driven approach to learn the optimal policy. In the conventional

optimal control, we have:

minEe[ΣTt=1Ct(xt, ut)] (2.26)

s.t. xt+1 = ft(xt, ut, et),

ut = πt(τt)

whereCt(xt, ut) is the user defined cost, ft denotes the state transition function, τt = (u1, ..., ut−1, x0, ..., xt)

represents an observed trajectory, et is the noise process, and πt(τt) is the optimization decision variable.

Typically, the state transition is unknown and the system identification is employed to learn continuous system

dynamics.

In RL settings, the system dynamics lie upon discrete configurations: xt represents state at time t,

23



ut is the action at each step, and Ct(xt, ut) denotes the reward function. Unlike traditional control methods,

which use a model driven approach, RL is a data driven method that learns optimal policy from the data. RL

follows the Markov Decision Process (MDP) or Partially Observable Markov Decision Process (POMDP).

In this research, we mainly focus on problems that are modeled by MDP, therefore we omit discussion of

POMDP.

2.3.1 Markov Decision Process

We consider an environment defined as an MDP < S,A,Ps′,s,a,Rs,a, γ > that contains a set of states

s ∈ S, a set of actions a ∈ A, a reward function Rs,a, and a series of transition probabilities Ps′,s,a, the

probability of moving from the current state s to the next state s′ given an action a. The goal of an MDP is to

find a policy that maximizes the expected return (accumulated rewards):

Rt =
∞
∑
k=0

γkrt+k (2.27)

where rt+k is the immediate reward at the (t + k)th time stamp and γ ∈ (0,1] is the discount rate. A

policy πa,s is the probability of taking action a when in state s. The value of state s under a policy π, vπs , is

the expected return when starting in s and following π; that is, vπs = E[Rt∣St = s]. The value of taking action

a in state s under a policy π, qπ(a)s , is the expected return when starting in s, taking the action a and following

π; that is, qπ(a)s = E[Rt∣St = s,At = a]. A policy is defined as:

π(s) ∶ S → A (2.28)

The value-function is used to estimate how good it is at state st. If the agent uses a given policy π,

the corresponding value-function can be written as:

V π(s) = Eπ[
T−1
∑
k=0

γkrk] (2.29)

Among all possible value-functions, there exists an optimal value function that is higher than others

for all states:

V ∗(s) = max
π

V π(s) (2.30)
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and the optimal policy is:

π∗(s) = arg max
π

V π(s) (2.31)

RL also introduces an additional value function (action-value function) to evaluate at specific state s,

the value of agent applying specific action. The action-value function, also called Q function, is a function of

the state-action paired with real values, where mathematically Q: S ×A→ R. The optimal Q function, which

is defined as Q∗(s, a), has the following relationship with optimal value function V ∗(s):

V ∗(s) = max
a
Q∗(s, a) (2.32)

and is similar to the value function. If we know the optimal Q function, the optimal policy chooses

the action that gives maximum Q∗(s, a):

π∗(s) = arg max
a
Qπ(s, a) (2.33)

2.3.2 Dynamic Programming

The typical way to update the Q function and V function is based on the Bellman Equation, which

uses dynamic programming to recursively update the value function.

Q∗(s, a) = R(s, a) + γ ∑
s′∈S

p(s′∣s, a)V ∗(s′) (2.34)

where:

V ∗(s) = max
a
Q∗(s, a) (2.35)

In summary, for the value-based RL, there is always at least one policy that is better than or equal to

all other policies, called an optimal policy π∗; that is, the optimal policy is π∗ = arg maxπ v
π
s , the optimal

state-value function is v∗s = maxπ v
π
s , and the optimal action-value function is q∗(a)s = maxπ q

π(a)
s . To obtain

π∗ and v∗, we usually consider solving the Equations 2.34 and 2.35.

Policy iteration and Value iteration are two popular dynamic programming algorithms to solve the

Bellman equation in the discrete state space.

Value iteration The algorithm initializes V (s) to random values, then we iteratively compute

vs ←maxa∑s′ Ps′,s,a (Rs,a +γvs′) until the result converges. The algorithm is guaranteed to converge to the
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Algorithm 1 Value Iteration

1: Initialize V (s) with random value
2: repeat
3: for all s ∈ S do
4: for all a ∈ A do
5: Q(s, a)← R(s, a) + γ∑s′∈S p(s′∣s, a)V (s′)
6: end for
7: V (s)←maxaQ(s, a)
8: end for
9: until V (s) converge

optimal values [125] and the algorithm is given in Algorithm 1:

Policy iteration The goal of the agent is to obtain the optimal policy. Therefore, instead of repeatedly

improving the value-function, policy iteration updates policy in each epoch and the value is re-computed upon

the new policy. The policy iteration is also guaranteed to converge to the optimal policy and normally takes

less iteration than the value iteration algorithm. The detailed algorithm in shown in Algorithm 2

Algorithm 2 Policy Iteration

1: Initialize policy π′ randomly
2: repeat
3: π ← π′

4: Improve values:
5: V π(s)← R(s, π(s)) + γ∑s′∈S p(s′∣s, π(s))V π(s′)
6: Improve policy:
7: π′(s)← arg maxa(R(s, a) + γ∑s′∈S p(s′∣s, a)V π(s′))
8: until π = π′

The challenge to use policy iteration and value iteration is that both algorithms assume the agent

knows the environment dynamics (p(s′∣s, a)) beforehand. However, this is often not true in most applications.

One possible approach to this issue is to use system identification, which is similar to traditional control

methods. Another alternative is to use model-free RL techniques. Model-free RL can be categorized as three

types: value-based, policy-based, and actor-critic.

2.3.3 Value-based Model-free RL

Q-learning is to approximate the state-action pairs Q-function from the samples that the agent

observes during the interaction with environment. Since Equation 2.34 still requires the model dynamics

p(s′∣s, a), Q-learning uses the Bellman equation to learn directly the Q values from the data. The update rule
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can be written as:

Q(s, a) = R(s, a) + γmax
a′

Q(s′, a′) (2.36)

Therefore the policy becomes a = arg maxaQ(s, a). Nevertheless, the agent should not greedily

choose the optimal policy at the initial stage, but rather explore the environment. Hence, the ε-greedy algorithm

balances the exploration and exploitation during training. The trade-off between exploration and exploitation

belongs to the study of the bandit problem. We do not discuss the more advanced methods such as the

Thompson Sampling and Upper Confidence Bound (UCB) since they are out of scope of this research.

Deep Q Network (DQN) [88] uses a neural network to approximate the Q function. However, using

a nonlinear approximator for Q-learning does not guarantee convergence. To stabilize the training, DQN

introduces the experience replay buffer and target network. The loss function is defined as:

L(θ) = 1

2
∑
i

∣∣R + γmax
a′

Qθ(s′i, a′i) −Qθ(si, ai)∣∣22 (2.37)

where each < si, ai, s′i, ri > are sampled from the experience replay buffer. The experience replay

buffer collects history policy of the neural network. In other words, the current policy is updated by old policy

or another policy. Then, this is a typical off-policy learning. The experience replay buffer provides better

sample efficiency, that is, the agent repeatedly samples from historical data to correct the current Q function.

Also, the experience replay buffer could be flexible and filled with other policies, for example, the optimal

trajectory or high quality policy.

DQN also introduces the target network. In Equation 2.37, the term R + γmax′aQθ(s′i, a′i) shifts in

every iteration, which falls into the feedback loop between the target and estimated Q-value. In other words,

the value estimations can easily spiral out of control. The target network employs the second Q network that

fixes the network’s weights and only periodically or slowly updates it from the primary Q-network. Therefore,

the new loss function can be written as:

L(θ) = 1

2
∑
i

∣∣R + γmax
a′

Qθ̂(s
′
i, a

′
i) −Qθ(si, ai)∣∣22 (2.38)

where Qθ̂ denotes the target network. More recent proposed extensions are discussed in Chapter 4.
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2.3.4 Policy Optimization

In the policy gradient approach, instead of using the value function to estimate expected returns from

some policy, the agent directly uses the function approximator to map input state to action. Recall that the

goal of RL is maxEπ[R], where R = r0 + r1 + ... + rT−1, the agent must solve the gradient of the objectives.

Consider a general expectation Ex∼p(x∣θ)[f(x)], the gradient is:

∇θL(θ) = ∇θEx∼p(x∣θ)[f(x)]

= ∇θ ∫ p(x∣θ)f(x)dx

= ∫ ∇θp(x∣θ)f(x)dx

= ∫ p(x∣θ)∇θp(x∣θ)
p(x∣θ) f(x)dx

= ∫ p(x∣θ)∇θ log p(x∣θ)f(x)dx

= Ex∼p(x∣θ)[∇θ log p(x∣θ)f(x)] (2.39)

we replace the f(x) to be the accumulated rewardsR, and p(x∣θ) to be the policy network π(at∣st, θ).

Then, the policy gradient can be written as:

∇θEπ[R] = Eπ[
T−1
∑
t=0

∇θ logπ(at∣st, θ)
T−1
∑
t′=t

γt
′−trt′] (2.40)

Equation 2.40 is the famous REINFORCE algorithm [126]. However, the vanilla REINFORCE is

a high variance and unbiased gradient estimator, which could take many long iterations for the algorithm to

converge. One typical approach is to add the baseline term b(s) = E[rt + γrt+1 + γ2rt+2... + γT−1−trT−1] as:

∇θEπ[R] = Eπ[
T−1
∑
t=0

∇θ logπ(at∣st, θ)(
T−1
∑
t′=t

γt
′−trt′ − b(st))] (2.41)

since expectation of b(s) is also unbiased, that is Eπ[∑T−1t=0 ∇θ logπ(at∣st, θ)b(s)] = 0, the conclu-

sion is easy to prove and thereby we omit it here. For simplicity, the term Ât = (Rt − b(st)) is also called the

advantage function, where Rt = ∑T−1t′=t γ
t′−trt′ and Equation 2.41 can be written as:

∇θEπ[R] = Eπ[
T−1
∑
t=0

∇θ logπ(at∣st, θ)Ât] (2.42)
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Equation 2.42 is the standard policy gradient optimization objective function in current RL. We will

discuss recently proposed and more advanced algorithms in Chapter 4

2.3.5 Actor-Critic Model-free RL

Actor-Critic combines the idea of value-based and policy gradient: instead of using high variance

accumulated return in each episode, Actor-Critic uses the value function to represent the advantage function,

which can be written as:

∇θEπ[R] = Eπ[
T−1
∑
t=0

∇θ logπ(at∣st, θ)Q(s, a)] (2.43)

The Q(s, a) can be updated via MSE in DQN (Equation 2.38). However, Equation 2.43 offers

low variance biased gradient estimation. To reduce the bias, Actor-Critic adds an extra baseline function,

which commonly chooses the value function V (s). Therefore, the advantage function becomes A(s, a) =

Q(s, a) − V (s), training in a temporal difference (TD) way. Nevertheless, the new advantage function still

requires two additional networks to represent Q value and V value. On the other hand, the true value function

V (s) is an unbiased estimate of the advantage function, and we define TD error as: δπ:

δπ = r + γV π(s′) − V π(s) (2.44)

Since Eπ[δπ ∣s, a] = Qπ(s, a) − V π(s) = Aπ(s, a), the standard Actor-Critic algorithm updates the

policy gradient by:

∇θEπ[R] = Eπ[
T−1
∑
t=0

∇θ logπ(at∣st, θ)δπ] (2.45)

Similar to Q learning, the value network V (s) is also trained with regression based on MSE loss.

Assuming the value network is parameterized by ψ, the loss function for value network is:

L(ψ) = 1

2
∣∣r + γVψ̂(s

′) − Vψ(s)∣∣22 (2.46)

Equation 2.45 and Equation 2.46 together defined the Actor-Critic algorithm. Since πθ and Vψ are

fully differentiable neural networks, the agent could be easily trained with the backpropagation algorithm.
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2.4 Graph Convolutional Neural Network

A graph embedding is a collection of feature vectors associated with nodes in a graph; each feature

vector describes the overall role of the corresponding node. Through a graph embedding, we are able to

visualize a graph in a 2D/3D space and transform problems from a non-Euclidean space to a Euclidean space,

where numerous machine learning and data mining tools can be applied. The applications of graph embedding

include graph visualization [54], graph clustering [141], node classification [111, 151], link prediction [79, 8],

recommendation [148], anomaly detection [4], and many others.

Graph Convolutional Neural Networks (GCNNs) are a new recently proposed approach that introduces

neural networks into graph embedding problems. The goal of GCNN is to learn a function of features

G = (V,E) that takes input from node features xi and the adjacency matrix A, producing new synthesized

feature representations H for each node. The final graph representation H could be used for any tasks such as

clustering, community detection, and others.

Unlike images, which can be viewed as a lattice graph, a typical graph such as social network might

have a varying number of neighbors. Hence, the graph filter is difficult to share among neighbors. [68] is one

typical GCNN model that uses a layer-wise propagation rule, which is used in Section 3.1.2. For each layer:

f(H(l),A) = σ (D̂− 1
2 ÂD̂− 1

2H(l)W (l)) (2.47)

where Â = A + I , I denotes the identity matrix, D̂ is the diagonal node degree matrix of Â, σ

represents the neural network activation function, and W (l) is the parameter in l-th layer. Note that the entire

propagation rule is also fully differentiable, which can be trained by backpropagation.

2.5 Summary

In this chapter, we have reviewed basic Machine Learning techniques relevant to this research from

a general optimization view. We also discussed the deep generative model, specifically VAE and GAN that

learns the data distribution by employing a neural network. Additionally, we have described the concept of

RL and listed several key RL algorithms including model-free RL and planning. Finally, we briefly reviewed

graph embedding and the GCNN concept, a typical GCNN approach is also discussed. The proposed research

in Section 3.1 requires backgrounds on planning, RL and GCNN; the prerequisit of Section 3.2 is Machine

Learning basics and graph embedding; Section 3.3 uses the background knowledge of the deep generative
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model.
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Chapter 3

Research Design and Methods

In this chapter, we present our research design and methods. First we introduce the Generalized

Value Iteration Network (GVIN) [92], which is a differentiable planning module on graph; GVIN relies on

graph embedding as vertices features. To learn the low dimensional dense vertices features, we propose

WarpMap [23], which is an unified framework for graph embedding. Finally, to resolve the domain transfer

in reinforcement learning environment, we demonstrate feature alignment for visual based state input that

leverages the agent transfer knowledge from the simulator environment to the real world. The corresponding

results are presented in Chapter 5.

3.1 Generalized Value Iteration Network

To create GVIN, we generalize VIN in two aspects. First, to work for irregular graphs, we propose

a graph convolution operator that generalizes the original 2D convolution operator. With the new graph

convolution operator, the proposed network captures the basic concepts in spatial graphs, such as direction,

distance and edge weight. It also is able to transfer knowledge learned from one graph to others. Second, to

improve reinforcement learning on irregular graphs, we propose a reinforcement learning algorithm, episodic

Q-learning, which stabilizes the training for VIN and GVIN. The original VIN is trained through either

imitation learning, which requires a large number of ground-truth labels, or reinforcement learning, whose

performance is relatively poor. With the proposed episodic Q-learning, the new network performs significantly

better than VIN in the reinforcement learning mode. Since the proposed network generalizes the original VIN

model, we call it the generalized value iteration network (GVIN).
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GVIN takes a general graph with a starting node and a goal node as inputs and outputs the designed

plan. The goal of GVIN is to learn an underlying MDP that summarizes the optimal planning policy applied

for arbitrary graphs, which requires GVIN to capture general knowledge about planning, that is structure

and transition invariant. A key component of an MDP is the transition matrix, which is needed to solve the

Bellman equation. To train a general transition matrix that works for arbitrary graphs, similar to the VIN [128],

we treat it as a graph convolution operator and parameterize it by using graph-based kernel functions, each

of which represents a unique action pattern. We train the parameters in GVIN by using episodic Q-learning,

which makes reinforcement learning on irregular graphs practical.

Figure 3.1: Architecture of GVIN. The left module emulates value iteration and obtains the state values; the
right module is responsible for selecting an action based on an ε-greedy policy (for training) or a greed policy
(for testing). We emphasize our contributions, including graph convolution operator and episodic Q-learning,
in the blue blocks.

3.1.1 GVIN Framework

The input of GVIN is a graph with a starting node and a goal node. In the training phase, GVIN trains

the parameters by trial-and-error on various graphs. During the testing phase, GVIN plans the optimal path

based on the trained parameters. The framework includes the planning module (left) and the action module

(right), shown in Figure 3.1. The planning module emulates value iteration by iteratively operating the graph

convolution and max-pooling. The action module takes the greedy action according to the value function.

Mathematically, we consider a directed, weighted spatial graph G = (V,X,E ,A), where V =

{v1, ..., vN} is the node set, X ∈RN×2 are the node embeddings with the ith row Xi ∈R2 being the embedding

of the ith node (here we consider 2D spatial graphs, but the method is generalizable), E = {e1, ..., eM} is the
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edge set, and A ∈ RN×N is the adjacency matrix, with the (i, j)th element Ai,j representing the edge weight

between the ith and jth nodes. We consider a graph signal as a mapping from the nodes to real values. We

use a graph signal g ∈ {0,1}N to encode the goal node, where g is one-sparse and only activates the goal

node. Let r ∈ RN , v ∈ RN , and q ∈ RN be the reward graph signal, the state-value graph signal, and the

action-value graph signal, respectively. We represent the entire process in a matrix-vector form as follows,

r = fR(g;wr), (3.1)

P(a) = fP (G;wP(a)), (3.2)

q
(a)
n+1 = P(a) (r + γvn) , (3.3)

vn+1 = max
a

q
(a)
n+1. (3.4)

In the feature extraction step, Equation (3.1), g is encoded to become the robust reward r via the

feature-extract function fR(⋅), which is a convolutional neural network in the case of regular graphs, but is the

identity function when operating on irregular graphs. In Equation (3.2), where P(a) is the graph convolution

operator in the ath channel, a set of graph convolution operators is trained based on the graph G, which is

further described in Section 3.1.2; in (3.3) and (3.4), the value iteration is emulated by using graph convolution

to obtain the action-value graph signal q(a) in the ath channel and max-pooling to obtain the state-value graph

signal v. The training parameters wr and wP(a) are used to parameterize r and P(a), respectively. As shown

in Figure 3.1, we repeat the graph convolution operation Equation (3.3) and max-pooling Equation (3.4) for K

iterations to obtain the final state-value graph signal v̂. When G is a 2D lattice, the planning module of GVIN

degenerates to VIN.

In the training phase, we feed the final state-value graph signal v̂ to the action module. The original

VIN extracts the action values from Equation (3.3) and trains the final action probabilities for eight directions.

However, this is problematic for irregular graphs, as the number of actions (neighbors) at each node varies.

To solve this, we consider converting v̂ to a pseudo action-value graph signal, q̂ ∈RN , whose sth element is

q̂s = maxs′∈Nei(s) v̂s′ , representing the action value moving from s to one of its neighbors. The advantages

of this approach come from the following three aspects: (1) the final state value of each node is obtained by

using the maximum action values across all the channels, which is robust to small variations; (2) the pseudo

action-value graph signal considers a unique action for each node and does not depend on the number of

actions; that is, at each node, the agent queries the state values of its neighbors and always moves to the one

with the highest value; and (3) the pseudo action-value graph signal considers local graph structure, because
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the next state is always chosen from one of the neighbors of the current state.

The pseudo action-value graph signal is used through episodic Q-learning, which learns from trial-

and-error experience and backpropagates to update all of the training parameters. In episodic Q-learning,

each episode is obtained as follows: for each given starting node s0, the agent will move sequentially from

st to st+1 by the ε-greedy strategy; that is, with probability (1 − ε), st+1 = arg maxs′∈Nei(st) v̂s′ and with

probability ε, st+1 is randomly selected from one of the neighbors of st. An episode terminates when st+1 is

the goal state or the maximum step threshold is reached. For each episode, we consider the loss function as,

L(w) = ∑Tt=1 (Rt − q̂st)
2
, where q̂st is a function of the training parameters w = [wr,wP(a)] in GVIN, T is

the episode length and Rt is the expected return at time stamp t, defined as Rt = (rt+1 + γRt+1), where γ is

the discount factor, and rt is the immediate return at time stamp t. Additional details of the algorithm will be

discussed in Section 3.1.3. In the testing phase, we obtain the action by greedily selecting the maximal state

value as shown in Equation (3.5)

st+1 = arg max
s′∈Nei(st)

v̂s′ (3.5)

3.1.2 Graph Convolution

The conventional CNN takes an image as input, which is a 2D lattice graph. Each node is a pixel and

has the same local structure, sitting on a grid and connecting to its eight neighbors. In this case, the convolution

operator is easy to obtain. In irregular graphs, however, nodes form diverse local structures, making it

challenging to obtain a structured and translation invariant operator that transfers knowledge from one graph

to another. The fundamental problem here is to find a convolution operator that works for arbitrary local

structures. We solve this through learning a 2D spatial kernel function that provides a transition probability

distribution in the 2D space and we evaluate the weight of each edge to obtain a graph convolution operator.

The 2D spatial kernel function assigns a value to each position in the 2D space, which reflects the

possibility to transit to the corresponding position. Mathematically, the transition probability from a starting

position x ∈R2 to another position y ∈R2 is K(x,y), where K(⋅, ⋅) is a 2D spatial kernel function, which is

specified in Definition 1 below.

Definition 1. A 2D spatial kernel functionK(⋅, ⋅) is shift invariant when it satisfiesK(x,y) =K(x+t,y+t),

for all x,y, t ∈R2.

The shift invariance requires that the transition probability depends on the relative position, which is
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the key for transfer learning. In other words, no matter where the starting position is, the transition probability

distribution is invariant. Based on a shift-invariant 2D spatial kernel function and the graph adjacency

matrix, we obtain the graph convolution operator P = fP (G;wP) ∈RN×N , where each element is defined as

Pi,j = Ai,j ⋅KwP
(Xi,Xj), where the kernel function KwP

(⋅, ⋅) is parameterized by wP, and Xi,Xj ∈R2 are

the embeddings of the ith and jth node. The graph convolution operator follows from (1) graph connectivity

and (2) 2D spatial kernel function. With the shift-invariant property, the 2D spatial kernel function leads to the

same local transition distribution at each node such that the graph adjacency matrix works as a modulator to

select activations in the graph convolution operator. When there is no edge between i and j, we have Ai,j = 0

and Pi,j = 0; when there is an edge between i and j, Pi,j is high when KwP
(Xi,Xj) is high. In other words,

when the transition probability from the ith node to the jth node is higher, the edge weight Pi,j is high and

the influence from the ith node to the jth node is larger during the graph convolution. Note that P is a sparse

matrix and its sparsity pattern is the same with its corresponding adjacency matrix, which ensures cheap

computation.

As shown in Equation (3.2), the graph convolution is a matrix-vector multiplication between the graph

convolution operator P and the graph signal r + γvn (see Figure 3.2). Note that when we work with a lattice

graph and an appropriate kernel function, this graph convolution operator P is simply a matrix representation

of the conventional convolution [75]; in other words, VIN is a special case of GVIN when the underlying

graph is a 2D lattice.

We consider three types of shift-invariant 2D spatial kernel functions: the directional kernel, the

spatial kernel, and the embedding kernel.

Figure 3.2: Matrix-vector multiplication as graph convolution. Through a graph convolution operator P,
r + γv diffuses over the graph to obtain the action-value graph signal q.
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Directional Kernel. We first consider direction. When we face several roads at an intersection, it

is straightforward to pick the one whose direction points to the goal. We aim to use the directional kernel to

capture edge direction and parameterize the graph convolution operation.

The (i, j)th element in the graph convolution operator models the probability of following the edge

from i to j ; that is,

Pi,j = Ai,j ⋅
L

∑
`=1

w`K
(t,θ`)
d (θij) ,

where K
(t,θ`)
d (θ) = (1 + cos(θ − θ`)

2
)
t

,

(3.6)

where w` is the kernel coefficient, θij is the direction of the edge connecting the ith and thejth nodes, which

can be computed through the node embeddings Xi ∈R2 and Xj ∈R2, and K(t,θ`)
d (θ) is the directional kernel

with order t and reference direction θ`, reflecting the center of the activation. The hyperparameters include

the number of directional kernels L and the order t, reflecting the directional resolution (a larger t indicates

more focus in one direction, see Figure 3.3). The kernel coefficient w` and the reference direction θ` are the

training parameters, which is wP in Equation (3.2). Note that the graph convolution operator P ∈RN×N is a

sparse matrix and its sparsity pattern matches the input adjacency matrix, which ensures that the computation

is cheap.

(a) t = 5 (b) t = 100

Figure 3.3: The directional kernel function activates the areas around the reference direction θ` in the 2D
spatial domain. The activated area is more concentrated when t increases.

The intuition behind Equation (3.6) is that each graph convolution operator represents a unique

direction pattern. An edge is a 2D vector sampled from the 2D spatial plane. When the direction of the edge

connecting i and j matches one or some of the L reference directions, we have a higher probability to follow

the edge from i to j. In GVIN, we consider several channels. In each channel, we obtain an action value for

each node, which represents the matching coefficient of a direction pattern. The max-pooling operation then

selects the best available matching direction pattern for each node.
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Spatial Kernel. We next consider both direction and distance. When all of the roads at the current

intersection are in the opposite of the goal, it is straightforward to try the shortest one first. We thus include

the edge length into the consideration. The (i, j)th element in the graph convolution operator is then,

Pi,j = Ai,j ⋅
L

∑
`=1

w`K
(d`,t,θ`)
s (dij , θij) ,

where K(d`,t,θ`)
s (d, θ) = I∣d−d`∣≤ε (

1 + cos(θ − θ`)
2

)
t

,

(3.7)

where dij is the distance between the ith and the jth nodes, which can be computed through the node

embeddings Xi ∈ R2 and Xj ∈ R2, K(d`,t,θ`)
s (d, θ) is the spatial kernel with reference distance d` and

reference direction θ`, and the indicator function I∣d−d`∣≤ε = 1 when ∣d − d`∣ ≤ ε and 0, otherwise. The

hyperparameters include the number of directional kernels L, the order t, the reference distance d`, and the

distance threshold ε. The kernel coefficient w` and the reference direction θ` are training parameters, which is

wP in Equation (3.2).

(a) t = 5. (b) t = 100.

Figure 3.4: The spatial kernel function activates the areas around the reference direction θ` and reference
distance d` in the 2D spatial domain.

Compared to the directional kernel, the spatial kernel adds the distance as extra dimension of

information (see Figure 3.4); in other words, the directional kernel is a special case of the spatial kernel when

we ignore the distance. Each spatial kernel activates a localized area in the direction-distance plane. With

the spatial kernel, the graph convolution operator in Equation (3.7) represents a unique direction-distance

pattern; that is, if the direction/distance of the edge connecting i and j matches one or some of the L reference

directions and distances, we have a higher probability to follow the edge from i to j.

Embedding-based Kernel. In the directional and spatial kernels, we manually design the kernel and

provides hints to GVIN to learn useful direction-distance patterns. Now with the embedding-based kernel we

directly feed the node embeddings and allow GVIN to automatically learn implicit hidden factors for general
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planning. The (i, j)th element in the graph convolution operator is then,

Pi,j = (Ii=j +Ai,j)√
∑k(1 +Ak,j)∑k(1 +Ai,k)

⋅Kemb (Xi,Xj) , (3.8)

where the indicator function Ii=j = 1 when i = j, and 0, otherwise, and the embedding-based kernel function

is Kemb (Xi,Xj) = mnnet ( [Aij ,Xi −Xj ]), where mnnet(⋅) is a standard multi-layer neural network. The

training parameters wP in Equation (3.2) are the weights in the multi-layer neural network. Note that the

graph convolution operator P ∈RN×N is still a sparse matrix and its sparsity pattern matches that of the input

adjacency matrix plus the identity matrix.

In the directional kernel and spatial kernel, we implicitly discretize the space based on the reference

direction and distance; that is, for each input pair of given direction and distance, the kernel function outputs

the response based on its closed reference direction and distance. In the embedding-based kernel, we do not

set the reference direction and distance to discretize the space; instead, we use the multi-layer neural network

to directly regress from an arbitrary edge (with edge weight and embedding representation) to a response value.

The embedding-based kernel is thus more flexible than the directional kernel and spatial kernel and may learn

hidden factors.

Theorem 1. The proposed three kernel functions, the directional kernel, the spatial kernel and the embedding-

based kernel, are shift invariant.

The proof follows from the fact that those kernels use only the direction, distance, and the difference

between two node embeddings, which only depends on the relative position.

3.1.3 Training via Reinforcement Learning

We train GVIN through episodic Q-learning, a modified version of n-step Q-learning. The difference

between episodic Q-learning and the n-step Q-learning is that the n-step Q-learning has a fixed episode

duration and updates the training weights after n steps. In episodic Q-learning, each episodic terminates when

the agent reaches the goal or the maximum step threshold is reached and we update the trainable weights after

the entire episode. During experiments, we found that for both regular and irregular graphs, the policy planned

by the original Q-learning keeps changing and does not converge due to the frequent updates. Similar to the

Monte Carlo algorithms [124], episodic Q-learning first selects actions by using its exploration policy until

the goal is reached. Afterwards, we accumulate the gradients during the entire episode and then update the
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trainable weights, allowing the agent to use a stable plan to complete an entire episode. This simple change

greatly improves the performance (see Section 5.1.1). The pseudocode for the algorithm is presented in

Algorithm 3 (Section 3.1.4).

Recall original Deep Q-learning, the agent follows MDP introduced in Chapter 2, and the goal is to

maximize the total expected discounted reward:

Gt = Est,at,rt[
T

∑
t=0
γtrt]. (3.9)

Where the expectation is over policy π(at∣st) with unknown environment dynamics st+1 ∼ p(st+1∣st, at),

discount factor γ, and rewards function rt ∼ r(st, at). To effectively learn a policy, DQN uses the history

trajectory data to estimate Q-function Q(s, a), where it follows Bellman equations which is sufficient to obtain

optimal Q∗:

Q∗(st, at) = r(st, at) + γEst+1∼p(st+1∣st,at)[ max
at+1∈A

Q(st+1, at+1)] (3.10)

Then, the optimal policy is defined as π(at∣st) = arg maxat∈AQ(st, at). To update the Q(st, at)

value, normally DQN uses a neural network as a nonlinear function approximator to represent the Q value.

The update rule is defined as:

Q(st, at)←Ð Q(st, at) + α(r(st, at) + γ max
at+1∈A

Q(st+1, at+1) −Q(st, at)) (3.11)

where α is the learning rate. We can re-write Equation 3.11 as a loss function by using gradient descent to

update the parameters as:

Lθ = Est,at[(r(st, at) + γEst+1∼p(st+1∣st,at) max
at+1

Q(st+1, at+1) −Q(st, at))
2] (3.12)

By using training set sampled from the experience replay buffer [88], the gradient is:

∂L
∂θ

= (rt + γmax
at+1

Q(st+1, at+1) −Q(st, at))
∂Q(st, at; θ)

∂θ
(3.13)

The original DQN uses Temporal Difference learning (TD(0)), that is training network parameters

in every step. In each step, the agent samples the trajectory from the experience replay buffer [88], updating

the network parameters via Equation 3.12. [86] proposed asynchronous n-step Q-learning. Similar to
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Asynchronous Advantage Actor Critic (A3C) algorithm, the n-step Q-learning use multiple asynchronous

threads to run different policy on each corresponding environment, then it becomes on-policy since it avoids

using experience replay buffer to sample the low quality policy at the initial training stage.

3.1.4 Episodic Q-learning

In GVIN, we train the agent in an episodic way to stabilize the training process, which is similar to

Monte Carlo control (ex: REINFORCE). We highlight the differences between episodic Q-learning and the

original n-step Q-learning in blue, including the initial expected return, the termination condition, and the

timing of updating the gradient.

Algorithm 3 Episodic Q-learning

1: input graph G and the goal sg
2: initialize global step counter T = 0
3: initialize GVIN parameters w = [wr,wP(a)]
4: initialize parameter gradients ∆w
5: repeat (one episode)
6: clear gradients ∆w ← 0
7: t = 0
8: randomly pick a start node st
9: repeat (one action)

10: take action at according to the ε-greedy policy based on q
(a)
st

11: receive reward rt and new state st+1
12: t← t + 1
13: until terminal st = sg or t > tmax

14: R = 0
15: for i = t ∶ −1 ∶ 0 do
16: R ← ri + γR
17: accumulate gradients wrt w ∶ ∆w ←∆w + ∂(R−q(a)st )2

∂w
18: end for
19: w ←w −∆w
20: T = T + 1
21: until T > Tmax

3.1.5 Computational Complexity

Let the input graph G have ∣V ∣ nodes and ∣E ∣ edges. In the testing phase, since the input graph is

commonly sparse, the computational complexities of (3.1), (3.3), and (3.4) are O(∣V ∣), O(∣E ∣), and O(∣V ∣)

based on sparse computation, respectively. Therefore, the total computational complexity is O(∣V ∣ +K(∣E ∣ +

∣V ∣)), where K is number of iterations. For a spatial graph, the number of edges is usually proportional to the
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number of nodes; thus the computational complexity is O(K ∣V ∣), which is scalable to large graphs.

3.1.6 Connections Between GVIN and Graph Convolutional Neural Network

Here we highlight the relation between GVIN and GCNN [9] which is recently proposed. GCNN

defined as 3-tuple G = (u,V,E) is a new type of neural network architecture that follows graph input/output

interface. The general GCNN block consists of update function φ and aggregation function ρ for edges

E, vertices V and global variables u, respectively. In GVIN, the architecture can be decomposed as graph

convolution operator and kernel functions, where graph convolution operator can be viewed as aggregation

function ρ, and kernel function could be viewed as update function φ. Since GVIN does not contain any global

variables and edge embeddings, GVIN is a special case of the GCNN.

Current GCNN are widely used in the inference problem [147]. GVIN, which is a subset configuration

of GCNN, bridges the gap between control problem and inference, showing that planning problem has

equivalence to inference problem. This conclusion has also been derived by [77], and our GVIN verify the

findings empirically. The conclusion potentially push Machine Learning community to rethink a general

framework for both control tasks and inference tasks. Additionally, the employment of GCNN leverages auto

differentiable system such as neural network to classical inference methodologies.

3.2 Unified Framework for Graph Embeddings

One question not answered from GVIN is, "where does the graph embedding come from?" In this

subsection, we proposed a unified framework for graph embedding.

A desirable graph embedding algorithm should (1) work for various types of graphs, including

directed, undirected, weighted, unweighted, and bipartite; (2) preserve the symmetry between the graph node

domain and the graph embedding domain; that is, when two nodes are close/far away in the graph node domain,

their corresponding embeddings are close/far away in the graph embedding domain; (3) be scalable to large

graphs; and (4) be interpretable, that is, we understand the role of each building block in the graph embedding

algorithm. On the heels of these outstanding contributions, can we ask:

Q1. Which factor in the previous embeddings matters?

Q2. Can we find an even better embedding?

Q3. Can we summarize the design of graph embedding in a unifying framework?

To answer the first question, we propose a unifying graph embedding framework, called Graph EMbedding
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GEM-F LapEigs [10] DiffMaps [27] LINE [131] DeepWalk [97] node2vec [46] GrapRep [21] WarpMap

Loss d(⋅, ⋅) Frobenius Frobenius KL KL KL Frobenius Frobenius
Proximity h(⋅) Laplacian transition transition FST FSMT FST FST
Warping g(⋅) linear linear sigmoid exponential exponential exponential exponential

Closed form " " " "

High-order " " " " " "

Warped " " " " "

Explanation " " "

Scability " " " "

Table 3.1: Unifying power of GEM-F. Many graph embeddings, including LapEigs, DiffMaps, LINE,
DeepWalk, node2vec, GrapRep are specific cases. WarpMap wins the competition.

Framework (GEM-F), which decomposes a graph embedding algorithm into three building blocks: node

proximity function, warping function, and loss function. GEM-F clarifies the functionality of each building

block and subsumes many previous graph embedding algorithms as special cases. Based on GEM-F, we

distinguish previous embedding designs. To answer the second question, based on the insights GEM-F brings

and extensive experimental validations, we propose a graph embedding algorithm, WarpMap, which inherits

advantages of previous algorithms; it is general enough to handle diverse types of graphs, has a closed-form

solution, and is interpretable. To answer the third question, we propose a scalable version of WarpMap, which

performs 6 times faster than DeepWalk.

Let G = (V,E ,A) be a directed and weighted graph, where V = {vi}Ni=1 is the set of nodes, E is

the set of weighted edges, and A ∈RN×N is the weighted adjacency matrix1, whose element Ai,j measures

the direct relation between the ith and jth nodes. Let D ∈ RN×N be a diagonal degree matrix, where

Di,i = ∑j∈V Ai,j . To represent the pairwise node proximity in the graph node domain, we define a proximity

matrix as Π = h(A) ∈RN×N , where A is the adjacency matrix and h(⋅) is a node proximity function we will

discuss in Section 3.2.1.

Here we answer the first question, by providing a unifying framework, and showing that all the

above algorithms are special cases. Later, we answer the second question, proposing WarpMap, which ties or

outperforms top competitors on accuracy and is up to 6 times faster.

Let F, F̂ ∈RN×K(K ≪ N) be a pair of dual embedding matrices with their ith rows, fi, f̂i ∈RK , the

hidden features of the ith node. F and F̂ capture in-edge and out-edge behaviors, respectively. The final graph

embedding is a concatenation of these two. In the graph embedding domain, we use the inner product of fi and

f̂j to capture the pairwise proximity between the ith node and jth nodes, that is, we define g(F F̂
T ) ∈RN×N

1The proposed framework and algorithm can be easily extended to bipartite graphs.
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as the proximity matrix in the graph embedding domain. The (i, j)th element g(fTi f̂j) measures the proximity

between the ith and jth nodes in the graph embedding domain, with the warping function g(⋅), a predesigned

element-wise monotonically increasing function, which we will discuss further in Section 3.2.2.

Our goal is to find a pair of low-dimensional graph embeddings such that the node proximities in both

domains are close, that is, Πi,j is close to g(fTi f̂j) for each pair of i, j. We thus consider a general formulation,

GEM-F, as

F∗, F̂
∗ = arg min

F,F̂∈RN×K
d(h(A), g(F F̂

T )), (3.14)

where d(⋅, ⋅) is a loss function that measures the difference; we discuss it further in Section 3.2.3. g(F F̂
T ) is

generated from a low-dimensional space as F∗, F̂
∗ ∈ RN×K , which is used to approximate an input Π. We

minimize the loss function (3.14) to control the approximation error. GEM-F involves the following three

important building blocks, denoted by GEM-F[h(⋅), g(⋅), d(⋅, ⋅)]:

• node proximity function h(⋅) ∶RN×N →RN×N ;

• warping function g(⋅) ∶R→R (when g(⋅) applies to a matrix, it is element-wise); and

• loss function d(⋅, ⋅) ∶RN×N ×RN×N →R.

The general framework GEM-F makes it clear that all information comes from the graph adjacency

matrix A. Based on the properties of graphs, we adaptively choose three building blocks and solve the

corresponding optimization problem to obtain a desirable graph embedding. We consider GEM-F at a general

and abstract level to demystify the constitution of a graph embedding algorithm and analyze the function of

each building block.

3.2.1 Node Proximity Function h(⋅)

The proximity matrix is a function of the adjacency matrix, Π = h(A); in other words, all information

comes from given pairwise connections. The node proximity function extracts useful features and removes

useless noise for subsequent analysis; for example, the node proximity function can normalize the effect from

hubs and capture the high-order proximity information. The node proximity function is implicitly used in

DeepWalk and node2vec, where the proximity matrix is obtained via random-walk simulation. We consider an

explicit matrix form, so that we are able to analyze the asymptotic behavior. We now consider some choices

for the proximity matrix Π.
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1. Laplacian matrix. The Laplacian matrix L ∈RN×N is defined as L = D−A; this is the matrix used in

LapEigs [10].

2. Transition matrix. The transition matrix P ∈ RN×N is defined as P = D−1 A. The element Pi,j is the

transition probability of a random walker at the ith node visiting the jth node in a single step; this is the

matrix used in diffusion maps [27] and LINE [131].

Both the Laplacian matrix and the transition matrix normalize the original adjacency matrix based on

the node degrees, which reduces the effect from hubs.

3. Finite-step transition matrix. The finite-step transition (FST) matrix is defined as a finite-order polyno-

mial in P (transition matrix), Π(L) = ∑L`=1 P`, where L ≥ 1 is a finite number of steps. The FST matrix

models the random walker walking L steps randomly and sequentially. When a random walker starts at

the ith node, the expected number of times to visit the jth node is Π
(L)
i,j ; this is the matrix implicitly

used in DeepWalk [97].

4. Infinite-step transition matrix. The infinite-step transition (IST) matrix is defined as an infinite-order

polynomial in P (transition matrix),

Π(α) =
∞
∑
`=1

α`−1 P` = 1

α
(P − I) ,

where P = (I−αP)−1 and 0 < α < 1. The IST matrix models the random walker stopping after each

step with probability 1 − α. When a random walker starts at the ith node, the expected number of times

to visit the jth node is Π
(α)
i,j ; this is the matrix used in PageRank [17] and personalized PageRank [50].

Both FST and IST matrices consider not only direct relations but high-order, long-range node proximities.

5. Finite-step walk-memory-modulated transition matrix. The finite-step walk-memory-modulated tran-

sition (FSMT) matrix is a generalized version of the FST matrix, which also takes the walk memory

into account. The walk memory factor is introduced in node2vec [46] without an explicit matrix form.

Here we derive its closed form. The walk memory factor records each previous step and influences the

walking direction, leading to a biased random walk, which is a trade-off between breadth-first search
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(BFS) and depth-first search (DFS). The walk memory matrixM ∈RN×N is defined as:

Mi,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/p, i = k;

1, i and k are adjacent;

1/q, geodesic distance between i and k is 2;

0, otherwise.

The walk memory factors p and q control the walking direction: when p is small, the walker tends to do

BFS and when q is small, the walker tends to do DFS. The FSMT matrix is defined as:

Π(L,p,q) = Φ(
L−1
∑
`=0

W`)QT ,

where L ≥ 1 is a finite number of walk length and the initial probability matrix is

Q = [Q1 Q2 ⋯ QN
] ∈ RN×N2

, where Qk ∈ RN×N with (Qk)m,` = Pk,m I(` =m) (P is the

transition matrix and I(⋅) is the indicator function), the merging matrix is Φ = IN ⊗1N ∈ RN×N2

,

where IN ∈ RN×N is an identity matrix, 1N ∈ RN is an all-one vector, and the expanded transition

matrix is

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1,1 W1,2 ⋯ W1,N

W2,1 W2,2 ⋯ W2,N

⋮ ⋮ ⋱ ⋮

WN,1 WN,2 ⋯ WN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈RN
2×N2

,

where Wi,k ∈RN×N whose elements are

(Wi,k)j,` = Ai,kMi,`

∑v Av,kMv,`
I(j = k).

The FSMT matrix is modulated by the walk memory matrixM. When a walk-memory-modulated

random walker starts at the ith node and walks L steps sequentially, the expected number of times

to visit the jth node is Π
(L,p,q)
i,j . When p = q = 1, the FSMT matrix is the FST proximity; that is,

Π(L,1,1) = Π(L). This is the matrix implicitly used in node2vec [46].
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3.2.2 Warping Function g(⋅)

The warping function warps the inner products of graph embeddings and normalizes the distribution

of elements in g(F F̂
T ), providing an appropriate scale to link the proximity matrices in both node and

embedding domains. The warping function is applied element-wise and monotonically increasing.

We here consider the inverse Box-Cox transformation (IBC) as the warping function, defined as:

g(x) = IBC(γ, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 + γx) 1
γ , γ ≠ 0;

exp(x), γ = 0,

where γ measures the nonlinearity. When γ = 1, g(x) = 1 + x; this linear function is used in LapEigs [10],

diffusion maps [27], and the exponential function in SNE [57], DeepWalk [97], and node2vec [46].

3.2.3 Loss Function d(⋅, ⋅)

The loss function quantifies the differences between the proximity matrices in two domains. Since

g(⋅) is monotonic, when the rank of g−1(Π) isK, we can find a pair of F, F̂ ∈RN×K satisfying F F̂
T = g−1(Π)

or g(F F̂
T ) = Π. In this case, any valid loss function d(Π, g(F F̂

T )) should be zero, that is, the problem

does not depend on the choice of loss function. When the rank of g−1(Π) is far-away from K, however, an

appropriate loss function can still be beneficial to the overall performance.

1. KL divergence: We can use the KL-divergence based loss function to quantify the difference between Π

and g(F F̂
T ). To simplify the notation, let Y = g(F F̂

T ) ∈RN×N . We normalize the sum of each row in

both Π and Y to be 1 and use the KL divergence to measure the difference between two corresponding

probability distributions. The total loss between Π and Y is:

dKL(Π,Y) = −∑
i∈V

KL(Πi,∶∣∣Yi,∶)

= −∑
i∈V
∑
j∈V

( Πi,j

∑k Πi,k
) log( Πi,j

∑k Πi,k
/ Yi,j

∑k Yi,k
) ,

where Πi,∶ and Yi,∶ denote the ith rows of Π and Y, respectively. We then solve the following optimiza-

tion problem:

F∗, F̂
∗ = arg min

F,F̂∈RN×K
dKL(Π,Y). (3.15)

We use the gradient descent to optimize (3.15). A stochastic algorithm can be used to accelerate
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the optimization, such as negative sampling, edge sampling, or asynchronized stochastic gradient

descent [83, 84, 131].

2. Warped Frobenius norm. The warped-Frobenius-norm based loss function is defined as:

dwf(Π, g(F F̂
T ) = ∥F F̂

T − g−1(Π)∥
2

F
, (3.16)

where g−1(⋅) is the inverse function of g(⋅). We thus solve the following optimization problem:

F∗, F̂
∗ = arg min

F,F̂∈RN×K
d2wf(Π, g(F F̂

T ). (3.17)

The closed-form solution of (3.17) can be efficiently obtained from the truncated singular value decom-

position as follows:

●U[N×K],Σ[K×K] V[N×K] ← SVD(g−1 (Π) ,K);

● Obtain F[N×K] ← U Σ
1
2 ;

● Obtain F̂[N×K] ← V Σ
1
2 .

3.2.4 Specific Cases of GEM-F

We articulate the unifying power of GEM-F through the special cases that it encompasses.

Lemma 1. GEM-F includes DeepWalk as a special case with corresponding triple GEM-F[Π(L), exp(x), dKL(⋅, ⋅)].

DeepWalk [97] is a randomized implementation of GEM-F when the proximity matrix is the FST matrix, the

warping function is the exponential function and the loss function is the KL divergence.

Lemma 2. GEM-F includes node2vec as a special case with the corresponding triple GEM-F[Π(L,p,q),

exp(x), dKL(⋅, ⋅)]. node2vec [46] is a randomized implementation of GEM-F when the proximity matrix is

the FSMT matrix, the warping function is the exponential function and the loss function is the KL divergence.

In the original DeepWalk and node2vec, the authors did not specify the closed-form proximity

matrices. They estimated the proximity matrices through random-walk simulations. Here we provide their

closed forms, which are equivalent to doing infinitely many random walk simulations.

Lemma 3. GEM-F includes LINE as a special case with the corresponding triple GEM-F[P, 1
1+exp(−x) ,

dKL(⋅, ⋅)] (first-order proximities) and GEM-F[P, exp(x), dKL(⋅, ⋅)] (second-order proximities) . LINE [131]
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is an implementation of GEM-F when the proximity matrix is the transition matrix, the warping function is the

sigmoid/exponential function and the loss function is the KL divergence.

Lemma 4. GEM-F includes matrix factorization as a special case with the corresponding triple GEM-F[A,

x, dwf(⋅, ⋅)]. Matrix factorization [70] is an implementation of GEM-F when the proximity matrix is the

adjacency matrix, the warping function is the linear function and the loss function is the warped Frobenius

norm.

3.2.5 Proposed Design: WarpMap

Based on the GEM-F framework and our upcoming experiments in Section 5.2, we observe that (1)

the transition matrix with high-order proximity matters, while the walk memory factor does not (at least not

as much); (2) the warping function is the key contributor to the performance and the exponential function

usually performs the best; and (3) once the node proximity function and warping function are properly selected,

the distance function does not matter. We thus choose a triple: the FST matrix, exponential function and

warped Frobenius norm to propose WarpMap = GEM-F[Π(L), exp(x), dwf(⋅, ⋅)] , where dwf(⋅, ⋅) is defined

in (3.16).

3.2.6 Closed Form

The WarpMap algorithm solves

F∗, F̂
∗ = arg min

F,F̂∈RN×K
∥F F̂

T − log (Π(L))∥
2

F
,

where L is the diameter of the given graph (based on our experiments, we set our default value to be 7). To

ensure numerical correctness, during the computation, we take the log of non-zero elements and replace others

with −c (the default value for c is 100), that is, we set

Z = log(Π(L))I(Π(L) ≠ 0) − cI(Π(L) = 0) ∈RN×N , (3.19)

where I(⋅) is the element-wise indicator function. The solution is obtained from the truncated singular value

decomposition of Z. WarpMap has the closed-form solution; the choice of each building block in WarpMapis

based on an insightful understanding of GEM-F. We find that log(Π(7)) maximizes the empirical performance

by normalizing the distribution of elements in log(Π(7)). Specifically, L = 7 is usually the diameter of a
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social network and Π(7) properly diffuses information to all nodes without introducing echo and redundancy.

Empirically, we observe that the elements in Π(7) approximately follow a log-normal distribution and SVD

can only preserve high-magnitude elements. The logarithmic factor aids in normalizing the distribution, such

that SVD preserves more information in Π(7) (see Figure 5.11).

3.2.7 Scalable Implementation

Since Π(L) is not necessarily a sparse matrix, when the graph is large, we cannot afford to compute

the closed form of log(Π(L)), which is order of O(N2); instead, we estimate it via random-walk simulation.

Specifically, to estimate the (i, j)th element Π
(L)
i,j , we run L-step random walks from the ith node for m

independent trials and record the number of times that the jth node has been visited, denoted by Si,j . In each

trial, we start from the ith node and walk L steps randomly and sequentially. The estimate of Π
(L)
i,j is then

Π̃
(L)
i,j = Si,j /m. To work with a sparse matrix, we further obtain a proxy matrix Z̃ ∈RN×N defined as

Z̃ = (log(Π̃(L)) + c)I(Π̃(L) ≠ 0) ∈RN×N .

When m → +∞, Π̃
(L)
i,j → Π

(L)
i,j and Z̃ → Z+c1N1TN , where Z follows from Equation (3.19)w, we obtain the

solution by the singular value decomposition of the proxy matrix Z̃. Since Π̃(L) is sparse, Z̃ is sparse and

the computation of singular value decomposition is cheap; we call this approach scalable WarpMap. We add

constant c to all the elements in log(Π̃(L)), which will introduce a constant singular vector and does not

influence the shape of the graph embedding.

Lemma 5. WarpMap is scalable. The time and space complexities of scalable WarpMap are at most

O(Kmax(∣E ∣, NLm)) and O(max(∣E ∣, NLm)), respectively, where N is the size of graph, K is the

dimension of graph embedding, L is the walk length and m is the number of random-walk trials.

Proof. Each random walk from a given node can visit at most L unique nodes and m such walks would give

non-zero proximity for a node to at most Lm neighbors. Thus, the space requirement is O(max(∣E ∣,NLm)).

The complexity of the truncated singular value decomposition of Z̃ is then O(Kmax(∣E ∣, NLm)). ∎

In practice, a few nodes are visited more frequently than others; thus, the sparsity of the proxy matrix

Z̃ is much smaller than O(NLm).
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3.2.8 Acceleration via Data Splitting

Instead of using all of the random walks to estimate Π(L) and then taking the logarithm operator, we

run T threads in parallel, estimate log(Π(L)) in each thread, and finally average the results in all threads to

obtain a more accurate estimation of log(Π(L)). The advantages are two-fold: (1) we parallelize the procedure;

(2) we focus on estimating log(Π(L)), not Π(L). As mentioned earlier, the empirical observations show that

each element in log(Π(L)) approximately follows the normal distribution. The following lemma ensures that

the data splitting procedure provides the maximum likelihood estimator of log(Π(L)).

Lemma 6. Average provides the maximum likelihood estimator. Denote the (i, j)th element of Π̃(L) in

the tth thread as xt. Let log(x1), log(x2), ⋯, log(xT ) be independent and identically distributed random

variables, which follow the normal distribution with mean log(Πi,j) and variance σ2. Then, the maximum

likelihood estimator of log(Πi,j) is ∑Tt=1 log(xt)/T.

Proof. The proof follows from the maximum likelihood estimator of the log-normal distribution. ∎

Guided by Lemma 6 and considering numerical issues, we obtain the proxy matrix Z̃t in the tth thread,

average the proxy matrices in all the threads, and obtain Z̃avg = ∑Tt=1 Z̃t/T, which estimates log(Π(L)) + c.

Finally, we calculate the singular value decomposition of Z̃avg.

3.3 Domain Alignment for Visual-Based Applications

In this subsection, we focus on the reality gap issue of reinforcement learning, that is how to align

the features in different domains so that the agent could directly adopt trained policy from the simulator

environment to the real world. Most previous related work investigates the image generation and classification

from source domain to target domain at the pixel level, while this work is mainly focused on feature alignment

at embedding level in control scenarios, such as reinforcement learning.

3.3.1 Problem Setup

We consider that the domain transfer in RL settings can be decomposed as representation transfer and

policy transfer. In this work, the focus is on the representation transfer, and the policy transfer is left for future

work. Particularly, each agent could be partitioned as a representation module V (z; θ) and a policy module

A(x;φ) as shown in Figure 3.5, where V (z; θ) produces the better feature representation x, conditioned
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Figure 3.5: Problem setup illustration. The network with the blue bounding box represents the network trained
in the source domain, while the green one represents the network running in the target domain. In our setup,
the representation/perception module in target domain is pre-trained, while the parameters of policy module
are unknown.

on input state z, and A(x;φ) generates an action conditioned on x. θ and φ denote the module weights,

respectively. In deep reinforcement learning, V and A are both neural networks, which are pipelined and

trained via backpropagation.

The proposed study handles image-based domain transfer from domain S to domain T . We assume

that the representation network Vs and policy network As in the source domain S is fully trained to perform

the same task in target domain T , whereas in domain T the representation module Vt is pre-trained and the

policy module is not. This is often true in a real world environment, where the computer vision community

has already collected large amounts of real world image data [31, 150] and investigated a variety of neural

network architectures.

We aim to duplicate the policy network parameters φs trained in S as φt which applies in T , so

that πs in domain T is still functional with much less policy parameter tuning or even without any adaptions.

This is a typical domain transfer problem that trains the model from source domain and generalizes to target

domain. Prior works in RL are mainly grouped into two types: feature-level and pixel-level adaption. The

feature-level adaption makes the features extracted from both domains similar, while pixel-level re-renders

the original source domain image to make it look close to the target domain image. Our work focuses on the

feature-level category, since direct feature alignment is not only general to many other perception tasks but

also computationally efficient.
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3.3.2 Fusion Layer based on Adversarial Learning

We introduce an additional fusion layer inserted between the perception module and the policy

module to perform feature alignment as shown in Figure 3.6. A major difficulty in constructing the fusion

layer is to align features without any paired labels or dictionary. The hypothesis is that domain S and domain

T should share a similar feature structure in latent space. Assuming both source and target feature vectors are

in d-dimensional feature space, similar to cross-lingual word embeddings [28, 85], in which a linear mapping

function W is used between the source and target domain, we define the fusion layer as a linear transformation:

W ∗ = arg min
W

∣∣WX − Y ∣∣F (3.20)

where W ∈ Rd×d denotes mapping parameters. In the case of supervised learning, which a paired dictionary

{xi, yi}i∈{1,n} is given (xi ∈ Rd is in source space and yi ∈ Rd is in target space), then the optimization of the

mapping function becomes the Procrustes problem where W is orthogonal. The advantages of orthogonal

Procrustes yields a closed form solution as:

W ∗ = UV T , where UΣV T = SVD (Y XT ) (3.21)

In most cases, the pairwise dictionary is challenging to obtain. We use adversarial learning to train the

mapping function without any supervision. In the case of language (MUSE [28]), which learns the alignment

between two cross-lingual word embeddings, it pre-assumes that the structure of the target space and source

space are the same or highly similar. However, in the perception-based applications, the image embedding

holds the following differences compared to word embedding: 1) each word is a symbol that has its paired

word in the target domain, while the image does not since it is in high-dimensional continuous space, and

thereby two domains are not guaranteed to have the same structures; 2) the structure of word embedding

is fixed in one language, whereas the image embedding is domain-specific and varies case by case. As we

will show in the experiment, directly applying MUSE yields poor performance. In the next section, we will

describe how we enhance the model to train the fusion layer in adversarial settings effectively (Figure 3.6).

3.3.3 Adversarial Learning

For each batch iteration, let X ∈ Rn×d and Y ∈ Rn×d be two sets of image embeddings randomly

sampled from the source and the target domain, where n refers to batch size. We define a discriminator that
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Figure 3.6: Fusion layer architecture and training. The fusion layer, which is a linear transformation, is
inserted between the representation module and the policy module; the lower box shows the adversarial
training setup for the fusion layer, described in Section 3.3.3; the right hand side of the figure shows the
network architecture of the discriminator and mapping function (fusion layer). Implementation details are
described in Section 5.3

maximizes the ability to distinguish whether the embedding comes from the term W X or Y, whereas the goal

of the mapping function is to maximize the probability that the discriminator makes a mistake.

The goal of the feature alignment is to aligned each paired features between two different domains.

In other words, we interest in using minimum cost of effort in converting the data distribution Pg to the data

distribution Pt, which is conceptually similar to Wasserstein distance. Instead of using the vanilla Generative

Adverserial Network (GAN) [45], which minimize the Jensen Shannon (JS) divergence between generated

data distribution and real data distribution, we use Wasserstein GAN [7] training metrics since the Wasserstein

distance inherently defines the feature alignment.

Concretely, we assume that the target data distribution Pt admits a density and Pg a parameterized

density, which in our case is the density function of the mapped embedding. In order to measure the similarity

of the aligned embedding and target embedding, the choice of distance or divergence ρ(Pt,Pg) should also

imply the cost of the mapping transformation. Therefore, we define the mapping cost as the minimum cost of

transporting mass in order to transform the distribution Pg to distribution Pt, where the Earth-Mover distance

(Wasserstein-1 distance) W (Pt,Pg) is defined as:

W (Pt,Pg) = inf
γ∈(Pt,Pg)

E(x,y)∼γ[∥x − y∥] (3.22)

The Earth-Mover distance is adopted as the cost to measure the feature alignment in adversarial

learning, which leads our adversarial learning as Wasserstein GAN [7], and we observed better performance

compared with vanilla GAN used in MUSE settings (see Section 5.3.1). Our adversarial learning value function
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is constructed as:

min
W

max
D∈D

E
y∼Pt

[D(y)] − E
x̂∼Pg

[D(x̂)] (3.23)

where D denotes 1-Lipschitz functions, and x̂ is defined as Wx. In this min-max game, the discriminator

distinguishes between the mapped feature embeddings and target feature embeddings. It turns out that

high-dimensional abstracted features are already hard for the discriminator to critique (see Figure 5.16),

so that the mapping function can easily fool the discriminator by approximating the mapped embedding

structure (ex: Euclidean distance/dot product) to the target embedding structure without learning the paired

semantic meanings, which causes mode collapse issues. We propose two methods to prevent mode collapse:

pre-clustering and feature diversity.

● Pre-clustering. Clustering reflects the inherent structure of data by discretizing latent space into

small partitions. Instead of learning the mapping on the original embedding data, our first approach learns

clustered embedding that leverages the intrinsic data structure via K-means clustering, where other approaches

could be applied. The K-means algorithm clusters k centroids as embedding representations. Then, we apply

adversarial learning only on these k centroids. In every training epoch, we reset the K-means centroids for

better generalization. Pre-clustering reinforces the mapping function on the coarse structure of the data while

ignoring the fine-grain details. However, the vanilla adversarial learning and pre-clustering version are both

sensitive to the embedding structure, and the algorithm may fail (see Section 5.3.2) if the source domain and

target domain have significantly different structures.

● Feature Diversity In a conventional GAN, the discriminator often critiques on image-based (or

pixel-level) samples. The convolutional neural network (CNN) in the discriminator provides abstracted features

to improve the network distinction ability, while in our adversarial learning, the mapped embedding only

represents the task-specific features. As shown in Section 5.3, direct critics on the feature space is difficult

for the discriminator. Thus, our proposed work involves extra image features for the discriminator, which is

method similar to pixel-level domain adaption [15]. Our second approach fetches both feature embeddings

and its corresponding domain images into the discriminator (shown in Figure 3.6). This allows the CNN in

the discriminator to capture extra features to distinguish between mapped embedding and target embedding,

which encourages feature diversity for the discriminator. In addition, the concatenated features allow the

discriminator to learn the correlation between the aligned embedding and corresponding domain image. In

other words, the feature diversity method is a combined way of pixel-level and feature-level domain adaption.
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Learning Algorithm During each iteration, assuming the discriminator parameter as θ, the discrimi-

nator loss is defined as:

Lθ = Ezs∼Ps[Dθ([Wx, zs])] −Ezt∼Pt[Dθ([y, zt])] + λEzs∼Pẑ [(∥∇[Wx,zs]Dθ([Wx, zs])∥2 − 1)2] (3.24)

where Ezs∼Pẑ [(∥∇[Wx,zs]Dθ([Wx, zs])∥2 − 1)2] denotes gradient penalty term [47] to stabilize the training

process, Ps refers to the source domain data distribution, Pt refers to the target domain data distribution, and

Pẑ implicitly indicates uniform sampling among paired points from Ps and Pt. [⋅] represents the concatenation

operation.

The mapping function is trained to generate aligned feature, and the loss can be written as:

LW = − 1

n

n

∑
i=1
Dθ([Wx, zs]) (3.25)

The training process follows the same procedure used in the original GAN [45]. The detailed training

procedures and parameters are described in Section 5.3.

Without regularization on the source domain, the inherent structure might collapse in each op-

timization iteration. To guarantee that we preserve the manifold in original embedding space after ev-

ery parameter update, we perform orthogonality constraints [89] as secondary update rule through W ←

(1 + β)W − β(WWT )W , where we set β = 0.01.

Refinement We also consider the reliable anchor points for fine tuning after adversarial learning. We

use the Cross-domain similarity local scaling (CSLS) [28] to find the anchor points. CSLS uses a bi-partite

neighborhood graph to define the pairing rules, so that anchor points in the source and target domains are

adjusted accordingly. To apply this to the image domain, we simply change the similarity score to:

CSLS(Wx,y) = 2

∥Wx − y∥2
− rT (Wx) − rS(y) (3.26)

where rT (Wx) is defined as the mean similarity from source embedding x to its target embedding, and

it has the form 1
K ∑y∈Nei(Wx)

1
∥Wx−y∥2 , where K denotes the number of nearest neighbors (K = 10 in our

experiment); rS(y) is defined similarly. As we will show in Section 5.3, the refinement may hurt performance

when two embeddings have different structures.
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3.4 Summary

In this chapter, we discussed GVIN, a differentiable, novel planning module capable of both regular

and irregular graph navigation and impressive scale generalization. Based on GVIN architecture, we introduced

episodic Q-learning that designed to stabilize the training process of VIN and GVIN. Additionally, we propose

a unified framework GEM-F, subsumes LapEigs, DeepWalk and node2vec as special case, providing insights

into the asymptotic behaviors of DeepWalk and node2vec. Among our studies, we also developed WarpMap

algorithm built upon GEM-F is faster than state-of-the-art and scales linearly with input edges. Finally,

we proposed a fusion layer that performs linear mapping for domain transfer combining feature-level and

pixel-level transfer. To capture additional semantic information of image, we developed pre-clustering and

feature diversity techniques.
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Chapter 4

Related Work

In this chapter we review recent related work surrounding the focus of this dissertation. Section 4.1

reviews the studies of RL and planning, the primary focus of the proposed GVIN introduced in this research.

We also examine different graph embedding approaches that are influential in this research in Section 4.2,

including factorization based- and neural network based-embedding. Section 4.3 highlights domain transfer in

RL and control tasks, which is relevant to our domain alignment research. Although there are a large number

of related works, here we only show the significant related work that is relevant to this thesis.

4.1 RL and Planning

Model-free RL learns policy from real experience. Standard model-free algorithms include value-

based methods, such as Q-learning and SARSA, and policy-based methods, such as TRPO [109], and

actor-critic such as A3C [86]. We will briefly discuss model-free methods since this thesis mainly focuses on

planning, then we review state-of-the-art planning approaches based on neural networks.

Model-free value-based RL In value-based model-free DRL, the action-value function is parameter-

ized by nonlinear functions with a large number of parameters that are trained with deep neural networks. The

policy is then derived from the action-value function (ex: ε-greedy algorithm). DQN [87], which has been

discussed in Section 2.3.3, introduces the experience replay buffer and target network to stabilize the training

process. Deep Deterministic Policy Gradient (DDPG) [80] extends DQN to continuous actions by using an

extra policy network, which is trained using the gradient of Q function. One problem in DDPG is that the

learned Q function begins to dramatically overestimate the true Q-value. Twin Delayed DDPG (TD3) [41]
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uses clipped double-Q learning [139]. To improve the training efficiency, [107] enhances the replay buffer to

be a priority queue, such that higher priority represents where there is a big difference between the prediction

and the TD target. Dueling network [144] separates the estimator of the value function and advantage function

since that in many cases the value function is already informative enough to make decisions.

Model-free policy gradient based RL In policy-based model-free DRL, a policy is directly approx-

imated by deep neural networks. Asynchronous Advantage Actor Critic (A3C) [86] proposes an on-policy

learning actor critic algorithm that utilizes multiple independent agents to learn simultaneously. A3C has

a master network that updates gradients with workers in an asynchronous way. The research community

found that asynchronicity does not necessarly lead to improved performance and that Advantage Actor Critic

(A2C) without asynchronous is preferred since it is a better computational fit for GPUs. Proximal Policy

Optimization (PPO) [110] is a recently developed policy gradient algorithm that minimizes the cost function

while constraining the size of a policy update. Compared with Trusted Region Policy Optimization (TRPO),

PPO does not require second order derivative information such as the conjugate gradient descent, and is easy

to tune and implement.

Value Iteration Network (VIN) Although most recent works focus on the model-free approach,

some recent model-based works also show promising results. VIN employs an embedded differentiable

planning architecture, trained end-to-end via imitation learning [128]. VIN recovers the underlying MDP by

using the standard value iteration algorithm. The Bellman equation is encoded within the convolutional neural

network framework, and thereby, the policy can be obtained through backpropagation. VIN demonstrates

the ability to diffuse the value function throughout a dynamic model that is position-invariant. However,

VIN has some shortcomings: it is limited to regular lattice space, it requires imitation learning for maximum

performance, and it is trained separately with a reactive policy.

Predictron A different model-based related work, Predictron, uses a learning and planning model

that simulates a Markov reward process [117]. The architecture unrolls the "imagined" plan via a predictron

core, where each core (multi-layer convolutional neural network) represents one step in a MDP. Similar to

VIN, the predictron also approximates the true value function through end-to-end training; however, Predictron

is limited to the tasks of value prediction and is relatively computationally expensive when compared to VIN.

Value Prediction Network (VPN) [94] integrates model-free and model-based RL methods into

one architecture. VPN, which extends Predictron [117] to MDP problems, decomposes the Q value into rollout

trajectories, and each rollout contains a prediction of the model dynamics (ex: rewards, state transition, and

discount factor). To improve the trainability, VPN is trained by an on-policy asynchronous approach and
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auxiliary loss from model dynamics prediction. VPN is more general than the VIN architecture since it does

not assume the local topological structure, such as an image. However, VPN is not capable of addressing

continuous actions. Additionally, in many cases the environment contains the topological structure, which

VPN does not take advantage of these assumptions.

AlphaGo AlphaGo [115, 116] shows great success on the game of Go, which previously it was

thought that a machine could not beat a human player because of the very large search space. AlphaGo

combines deep neural networks with Monte-Carlo Tree Search (MCTS) based on pure RL settings. In order to

better approximate the value of leaf node states during the tree search, AlphaGo introduces a value network

that directly estimates the value of the state in the game of Go. AlphaGo also employs rollout-policy which

shares the same idea as VPN [94], I2A [145], Dyna-Q [123], etc.

Universal Planning Networks (UPN) [119] embeds differentiable planning within a goal-directed

policy. The planning computation unrolls a forward model in a latent space and infers an optimal action plan

through gradient descent trajectory optimization. Unlike the aforementioned differentiable planning methods,

which plan the future actions based on rollout Q functions, UPN infers an optimal action plan through gradient

descent upon the action variables.

4.2 Graph Embedding

Numerous embedding algorithms have been proposed in data mining, machine learning, and signal

processing communities. Our literature review mainly covers graph embedding with manifold, factorization

based, and neural network based methods.

Graph embedding with manifold IsoMAP [134], LLE [102], LapEigs [10], and diffusion maps [27]

estimate the intrinsic manifold based on the distribution of data points; also, SNE [57], t-SNE [138], and

LargeVis [130], which visualize high-dimensional data in a 2D/3D scatter plot, share a similar idea, that is

computing a similarity structure of the data points or k-nearest neighbor graph and then projecting them into a

low dimensional space with the structure preserved.

Factorization based graph embedding DeepWalk [97], LINE [131], node2vec [46], HOPE [95]

and structural deep network embedding [142] learn feature vectors for nodes to handle prediction tasks in

large-scale networks. Word2vec [83, 84] learns feature vectors for words in documents based on negative

sampling. Instead of using a text corpus composed of sentences in natural languages, DeepWalk [97]

first considers the vertices paths traversed by random walks over the network as the sentences for network
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embeddings, leveraging skip-gram for learning latent representations. Similar to DeepWalk, node2vec [46]

incrementally enhances DeepWalk based on 2nd-order random walks. In addition to random walk, LINE [131]

proposes to preserve both the 1st-order and the 2nd-order proximity, efficiently trained by using asynchronous

stochastic gradient algorithm (ASGD) via edge sampling. However, the aforementioned work is still limited to

considering microscopic structures such as 1st-order or 2nd-order proximity, while community-based graph

embeddings [143, 149] further preserve macroscopic information. For example, Modularized Nonnegative

Matrix Factorization (M-NMF) [143] that considers extra community information jointly optimizes the node

representation (microscopic) and an auxiliary community representation matrix (macroscopic).

Deep Learning based graph embedding A number of recent works in deep learning use neural

networks to handle signals supported on graphs [91, 37, 53]. The principal idea is to generalize basic operations

in the regular domain, such as filtering and pooling, to the graph domain based on spectral graph theory.

For example, [20, 53] introduce hierarchical clustering on graphs and the spectrum of the graph Laplacian

to neural networks. [29] generalizes classical convolutional neural networks by using graph coarsening

and localized convolutional graph filtering. [68] considers semi-supervised learning with graphs by using

graph-based convolutional neural networks. [112] generalizes the classical recurrent neural networks by

combining graph-based convolutional neural networks and recurrent neural networks to find dynamic patterns.

A recent overview is provided in [19]. All of the mentioned related works consider signals supported on a

fixed and known graph, consequentially preventing the training parameters to be transferable to other graphs.

4.3 Domain Transfer for visual input

This research is mainly focused on domain transfer in RL settings. Typical domain transfer in RL

consists of: (1) policy transfer, meaning that the source domain distinguishes dynamics or actions from

the target domain; (2) task transfer, where the source domain differentiates the rewards function from the

target domain; and (3) observation transfer, where observations are different between the source domain and

target domain. Since policy transfer and task transfer are well studied by meta-RL [100, 52, 36], hierarchy

RL [40, 121], etc., our research mainly focuses on observation transfer, which is still highly challenging and

thereby we will specifically review the transfer learning on observations.

Pixel-Level Domain Transfer Pixel-Level domain transfer commonly refers to Generative Adver-

sarial Network (GAN)-based models that generate source domain image(s) that look like target domain

image(s) [105, 14, 15]. CAR2RL [105] proposed a vision based RL that relies on a high quality simulator that
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produces realistic rendered images. Another domain transfer work [14] trains a GraspGAN using synthetic

data for a grasping task in both pixel-level and feature-level space. Additionally, [15] studies an image transfer

by adding extra target loss in the GAN model, in which it decouples the domain adaption process and task

process. [137] adapts robotic perception from simulator to real-world environments, but they presume a small

dataset that pairs the synthetic with real image from the same scene, which is often False or impossible in

real cases. [104] uses layer-wise adapters from progressive networks [103] to transfer the simulator policy to

the real world utilizing lateral connections. Most of these works are either task-specific, making it difficult

to transfer to other RL problems, or the model relies on high quality synthetic images, which does not scale

to different physical world environments. Also, the progressive network and pixel-level domain transfer are

generally cumbersome, which requires an extra large model to generate images for the agent during prediction.

Feature-Level Domain Transfer Feature-level domain transfer aims to learn domain-invariant

features, either by pre-trained transformation between source domain and target domain [104, 43, 136], or a

domain invariant feature extractor [43]. One similar work, Domain Adversarial Neural Network (DANN) [43]

uses adversarial learning for domain transfer at the feature level. DANN’s approach attempts to make the

extracted features from both domains look similar, but the DANN targets image classification whereas the

goal of our approach mainly focuses on RL settings. Another work [136] aligns the source domain to the

target domain in feature space via pairwise loss and confusion loss. However, the algorithm still requires extra

supervision as constraints for feature alignment, while our proposed domain adaption is in a pure unsupervised

fashion. [104] proposes a framework to transfer the low level visual features to a new task by enriching

new network input features layer-by-layer. [42] proposes a gradient reversal layer in deep architectures

for classification tasks. To our knowledge, all of these methods either require paired supervision between

synthetic images and real images, or tuning neural network parameters with classification label information.

Our proposed methods, which combine the pixel-level and feature-level methods, preserve the pre-trained

knowledge as much as possible, only aligning the feature representation by a simple linear transformation

without any labels.

Generative Adversarial Network The basic GAN [45] model and concept is covered in Sec-

tion 2.2.3. In order to obtain higher resolution generated images with stabilized training, Deep Convolutional

Generative Adversarial Networks (DCGAN) [99] use pure de-convolution layers in the generator with Adam

optimizer [66]. By using curriculum learning, [64] proposed a layer-wise training method to produce high

resolution samples through a progressive growing manner, which speeds up the training and improves the

training stability. [81] proposes Least Squares Generative Adversarial Networks (LSGAN) which simply
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tweak the discriminator objective function from binary cross-entropy to be the least mean square, which is

equal to minimizing Pearson χ2 divergence. Recent advanced methods [7] introduce Wasserstein distance,

showing that compared with the original Jensen-Shannon Divergence, Wasserstein distance helps to avoid the

mode collapse issue and make network training more robust. To improve the Wasserstein GAN trainability,

[47] employs the gradient penalty terms to regularize the objective function. Multilingual Unsupervised or

Supervised word Embeddings (MUSE) [28] inspired the initial idea of our work: MUSE [28] aims to align

word embeddings from two different languages by using adversarial learning, where the generator is a simple

linear orthogonal transformation since it has a closed form solution and orthogonal property.

4.4 Summary

In this chapter, we discussed some of the recent developments in RL, graph embedding, and domain

transfer. While a large proportion of RL focuses on model-free RL, we have shown that pure model-free

RL has poor generalization. In this chapter, we reviewed several recent key studies of model-based RL,

planning modules that coupled with model-free approaches, and combined model-based with model-free RL

algorithms. Our work can be viewed as embedding a differentiable planning module into the model-free

approach. Additionally, we discussed the domain transfer in RL for image based input, which is also studied

by the computer vision community. Similar to existing work that uses adversarial learning to tune the target

domain network or align the feature representation, our approach is computationally lightweight and modular.

The proposed method is a general approach for aligning features across different neural network modules.

In addition to RL studies, we also discussed several graph embedding research efforts. Our research

builds upon the factorization based method and summarizes most of previous work as special cases of the

proposed more general formalization. The next chapter provides additional details on the performance

comparison between previous baseline results and our results.
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Chapter 5

Experimental Results

In this chapter, we present our results in three sections that corresponds to Chapter 3: 1) generalized

value iteration network, our experiments demonstrates that the agent can plan and generalize to a variety of

input structures (regular or irregular) and environment that have never been seen before; 2) warped graph

embedding, which we show the proposed algorithm outperforms the baseline model in both computation time

and prediction accuracy; and 3) domain alignment for visual based input, we successfully demonstrate the

transferred network parameters could be directly used without re-training.

5.1 Generalized Value Iteration Network

In this section, we evaluate the proposed method on three types of graphs: 2D mazes, synthesized

irregular graphs and real road networks. We first validate that the proposed GVIN is comparable to the original

VIN for 2D mazes, which have regular lattice structure. We next show that the proposed GVIN automatically

learns the concepts of direction and distance in synthesized irregular graphs through the reinforcement learning

setting (without using any ground-truth labels). Finally, we use the pre-trained GVIN model to plan paths for

the Minnesota road network and Manhattan street network.

Our implementation is based on Tensorflow with a GPU-enabled platform. All experiments use the

standard centered RMSProp algorithm as the optimizer with learning rate η = 0.001 [135]. All reinforcement

learning experiments use a discount of γ = 0.99, RMSProp decay factor of α = 0.999, and exploration rate ε

annealed linearly from 0.2 to 0.001 over the first 200 epochs.
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5.1.1 Revisting 2D Mazes

Given a starting point and a goal location, we consider planning the shortest paths for 2D mazes; see

Figure 5.1(a) as an example. We generate 22,467 2D mazes (16 × 16) using the same scripts1 that VIN used.

We use the same configuration as VIN (6/7 data for training and 1/7 data for testing). Here we consider four

comparisons: VIN vs. GVIN, action-value based imitating learning vs. state-value based imitating learning,

direction-guided GVIN vs. unguided GVIN, and reinforcement learning.

We consider the rules as follows: the agent receives a +1 reward when reaching the goal, receives

a −1 reward when hitting an obstacle, and each movement gets a −0.01 reward. To preprocess the input

data, we use the same two-layer CNN for both VIN and GVIN, where the first layer involves 150 kernels

with size 3 × 3 and the second layer involves a kernel with size 3 × 3 for output. The transition probability

matrix is parameterized by 10 convolution kernels with size 3 × 3 in both VIN and GVIN. In GVIN, we use

the directional kernel based method as shown in Equations 3.6 and 3.7 and we set ` = 8 to represent the

eight reference directions. We consider two approaches to initialize the directions θ`. In the direction-aware

approach, we fix θ` as [0, π/4, π/2, ...,7π/4]. In the direction-unaware approach, we set θ` to be weights and

train them via backpropagation. We set the recurrence K in GVIN to be 20 for 16 × 16 2D mazes. In the

regular domain, we set the kernel order t = 100 to be the default.

Four metrics are used to quantify the planning performance, including prediction accuracy—the

probability of taking the ground-truth action at each state (higher means better); success rate—the probability

of successfully arriving at the goal from the start state without hitting any obstacles (higher means better); path

difference—the average length difference between the predicted path and the ground-truth path (lower means

better); and expected reward—the average accumulated reward (higher means better). The overall testing

results are summarized in Table 5.1.

VIN GVIN
Action-value State-value Action-value State-value

dir-aware unaware dir-aware unaware

Prediction accuracy 95.00% 95.00% 95.20% 92.90% 94.40% 94.80%
Success rate 99.30% 99.78% 99.91% 98.60% 99.57% 99.68%

Path difference 0.089 0.010 0.004 0.019 0.013 0.015
Expected reward 0.963 0.962 0.965 0.939 0.958 0.960

Table 5.1: 2D Maze performance comparison for VIN and GVIN. GVIN achieves similar performance with
VIN for 2D mazes (16 × 16); state-value imitation learning achieves similar performance with action-value
imitation learning.

1https://github.com/avivt/VIN
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VIN vs. GVIN. GVIN performs competitively with VIN (Table 5.1), especially when GVIN uses

direction-aware action-value based imitation learning (4th column in Table 5.1), which outperforms the others

for all four metrics. Figure 5.1(b) shows the value map learned from GVIN with direction-unaware state-value

based imitation learning. We see negative values (in blue) at obstacles and positive values (in red) around the

goal, which is similar to the value map that VIN reported in [128].

(a) Input map (b) Value map (c) Input map (d) Value map
(2D mazes). (2D mazes). (irregular graph). (irregular graph).

Figure 5.1: Value map visualization on regular and irregular graph.

Action-value vs. State-value. VIN with action-value imitation learning slightly outperforms VIN

with state-value imitation learning. Similarly, GVIN with action-value based imitation learning slightly

outperforms GVIN with state-value based imitation learning. The results suggest that our action approximation

method (Section 3.1.1) does not impact the performance while maintaining the ability to be extended to

irregular graphs.

(a) Expected rewards. (b) Success rate.

Figure 5.2: Q- vs. episodic Q-learning on 16 × 16 Maze.

Direction-aware GVIN vs. Unaware GVIN. Direction-aware GVIN slightly outperforms direction-

unaware GVIN, which is reasonable because the fixed eight directions are ground truth for regular 2D mazes.
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(a) Prediction accuracy (b) Success rate
in 2D mazes. in 2D mazes.

Figure 5.3: Kernel direction order influences the planning performance in regular graphs (images).

It remains encouraging that the GVIN is able to find the ground-truth directions through imitation learning.

As shown later, direction-unaware GVIN outperforms direction-aware GVIN in irregular graphs. Figures 5.3

show that the planning performance improves as the kernel exponential t in Equation (3.6) increases due to the

resolution in the reference direction being low when t is small. Figure 3.3 compares the kernel with the same

reference direction, but two different kernel orders. When t = 5, the kernel activates wide-range directions;

when t = 100, the kernel focuses on a small-range directions and has a higher resolution.

Reinforcement Learning. We also examine the performance of episodic Q-learning (Section 3.1.3)

in VIN. Table 5.2 shows that the episodic Q-learning algorithm outperforms the training method used in VIN

(TRPO + curriculum learning). For the results reported in Table 5.2, we were able to train the VIN using our

algorithm (episodic Q-learning) in just 200 epochs, while TRPO and curriculum learning took 1000 epochs

to train VIN, as reported in [128] (both algorithms used the same settings). As shown in Figure 5.2, the

episodic Q-learning algorithm shows faster convergence and better overall performance when compared with

Q-learning.

5.1.2 Exploring Irregular Graphs

We consider four comparisons in the following experiments: Directional kernel vs. Spatial kernel

vs. Embedding-based kernel, direction-aware vs. direction-unaware, scale generalization, and reinforcement

learning vs. imitation learning. We use the same performance metrics as the previously discussed in the 2D

maze experiments.

We evaluate our proposed methods in Section 3.1.2 for the irregular domain. Our experimental

domain is synthetic data that consists of N = 10000 irregular graphs, in which each graph contains 100 nodes.
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TRPO EQL2

Success rate 82.50% 98.67%
No. of Epochs 1000 200
Path difference N/A 0.1617
Expected reward N/A 0.9451

Table 5.2: Performance comparison using different training algorithms on the VIN model. The first column
is VIN trained by TRPO with curriculum learning reported in [128], the second column is VIN trained by
episodic Q-learning.

VIN MACN Directional Kernel Spatial Kernel Embedding-based Kernel
(36 nodes) dir-aware unaware dir-aware unaware train 100 (IL) train 10 (IL) train 10 (RL)

Prediction acc. 26.57% 78% 41.50% 41.51% 57.45% 57.90% 58.90% 56.14% 50.90%
Success rate 10.29% 89.4% 34.75% 65.30% 96.56% 97.17% 97.34% 6.73% 100%
Path diff. 0.992 - 0.175 0.141 0.082 0.082 0.079 0.041 0.148
Expected reward −0.905 - 0.266 0.599 0.911 0.917 0.922 −0.03 0.943

Table 5.3: The performance comparison among VIN and three different kernels of GVIN. All experiments
except MACN [65] are tested on 100-node irregular graphs. The last column is trained using episodic Q-
learning. IL and RL stands for imitate learning and reinforcement learning, respectively. Under similar
experimental settings, MACN achieves an 89.4% success rate for 36-node graphs, while GVIN achieves a
97.34% success rate for 100-node graphs.

We follow the standard rules of random geometric graphs to generate our irregular graphs. Specifically, we

generate ∣V ∣ vertices with random coordinates in the box [0,1]2 and connect a pair of two vertices with an

edge when the distance between two vertices is smaller than a certain threshold. For each node in the graph,

we define the coordinates that represent its spatial position ranged between 0 and 1. The dataset is split into

7672 graphs for training and 1428 graphs for testing. Additionally, to examine whether GVIN could handle

weighted graphs, we also generated a synthetic dataset consisting of 100 node graphs and partitioned 42857

graphs for training and 7143 graphs for testing.

For the directional kernel and spatial kernel, we set the number of reference directions to ` = 8 and

kernel order t = 20 to be default values for Equations 3.6 and 3.7. We also set θ` to be 0 to 2π with an interval

of π/4 for direction-aware mode and we set θ` to be trainable weights for direction-unaware mode. For the

spatial kernel function, we set the number of bins d` to be 10 in Equation 3.7. In the embedding-based kernel,

we use three layers of fully connected neural networks (32-64-1), where each layer uses ReLU(⋅) = max(0, ⋅)

as its activation function. The neural networks are initialized with zero-mean and 0.01 derivation. For all three

kernel methods, we set the graph convolution channel number to be 10 and K = 40 for recurrence.

Directional Kernel vs. Spatial Kernel vs. Embedding-based Kernel. We first train the GVIN via

imitation learning. Table 5.3 shows that the embedding-based kernel outperforms the other kernel methods in
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terms of both action prediction and path difference (Embedding-based Kernel column in Table 5.3), indicating

that the embedding-based kernel captures the edge weight information (distance) within the neural network

weights better than the other methods. The spatial kernel demonstrates higher accuracy and success rate

when compared with the directional kernel, which suggests the effectiveness of using bin sampling. The

direction-unaware method shows slightly better results for the spatial kernel, but has a larger success rate gain

for the directional kernel. Figure 5.1(d) shows the visualization of the learned value maps which shares similar

properties with the regular graph value map. We also train VIN (1st column) by converting the graph to a 2D

image.

(a) Prediction accuracy (b) Success rate
in irregular graphs in irregular graphs.

Figure 5.4: Kernel direction order influences the planning performance in irregular graphs.

Training VIN on Irregular Graphs. To show the strong generalization of GVIN, we evaluate VIN

on irregular graphs by converting the graph data to a 2D image. Each testing set contains the reward map and

obstacle map of size 100 × 100 pixels. We use pre-trained weights from 28 × 28 maze with all parameters

tuned to be highest performance. To make the training and testing consistent, we set the rewards map and

obstacle map the same settings as the 2D maze: vertices and edges are marked as free path (value set to be 0),

while the other areas are marked as obstacles (value set to be 1). The edge path is generated via Bresenham’s

line algorithm [16]. We set recurrence K to be 200 so that the value iteration could cover the whole map.

Figures 5.4(c) and (d) show the planning performance for the irregular domain as the kernel order t

in Equation 3.6 increases. The results show that a larger t in the irregular domain has the opposite effect when

compared with the regular domain. The observation is reasonable: in the irregular domain, the direction of

each neighbor is extremely variable and a larger kernel order creates a narrower direction range (as seen in

Figure 3.3), thus resulting in information loss.

Reinforcement Learning. We then train GVIN using episodic Q-learning to compare with imitation
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(a) Expected rewards (b) Success rate

Figure 5.5: Q- vs. Episodic Q-learning on irregular graphs.

learning. As a baseline, we also train GVIN by using standard deep Q-learning techniques, including using an

experience replay buffer and a target network. Both networks use the same kernel function (embedding-based

kernel) and configurations. Figure 5.5 shows the comparison of the two algorithms’ success rate and expected

rewards during the training. Clearly, episodic Q-learning converges to both a high success rate and a high

expected rewards, but the standard deep Q-learning techniques fail to achieve reasonable results.

Scale Generalization. We also examine scale generalization by training on 10-node graphs and

then testing on 100-node graphs using the embedding-based kernel. When GVIN is trained on 10-node

graphs via imitation learning, the performance is significantly hindered as shown in Table 5.3 (2nd column

in Embedding-based Kernel). When GVIN is trained using episodic Q-learning, Table 5.3 (3rd column in

Embedding-based Kernel) shows excellent generalization abilities that outperform all imitation learning based

results for success rate and expected rewards. Compared with imitation learning, we also observe that the

performance decreases for path differences and action prediction.

Imitation Learning Reinforcement Learning
w edge weight w/o edge weight w edge weight w/o edge weight

Prediction accuracy 62.24% 43.12% 50.38% 50.14%
Success rate 3.00% 97.60% 100% 100%
Path difference 0.020 0.763 0.146 0.151
Expected reward −0.612 0.771 0.943 0.940

Table 5.4: Performance comparison for testing weighted graphs. Imitation learning is trained on 100-node
irregular graphs while reinforcement learning is trained on 10-node irregular graphs.

Graph with Edge Weights. We also test how GVIN handles edge weights. We set the true weighted

shortest path to be Xi −Xj
Wij

, where Xi −Xj is the distance between two nodes and Wij is the edge weight. As
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shown in Table 5.4, imitation learning is trained on 100-node graphs, while reinforcement learning is trained

on 10-node. We also examine GVIN by excluding edge weights from the input to see if there are any effects

on performance. Table 5.4 shows that for reinforcement learning, edge weights slightly help the agent find a

more suitable policy; for imitation learning, input edge weights makes GVIN overfitting, causing a significant

failure.

(a) Ground-Truth (b) GVIN prediction

Figure 5.6: Sample planning trajectories on Minnesota highway map.

(a) Ground-Truth (b) GVIN prediction

Figure 5.7: Sample planning trajectories on New York City street map.

71



5.1.3 Validating Real Road Networks

To demonstrate the generalization capabilities of GVIN, we evaluate two real-world maps: the

Minnesota highway map, which contains 2642 nodes representing intersections and 6606 edges representing

roads, and the New York City street map, which contains 5069 nodes representing intersections and 13368

edges representing roads [24]. We use the same models trained on the graphs containing ∣V ∣ = 100 and

∣V ∣ = 10 nodes with the embedding-based kernel and using episodic Q-learning in Section 5.1.2, separately.

We normalize the data coordinates between 0 and 1, and we set recurrence parameter toK = 200. We randomly

pick starting points and goal points 1000 different times. We use the A* [49] algorithm as a baseline. Table 5.5

shows that both ∣V ∣ = 100 and ∣V ∣ = 10 generalize well on large scale data. The policy could reach the goal

position with 100% in the experiments. One sample planned path is shown in Figures 5.6 and 5.7.

Minnesota New York City
Optimal ∣V ∣ = 100 ∣V ∣ = 10 Optimal ∣V ∣ = 100 ∣V ∣ = 10

Prediction Accuracy 100% 78.37% 78.15% 100% 78.66% 79.11%
Success rate 100% 100% 100% 100% 100% 100%
Path difference 0.0000 0.1069 0.1025 0.0000 0.03540 0.0353
Expected reward 0.96043 0.95063 0.95069 0.97279 0.97110 0.97136

Table 5.5: Performance comparison on Minnesota and New York City street map data using GVIN. ∣V ∣ = 100
is trained on 100-node graphs and ∣V ∣ = 10 is trained on 10-node graphs.

5.2 Graph Embeddings

In this section, we demonstrate the experiments and results for proposed GEM-F framework and

WarpMap algorithm (see Section 3.2).

The main goal here is to empirically demystify how each building block of GEM-F influences the

overall performance. We plugin various proximity matrices and warping functions to GEM-F and test their

performance. To avoid the randomness and suboptimal solutions, we adopt the warped Frobenius norm and its

corresponding SVD solution, which is unique and deterministic.

We focus on the task of node classification: we observe a graph where each node has one or more

labels, we randomly sample the labels of a certain fraction (labeling ratio) of nodes and we aim to predict the

labels of the remaining nodes. We repeat this process for 20 times and report the average results in terms of

Macro and Micro F1 scores [132]. For all of the graph embeddings, we choose dimension size K = 64 and

implement the classification by using a one-vs-rest logistic regression of LibLinear [39].
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5.2.1 Datasets

We use the following datasets:

• Kaggle 19683. This is a social network of Facebook users. The labels are the social circles among the

users. The network has 277 nodes, 2,321 edges and 14 labels.

• BlogCatalog4 [132]. This is a network of social relationships provided by bloggers on the BlogCat-

alog website. The labels are the topic categories provided by the bloggers. The network has 10,312

nodes, 333,983 edges and 39 labels.

• Flickr5 [133]. This is a social network of Flickr users who share photos. The labels are the interest

groups of users. The network has 80,513 nodes, 5,899,882 edges and 195 labels.

• U.S. Patent 1975-19996 [76]. U.S. patent dataset is maintained by the National Bureau of

Economic Research. This is a citation network among the patents granted between 1975 and 1999. The

network has 3,774,768 nodes, 16,518,948 edges.

5.2.2 Which factor matters most?

We want to investigate the impact of each of three building blocks: proximity matrix, warping

function, and loss function. We first consider the construction of the proximity matrix from two aspects.

5.2.2.1 Proximity: Walk length

In the FST matrix, a tuning parameter is the walk length, which controls the range of random walks.

We consider the closed-form WarpMap with the FST matrix Π(L), varying L from 1 to 20. The goal is to

understand how the walk length influences the overall performance.

We compare the classification performance on Kaggle 1968 and Blogcatalog [132] in Figure 5.8,

where the x-axis is the walk length and the y-axis is the F1 score. In each plot, light, medium and dark red

curves show the performance under the labeling ratios of 10%, 50% and 90%, respectively.

We see that the walk length has a significant impact on the classification performance; it increases

considerably when the walk length increases in the beginning and then drops slowly when the number of walks

3 https://www.kaggle.com/c/learning-social-circles/data
4 http://socialcomputing.asu.edu/datasets/BlogCatalog3
5 http://socialcomputing.asu.edu/datasets/Flickr
6 http://snap.stanford.edu/data/cit-Patents.html
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Figure 5.8: The defaulted setting for the walk length is the diameter of input graph. The walk length
influences the classification performance. An empirical choice of walk length is the diameter of input graph
(Kaggle 1968 and BlogCatalog [132]).

increases even further. The intuition is as follows: when the walk length is too small, only low-order proximity

information is obtained and the community-wise information is hard to capture; when the walk length is too

large, high-order proximity information is over-exposed. That is, the proximity matrix tends to be an all-one

matrix and does not contain any structure information. Empirically, we find that the sweet spot of the walk

length is approximately the diameter of a graph, which is usually around 7 for a social network, as shown in

Figure 5.8. Note that the diameters of Kaggle 1968 and BlogCatalog are 8 and 5, respectively.

Summary. The walk length matters; the choice should be the diameter of the graph.
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Figure 5.9: Walk memory does not matter. Walk memory factors do not significantly influence the classifica-
tion performance (Kaggle 1968).

5.2.2.2 Proximity: No walk memory vs. walk memory

In node2vec, the walk memory term is adopted to design a biased random walk, which explores

the graph structure in a controlled manner. The empirical results also show the superiority of node2vec [46]

over DeepWalk [97] with appropriate walk memory parameters; however, the comparison suffers from the

suboptimality of solving a non-convex optimization problem and randomness of obtaining biased random

walks. Here we tune the walk memory parameters in various settings and obtain the corresponding closed-form

solutions via singular value decomposition, which help us understand how the walk memory term influences

the overall performance. We consider GEM-F with the warping function g(x) = exp(x) and the FSMT matrix

Π(L,p,q). We set L = 7 and vary p, q on the 2-D grid of [0.1,0.5,1,2,5].

We compare the classification performances on Kaggle 1968 in Figure 5.9, where the x-axis is q and

the y-axis is the F1 score. In each plot, five curves show the performance under various p. We set the labeling

ratio to 50%. We see that the walk memory parameters influence the classification performance only slightly:

under various settings of p and q, the classification performances do not vary too much. The results show

that the walk memory term can provide more flexibility and improves the overall performance, but it is not as

significant as the walk length and nonlinearity.

Summary. The walk memory factor does not matter much.
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Figure 5.10: Warping matters. Nonlinearity significantly influences the F1 score (Blogcatalog). The warping
function normalizes the distribution of all elements in the proximity matrix; when the distribution is symmetric
(skewness is zero), the best performance is achieved.

5.2.2.3 Warping function

Many previous embedding methods, such as SNE [57], DeepWalk [97] and node2vec [46], adopt the

softmax model, which corresponds to an exponential warping function g(x) = exp(x). How does it differ

from a linear warping function g(x) = x? We consider GEM-F with the FST matrix Π(L) with L = 7 and vary

the nonlinear warping function g(x) = (1 + γx) 1
γ from −1 to 1; note that g(x) = exp(x) when γ = 0.

We compare the classification performances on Blogcatalog in Figure 5.10 (a) and (c), where the

x-axis is the nonlinearity parameter γ and the y-axis is the F1 score. In each plot, light, medium and dark red

curves show the performance under the labeling ratios of 10%, 50% and 90%, respectively.

We see that the nonlinearity has a significant impact on the classification performance. A linear
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function (γ = 1) results in poor performance. The classification accuracy increases significantly as more

nonlinearity is introduced (γ decreases). The exponential function (γ = 0) almost always provides the best

performance. After that, however, adding more nonlinearity deteriorates the classification performance. These

results validate the superiority of the (nonlinear) exponential model over the linear model.

How should we then choose the nonlinearity parameter γ? Empirical evidence shows that symmetry

matters. Let x be a random variable. We define skewness = E(x − µ)3/σ3, where µ and σ are the mean and

standard deviation of x. Figure 5.10 (b) and (d) show the relationship between skewness and classification

performance; we see that the classification performance reaches its highest value when the skewness is zero.

To illustrate the intuition, Figure 5.11 shows the histogram of elements in the proximity matrix g−1(Π(7))

under various γ, where x-axis is the value and y-axis counts the number of elements associated with the

value; when γ = 0.5, slight nonlinearity is introduced and, as shown in Figure 5.11 (c), the distribution is

highly left-skewed, meaning most pairwise relationships are weak. This is common in social networks due

to the power-law phenomenon [38]. The logarithmic factor rescales the distribution to make it symmetric.

An empirical choice of the optimal nonlinearity could be to randomly sample a subset of elements in Π and

choose the γ that makes the distribution symmetric.

Summary. The warping function matters; the choice should be the one that makes the distribution of

elements in the proximity matrix symmetric.

(a) γ = −0.5, (b) γ = 0, (c) γ = 0.5,
skewness −1.92. skewness 0.15. skewness 6.35.

Figure 5.11: Symmetry matters. A symmetric distribution of elements in g−1(Π) optimizes the empirical
performance (BlogCatalog).
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(a) Macro at labeling ratio 10%. (b) Micro at labeling ratio 10%.

(c) Macro at labeling ratio 50%. (d) Micro at labeling ratio 50%.

(e) Macro at labeling ratio 90%. (f) Micro at labeling ratio 90%.

Figure 5.12: In the dataset of Kaggle 1968, the number of steps and nonlinear significantly influence the
classification performance.
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5.2.2.4 Loss function

In Section 3.2.4, we have shown that DeepWalk and node2vec are the implementations of GEM-F

with the KL divergence as the loss function. Here we compare DeepWalk and node2vec with WarpMap, whose

loss function is the warped Frobenius norm.

We compare the classification performance of DeepWalk, node2vec, the closed form of WarpMap and

scalable WarpMap on three datasets: Kaggle 1968, BlogCatalog and Flickr. For DeepWalk, we set the walk

length to be 7; for node2vec, we set the walk length to be 7 and the walk memory factors p = 0.25, q = 0.25, as

recommended in [46]. We set the labeling ratio to 50%; that is, a half of the nodes are used for training and the

rest for testing. The classification performance is shown in Figure 5.13. In each plot, the x-axis is the running

time and the y-axis is the F1 score (either Macro or Micro). The blue, yellow and red curves are DeepWalk

(dw), node2vec (n2v) and scalable WarpMap (s-uw), which all rise as the running time grows; black diamonds

denotes the closed-form of WarpMap (uw).

We see that (1) as the closed-form solution, WarpMap provides the most accurate classification

performance; with increasing running time, DeepWalk, node2vec and scalable WarpMap converge to WarpMap,

which validates Lemma 1; (2) with increasing size of the input graph, the closed-form WarpMap takes much

longer in terms of running time; (3) at a similar level of classification performance, the proposed scalable

WarpMap runs faster than DeepWalk and node2vec.

Summary. Randomness does not improve accuracy, but makes the algorithm scalable.
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Figure 5.13: WarpMap outperforms competition. The closed-form WarpMap (uw, grey diamond) is the most
accurate; scalable WarpMap (s-uw, red) is much faster than DeepWalk (dw, blue) and node2vec (n2v, yellow).
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(a) Π. (b) log Π.

Figure 5.14: The log factor amplifies small discrepancies. Plot (a) considers a linear warping function
g(x) = g−1(x) = x; Plot (b) considers an exponential warping function g(x) = exp(x) and g−1(x) = log(x).

5.2.3 Why Warping matters?

In WarpMap, we consider factorizing log(Π). The logarithm is introduced to rescale the distribution

of Π and amplify small structural discrepancies. On the other hand, when we introduce more nonlinearity than

the logarithm, all the values tend to be the same.

Let us see the mechanism of nonlinearity from a toy example. Figure 5.14 (a) shows a 300 × 300

proximity matrix, which can be divided into three diagonal blocks and indicates three communities. The

values of three diagonal blocks are 10−1,10−6and10−8, respectively; however, we cannot distinguish their

little difference from the figure. When we factorize this proximity matrix, the resulting embedding barely

reflects the structure information. When we adopt the exponential warping function, leading to the inverse

warping function g−1(x) = log(x), Figure 5.14 (b) shows the logarithm version of the same proximity matrix.

After a logarithm operation, it is much easier to distinguish their difference. When we factorize this logarithm

version, the resulting graph embedding reflects the structure information well.

5.2.4 Scalability

We test scalable WarpMap on the U.S. patent 1975–1999 data. We use the chronological order to

construct a growing citation network (as new nodes and edges are added). We compute the corresponding

graph embedding by using scalable WarpMap. We set the number of random walks m = 50. Figure 5.15 shows

its running time (y-axis) versus the number of input edges (x-axis). Red dots depict the graph at different

years. The blue dotted line is not a linear fit, but shows the linear trend. Scalable WarpMap scales linearly
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with the number of input edges and embeds a 14-million edge graph in under 40 minutes.
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Figure 5.15: WarpMap scales linearly. The proposed algorithm WarpMap scales well, linearly with the
number of edges. (U.S. patent 1975–1999 dataset; see Lemma 5.)

5.3 Domain Alignment for Visual Input

In this section, we demonstrate two experiments for visual domain alignment. The first one uses

CIFAR-10 and shows our algorithm effectiveness when two domains have very similar embedding structure.

The second experiment uses the CARLA autonomous driving environment, in which two domains have

mismatched embedding structure.

5.3.1 CIFAR-10 feature alignment

Experiment Setup. In CIFAR-10 experiment, we use two neural networks to generate different

features for the same image. Specifically, we use CIFAR-10 image as input, VGG-19 [118] and resnet-18 [51]

as two neural networks that are trained from scratch to generate source domain features and target domain

features. Both networks are fully trained such that accuracy converges to 91.64% and 94.37%, respectively.

We split CIFAR-10 data into 50,000 images for alignment and 10,000 validation images for model selection.

We choose the model based on paired euclidean distance. In both networks, we use the second last layer as the

feature layer. We use RMSprop as an optimizer with learning rate η = 0.00005 for both the mapping function

and discriminator. The discriminator is a 3-layer neural network with Leaky RELU [146] as the activation

function and dropout [120] to be 0.8 for better generalization.
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Figure 5.16: t-SNE visualization on CIFAR-10 for different training senarios. the red is from source domain,
and the green one comes from target domain. Left: the visualization of source domain feature and target
domain feature before alignment. Middle: the aligned feature embedding use Vanilla AL. We mark the
corresponding CIFAR label on each cluster group based on most appeared classes. Right: the aligned feature
embedding use WAL+CNN.

CIFAR-10 [71] dataset is a typical image recognition dataset for testing baseline models in computer

vision. CIFAR-10 consists of 60,000 32 × 32 color images in 10 classes, where each class contains 60,000

images. Typically, there are 50,000 training images and 10,000 test images.

For naming convenience, we denote WAL as the mapping function trained using the Wasserstein

GAN settings; we refer to the adversarial learning used in MUSE as Vanilla AL; we denote WAL+PC as

pre-clustering methods described in Section 3.3.3 (k is set to be 200); and we refer to WAL+CNN as the

feature diversity method described in Section 3.3.3.

The performance comparison is shown in the Table 5.6, where we report evaluation via two metrics.

1) Label similarity is calculated as 1lt=ls normalized by the number of samples, where 1 is an indicator

function, lt is the label of target domain features, ls represents the label of x̂, where x̂ ∈ Nei(Wx) is the

1-nearest neighbor of aligned features after the mapping function. 2) We also use euclidean distance as an

evaluation metric to measure how close the paired feature embedding is after the mapping function.

Vanilla AL vs. WAL vs. WAL+PC. Table 5.6 shows that WAL is more effective than Vanilla AL by

using the Earth-Mover distance as discussed in Section 3.3.3. WAL+PC outperforms both Vanilla AL and

WAL. The results suggest that pre-clustering, which relies on intrinsic embedding structure, makes training

more effective and robust.

Supervised vs. Unsupervised. Supervised learning outperforms all adversarial learning methods

except WAL+CNN on the label similarity. Since supervised learning is solved as a Procrustes problem, the

mean l2 norm distance shows the worst result to meet the orthogonality constraints. WAL+CNN outperforms

supervised learning in both metrics, indicating that WAL+CNN helps to find a balance between source
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Method Label Simimlarity l2 distance
Supervised 87.6% 8.09
Vanilla AL 1.71% 7.69
WAL 11.86% 7.55
WAL+PC 64.74% 7.46
WAL+CNN 90.44% 7.36
WAL+CNN+refine 91.09% 7.32

Table 5.6: The performance comparison on CIFAR-10 using label similarity (higher is better) and L2 distance
(lower is better)

embedding structure and closeness of mapping function.

WAL vs. WAL+CNN. Among all results in Table 5.6, WAL+CNN outperforms all other methods

significantly, which suggests the effectiveness by using proposed feature diversity method. Figure 5.16 also

compared the differences of aligned features by using Vanilla AL and WAL+CNN. As shown in the figure,

even though the source embeddings are aligned similar to target embeddings in Vanilla AL, the corresponding

labels are almost all mismatched. While in WAL+CNN, the source and target image label are all matched. This

result demonstrates that by the means of CNN in the discriminator, WAL+CNN could avoid mode collapse

problems.

Refinement In the CIFAR-10 experiment, where two embedding structures are roughly the same,

we observe marginal performance boost compared with pure unsupervised learning after using CSLS [28]

through anchor points for fine tuning.

CARLA Experiment To demonstrate how feature alignment affects the policy, we evaluate our

algorithms in the CARLA [33] environment. CARLA is a simulation environment developed to support

training and validation of the autonomous urban driving system. It supplies 14 different kinds of weather and

lighting conditions with two driving maps.

Our experiment procedures are as follows: we adopt imitation learning with pre-collected data to train

multiple networks in different environments. In CARLA, we use different environment pairs to emulate the

source domain and target domain. Then, we benchmark the models by pipelining the representation module

from the target domain and policy module from the source domain. The hypothesis is that mismatched feature

embeddings from the source domain and target domain will fail the agent behaviors, while adding the trained

fusion layer, the agent could recover the task successful rate.
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Figure 5.17: New imitation learning network in CARLA. The image module consists of 8 CNN and 2 FCN.
The speed feature is generated from 2 FCN. The policy module consists of 3 FCN that process the feature
concatenated from image and speed.

5.3.2 CARLA Autonomous Driving

Imitation Learning The original imitation learning on CARLA [26] uses both image-based state

and extra commands to derive the driving policy. The extra command is a given inner state used to guide the

action. Our experiment aims to verify the policy sensitivity with the environment changing, and thereby we

use unconditional imitation learning that uses pure image as state. It turns out that generalization becomes

more challenging than original the CARLA experiment since we only use one policy network to predict action

without extra commands.

Our network model is shown in Figure 5.17, which includes image representation module and policy

module. The input state contains current frame of the observed image and car speed. The representation

module consists of 8 convolution network layers and 2 fully connected network layers, with each layer followed

by batch normalization [60]. The output of the policy module contains steer, brake, and accelerator, which

are all continues variables. Additionally, we feed the policy module with the image module output to get

predicted speed, using predicted speed as an auxiliary loss to capture vehicle dynamics. The detailed network

architecture and model parameters are shown in Table 5.7:

Data Generation In CARLA simulator, we mix 11 straight trails and 5 one-curve trails from Town01

as one episode. Every trail has a certain start point and end point. We selected two similar kinds of weather

as a group and the data was collected with the autopilot mode. We log all of the actions using the currently

observed RGB images (we resize the image as 88 × 200) and current speed to build the datasets. In order to

obtain a diverse state, we also applied a random triangular noise on the steer input. We selected three sets of

environments for examining domain transfer: sunny noon, rainy noon, and sunset. The samples are shown in

Figure 5.18. The agent is trained on sunny noon environment and transfered to rainy and sunset environments.
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layer filter size strides input size output size
Conv 5 × 5 × 32 2 88 × 200 × 3 44 × 100 × 32
Conv 3 × 3 × 32 1 44 × 100 × 32 44 × 100 × 32
Conv 3 × 3 × 64 2 44 × 100 × 32 22 × 50 × 64
Conv 3 × 3 × 64 1 22 × 50 × 64 22 × 50 × 64
Conv 3 × 3 × 128 2 22 × 50 × 64 11 × 25 × 128
Conv 3 × 3 × 128 1 11 × 25 × 128 11 × 25 × 128
Conv 3 × 3 × 256 1 11 × 25 × 128 11 × 25 × 256
Conv 3 × 3 × 256 1 11 × 25 × 256 11 × 25 × 256
FC 512 - 1,024 512
FC 512 - 512 512
FC 3 - 512 3

Table 5.7: Model parameters for CARLA experiments

It is a challenging task since the rainy environment consists of many water reflection effects and the sunset

contains glare sunshine, and the agent model is not trained on any of these environment conditions.

(a) Sunny noon (a) Rainy noon (a) Sunset

Figure 5.18: Environment samples from three different domains in CARLA

Environment Domain Transfer Evaluation We used the sunset environment as the source domain

and rainy environment as the target domain. To train the mapping function via adversarial learning for two

different domains, we randomly selected 50,000 images and submitted them to the pre-trained network to

obtain its corresponding image embeddings. We evaluated different learning algorithms for the mapping

function as shown in Table 5.8.

Performance Analysis As seen in the 1st row of Table 5.8, when the representation module and

policy module are merged without feature alignment, the agent significantly fails due to the mismatched feature

representation. WAL+CNN outperforms all other methods, which suggests that the algorithm is effective when

using both embedding structure and extra feature information from the CNN in the discriminator. We also find

that the fine-tuning step using CSLS degrades the performance.

In order to compare the performance between supervised learning and adversarial learning, we also

use a robot policy to collect image embeddings in two different domains, since the policy of the environment

robot does not depend on the visual input. The collected data has one-to-one mapping correspondences, and
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we build a paired dictionary for supervised learning. The WAL+CNN still outperforms supervised learning in

a marginal way.

We observe that the WAL+PC method failed

(a) without alignment (b) with WAL+PC alignment

Figure 5.19: The mapping from source domain to taret
domain in CARLA.

all the evaluation scenarios. To investigate the what

causes the WAL+PC to fail, we visualize the t-SNE

plot before and after WAL+PC alignment as shown

in Figure 5.19. The results show that the feature

alignment effectively matches the embedding struc-

ture from the two domains, but miss-classifies the

semantic meaning of both embeddings. This obser-

vation suggests that the extra CNN feature is neces-

sary when two domain embeddings have different structures.

Figure 5.20: Source domain image samples and its corresponding aligned target domain images. The first and
third rows are sunset environment images (source domain), the second and fourth rows are nearest neighbor
images in the rainy environment (target domain).

To visualize the effectiveness of WAL+CNN, we plot the sample images from the mapped source

domain to its target domain as shown in Figure 5.20. The result shows that the mapped images at the target

domain is almost the same as the source domain but in different weather conditions, and the result suggest that

the trained fusion layer finds the relatively good mapping function that align features from different space.

5.4 Summary

In this chapter, we first demonstrated the experiment results of the GVIN. We show that GVIN

generalizes both regular and irregular graph structures, and episodic Q learning stabilizes the training process

of GVIN with faster convergence compared with TD learning. Also, we demonstrated good scale generalization

of GVIN, that is the training and testing graph has different number of vertices and edges.
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Policy Model
% of success fully
reaching the goal

% of distance
finishing the trail

% of distance before
outside the road

source without alignment 0.00% 28.71% 6.00%
source WAL 40.91% 69.58% 57.33%
source WAL+PC 0.00% 52.82% 6.69%
source WAL+CNN 54.55% 71.43% 100%
source WAL+CNN+refine 31.82% 63.93% 60.56%
robot WAL+CNN 45.45% 59.96% 19.99%
robot supervised 40.91% 53.54% 39.74%

target without alignment 100% 100% 100%

Table 5.8: Performance Comparison on CARLA Environment

We also presented how design factors of GEM-F affect the classification performance. Our study

showed that the warping function significantly influences the overall performance. The walk length in the

node proximity function significantly influences the overall performance, and the walk memory factor slightly

influences the performance while introducing extra computational cost; see Figure 5.9.

Finally, we evaluate the domain alignment in CIFAR-10 with different networks, our results suggest

that when two domain has a similar structure, pre-clustering and feature diversity can both effectively capture

the domain mapping relations. In addition, we demonstrate domain alignment in CARLA experiment, our

results show that the feature diversity maintains consistent performance while pre-clustering failed, which

indicates that adding extra CNN in discriminator is necessary.
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Chapter 6

Conclusions and Discussion

In this final chapter, we summarize the dissertation investigations, highlight the important contri-

butions, and provide future research directions. The chapter is organized as follows: Section 1 provides

chapter-wise summaries with key dissertation research findings. We then discuss the connection between

state-of-the-art GCNN architectures and GVIN, where we highlight the GVIN contributions with its pros and

cons. The primary contributions and research outcomes are listed in Section 3. Finally, Section 4 closes with

directions for future work and unsolved open questions.

6.1 Dissertation Summary

The research presented in this doctoral manuscript aims to address two fundamental challenges

facing the Machine Learning community today: 1) How can we incorporate graph information with features

for control problems and classifications; and 2) How to transfer domain features automatically by using

light-weight computations. Chapter 1 initializes the research with observations from DRL, listing several DRL

limitations and current proposals. Based on these limitations, we summarize that current methods lack a graph

representation for the model, and we propose to combine the neural network with graph representation for

learning, inference, and planning.

Chapter 2 introduces the background knowledge regarding Machine Learning, DL, generative models,

and DRL. In Machine Learning, several fundamentals such as supervised learning, unsupervised learning are

discussed, and we show a general Machine Learning perspective that converts learning as an optimization

problem. Then we discuss some popular DL architectures used by different data representations. Also, we
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review the deep generative model and specifically discuss VAE and GAN. Additionally, we go over basic RL

concepts and compare its differences with control theory, and three types of model-free RL are listed. Lastly,

we review the recent proposed graph convolution.

Chapter 3 demonstrates the main contributions of this thesis: 1) our first work investigates the GVIN

architecture based on graph convolution that is capable of both regular and irregular graph navigation and

impressive scale generalization. We then develop three novel convolution kernels that are fully differentiable.

We employ the Monte-Carlo control, episodic Q-learning, to improve the performance of RL. 2) we design

a general graph embedding framework GEM-F that decomposes the graph embedding problem into three

functions: warping function, loss function, and node proximity function. Based on GEM-F, we propose the

WarpMap algorithm which is up to 6x faster than DeepWalk and Node2Vec, and the algorithm scales linearly.

3) we propose a fusion layer that aligns two domain feature representations into the same space. The fusion

layer is trained with adversarial learning, for which we propose two methods to enhance the training procedure.

In Chapter 5, we list three experiment sections that correspond to the sections in Chapter 3. For GVIN,

our first experiment uses the same settings as VIN, which is a 2D maze navigation. This experiment shows that

GVIN also generalizes for image based inputs. The second experiment demonstrates planning on an irregular

graph, which verifies that GVIN can plan on an unseen irregular structure. The final experiment demonstrates

the impressive scale generalization, where we train the agent on randomly generated 10-vertices graphs and

execute planning on real world street maps. The agent successfully demonstrates good generalization.

In graph embedding, our experiments examine different scale datasets including small scale graphs

(277 nodes) to very large graphs (3,774,768 nodes). Our experiments verify the effectiveness of each of

the design factors, showing that the walk length and non-linearity of the warping function play key roles for

overall performance gain (accuracy and computational efficiency).

In domain alignment for transfer learning, our first experiment is tested upon the CIFAR-10 image

dataset by aligning two different feature spaces from the VGG-19 and ResNet-18 networks, showing that both

feature diversity and pre-clustering enhancement are more robust compared with the original GAN. Our second

experiment demonstrates that using domain alignment in a controlled setting with the CARLA simulator, we

can successfully transfer the policy between different simulated environments.
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6.2 Contributions and Outcomes

With the preceding discussions as a summary, the key objectives addressed by this dissertation

research can summarized as:

1. Development of GVIN that involves a graph convolution operator for planning. We show that graph

convolution is not only flexible for solving the inference problem, but also could be used for the planning

problem.

2. Development of three different graph convolution kernel functions, and demonstrating that the embed-

ding based kernel outperforms other methods marginally, see Table 5.3.

3. Indicating the connection between GVIN and GCNN. We highlight correspondences of each components

between GVIN and GCNN, showing that GVIN is a subset configuration of GCNN.

4. Demonstration of the effectiveness of training the planning module episodically, see Figure 5.2

5. Development of the GEM-F framework, where previous embedding algorithms can be viewed each as a

special case, see Table 3.1.

6. Development of the WarpMap algorithm based on GEM-F; the algorithm is computationally efficient

and scales linearly (Figure 5.15).

7. Theoretical and empirical analysis of the graph embedding design factors. The warping function

and walk length in the node proximity function significantly influence the overall performance; the

exponential warping function consistently re-scales to the distribution of the proximity matrix to be

symmetric and optimizes the performance (see Figure 5.10). The walk memory factor slightly influences

the performance while introducing extra computational cost (see Figure 5.9).

8. Development of adversarial learning for domain alignment based on Wasserstein distance; proposing

two variations to improve the model robustness and avoid model collapse issues.

9. Demonstration of domain alignment, showing that feature diversity can both effectively capture the

semantic meaning of the image, offering significant performance gain (see Table 5.6).
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6.3 Further Work

The research presented in this thesis also opens several potential future research topics which are

discussed below:

1. Graph Generative Model — Even though GCNN shows impressive reasoning and generalization on

different tasks, one typical question is, where does the graph come from? In our experimental settings,

we assume that the graph is pre-given, such as social network or map information. However, in real

world sensor data such as images, audio, text, etc., it is still an open question of how to convert these

high-dimensional non-structured datasets to a graph. In PGM, one possible approach is the use of

structure learning, which treats the graph structure as a random variable, then the graph structure can

be obtained via inference. Nevertheless, structure learning has two drawbacks: 1) the derived graph is

commonly meaningless, lacking insights into the information structure; and 2) structure learning does

not generalize to different tasks, where each task has its own graph representation. Future work includes

a graph generative model that adaptively generates graphs conditioned upon incoming information.

Based on the generated graph, the future work should also address the interpretablility of the prediction

results.

2. General Framework for Reinforcement Learning and Inference — According to the discussion in

Subsection 3.1.6, GCNN could be potentially used for both inference and RL tasks. Suggested future

work includes proposing a general framework that takes advantage of the differentiable property in

neural networks and apply it to diverse applications, e.g., natural language understanding. Furthermore,

potential future work should explore combining the GCNN with Bayesian inference, allowing the model

to make decisions based on uncertainty instead of point estimation. Finally, future work should also

conduct investigations regarding the causality between variables instead of solely conventional statistics

correlation, and this could be further extended to generate a casual graph for inference.

3. Hierarchy Graph Embedding — Our world knowledge is commonly represented in a hierarchical way,

but most graph embedding algorithms miss considerations on hierarchical embedding. One possible

method [90] maps the information into hyperbolic space instead of Euclidean space. Hyperbolic

geometry can be intuitively viewed as a continues version of the tree structure, but in many cases,

knowledge may share properties such that it is not limited to the tree structure. Further study should

cover the multi-relation among entities, and the study can be potentially further extended to GCNN for
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hierarchy RL and continual learning (also known as the catastrophic forgetting problem).
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