44 research outputs found

    On the Computational Power of Radio Channels

    Get PDF
    Radio networks can be a challenging platform for which to develop distributed algorithms, because the network nodes must contend for a shared channel. In some cases, though, the shared medium is an advantage rather than a disadvantage: for example, many radio network algorithms cleverly use the shared channel to approximate the degree of a node, or estimate the contention. In this paper we ask how far the inherent power of a shared radio channel goes, and whether it can efficiently compute "classicaly hard" functions such as Majority, Approximate Sum, and Parity. Using techniques from circuit complexity, we show that in many cases, the answer is "no". We show that simple radio channels, such as the beeping model or the channel with collision-detection, can be approximated by a low-degree polynomial, which makes them subject to known lower bounds on functions such as Parity and Majority; we obtain round lower bounds of the form Omega(n^{delta}) on these functions, for delta in (0,1). Next, we use the technique of random restrictions, used to prove AC^0 lower bounds, to prove a tight lower bound of Omega(1/epsilon^2) on computing a (1 +/- epsilon)-approximation to the sum of the nodes\u27 inputs. Our techniques are general, and apply to many types of radio channels studied in the literature

    Non-Malleable Codes for Small-Depth Circuits

    Get PDF
    We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e. AC0\mathsf{AC^0} tampering functions), our codes have codeword length n=k1+o(1)n = k^{1+o(1)} for a kk-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay and Li (STOC 2017), which had codeword length 2O(k)2^{O(\sqrt{k})}. Our construction remains efficient for circuit depths as large as Θ(log(n)/loglog(n))\Theta(\log(n)/\log\log(n)) (indeed, our codeword length remains nk1+ϵ)n\leq k^{1+\epsilon}), and extending our result beyond this would require separating P\mathsf{P} from NC1\mathsf{NC^1}. We obtain our codes via a new efficient non-malleable reduction from small-depth tampering to split-state tampering. A novel aspect of our work is the incorporation of techniques from unconditional derandomization into the framework of non-malleable reductions. In particular, a key ingredient in our analysis is a recent pseudorandom switching lemma of Trevisan and Xue (CCC 2013), a derandomization of the influential switching lemma from circuit complexity; the randomness-efficiency of this switching lemma translates into the rate-efficiency of our codes via our non-malleable reduction.Comment: 26 pages, 4 figure

    Affine Extractors and AC0-Parity

    Get PDF
    We study a simple and general template for constructing affine extractors by composing a linear transformation with resilient functions. Using this we show that good affine extractors can be computed by non-explicit circuits of various types, including AC0-Xor circuits: AC0 circuits with a layer of parity gates at the input. We also show that one-sided extractors can be computed by small DNF-Xor circuits, and separate these circuits from other well-studied classes. As a further motivation for studying DNF-Xor circuits we show that if they can approximate inner product then small AC0-Xor circuits can compute it exactly - a long-standing open problem

    Provably Secure Cryptographic Constructions

    Get PDF

    A Unified Method for Placing Problems in Polylogarithmic Depth

    Get PDF
    In this work we consider the term evaluation problem which is, given a term over some algebra and a valid input to the term, computing the value of the term on that input. In contrast to previous methods we allow the algebra to be completely general and consider the problem of obtaining an efficient upper bound for this problem. Many variants of the problems where the algebra is well behaved have been studied. For example, the problem over the Boolean semiring or over the semiring (N,+,*). We extend this line of work. Our efficient term evaluation algorithm then serves as a tool for obtaining polylogarithmic depth upper bounds for various well-studied problems. To demonstrate the utility of our result we show new bounds and reprove known results for a large spectrum of problems. In particular, the applications of the algorithm we consider include (but are not restricted to) arithmetic formula evaluation, word problems for tree and visibly pushdown automata, and various problems related to bounded tree-width and clique-width graphs

    Lower Bounds on Interactive Compressibility by Constant-Depth Circuits

    Get PDF
    We formulate a new connection between instance compressibility [HN10]), where the compressor uses circuits from a class C, and correlation with circuits in C. We use this connection to prove the first lower bounds on general probabilistic multi-round instance compression. We show that there is no probabilistic multi-round compression protocol for Parity in which the computationally bounded party uses a non-uniform AC 0-circuit and transmits at most n/(log(n)) ω(1) bits. This result is tight, and strengthens results of Dubrov and Ishai [DI06]. We also show that a similar lower bound holds for Majority. We also consider the question of round separation, i.e., whether for each r � 1, there are functions which can be compressed better with r rounds of compression than with r − 1 rounds. We answer this question affirmatively for compression using constant-depth polynomial-size circuits. Finally, we prove the first non-trivial lower bounds for 1-round compressibility of Parity by polynomial size ACC 0 [p] circuits where p is an odd prime

    Tight Bounds on the Fourier Spectrum of AC0

    Get PDF
    We show that AC^0 circuits on n variables with depth d and size m have at most 2^{-Omega(k/log^{d-1} m)} of their Fourier mass at level k or above. Our proof builds on a previous result by Hastad (SICOMP, 2014) who proved this bound for the special case k=n. Our result improves the seminal result of Linial, Mansour and Nisan (JACM, 1993) and is tight up to the constants hidden in the Omega notation. As an application, we improve Braverman\u27s celebrated result (JACM, 2010). Braverman showed that any r(m,d,epsilon)-wise independent distribution epsilon-fools AC^0 circuits of size m and depth d, for r(m,d,epsilon) = O(log(m/epsilon))^{2d^2+7d+3}. Our improved bounds on the Fourier tails of AC^0 circuits allows us to improve this estimate to r(m,d,epsilon) = O(log(m/epsilon))^{3d+3}. In contrast, an example by Mansour (appearing in Luby and Velickovic\u27s paper - Algorithmica, 1996) shows that there is a log^{d-1}(m)log(1/epsilon)-wise independent distribution that does not epsilon-fool AC^0 circuits of size m and depth d. Hence, our result is tight up to the factor 33 in the exponent

    Stone Duality and the Substitution Principle

    Get PDF
    corecore