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Abstract
In this work we consider the term evaluation problem which is, given a term over some algebra
and a valid input to the term, computing the value of the term on that input. In contrast to
previous methods we allow the algebra to be completely general and consider the problem of
obtaining an efficient upper bound for this problem. Many variants of the problems where the
algebra is well behaved have been studied. For example, the problem over the Boolean semiring
or over the semiring (N,+,×). We extend this line of work.

Our efficient term evaluation algorithm then serves as a tool for obtaining polylogarithmic
depth upper bounds for various well-studied problems. To demonstrate the utility of our result we
show new bounds and reprove known results for a large spectrum of problems. In particular, the
applications of the algorithm we consider include (but are not restricted to) arithmetic formula
evaluation, word problems for tree and visibly pushdown automata, and various problems related
to bounded tree-width and clique-width graphs.
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1 Introduction

Background and motivation. Classically the notion of efficiently solvable problems is
defined to be the class of problems for which there are polynomial time algorithms, namely
the set of problems in the complexity class P. Over the last many decades a fine grained
study of classically efficient computation has lead to many interesting subclasses of problems
in P. One such class is a set of problems solvable using polynomially many processors which
run in parallel for at most polylogarithmic time. This class of problems is known to be NC.

There are many interesting and fundamental computational problems for which the
classical algorithms designed were inherently sequential in nature.

Owing to a series of theoretically intriguing and practically relevant discoveries we know
NC algorithms for some of these problems. That is, a fairly diverse set of problems from
the class P is known to be in NC. This raises a natural question: is P the same as NC?
That is, can any sequential algorithm be turned into an efficient parallel one? In fact, this is
one of the very central open questions in computer science. The question has implications
to many different practical aspects of computer science such as distributed computing and
parallel algorithms for large scale data (see for instance [25, 30, 38]).

∗ A full version of the paper is available at [22], https://eccc.weizmann.ac.il/report/2017/019/
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36:2 Polylogarithmic Depth Algorithms

A lot of effort has gone into understanding the relative strengths and weaknesses of P
and NC. The study of Boolean and arithmetic circuits and many interesting results proved
therein show that some specific subclasses of NC are strictly less powerful than P. (See for
instance [13, 17, 18].) This rich body of work could be thought of as attempts to separate
NC from P. On the other hand, over the last many years, surprising NC upper bounds
have been proved for problems which were previously believed to be hard to parallelize. (See
for instance [19, 28, 1, 16, 12].)

Our contributions. All these algorithmic advances raise a natural question: what makes a
problem in P to have an NC algorithm? The main goal of this work is to build a theory
which attempts to answer this question. Our main contributions are given below:

We identify similarities between a large number of parallel algorithms. We observe that
if a problem has a core tree-like structure, then it is amenable to have an NC algorithm.
We formally define the notion of the tree-like structure and demonstrate the presence of
such a structure in a large collection of problems.
Our second important contribution is to mechanise the process of coming up with a
parallel algorithm for any problem that has this tree-like structure. This can be thought
of as an algorithmic contribution stemming from our work. We demonstrate the strength
of this algorithmic technique by rediscovering many known NC upper bounds.
This is also a technically challenging part of our work. The difficulty arises because
we need an algorithm which is independent of the problem and only dependent on the
underlying tree-like structure. The structure itself is dependent on the problem: for two
seemingly unrelated problem these structures could be different. Therefore, the algorithm
has to be general, which makes as few assumptions about the structure as possible.
One caveat worth mentioning is that in some cases the tree-like structure is clear from the
problem definition and in some cases it requires some work to notice this structure. We
assume that an expert working on a specific problem may be able to notice this structure
easily for the problem of her interest and then choose to use our approach mechanically
to obtain an NC algorithm for the problem.

Significance. Over the last four decades there has been a lot of work related to design of
parallel algorithms for tree-like problems. Given below is a notable and diverse (but not
exhaustive) list of problems which have been considered in this literature.

Boolean and arithmetic term evaluation [5, 7].
Membership for language classes [26, 24, 10, 2, 21].
Evaluation of circuits with bounded tree-width [20].
Courcelle’s Theorem and counting [9, 11].
Computation of maximal cuts in bounded clique-width graphs [37].
Counting Hamiltonian paths in bounded clique-width graphs [3, 37].

Using our techniques, we reprove the above results (see the full version [22]). That is, we
give a unified way of proving all the above bounds. Moreover, we also consider variants of
the above applications and obtain parallel (NC1, NC2, SAC1, SAC2) upper bounds.

Techniques. Our approach uses algebra as a tool for obtaining the desired abstraction. An
algebra A consists of a set D and a finite set of operations {⊕1,⊕2, . . . ,⊕k}, where k is fixed.
As mentioned earlier, we focus on coming up with an efficient parallel algorithm for problems
with a tree-like structure. For this, we consider the term evaluation problem. A term is
simply a tree in which the leaves are labelled by the elements of D and the internal nodes
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are labelled by the operations. The term evaluation problem deals with evaluating the value
of the term for a given assignment of the leaves from the domain D. The main algorithmic
and technical contribution of our work is to rewrite the term T as an equivalent term T ′

whose inputs are labelled by the elements of D and the internal nodes (gates) are labelled by
the operations of an algebra F(A), which is an extended algebra derived from A. Moreover,
if T has size s then T ′ has size poly(s) and depth O(log s)1.

This result is our primary algorithmic contribution. It may be thought of as a meta
theorem for the general term evaluation problem. Using this result we obtain NC upper
bounds as follows: say Π is a problem for which we need to design an NC algorithm. For a
given Π, we show that solving Π is equivalent to evaluating a term TΠ over an appropriately
defined algebra AΠ. Now, using the above result, we get a log-depth term over the operations
of F(AΠ). We then observe that each operation in F(AΠ) is easy to evaluate. Note that for
a given problem Π, there may be many AΠ one could design. It is not necessary for every
choice of AΠ, the corresponding F(AΠ) has operations which are easy to evaluate. This part
is sensitive to the choice of AΠ. However, the main result stated above is independent of Π.

The known NC algorithms can be thought of as algorithms which transform TΠ to T ′Π
for a particular Π. What we manage to do here is to obtain a transformation from T to T ′,
irrespective of any specific Π (and hence a specific AΠ). This approach allows us to unify
many known results by noticing that each had to its core a term evaluation problem over an
algebra. The following are the main technical contributions in this result: (i) the algebraic
notions defined and used for the abstraction, and (ii) the definition of the extended algebra
F(A). The notion of an extended algebra is intricate and crucial in the algorithm design.

Related work. Our algorithm for the term evaluation problem fits in the long chain of
contributions dedicated to the term evaluation problem. The origin of which can be vaguely
traced back to the investigation of upper bounds for the Boolean formula value problem.
In [27] Lynch studied it first and achieved a log-space upper bound. Subsequently Cook
conjectured that this bound is tight [8] which, as we know today, is not (unless log space equals
log depth). Earlier, a way to deal with formulas that are very deep trees was investigated by
Spira [33]: by a quadratic increase in size, we can balance a Boolean formula. Brent built
upon this work [4]. Going from balancing to obtaining an NC (in fact NC1, i.e. log-depth)
upper bound is not tough. It is known that if the transformation can be done in NC1, the
evaluation is in NC1.

Cook and Gupta [15] as well as Ramachandran [31] were the next in line who showed that
O(logn log logn) deep circuits suffice for evaluating formulas. Based on [15], Buss showed
an ALOGTIME bound [5] which equals logarithmic depth [32] and is known to be tight.
His proof utilized a sophisticated two-player pebbling game. From there on the research
proceeded in the direction of broadening the scope of the result. This continued research is
always rooted in the work of [15] and [5]. Many other interesting works have contributed to
this rich line of research, each solving the term evaluation problem over a specific algebra [29],
[10], [23], [21].

Subsequent work. Closely related to our work is a very recent work of Ganardi and
Lohrey [14] which uses the notion of algebras, terms and extended algebras (i.e. A, T,F(A))

1 Please refer to [36] for definitions of circuits, size and depth notions for terms and circuits and circuits
with gates coming from an algebra. Also, the size can in fact be bounded by O(s), but that is not
crucial here.
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and shows optimal upper bounds on the size of the NC circuits obtained for some of the
problems considered here. This is an interesting piece of follow up work, which improves
on the size of the circuits (to O(n/ logn)) for some of the problems and uses some of the
machinery developed here.

Organization. We give the details regarding the term evaluation problem in Section 3. We
present the relevant preliminaries and some definitions in Section 2. Finally the discussion
regarding the applications of the term evaluation algorithm is provided in Section 4.

2 Preliminaries: notations and definitions

As mentioned before, the term evaluation problem that we deal with here is over a very
general algebraic structure. In the literature, the term evaluation problem has been studied
with respect to specific algebras. However, as our main goal here is to give a unified approach
to solve the general term evaluation problem, we define algebraic structures which are as
general as possible. We also define circuits (and terms) which operate over these algebraic
structures and we formalize the notation of semantics for such circuits (and resp. terms).

To the best of our knowledge, the definitions appearing here have not been stated in this
form in any other literature in the series of works related to the term evaluation problem. In
that sense, they are new. However, some of the definitions are in fact generalizations/ab-
stractions of well-known classical notions.

2.1 Notation
The set {1, . . . , n} is denoted by [n] and {i, . . . , j} by [i, j]. The set N stands for the natural
numbers containing 0, Z for the integers, and B for the Boolean values {⊥,>}. An alphabet,
denoted as Σ, is a finite sets of letters. A word w ∈ Σ∗ is a finite sequence of letters and
hence Σ∗ is the set of all words over Σ. The ith letter of w is denoted by w(i). The length of
w is denoted by |w|. The word of length 0 is denoted by ε. A language is a subset of Σ∗.

2.2 Many-sorted signatures, circuits and terms
Operations and sorts. Below we will deal with operations which get inputs from different
domains. The distinct domains which any operation uses are called sorts. For example,
consider an operation f which has four inputs, say x1, x2, x3, x4, the first two are Boolean,
i.e. x1, x2 ∈ B and x3, x4 ∈ N. The operation f(x1, x2, x3, x4) outputs x3 × x4 if x1 AND
x2 is 1 and outputs x3

x4+1 otherwise (i.e. if x1 AND x2 is 0). Unlike a usual Boolean or
arithmetic operation, f is more complicated. The inputs of f come from different sorts of
domains, i.e. B and N. The output is over yet another domain, namely Q. Here, B,N,Q are
the three different sorts.

We define, circuits, terms and algebras which use such generalized operations and also
define the semantics for them. Towards this, we first define a many-sorted signature, which
is a generalization of the notion of arity of a Boolean or arithmetic operation.

I Definition 1 (Many-sorted signature). Given S ∈ N different sorts, a many-sorted signature
σσσ of an operation is an element of [S]∗ × [S].

A many-sorted signature σσσ is a pair of a word and a letter (w, a). The word codes the
input sorts of the operation. The length of a word |w| is the arity of the operation. E.g.
the operation f defined above has the signature (1122, 3), where the three sorts are B,N,Q
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(numbered in that order). For a operation f with signature σσσ, we write Inσσσ(f) to denote w
and Outσσσ(f) to denote a. If we have a set of operations f1, . . . , f`, with signatures σ1σ1σ1, . . . ,σ`σ`σ`
respectively, we use σ to denote the tuple (σ1σ1σ1, . . . ,σ`σ`σ`) and σ(i) to address (wi, ai). Also,
Inσ(i, j) is the jth letter of Inσ(fi). If we have an ordering on the operations f1, . . . , f`
then we simply use Inσ(i) instead of Inσ(fi). We use |σ| to denote the number of different
operations, i.e. `.

A single-sorted signature σσσ is one where |S| = 1. In this case σσσ corresponds to the
classical notion of signature assigning just an arity to the operation. For the sake of brevity,
henceforth we will simply say signature instead of many-sorted signature.

We now define a circuit which uses these operations. Suppose a gate F in the circuit is
assigned the operation f defined above. Then in such a circuit, one needs to ensure that the
first two inputs to F are Boolean, while the last two are from N. That is, only valid gate
types feed into one another. We ensure this using the notion of a signature defined above.
Formally, we define many-sorted circuits as follows.

I Definition 2 (Many-sorted circuit). For a signature σ, a many-sorted circuit over signature
σ of S sorts, n inputs and m outputs is a tuple C = (V,E,Order,Gatetype,Outputgates),
where (V,E) is a directed acyclic graph, Order : E → N is an injective map giving an order
on the edges, Gatetype : V → [|σ|]∪ {x1, . . . , xn} assigns a position of the signature or makes
it an input gate, Outputgates : {y1, . . . , ym} → V makes gates output gates, such that:

If some v ∈ V has in-degree 0 then Gatetype(v) ∈ {x1, . . . , xn} or Inσ(Gatetype(v)) = ε,
i.e. it is 0-ary.
If some v ∈ V has in-degree k > 0 then |Inσ(Gatetype(v))| = k, hence it is k-ary.
For all i ∈ [n] there exists at most one v ∈ V such that Gatetype(v) = xi
All successors of an input gate can be assigned a unique sort which is fixed by the
successor gates and the signature. Also, InC ⊆ [S]n denotes the sorts of the n input gates
and OutC ⊆ [S]m denotes the sorts of the m output gates.
For all v ∈ V , let v1, . . . v|Inσ(Gatetype(v))| be the input gates for v such that Order(vi) ≤
Order(vj) iff i ≤ j. Then Outσ(Gatetype(vi)) = Inσ(Gatetype(v), i). If vi is an input gate
then InC(j) = Inσ(Gatetype(v), i) where Gatetype(vi) = xj .

By Circσ,n,m we denote the set of circuits over σ of n inputs and m outputs.

Terms and circuits are closely related. In general, a term is a circuit which is a tree.
However in our setting additionally, a term has no input variables. Instead, the inputs are
constants from the domain given as 0-ary operations. One can think of it as the case when all
variables have already been assigned a value. Also our terms have only binary operations2.

We also consider the notion of terms with an unknown. Such terms come into play
when we decompose a given term in the term evaluation algorithm. Assume a term is to
be evaluated over a domain D (e.g. D could be B,N or Q) then a term with an unknown
evaluates to a map D→ D. Formally,

I Definition 3 (Many-sorted term, many-sorted term with an unknown). Given a many-sorted
circuit T over σ where m = 1 and (V,E) is a tree with a degree bounded by two. If n = 0
then T is a many-sorted term and if n = 1 then T is a many-sorted term with an unknown.
By Termσ we denote the set of terms over the signature3 σ and by Termσ[X] we denote the
set of terms with an unknown over σ.

2 This is no restriction as an n-ary operations can be simulated by a small set of binary operations.
3 Note that for a term to be over some signature, the signature has to admit 0-ary operations since we

need them for the leafs.
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We assume that the term (with or without an unknown) is encoded as a string over a fixed
alphabet4. We call this a linearization of a term. The details of this are presented in [22].
From now on we will not distinguish between terms and their linearizations.

2.3 Semantics: evaluation of circuits and terms without unknown
So far we have defined circuits and terms (with and without unknowns) syntactically. Now
we will give semantics for circuits and terms. Informally, the semantics of a circuit is the
tuple of functions its outputs compute and that of a term is the value which its output
evaluates to. We make this notion formal by introducing the notion of a many-sorted algebra,
which helps us assign semantics to the operations in the circuits/terms.

I Definition 4 (Many-sorted universal algebra). Given a many-sorted signature σ with S

sorts, a many-sorted universal algebra is a tuple A = ({D1, . . . ,DS},~1, . . . ,~|σ|) where
~i : DInσ(i,1)× . . .×DInσ(i,αi) → DOutσ(i) where αi = |Inσ(i)|. We call the sets Di subdomains
and the union of all subdomains D, which is the domain.

From now on we will simply say algebra instead of many-sorted universal algebra. Given
an algebra which has the same signature as a circuit and valuations for the input gates,
we can evaluate the circuit under the given algebra. Note that this in turn can be used to
evaluate terms since terms are just circuits that are trees without inputs.

I Definition 5 (Evaluation of many-sorted circuits). Given an algebra A over signature σ and
a word w ∈ Dn, the evaluation map ηA,w : Circσ,n,m → Dm is a map defined inductively for
all v ∈ V . Here, let T (v) be the maximal subcircuit of a circuit C containing all nodes from
which v is reachable.

If Gatetype(v) = xi then ηA,w(T (v)) = wi provided wi ∈ Dj implies that InC(i) = j.
Let α be the arity |Inσ(Gatetype(v))| and v1, . . . vk be the predecessors of v ordered by
their output wire order, then ηA,w(T (v)) = ~Gatetype(v)(ηA,w(T (v1)), . . . , ηA,w(T (vα))).

Let v1, . . . vm be the output gates and C a circuit, then ηA,w(C) = (ηA,w(T (v1)), . . . ,
ηA,w(T (vm))) if for all Outputgates−1(yi) = vi the following holds: OutC(i) =
Outσ(Gatetype(vi)).

2.4 Semantics: evaluation of terms with an unknown
We have now described how to evaluate terms and circuits. However, we would like to treat
terms with an unknown slightly differently. We do not give a value to the unknown but we
let this term evaluate to a function. If some algebra is given, the set of functions we can get
can be obtained from this algebra. In fact we now get a many-sorted algebra since it needs
to contain the original algebra as well as these functions. There are operations of mixed
sorts. We can e.g. combine a function D→ D and a value D.

I Definition 6 (Functional algebra). Given an algebra A = (D,~1, . . . ,~k) over a single-
sorted signature σ which only contains operations that are at most binary, the functional
algebra is defined to be F(A) = ({D, D̃}, F ), where F is a placeholder for the operations
which we will define next and D̃ ⊆ DD is the smallest set containing the identity function
and is closed under the operations in F which are the following:

All operations of A: ~1, . . . ,~k.

4 It is the usual way of encoding machines as strings.
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◦ : D̃→ D̃ which is the functional composition.
An operation for functional evaluation � : D̃× D→ D, where f � c = f(c).
For each ~i : D × D → D there are two variants: ←−~ i : D̃ × D → D̃ and −→~ : D × D̃ → D̃,
where (f←−~ ic)(x) = f(x) ~i c and (c−→~ if)(x) = c~i f(x).
For each ~i : D→ D there is ~̃i : D̃→ D̃, where (~̃if)(x) = ~if(x).

The signature of F(A) is denoted by σ(F(A)).

This definition can be lifted to arbitrary arities. The evaluation of terms with an unknown
can now be done using the previous definition. Again we use the linearization.

I Definition 7 (Evaluation of terms with an unknown). Let A = (D,~1, . . . ,~k) be an algebra
over a single-sorted signature σ with maximal operation arity of two and let F(A) be the
functional algebra of A. The evaluation map µA : Termσ[X]→ D̃ is a map defined inductively
for all i ∈ [k]:

µA(X) = id ∈ D̃,
µA(⊕if) = ~̃iµA(f) for f ∈ Termσ[X],
µA(f ⊕i t) = µA(f)←−~ iηA(t) where f ∈ Termσ[X] and t ∈ Termσ,
µA(t⊕i f) = ηA(t)−→~ iµA(f) where f ∈ Termσ[X] and t ∈ Termσ.

2.5 Interpreting classical circuit classes in this framework
In order to view the classical circuit complexity classes in this framework, we will first start
with the definitions of family of algebras and family of many-sorted circuits.

I Definition 8 (Family of algebras). A family of algebras (An)n∈N is a sequence of algebras,
where Ai = ({Dp1(i)

1 , . . . ,DpS(i)
S },~i1, . . . ,~ik) for i ∈ N and pj being polynomials for j ∈ [S]5.

Here, let us assume that the circuits have one output gate and all input gates have the
same sort6. Given an algebra A let DI and DO be the two subdomains that correspond to
the input and output values, respectively. Then a circuit Cn of n inputs realizes a function
FA(Cn) : DnI → DO. Given a family of circuits C we then get a function FA(C) = D∗I → DO.

In general, assuming a family of circuits is very powerful, so in complexity it is natural
to require that this family is computable in some complexity bound. We then speak of
uniformity. Our constructions will be DLOGTIME-uniform. (See e.g. [34] or [35] for basics
in circuit complexity.) We use our framework to define the classical Boolean version of NCi.
Here B is the Boolean algebra (B,∧,∨,¬,⊥,>).

I Definition 9 (NCi). The set NCi contains all functions FB(C), where C is a family of
circuits of signature same as B that contains circuits of polynomial size and O(logi n) depth.

Note that the bounded fan-in of the gates is ensured through the signature of B. For
defining ACi we need a different algebra to handle the unbounded fan-in gates. In fact we
need a family of algebras B∗ = (Bn)n∈N where Bi = (B,∧,∨,¬,⊥,>,∧i,∨i), ∧i : Bi → B
and ∨i : Bi → B. Hence this is an example where the difference between the members of the
families only lies in the arity of operations.

I Definition 10 (ACi). The set ACi contains all functions F(Bn)n∈N(C), where C = (Cn)n∈N
is a family of circuits that contains circuits of polynomial size, O(logi n) depth and where
Cn has the same signature as Bn.

5 Note that we are assuming a family of signatures here, rather than a single signature.
6 This is usually the case in the classical circuit complexity models and hence the assumption.
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The classes SACi we also get in a similar way as ACi; we only have to replace the
unbounded AND gates ∧i from the algebras with the bounded fan-in AND gates.

2.6 Composition of algebras and extended circuit classes
We will now define circuit classes which are variants of the previously defined classes obtained
using some algebra A. These are circuits that have Boolean gates as well as A-gates. In our
context, such circuits arise in the algorithm design stage. Therefore, we ensure by design that
in these circuits Boolean values and values of A interact via multiplexer gates defined below.

I Definition 11 (Multiplexer operation). Given a domain D, the ternary multiplexer operation
is defined as mpD : B× D× D→ D with

(b, d0, d1) 7→
{
d0 if b = 0
d1 else

.

Now we can use multiplexer operations to compose algebras which have as subalgebras
the Boolean one B and some other algebra A and they interact via multiplexer operations.

I Definition 12 (Composition of algebras). Given an algebra A = ({D1, . . . ,DS},~1, . . . ,~k),
by (B,A) we denote the algebra ({B,D1, . . . ,DS},∧,∨,¬,~1, . . . ,~k, (mpDi)i∈[S]). Given an
algebra of the form (B,A) and an algebra A′ = ({D′1, . . . ,D′|S′|},~′1, . . . ,~′k′), by ((B,A),A′)
we denote the algebra

({B,D1, . . . ,DS ,D′
1, . . . ,D′

|S′|}, ∧, ∨, ¬,~1, . . . ,~k,~′
1, . . . ,~′

k′ , (mpDi)i∈[S], (mpD′
i
)i∈[S′]).

Hence we write (B,A1, . . . ,Ak) = ((B,A1, . . . ,Ak−1),Ak) for the composition of k algebras.

Note that the previous definition also naturally carries over to families of algebras. We
can define classes similar to e.g. NCi that are enriched by some algebra. Intuitively, the
Boolean part is directing the non-Boolean part via multiplexer gates.

I Definition 13 (A-NCi, A-NCi
D). The set A-NCi

D contains all functions F(B,A)(C), where
C is a family of circuits having the same family of signatures as (B,A) that contains circuits
of polynomial size, depth logi n, inputs of D and one output of a subdomain of A. For the
special case of Boolean inputs we set A-NCi = A-NCi

B.

The class (N,+,×, 0, 1)-NC1 is in fact #NC1 and (Z,+,×, 0, 1)-NC1 is the well-studied
GapNC1. The A -NCi and A-NCi

D definitions naturally carry over to classes other than
NCi. The idea of A-NCi

D is that we allow Boolean and non-Boolean inputs which then help
in composing such circuits, i.e. the output of one circuit is the input of another one.

3 Term evaluation algorithm

Given some term and an algebra A of the same signature, what does the term evaluate to
over A? This problem is the term evaluation problem. The purpose of this section is to
prove our main theorem regarding the parallel algorithm for the term evaluation problem.

I Theorem 14 (Main Theorem). Given an algebra A of single-sorted signature σ and domain
D, the evaluation function ηA : Termσ → D can be computed in F(A)-NC1. Moreover, the
construction ensures that the we get a DLOGTIME-uniform F(A)-NC1 circuit family.
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Note that the theorem and its proof are independent of the actual algebra A. The
algebra can be arbitrary, with no restrictions such as commutativity or associativity on the
operations.

The rest of the section is devoted to proving the above theorem. Many details are omitted
in the this version due to shortage of space. (See [22] for those details.)

3.1 Representing terms in a normal form
Recall that we assume without loss of generality that all the operations used in the terms
are binary. A term (φ~ ψ), where φ and ψ are also terms, is in infix notation. If φ′ and ψ′
are the equivalent postfix notations for terms φ and ψ, then φ′ψ′~ is the postfix equivalent
of (φ~ ψ). Note that parentheses are not needed in the postfix notation.

A postfix term is in postfix normal form (PNF) if for subterms φ and ψ of φψ~, |φ| ≥ |ψ|.
This normal-form was defined by Buss to design an NC algorithm [5] for evaluating Boolean
formulas. Our algorithm has its roots in this and other related works [7, 15]. We are aware
of a simplified version [6] of [5] which directly operates on the infix notation, however we use
PNF as that is more convenient here. The details of how the given term is converted into
the PNF form can be found in [22]. A crucial property of a term in PNF is that it always
has suffixes that are open terms, which correspond to terms with an unknown.

3.2 Dividing terms: some structural lemmas regarding terms
Let T be a term given as a string of length n in PNF. Let [l, r] be a subinterval. The size of
the interval is s = r − l + 1. Typically, an interval is specified by l and r and additionally
a position m which is approximately the middle position. It is either can be bl + s

2c or
dl + s

2e. Its exact position is not decided a priori, but comes through a recursive evaluation
of subintervals of [l, r]. We also use interval borders l′ = bl + s

3c and r
′ = dl + 2s

3 e. This
divides the interval [l, r] in approximately thirds. We not only consider the three intervals
but also the intervals obtained by concatenating first two thirds and the second two thirds.
These five intervals will be our recursion intervals. Based on those static intervals we define
some dynamic intervals, i.e. intervals depending on the specific input:

The largest closed or open subterm in [l, r] that contains m. This interval is denoted as
M(l,m, r) = [M1(l,m, r),M2(l,m, r)].
The open subterm in [l, r] that begins with max{p | l ≤ p ≤ m∧l−1 <T p−1∧l−1 6<T p}
and ends with the largest position q ∈ [m, r] such that [p, q] is an open subterm. This
interval is denoted as N (l,m, r) = [N 1(l,m, r),N 2(l,m, r)].
The largest open subterm in [l, r] that precedesM(l,m, r). This interval is denoted as
L(l,m, r) = [L1(l,m, r),L2(l,m, r)]. It is L2(l,m, r) + 1 =M1(l,m, r).
The largest open subterm in [l, r] that follows [M1(l,m, r),M2(l,m, r) + 1]. This interval
is denoted as R(l,m, r) = [R1(l,m, r),R2(l,m, r)]. It is R1(l,m, r) − 2 = M2(l,m, r)
andM2(l,m, r) + 1 is a binary operation symbol. If this operation exists, we denote the
set containing its position by O(l,m, r) = {M2(l,m, r) + 1}.

If values of (l,m, r) are clear from the context, we drop them. Note that anM interval
could correspond to an open or a closed term. The N , R intervals always correspond, by
definition, to open terms. (That is the only way we use them in the algorithm.) The L
interval is also defined to be open however even if we allowed it to be closed, it can only be
an open term. This is because it is strictly shorter thanM∪N and does not contain the
complete second operand of O. Figure 1 shows the considered intervals. The intervals might
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. . . . . .l l′ m r′ r

M(l, l′, r′ − 1)
M(l′ + 1,m, r′ − 1)

M(l′ + 1, r′, r)
N (l′ + 1, r′, r)

L R

Figure 1 The figure shows how a recursion interval is subdivided into smaller recursion intervals.
In this case the subdivision for computing M(l, m, r) is shown. The six intervals yield recursively six
values which may be used to be combined in order to get the evaluation of the M(l, m, r) interval.

be empty. Note that the intervals are well-defined. We now state some properties (see proofs
in the full version [22]) regarding these intervals.

I Lemma 15. Given intervals [p1, q1] ⊆ [l, r] and [p2, q2] ⊆ [l, r] which address closed or
open terms with [p1, q1] ∩ [p2, q2] 6= ∅ then [p1, q1] ∪ [p2, q2] is also a closed or open term.

I Lemma 16. It holdsM2 = N 2 andM2(l, l′, r′ − 1) + 1 = N 1(l′ + 1, r′, r).

The key lemmas which later constitute the recursive evaluation algorithm are given below.
They show how the algorithm actually composes a term by subterms coming from static
subintervals. For instance, Figure 1 shows the subintervals relevant for the next lemma.

I Lemma 17. Given a term T and subinterval [l, r] with middle m, M equals one of the
following intervals: 1. M(l, l′, r′ − 1), 2. M(l′ + 1, r′, r), 3. M(l′ + 1,m, r′ − 1),
4. M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r),
5. L(l,m, r) ∪ M(l, l′, r′ − 1) ∪ N (l′ + 1, r′, r) ∪ O(l,m, r) ∪ R(l,m, r). Further the sets
involved in the unions of case 4 and 5 are disjoint unions.

In a very similar way we can treat N as well.

I Lemma 18. Given a term T and subinterval [l, r] with middle m, N equals one of the
following intervals: 1. N (l, l′, r′ − 1), 2. N (l′ + 1, r′, r), 3. N (l′ + 1,m, r′ − 1),
4. N (l, l′, r′ − 1) ∪N (l′ + 1, r′, r),
5. N (l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪O(l,m, r) ∪R(l,m, r). Further the sets involved in the
unions of case 4 and 5 are disjoint.

The intervalsM and N are built around the property of containing a middle position m.
The intervals L and R are different. They can lie arbitrarily in [l, l′ − 1] resp. [r′ + 1, r] and
we initially do not know anything about the location of the middle points. Our goal is to
reduce L and R to someM(l̄, m̄, r̄) where find l̄, m̄, and r̄ using a binary search.

I Lemma 19. Given a term T and subinterval [l, r] with middle m, there is an interval
[l̄, r̄] ⊆ [l, l′ − 1] with middle m̄ such that L =M(l̄, m̄, r̄) and this m̄ can be computed by a
binary search inside an appropriate range defined by l,m, r.

I Lemma 20. Given a term T and subinterval [l, r] with middle m there is an interval
[l̄, r̄] ⊆ [r′+1, r] with middle m̄ such that R =M(l̄, m̄, r̄) and m̄ can be computed by a binary
search inside an appropriate range defined by l,m, r.
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3.3 The evaluation algorithm
The algorithm we present is a recursive one which is given in terms of circuits. Lemmas 17,
18, 19, and 20 directly suggest how the recursive evaluation will work: to evaluate an interval
compute smaller fixed subintervals and use their evaluations to obtain the overall evaluation.

In particular, we proceed as follows: we wish to computeM(1, bn/2c, n). In order to do
that, we design a procedure called Eval, which at any given stage of recursion receives as
input anM,N ,L or an R interval along with the current values of l,m, r.

If it is anM or an N interval then the procedure first determines which among the five
cases applies for the subsequent recursion call. By cases, we mean the five possibilities listed
in Lemmas 17, 18. Moreover, if it is anM interval then it also determines whether the term
defined by it is an open term or a closed term and keeps that information in a local flag.
(Say the flag is by default set to 0 and then it is toggled to 1 if the term is closed.)

If it is an L or an R interval then it first computes the appropriate l̄, r̄ and m̄ values and
makes recursive calls for the appropriateM interval defined using these l̄, r̄, m̄ values.

Finally, once the recurive calls return the values, the Eval procedure combines these
values. If the flag is set to 1 then we know that the current call is dealing with a closed term
and therefore, the procedure outputs an evaluated value. On the other hand, if the flag is
false, the procedure outputs a function from D→ D.

For the evaluation we need to implement circuits which on a given interval [l, r] evaluate
the intervals M, N , L, and R. In the case of M we need to distinguish whether the
evaluation is a value of D or a function of D̃. In the other cases the result is always a function.
Correspondingly, the following circuits may arise: Eval(M(l,m, r)), Eval(N (l,m, r)),
Eval(L(l,m, r), l̄, m̄, r̄), Eval(R(l,m, r), l̄, m̄, r̄).

The variables l̄, m̄, r̄ exist to serve the binary search as mentioned in Lemma 19 and 20.
Those circuits all work in a similar way: Depending on the structure of the term

one of a number of cases holds which determines how the output value is composed
of the recursion results. So the recursion results are combined according to the cases
and then fed into a multiplexer-gate which chooses the correct output. The circuits de-
termining the cases are called Case(M(l,m, r)), Case(N (l,m, r)), Case(L(l,m, r), l̄, m̄, r̄),
Case(R(l,m, r), l̄, m̄, r̄).

Here we have already assumed that the term is given in the PNF form. To ensure this, as
the first step we perform this conversion to the PNF form as done in [5]. The conversion is
of complexity TC0. The resulting term is T as above. The details of the working of various
recursive calls and the claimed complexity bounds are presented in the full version [22].

4 Application

Our main theorem can be used for many different applications. We first present a template
or recipe used for deriving these applications. It consists of the following steps:
1. Find an algebra A. Given a problem Π, which could be a language or a function, find

an algebra AΠ = (D,~1, . . . ,~k), such that Π reduces to term evaluation over AΠ.
2. Find a coding for F(AΠ). Now we know by our main theorem that Π is in F(AΠ)-NC1.

However what we want is a “real” class like NC1 or #SAC7. Hence we encode F(AΠ)
in a way that we end up with a Boolean or an arithmetic class. So find a code c mapping
(details in [22]) into a family of algebras, that have domains based on B, N, or Z, depending
on whether we wish to prove Boolean or arithmetic circuit upper bounds.

3. Analyze the complexity of the operations used in c(F(AΠ))-NC1. Now we know
that Π is in c(F(AΠ))-NC1 since the coding admits a reduction. If we have chosen c
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well, we can implement the operations of c(F(AΠ)) efficiently. Note that c(F(AΠ)) could
be a family. The members of the family all contain the following coded operations:

The operations of AΠ: ~c1 . . .~ck.
The functional versions for each binary operation ~i:

←−
~ c
i and −→~ c

i . Recall that
←−
~ i : DD × D→ DD and −→~ i : D× DD → DD.
The functional versions for each unary operation ~i which is ~̃ci : DD → DD.
The functional composition of F(AΠ): ◦c : DD × DD → DD.
The function application operation of F(AΠ): �c : DD × D→ D.

An algebra usually also has 0-ary operations, but here there is no complexity to analyze.
The following is not a part of the algebra but comes into play in the construction of the
c(F(AΠ))-NC1 circuits: Multiplexer operations for all subdomains D of c(F(AΠ)): mpD.
These operations are used in the c(F(AΠ))-NC1 circuit as black boxes. In this third
step we have to come up with a efficient implementation of all these operations in order
to derive a good upper bound. In general, the depth increases by a logarithmic factor
when comparing the complexity of the functions and the overall circuit. So, if, say, all
the functions are in #NC1

D, then c(F(AΠ))-NC1 ⊆ #NC2.

All the applications we show follow this template. A simple application regarding
arithmetic formula evaluation is presented here. Due to lack of space, the rest of the
applications are omitted from this version. (See [22] for the other applications.)

4.1 Evaluating arithmetic terms and distributive algebras
We consider evaluating terms over N = (N,+,×, 0, 1) and Z = (Z,+,×, 0, 1).

I Theorem 21 ([7]). Evaluating terms over N (Z) is in #NC1 (GapNC1 resp.).

Proof. We give the proof for N . The case of Z is handled similarly.

step 1. The problem is directly a term evaluation problem, hence no reduction is needed.

step 2. Consider the algebra F(N ) = ({N, Ñ},+,×, 0, 1,←−+ ,
←−× ,−→+ ,

−→× , ◦,�), where Ñ ⊆ NN.
We choose a coding c such that c(N) = N and c(Ñ) = N2. The functions in Ñ are of the form
x 7→ ax + b for some a, b ∈ N: We begin with the identity function x 7→ 1x + 0 which is
clearly of this form. Now we show that the operations of F(N ) keep functions in this form.
◦c: Given some functions f(x) = afx+ bf and g(x) = agx+ bg, then f ◦ g is of this form:
x 7→ afagx+afbg + bf . So c(f ◦ g) = c(f)◦c c(g) = (af , bf )◦c (ag, bg) = (afag, afbg + bf ).
←−+ c: Consider c(f + e) for f ∈ NN and e ∈ N. Now c(f) +c c(e) = (a, b) +c e = (a, b+ e)
where f(x) = ax+ b. The operation −→+ c follows similarly.
←−× c: Consider c(f ×e) for f ∈ NN and e ∈ N. Now c(f)+c c(e) = (a, b)+c e = (a×e, b×e)
where f(x) = ax+ b. The operation −→× c follows similarly.

This shows that c is indeed a valid coding.

step 3. We now have an upper bound of c(F(B))-NC1. As all operations use constantly
many inputs of natural numbers, there exist arithmetic circuit implementations for all
operations. Further, all Boolean gates and multiplexer gates can be simulated by arithmetic
circuit constructions, so all operations are in #NC0

N. Hence we get c(F(B))-NC1 ⊆
#NC1. J

In the previous proof we used distributivity of + and × which allows us to represent
functions by two values. This we can do in general, so we get the following:
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I Theorem 22. Given a distributive algebra A = (D,~1,~2), then evaluating terms over A
is in A-NC1.

5 Discussion

We have seen that many problems that have a tree-like structure can be solved in parallel
using our term evaluation algorithm. The list of problem we covered here should indicate
the potential of the framework. We expect that there will be many more applications, which
can be derived using the unifying framework presented here.
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