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Abstract
We show that AC0 circuits on n variables with depth d and sizem have at most 2−Ω(k/ logd−1 m) of
their Fourier mass at level k or above. Our proof builds on a previous result by Håstad (SICOMP,
2014) who proved this bound for the special case k = n. Our result improves the seminal result
of Linial, Mansour and Nisan (JACM, 1993) and is tight up to the constants hidden in the Ω
notation.

As an application, we improve Braverman’s celebrated result (JACM, 2010). Braverman
showed that any r(m, d, ε)-wise independent distribution ε-fools AC0 circuits of size m and
depth d, for

r(m, d, ε) = O(log(m/ε))2d2+7d+3.

Our improved bounds on the Fourier tails of AC0 circuits allows us to improve this estimate to

r(m, d, ε) = O(log(m/ε))3d+3.

In contrast, an example by Mansour (appearing in Luby and Velickovic’s paper – Algorithmica,
1996) shows that there is a logd−1(m) · log(1/ε)-wise independent distribution that does not ε-fool
AC0 circuits of size m and depth d. Hence, our result is tight up to the factor 3 in the exponent.
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1 Introduction

In this paper we discuss Boolean circuits in which every gate computes an unbounded
fan-in OR or AND function of its inputs, and every leaf is marked with a literal from
x1, . . . , xn,¬x1, . . . ,¬xn. The number of gates in the circuit is called the circuit size and is
denoted by m. The longest path in the circuit is called the circuit depth and is denoted by d.
AC0 is the class of functions that can be realized by Boolean circuits of constant depth and
polynomial size. (We also call Boolean circuits of polynomial size and constant depth AC0

circuits).
The study of bounded depth circuits flourished in the 1980s, culminating in the tight

exp(Ω(n1/(d−1))) size lower bound for Boolean circuits of depth d computing the parity
function [2, 11, 36, 14].1 The main idea behind this lower bound was the following – Boolean

∗ Work done while the author was a student at Weizmann Institute of Science, Rehovot, Israel. Research
supported by an Adams Fellowship of the Israel Academy of Sciences and Humanities, by an ISF grant
and by the I-CORE Program of the Planning and Budgeting Committee.

1 Lower bounds for the DNF-size of the parity function were known long before [24].
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15:2 Tight Bounds on the Fourier Spectrum of AC0

circuits with size m and depth d become constant with high probability under random
restrictions keeping each variable alive with probability p = 1/O(logm)d−1. In contrast, the
parity function does not become a constant with probability at least 0.5 as long as pn ≥ 1.
Since the restricted circuit should compute the restricted function, we reach a contradiction
if m = exp(o(n1/(d−1))). The main idea is carried through a sequence of d− 1 steps, where in
each step the circuit depth is decreased by one with high probability, by applying Håstad’s
switching lemma [14].

In their seminal paper, Linial, Mansour, and Nisan [22] showed that AC0 circuits can
be learned in quasipolynomial time, nO(logd n), using random samples, under the uniform
distribution. They combined Håstad’s switching lemma with Fourier analysis, to show
that AC0 circuits may be well approximated (in L2 norm) by low degree polynomials,
namely polynomials of degree O(logd n). Boppana [6] improved their bound on the degree
to O(logd−1 n), which is optimal for constant error. The existence of an approximating low
degree polynomial implies a learning algorithm for AC0 circuits, using random examples.
For polynomial size DNFs (depth 2 circuits), Mansour [25] showed that only nO(log logn) out
of the

(
n

≤O(logn)
)
monomials are needed to approximate the DNF, and achieved a nO(log logn)

time learning algorithm for DNFs, using membership queries, via the Goldreich-Levin [12],
Kushilevitz-Mansour [21] method.

The main technical result in [22] was a bound on the Fourier tails of Boolean circuits.
Namely, for any circuit f of size m and depth d,∑

S⊆[n]:|S|≥k

f̂(S)2 ≤ m · 2−Ω(k1/d) ,

where the LHS is called the Fourier tail of f at level k. This was later improved by Håstad
[15] to∑

S⊆[n]:|S|≥k

f̂(S)2 ≤ max{2−Ω((k/ logm)1/(d−1)), 2−Ω(k/ logd−1(m))} ,

which is tight for k ≤ O(logd(m)), however not for larger values of k. Recently, Håstad [16]
and Impagliazzo, Matthews, and Paturi [18] showed that any Boolean circuit f agrees with
parity on at most a 1/2 + 2−n/O(logm)d−1 fraction of the inputs. In other words, they showed
that |f̂([n])| ≤ 2−n/O(logm)d−1 .

1.1 Our Results
Based on the main lemma of [16], we extend the results of [16, 18] for all k ∈ [0, n] and show
the following.

I Theorem 1 (Main Theorem). Let f be an Boolean circuit with depth d and size m. Then,∑
S:|S|≥k

f̂(S)2 ≤ 2 · 2−k/O(logm)d−1
.

A few things to note first. Increasing k from 0 to n, the first time that Theorem 1 is
meaningful is at k = Θ(logd−1(m)), which is only marginally better than in [22] and exactly
the same as in [6, 15]. Nonetheless, for larger values, our bound decreases much faster, and
in particular for m = poly(n) we get a 2−n/poly log(n) tail at level k = Ω(n) as opposed to a
2−Ω((n/ logn)1/(d−1)) tail by [15]. In addition, while [16] and [18] give bounds on an individual
coefficient, |f̂(S)|, we give bounds on the sum of exp(Ω(n)) many squares of coefficients (e.g.,
for k = n/2).
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We point out that the results of [16], [18], and ours are quite surprising, considering the
fact that most proofs for Boolean circuits follow by induction on the depth d; performing
d − 1 consecutive steps of Håstad’s switching lemma. Our main theorem is equivalent to
saying that degree O(logd−1(m) · log(1/ε)) polynomials ε-approximates Boolean circuits of
size m and depth d, as opposed to degree O(logd(m/ε)) polynomials by [22]. It seems at first
glance that one must pay a factor of log(m/ε) for each step in the induction to ensure error
at most ε, thus resulting in degree at least logd−1(m/ε). However, Håstad and Impagliazzo
et al. managed to avoid that. Håstad performs random restrictions keeping each variable
alive with probability p = 1/O(logm) that does not depend on ε. This only guarantee that
the switching succeeds with probability 1− 1/poly(m), as opposed to probability of 1− ε/m
in the original proof of [22]. However, in the cases where the switching “fails”, Håstad fixes
D additional variables using a decision tree of depth D. Under these additional fixings,
the probability that the switching fails reduces to m · 2−D. We show that the parameters
p and D translate into a multiplicative term of 1/p and an additive term of D in the
degree, correspondingly. Choosing D to be roughly log(m/ε) and applying induction gives
the desired dependency on m and ε.

Theorem 1 shows that the Fourier tail above level k decreases exponentially fast in k. In
Section 5, we show that such behavior is related to three other properties of concentration.
We establish many connections between these four properties, and show that three of them
are essentially equivalent. We think that these connections are of independent interest.2 As
a result of these connections we establish the following theorem.

I Theorem 2. Let f be an Boolean circuit with depth d and size m. Then,
1. For all k, p, if ρ is a p-random restriction, then Prρ[deg(f |ρ) ≥ k] ≤ O(p · logd−1(m))k.
2. For all k,∑

S:|S|=k

|f̂(S)| ≤ O(logd−1(m))k . (1)

3. f is ε-concentrated on at most 2O(log log(m)·logd−1(m)·log(1/ε)) Fourier coefficients.

In Section 6, we show that Equation (1) gives new proofs for the following known results:
Correlation bounds for the Majority function. If f is a size m depth d circuit, then
Pr[f(x) = MAJ(x)] ≤ 1

2 +O(logd−1(m))√
n

. Our result holds for logd−1(m) = O((n/ logn)1/3),
which is an artifact of the proof. This result was originally proved by Smolensky [32] (see
also [10]) and by O’Donnell and Wimmer [28], for the entire range of parameters.
Boolean circuits cannot distinguish between fair coins and coins with bias at most

1
O(logd−1(m)) . This result was previously proved by Cohen, Ganor and Raz [8], improving
the results of Aaronson [1], and Shaltiel and Viola [31].

1.2 Applications to Pseudorandomness and Learning

Since the result of [22] had many applications, our main theorem improves some of
them as well.

2 In fact, some of these connections have been already used in the context of de Morgan formulae [33].

CCC 2017



15:4 Tight Bounds on the Fourier Spectrum of AC0

k-wise independence fools bounded-depth circuits. The most significant improvement is
to the work of Braverman [7] who proved a longstanding conjecture, showing that poly-
logarithmic independent distributions fool AC0 circuits. To be more precise, Braverman
showed that any k-wise independent distribution, where k = O(log(m/ε))2d2+7d+3, ε-fools
circuits of size m and depth d. In addition, it was long known [23] that k must be larger
than Ω(logd−1(m) · log(1/ε)); otherwise, there is a k-wise independent distribution that is
ε-distinguishable from the uniform distribution by a depth d, size m circuit. Our theorem
improves Braverman’s bounds to k = O (log(m/ε))3d+3, answering an open question posed
by Braverman on the affirmative. In particular, our result is non-trivial for polynomial size
circuits of depth d ≤ 0.3 log(n)/ log log(n). Since NC1 circuits can be computed by Boolean
circuits of depth O(log(n)/ log log(n)) and polynomial size, constructing a non trivial PRG
for all d = O(log(n)/ log log(n)) is a major open challenge. While the dependence of k on m
and d is close to optimal, we conjecture that the dependence on ε could be much better.3

I Conjecture 3. Any k-wise independence ε-fools circuits of size m and depth d, for

k = (logm)O(d) · log(1/ε) .

k-wise independence fools DNFs. We improve in Section 4.2 the earlier result of Bazzi [4],
who showed that O(log2(m/ε))-wise independence ε-fools DNFs of size m. We improve the
dependence on ε and get that O(log(m) · log(m/ε))-wise independence suffices. Note that by
[23] this is optimal for ε ≤ 1/mΩ(1). The range ε ≥ 1/mo(1) is still not tightly understood.

PRGs for AC0 and DNFs. We improve the results of De et al. [9] (see Appendix C) and of
Trevisan and Xue [35] (see Appendix D) that give the best known PRGs for DNFs and AC0

circuits respectively. In the PRG of De et al., we improve the dependency of the seed-length
in ε, as seen in Figure 1. Since Trevisan and Xue used De et al.’s generator as a black-box
in their construction, we also improve the seed length of their PRG for AC0 circuits. We
observe two more improvements in the Trevisan-Xue generator to reduce the seed-length to
Õ(logd+1(m/ε) · log(n)). This seed-length comes closer to the barrier O(logd(m/ε)) noted
by [35].

Sparse polynomial approximations of Boolean circuits. Theorem 2 shows that any Boolean
circuit f of size m and depth d can be ε-approximated in L2 by a polynomial p(x) of sparsity
(logm)O(logd−1(m)·log(1/ε)), improving the results of [22] and [25]. As the inner product on
k = logd−1m variables can be realized by a size poly(m) depth d circuit, and requires at
least Ω(2k) coefficients in order to Ω(1) approximate in L2, one cannot achieve sparsity
2o(logd−1 m).
A table summarizing all of the improvements mentioned above is presented in Figure 1.

1.3 Organization
In Section 2, we lay out some preliminary definitions and results that will be used in the rest
of the paper. In Section 3, we prove our main theorem, i.e. Theorem 1. In Section 4, we
improve Braverman’s and Bazzi’s results in the field of pseudorandomness. In Section 5, we
prove Theorem 2, by relating different notions of Fourier concentration. Then, in section 6,
we use Theorem 2 to deduce simpler proofs for two known results: the inapproximability of

3 We have learned that subsequent to this work, Harsha and Srinivasan [13] proved this conjecture.
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Task Reference Bound

k-wise ind. fooling DNFs [4] k = O(log2(m/ε))

This Work k = O(log(m/ε) · log(m))

Lower Bound k ≥ log(m) · log(1/ε)

k-wise ind. fooling AC0 [7] k = O((log(m/ε))d
2+3d · (logm)d

2+4d+3)

This Work k = O
(
(log(m/ε))d · (logm)2d+3)

Lower Bound k ≥ logd−1(m) · log(1/ε)

sparse polynomial [25] sparsity = (m/ε)O(log log(m/ε)·log(1/ε))

approximating DNFs in L2 This Work sparsity = mO(log log(m)·log(1/ε))

sparse polynomial [22] sparsity = 2O(log(n)·logd(m/ε))

approximating AC0 in L2 [15] sparsity = 2O(log(n)·logd−2(m/ε)·log(m)·log(1/ε))

This Work sparsity = 2O(log log(m)·logd−1(m)·log(1/ε))

Lower Bound sparsity ≥ 2Ω(logd−1(m))

PRGs for DNFs [9] seed = O(logn+ log2(m/ε) · log log(m/ε))

This Work seed = O(logn+ log(m/ε) · log(m) · log logm)

PRGs for AC0 [35] seed = Õ(logd+4(m/ε))

This Work seed = Õ(logd+1(m/ε) · logn)

Figure 1 Summary of Applications.

the Majority function by bounded-depth circuits, and the indistinguishability of biased-coins
from uniform coins by bounded-depth circuits. In Section 7, we give a self-contained new
proof of the main lemma in the work of Håstad [16], that plays a crucial role in the proof
of Theorem 1. This serves two purposes. First, it makes the main result in our paper
self-contained. Second, in our opinion, it gives a simpler proof of Håstad’s main lemma ([16]).

In the appendices, we revisit the works of Braverman [7] (Appendix B), De et al. [9]
(Appendix C), and Trevisan and Xue [35] (Appendix D) in the field of pseudorandomness. We
show how our main results (Theorem 1 and Theorem 2) improve these results. Furthermore,
we reduce the seed-length of the PRG of [35] even further using several other observations.

2 Preliminaries

We denote by [n] = {1, . . . , n}. We denote by log and ln the logarithms in bases 2 and e,
respectively. For f : {−1, 1} → R we denote by ‖f‖p =

(
Ex∈{−1,1}n [|f(x)|p]

)1/p.
2.1 Restrictions
I Definition 4 (Restriction). Let f : {0, 1}n → {0, 1} be a Boolean function. A restriction ρ
is a vector of length n of elements from {0, 1, ∗}. We denote by f |ρ : {0, 1}n → {0, 1} the
function f restricted according to ρ, defined by

f |ρ(x) = f(y), where yi =
{
xi, ρi = ∗
ρi, otherwise

.

We say that the variable xi is fixed if ρi ∈ {0, 1}, and that xi is unassigned (or alive) if ρi = ∗.

CCC 2017



15:6 Tight Bounds on the Fourier Spectrum of AC0

Note that the function f |ρ is defined as a function with n variables, although it depends
only on the non-fixed variables. When fixing only one bit to a constant, we may denote the
restricted function by f |xi=b.

I Definition 5 (p-Random Restriction). A p-random restriction is a restriction as in Definition 4
that is sampled in the following way. For every i ∈ [n], independently, with probability p
set ρi = ∗ and with probability 1−p

2 set ρi to be −1 and 1, respectively. We denote this
distribution of restrictions by Rp.

2.2 Fourier Analysis of Boolean Functions
Any function f : {−1, 1}n → R has a unique Fourier representation:

f(x) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi ,

where the coefficients f̂(S) ∈ R are given by f̂(S) = Ex[f(x) ·
∏
i∈S xi]. Parseval’s

identity states that
∑
S f̂(S)2 = Ex[f(x)2] = ‖f‖22, and in the case that f is Boolean

(i.e., f : {−1, 1}n → {−1, 1}), all are equal to 1. The Fourier representation is the unique
multilinear polynomial which agrees with f on {−1, 1}n. We denoted by deg(f) the degree
of this polynomial, which also equals max{|S| : f̂(S) 6= 0}. We denote by

Wk[f ] ,
∑

S⊆[n],|S|=k

f̂(S)2

the Fourier weight at level k of f . Similarly, we denote W≥k[f ] ,
∑
S⊆[n],|S|≥k f̂(S)2. The

truncated Fourier expansion of degree k of f is simply f≤k(x) =
∑
|S|≤k f̂(S)

∏
i∈S xi. By

Parseval, ‖f − f≤k‖22 = W≥k+1[f ]. The following fact relates the Fourier coefficients of f
and f |ρ, where ρ is a p-random restriction.4

I Fact 6 (Proposition 4.17, [27]). Let f : {−1, 1}n → R, S ⊆ [n], and p > 0. Then,

E
ρ∼Rp

[
f̂ |ρ(S)

]
= f̂(S)p|S|

and

E
ρ∼Rp

[
f̂ |ρ(S)2

]
=
∑
U⊆[n]

f̂(U)2 · Pr
ρ∼Rp

[{i ∈ U : ρ(i) = ∗} = S] .

Summing the last equation over all sets S of size d gives the following corollary.

I Fact 7. Denote by Bin(k, p) a binomial random variable with parameters k and p. Then,

E
ρ∼Rp

[
Wd[f |ρ]

]
=

n∑
k=d

Wk[f ] ·Pr [Bin(k, p) = d] .

I Definition 8 (Fourier Sparsity, Spectral Norm). We define the sparsity of f : {−1, 1}n → R
as sparsity(f) , |{S : f̂(S) 6= 0}|; the spectral norm of f as L1(f) ,

∑
S |f̂(S)|; and the

spectral norm of the k-th level of f as L1,k(f) ,
∑
S:|S|=k |f̂(S)|.

4 Note that f̂ |ρ(S) = 0 if ρ fixes one of the variables in S.
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We state the following known fact regarding the Fourier sparsity, spectral norm and
granularity of low degree Boolean functions.

I Fact 9 (Ex. 1.11, [27]). Let f : {−1, 1}n → {−1, 1} with deg(f) = d. Then:
1. ∀S : |f̂(S)| = kS · 2−d where kS ∈ Z.
2. sparsity(f) ≤ 22d.
3. L1(f) ≤ 2d.

3 Exponentially Small Fourier Tails for Bounded Depth Circuits

We generalize the proof of Håstad ([16]), who showed that the correlation between the parity
function and any Boolean circuit of depth d and size m is at most 2−Ω(n/ logd−1(m)). This
bound is tight up to the constants in the exponent, as shown by an example in [16], and
improves upon previous bounds from [22, 15].

We will use two simple lemmata which explain the behavior of Fourier tails with respect
to random restrictions, and arbitrary restrictions.

I Lemma 10 ([22]). For any f : {−1, 1}n → R, k ∈ N ∪ {0} and p ∈ [0, 1],

W≥k[f ] ≤ 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ]

]
.

Proof. Let k ∈ N ∪ {0} and p ∈ [0, 1]. We have

E
ρ∼Rp

[
W≥bkpc[f |ρ]

]
=

∑
`≥bkpc

W`[f ] ·Pr[Bin(`, p) ≥ bkpc] (Fact 7)

≥
∑
`≥k

W`[f ] ·Pr[Bin(`, p) ≥ bkpc]

≥
∑
`≥k

W`[f ] · 1/2 (median(Bin(`, p)) ≥ b`pc ≥ bkpc, [19])

= 1/2 ·W≥k[f ]. J

The second lemma, taken from [17], states that if, for some bit, we have Fourier tail
bounds for both restrictions fixing that bit to either +1 or −1, then we have Fourier tail
bounds for the unrestricted function.

I Lemma 11 ([17]). Let f : {−1, 1}n → R and i ∈ [n]. Then,

W≥k[f ] ≤ 1
2 ·W

≥k−1[f |xi=−1] + 1
2 ·W

≥k−1[f |xi=1].

In order to generalize the last lemma, we introduce the following definition, which is very
similar to the definition of a decision tree, except we are not making any decision!

I Definition 12 (Restriction Tree). A restriction tree is a rooted directed binary tree such
that each internal node is labeled by a variable from x1, . . . , xn and has two outgoing edges:
one marked with 1 and one marked with −1. The leaves of the tree are not labeled. Each
leaf in the tree, `, corresponds to a restriction τ` on the variables x1, . . . , xn in the most
natural way: we fix the variables along the path from the root to the leaf ` according to the
values on the path edges.

Using induction, Lemma 11 implies (informally) that if, for some restriction tree, we have
Fourier tail bounds for restrictions corresponding to all root-leaf paths in the tree, then we
have Fourier tail bounds for the unrestricted function as well. The exact statement follows.

CCC 2017
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I Lemma 13. Let f : {−1, 1}n → R be a function, and let T be a restriction tree of depth
≤ D such that for any leaf `, under the corresponding restriction W≥k[f |τ`

] ≤ ε. Then,
W≥k+D[f ] ≤ ε.

Proof. Apply induction on the depth of the restriction tree. For depth 0 this obviously holds.
For depth D, consider both subtrees that are rooted by the children of the original root.
If the root queries xi, these are restriction trees for {x : xi = 1} and {x : xi = −1}, and
we may apply the induction hypothesis on each subtree to get W≥k+(D−1)[f |xi=1] ≤ ε and
W≥k+(D−1)[f |xi=−1] ≤ ε. Finally, applying Lemma 11 gives W≥k+D[f ] ≤ ε

2 + ε
2 = ε. J

Our proof relies on the main lemma in Håstad’s work [16]. We begin with a definition
from [16] and the statement of his main lemma.

I Definition 14 (Common Partial Decision Tree). A set of functions (gi)mi=1 has a common
s-partial decision tree of depth D, if there is a restriction tree of depth D such that at each
leaf ` of this restriction tree, each function gi, restricted by τ`, is computable by an ordinary
decision tree of depth s.

I Lemma 15 ([16], Lemma 3.8). Let (fi)mi=1 be a collection of depth-2 circuits, each of bottom
fan-in t. Let ρ be a random restriction from Rp. Then the probability that (fi|ρ)mi=1 is not
computable by a common log(2m)-partial decision tree of depth D is at most m · (24pt)D.

In Appendix 7 we give a new proof for Lemma 15 (with constant 49 instead of 24)
following the proof approach of [29], [5] and [34] for the original switching lemma.

We are ready to prove the Fourier tail bounds for Boolean circuits. We define the effective
size of a Boolean circuit as the number of gates in the circuit at distance 2 or more from the
inputs.

I Theorem 16. Let f be a Boolean circuit of depth d, effective size m, and bottom fan-in t.
Then, W≥k[f ] ≤ 8d−1 · 2−k/(20t(96 log(2m))d−2).

Proof. We prove by induction on d. The base case d = 2 was proved by Mansour [25], who
showed that DNFs with bottom fan-in t have

W≥k[f ] ≤ 4 · 2−k/20t .

For the induction step, we apply a p-random restriction with p = 1/48t. Consider the
gates at distance 2 from the inputs: f1, . . . , fm′ , for m′ ≤ m. These gates compute functions
given by depth-2 circuits with bottom fan-in ≤ t. Setting D = bkp/2c and using Lemma 15
gives that with probability at least 1−m · 2−D ≥ 1− 2log(m)−D over the random restrictions,
(fi|ρ)m

′

i=1 can be computed by a common log(2m)-partial decision tree of depth D. In this case,
we say that the restriction ρ is good. Using Lemma 10 we have W≥k[f ] ≤ 2 ·Eρ[W≥bkpc[f |ρ]].
Since W≥bkpc[f |ρ] is a random variable bounded in [0, 1] we have

W≥k[f ] ≤ 2 · E
ρ∼Rp

[W≥bkpc[f |ρ]]

= 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is good

]
· Pr
ρ∼Rp

[ρ is good]

+ 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is bad

]
· Pr
ρ∼Rp

[ρ is bad]

≤ 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is good

]
+ 2 · Pr

ρ∼Rp

[ρ is bad] ,

where Prρ[ρ is bad] ≤ 2log(m)−bk/96tc ≤ 2log(2m)−k/96t. Using the following simple claim, we
get Prρ[ρ is bad] ≤ 2 · 2−k/(96t log(2m)).
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I Claim 17. If 0 ≤ X ≤ 1 and X ≤ 2a−b, where a ≥ 1, then X ≤ 21−b/a.

Proof. Since 0 ≤ X ≤ 1 and a ≥ 1, we have X ≤ X1/a, and X1/a is at most 21−b/a. J

We are left to analyze E[W≥bkpc[f |ρ] | ρ is good]. Fixing ρ to be some specific good
restriction, we will bound W≥bkpc[f |ρ] for this specific ρ. By the definition of good restrictions,
we have a common log(2m)-partial decision tree of depth D = bkp/2c computing (fi|ρ)m

′

i=1.
For each leaf ` of the common partial decision tree, let τ` be the restriction defined by
the path leading to this leaf. We have that fi|ρ|τ`

for i = 1, . . . ,m′ can be expressed as a
decision tree of depth ≤ log(2m), hence as a CNF/DNF formula of bottom fan-in at most
log(2m). This means that applying the restriction ρ ◦ τ`, the circuit f collapses to a depth
d− 1 Boolean circuit with bottom fan-in t′ ≤ log(2m) and effective size at most m.5 By the
induction hypothesis, for any k′ we have W≥k′ [f |ρ|τ`

] ≤ 8d−2 · 2−Ω(k′/(t′ logd−3(2m))). Setting
k′ = bkpc −D ≥ bkp/2c ≥ k

96t − 1 and applying Lemma 13 we have

W≥bkpc[f |ρ] ≤ max
`

W≥k′ [f |ρ|τ`
] ≤ 8d−2 · 2−k

′/(20t′·(96 log(2m))d−3)

≤ 8d−2 · 21−k/(20t(96 log(2m))d−2) ,

and

W≥k[f ] ≤ 4·8d−2·2−k/(20t(96 log(2m))d−2)+4·2−k/(96t log(2m)) ≤ 8d−1·2−k/(20t(96 log(2m))d−2) .J

I Theorem 18 (Theorem 1, restated). Let f be an Boolean circuit of depth d and size
m > 1. Then, W≥k[f ] ≤ 2 · 2−k/(cd logd−1(m)) where cd = 60d · 192d−1 ≤ 216d. Equivalently,
W≥k[f ] ≤ 2 · e−k/(c′d logd−1(m)) where c′d = log2(e) · 60d · 192d−1 ≤ 2 · 216d.

Proof. Let f be a function computed by a Boolean circuit of depth d and m gates. We add
a dummy layer of fan-in 1 gates in between the inputs and the layer next to them. Thus, f is
realized by an Boolean circuit of depth d+ 1, effective size m and bottom fan-in 1. Plugging
this into Theorem 16 gives W≥k[f ] ≤ 23d−k/(20·96d−1·logd−1(2m)). Hence, by Claim 17, we get

W≥k[f ] ≤ 2 · 2−k/(3d·20·96d−1·logd−1(2m)) ≤ 2 · 2−k/(60d·96d−1·2d−1·logd−1(m)) ,

where we used log(2m) ≤ 2 log(m) for m > 1. J

4 Applications to Pseudorandomness

4.1 Improving Braverman’s Analysis
I Definition 19. Denote by tail(m, d, k) the maximal W≥k[F ] over all Boolean circuits F
of size ≤ m and depth ≤ d.

By Theorem 18, tail(m, d, k) ≤ 2 · 2−k/(cd logd−1(m)). Braverman’s Theorem can be
rephrased as follows (we show that this is indeed the case in Appendix B).

I Theorem 20 ([7]). Let s1, s2 ≥ logm be any parameters. Let F be a Boolean function
computed by a circuit of depth d and size m. Let µ be an r-independent distribution where

r = r(s1, s2, d) = 2((s1 · logm)d + s2)

5 We only introduce new gates with distance 1 from the inputs – which does not increase the effective size.
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15:10 Tight Bounds on the Fourier Spectrum of AC0

then

|E
µ

[F ]− E[F ]| < ε(s1, s2, d),

where ε(s1, s2, d) = 0.82s1 · (6m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2)

Picking s1 := 5 log(12m/ε) and s2 :=
(
cd+3 log(m3)d+2) · 8 · (s1 · logm)d · log(m) we get

the following corollary.

I Theorem 21. r(m, d, ε)-independence ε-fools Boolean circuits of depth d and size m, where

r(m, d, ε) = 2((s1 · logm)d + s2) ≤ 4s2

= 32 · cd+3 · (5 log(12m/ε))d · 3d+2 · (logm)2d+3

≤ O(log(m/ε))d · (logm)2d+3 .

4.2 Improving Bazzi’s Analysis
Bazzi [4] showed that O(log2(m/ε)) independence ε-fools DNFs of size m. We show that
O(log(m/ε) · log(m)) independence suffices. For ε ≤ 1/mΩ(1) this bound is tight, due to the
example of Mansour from [23].

I Theorem 22 ([4], [30]). Let F be a DNF with m terms, and t be some parameter. Then,
F is m3 · tail(m, 2, (k − 3t)/2) +m2−t fooled by any k-wise independence.

Picking t := log(2m/ε) and k := 3t+ 2c2 log(m) log(4m3/ε) = O(log(m) log(m/ε)) , we get
that k-wise independence ε-fools DNFs with m terms since

m3 · tail(2,m, (k − 3t)/2) +m2−t ≤ m3 · 2 · 2
−c2 log(m) log(4m3/ε)

c2 log(m) + ε

2 ≤ ε .

5 On Fourier Concentration, Switching Lemmas and Influence
Moments

In this section, we connect different notions of Fourier concentration of Boolean functions. We
begin by introducing some new definitions, and then move to state and prove the connections
between the different notions. We end this Section, with the proof of Theorem 2, which is a
result of Theorem 1 and the connections established in this section.

5.1 Influence Moments
In this section we introduce derivatives and influences of sets of variables. A different
definition to the influence of a set was made in [20]. There, the influence of a set J was
defined to be the probability that under a uniform restriction of Jc to constants, the function’s
value is still undetermined. We choose a different variant, which has a much nicer Fourier
expression.

We start with the standard definition of discrete derivatives and influences of Boolean
functions.

I Definition 23 (Discrete Derivative, Influence). Let f : {−1, 1}n → R and i ∈ [n]. The i-th
discrete derivative operator Di maps the function f to the function Dif : {−1, 1}n → R
defined by

Dif(x) = f(x(i 7→1))− f(x(i7→−1))
2 .



A. Tal 15:11

where x(i7→b) = (x1, . . . , xi−1, b, xi+1, . . . , xn). The influence of coordinate i on f is defined as

Infi(f) = E
x

[(Dif(x))2] .

The generalization to sets of more than one variable is the following.

I Definition 24 (Discrete Derivative and Influence of a Set). Let f : {−1, 1}n → R and T ⊆ [n],
and write T = {j1, . . . , jk}. The T -th (discrete) derivative operator, DT , maps the function f
to the function DT f : {−1, 1}n → R defined by

DT f(x) = Dj1Dj2 . . . Djk
f(x) .

The influence of subset T on f is defined as

InfT (f) = E
x

[
(DT f(x))2] .

The following claim gives equivalent formulations for the function DT f (and also implies
that DT is well defined, i.e., that DT f does not depend on the order of indices in T ).

I Claim 25.

DT f(x) = 1
2|T |

∑
z∈{−1,1}T

f(x(T 7→z)) ·
∏
i∈T

zi =
∑
S⊇T

f̂(S) ·
∏

i∈S\T

xi

where x(T 7→z) is the vector in {−1, 1}n whose i-th coordinate equals zi whenever i ∈ T , and
equals xi otherwise.

The proof uses a straightforward inductive argument, and is given for completeness in
Appendix A. Note that if f : {−1, 1}n → {−1, 1}, then the T -th derivative of f is 2−|T |
granular (i.e., DT f(x) is an integer times 2−|T |), since DT f(x) is a sum of integers divided
by 2|T |. The following claim follows from Parseval’s identity and the previous claim.

I Claim 26. InfT (f) =
∑
S⊇T f̂(S)2 .

I Definition 27 (Total Degree-k Influence). The total degree-k influence is defined as

Infk(f) ,
∑

T :|T |=k

InfT (f) .

Claim 26 gives the following Fourier expression for the total degree-k influence:

Infk(f) =
∑

S:|S|≥k

f̂(S)2 ·
(
|S|
k

)
=
∑
d≥k

Wd[f ] ·
(
d

k

)
. (2)

We state the following simple lemma expressing Infk(f) in terms of W≥d[f ] instead of Wd[f ].

I Lemma 28. Infk(f) =
∑
d≥k W≥d[f ] ·

(
d−1
k−1
)
for all k ∈ N.

Proof. We perform some algebraic manipulations on Equation (2):

Infk(f) =
∑
d≥k

Wd[f ] ·
(
d

k

)
=
∑
d≥k

(
W≥d[f ]−W≥d+1[f ]

)
·
(
d

k

)

= W≥k[f ] +
∑
d≥k+1

W≥d[f ] ·
((

d

k

)
−
(
d− 1
k

))

= W≥k[f ] +
∑
d≥k+1

W≥d[f ] ·
(
d− 1
k − 1

)

=
∑
d≥k

W≥d[f ] ·
(
d− 1
k − 1

)
J
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5.2 Connections between Four Fourier Concentration Properties
In this section we show connections between four attributes of Boolean functions, and
establish equivalence between three of them. The properties, each relative to a parameter t,
are the following:

ESFT: Exponentially small Fourier tails.

∀k : W≥k[f ] ≤ e−Ω(k/t) .

SLTP: Switching lemma type property / degree shrinkage

∀d, p : Pr
ρ∼Rp

[deg(f |ρ) = d] ≤ O(pt)d .

L1: Bounded spectral norm of the k-th level.

∀k :
∑
|S|=k

|f̂(S)| ≤ O(t)k .

InfK: Bounded total degree-k influence.

∀k : Infk[f ] ≤ O(t)k .

In Lemmata 29, 31, 32, 33, 34, 35, we show the following connections:

ESFT
32 ,,

29

��

SLTP
33

ll

35

��
InfK

31

JJ

34 // L1

We remark that Lemma 35 is due to Mansour [25], and Lemma 33 is due to Linial et
al. [22]. Note that L1 does not imply any other property, because one can take for example
the parity function, which has the L1 property with t = 1. However, this function has
very large Fourier tails, very high degree under random restriction, and

(
n
k

)
total degree-k

influence. Anything that implies SLTP and L1 needs f to be Boolean. Other relations
generalize to bounded real-valued functions.

In the remainder of this section we state Lemmata 29, 31, 32, 33, 34, 35 more accurately
and prove them.

I Lemma 29. Let t > 0, C > 0. If W≥d[f ] ≤ C · e−d/t for all d, then Infk[f ] ≤ C · tk for
all k.

In the proof of Lemma 29, we use the following simple fact that follows from Newton’s
generalized binomial theorem.

I Fact 30. Let |x| < 1, and k ∈ N. Then,
∑∞
d=k

(
d−1
k−1
)
· xd = xk

(1−x)k .

Proof of Lemma 29. We shall prove for C = 1, the proof generalizes for all C. Denote
a := e−1/t. Using Lemma 28 we bound the total degree-k influence:

Infk(f) =
∑
d≥k

W≥d[f ] ·
(
d− 1
k − 1

)
≤
∑
d≥k

e−d/t ·
(
d− 1
k − 1

)
=
∑
d≥k

ad ·
(
d− 1
k − 1

)
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Using Fact 30 with x := a gives

Infk(f) ≤ ak

(1− a)k = 1
(1/a− 1)k = 1(

e1/t − 1
)k ≤ 1

(1/t)k
= tk

where in the last inequality we used the fact that ex − 1 ≥ x for all x ∈ R. J

The reverse relation holds too, i.e. InfK implies ESFT.

I Lemma 31. Let t > 0, C > 0. If Infk[f ] ≤ C ·tk for all k, then W≥d[f ] ≤ C ·e·t·e−(d−1)/et

for all d.

Proof. We shall prove for C = 1, the proof generalizes for all C. By Lemma 28,
W≥d[f ] ·

(
d−1
k−1
)
≤ Infk[f ] ≤ tk. Hence W≥d[f ] ≤ tk/

(
d−1
k−1
)
. We can pick any k to optimize

this bound. Picking k = b(d− 1)/etc+ 1 we get

W≥d[f ] ≤ tk/
(
d− 1
k − 1

)k−1
≤ t · e−(k−1) ≤ e · t · e−(d−1)/et . J

In our previous work [33], the following relation (ESFT implies SLTP) was established.

I Lemma 32 ([33]). Let t, C > 0, and f : {−1, 1}n → {−1, 1}. If W≥k[f ] ≤ C · e−k/t for
all k, then Prρ∼Rp

[deg(f |ρ) = d] ≤ C · (4pt)d for all p, d.

We give a slightly shorter proof, using the total degree-d influence.

Proof. We shall prove for C = 1, the proof generalizes for all C. The proof goes by showing
that

E
ρ

[Wd[f |ρ]] ≤ (pt)d (3)

and

E
ρ

[Wd[f |ρ]] ≥ 4−d ·Pr
ρ

[deg(f |ρ) = d] . (4)

Equation (4) is true since

E
ρ

[Wd[f |ρ]] ≥ E
ρ

[Wd[f |ρ]| deg(f |ρ) = d] ·Pr
ρ

[deg(f |ρ) = d] .

and the (random) Boolean function f |ρ has Fourier mass at least 4−d if deg(f |ρ) = d, by the
granularity of low degree functions – Fact 9.

We are left to prove Equation (3). Using Fact 7, we have

E
ρ

[Wd[f |ρ]] =
n∑
k=d

Wk[f ]
(
k

d

)
pd(1−p)k−d ≤ pd

n∑
k=d

Wk[f ]
(
k

d

)
= pd · Infd[f ] ≤ (pt)d ,

where in the last inequality we used Lemma 29. J

Linial, Mansour and Nisan [22] proved that SLTP implies ESFT.

I Lemma 33 ([22], restated slightly). Let t > 0, C > 0, and f : {−1, 1}n → [−1, 1]. If for all
d ∈ N, p ∈ (0, 1), Prρ∼Rp

[deg(f |ρ) ≥ d] ≤ C (tp)d, then for any k, W≥k[f ] ≤ 2e · C · e−k/te.

The proof is given in [22]; we give it here for completeness.
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Proof. Pick p = 1/et, then by Lemma 10, and the fact that W≥bkpc[f |ρ] is always at most 1
and equals 0 whenever deg(f |ρ) < bkpc, we get

W≥k[f ] ≤ 2 E
ρ

[
W≥bkpc[f |ρ]

]
≤ 2 E

ρ
[Pr[deg(f |ρ) ≥ bkpc]] ≤ 2C(1/e)bk/etc . J

The next lemma proves that InfK implies L1.

I Lemma 34. If f is Boolean, then L1,k[f ] ≤ 2k · Infk[f ].

Proof. It is easy to see from Claim 25 that for any subset T ⊆ [n],

E
x

[DT f(x)] = E
x

∑
S⊇T

f̂(S)
∏

i∈S\T

xi

 = f̂(T ) .

Recall that if f is Boolean, then DT f(x) is 2−|T | granular, which implies that ∀x : |DT f(x)| ≤
2|T |(DT f(x))2. Hence,

|f̂(T )| = |E
x

[DT f(x)]| ≤ E
x

[|DT f(x)|] ≤ 2|T |E
x

[(DT f(x))2] = 2|T |InfT (f) .

Summing over all sets T of size k completes the proof. J

Remark: It is necessary that f is Boolean in Lemma 34, since otherwise we can have the
function

ft,k(x) =
∑

S⊆[n],|S|=k

1√(
n
k

)
ek/2t

∏
i∈S

xi

which maps {−1, 1}n to R, has W≥k[ft,k] = Wk[ft,k] = e−k/t, and Infk[ft] ≤ tk, but

L1,k[ft] =

√(
n

k

)
e−k/2t ≥

( n

ke1/t

)k/2
is much larger than O(t)k for n = ω(kt2e1/t).

Next, Mansour [25] proved that SLTP implies L1.

I Lemma 35 ([25]). Let t > 0, and f : {−1, 1}n → {−1, 1}. If for all d, p,
Prρ∼Rp [deg(f |ρ) = d] ≤ C(pt)d, then ∀k : L1,k[f ] ≤ 2C(4t)k.

Proof. We shall prove for C = 1, the proof generalizes for all C. We first prove that for any
function f : {−1, 1}n → R, p ∈ [0, 1], k ∈ N we have L1,k(f) ≤ 1

pk Eρ∼Rp [L1,k[f |ρ]].

L1,k[f ] =
∑

S:|S|=k

|f̂(S)| =
∑

S:|S|=k

∣∣∣∣ 1
pk

E
ρ∼Rp

[
f̂ |ρ(S)

]∣∣∣∣ (Fact 6)

≤
∑

S:|S|=k

1
pk

E
ρ∼Rp

[
|f̂ |ρ(S)|

]
= 1
pk

E
ρ∼Rp

 ∑
S:|S|=k

|f̂ |ρ(S)|


= 1
pk

E
ρ∼Rp

[L1,k[f |ρ]] . (5)
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Next, we show that for f : {−1, 1}n → {−1, 1}, if there exists t > 0 such that for all
d, p, Pr[deg(f |ρ) = d] ≤ (pt)d, then Eρ∼Rp

[L1[f |ρ]] ≤ 2 for p = 1/4t. Conditioning on
deg(f |ρ) = d and using Fact 9, we have L1[f |ρ] ≤ 2d. Hence,

E
ρ∼Rp

[L1[f |ρ]] =
n∑
d=0

E
ρ∼Rp

[L1[f |ρ]|deg(f |ρ) = d] ·Pr[deg(f |ρ) = d] ≤
n∑
d=0

2d ·
( 1

4
)d ≤ 2 . (6)

Plugging Equation (6) in Equation (5) with p = 1/4t we get

L1,k[f ] ≤ 1
pk

E
ρ∼Rp

[L1,k[f |ρ]] ≤
1
pk

E
ρ∼Rp

[L1[f |ρ]] ≤ (4t)k · 2 . J

The next lemma is relevant to the learnability results given in [25] and [22].

I Lemma 36. Let f be a Boolean function, let t ≥ 1 and C be some positive constant.
If W≥k[f ] ≤ C · e−k/t for all k, then f is ε-concentrated on at most tO(t log(1/ε)) Fourier
coefficients.

Here, by ε-concentrated on r coefficients we mean that there exist r subsets of [n], {S1, . . . , Sr},
which captures 1− ε of the Fourier mass of f , i.e.

∑r
i=1 f̂(Si)2 ≥ 1− ε.

Proof. We shall prove for C = 1, the proof generalizes for all constant C. Let w := t · ln(2/ε).
First it is enough to consider Fourier coefficients of sets of size ≤ w, since the sum of squares
of Fourier coefficients of larger sets is at most ε/2. Now

∑
S:|S|≤w |f̂(S)| =

∑w
i=0 L1,i[f ].

Using Lemmata 29 and 34 we get
w∑
i=0

L1,i[f ] ≤
w∑
i=0

2iti ≤
(t≥1)

tw2w+1 .

Letting F = {S : |S| ≤ w, |f̂(S)| ≥ ε/2
tw2w+1 } we get by Parseval’s identity that∑

S∈F
f̂(S)2 = 1−

∑
|S|>w

f̂(S)2 −
∑

|S|≤w,S/∈F

f̂(S)2 ,

where we already noted that
∑
|S|>w f̂(S)2 ≤ ε/2. To bound the last term∑

|S|≤w,S/∈F

f̂(S)2 ≤ max{|f̂(S)| : |S| ≤ w, S /∈ F} ·
∑
|S|≤w

|f̂(S)| ≤ ε/2 .

Hence,
∑
S∈F f̂(S)2 ≥ 1− ε. It remain to figure out the size of F . Since every coefficient in

F contributes at least ε/2
tw2w+1 to the sum

∑w
i=0 L1,i[k], and this sum is at most tw2w+1 we get

that the size of F is at most 2(tw2w+1)2/ε = O(t)2t ln(1/ε), which completes the proof. J

5.3 Theorem 2
Immediate from Theorem 18, Lemmata 29, 32, 34, and 36 we get the following corollary.

I Theorem 37 (Thm. 2, restated). Let f be a Boolean circuit of depth d and size m > 1.
Then,
1. For all k, p, Prρ∼Rp

[deg(f |ρ) = k] ≤ 2 · (4p · c′d logd−1(m))k.
2. For all k, Infk[f ] ≤ 2 · (c′d logd−1(m))k.
3. For all k, L1,k[f ] =

∑
S:|S|=k |f̂(S)| ≤ 2 · (2c′d logd−1(m))k.

4. f is ε-concentrated on at most O(logd−1m)O(logd−1(m) log(1/ε)) = 2O(log log(m) logd−1(m) log(1/ε))

Fourier coefficients.
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6 Short Proofs for Known Results

In this section, we give simple proofs for two known results based on Theorem 37.

6.1 Bounded-Depth Circuits Cannot Approximate Majority
The next result states that nearly balanced symmetric functions, and in particular the
Majority function, cannot be well approximated by a small and shallow circuit.

I Theorem 38. Let g : {−1, 1}n → {−1, 1} be a symmetric function on n variables. Let
f : {−1, 1}n → {−1, 1} be depth d size m circuit, and assume that

c′d logd−1(m) ≤ (n/100 ln(n))1/3
.

Then,

Cor(f, g) ,
∣∣∣E
x

[f(x)g(x)]
∣∣∣ ≤ |ĝ(∅)|+

√
2 + 8c′d logd−1(m)√

n

Proof. Since g is a symmetric Boolean function, for all S ⊆ [n], ĝ(S)2 ·
(
n
|S|
)

=∑
T :|T |=|S| ĝ(T )2 ≤ 1. Hence, |ĝ(S)| ≤ 1√

( n
|S|)

. Let ` be some parameter we shall set

later. Then,∣∣∣E
x

[f(x)g(x)]
∣∣∣ ≤∑

S

|f̂(S)ĝ(S)| = |f̂(∅)ĝ(∅)|+
∑̀
k=1

∑
S:|S|=k

|f̂(S)ĝ(S)|+
∑

S:|S|>`

|f̂(S)ĝ(S)|.

(7)

We bound each of the three terms in the RHS of Equation (7). The first term is at most
|ĝ(∅)|. For the third term we use Cauchy-Schwartz, Theorem 18, and Parseval’s identity
(
∑
S:|S|>` ĝ(S)2 ≤ 1), to get

∑
S:|S|>`

|f̂(S)ĝ(S)| ≤
√ ∑
S:|S|>`

f̂(S)2
∑

S:|S|>`

ĝ(S)2 ≤
√

2 · e−`/(c′d logd−1(m)) .

Picking ` := ln(n) · c′d logd−1(m) this is smaller than
√

2/n. For the second term in the RHS
of Equation (7), we use the estimates on L1,k(f) and |ĝ(S)|, to get

∑
S:|S|=k

|ĝ(S)f̂(S)| ≤ 1√(
n
k

) · ∑
S:|S|=k

|f̂(S)| ≤ 2 · (2c′d logd−1(m))k√(
n
k

) ≤ 2 ·
(

2c′d logd−1(m)√
n/k

)k
.

We denote by Dk := 2 ·
(

2c′d logd−1(m)√
n/k

)k
. The ratio between two consecutive terms Dk+1/Dk

for k + 1 ≤ ` is at most

2c′d logd−1(m)√
n

√
(k + 1)k+1

kk
≤ 2c′d logd−1(m)√

n

√
e · (k + 1) ≤ 2c′d logd−1(m)√

n

√
e · ` ≤ 1

2 ,

where we used the choice of ` and the assumption c′d logd−1(m) ≤
(

n
100 lnn

)1/3 for the last
inequality to hold. We get that the sum

∑
1≤|S|≤` |f̂(S)ĝ(S)| is at most D1 +D2 + . . .+D` ≤

2D1. Overall, we get

E
x

[f(x)g(x)] ≤ |ĝ(∅)|+
√

2 + 8c′d logd−1(m)√
n

. J
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We remark that although our proof is Fourier analytical, it differs from the standard
argument that is used to bound the correlation of bounded depth circuits with parity for
example. The standard argument shows that two functions are o(1) correlated by proving
that one is 1− o(1) concentrated on the low levels of the Fourier spectrum while the other
is 1− o(1) concentrated on the high levels. Here, however, if we take g to be the Majority
function, and f to be an AC0 circuit, then both f and g are 0.99-concentrated on the first
O(poly log(n)) levels of their Fourier spectrum. We deduce the small correlation by showing
that f must be very imbalanced on those levels, which is captured by having small L1,k norm.
In contrast, the Majority function is symmetric – its Fourier mass on level k is equally spread
on the different coefficients. Combining these two properties guarantees small correlation.

6.2 The Coin-Problem
I Theorem 39. Let f : {−1, 1}n → {−1, 1} be a depth d size m circuit, and let p ∈ [0, 1].
Then, f distinguishes between unbiased coins and coins with bias p with advantage at most
6c′dp logd−1(m).

Proof. We can assume pc′d logd−1(m) ≤ 1/6, since otherwise the result is trivial. For
−1 ≤ p ≤ 1, a p-biased coin is a random variable which gets 1 with probability (1 + p)/2
and −1 with probability (1− p)/2, i.e., this is a biased coin whose expectation is p. Let Un
be the distribution of n independent 0-biased coins, and B(n, p) be the distribution of n
independent p-biased coins. We have

Distinguishability(f) ,
∣∣∣∣ E
x∼Un

[f(x)]− E
x∼B(p,n)

[f(x)]
∣∣∣∣ =

∣∣∣∣∣∣f̂(∅)−
∑
S⊆[n]

f̂(S)p|S|
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
S 6=∅

f̂(S)p|S|
∣∣∣∣∣∣ ≤

n∑
k=1

pk · 2 ·
(

2c′d logd−1(m)
)k

≤ 2p ·
(

2c′d logd−1(m)
)
·
∞∑
k=1

(1/3)k−1 = 3p ·
(

2c′d logd−1(m)
)
. J

7 A New Proof for Håstad’s Switch-Many Lemma

In this section, we give a new proof for Håstad’s [16] Switch-Many Lemma, i.e., Lemma 15.
The new proof follows Razborov’s [29] approach, and its recent simplification by Thapen [34]
for Håstad’s original switching lemma [14].

Notation. We denote by R the set of all restrictions on n variables. For a sequence of indices
S ∈ [n]k with no repetitions, and a string σ ∈ {0, 1}k we denote by (S → σ) the restriction
which fixes Si to σi for i ∈ [k] and leaves all other variables free. For two restrictions ρ, σ
we denote by ρσ their composition. For a sequence S ∈ Σk over some alphabet Σ, and two
indices i and j such that 1 ≤ i ≤ j ≤ k, we denote by S[i : j] the subsequence (Si, . . . , Sj),
and by S[i] the element Si.

7.1 The Canonical Decision Tree
Let F be an r-DNF, i.e., an OR of ANDs where each AND has at most r input literals from
x1, . . . , xn,¬x1, . . . ,¬xn. Let ρ be a restriction. The canonical tree T (F, ρ) is defined by the
following decision procedure: Look through F for the first term C1, such that C1|ρ 6≡ 0. If no
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such term exists, then halt and output 0. Otherwise, let A be the set of free variables in C1
under ρ. Query the variables in A and let π1, . . . , π|A| be their assignment. If the term C1 is
satisfied under the assignment (in particular if A = ∅), then halt and output 1 . Otherwise,
repeat the process with ρ(A→ (π1, π2, . . . , π|A|)) instead of ρ. We keep iterating until one of
the aforementioned halting conditions hold.

7.2 Restriction Tree for Multiple DNFs
Let F1, . . . , Fm be r-DNFs. We define the d-restriction-tree complexity of F1, . . . , Fm to be
the minimal depth of a restriction tree such that under the restriction defined by each leaf,
each DNF Fi is of canonical decision-tree-complexity at most d. We denote this complexity
by RTd({F1, . . . , Fm}).

I Theorem 40.

Pr
ρ∼Rp

[RTd({F1|ρ, . . . , Fm|ρ}) ≥ k] ≤ mdk/(d+1)e ·
(

24pr
1− p

)k
.

The following is a corollary of Theorem 40.

I Corollary 41. Let F1, . . . , Fm be r-DNFs. Let k, d be positive integers, 0 ≤ p ≤ 1, and
assume 2d+1 ≥ m. Then,

Pr
ρ∼Rp

[RTd({F1|ρ, . . . , Fm|ρ}) ≥ k] ≤ m · (49pr)k . (8)

Proof. We can assume without loss of generality that p < 1/49 since otherwise the RHS of
Eq. (8) is at least 1 and the LHS is always at most 1. We get

Pr
ρ∼Rp

[RTd({F1|ρ, . . . , Fm|ρ}) ≥ k] ≤ mdk/(d+1)e · (24pr/(1− p))k (Theorem 40)

≤ m1+k/(d+1) · (24pr/(1− p))k

= m ·
(
m1/(d+1) · 24pr

1− p

)k
≤ m ·

(
2 · 24pr
1− p

)k
(m ≤ 2d+1)

≤ m · (49pr)k . (1− p > 48/49)

J

We will prove Theorem 40 based on the approach of Thapen [34] which simplified Razborov’s
[29] and Beame’s [5] proofs for the (original) switching lemma. The idea of the proof is that
in order to show that some event A happens with low probability, it is sufficient to show that
there exists some other event B (not necessarily disjoint of A) that happens with probability
much larger than A. For example, if Pr[B] ≥M ·Pr[A] (think of M as some large factor)
then since Pr[B] ≤ 1 it means that Pr[A] ≤ 1/M .

The following is the main lemma in this section, from which we deduce Theorem 40 quite
easily.

I Lemma 42. Let S be the set of restrictions under which RTd({F1|ρ, . . . , Fm|ρ}) ≥ k. Then,
there is a 1:1 mapping

θ : S → R× [3r]k × {0, 1}k × {0, 1}k × [m]dk/d+1e

given by θ : ρ 7→ (ρσ, β, π, τ, I) where σ fixes exactly k additional variables that weren’t fixed
by ρ.
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Proof of Theorem 40, assuming Lemma 42. For a (fixed) restriction ρ ∈ R we denote by
Pr[ρ] the probability to sample ρ when sampling a restriction from the distribution Rp. For
a (fixed) set of restrictions A ⊆ R we denote by Pr[A] the probability to sample a restriction
in A when sampling a restriction from the distribution Rp. Recall that by the definition of
Rp, we have Pr[ρ] = pa ·

( 1−p
2
)b+c where a, b and c are the number of ∗’s, 0’s and 1’s in ρ

respectively.
For a fixed value of β, π, τ , and I, consider the set S′ = Sβ,π,τ,I := {ρ ∈ S | ∃ρ′ :

θ(ρ) = (ρ′, β, π, τ, I)}. Since θ is 1:1 (Lemma 42), the first component θ1 : ρ 7→ ρσ is also
1:1 on the set S′.6 This implies that Pr[θ1(S′)] =

∑
ρ∈S′ Pr[θ1(ρ)]. By the definition of

Rp, for any ρ ∈ R and any σ that fixes k additional variables that were free in ρ, we have

Pr[ρσ] =
(

1−p
2p

)k
·Pr[ρ]. We get

1 ≥ Pr[θ1(S′)] =
∑
ρ∈S′

Pr[θ1(ρ)] =
∑
ρ∈S′

Pr[ρ] ·
(

1− p
2p

)k
= Pr[S′] ·

(
1− p

2p

)k
,

hence, Pr[S′] ≤
(

2p
1−p

)k
. Taking a union bound over all possible β, π, τ, I we get, as desired,

Pr[S] ≤
∑

β,π,τ,I

Pr[Sβ,π,τI ] ≤ (3r)k · 2k · 2k ·mdk/(d+1)e ·
(

2p
1− p

)k
. J

Proof of Lemma 42. Let ρ ∈ S be a restriction such that RTd({F1|ρ, . . . , Fm|ρ}) ≥ k. We
describe in detail how to map ρ into (ρσ, β, π, τ, I), where σ ∈ R, β ∈ [3r]k, π ∈ {0, 1}k, τ ∈
{0, 1}k, and I ∈ [m]dk/(d+1)e. Then, we shall describe how to decode from (ρσ, β, π, τ, I) the
restriction ρ, showing that the mapping is 1:1.

Encoding. We are going to choose a sequence of k variables that weren’t fixed by ρ, and
assign them values according to three adversarial strategies:

Global Strategy. This strategy ensures that RTd({F1|ρ, . . . , Fm|ρ}) ≥ k. We will denote its
answers by π1, . . . , πk ∈ {0, 1}.

Local Strategy. This will be the local adversary strategy based on one DNF we are focusing
on. We will denote its answers by τ1, . . . , τk ∈ {0, 1}.

Bread-Crumbs Strategy. The objective of this strategy is to leave the necessary traces, so
that the mapping will be invertible. We will denote its answers by σ1, . . . , σk ∈ {0, 1}.

We consider the following iterative encoding process, which is divided into phases. Each
phase, except for maybe the last phase, contains at least d+ 1 steps. In each phase, t, we
will focus on one specific DNF out of F1, . . . , Fm, and identify a sequence of variables Tt
of length dt ≥ d + 1 to be queried. The strings πt, τ t, σt ∈ {0, 1}dt will be the answers
to the sequence of queries Tt according to the Global, Local or Bread-Crumbs strategies,
respectively.

At phase t = 1, 2, . . ., we consider the restriction ρt = ρ(T1 → π1) . . . (Tt−1 → πt−1).
We identify some DNF, Fit , whose canonical decision tree depth under ρt is dt ≥ d+ 1 (if
no such DNF exists, then we stop). We add it to I. Next, we run the canonical decision
tree on Fit and ρt, answering according to the local adversarial strategy which keeps Fit
undetermined after less than dt queries.

6 Since a collision in θ1 on S′ implies a collision in θ.
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We initialize Tt := ∅ and τ t, σt to be empty-strings. In each step, we find the first term
T in Fit which is not equivalent to 0 under ρt(Tt → τ t). By the assumption that Fit has
canonical decision tree depth dt, we get that T is not equivalent to 1 either. Let A be the
non-empty set of variables whose literals appear in T and are unassigned by ρt. We order
the set A in some canonical order. For each xj ∈ A, let jind ∈ [r] be the index of the literal
containing xj in term T . We let jtype = 1 if xj is the last variable to be queried in the DNF
Fit , otherwise jtype = 2 if xj is the last variable in A, and otherwise jtype = 3. For each
xj ∈ A, according to the A’s order, we add (jind, jtype) to β. In addition, we query the local
adversary according to the variables in A under the restriction ρt · (Tt → τ t) and update τ t
to contain its new answers. We concatenate to σt the values to the variables in A that satisfy
T (these are the “bread-crumbs”). We update Tt := Tt ∪A, and continue with ρt · (Tt → τ t)
until querying dt variables.

After ending the phase, we ask the global adversary the sequence of queries in Tt (by the
order they were asked) and consider its sequence of answers as πt. We continue to the next
phase with ρt+1 = ρ(T1 → π1) . . . (Tt → πt) (i.e., we “discard” the answers to Tt according
to the local adversary and add the answers according to the global adversary). We stop the
encoding process after querying k variables overall, even if we are in the middle of a phase.

We show by induction that RTd({F1|ρt
, . . . , Fm|ρt

}) ≥ k −
∑t−1
i=1 di. This is trivially true

for t = 1 since this is equivalent to the assumption that ρ ∈ S. Assuming it is true for t, we
show that it is true for t + 1. Since RTd({F1|ρt , . . . , Fm|ρt}) ≥ k −

∑t−1
i=1 di it means that

there exists a set of answers for Tt, namely πt, under which RTd({F1|ρt+1 , . . . , Fm|ρt+1}) ≥
k −

∑t−1
i=1 di − |Tt| = k −

∑t
i=1 di, which completes the induction.

Let p be the number of phases in the encoding process. By the above process, we get
that π = π1 . . . πp ∈ {0, 1}k, τ = τ1 . . . τp ∈ {0, 1}k, β ∈ [3r]k, σ := (T1 → σ1) . . . (Tp → σp)
fixes k additional variables to those fixed by ρ, and I is a sequence of p indices from [m].
In addition, p ≤ dk/(d+ 1)e since in each phase, except for maybe the last phase, we query
at least d + 1 variables and overall we query at most k variables. If less than dk/(d+ 1)e
phases exists, we may pad I with 1’s.

Decoding. We wish to show that θ is 1:1. Let (ρσ, β, π, τ, I) be an image of θ; we will show
how to decode ρ from this image. It is enough to show by induction on t = 1, . . . , p, that
we can recover T1, . . . , Tt, since this allows to reconstruct ρ by simply setting the values of⋃p
i=1 Ti to ∗ in ρσ.
Assuming we already recovered T1, . . . , Tt−1 correctly, we show how to decode Tt as well.

Knowing T1, . . . , Tt−1 allows the decoder to define ρ′t := ρ(T1 → π1) . . . (Tt−1 → πt−1)(Tt →
σt) . . . (Tp → σp) by replacing the assignment of T1, . . . , Tt−1 in ρσ according to π1, . . . , πt.
Using the set of indices I, we know it, i.e. the index of the DNF out of F1, . . . , Fm that
was considered by the encoding process at phase t. We show that the first term in Fit
under ρ′t which is not equivalent to 0 is the same as the first such term under ρt (recall that
ρt := ρ(T1 → π1) . . . (Tt−1 → πt−1)). Let i′ be the index of the first nonzero term in Fit
under ρt. Then, all terms prior to i′ were fixed to 0 under ρt and this remains true when we
refine ρt to ρ′t. In addition, since σt satisfies all the literals in term i′ which are unassigned
by ρt (except if we finished the entire encoding process while in the middle of processing
this term, in this case σt fixes some of the free variables to satisfy the literals and the rest
remain free), we get that the term with index i′ in Fit is not equivalent to 0 under ρ′t. Thus,
we identified the term i′ correctly. We collect indices from β until reaching type 1 or 2,
which yields the set of variables the encoder sets when processing term i′. We replace the
assignment for these variables to be according to τ instead of according to σ.
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We continue this way by identifying the next term the encoder examined, and decode the
set of variables fixed in the encoding process, according to the information stored in β. This
allows us to continue decoding the set Tt which completes the proof. J

I Remark. We remark that the information we are avoiding to store7 is the index of the term
on which a certain DNF is not fixed under a restriction ρ. We are using the Bread-Crumbs
partial assignment σ to satisfy all the literals that are unassigned in this term, in order to
allow the identification of the term in the decoding process. Once the term is known, we can
encode/decode a variable using a number in [r] rather than a number in [n], which is much
more “efficient” to encode. Storing the index to the DNF we are considering at each phase
may seem “expensive”. However, we are recording such an index at most once every d+ 1
consecutive steps, making this reasonable.
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A Equivalent Expressions for the T -th Discrete Derivatives

I Claim (Claim 25, restated).

DT f(x) = 1
2|T |

∑
z∈{−1,1}T

f(x(T 7→z)) ·
∏
i∈T

zi =
∑
S⊇T

f̂(S) ·
∏

i∈S\T

xi

where x(T 7→z) is the vector in {−1, 1}n whose i-th coordinate equals zi whenever i ∈ T , and
xi otherwise.

http://dx.doi.org/10.1006/jcss.1995.1043
http://users.math.cas.cz/~thapen/switching.pdf
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Proof. We prove by induction on the size of T . For T = ∅ the claim trivially holds. For
T = {j1, . . . , jk}, let T ′ = {j2, . . . , jk} and g = DT ′f , then DT f = Dj1DT ′f = Dj1g. By the
definition of the j1-th derivative, we have

DT f(x) = g(x(j1 7→1))− g(x(j1 7→−1))
2 .

By the induction hypothesis, this equals

DT f(x) = 1
2 ·
(
DT ′f(x(j1 7→1))−DT ′f(x(j1 7→−1))

)

= 1
2

1
2k−1 ·


∑

z′∈{−1,1}T ′

f

((
x(j1 7→1)

)(T ′ 7→z′)
) ∏
i∈T ′

z′i

−
∑

z′∈{−1,1}T ′

f

((
x(j1 7→−1)

)(T ′ 7→z′)
) ∏
i∈T ′

z′i


= 1

2k
∑

z∈{−1,1}T

f(x(T 7→z))
∏
i∈T

zi .

As for the second item, by induction, g(x) =
∑
S⊇T ′ f̂(S) ·

∏
i∈S\T ′ xi. Thus,

DT f(x) = g(x(j1 7→1))− g(x(j1 7→−1))
2 = 1

2
∑
S⊇T ′

f̂(S) ·
∏

i∈S\T

xi ·

{
1− (−1), j1 ∈ T ′

1− 1, otherwise

=
∑
S⊇T

f̂(S) ·
∏

i∈S\T

xi . J

B Rephrasing Braverman’s Result

I Lemma 43 ([7, Lemma 8]). Let ν be any probability distribution on {0, 1}n. For a circuit
of depth d and size m computing a function F , for any s, there is a degree r = (s · log(m))d
polynomial f and a Boolean function Eν computable by a circuit of depth ≤ d+ 3 and size
O(m2r) such that
1. Prν [Eν(x) = 1] < 0.82s ·m, and
2. whenever Eν = 0, f(x) = F (x).

I Proposition 44 ([7, Prop. 9]). In Lemma 43, for s ≥ log(m), ‖f‖∞ < (2m)deg(f)−2 =
(2m)(s log(m))d−2

I Lemma 45 ([7, Rephrasing of Lemma 10]). Let F be computed by a circuit of depth d and
size m. Let s1, s2 be two parameters with s1 ≥ log(m). Let µ be any probability distribution
on {0, 1}n, and U{0,1}n be the uniform distribution on {0, 1}n. Set

ν := 1
2
(
µ+ U{0,1}n

)
.

Let Eν be the function from Lemma 8 with s = s1. Set F ′ = F ∨ Eν . Then, there is a
polynomial f ′ of degree rf = (s1 · logm)d + s2, such that
1. Prµ[F 6= F ′] < 2 · 0.82s1 ·m
2. PrU [F 6= F ′] < 2 · 0.82s1 ·m
3. ‖F ′ − f ′‖22 ≤ 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2), and
4. f ′(x) = 0 whenever F ′(x) = 0.
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Proof. The first two properties follow from Lemma 43 directly, since

Pr
µ

[Eν = 1],Pr
Un

[Eν = 1] ≤ 2 ·Pr
ν

[Eν = 1] ≤ 2 · 0.82s1m .

Let f be the degree (s1 · logm))d approximation of F from Lemma 43. By Proposition 44,

‖f‖∞ < (2m)(s1·logm)d−2 < 22(s1 logm)d log(m)−2 .

Let Ẽν be the truncated Fourier expansion of Eν of degree s2. We have

‖Eν − Ẽν‖22 ≤ tail(m3, d+ 3, s2) .

Let

f ′ := f · (1− Ẽν)

Then f ′ = 0 whenever F ′ = 0 (since (F ′ = 0) =⇒ (Eν = 0, F = 0) =⇒ (f = 0) =⇒ (f ′ =
0)). It remains to estimate ‖F ′ − f ′‖22:

‖F ′ − f ′‖22 ≤ 2 · ‖F ′ − f · (1− Eν)‖22 + 2 · ‖f · (1− Eν)− f ′‖22
= 2 · ‖Eν‖22 + 2 · ‖f · (Eν − Ẽν)‖22
≤ 2 ·Pr[Eν = 1] + 2 · ‖f‖2∞ · ‖Eν − Ẽν‖22
≤ 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2),

which completes the proof. J

I Theorem 46 ([7, Rephrasing of Main Theorem]). Let s1, s2 ≥ logm be any parameters.
Let F be a Boolean function computed by a circuit of depth d and size m. Let µ be an
r-independent distribution where

r = r(s1, s2, d) = 2((s1 · logm)d + s2)

then

|E
µ

[F ]− E[F ]| ≤ ε(s1, s2, d),

where ε(s1, s2, d) = 0.82s1 · (6m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2)

Proof of Theorem 46. Denote by ε1 := 0.82s1 · (2m) and

ε2 := 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2) .

Applying Lemma 45 with parameters s1 and s2 gives

‖F ′ − f ′‖22 ≤ ε2 .

Now take f ′` := 1− (1− f ′)2. Then f ′` ≤ 1 and f ′` = 0 whenever F ′ = 0, hence f ′` ≤ F ′.
To estimate E[F ′(x)− f ′`(x)] we note that F ′(x)− f ′`(x) equals 0 whenever F ′ = 0, and is
equal to

F ′(x)− f ′`(x) = (1− f ′(x))2 = (F ′(x)− f ′(x))2
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whenever F ′ = 1. We get

E[F ′(x)− f ′`(x)] ≤ ‖F ′ − f ′‖22 ≤ ε2 .

In addition, deg(f ′`(x)) ≤ 2(s2 + (s1 · logm)d).
To finish the proof, if µ is a

(
2 · (s2 + (s1 · logm)d)

)
-wise independent distribution then

E
µ

[F (x)] ≥ E
µ

[F ′(x)]− ε1 ≥ E
µ

[f ′`(x)]− ε1 =∗ E[f ′`(x)]− ε1

= E[F ′(x)]−E[F ′(x)− f ′`(x)]− ε1 ≥ E[F ′(x)]− ε2 − ε1 ≥ E[F (x)]− ε2 − ε1

where we used in * the fact that deg(f ′`) ≤ 2(s2 + (s1 · logm)d) and µ is deg(f ′`)-wise
independent. In a similar way, one can show Eµ[F (x)] ≤ E[F (x)] + ε1 + ε2. Combining both
cases we get

|E
µ

[F ]− E[F ]| ≤ ε1 + ε2 = ε(s1, s2, d) . J

C Improving the Analysis of De, Etesami, Trevisan and Tulsiani

De et al. [9] proved that any ε-biased distribution δ-fools depth-2 circuits (DNFs or CNFs)
of size m, for some ε = ε(δ,m). In fact, their work shows that generators of ε-biased
distributions are the best known pseudorandom generators fooling depth-2 circuits. We are
able to improve their analysis slightly, getting an optimal dependence between ε and δ.

Some notation is needed first. Throughout this section (and the next), we shall think
of Boolean functions as functions f : {0, 1}n → R (as opposed to f : {−1, 1}n → R).
We can identify each function f : {0, 1}n → R with a function f̃ : {−1, 1}n → R by
f̃(y1, . . . , yn) = f( 1−y1

2 , . . . , 1−yn

2 ) or equivalently f(x1, . . . , xn) = f̃((−1)x1 , . . . , (−1)xn).
When talking about the Fourier expansion of f , we mean the Fourier expansion of f̃ as
defined in Section 2. In this notation, f(x) =

∑
S⊆[n] f̂(S) · (−1)

∑
i∈S

xi .
Next, we discuss DNFs and CNFs. Disjunctive normal forms (DNFs) are expressions

of the form F (x) =
∨m
i=1 ti(x) where each term ti(x) is an AND of some literals from

x1, . . . , xn,¬x1, . . . ,¬xn. If any term in F is an AND of at most w literals, then we say that
F is of width w, and we call F a w-DNF. Similarly conjunctive normal forms (CNFs) are
expressions of the form F (x) =

∧m
i=1 ci(x) where each clause ci is an OR of some literals. We

define w-CNFs similarly to w-DNFs. The size of a DNF (CNF, resp.) is the number of
terms (clauses, resp.) in it, i.e., m in the examples above.

Recall the definition of the spectral norm of a Boolean function L1(f) =
∑
S |f̂(S)| and

denote by L∗1(f) =
∑
S 6=∅ |f̂(S)|. We denote by Un the uniform distribution over {0, 1}n.

We cite a proposition and two lemmata from the work of De et al. [9].

I Proposition 47 ([9, Prop. 2.6]). Suppose f, f`, fu : {0, 1}n → R are three functions
such that for every x ∈ {0, 1}n we have f`(x) ≤ f(x) ≤ fu(x). Furthermore, assume
Ex∼Un

[f(x)− f`(x)] ≤ δ and Ex∼Un
[fu(x)− f(x)] ≤ δ. Let l = max(L∗1(f`), L∗1(fu)). Then,

any ε-biased probability distribution (δ + εl)-fools f .

I Lemma 48 ([9, Lemma 4.3]). Let f : {0, 1}n → {0, 1} be a DNF with m terms and
g : {0, 1}n → R be such that: L1(g) ≤ l1, ‖f − g‖22 ≤ ε1 and g(x) = 0 whenever f(x) = 0.
Then, we can get f`, fu : {0, 1}n → R such that
∀x, f`(x) ≤ f(x) ≤ fu(x)
Ex∼Un

[fu(x)− f(x)] ≤ m · ε1 and Ex∼Un
[f(x)− f`(x)] ≤ m · ε1.

L1(f`), L1(fu) ≤ (m+ 1)(l1 + 1)2 + 1.
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I Lemma 49 ([9, Lemma 4.4]). Let f : {0, 1}n → {0, 1} be a DNF with m terms and
width-w. Suppose for every DNF with at most m terms and width-w, f1, there is a function
g1 : {0, 1}n → R such that: L1(g1) ≤ l2 and ‖f1−g1‖22 ≤ ε2. Then, we can get g : {0, 1}n → R
such that L1(g) ≤ m · (l2 + 1), ‖f − g‖22 ≤ m2 · ε2 and g(x) = 0 whenever f(x) = 0.

De et al. [9] used Lemma 49 with a bound on the width of the approximated DNF. We will
use Lemma 49 without any assumption on the width.

The following is a corollary of Thm. 37.

I Corollary 50. Let f : {0, 1}n → {0, 1} be a DNF of size m and ε2 > 0. Then, there is a
function g1 : {0, 1}n → R such that E[(f − g1)2] ≤ ε2 and L1(g1) = 2O(logm·log logm·log(1/ε2)).

Proof. According to Thm. 37, there is a set F of coefficients such that |F| ≤
2O(logm·log logm·log(1/ε2)) and

∑
S/∈F f̂(S)2 ≤ ε2. Hence, g1(x) =

∑
S∈F f̂(S) · (−1)

∑
i∈S

xi is
an approximation of f with

E
x

[(f(x)− g1(x))2] =
∑
S/∈F

f̂(S)2 ≤ ε2 .

where we used Parseval’s identity. Since each Fourier coefficient is at most 1 in absolute
value L1(g1) =

∑
S∈F |f̂(S)| ≤ |F|, which completes the proof. J

The following theorem is our refinement of [9, Thm. 4.1].

I Theorem 51. Let f be a DNF formula with m terms. Then, f is δ-fooled by any ε-biased
distribution where ε = 2O(logm·log(m/δ)·log logm).

Proof. Set ε2 = δ/2m3 and ε1 = δ/2m. By applying Corollary 50 for every DNF formula
of size m, f1, there exists a function g1 : {0, 1}n → R such that

E[(f1 − g1)2] ≤ ε2
L1(g1) ≤ 2O(logm·log logm·log(1/ε2)) = 2O(logm·log logm·log(m/δ))

We apply Lemma 49 with width n (this is a trivial choice of width, since all DNFs
on n variables are of width at most n without loss of generality), ε2 = δ/2m3 and
l2 = 2O(logm·log logm·log(m/δ)). Then, we get the existence of a function g : {0, 1}n → R
such that g(x) = 0 whenever f(x) = 0 and E[(g − f)2] ≤ m2ε2 = δ/2m. and
L1(g) ≤ (l2 +1) ·m = 2O(logm·log logm·log(m/δ)). Then, we apply Lemma 48 with g, ε1 = δ/2m
and l1 = L1(g) = 2O(logm·log logm·log(m/δ)) to get a sandwiching approximation of f by f`
and fu such that
∀x : f`(x) ≤ f(x) ≤ fu(x)
Ex∼Un

[fu(x)− f(x)] ≤ m · ε1 = δ/2 and Ex∼Un
[f(x)− f`(x)] ≤ m · ε1 = δ/2.

L1(fu), L1(f`) ≤ (l1 + 1)2 · (m+ 1) + 1 = 2O(logm·log logm·log(m/δ)).
Denote by l = (l1 + 1) · (m + 1) + 1. Applying Prop. 47, we get that any ε = δ/(2l) =
2−O(logm·log logm·log(m/δ)) biased distribution γ-fools f , where γ = δ/2 + ε · l ≤ δ. J

It is well-known from the works of [26, 3] that ε-biased distributions on n bits may be sampled
using a O(logn+ log(1/ε))-seed length, which gives the following corollary.

I Theorem 52. There exists a polynomial time pseudorandom generator G of seed length
O(logn+ logm · log logm · log(m/δ)) that δ-fools all DNFs of size m on n variables.

Note that by de Morgan laws every DNF of size m is the negation of a CNF of size m, and
vice versa. Hence, any pseudorandom generator that fools DNFs also fools CNFs.
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D Improving the Generator of Trevisan and Xue

In this section, we revisit the pseudorandom generator of Trevisan and Xue [35] that ε-fools
AC0 circuits of size M and depth d. We improve its seed-length from O(logd+3(M/ε) ·
log(n/ε)) to O(logd+1(M/ε) · logn) by two observations in addition to the improved analysis
of the generator of De et al. (see Thm. 52).

We start by explaining the sampling process of Trevisan and Xue’s generator at a high-
level. The generator applies O(logd−1(M/ε) · log(n/ε)) pseudorandom restrictions iteratively,
where each pseudorandom restriction fixes each variable (that wasn’t already fixed) with
probability Θ(1/ logd−1(M/ε)). The seed length required per step is Õ(log4(M/ε)). Each
pseudo-random restriction consists of a pseudorandom process that selects which variables
to fix, in addition to a pseudorandom process that selects the values for these variables. The
heart of Trevisan and Xue’s analysis is a proof that the selection of which variables to fix
can be done by sampling recursively d times (one per depth) from any distribution that fools
CNFs with appropriate parameters. This is done by proving that any distribution that fools
CNFs, also fools Håstad’s switching lemma [14] (see Lemma 53 below).

Our improvement from seed-length Õ(logd+3(M/ε) · log(n/ε)) to Õ(logd+1(M/ε) · logn)
is a combination of three improvements:

We get a factor of log(M/ε) improvement via a better analysis of the pseudorandom
generator of De et al. [9] (see Section C). We get a better dependency on the error
parameter ε0 in Thm. 52, compared to the corresponding theorem of [9]. Since Trevisan
and Xue use Thm. 52 with error parameter ε0 = 1/2Θ(log2(M/ε)) that is much smaller
than any polynomial in ε/M , this improvement is effective.
We get a factor of log(M/ε) improvement by applying the switching lemma for one less
step. We show that with high probability the circuit collapses to a depth-2 circuit instead
of collapsing to a bounded depth decision tree. Since we are able to fool depth-2 circuits
by Thm. 52, this is enough.8

We replace a factor of log(n/ε) by a factor of log(n) by noting that one can continue
restricting variables until less than O(log(1/ε)) variables are alive, and then fix the
remaining variables using a O(log(1/ε))-wise independent distribution. In the original
analysis, one waited until all variables were fixed.

In the rest of the section, we will use the following notation (as suggested by Trevisan
and Xue [35]). A restriction may be defined (not uniquely) by two binary strings of length n:
θ ∈ {∗,�}n and β ∈ {0, 1}n, where for i ∈ [n],

ρ(i) =
{
β(i), θ(i) = �
∗, θ(i) = ∗

.

We shall identify a string w ∈ {0, 1}n(q+1) with a restriction as follows. We partition w to
(l, r) where l consists of the first qn bits of w, and r consists of the last n bits of w. We
further partition l ∈ {0, 1}nq to n blocks of q consecutive bits each. For block i ∈ [n], we
take θ(i) = ∗ iff all the q bits in the block equal 1. We take β = r and yield the restriction
defined by (θ, β).

8 To get another Õ(log(M/ε)) improvement it is enough to construct PRGs for depth-3 circuits with
seed-length Õ(log3(M/ε)). Then, one can stop one step sooner (i.e. when reaching depth-3) and apply
the PRG for depth-3 on the remaining circuit.
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If D is a distribution over {0, 1}(q+1)n, then (θ, β) ∼ D means that we sample w ∼ D as
a string of length (q + 1)n and use the aforementioned identification to get θ ∈ {∗,�}n and
β ∈ {0, 1}n. Note that sampling w ∈ {0, 1}n·(q+1) uniformly at random yields a restriction
ρ = (θ, β) distributed according to Rp for p = 2−q.

I Lemma 53 ([35, Lemma 7]). Let F be a CNF of size M and width t over n variables,
p0 = 2−q0 where q0 ∈ N, and D be a distribution over {0, 1}(q0+1)n that ε0-fools all CNFs
of size at most M · 2t·(q0+1). Then,

Pr
(θ,β)∼D

[DT(F |θ,β) > s] ≤ 2s+t+1 · (5p0t)s + ε0 · 2(s+1)·(2t+logM),

where DT(f) denotes the depth of the smallest decision tree computing a function f .9

The following is a slight generalization of [35, Fact 9].

I Fact 54 ([35, Fact 9]). Let D1 be a distribution over {0, 1}n1 that ε1-fools CNFs of size
m on n1 variables. Let D2 be a distribution over {0, 1}n2 that ε2-fools CNFs of size m on
n2 variables. Let D1 ⊗ D2 be the distribution over {0, 1}n1+n2 sampled by concatenating
independent samples from D1 and D2. Then, D1 ⊗D2 is a distribution that (ε1 + ε2)-fools
CNFs of size m on n1 + n2 variables.

Proof. Let F (X,Y ) be a CNF of size m on n1 + n2 variables, where X consists of the first
n1 variables and Y consists of the last n2 variables. We have

E
x∼Un1 ,y∼Un2

[F (x, y)] = E
x∼Un1

[ E
y∼Un2

[Fx(y)]]

where Fx(·) is the CNF F when the variables X are fixed to x. Note that Fx(·) is in itself a
CNF of size at most m on n2 variables. By assumption, for all values of x,

E
y∼Un2

[Fx(y)] = E
y∼D2

[Fx(y)]± ε2 . (9)

Similarly for any fixed assignment Y = y, we have

E
x∼Un1

[F (x, y)] = E
x∼D1

[F (x, y)]± ε1 . (10)

Combining Eqs. (9) and (10) gives

E
x∼Un1 ,y∼Un2

[F (x, y)] = E
x∼Un1

[
E

y∼D2
[Fx(y)]± ε2

]
= E
y∼D2

[ E
x∼Un1

[F (x, y)]± ε2]

= E
y∼D2

[ E
x∼D1

[F (x, y)]± ε1 ± ε2]

= E
x∼D1,y∼D2

[F (x, y)]± (ε1 + ε2) . J

By induction, Fact 54 implies the following corollary.

9 Actually, Trevisan and Xue show the stronger result where DT(f) is replaced by the depth of the
canonical decision tree for f (see Section 7 for its definition). However, we do not benefit from this
strengthening.
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I Corollary 55. Let D be a distribution over {0, 1}n that ε-fools CNFs of size m. Let t ∈ N ,
and D⊗t be the distribution over {0, 1}n·t sampled by concatenating t independent samples
from D. Then, D⊗t is a distribution that (ε · t)-fools CNFs of size m on n · t variables.

In the following theorems we shall assume that the circuit size M is larger than the length
of the input n.

I Theorem 56 ([35, Thm. 11, “Derandomized Switching Lemma for AC0”, restated]). Let
C be circuit on n variables with size M , depth d and a top OR-gate. Let p = 2−q, where
q ∈ N, and s ∈ N be some positive parameter. Assume that there exists a pseudorandom
generator G with seed length r that ε0-fools CNFs of size M · 2s · 2s·(q+1) . Then, there exists
a pseudorandom selection generator G0 of seed length (d− 1) · r such that:

Prθ∼G0,β∼U [F |θ,β is not an s-DNF of size ≤M · 2s]
≤M ·

(
22s+1 ·max{(5ps)s, (5/64)s}+ ε0 · 2(s+1)·(3s+logM)).

For each set of variables T ⊆ [n], the probability that all variables in T are fixed is at
most (1− pd−2/64)|T | + ε0 · (d− 1).

Proof. We shall start by adding a dummy layer next to the inputs that transforms the circuit
C into a circuit C ′ of size at most M · n, depth d+ 1 and bottom fan-in 1. We construct
G0 by running (d− 1) iterative pseudorandom selections, using the generator of [9] in each
iteration. By Fact 54, the pair (θ, β) obtained by sampling θ ∼ G and β ∈ {0, 1}n uniformly
at random, ε0-fools CNFs of size M · 2s · 2s·(q+1). We denote by M1, . . . ,Md the number of
gates in the original circuit C at distance 1, . . . , d from the inputs, respectively.

The first iteration. For the first iteration of Lemma 53, we pick p0 = 1/64 and t = 1. The
probability that under the pseudorandom restriction, one of the gates at distance 2 from the
inputs cannot be computed by a decision tree of depth s is at most

M1 ·
(

2s+1+1 · (5/64)s + ε0 · 2(s+1)(2+logM)
)
.

In the complement event, we may express each gate at distance 2 from the inputs both as
an s-DNF and as an s-CNF, so we can collapse this layer with the layer above it. This
simplification yields a circuit of depth d, fan-in s and does not introduce new gates at distance
2 or more from the inputs. The number of gates at distance 1 from the inputs is at most
M · 2s, since each depth-s decision tree is an s-DNF of size at most 2s (and similarly an
s-CNF of size at most 2s ).

The other d − 2 iterations. At iteration i = 2, . . . , d− 1, we apply Lemma 53 with t = s

and p0 = p. We get that under the pseudorandom restriction, the probability that there
exists a gate at distance 2 from the inputs that cannot be computed by a decision tree of
depth s is at most

Mi ·
(

2s+s+1 · (5ps)s + ε0 · 2(s+1)(2s+log(M ·2s))
)
.

We are using the fact that each gate at distance 2 from the inputs computes a CNF/DNF
of size at most M · 2s and bottom fan-in s, an invariant that is preserved during the iterative
process. Again, if a gate is computed by a decision tree of depth s then it is also computed by
an s-CNF and by an s-DNF of size at most 2s, and we may collapse the layers at distances
2 and 3 from the inputs.
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Overall, after (d− 1)-iterations, with probability at least

1−M ·
(

2s+s+1 ·max{(5ps)s, (5/64)s}+ ε0 · 2(s+1)(3s+logM)
)
,

all “switchings” were successful and we got a circuit of depth-2, size at most M · 2s, bottom
fan-in s and a top OR gate, i.e. we got an s-DNF.

As for the second item of the theorem, observe that θ is selected by sampling d− 1 binary
strings from G: one string w1 of length n · log2(64) (consisting of n blocks of log2(64) bits
each) and (d− 2) strings, w2, . . . , wd−1, of length n · q (consisting of n blocks of q bits each).
We denote the concatenation of these d−1 strings by w. The i-th bit in θ is fixed (i.e. θi = �)
iff the i-th block in one of the d− 1 strings contains a zero. Thus, the event θ(i) = � may
be expressed as an OR of 6 + (d− 2)q literals over w. The event that a set of T variables
is fixed may be expressed as a CNF of size |T | ≤ n in the bits of w. By Corollary 55, the
distribution of w is ε0 · (d− 1)-pseudorandom for CNFs of size at most M · 2s · 2s(q+1) and
in particular to CNFs of size at most n. Thus,

Pr
w pseudo-random

[T is fixed under w] ≤ Pr
w random

[T is fixed under w] + ε0 · (d− 1)

= (1− pd−2/64)|T | + ε0 · (d− 1) . J

I Theorem 57 ([35, Theorem 12, restated slightly]). Let C be a size M , depth d circuit, and
ε > 0. Then, there exists a pseudorandom generator G1 of seed length Õ(log3(M/ε)) such
that:
|Prρ∼G1,x∼Un

[Cρ(x) = 1]−Pry∼Un
[C(y) = 1]| < ε.

Let p be the largest power of 1/2 less than 1/(64 log(8M/ε)). Then, each set of variables
T ⊆ [n] has probability at most (1− pd−2/64)|T | + ε0 · (d− 1) of being unassigned by ρ.

Proof. We initiate the generator from Thm. 56 based on the generator from Thm. 52. We
choose parameters so that the bound we get from Thm. 56 is at most ε/2. Choosing s to be
a power of 2 between log(8M/ε) to 2 log(8M/ε), p = 1/64s and ε0 = 2−9s2 guarantees that

M · (22s+1 ·max{(5ps)s, (5/64)s}+ ε0 · 2(s+1)·(3s+logM)) ≤ ε/2 .

The choice also guarantees that ε0 ≤ ε/2. In order to apply Thm. 56 with these
parameters, the generator G in Thm. 52 should ε0-fool circuits of size M ′ = M ·
2(q+2)s = 2O(log(M/ε) log log(M/ε)). Theorem 52 guarantees that seed-length r = Õ(log(M ′) ·
log(M ′/ε0)) = Õ(log3(M/ε)) is enough.

The generator in Thm. 56, G0, selects a set of coordinates J = {i ∈ [n] : θ(i) = ∗}.
Thm. 56 guarantees that with probability at least (1 − ε/2) over the choice of J and the
restriction of Jc by random bits, C reduces to an s-DNF of size at most M · 2s. We then
assign values to the variables indexed by J according to De et al. generator, G. Overall, we
need seed-length (d− 1) · r + r = dr, where the first term comes from sampling from G0 and
the second from sampling according to G.

For any fixed choice of θ we have:

Pr
y∼Un

[C(y) = 1] = Pr
x∼UJ ,z∼UJc

[C(x, z) = 1] = E
z

[Pr
x

[C(x, z) = 1]] .

Hence also for G0 which is a distribution over selections θ the following holds

Pr
y∼Un

[C(y) = 1] = E
θ

E
z

[Pr
x

[C(x, z) = 1]]
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For choices (θ, z) such that Cz(x) := C(x, z) is an s-DNF of size at most M · 2s, we have
Prx∼UJ

[C(x, z) = 1] = Prx∼G [C(x, z) = 1]± ε0. In the case where Cz(x) is not an s-DNF
of size M · 2s we trivially have Prx∼UJ

[C(x, z) = 1] = Prx∼G [C(x, z) = 1]± 1. However, this
is a rare event that happens with probability at most ε/2. Overall, we have

Pr
y∼Un

[C(y) = 1] = E
θ

E
z

[ Pr
x∼UJ

[C(x, z) = 1]] = E
θ

E
z

[ Pr
x∼G

[C(x, z) = 1]]± (ε0 + ε/2) .

which completes the proof of the first item as ε0 ≤ ε/2.
Note that the generator G1 selects J and assigns values to the variables in J . It does not

assign any of the variables in Jc. In this way, Trevisan and Xue change roles between the
fixed and alive parts of the restriction: starting with pseudorandom restriction where Jc is
fixed randomly and J is kept alive, they end up with a pseudorandom restriction where J is
fixed pseudorandomly and Jc is kept alive.

The second item follows by observing that a set of variables is fixed in Thm. 56 iff it is
unassigned here. J

I Theorem 58 ([35, Theorem 13, improved]). For every M,d, n, ε there is a polynomial time
computable ε-pseudorandom generator for circuits of size M and depth d on n variables,
whose seed length is Õ(logd+1(M/ε) · logn).

Proof. If d ≤ 2 we apply Thm. 52. Otherwise, we may assume d ≥ 3. As in Thm. 57, let p
be the largest power of 1/2 which is smaller than 1/(64 log(8M/ε)). Let p′ = pd−2/64. The
theorem follows by applying R = 3 ln(n)/p′ independent random restrictions from G1, each
with parameter ε/2R. Let t = log(2/ε), and let T ⊆ [n] be a set of size t. The probability T
remains totally unfixed after R iterations is at most

((1− p′)t + ε0 · (d− 1))3 ln(n)/p′

where recall that ε0 = 2−Ω(log2(M/ε)). We have (1− p′)t > 1− p′t ≥ 1− log(2/ε)
64 log(8/ε) > 1/2, so

(1− p′)t + ε0 · (d− 1) ≤ (1− p′)t · (1 + 2ε0 · (d− 1)) ,

and we get

((1− p′)t + ε0 · (d− 1))3 ln(n)/p′ <
(
(1− p′)t · (1 + 2ε0 · (d− 1))

)3 ln(n)/p′

≤ e(−p′t)·3 ln(n)/p′ · e2ε0·(d−1)·3 ln(n)/p′ (1 + x ≤ ex)

= n−3t · eo(1) = O(n−3t) .

As there are only at most nt sets T of size t, applying union bound, with probability at
most O(n−2t) < ε/2 there exists a set of size t which is unassigned. In the complement
event, there are less than t variables alive, and we may sample from a t-wise independent
distribution to fool the remaining circuit. Overall the seed length is(

3 ln(n)
p′

· Õ(log3(M/ε)
)

+O (log(1/ε) · logn)) = Õ(logd+1(M/ε) · logn) . J
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