research

Non-Malleable Codes for Small-Depth Circuits

Abstract

We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e. AC0\mathsf{AC^0} tampering functions), our codes have codeword length n=k1+o(1)n = k^{1+o(1)} for a kk-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay and Li (STOC 2017), which had codeword length 2O(k)2^{O(\sqrt{k})}. Our construction remains efficient for circuit depths as large as Θ(log(n)/loglog(n))\Theta(\log(n)/\log\log(n)) (indeed, our codeword length remains nk1+ϵ)n\leq k^{1+\epsilon}), and extending our result beyond this would require separating P\mathsf{P} from NC1\mathsf{NC^1}. We obtain our codes via a new efficient non-malleable reduction from small-depth tampering to split-state tampering. A novel aspect of our work is the incorporation of techniques from unconditional derandomization into the framework of non-malleable reductions. In particular, a key ingredient in our analysis is a recent pseudorandom switching lemma of Trevisan and Xue (CCC 2013), a derandomization of the influential switching lemma from circuit complexity; the randomness-efficiency of this switching lemma translates into the rate-efficiency of our codes via our non-malleable reduction.Comment: 26 pages, 4 figure

    Similar works