124 research outputs found

    Specifying and Analysing SOC Applications with COWS

    Get PDF
    COWS is a recently defined process calculus for specifying and combining service-oriented applications, while modelling their dynamic behaviour. Since its introduction, a number of methods and tools have been devised to analyse COWS specifications, like e.g. a type system to check confidentiality properties, a logic and a model checker to express and check functional properties of services. In this paper, by means of a case study in the area of automotive systems, we demonstrate that COWS, with some mild linguistic additions, can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We also provide a flavour of the properties that can be analysed by using the tools mentioned above

    Supporting Quality of Service in Scientific Workflows

    Get PDF
    While workflow management systems have been utilized in enterprises to support businesses for almost two decades, the use of workflows in scientific environments was fairly uncommon until recently. Nowadays, scientists use workflow systems to conduct scientific experiments, simulations, and distributed computations. However, most scientific workflow management systems have not been built using existing workflow technology; rather they have been designed and developed from scratch. Due to the lack of generality of early scientific workflow systems, many domain-specific workflow systems have been developed. Generally speaking, those domain-specific approaches lack common acceptance and tool support and offer lower robustness compared to business workflow systems. In this thesis, the use of the industry standard BPEL, a workflow language for modeling business processes, is proposed for the modeling and the execution of scientific workflows. Due to the widespread use of BPEL in enterprises, a number of stable and mature software products exist. The language is expressive (Turingcomplete) and not restricted to specific applications. BPEL is well suited for the modeling of scientific workflows, but existing implementations of the standard lack important features that are necessary for the execution of scientific workflows. This work presents components that extend an existing implementation of the BPEL standard and eliminate the identified weaknesses. The components thus provide the technical basis for use of BPEL in academia. The particular focus is on so-called non-functional (Quality of Service) requirements. These requirements include scalability, reliability (fault tolerance), data security, and cost (of executing a workflow). From a technical perspective, the workflow system must be able to interface with the middleware systems that are commonly used by the scientific workflow community to allow access to heterogeneous, distributed resources (especially Grid and Cloud resources). The major components cover exactly these requirements: Cloud Resource Provisioner Scalability of the workflow system is achieved by automatically adding additional (Cloud) resources to the workflow system’s resource pool when the workflow system is heavily loaded. Fault Tolerance Module High reliability is achieved via continuous monitoring of workflow execution and corrective interventions, such as re-execution of a failed workflow step or replacement of the faulty resource. Cost Aware Data Flow Aware Scheduler The majority of scientific workflow systems only take the performance and utilization of resources for the execution of workflow steps into account when making scheduling decisions. The presented workflow system goes beyond that. By defining preference values for the weighting of costs and the anticipated workflow execution time, workflow users may influence the resource selection process. The developed multiobjective scheduling algorithm respects the defined weighting and makes both efficient and advantageous decisions using a heuristic approach. Security Extensions Because it supports various encryption, signature and authentication mechanisms (e.g., Grid Security Infrastructure), the workflow system guarantees data security in the transfer of workflow data. Furthermore, this work identifies the need to equip workflow developers with workflow modeling tools that can be used intuitively. This dissertation presents two modeling tools that support users with different needs. The first tool, DAVO (domain-adaptable, Visual BPEL Orchestrator), operates at a low level of abstraction and allows users with knowledge of BPEL to use the full extent of the language. DAVO is a software that offers extensibility and customizability for different application domains. These features are used in the implementation of the second tool, SimpleBPEL Composer. SimpleBPEL is aimed at users with little or no background in computer science and allows for quick and intuitive development of BPEL workflows based on predefined components

    An SOA-based model for the integrated provisioning of cloud and grid resources

    Get PDF
    In the last years, the availability and models of use of networked computing resources within reach of e-Science are rapidly changing and see the coexistence of many disparate paradigms: high-performance computing, grid, and recently cloud. Unfortunately, none of these paradigms is recognized as the ultimate solution, and a convergence of them all should be pursued. At the same time, recent works have proposed a number of models and tools to address the growing needs and expectations in the field of e-Science. In particular, they have shown the advantages and the feasibility of modeling e-Science environments and infrastructures according to the service-oriented architecture. In this paper, we suggest a model to promote the convergence and the integration of the different computing paradigms and infrastructures for the dynamic on-demand provisioning of resources from multiple providers as a cohesive aggregate, leveraging the service-oriented architecture. In addition, we propose a design aimed at endorsing a flexible, modular, workflow-based computing model for e-Science. The model is supplemented by a working prototype implementation together with a case study in the applicative domain of bioinformatics, which is used to validate the presented approach and to carry out some performance and scalability measurements

    Integration of different aspects of multi-tenancy in an open source enterprise service bus

    Get PDF
    The EU project 4CaaSt aims to create an advance PaaS Cloud platform which supports the optimized and elastic hosting of composite Internet-scale multi-tier applications. Cloud computing is essentially changing the way services are built, provided and consumed. Nowadays applications are composed out of multiple reusable services consisting of newly developed services as well as legacy applications made available as services. These services do not necessarily use the same protocols for communication. So a component for the mediation between various protocols, dynamic service selection and routing based on non-functional requirements is needed. Nowadays an Enterprise Service Bus (ESB) is used in Service-Oriented Architectures (SOAs) to serve precisely these objectives. One important aspect of bringing an ESB as building block into the Cloud is to enable multi-tenancy. This includes multi-tenant aware management and administration of the ESB as well as multi-tenant aware messaging. In this student thesis we design and implement the extensions of the ESB and the components needed for the integration and evaluation of two approaches to extend an open source ESB for multi-tenancy support: the first covers the multi-tenant aware administration and management and the second covers the multi-tenant aware messaging. Both approaches require the extension of the ESB, which implements the Java Business Integration (JBI). As a result, we provide an integrated prototype based on a scenario emerged from the EU project 4CaaSt and a performance's evaluation of the extended JBI Components in the ESB

    Runtime Adaptation of Scientific Service Workflows

    Get PDF
    Software landscapes are rather subject to change than being complete after having been built. Changes may be caused by a modified customer behavior, the shift to new hardware resources, or otherwise changed requirements. In such situations, several challenges arise. New architectural models have to be designed and implemented, existing software has to be integrated, and, finally, the new software has to be deployed, monitored, and, where appropriate, optimized during runtime under realistic usage scenarios. All of these situations often demand manual intervention, which causes them to be error-prone. This thesis addresses these types of runtime adaptation. Based on service-oriented architectures, an environment is developed that enables the integration of existing software (i.e., the wrapping of legacy software as web services). A workflow modeling tool that aims at an easy-to-use approach by separating the role of the workflow expert and the role of the domain expert. After the development of workflows, tools that observe the executing infrastructure and perform automatic scale-in and scale-out operations are presented. Infrastructure-as-a-Service providers are used to scale the infrastructure in a transparent and cost-efficient way. The deployment of necessary middleware tools is automatically done. The use of a distributed infrastructure can lead to communication problems. In order to keep workflows robust, these exceptional cases need to treated. But, in this way, the process logic of a workflow gets mixed up and bloated with infrastructural details, which yields an increase in its complexity. In this work, a module is presented that can deal automatically with infrastructural faults and that thereby allows to keep the separation of these two layers. When services or their components are hosted in a distributed environment, some requirements need to be addressed at each service separately. Although techniques as object-oriented programming or the usage of design patterns like the interceptor pattern ease the adaptation of service behavior or structures. Still, these methods require to modify the configuration or the implementation of each individual service. On the other side, aspect-oriented programming allows to weave functionality into existing code even without having its source. Since the functionality needs to be woven into the code, it depends on the specific implementation. In a service-oriented architecture, where the implementation of a service is unknown, this approach clearly has its limitations. The request/response aspects presented in this thesis overcome this obstacle and provide a SOA-compliant and new methods to weave functionality into the communication layer of web services. The main contributions of this thesis are the following: Shifting towards a service-oriented architecture: The generic and extensible Legacy Code Description Language and the corresponding framework allow to wrap existing software, e.g., as web services, which afterwards can be composed into a workflow by SimpleBPEL without overburdening the domain expert with technical details that are indeed handled by a workflow expert. Runtime adaption: Based on the standardized Business Process Execution Language an automatic scheduling approach is presented that monitors all used resources and is able to automatically provision new machines in case a scale-out becomes necessary. If the resource's load drops, e.g., because of less workflow executions, a scale-in is also automatically performed. The scheduling algorithm takes the data transfer between the services into account in order to prevent scheduling allocations that eventually increase the workflow's makespan due to unnecessary or disadvantageous data transfers. Furthermore, a multi-objective scheduling algorithm that is based on a genetic algorithm is able to additionally consider cost, in a way that a user can define her own preferences rising from optimized execution times of a workflow and minimized costs. Possible communication errors are automatically detected and, according to certain constraints, corrected. Adaptation of communication: The presented request/response aspects allow to weave functionality into the communication of web services. By defining a pointcut language that only relies on the exchanged documents, the implementation of services must neither be known nor be available. The weaving process itself is modeled using web services. In this way, the concept of request/response aspects is naturally embedded into a service-oriented architecture

    Enabling horizontal scalability in an open source enterprise services bus

    Get PDF
    Cloud computing is a recent paradigm which describes a new way of consuming and delivering IT Services. In the Platform as a Service (PaaS) model, an underlying infrastructure such as network, operative system or server is provided to the Cloud consumers for either deploying their own applications, or applications supplied by the Cloud provider. In effect, Cloud computing modifies how applications should be built, provided, and consumed, as they may provide or be totally exposed as services, or consume existing third party applications services. The main advantages in Cloud computing are related to dynamic scaling of resources which are able to adapt to changes based on demand of resources and the use of multi-tenancy techniques in order based on sharing of resources between different users towards achieving the economy of scale. The Enterprise Service Bus (ESB) is essential as an integration middleware between application and services within and between multiple Cloud infrastructures. Different communication protocols might be used by application services and it is therefore necessary to have a mediator between them. Several challenges might arise when using an ESB as communication mediator between applications in cloud when to scale in and scale out to optimize resource consumption. The number of ESB instances should vary depending on the load in the Cloud infrastructure. This can be achieved by dynamically scaling in and out multiple ESB instances which constitute the horizontal ESB cluster. In this Master Thesis we focus on enabling horizontal scalability support for an open source multi-tenant aware Enterprise Service Bus (ESB). The investigation is based on two possible scenarios for enabling horizontal scalability: interconnected vs. non interconnected ESB instances. Therefore, in this work we investigate their advantages, disadvantages, and possible challenges and solutions. Based on previous investigations, a realization approach for enabling multi-instance management of a multi-tenant aware ESB is provided

    Approach and realization of a multi-tenant service composition engine

    Get PDF
    The support of multi-tenancy is an essential requirement to leverage the full extent of Cloud computing. Multi-tenancy enables service providers to maximize the utilization of their infrastructure and to reduce the servicing costs per customer. With regard to the fact that nowadays new applications or services are often composed out of multiple existing services or applications, a middleware is required which enables these compositions. A Service Composition Engine (SCE) provides the required functionality to enable the definition and execution of service compositions. In this diploma thesis we investigate the requirements and define an abstract architecture for the realization of a multi-tenant SCE. This architecture is prototypically realized with an open-source SCE and integrated into an existing multi-tenant aware ESB. The resulting middleware provides configurability for service compositions, tenant-aware messaging and tenant-based administration and management of the SCE and the ESB

    Literature Survey of Performance Benchmarking Approaches of BPEL Engines

    Get PDF
    Despite the popularity of BPEL engines to orchestrate complex and executable processes, there are still only few approaches available to help find the most appropriate engine for individual requirements. One of the more crucial factors for such a middleware product in industry are the performance characteristics of a BPEL engine. There exist multiple studies in industry and academia testing the performance of BPEL engines, which differ in focus and method. We aim to compare the methods used in these approaches and provide guidance for further research in this area. Based on the related work in the field of performance testing, we created a process engine specific comparison framework, which we used to evaluate and classify nine different approaches that were found using the method of a systematical literature survey. With the results of the status quo analysis in mind, we derived directions for further research in this area

    Process Oriented Collaboration in Grid-Environments: A Case Study in the Construction Industry

    Get PDF
    This paper addresses the process-oriented collaboration based on a grid-based platform for the support of virtual organizations (VO), illustrated on the example of the construction industry. Distributed, organizational and IT-structures of teams involved in vintage complex projects cannot be managed with conventional methods in an appropriate manner. Both using a grid platform and grid-based services, in conjunction with semantic methods for consistency saving and goal-oriented process management can increase the efficiency of collaboration processes in large-scale projects. A hybrid grid- and web service-based architecture for the next generation of VO service and a gateway solution was developed integrating the process-oriented perspective and prototypically implemented. The problem, as well as the solution on the basis of the hybrid system architecture combing the benefits of the cutting-edge technologies, the methodical concept for modeling VO processes and their automated execution on a grid platform are discussed in detail
    • …
    corecore