
Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2012, Article ID 212343, 19 pages
doi:10.1155/2012/212343

Research Article

An SOA-Based Model for the Integrated Provisioning of
Cloud and Grid Resources

Andrea Bosin1, 2

1 Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, 09042 Monserrato, Italy
2 Istituto Nazionale di Fisica Nucleare (INFN), Complesso Universitario di Monserrato, Sezione di Cagliari, 09042 Monserrato, Italy

Correspondence should be addressed to Andrea Bosin, andrea.bosin@dsf.unica.it

Received 15 June 2012; Revised 10 September 2012; Accepted 25 September 2012

Academic Editor: Guoquan Wu

Copyright © 2012 Andrea Bosin. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the last years, the availability and models of use of networked computing resources within reach of e-Science are rapidly changing
and see the coexistence of many disparate paradigms: high-performance computing, grid, and recently cloud. Unfortunately, none
of these paradigms is recognized as the ultimate solution, and a convergence of them all should be pursued. At the same time, recent
works have proposed a number of models and tools to address the growing needs and expectations in the field of e-Science. In
particular, they have shown the advantages and the feasibility of modeling e-Science environments and infrastructures according to
the service-oriented architecture. In this paper, we suggest a model to promote the convergence and the integration of the different
computing paradigms and infrastructures for the dynamic on-demand provisioning of resources from multiple providers as a
cohesive aggregate, leveraging the service-oriented architecture. In addition, we propose a design aimed at endorsing a flexible,
modular, workflow-based computing model for e-Science. The model is supplemented by a working prototype implementation
together with a case study in the applicative domain of bioinformatics, which is used to validate the presented approach and to
carry out some performance and scalability measurements.

1. Introduction

In the last years, the availability and models of use of
networked computing resources within reach of e-Science
are rapidly changing and see the coexistence of many
disparate paradigms, featuring their own characteristics,
advantages, and limitations. Among the main paradigms, we
find high-performance computing (HPC), grid, and cloud.
In all cases, the objective is to best provide hardware and
software resources to user applications with the help of
schedulers, reservation systems, control interfaces, authenti-
cation mechanisms, and so on.

At the same time, a number of works [1–4] have pro-
posed a number of models and tools to address the growing
needs and expectations in the field of e-Science. In particular,
the works in [4, 5] have shown the advantages and the
feasibility, but also the problems, of modeling e-Science
environments and infrastructures according to the service-
oriented architecture (SOA) and its enabling technologies
such as web services (WS). Among the main advantages

of such approach, we find interoperability, open standards,
modularity, dynamic publish-find-bind, and programmatic
access.

A detailed comparison of the characteristics of HPC,
grid, and cloud paradigms is presented in [6], where it
is observed that none of these paradigms is the ultimate
solution, and a convergence of them all should be pursued.
Even if many computing paradigms show some kind of SOA
awareness, heterogeneous resource provisioning still remains
an open problem because of the many integration issues,
such as usage model, life-cycle management, authentica-
tion, application programming interfaces (APIs), adopted
standards (or no standard at all), services (e.g., storage,
authentication), network segmentation or isolation between
different resources, monitoring, workflow languages, and
engines.

In this paper, we suggest a model to promote the
convergence and the integration of the different comput-
ing paradigms and infrastructures for the dynamic on-
demand provisioning of the resources needed by e-Science



2 Advances in Software Engineering

environments. Promoting the integration, cooperation, and
interoperation of heterogeneous resources has the advantage
of allowing users to exploit the best of each paradigm.
In addition, the availability of cloud resources, capable of
instantiating standard or custom virtual machines (VMs) on
a per-user basis, gives a number of value-added enhance-
ments:

(i) allowing the execution of platform-dependent appli-
cations which may be bound to specific operating
system flavors or libraries not generally available;

(ii) permiting dynamic provisioning of different work-
flow engines;

(iii) giving the additional flexibility to run web service
applications and enact workflows where and when
the user wishes (e.g., users may well decide to take
advantage of pay-per-use commercial providers such
as Amazon or Rackspace).

Our model is not meant to replace existing HPC,
grid, and cloud paradigms, rather it is an attempt aimed
at complementing, integrating, and building on them by
playing the role of a dynamic resource aggregator exposing
a technology agnostic abstraction layer.

At the same time, we aim at endorsing a flexible,
modular, workflow-based computing model for e-Science.
Our proposal borrows many SOA concepts and standards
from the business domain, including the adoption of the
Business Process Execution Language (BPEL) for workflow
design and execution. A motivation of our approach is
almost evident: the SOA paradigms, and in particular web
services and BPEL, are based on widely accepted standards
and supported by many software tools, both open source and
commercial.

In addition, we describe a working proof-of-concept im-
plementation together with a case study in the bioinformatics
domain, which is used to validate the proposed approach
and to address issues such as performance and scalability,
shortcomings, and open problems.

Though we are not presenting a revolutionary approach
or completely new ideas, we believe that the exploration,
exploitation, and integration of existing technologies and
tools, especially those based on open standards, in new and
different ways can contribute with added value to the field
and may be of interest to readers. In particular, with respect
to previous work, we have the following:

(i) BPEL has been used unmodified, while other works
have added custom extensions;

(ii) the model is open to the integration of both new
computing infrastructures and workflow systems;

(iii) the model is meant to work with the widest spectrum
of resources (in most works, resources are limited to
just one type, e.g., grid);

(iv) open standards have been adopted to the maximum
extent (in many other works, nonstandard ad hoc
solutions have been adopted);

(v) we are not (yet) proposing a production implemen-
tation; instead, we have chosen to explore and verify
in practice the possibility of employing tools and
technologies based on open standards in new and
different ways, strongly believing that this may give
a valuable contribution to tackle the problem of
heterogeneous resource provisioning;

(vi) we are not focusing on directly improving existing
works and systems, rather we investigated a different
direction that might be promising, being mainly
based on open standards;

(vii) the model is open not only to incorporate previous
work (and indeed it does), but also to be incorpo-
rated.

The paper is organized as follows. Section 2 reviews
some related work, while Section 3 provides a summary
of resources and provisioning systems. Section 4 presents
a model promoting the convergence and the integration
of such systems for the dynamic on-demand provisioning
of resources from multiple providers. Section 5 describes
a working implementation of the model, Section 6 covers
a case study in the bioinformatics domain, and Section 7
presents some of the results and discusses issues and open
problems. Conclusions are then drawn in Section 8.

2. Related Work

Software applications have been built to address a wide
spectrum of scientific workflows, ranging from basic tools
that are designed to handle “desktop” tasks such as simple
data analysis and visualization to complex workflow systems
that are designed to run large-scale e-Science applications
on remote grid resources. These systems need to support
multiple concurrent users, deal with security requirements,
and run workflows that may require the use of a sophisticated
layer of services [7].

In [3], authors identify desiderata for scientific workflow
systems—namely, clarity, predictability, reportability, and
reusability. Moreover, ease of composition and editing, the
ability to automatically log and record workflow enactments,
and the flexibility to incorporate new tools are all impor-
tant features [7]. The interoperability aspects of scientific
workflow systems are addressed in [2], which investigates the
differences in execution environments for local workflows
and those executing on remote grid resources. A complete
overview of features and capabilities of scientific workflow
systems is presented in [1].

There is a number of widely recognized grid workflow
projects like Triana [8, 9], Kepler [10], Pegasus [11], and
ASKALON [12]. Many of these began their life in the
“desktop” workflow space and have evolved over time to
address the large-scale e-Science applications. Specifically
designed for the life sciences, Taverna [13, 14] was the first
system to recognize the importance of data provenance and
semantic grid issues.

While developed for the business domain, technologies
like BPEL are recognized suitable to address the requirements



Advances in Software Engineering 3

of e-Science applications [4], supporting the composition
of large computational and data analysis tasks that must be
executed on supercomputing resources. BPEL is recognized
by [1] as the de facto standard for web-service-based
workflows. An architecture for the dynamic scheduling of
workflow service calls is presented in [15], where control
mechanisms of BPEL are combined with an adaptive runtime
environment that integrates dedicated resources and on-
demand resources provided by infrastructures like Amazon
Elastic Compute Cloud. Reference [16] presents the design
and implementation of a workflow management system
based on BPEL in a grid environment. Based on BPEL,
QoWL [17] and GPEL [18] are significant examples of
workflow systems designed for dynamic, adaptive large-scale
e-Science applications.

The use of BPEL for grid service orchestration is
proposed as foundation in [19] since it fulfills many require-
ments of the WSRF standard. The appropriateness of BPEL
is also examined and confirmed in [20–22]. These works
mainly focus on scientific workflows and rely on extending
or adapting BPEL, thus creating dialects.

Many authors consider the problem of resource provi-
sioning from the perspective of conventional grid applica-
tions. Following this approach, grid and cloud convergence
is achieved in such a way to expand a fixed pool of physical
grid resources, usually managed by a workload and resource
management system (WRMS), by providing new virtual grid
resources on-demand and dynamically leasing them from
one or more dynamic infrastructure management systems
(DIMSs).

Reference [6] presents a hybrid computing model which
is aimed at executing scientific applications in such a
way to satisfy the given timing requirements. Applications
are represented by workflows, that is, a set of jobs with
precedence constraints. The basic building block is the elastic
cluster, characterized by (1) dynamic infrastructure man-
agement services; (2) cluster-level services such as workload
management; (3) intelligent modules that bridge the gap
between cluster-level services and dynamic infrastructure
management services. An infrastructure for the management
and execution of workflows across multiple resources is then
built by using multiple elastic clusters coordinated by a
workflow management system.

Reference [15] explores on-demand provisioning of
cloud resources directly at the workflow level, using BPEL as
the workflow language. When, during workflow enactment, a
service is invoked, the request is routed to the service instance
running on the best-matching host (e.g., lowest load); if no
best-matching host is available, a new VM is provisioned
from a cloud to run a new instance of the required service.

The idea of virtual clusters on a physical grid is explored
in [23], where virtual organization clusters provide cus-
tomized, homogeneous execution environments on a per-
virtual organization basis. The authors describe a clustering
overlay for individual grid resources, which permits virtual
organizations of federated grid users to create custom
computational clouds with private scheduling and resource
control policies.

The feasibility of using one or more cloud providers
for deploying a grid infrastructure or parts of it has been
studied in [24]; such an approach permits the elastic growth
of the given grid infrastructure in such a way to satisfy peak
demands or other requirements.

The approach presented in this work has been previously
pursued [5, 25], with particular emphasis on SOA and BPEL
adequacy for e-Science environments and less attention to
the general problem of resource provisioning.

3. Resources and Provisioning Systems

We start this section with a brief description of the most com-
mon resource types available to e-Science environments and
then discuss the main features of the existing management
systems.

High-performance computing (HPC) resources are tightly-
coupled (e.g., by a high-performance communication device
such as an InfiniBand switch) sets of computing equipment
with (usually) a high degree of hardware and software homo-
geneity. HPC resources are in most cases managed by legacy
schedulers which represent a big issue for interoperability.
HPC infrastructures typically provide the following:

(i) high-performance hardware enabling strongly cou-
pled parallelism,

(ii) resource scheduling/reservation,

(iii) homogeneous hardware and software environments.

Grid resources are loosely coupled sets of computing
equipment with (usually) a local (e.g., per site) high degree
of hardware and software homogeneity. Physical separation
is not an issue and resources are managed through the
abstraction, of virtual organizations (VOs) with the possibil-
ity of federating many different VOs. The open grid services
architecture [26], or OGSA, is a framework for develop-
ing grid management services according to the service-
oriented architecture, thus enabling ease of integration and
interoperability between sites, even if grids have limited
interoperability between different grid software stacks [6].
Grid infrastructures may offer the following:

(i) large sets of computing resources,

(ii) resource scheduling/reservation,

(iii) advanced storage services,

(iv) specialized workflow systems,

(v) advanced monitoring services,

(vi) homogeneous operating system and software envi-
ronments.

Cloud resources are based on loosely coupled sets of com-
puting equipment with no need or guarantee of hardware
and software homogeneity and in many cases distributed at
different physical locations. In this paradigm, the physical
machine (PM) hardware and software are almost completely
hidden, and a virtual machine (VM) abstraction is exposed
to the user. Most cloud management systems are designed



4 Advances in Software Engineering

according to SOA concepts and expose their functionality
through Soap-based or RESTful interfaces, thus improving
ease of access, integration, and interoperability. One interest-
ing characteristic of clouds is the ability to provide resources
with certain characteristics, that is, specific software libraries
or configurations, dynamically on demand and on a per-user
basis [24]. Cloud infrastructures present the following:

(i) extremely flexible/customizable operating system
and software environments,

(ii) API based on open standards (e.g., Soap, REST),

(iii) on-demand provisioning,

(iv) increasing the number of resources offered by com-
mercial providers.

Specialized resources are “unique” nodes on the network
where a very specific activity can take place (e.g., data
acquisition from an attached physical device), but sharing
such resources on the network may not be straightforward,
since in many cases they expose custom APIs.

At last, personal resources, such as desktops or laptops,
provide users with the maximum ease of use in terms of
flexibility and customization, often at the expense of limiting
the interoperability with other resources. A personal resource
usually is the main door for accessing the network, and it is
both the starting and end point for user interaction with e-
Science environments (e.g., start an experiment, monitor its
execution, collect results, and write reports).

HPC and grid resources are usually controlled by
workload and resource management systems (WRMSs) which
support (1) resource management; (2) job management; (3)
job scheduling. The term job refers to the set of instructions
needed to run an application or part of it on a batch system,
written according to some Job Description Language (JDL).
A WRMS can be built on top of another WRMS, as it is
usually the case with grid middleware which relies upon
an underlying batch system referred to as a local resource
management system (LRMS).

Users are granted access to a WRMS in a number of ways:
(1) interactively from a front-end machine using a command
line interface (CLI); (2) programmatically by means of
specialized API; (3) in some cases, programmatically by
means of technology agnostic API, for example, Open Grid
Forum Distributed Resource Management Application API
(DRMAA) [27]. Authentication mechanisms may range
from simple credentials such as user/password to sophisti-
cated X.509 certificates based on a public key infrastructure,
both for users and software services.

An example of grid WRMSs is gLite computing resource
execution and management (CREAM) [28] for which job
submission and execution can be summarized as follows:
(1) a grid user, using his/her X.509 credentials, obtains
an authentication proxy from the VO membership service
(VOMS), prepares the job, and submits both the JDL
file and proxy to CREAM service; (2) user authentication
and authorization (by Local Centre Authorization Service,
LCAS) is performed; (3) user request is mapped to a
CREAM command and queued; (4) the CREAM command

is processed and mapped to a specific LRMS request, and
grid user is mapped to an LRMS user (by Local Credential
Mapping Service, LCMAPS); (5) the request is submitted to
the LRMS.

Cloud resources are typically supervised by dynamic
infrastructure management systems (DIMSs), which offer
two kinds of functionality: (1) physical resource manage-
ment; (2) service management, where provisioned services
are implemented using virtual resources. We are mainly
interested in the infrastructure as a service (IaaS) model,
which offers the maximum flexibility by providing virtual
machines and the management interface, as well as storage.
User access is performed: (1) interactively from a client
application; (2) through a browser by means of suitable plug-
ins; (3) programmatically by means of specialized API; (4)
programmatically by means of technology agnostic API such
as Amazon Elastic Compute Cloud (EC2) and Simple Storage
Service (S3) [29, 30], or Open Cloud Computing Interface
(OCCI) [31]. Authentication mechanisms may vary as in the
case of WRMS.

OCCI is an open protocol and API originally created
for all kinds of management tasks of (cloud) infrastructures
such as deployment, autonomic scaling, and monitoring.
It has evolved into a flexible API with a strong focus on
interoperability while still offering a high degree of flexibility.
OCCI makes an ideal interoperable boundary interface
between the web and the internal resource management
system of infrastructure (cloud) providers.

At the heart of OCCI model, we find the resource which
is an abstraction of a physical or virtual resource, that is, a
VM, a job in a job submission system, a user, and so forth.
The API allows for the creation and management of typical
IaaS resources such as compute, network, and sorage.

OCCI is being implemented only in the latest releases
of many cloud DIMSs we have tested (mainly Eucalyptus,
OpenNebula, and OpenStack), and as such we were not able
to test it extensively, yet we believe it is a first important and
promising step towards cross-cloud integration.

An example of a cloud DIMS is Eucalyptus Community
Cloud [32] where VM deployment follows a number of steps:
(1) a user requests a new VM to the cloud controller (CLC)
specifying disk image and characteristics (or flavor), (2) the
CLC authorizes the request and forwards it to the cluster
controller (CC), (3) the CC performs resource matching
and virtual network setup (hardware, IP addresses, and
firewall rules) and schedules the request to a node controller
(NC), (4) the NC retrieves disk image files from Walrus
repository service, (5) the NC powers up the VM through
the configured hypervisor, and (6) the user logs into the VM.

Quite interestingly, in [6], it is recognized that both
WRMS and DIMS can be well described by the managed
computation factory model introduced in [33] and shown
in Figure 1. In this model, clients of computational resources
do not directly interact with the bare resources, rather they
work with the managed computation abstraction. A managed
computation can be (1) started, (2) stopped, (3) terminated,
(4) monitored, and/or (5) controlled by interfacing with
a managed computation factory. The factory is in charge



Advances in Software Engineering 5

Client Resource
Managed

computation
service

Managed
computation

factory

Figure 1: Managed computation factory model.

of creating the managed computation, which is assigned
to one or more computational resources. The managed
computation often operates as a service, hence the name
managed computation service in Figure 1.

4. Integrated Provisioning of Resources

To address the needs of a wide community of users wishing
to exploit at best the resources they have access to (e.g.,
those granted to them at no charge), we propose to design
an abstraction layer between applications and resources, in
such a way that resources can be requested, provisioned,
used, monitored, and disposed without worrying about the
underlying technological infrastructure. Promoting the inte-
gration, cooperation, and interoperation of heterogeneous
resources has the advantage of allowing users to exploit the
best of each paradigm.

In a scenario based on “smart” resource aggregation,
new applications may enjoy many benefits; it is possible to
imagine a distributed application orchestrated by a workflow
where (1) a VM on a cloud runs the workflow engine, (2)
the bulk computation is performed in parallel on an HPC
infrastructure, (3) data postprocessing is executed on a grid
(or cloud), (4) results are viewed on a personal resource, and
optionally (5) steps 2–4 are part of an iterative computation.

At a first sight, there may be no benefits for existing
applications, unless they are modified, but cloud flexibility
may nevertheless help. Indeed, a user application developed
for a grid, or other resources may become unusable if (1) the
user has no (or no longer) access to the grid, or (2) an update
in grid operating system/middleware requires modifications
to the application. A possible solution is then to deploy the
desired flavor of grid on top of a cloud, as explored in [24],
and run the unmodified application.

In this section, we describe a model to promote the
convergence, integration, cooperation, and interoperation
of different computing paradigms and infrastructures, for
the dynamic on-demand provisioning of the resources from
multiple providers as a cohesive aggregate. The model,
depicted in Figure 2, builds upon HPC, grid, and cloud sys-
tems leveraging existing WRMS and DIMS and connecting
the different components through SOA interfaces whenever
possible, directly or by means of suitable wrappers/adapters.

At the same time, the proposed design aims at endorsing
a flexible, modular, workflow-based collaborative environ-
ment for e-Science. The latter sees the integration and
interoperation of a number of software components, such as

(i) workflows or processes, to define and coordinate
complex scientific application or experiments;

(ii) service interfaces, to expose the logic of scientific
applications;

(iii) components, to implement rules and perform tasks
related to a specific scientific domain.

At the implementation level, the choice of SOA as
the enabling technology for a common integration and
interoperation framework sounds realistic due to the:

(i) availability of SOA standards for workflow systems
(i.e., BPEL);

(ii) availability of web service libraries to build new
applications and to wrap existing ones;

(iii) existence of SOA standards covering areas like data
access, security, reliability, and so forth;

(iv) access to a number of computing infrastructures
(e.g., grid) is, at least partially, SOA aware.

In the envisioned collaborative environment, resources
are needed both for running scientific (web) services and
processes, and we distinguish two kinds of resource requests:

(i) scientific service (SS) requests for the execution
of scientific application modules; scientific services,
possibly exposed as web services, have the responsi-
bility of the computation on the assigned resources;

(ii) scientific process requests for the execution of sci-
entific workflows; scientific workflows or processes,
enacted by a workflow engine, orchestrate one or
more scientific services and are in charge of (1)
obtaining the resources needed for each computation
represented by a service and (2) managing their
life cycle; scientific processes may as well expose
workflow instances through a web service interface.

Scientific service and process requests, conforming to
SOA, are described by XML documents (see Figure 4 for an
example).

Resources, which can be physical (PM) or virtual (VM),
are classified accordingly: worker nodes run scientific applica-
tions modules, while workflow engine nodes are dedicated to
the execution of workflow engines (WfEs). The distinction
between workflow engine and worker nodes is mainly logical;
a WfE node is a VM (or PM) resource allocated for the
execution of a workflow engine, while a worker node is
a PM or VM allocated to run a module of a scientific
application in the form of a web service or other type of
software component. However, it should be noted that, at
different times, a resource may act as a worker node or
as a workflow engine node, depending on the managed
computation assigned to it. In addition, all the resources



6 Advances in Software Engineering

PM PM PM PM

PMPMPMPM

PM

PM PM

PM PM PM

PMPM

VM VM VM VM VM VM VM VM

ProxyStorage
manager

Worker nodes Wf engine nodes

VM create and destroy
command

Monitor

Private/public clouds

Application and machine
image repository

Job submission
and control Resource requestResource status Workflow deployment

and enactment

Resource status
notification

Dynamic infrastructure
management service (DIMS)

gLite LSF SGE

Workload and resource
mangement system (WRMS)

Resource provider

OpenstackOpenNebula

Figure 2: Model of dynamic on-demand resource provisioning system.

belong to one or more WRMSs and/or DIMSs, with the
possible exception of some personal and specialized resource.

Figure 3 shows a diagram synthesizing the dependencies
and interactions between users and the main components
of the model and its subsequent implementation, which we
are going to describe in greater detail in this and the next
sections.

4.1. Resource Provider. At the core of the model, we find the
resource provider service which acts as a high-level managed
computation factory exposing a web service interface:

(i) it accepts requests for resources from clients;

(ii) it translates and forwards requests to the underlying
WRMS and DIMS;

(iii) it receives resource heartbeats and notifications;

(iv) it notifies asynchronous clients of resource endpoint,
availability, and status changes.

All resource requests are submitted to the resource
provider, which takes the appropriate actions based on
the request type, as we are going to describe in the
following subsections together with the other components

of the model. A successful resource request will start the
desired managed computation and provide the user with the
computation service network end point and identifier: due to
the nature of the resources and of their management systems,
this may not immediately happen, leaving users waiting
for a variable amount of time. Consequently, the resource
provider offers different strategies to inform users when their
managed computation is at last started; in particular, clients
may submit their resource requests in a number of ways:

(i) a synchronous request returns successfully within a
given timeout only if the computation starts before
the timeout expires;

(ii) an asynchronous request without notification returns
immediately: clients may periodically poll the
resource provider to know if the computation has
started;

(iii) an asynchronous request with notification returns
immediately but allows clients to be notified as soon
as the computation starts (clients must be able to
receive notifications).

The resource provider is also responsible for disposing
resources (canceling jobs in a WRMS or terminating VMs in



Advances in Software Engineering 7

Proxy

Resource provider

Storage manager

Resource manager

Scientific service
ODE

CREAM
OpenStack LSF

request

request

request

SS
SS

request

WfE SS

input input

status

workflow

resource

User

WfE or SS request

outputoutput

status

⟨⟨run⟩⟩ ⟨⟨run⟩⟩
⟨⟨run⟩⟩

⟨⟨run⟩⟩

⟨⟨notify⟩⟩

⟨⟨notify⟩⟩

⟨⟨forward ⟩⟩

Monitor

⟨⟨WRMS⟩⟩⟨⟨WRMS⟩⟩

⟨⟨forward⟩⟩ ⟨⟨invoke⟩⟩

⟨⟨enact⟩⟩ ⟨⟨delegate⟩⟩
⟨⟨delegate⟩⟩

⟨⟨delegate⟩⟩

⟨⟨delegate⟩⟩

⟨⟨request⟩⟩

⟨⟨submit⟩⟩

⟨⟨query⟩⟩ ⟨⟨query⟩⟩

⟨⟨query⟩⟩

⟨⟨read/write⟩⟩

⟨⟨WfE⟩⟩

⟨⟨DIMS⟩⟩

Figure 3: Component diagram with basic dependencies.

a DIMS) upon explicit request, resource lifetime expiration,
or in case of problems. The associated scientific service or
workflow engine is informed of the imminent disposal, is
explicitly in charge of its own clean-up (and should be
implemented accordingly), and is required to notify the
resource provider immediately before exiting.

4.2. Scientific Process Requests. A scientific workflow or
process is a high-level description of the process used to carry
out computational and analytical experiments, modeled as
a directed graph consisting of task nodes and data-flow or
control-flow edges denoting execution dependencies among
tasks. A process instance is executed by a workflow engine,
an application which needs a computing resource to run on.
During workflow execution or enactment, workflow engines
generally schedule tasks to be invoked according to the
data-flow and control-flow edges. A request for a resource
dedicated to the execution of a workflow engine, workflow
deployment, and the subsequent enactment of a workflow
instance is satisfied by materializing an appropriate VM, that
is, an operating system embedding the desired workflow
engine. The request specifies the following:

(i) the cloud type (e.g., Eucalyptus Community Cloud)
that determines the API to use when connecting to
the cloud-specific DIMS;

(ii) the DIMS interface endpoint, typically a URL;

(iii) the user authentication credentials;

(iv) the VM characteristics or flavor, for example, number
of CPUs, RAM size, and so forth;

Run

Exit

Release

Error

Submit

Run notification

Exit notification

Resource request

Resource request

Release request

Figure 4: State diagram for an abstract resource.

(v) a custom VM image embedding the desired workflow
engine;

(vi) the workflow image, that is, the URL of the archive
containing the BPEL documents and related files.

When the resource provider processes the request, a VM
creation command is submitted to the cloud-specific DIMS.
The latter schedules the instantiation of a new VM with



8 Advances in Software Engineering

the given characteristics on the corresponding cloud (pool of
resources) and returns a VM identifier or an error. As soon as
the VM is up and running, the embedded workflow engine is
started and the workflow image is downloaded and deployed;
the resource provider is then notified of the WfE interface
end point.

A workflow is an abstract representation of a scientific
application and is made of a set of tasks or jobs with
precedence constraints between them [6]. Each job needs a
resource to run on, and the workflow places the correspond-
ing scientific service requests on the resource provider.

4.3. Scientific Service Requests. A request for a resource
needed to run a job, that is, a module of a scientific
application in the form of a scientific service, specifies the
following:

(i) the resource type, either a resource managed by a
WRMS (e.g., CREAM) or a cloud resource made
available through a DIMS;

(ii) the WRMS or DIMS interface endpoint (URL);

(iii) the user authentication credentials;

(iv) the resource requirements, for example, RAM size;

(v) the web service (application) image, that is, the URL
of the archive containing the web service executable
and related files.

The resource provider forwards the request to the
specified DIMS or WRMS. A conventional job submitted
to an HPC or grid batch system contains the instructions
needed to start the computation, written according to
some Job Description Language (JDL). In our case, the
job responsibility is to start the web service and wait until
it stops, while the real computation is orchestrated by a
workflow through one or more invocations of the web
service. The resource provider is in charge of preparing the
job submitted to the WRMS by translating the specifications
contained in the resource request (an XML document) into
the corresponding JDL. Job submission to a WRMS returns
a job identifier or an error. If the job is to be executed by
a dedicated VM allocated on a cloud, the VM is created
as described in the previous section, except that a standard
machine image is used unless a custom image is specified;
the VM is instructed to execute the job after booting the
operating system.

As soon as the job is started on a worker node, be it a PM
or VM, it notifies the workflow (via the resource provider) of
the endpoint of the web service, which is ready and listening
for incoming messages. When all the resources requested by
the workflow are available, the execution can proceed with
the invocation of all the required web services in the specified
order.

Algorithm 1 shows a fragment of the XML docu-
ment representing a scientific service request for a cloud
resource, where the cloud interface is Amazon EC2, the
WS image can be download from the URL http://ws-
cyb.dsf.unica.it/ws/jar/WekaDataMining.jar, and the cloud
provider is OpenStack [34] with its own set of requirements

(endpoint, region, VM image, and flavor) and user creden-
tials (username/password).

4.4. External Resources. In the foreseen environment, specific
activities (e.g., data acquisition from an attached physical
device) can take place on specialized nodes on the network;
these activities may be exposed by dedicated static services
which can be invoked from within a workflow.

In addition, an interesting degree of interactivity may be
added to plain workflow execution by invoking a visualiza-
tion service, for example, at the end of each iteration in an
iterative simulation. Such visualization service may be well
executed on a personal resource, such as the user desktop, to
give a real-time visual feedback of the state of the simulation.

If the service is static, its endpoint is “immutable,” and it
can simply be hard-coded into the workflow description, but
the visualization service presents a problem. Hard-coding a
user-specific endpoint (the desktop network address) makes
the workflow unusable by different users. We explicitly
handle resource requests that refer to external resources and
for which creation is not needed. This allows workflows to
manage all jobs exactly in the same way, delegating to the
resource provider the responsibility for provisioning a new
resource only if needed. The latter is directly notified by
resources of their endpoint on the network, and in turn,
it can notify workflows in such a way to allow dynamic
endpoint injection.

4.5. Proxy. In general, worker nodes and workflow engine
nodes live on different private networks which are not
directly connected to one another (the only assumption we
do is that they can open network connections towards the
Internet through some kind of Network Address Translation
or NAT service), so a proxy service is essential in routing
messages from scientific processes (workflows) to scientific
services (web services) and vice versa.

4.6. Other Services. The other components that complete
the model are briefly described here, leaving some details
to the next section. The storage manager provides temporary
storage to data-intensive scientific services; multiple storage
managers can coexist in such a way to ensure optimal
performance and scalability when needed. The monitor is
a simple service that can be queried for resource status
information. The application and machine image repository
(AMIR) hosts the applications (e.g., scientific service and
process images) and virtual machine disk images that will be
executed on the provisioned resources.

5. Implementation

In this section, we describe a working prototype implemen-
tation of the model outlined before. We have tried to give
a high-level schematic description of the implementation
in such a way to avoid overwhelming the reader with
unnecessary and less interesting details. We have privileged



Advances in Software Engineering 9

<BSRequest>
<BSScheduler>EC2</BSScheduler>
http://ws-cyb.dsf.unica.it/ws/jar/WekaDataMining.jar

<BSJavaOptions>-Xmx2048m</BSJavaOptions>
<BSRequirements>

<EC2Params>
<ec2Provider>nova-ec2</ec2Provider>
<ec2Endpoint>http://172.16.3.3:8773/services/Cloud</ec2Endpoint>
<ec2Region>nova</ec2Region>
<ec2Image>ami-lennyws</ec2Image>
<ec2Flavor>m1.small</ec2Flavor>

</EC2Params>
<BSRequirements>
<BSCredentials>

<CryptedPWAuth>
<username> . . . </username>
<cryptedPW> . . . </cryptedPW>

</CryptedPWAuth>
<BSCredentials>

</BSRequest>

Algorithm 1: XML fragment of the document representing a scientific service request.

the description of the idea and of the issues of the single
components in the context of the presented model.

According to the general philosophy of an SOA-based
framework, we have developed a number of infrastructure
(web) services corresponding to various components of the
model—using the Java programming language—and reused
open-source tools and systems whenever possible, operating
the necessary integration. Figure 3 shows the component
diagram of the presented implementation with the basic
dependencies between components, as better described in
the following subsections.

Integrating WRMS and DIMS requires (1) that they
expose a network-enabled public interface, possibly based on
SOA standards and (2) embedding the necessary logic into a
module of the resource provider. Such integration is usually
performed for entire classes of WRMS or DIMS: a specific
instance may then provide its resources at any time as soon
as a resource request refers to it. This allows, for example,
drawing resources from two or more Eucalyptus Community
Cloud infrastructures at the same time.

In this work, we have developed modules to interact with
the following WRMSs:

(i) gLite v3.2 compute element (CE) [35];

(ii) gLite v3.2 computing resource execution and man-
agement (CREAM) [28];

(iii) platform load sharing facility v6.2 (LSF) [36];

(iv) oracle grid engine v6.2 (SGE) [37].

CE and CREAM expose OGSA-compliant interfaces and,
in addition, it is possible to resort to existing Java API
such as jLite [38]. On the contrary, LSF does not offer a
similar functionality, so we have developed a simple but
effective web-service wrapper, the resource manager, and

deployed it to one of the submission hosts, on top of the
LSF command line interface. We have followed the same
strategy for SGE, too, even if the latter supports the Open
Grid Forum Distributed Resource Management Application
API (DRMAA) [27].

On the cloud side, we have integrated the following:

(i) Open Nebula [39] defined by its developers is as
an “industry standard open source cloud computing
tool”;

(ii) Open Stack [34] is an open-source porting of
Rackspace’s DIMS;

(iii) Eucalyptus Community Cloud [32] is presented as
“a framework that uses computational and stor-
age infrastructure commonly available to academic
research groups to provide a platform that is mod-
ular and open to experimental instrumentation and
study.”

According to their documentation, all these systems
expose a RESTful interface compatible with Amazon Elastic
Compute Cloud (EC2) [29] and Simple Storage Service
(S3) API [30], which are becoming a de facto standard. In
practice, the compatibility is not full, but for OpenStack
and Eucalyptus, we have successfully employed such interface
with the help of the jclouds library [40]. OpenNebula needs
additional components to expose the EC2 interface, so we
have decided to use its native interface, which is anyway
satisfactory.

The above DIMS can cope with different virtualization
systems (hypervisors): Xen and Kernel-based virtual machine
(KVM) are the most commonly used. Even if we find KVM
more straightforward to use on computers that support
hardware-assisted virtualization (both Intel VT-x and AMD-
V), the specific hypervisor is almost completely hidden to



10 Advances in Software Engineering

the user by the same abstraction layer, that is, the libvirt
virtualization API [41].

5.1. Resource Provider. In the prototype implementation, the
resource provider functionality is mapped onto a hierarchy of
Java classes and is exposed through a web service interface. It
would be impossible to describe all classes in detail here, so
we only list their key responsibilities:

(i) process all resource requests and make up the cor-
responding jobs;

(ii) interact with WRMS and DIMS for job and VM
scheduling, execution, and control;

(iii) receive status notifications from resources and deliver
them to the interested entities (e.g., workflows or
monitoring applications);

(iv) dispose resources;

(v) manage resource context and status;

(vi) register proxies, storage managers, and monitoring
applications;

(vii) trace message flow and inform registered monitoring
applications;

(viii) enforce elementary security practices: authentication
credentials containing plain text passwords must be
encrypted with the resource provider public key
before transmission; if necessary, the use of one-time
security tokens can be enabled;

(ix) assign registered proxies and storage managers to
scientific services.

5.2. Abstract Resources. The Java classes implementing the
resource provider functionality work with an abstract
representation of scientific process and service resources,
embodied by the class SSResource, which does not depend
on the resource type. The dynamic behavior of an abstract
resource is captured by the state diagram shown in Figure 4.

If a resource request is permissible, a new instance of
the specific SSResource subclass is created with status set to
Submit and the corresponding physical or virtual resource
creation advances as described in Section 4. As soon as the
resource becomes ready, the associated scientific process or
service sends a (resource status) notification message to the
resource provider, and such event triggers a change of status
from Sumbit to Run. Only at this point, the resource can
be used, and the resource provider notifies all the interested
entities. Once the resource is no longer needed, it may be
disposed; its status is then set to Release and the disposal
of the corresponding physical or virtual resource proceeds
according to the previous section. The scientific process or
service sends another (resource status) notification message
that causes the status to change from Release to Exit.

All the other state transitions are triggered by error
conditions.

5.3. Scientific Services. Scientific services implement the logic
of scientific applications, usually in a modular form where

the whole logic is partitioned into reusable, loosely coupled,
cohesive software modules. In an SOA-based framework,
scientific services expose their functionality through a web
service interface formally described by a WSDL document.
To be best integrated in our model, scientific services, in
addition to the core scientific functionality just described,
must implement some housekeeping operations, too:

(i) immediately after start-up, they must notify the
resource provider of their status (RUN);

(ii) immediately before exiting, they must notify the
resource provider of their status (EXIT);

(iii) they must retrieve from the resource provider the
assigned proxy and storage manager service end
points;

(iv) they should expose some standard operations such as
version(), load(), and exit(),

(v) they should provide asynchronous operations for
long-running computations.

To ease the realization of new scientific services, or for
wrapping existing applications into a web service container,
we have developed a small housekeeping Java library imple-
menting the above common tasks. As a simple example,
consider the MyScientificService web service class, imple-
menting the MyScientificServicePortType interface (defined
by the corresponding WSDL port type) and exposing a
myOperation operation. The simplified class diagram that
illustrates how the scientific service can be implemented in
Java, taking advantage of the housekeeping library, is shown
in Figure 5. The responsibilities of each class in the diagram
are the following:

(i) SS: common functionality useful to all scientific
services;

(ii) SSPublisher: entry-point class which publishes the
scientific service and initializes the network channel
toward the proxy;

(iii) SSConnectionClient: it manages network channel and
receives input messages from proxy;

(iv) SSNotify: it manages notification messages;

(v) SSThread: common functionality useful to all
implementations of scientific service synchronous/
asynchronous operations;

(vi) MyScientificService: scientific service implementa-
tion;

(vii) MyScientificServicePortType: scientific service inter-
face with the list of all exposed operations;

(viii) MyOperationThread: implementation of the scientific
service operation myOperation which may be exe-
cuted asynchronously in a separate thread (useful for
long-running computations).

Scientific service images are uploaded to the AMIR to be
retrieved and deployed by scientific resource requests.



Advances in Software Engineering 11

MyOperationThread

MyBusinessServicePortType

+ version(): string

+ version(): string

+ load(): string

+ load(): string

+ exit()

+ exit()

+ myOperation()
+ myOperationAsync()

MyScientificService

+ run()

+ main()

+ run()

SSThread

SSPublisherSSNotify

SS

SSConnectionClient

Common

Scientific service specific

Thread

⟨⟨publish⟩⟩

⟨⟨send⟩⟩
⟨⟨receive⟩⟩

⟨⟨execute⟩⟩

Figure 5: Scientific service class hierarchy.

5.4. Scientific Processes and Workflow Engines. As suggested
in [5, 15], the choice of a workflow language naturally
leads to the Business Process Execution Language [42] which
belongs to the family of SOA standards. BPEL is complemen-
tary to the web service definition language (WSDL) [43],
and in fact, BPEL instances are themselves web services.
Both languages are XML based, and both make use of the
XML schema definition language (XSD). A number of BPEL
engines were considered:

(i) sun BPEL engine for Glassfish server (no longer
maintained);

(ii) Oracle BPEL Process Manager in the Oracle SOA
Suite 11g (commercial) [44];

(iii) ActiveVOS BPEL execution engine (commercial)
[45];

(iv) Orchestra (open source) [46];

(v) Apache Orchestration Director Engine or ODE in
brief (open source) [47].

Due to our preference for open-source software and self-
contained tools, in the current implementation, we have
chosen to work with ODE v1.3.5. This requires (1) a module



12 Advances in Software Engineering

in the resource provider to manage WfE requests, (2) a
simple SOA wrapper to interface ODE with the resource
provider and clients, and (3) a VM image embedding ODE.
The WfE node component is then a VM image which
provides the guest operating system preinstalled with some
ready-to-run workflow engine such as ODE.

It is worth mentioning that the implementation is open
to the integration of all standalone self-contained workflow
engines, based on BPEL or not, that can be remotely executed
on a nongraphical resource.

The VM disk image embedding ODE is deployed to the
AMIR together with the workflow images.

5.5. Network Connectivity. One important practical issue not
immediately evident from the model is the complexity of the
network connections between the different components. We
start from some basic assumptions.

(i) The resource provider must live on a public network
so that every other component can contact it, includ-
ing all the users of the system which, in a collaborative
distributed environment, can be located anywhere.

(ii) Worker and WfE nodes, as already observed, may live
on different private networks which are not directly
connected to one another, but we assume that they
can open network connections towards the Internet
through some kind of NAT service. The same is true
for personal resources.

(iii) WRMS and DIMS, if not living on a public network,
must be accessible from the resource provider (e.g.,
via a virtual private network or VPN).

(iv) The application and machine image repository may
be on a public network or may be replicated on the
private networks attached to each pool of PM/VM.

(v) The storage manager must live on a public network
to allow for the sharing of data.

In addition, we have the following constraints:

(1) the resource provider (public network) is required
to notify a WfE (private network) when a requested
scientific service resource is ready;

(2) a WfE needs to send request-response or one-way
messages to scientific services running on WN or
personal resources and living on different private
networks;

(3) a scientific service running on a WN may need to
send (notify) one-way messages to a WfE which is not
on the same private network.

The first constraint can be satisfied by setting up a VPN
between the WfE node and the resource provider: the VM
that executes the WfE can be instructed to initialize the VPN
during start-up; the other two by implementing a proxy
service as described in the next subsection. The resulting
network connectivity is synthesized in Figure 6.

5.6. Proxy. The proxy service acts as an intermediary for
routing (Soap) messages from WfE to scientific services and
vice versa. When the resource provider needs to notify a
WfE about the endpoint (URL) of a newly started scientific
service, it replaces the scientific service private network
address with the proxy public address. In this way, the
messages sent by a WfE to a scientific service are in fact sent
to the proxy, which performs a sort of message routing to its
final destination, based on a special message tag.

For improved scalability, many proxies can register with
the resource provider. The latter assigns one of the available
proxies to each scientific service. Each proxy is then in charge
of routing messages to its own pool of scientific services that
may live on different private networks. In principle, we could
link the proxy and its pool of services with a VPN, but setting
it up requires privileges usually not granted to a job in a
WRMS. In practice, every scientific service, upon start-up,
simply opens and shares a persistent bidirectional network
connection with its own proxy; the latter will use this channel
to route all the messages directed to the service.

The scientific service proxy component manages request-
response and one-way messages from WfE to scientific ser-
vices, while the notification proxy component is responsible
for managing one-way messages from scientific services to
WfE.

5.7. Other Services. As previously discussed, storage managers
provide temporary storage to data-intensive scientific ser-
vices. When the output from a scientific service serves as
input for a subsequent service invocation during workflow
execution, it would be ineffective to transfer the data back
to the workflow and forth again to the next service. The
storage manager handles plain and efficient HTTP uploads
and downloads, assigning a unique public URL to the
uploaded data so that they can be easily retrieved later
when needed. many storage managers can register with the
resource provider, thus ensuring optimal performance and
scalability.

Monitor is a simple application with a web service client
interface on the resource provider side and an HTTP/HTML
interface on the user side, which can be queried for resource
status. Monitor shows information, in XHMTL format,
about the resource context related to scientific services, such
as resource identifier, status, WSDL port type, last operation
invoked, and the related time stamp.

The application and machine image repository is dis-
tributed over a number of components: a simple HTTP
server hosts all the scientific service and process images, while
every DIMS manages its own dedicated virtual machine
image repository.

6. Case Study

The case study focuses on a specific bioinformatics domain:
the application of machine learning techniques to molecular
biology. In particular, microarray data analysis [48] is a chal-
lenging area since it has to face with datasets composed by



Advances in Software Engineering 13

Public networks

NATNAT

WNWNWN

VPN

DIMS

Private network Private network

Proxy Storage
manager

Resource
provider

Monitor

WRMSWf engineWf engine

Figure 6: Schema of network connectivity.

a relatively low number of records (samples) characterized by
an extremely high dimensionality (gene expression values).

6.1. Scientific Context and Background. Microarray experi-
ments generate datasets in the form of M × N matrices,
where M is the number of samples (typically M ∼100),
and N is the number of genes (N > 10,000). Such gene
expression data can be used to classify the biologic samples
based on the pattern of expression of all or a subset of genes.
Reference datasets, needed by machine learning techniques,
are generated from the experimental data by assigning a class
label to all the samples (this is usually done manually by
a domain expert). The construction of a classifier proceeds
by (1) selecting an informative set of genes (features or
attributes) that can distinguish between the various classes,
(2) choosing an appropriate mathematical model for the
classifier, (3) estimating the parameters of the model from
the data in the training set, that is, a properly chosen subset of
the reference dataset, and (4) calculating the accuracy of the
classifier using the test set, that is, the remaining independent
subset not used in training the classifier. With the help of
the resulting classifier, class labels can then be automatically
assigned to new unclassified microarray samples with an
error margin which depends on the accuracy of the classifier.

Due to the huge number of genes probed in a microarray
measure, the possibility of training a classifier using the
expression values of a smaller but significant subset of all
the genes is of particular interest. Many mathematical and
statistical methods (e.g., chi-square) exist for selecting a
group of genes of a given size and, after filtering out from
the dataset all the other genes, a classifier can be trained
and its accuracy tested. The subset of significant genes is
then iteratively expanded or collapsed, and the previous
procedure is repeated; in this way, it is possible to compare
the accuracy of the classifier as a function of the size of the
subset (i.e., number of attributes) and try to determine the
“optimal” group of genes (Figure 7).

The reference dataset used in our experiment covers
microarray measures related to the acute lymphoblastic
leukemia [49], with 215 samples in the training set and 112
samples in the test set characterized by 12557 gene expression
values and 7 class labels.

6.2. User Interaction. User interaction should be kept as
much as possible (1) well-defined, (2) simple, and (3)
independent of the WRMS/DIMS used, that is, technology
agnostic; conforming to SOA, user interaction is based on
the exchange of XML documents.

Users wishing to run a workflow-based application
should provide the following information:

(i) URL of the image of the workflow to be deployed and
enacted on demand (from a public repository or user
provided, e.g., AMIR);

(ii) URL of the images of all scientific services to be
started on demand and used by the workflow (from a
public repository or user provided);

(iii) endpoint and authentication credentials of the
WRMS/DIMS required to provide the resources to
run the on-demand workflow engine and scientific
services.

Based on the above information, users (1) prepare and
send to the resource provider the workflow engine request
document, (2) when the engine becomes ready, enact one
or more workflow instances by preparing and sending the
corresponding input documents, and (3) when finished, send
to the resource provider the release request for the engine.

According to the information specified in the input
document, the workflow is in charge of (1) composing and
sending to the resource provider the scientific service request
documents for all on-demand services, (2) when all scientific
services are ready, invoking them in the specified order with
the required input, and (3) in the end, sending to the resource
provider the release request for all scientific services.

The SoapUI [50] application provides a GUI that can
be of valuable help; after reading the WSDL document
associated to a web service, it automatically lays out the
structure of the XML input document leaving the user with
the simpler task of filling in the data. SoapUI can also send
the document to the given web service or workflow.

6.3. Scientific Services. The core of the scientific application
is a modular web service, Weka Data Mining, which exposes



14 Advances in Software Engineering

0
10
20
30
40
50
60
70
80
90

A
cc

u
ra

cy

150 160 170 180 190 200

Accuracy comparison

Number of attributes

PART

Multilayer perception

IB1

Figure 7: Snapshot of the bar chart generated by the visualization
service.

a number of operations implementing basic data mining
algorithms such as the following:

(i) feature (attribute) selection and ranking, for exam-
ple, sort features according to some criteria;

(ii) dataset filtering, for example, remove all but the top-
ranked features from a dataset;

(iii) model building, for example, train a classifier using a
reference training set;

(iv) model testing, for example, calculate model accuracy
using an independent test set.

The web service is built on top of the powerful open-
source Weka library [51]. Data mining tasks may be long
running, and the service exposes each operation both in
synchronous (request-response) and asynchronous (one-
way request and notify) form. The service is capable of
retrieving input data, which may be large, via HTTP from
a given URL, that is, from web server or storage manager;
at the same time output data can be saved via HTTP to a
given URL, that is, again to a storage manager. The service
supports the processing of concurrent requests thus allowing
for parallel flows of execution in the invoking workflow.

In addition, we have developed a visualization web
service, Chart, which is a simple bar chart viewer based on
the open-source JFreeChart library [52]; special attention
has been paid to properly manage concurrent invocations
resulting from parallel workflow execution as described in
the next subsection. Figure 7 shows an example of chart
generated by the service.

The scientific service images are available from the
AMIR.

6.4. Workflows. The workflow developed for this case study
is, in fact, a nested workflow. According to its definition, a
BPEL process is also a web service, and it is perfectly legal
to invoke a process from within another one. The invoked
process, or core process, orchestrates a single iterative compu-
tation which trains a classifier and calculates its accuracy for
an increasing number of attributes, as described before. The
invoking process, or wrapper process, manages the concurrent

execution of a variable number of core processes and links
to an external visualization service, running on the user
desktop, for monitoring the real-time execution of these
processes. In particular, the wrapper process waits for the
user to launch the visualization service before invoking
the core processes. The core process iteratively invokes the
different operations exposed by the Weka Data Mining
service to build the classification model and to evaluate
its accuracy and invokes the visualization service with the
accuracy result; the latter accordingly updates the cumulative
accuracy bar chart. A snapshot of the bar chart taken during
execution, and shown in Figure 7, illustrates some points:

(i) colored bars represent accuracy; bars of the same
color are associated to the same type of data mining
model and are calculated by the same core workflow;

(ii) groups of contiguous bars of different colors repre-
sent the same iteration, that is, the same number
of attributes, and are calculated by different core
workflows;

(iii) missing bars witness that the execution of core
workflows is asynchronous, that different data min-
ing models have different build times, and/or that
underlying resources have different speed.

In addition, missing bars may also show that a problem
has occurred with one of the core workflows.

Workflow images are available from the AMIR.

6.5. Running Experiments. The general scenario for running
an experiment can be synthesized by the following list of user
activities:

(1) choose an experiment, that is, the workflow that
describes it (an URL pointing to the workflow
archive); in case of a new experiment, prepare the
workflow image and upload it to the AMIR;

(2) prepare the experiment inputs, that is, make data files
available as URLs;

(3) prepare and submit to the resource provider the XML
document describing the workflow engine request;

(4) wait for the system to provision the workflow engine
and to deploy the workflow;

(5) prepare and submit the workflow input document to
the workflow engine;

(6) start the external helper services, if any, as needed, for
example, the visualization service;

(7) wait for workflow execution: this typically involves
the provisioning of the resources needed by the
scientific services and their execution as orchestrated
by the workflow.

If the workflow is linked to a visualization service, its
progress can be followed graphically (Figure 7). Alternatively,
the monitor service can be queried for resource and scientific
service status. In addition, a monitoring application can be



Advances in Software Engineering 15

<classification>
<trainingDataset>http://www.dsf.unica.it/∼andrea/train.arff</trainingDataset>
<testDataset>http://www.dsf.unica.it/∼andrea/test.arff</testDataset>
<applyDataset>http://www.dsf.unica.it/∼andrea/test.arff</applyDataset>
<classifierName>weka.classifiers.functions.MultilayerPerceptron</classifierName>
<attributeNumberMin>10</attributeNumberMin>
<attributeNumberMax>200</attributeNumberMax>
<attributeNumberInc>10</attributeNumberInc>
<rankerName>none</rankerName>
<seriesLabel>MultilayerPerceptron</seriesLabel>

</classification>

Algorithm 2: XML fragment of the workflow input document (classification input).

registered with the resource provider to receive and view all
resource status notifications and message flows.

Algorithm 2 shows a fragment of the workflow input
document which describes the input to the Weka Data Min-
ing service (datasets, classifier, and number of attributes),
needed by the core process. In addition, the XML frag-
ment shown in Algorithm 1 represents the scientific service
request needed by the wrapper process to obtain a resource
to run the Weka Data Mining service. Both XML fragments
are part of the same workflow input document.

In the experiment related to Figure 7, the wrapper
process enacts three core processes working with different
classifiers: nearest neighbors (IB1), neural network (multi-
layer Perceptron), and rule based (PART); the datasets, the
chi-square attribute selection algorithm, and the iterations
over an increasing number of attributes are the same. Three
different VMs delivered by a private OpenStack cloud run the
Weka Data Mining services (one per classifier).

7. Results and Discussion

The extensive tests performed and the results obtained for
the case study presented in the previous section help us to
address in some detail the following aspects in the next sub-
sections: (1) performance and scalability, (2) shortcomings,
and (3) open problems. The performance evaluation pre-
sented is by no means exhaustive: extensive comparison with
existing and much more mature production systems is left for
the future, after all the many tunings and modifications that
the proposed prototype system implementation requires.

7.1. Performance and Scalability. To measure the time needed
to start a managed computation, we have considered three
main phases: (1) the request processing time is small com-
pared to other times; (2) the resource setup time depends
on WRMS/DIMS and is similar for the employed HPC and
grid systems (on average about 1 minute) and higher for
cloud systems, unless special tuning is performed [53] (on
average 5–10 minutes which can be reduced to 1 minute);
(3) workflow engine and scientific service startup times are
comparable to the previous phase but depend on network

speed for downloading images. VM performance might be
an issue, so we have compared execution times using PM and
VM both for workflow engines and scientific services and
found no substantial differences; our tests require relevant
CPU and network I/O activities and no heavy local disk I/O
which may be one of the slowness reasons with VM [53].

The test workflow described above has been enacted with
the following parameters: the wrapper process starts 10 con-
current instances of the core process, each invoking its own
scientific service during 20 iterations; scientific services have
been executed both on homogeneous resources and on a mix
of geographically distributed heterogeneous infrastructures
such as Cybersar [54] and FutureGrid [55]. The generated
data flow is the following: 2000 Soap messages exchanged
through the proxy service, 600 data files downloaded from
web repositories (approximately 4.5 GB of data), 800 write
operations and 1000 read operations to/from storage manage
service. The execution time varies with the resource hardware
but also with the available network bandwidth between
scientific services, data repositories, and storage manager.

Many concurrent enactments of the test workflow can be
used to assess system scalability: with the available resources,
10 concurrent workflows were enacted (i.e., 10 workflow
engines on cloud and 100 scientific services half on cloud and
half on HPC/grid) without any particular problem except for
some transient failures in providing the requested resources
occurred with some WRMS/DIMS (mostly Eucalyptus).
From the tests performed, we expect that the system can
manage a number of concurrent scientific services up to 1000
or more if the proxy service is replicated as discussed later on.

A key point in workflow engine and overall system
scalability and performance is the management of the
data flow for data intensive computations. Many workflow
engines (including BPEL) act as brokers for all message
exchanges between the scientific services participating in the
workflow, but embedding large datasets into such messages is
not efficient and can lead to a collapse of both the engine and
the proxy service. Rather, web repositories and the storage
manager, can be used, and datasets can be indirectly passed
to scientific services as URL references; in this way, each
scientific service can directly and efficiently read/write data



16 Advances in Software Engineering

from/to repositories and the storage manager, thus minimiz-
ing transfers and improving scalability and performance.

7.2. Shortcomings. A number of problems are related to the
BPEL language and the engine implementations. The BPEL
specifications [42] do not allow multiple receive activities
in the same scope with the same port type and operation.
This is an annoying limitation which may be overcome by
duplicating the operations with different names. Different
BPEL engines miss some of the functionality dictated by the
standard or implement nonstandard features. An example
is variable initialization, required by some engines and
automatically performed by others; another is partnerLink
assignment whose syntax can be different depending on the
engine. In ODE, web service functionality is built on top
of Apache Axis2 [56], the older Apache WS framework,
and many advanced features are missing, for example, WS-
Security.

Another point that deserves some attention is the
disposal of resources when they are no longer needed. In
principle, the resource life cycle, that is, provisioning, usage,
and disposal, can be managed through the workflow if the
correct support is provided at the scientific service level.
If no error occurs, things go as expected, but if only the
workflow fails before disposal, a bunch of resources may be
left around reserved, unused, and in some cases charged for.
In addition, a failure with a resource or scientific service may
leave a workflow indefinitely waiting for it; the list of possible
errors is long. BPEL fault and compensation handlers may
help in designing better error resilience but can do nothing
if the workflow engine or its VM crashes. The infrastructure
services (resource provider, DIMSS, and WRMS) must then
be charged of the extra responsibility of resource disposal
when something goes wrong, for example, by periodically
checking resource status for failures or long inactivity periods
or other abnormal behavior.

7.3. Open Problems. The model presented in this work
represents an attempt aimed at experimenting possible
ways to cope with the general and complex problem of
the integration of heterogeneous resources from multiple
providers as a cohesive aggregate and unavoidably has a
number of limitations and aspects not (adequately) covered;
among others we have the following.

(i) Scalability with the number of workflow instances
and scientific services can be an issue for the proxy
service since it mediates most message exchanges;
to account for this, more than one proxy can
register with the resource provider, which assigns
one of the available proxies to each scientific process
and service, thus ensuring proper load balancing.
Resource provider scalability has not been assessed
except for the consideration that resource provider
and all related services can be replicated allowing
for static load balancing (the same WRMS/DIMS
can be shared by different resource providers). The
storage manager service can be replicated, too, but

assignment to a scientific process or service should
be based on some kind of network distance metric.

(ii) Redundancy of the resource provider service could
be arguably obtained by means of standard high-
availability techniques [57] if persistent data is stored
into independent and replicated DBMS; in addition,
the use of multiple proxy and storage manager
services, as suggested above, should also help to
guarantee the necessary redundancy.

(iii) Application recovery in case of network or other
failures has not been taken into consideration; the
simple solution of automatically reenacting failed
workflows may work in case of transient failures
but will not work in case of structural failures (e.g.,
when a computation exceeds the memory limit of a
resource).

(iv) The need for a meta-scheduler has not been inves-
tigated, since WRMS and DIMS provide their own
schedulers; if needed, such a meta-scheduler should
be able to manage resource requests with very
different requirements and resource pools (WRMS
and DIMS) that change over time and over users.

Another important point concerns existing applications,
domain-specific and resource-specific tools; many VOs have
developed their own domain-specific, workflow scheduling
systems which provide extensive monitoring, scheduling,
data access and replication, and user priority management
capabilities. We expect that users may be concerned by the
problems/efforts required to use or even reimplement such
applications and tools in a new environment [58]. According
to what we said in the introduction, however, our proposal
is not meant to “replace” but rather to “complement,” so
we must be pragmatic: it makes no sense to bother users
which are happy with their applications, tools, and resources.
Many “conventional” users will simply have no benefits from
dynamic on-demand provisioning of resources, but many
others may be attracted by this on one hand and by the
advantages offered by the SOA approach on the other hand
and may be interested in creating new or better applications
using existing ones as building blocks; in most cases, it will
not be necessary to reimplement applications and tools but
simply wrap them with an SOA interface.

8. Conclusion

In this paper, we have presented a unified model for
the dynamic on-demand provisioning of computational
resources from multiple providers, based on the convergence
and integration of different computing paradigms and
infrastructures, and leveraging SOA technologies. Heteroge-
neous distributed resources are presented to their users with
the illusion of a cohesive aggregate of resources, accessible
through a well-defined standards-based software interface.

In addition, we have explored the adoption of stan-
dard unmodified BPEL language and existing engines for



Advances in Software Engineering 17

workflow description and enactment. Indeed, BPEL is
not extremely popular in the workflow community, so
we were interested in evaluating (also in practice) its
advantages/limitations given its big merit of being an open
standard (with special emphasis in relation to SOA) unlike
most of the other languages employed in existing workflow
systems and also to rouse new interest about it in the
workflow community. At the same time, the presented
model is intentionally flexible enough to allow us to employ
other workflow systems such as Pegasus, Kepler, or Taverna;
in particular, we plan to explore Taverna, thanks to the
standalone “Taverna Server” component released by the
Taverna team and which should be easily integrated with our
proposed system.

In our opinion, the model benefits from a number
of qualifying and distinctive features; it (1) is founded
on firm SOA principles; (2) integrates different computing
paradigms, systems, and infrastructures; (3) is open to
further integrations and extensions both in terms of new
resource management systems (WRMS and DIMS) and
workflow management systems; (4) takes advantage from
the integration and reuse of open-source tools and systems;
(5) includes built-in scalability for some of the components;
(6) promotes the porting and the development of new
applications exposed as web services.

The effectiveness of the model has been assessed through
a working implementation, which has shown its capabilities
but also a number of open problems. In addition, the
discussion of a case study in the bioinformatics field has
hopefully given some hints on the practical possibilities of
the proposed approach.

As discussed in Section 7, workflow management poses a
number of problems. As well, another consideration is worth
mentioning here, that is, the fact that BPEL workflow design
is not straightforward even using the available graphical
editors. Peeking at the business domain, the potential of
the business process model and notation (BPMN) probably
deserves some investigation in the future, given the capability
of generating BPEL workflows directly from BPMN models.

In addition, we plan to extend the presented implementa-
tion (1) with the inclusion of new WRMS/DIMS and (2) with
the integration of workflow engines to include both BPEL-
based tools like Orchestra and tools like Taverna, which is
not using BPEL.

Acknowledgments

The author acknowledges the Cybersar Consortium for the
use of its computing facilities. This material is based upon
work supported in part by the National Science Foundation
under Grant no. 0910812 to Indiana University for “Future-
Grid: An Experimental, High-Performance Grid Test-bed.”
Partners in the FutureGrid Project include University of
Chicago, University of Florida, San Diego Supercomputer
Center-UC San Diego, University of Southern California,
University of Texas at Austin, University of Tennessee at
Knoxville, University of Virginia, Purdue University, and
Technische University Dresden.

References

[1] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows
and e-Science: an overview of workflow system features and
capabilities,” Future Generation Computer Systems, vol. 25, no.
5, pp. 528–540, 2009.

[2] E. Elmroth, F. Hernández, and J. Tordsson, “Three funda-
mental dimensions of scientific workflow interoperability:
model of computation, language, and execution environ-
ment,” Future Generation Computer Systems, vol. 26, no. 2, pp.
245–256, 2010.

[3] T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher, “Scientific
workflow design for mere mortals,” Future Generation Com-
puter Systems, vol. 25, no. 5, pp. 541–551, 2009.

[4] A. Akram, D. Meredith, and R. Allan, “Evaluation of BPEL
to scientific workflows,” in Proceedings of the 6th IEEE Inter-
national Symposium on Cluster Computing and the Grid
(CCGRID ’06), pp. 269–272, IEEE Computer Society, May
2006.

[5] A. Bosin, N. Dessı̀, and B. Pes, “Extending the SOA paradigm
to e-Science environments,” Future Generation Computer Sys-
tems, vol. 27, no. 1, pp. 20–31, 2011.

[6] G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid Com-
puting-Where HPC meets grid and Cloud Computing,” Future
Generation Computer Systems, vol. 27, no. 5, pp. 440–453,
2011.

[7] G. Fox and D. Gannon, “A survey of the role and use of
web services and service oriented architectures in scien-
tific/technical Grids,” Tech. Rep. 08/2006, Indiana University,
Bloomington, Ind, USA, 2006.

[8] I. Taylor, M. Shields, I. Wang, and A. Harrison, “Visual Grid
workflow in Triana,” Journal of Grid Computing, vol. 3, no. 3-
4, pp. 153–169, 2005.

[9] D. Churches, G. Gombas, A. Harrison et al., “Programming
scientific and distributed workflow with Triana services,”
Concurrency Computation Practice and Experience, vol. 18, no.
10, pp. 1021–1037, 2006.

[10] D. D. Pennington, D. Higgins, A. Townsend Peterson, M. B.
Jones, B. Ludäscher, and S. Bowers, “Ecological Niche mod-
eling using the Kepler workflow system,” in Workflows for
eScience: Scientific Workflow for Grids, I. Taylor, E. Deelman,
D. Gannon, and M. Shields, Eds., pp. 91–108, Springer, Berlin,
Germany, 2007.

[11] E. Deelman, G. Singh, M. H. Su et al., “Pegasus: a framework
for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237,
2005.

[12] T. Fahringer, R. Prodan, and R. Duan, “ASKALON: a de-
velopment and Grid computing environment for scientific
workflows,” in Workflows for eScience: Scientific Workflow for
Grids, I. Taylor, E. Deelman, D. Gannon, and M. Shields, Eds.,
pp. 450–471, Springer, Berlin, Germany, 2007.

[13] T. Oinn, M. Addis, J. Ferris et al., “Taverna: a tool for the
composition and enactment of bioinformatics workflows,”
Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004.

[14] T. Oinn, P. Li, D. Kell et al., “Taverna/myGrid: aligning a
workflow system with the life sciences community,” in Work-
flows for eScience: Scientific Workflow for Grids, I. Taylor, E.
Deelman, D. Gannon, and M. Shields, Eds., pp. 300–319,
Springer, Berlin, Germany, 2007.

[15] T. Dörnemann, E. Juhnke, and B. Freisleben, “On-demand
resource provisioning for BPEL workflows using amazon’s
elastic compute cloud,” in Proceedings of the 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid



18 Advances in Software Engineering

(CCGRID ’09), pp. 140–147, IEEE Computer Society, May
2009.

[16] R. Y. Ma, Y. W. Wu, X. X. Meng, S. J. Liu, and L. Pan, “Grid-
enabled workflow management system based on Bpel,” Inter-
national Journal of High Performance Computing Applications,
vol. 22, no. 3, pp. 238–249, 2008.

[17] I. Brandic, S. Pllana, and S. Benkner, “High-level composition
of QoS-aware grid workflows: an approach that considers
location affinity,” in Proceedings of the Workshop on Workflows
in Support of Large-Scale Science (WORKS ’06), pp. 1–10, Paris,
France, June 2006.

[18] A. Slominski, “Adapting BPEL to scientific workflows,” in
Workflows for eScience: Scientific Workflow for Grids, I. Taylor,
E. Deelman, D. Gannon, and M. Shields, Eds., pp. 208–226,
Springer, Berlin, Germany, 2007.

[19] F. Leymann, “Choreography for the Grid: towards fitting BPEL
to the resource framework,” Concurrency Computation Practice
and Experience, vol. 18, no. 10, pp. 1201–1217, 2006.

[20] K. M. Chao, M. Younas, N. Griffiths, I. Awan, R. Anane, and C.
F. Tsai, “Analysis of grid service composition with BPEL4WS,”
in Proceedings of the18th International Conference on Advanced
Information Networking and Applications (AINA ’04), pp. 284–
289, March 2004.

[21] T. Dörnemann, T. Friese, S. Herdt, E. Juhnke, and B.
Freisleben, “Grid workflow modeling using Grid-specific
BPEL extensions,” in Proceedings of German e-Science Confer-
ence, Baden-Baden, Germany, 2007.

[22] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L.
Price, “Grid service orchestration using the Business Process
Execution Language (BPEL),” Journal of Grid Computing, vol.
3, no. 3-4, pp. 283–304, 2005.

[23] M. A. Murphy and S. Goasguen, “Virtual Organization Clus-
ters: self-provisioned clouds on the grid,” Future Generation
Computer Systems, vol. 26, no. 8, pp. 1271–1281, 2010.

[24] C. Vázquez, E. Huedo, R. S. Montero, and I. M. Llorente,
“On the use of clouds for grid resource provisioning,” Future
Generation Computer Systems, vol. 27, no. 5, pp. 600–605,
2011.

[25] A. Bosin, N. Dessı̀, M. Bairappan, and B. Pes, “A SOA-
based environment supporting collaborative experiments in
E-science,” International Journal of Web Portals, vol. 3, no. 3,
pp. 12–26, 2011.

[26] I. Foster, K. Kesselman, J. M. Nick, and S. Tuecke, “The
physiology of the grid—an open grid services architecture
for distributed systems integration globus alliance,” 2002,
http://www.globus.org/alliance/publications/papers/ogsa.pdf.

[27] P. Tröger, “DRMAAv2—An Introduction,” 2011, http://www
.drmaa.org/drmaav2-ogf33.pdf.

[28] C. Aiftimiei, P. Andreetto, S. Bertocco et al., “Design and im-
plementation of the gLite CREAM job management service,”
Future Generation Computer Systems, vol. 26, no. 4, pp. 654–
667, 2010.

[29] AWS, “Amazon Web Services: Amazon Elastic Compute
Cloud—API Reference,” 2011, http://awsdocs.s3.amazonaws
.com/EC2/latest/ec2-api.pdf.

[30] AWS, “Amazon Web Services: Amazon Simple Storage
Service—API Reference,” 2006, http://awsdocs.s3.amazonaws
.com/S3/latest/s3-api.pdf.

[31] R. Nyren, A. Edmonds, A. Papaspyrou, and T. Metsch, “Open
Cloud Computing Interface—Core,” 2011, http://ogf.org/
documents/GFD.183.pdf.

[32] D. Nurmi, R. Wolski, C. Grzegorczyk et al., “The eucalyptus
open-source cloud-computing system,” in Proceedings of the
9th IEEE/ACM International Symposium on Cluster Computing

and the Grid (CCGRID ’09), pp. 124–131, IEEE Computer
Society, May 2009.

[33] I. Foster, K. Keahey, C. Kesselman et al., “Embedding com-
munity-specific resource managers in general-purpose grid
infrastructure,” Tech. Rep. ANL/MCS-P1318-0106, Argonne
National Laboratory, Lemont, Ill, USA, 2006.

[34] K. Pepple, Deploying OpenStack, O’Reilly Media, Sebastopol,
Calif, USA, 2011.

[35] E. Laure, S. M. Fisher, A. Frohner et al., “Programming the
Grid with gLite,” Computational Methods in Science and Tech-
nology, vol. 12, no. 1, pp. 33–45, 2006.

[36] LSF, “Platform Load Sharing Facility,” 2005, http://www.plat-
form.com/workload-management/high-performance-comp-
uting.

[37] SGE, “Oracle Grid Engine,” 2009, http://www.oracle.com/
us/products/tools/oracle-grid-engine-075549.html.

[38] O. V. Sukhoroslov, “JLite: a lightweight Java API for gLite,”
2009, http://jlite.googlecode.com/files/jLite.pdf.

[39] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster,
“Virtual infrastructure management in private and hybrid
clouds,” IEEE Internet Computing, vol. 13, no. 5, pp. 14–22,
2009.

[40] JCLOUDS, “Jclouds multi-cloud library,” 2011, http://code
.google.com/p/jclouds.

[41] Libvirt, “The virtualization API,” 2011, http://libvirt.org.
[42] OASIS, “Web Services Business Process Execution Language

Version 2.0,” 2007, http://docs.oasis-open.org/wsbpel/2.0/ws-
bpel-v2.0.html.

[43] W3C, “Web Services Description Language 1.1,” 2001, http://
www.w3.org/TR/wsd.

[44] ORACLE, “Oracle BPEL Process Manager,” 2011, http://www.
oracle.com/technetwork/middleware/bpel/overview/index.
html.

[45] AVOS, “ActiveVOS platform,” 2011, http://www.activevos
.com.

[46] OW2, “Orchestra User Guide,” 2011, http://download.forge.
objectweb.org/orchestra/Orchestra-4.9.0-UserGuide.pdf.

[47] ODE, “Apache Orchestration Director Engine,” 2011, http://
ode.apache.org.

[48] A. Bosin, N. Dessı̀, and B. Pes, “A cost-sensitive approach
to feature selection in micro-array data classification,” in
Proceedings of the 7th international workshop on Fuzzy Logic
and Applications: Applications of Fuzzy Sets Theory (WILF ’07),
vol. 4578 of Lecture Notes in Computer Science, pp. 571–579,
Springer, 2007.

[49] E.-J. Yeoh, M. E. Ross, S. A. Shurtleff et al., “Classification,
subtype discovery, and prediction of outcome in pediatric
acute lymphoblastic leukemia by gene expression profiling,”
Cancer Cell, vol. 1, no. 2, pp. 133–143, 2002.

[50] SOAPUI, “Eviware SoapUI,” 2011, http://www.soapui.org.
[51] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,

and I. H. Witten, “The WEKA data mining software: an
update,” SIGKDD Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[52] D. Gilbert, “JFreeChart Java chart library,” 2011, http://www
.jfree.org/jfreechart.

[53] A. Bosin, M. Dessalvi, G. M. Mereu, and G. Serra, “Enhancing
eucalyptus community cloud,” Intelligent Information Man-
agement, vol. 3, no. 4, pp. 52–59, 2012.

[54] Cybersar, “Cybersar consortium for supercomputing, compu-
tational modeling and management of large databases,” 2006,
http://www.cybersar.com.

[55] FutureGrid, “FutureGrid: a distributed testbed for Clouds,
Grids, and HPC,” 2009, https://portal.futuregrid.org.



Advances in Software Engineering 19

[56] AXIS2, “Apache Axis2,” 2011, http://axis.apache.org/axis2/
java/core/.

[57] LHA, “Linux-HA,” 2011, http://www.linux-ha.org/wiki/Main
Page.

[58] W. Gentzsch, “Porting applications to grids and clouds,” Inter-
national Journal of Grid and High Performance Computing, vol.
1, no. 1, pp. 55–77, 2009.


