
Aschoff, Rafael Roque (2014). A Proactive Adaptation Framework for Composite Web Services. 

(Unpublished Doctoral thesis, City University London) 

City Research Online

Original citation: Aschoff, Rafael Roque (2014). A Proactive Adaptation Framework for Composite 

Web Services. (Unpublished Doctoral thesis, City University London) 

Permanent City Research Online URL: http://openaccess.city.ac.uk/13548/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


A Proactive Adaptation

Framework for Composite Web

Services

Rafael Roque Aschoff

Department of Computer Science

City University London

A thesis submitted for the degree of

Doctor of Philosophy

September, 2014

mailto:roque.rafael@gmail.com
http://www.soi.city.ac.uk
http://www.city.ac.uk


Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Web Services Architecture . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Services Composition . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Motivation and Research Challenges . . . . . . . . . . . . . . . . 16

1.4 Research Objectives and Hypotheses . . . . . . . . . . . . . . . . 20

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . 25

1.7 Outlines of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Literature Review 29

2.1 Software Engineering Adaptation . . . . . . . . . . . . . . . . . . 30

2.2 Service Composition Adaptation . . . . . . . . . . . . . . . . . . . 37

2.2.1 Static Adaptation . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Reactive Adaptation . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Proactive Adaptation . . . . . . . . . . . . . . . . . . . . . 47

2.3 QoS-Aware Service Selection . . . . . . . . . . . . . . . . . . . . . 55

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

i



CONTENTS

3 ProAdapt Adaptation Framework 65

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Adaptation Process . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.1 Analysis of Events . . . . . . . . . . . . . . . . . . . . . . 83

3.3.2 Decision and Execution of Actions . . . . . . . . . . . . . 105

3.4 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . 117

4 Experiments and Evaluation 119

4.1 Prototype I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.1.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2 Prototype II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.2.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.3 Prototype III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.4 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . 156

5 Behavioural Compensation Extension 158

5.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3 Query-based Service Selection . . . . . . . . . . . . . . . . . . . . 165

5.4 Behavioural Compensation . . . . . . . . . . . . . . . . . . . . . . 168

5.5 Matching and Compensation Cases . . . . . . . . . . . . . . . . . 170

5.6 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.7 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . 184

6 Conclusions and Future Work 187

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.2 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

References 200

ii



List of Figures

1.1 Basic Web Service Architecture . . . . . . . . . . . . . . . . . . . 8

1.2 Web Service Interaction Model . . . . . . . . . . . . . . . . . . . . 9

1.3 Service Composition: Loan Process . . . . . . . . . . . . . . . . . 13

2.1 MAPE Architectural Guideline . . . . . . . . . . . . . . . . . . . 31

2.2 Failure prediction process performed for fault tolerant systems . . 32

2.3 Classification of failure prediction techniques . . . . . . . . . . . . 33

2.4 Adaptation Approach Classification . . . . . . . . . . . . . . . . . 38

2.5 Example of ruintime adaptation using dynamically composed Web

services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Reconfigurable Regions (extracted from [91]). . . . . . . . . . . . 46

2.7 Steps performed by to achieve proactive adaptation with confidence 50

2.8 Requirements Monitoring Steps performed by to achieve proactive

adaptation with confidence (extracted from [106]) . . . . . . . . . 52

2.9 Structured view of an example of execution instance (extracted

from [72]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 ProAdapt Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Illustration of the Execution Engine accessing Execution Instances

of Service Composition. . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Architecture overview of ProAdapt framework . . . . . . . . . . . 75

3.4 Example of a business process for ordering of goods . . . . . . . . 76

3.5 Execution model instance for the business process. . . . . . . . . . 78

3.6 Simplefied view of the regions breakdown structure of the Goods

Online Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

iii



LIST OF FIGURES

3.7 Example of a scenario for the selection of operations. . . . . . . . 113

4.1 Experiment service composition . . . . . . . . . . . . . . . . . . . 122

4.2 Testbed Configuration for Prototype I . . . . . . . . . . . . . . . 124

4.3 Impact of spatial correlation on composition response times . . . . 127

4.4 Number of simultaneous users consuming resources. . . . . . . . . 129

4.5 Variation of composition response times during the experiment. . 130

4.6 Cumulative frequency distribution of response times. . . . . . . . 131

4.7 Cumulative frequency distribution of cost. . . . . . . . . . . . . . 132

4.8 Adaptation time for each composition execution over the experiment.133

4.9 Cumulative frequency distribution of the adaptation time. . . . . 133

4.10 Compositon workflow logic with invoke activites for evaluation of

Prototype II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.11 Service composition workflow for evaluation of Scenario 1 . . . . . 146

4.12 Comparison of the adaptation process for Case 1 - Scenario 1. . . 147

4.13 Comparison of the adaptation process for Case 1 - Scenario 2 . . . 149

4.14 Comparison of the adaptation process for Case 1 - Scenario 3 . . . 150

4.15 Complex service composition workflow . . . . . . . . . . . . . . . 151

4.16 Comparison of the adaptation process for Case 2 . . . . . . . . . . 152

4.17 State Machine of the Concurrent Requests Generator Process . . . 154

4.18 Comparisons of the distribution of operation request for a single

provider between the approach with and without load balancing. 155

5.1 Example of Car Rental Service . . . . . . . . . . . . . . . . . . . . 162

5.2 Service Selection with Behavioural Compensation . . . . . . . . . 164

iv



List of Tables

3.1 Summary of the aggregated response time for logic regions. . . . . 92

4.1 Configuration of experiment environment. . . . . . . . . . . . . . 123

4.2 Experiments parameters for Prototype I . . . . . . . . . . . . . . 125

4.3 Performance per subactivity of the adaptation process. . . . . . . 139

4.4 Performance gor the whole adaptation process. . . . . . . . . . . . 143

5.1 Results of the experiments for Case 1.1 . . . . . . . . . . . . . . . 178

5.2 Results of the experiments for Case 1.2 . . . . . . . . . . . . . . . 180

5.3 Results for Payment Service Compensation Experiment . . . . . . 184

v



Acknowledgements

First, I would like to thank my supervisor, Professor Andrea Zis-

man, for her dedication, patience, assistance and motivation during

my research at City University. Our conversations and her attention

to detail was surely an opportunity for my personal and professional

growth.

I would also like to thank my colleagues and friends for their support

in times of self-doubt and frustration.

I would like to express my gratitude toward Professor Judith Kelner

and the Network and Telecommunication Research Group for their

help during the final stages of my work.

Finally, I would like to thank my family, my parents and sister, for

their unquestionable support and encouragement to overcome all my

challenges.



LIST OF TABLES

Declaration on consultation and copying

The following statement is included in accordance with the Regulations gov-

erning the Physical format, binding and retention of theses of the City University

London.

I grant powers of discretion to the University Librarian to allow this thesis to

be copied in whole or in part without further reference to me. This permission

covers only single copies made for study purposes, subject to normal conditions

of acknowledgement.

Rafael Roque Achoff

vii



Abstract

Service orientation is a design paradigm consisting of a set of princi-

ples governed by a service-oriented architecture (SOA) to support the

creation of software systems as a composition of interoperable services.

The ability to effectively compose services is not a trivial task due to

the dynamic nature of the execution environment of service compo-

sitions. In this context, dynamic service selection and composition

is a critical requirement and one of the major research challenges for

service-based systems.

This research investigates the identification, detection and prediction

of the need for adaptation as well as ways to autonomously reconfigure

the service composition during its execution time in order to improve

service reliability and conformance with systems requirements and

policies. We propose a framework for proactive adaptation of ser-

vice compositions that extends current approaches for dynamic ser-

vice composition by proactively and individually identifying the need

for adaptation for each parallel running instance of service composi-

tion while avoiding unnecessary changes and distributing load request

among different service operations when necessary.

Our framework has been tested and validated using different proto-

types implemented in both simulated and real environments. The

results were favourable with the research objectives and indicates a

major gain in the use of the proposed proactive techniques in the

execution and adaptation of web service compositions.



Chapter 1

Introduction

Business processes can be defined as a set of structured activities coordinated

to accomplish a particular organisational goal. Due to the complexity of current

computer-based applications, the rapid changes in market conditions and regula-

tions, the dynamic creation of business alliances and partnerships, and the need

to support the changing demands of users, business processes need to be more

flexible, adaptable, and versatile in order to remain competitive in an increas-

ingly competitive world. In this context emerges the Service-Oriented Computing

(SOC), a distributed computing platform that envisages software as a temporary

service rather than permanent property.

SOC extends previous computing paradigms with a new set of design princi-

ples, standard technologies, governance considerations, and defines services as the

fundamental unit or basic building blocks to support the development of business

processes. Services are loosely-coupled and autonomous computer-based entities

owned by third parties and representing different functionality, which can be com-

bined to realise applications and implement business processes. More specifically,

SOC envisages how services can be used to implement the structured activities

1



defined in business processes.

Services can be implemented and accessed locally but it is the ability to locate

and access third party services distributed over the web that spurred the rapid

growth of the service orientation. Web Services are formally defined by the

World Wide Web Consortium (W3C) as “a software system designed to support

interoperable machine-to-machine interaction over a network” [19]. Web Services

are defined through formal contract documents that exposes the available service

operations, in a similar way to a traditional application programming interface

(API).

The process of creating a coordinated flow of activities using distributed ser-

vices in order to accomplish a certain task or implement a business process receives

the denomination of service composition, and the resulting system is defined as

a Service-Based System (also known as Service-Based Application) [2, 46]. More

precisely, a Service-Based Application is the resulting service composition cre-

ated as a coordinated aggregation of services and associated with the automation

of a parent business process[48]. The terms service composition, service-based

systems, and service-based application, are used as synonyms in this work.

Service-based systems have a great advantage when using services to imple-

ment activities required by business processes. However, by requiring such ser-

vices through partner providers, the system loses control of these components.

This can be an advantage, since the maintenance and implementation of the ser-

vice are not the responsibility of the service-based system. On the other hand,

these external services may suffer degradation in its performance over time, be-

come faulty or unavailable, directly affecting the service-based system.

In fact, Web Services are offered and located in a very dynamic environment

2



where changes are almost certain and therefore should be taken into consideration.

In other words, service based systems must continuously evolve in order to adapt

to the dynamic execution context of business processes.

The constantly changing environment of business processes creates a complex

problem for service-based systems. As outlined in [43][45][107], a major research

challenge in SOC is the support for autonomic composition of services in which

service compositions need to adapt autonomously and automatically to new sit-

uations.

Generally speaking, changes can be introduced to service composition through

a mechanism that supports either static adaptation or dynamic adaptation. While

the first mechanism focuses on remodelling the service composition during design

time, the second mechanism focuses on adaptation during runtime. Dynamic

adaptation is usually preferable to static adaptation due to the ability to change

service-based systems without stopping their execution.

Moreover, methods to support adaptation of service compositions are usually

classified depending on how to deal with possible internal system faults, namely:

reactive and proactive approaches. Reactive approaches adapt the system by re-

acting to faults that occur and are observed during the system execution. Proac-

tive approaches attempt to avoid faults by predicting their future occurrence[64].

Regardless of the strategy employed, the most desired feature of self-adaptable

service-based systems is arguably the ability to improve, or at least maintain,

the system reliability while meeting certain Service Level Agreement (SLA). In

software engineering, reliability can be defined as the ability of a system to deliver

its main functions under routine or unexpected situations[96].

In other words, an adaptable service-based system is designed to be executable

3



under certain constraints or system requirements and be tolerant to changes in

the execution context. Certain events, such as the unavailability of certain service

operations can cause the service composition to halt if a candidate service is not

identified and use as replacement. Other events, such as an overloaded network

can impact the performance of the composition which may lead to nonconformity

with the SLA previously agreed between the involved parties.

The focus of the work described in this thesis report is on dynamic and proac-

tive adaptation of Web service compositions. More specifically, the work in this

thesis report investigates the identification, detection and prediction of the need

for adaptation as well as ways to autonomously reconfigure the service composi-

tion during its execution time.

In the work described in this thesis report, proactive adaptation of service

composition is defined as the combination of the preventive and perfection adap-

tation types. The preventive adaptation is concerned with the detection of the

need for changes and enacting the required changes in a composition, before reach-

ing an execution point in the composition where a fault or failure would occur,

impacting the correct execution of the composition as a whole. The perfection

adaptation aims to optimise the service composition even when it is running

correctly.

Instead of just predicting and preventing unwanted situations in the service

composition, however, we expect to continually improve and adapt a service com-

position even when there are no expected faults in the composition. Optimisation

can be performed, for instance, by choosing faster service operations while reduc-

ing the costs related to the execution of the composition as a whole.

In this thesis report, we describe a framework for proactive adaptation of ser-

4



vice compositions named ProAdapt. The framework extends current approaches

for dynamic service composition by proactively and individually identifying the

need for adaptation for each parallel running instance of service composition

while avoiding unnecessary changes and distributing load request among differ-

ent service operations when necessary. Reactive adaptation is also supported and

exploited in case where proactive adaptation is not possible.

ProAdapt performs monitoring and analysis over different events of interest

in order to prevent possible execution failures and to improve service composition

continuously, even when there are no expected or observable issues. Examples of

these events are: (a) unavailability or malfunctioning of a deployed service op-

eration, (b) QoS deviations, (c) evolution of requirements, and (d) emergence of

better services. The reconfiguration of running instances is performed by replac-

ing a single service operation or a group of service operations in the composition,

by another service operation or by a group of dynamically composed service op-

erations.

Different prototypes were developed to illustrate and evaluate the proposed

framework. The analysis of the collected data shows that the architecture and

methods defined for ProAdapt can efficiently improve the execution of service

compositions in terms of performance and reliability. Overall, we believe that the

work conducted in this thesis was satisfactory with respect to the objectives and

hypotheses raised (See Section 1.4).

In what follows, we present some formal definitions required to a better un-

derstanding of the topic of this thesis. More specifically, Section 1.1 presents a

customised view of the Web Service Architecture. Section 1.2 goes beyond the ba-

sic architectural model and presents the current work done in the implementation

5



of business processes as compositions of orchestrated Web Services.

The insights are then used to summarise the motivation and research chal-

lenges of this work in Section 1.3. The hypotheses and the main objectives of this

thesis are presented in Section 1.4. The contributions are included in Section 1.5.

Finally, Section 1.7 presents the outline of the thesis report.

1.1 Web Services Architecture

The concept of Web Services, and technologies to support them, have much

evolved since the term was first publicly introduced by Bill Gates at the Mi-

crosoft Professional Developers Conference in Orlando on the 12th of July 2000.

Although many definitions for the term Web Services exist, they are mostly re-

lated to the task of delivering and integrating business processes as services over

the web [19].

Businessmen tend to prefer a looser definition, describing Web Services as any

set of functionality delivered over the Internet, while software engineers are more

inclined for a precise definition on the use of standards to support interoperability

between software systems [2, 33].

The distinction becomes clear when surveying practical applications. Com-

mercial banners, search engines, pools, and chat area are examples of external

services usually consumed by websites in the form of plugins. While these are

arguably the most apparent applicability of service components, they are usually

based on different standards, such as URL commands and JavaScript.

On the other side, usually hidden from customers, services that provide func-

tionality such as network traffic statistics, online payment processing, stock quotes,

6



and many other behind-the-scene functions, are usually accessed through formal

standards including XML and SOAP. The work in this thesis report is oriented

towards the software engineering point of view for Web services.

The necessity of Web Services technologies appears as a result of a growing

demand of properly defined interaction between organisations (online businesses)

and the lack of support from the software component paradigm in this context.

While components are helpful when it comes to rapidly software develop-

ment and maintenance, the interoperability across organisations introduces a real

challenge. Moreover, Web Services do not share the tangibility characteristic of

software components, in the sense that Web Service implementation is not avail-

able for the system requesting to use it. Such characteristic is very interesting

for business organisations because it permits a complete control of the provided

services.

It is clear then that Web service technologies focus on improving the software-

to-software communication, rather than techniques to implement actual function-

ality. The Web Service Architecture (WSA) dictates the foundation of such a

communication model. The work described in this thesis adopts a variation of

the basic WSA defined in [19].

The main component of the WSA, as well as the basic interaction between

them are presented in Figure 1.1. The service requester is the party that wishes

to make use of the functions offered by the service provider. The interaction

between them is flexible enough to allow either the pull or push strategy. In the

pull strategy the requester will contact the provider on demand, whenever its

functions are required. In the push strategy however, the requester subscribes

itself to the provider and waits for income messages. Finally, the service discovery

7



Requester 

Entity

Discover 

Entity

Provider 

Entity

Lo
ca

te

Su
b

sc
ri

b
e

P
u

b
li
sh

R
e
p

ly

Request

R
e
giste

r

Reply

Subscribe

Publish

Figure 1.1: Basic Web Service Architecture

engine provides a way to register and locate services.

Before the requester and provider parties start exchanging messages, both

of them have to implement a specific agent. The provider entity uses a concrete

software agent to implement the abstract notion of a service. The requester entity

requires an agent to work as a bridge between a software system (or human)

attempting to interact with the desired service, and the provider itself.

The service interface is exposed in a document named Web service descrip-

tion (WSD), which contains detailed information about how to construct request

messages for each operation available in the service, as well as how to interpret

response messages. There may be also a need for exchange the expected semantic

of the service which includes the expected order to call different functions or any

other agreement between parties.

8



   Service 

   Agent

Requester 

Agent
Interaction

Sem

WSD

Sem

WSD

Operations

...

Provider EntityProvider EntityRequester EntityRequester Entity

Sem WSD+

Semantics & Service Description 

Agreement

Uses Provides

Figure 1.2: Web Service Interaction Model

As a model for these elements, Figure 1.2, adapted and extended from [19],

presents a basic illustration of this software-to-software interaction model. It

includes the basic elements that compound the Web service infrastructure, which

revolves around the requester and provider entities. We define below the main

components of Figure 1.2.

Service Agent : A Web service agent is a piece of software which implements

the abstract set of operations defined in a service. It is also responsible for

identifying the requested operation and for receiving and sending messages

over the communication channel. A provider may decide to update its ser-

vice agent to improve security or performance for instance, or just rollback

for a previous working version in case of a problem, while maintaining the

same functionality. In such case, the service itself remains the same, and

all changes may go unnoticed by requester entities.

9



Requester Agent : The Web service interaction model defines standards for

software-to-software communication, which means that a person cannot

interact directly with a service. A requester agent provides an interface

between a person (or software systems) and the desired service. It is also

responsible for creating messages and wrap them into the right network

protocol, as described in the WSD.

Requester Entity : A requester entity is the party interested in making use of

Web service. It can be a software system which uses the service to provide

some of its internal functions or a person or organisation that which to

access the service directly. In either case, a requester entity will use an

agent to interact with a Web service.

Provider Entity : A provider entity is the party interested in implementing a

service through an agent. It can be an individual or organisation and is

independently responsible for maintaining and make available its services

agents. It is usually also the entity responsible for the advertising of services

at some global Marketplace using standards such as UDDI [12] and DAML-

S ServiceProle [99].

Web Service Description : A WSD is a document usually written in the

Web Services Description Language (WSDL)[32] which provides a machine-

readable specification of how the service can be invoked, the messages and

types it expects, and what data structures it returns. The document has an

abstract and a concrete section. In the abstract section a WSD defines the

operations, types, and messages. The concrete section contains the binding

information; the protocol and network address to make use of the service.

10



The XML-based Web Service Description Language is arguably the most

well-know solution for WSDs. Some extension such as DAML-S [23], how-

ever, attempts to extend the service description with elements to answer

what is the actual functionality available, instead of only how the operations

are accessed. As another example, SA-WSDL [49] provides a mechanism to

add annotations to WSDL components that can reference semantic models

using arbitrary languages, which can be placed both within or outside the

WSDL document.

Behaviour : The behaviour of a Web service is the shared expectation about

the exchange messages between request and service agents. It generally

defines the required ordering of operations to be invoked or some generic

constraints over the set of available operations. The Web service behaviour

may be implicit or formally registered to be processed by interested parties.

Communication Channel : The communication channel is the physical and

logical transmission medium in which messages and documents are ex-

changed between requester and provider. The physical transmission medium

is usually hidden from both parties. The logical transmission medium is the

set of protocols chose to wrap the exchange messages or documents, such as

Transmission Control Protocol (TCP), HTTP, and SOAP. It is important

that both requester and provider support the same set of protocols, which

is defined in the WSD.

The presented architecture, together with the interaction model provide an

intelligent way for Service-Based Applications to invoke Web services, however, it

is not enough for complex interaction involving composite services. The next sec-

11



tion describes how such complex interactions are accommodated by using service

compositions.

1.2 Services Composition

When only atomic Web services are considered, that is, when service implementa-

tions (Service Agents) are enclosed and do not rely on external components, the

basic infrastructure involving Requesters, Providers, and Discovers, is adequate.

As Web services become more complex, however, their internal implementation

will usually involve invocation of other Web services.

These distinct Web services receive the denomination of composed service [2],

and the process of developing a composite service is called service composition[46].

For reasons of simplicity, from this point onwards, this report refers to composite

services and service compositions as interchangeable synonyms.

While an atomic service is self-contained, requiring no connections to other

resources to provide its operations, a composite service relies on interactions with

external resources as a way to deliver its functionality. In fact, service compo-

sitions are not limited to connections with atomic services, and are recursively

defined as an aggregation of atomic and composite services[117]. This new design

pattern enables high sophisticated interactions suitable to implement complex

logic while keeping a simple external interface.

More specifically, services compositions can be used to quickly implement

business processes using partners’ services as a way to implement functions re-

quired, while the composition itself hides the internal logic and is exposed as a

default Web service using standards such as WSDL [32]. From the Requester

12



Entity point of view, this is an interesting approach, since it is usually concerned

with receiving the required functionality, regardless of how it is implemented.

Start

Credit 
Rating

Get LoanGet Loan

Select 
Best

End

Loan 
Process

Credit 
Rating 
Service

Loan 
Provider 
Services

Loan Process

Figure 1.3: Service Composition: Loan Process

In engineering, the general flow of plant processes and equipment are usually

illustrated using a process flow diagram (PFD) [124], which display the inter-

action between major equipment without getting into minor details. Designers

of business processes and service compositions follow a similar approach using a

Business Process Diagram (BPD)[60], which is a graphical representation com-

posed of a flow of basic and structured activities. Basic activities are atomic

basic units for the construction of the process, such as invoking Web Service op-

erations. Structured activities are used to provide the logic flow of the process,

and are recursively defined as an aggregation of basic and structured activities.

The Business Process Model and Notation (BPMN) [30] is arguably the most

13



well-know standard for business process modelling.

In order to illustrate the use of BPDs, Figure 1.3 presents a Loan Process

service composition using the BPMN graphic notation. The process starts when

a client submits a loan application, and finishes with a loan offer. The internal

process comprises three phases. First, the composition invokes an external ser-

vice to receive the credit rating of the client. Next, the composition sends the

client application to two different loan service providers. Finally, the composition

decides for the best loan offer and returns it to the client.

BPMN provides a very powerful notation to describe the general properties

and behaviour of service compositions, however, considering that it provides only

the process skeleton, BPMN is not enough to actually make a process executable

[54]. BPMN knowingly misses details not required to describe the process flow,

such as data and links definition. Because of that, in order to make service

composition executable, designers have to choose between (a) languages specifi-

cally designed for it, or (b) proprietary BPMN extensions aimed at fulfilling the

required gaps.

Two languages appear as the candidates most frequently used in the descrip-

tion of executable processes, namely (a) the Web Services Business Process Ex-

ecution Language (WS-BPEL) [73], and the XML Process Definition Language

(XPDL) [116]. WS-BPEL, or BPEL for short, is an executable language based

on the Pi-Calculus mathematical model and defined by the Organization for the

Advancement of Structured Information Standards (OASIS) [113]. It is designed

to specify business processes with Web services. XPDL is a general purpose busi-

ness process definition language based on Petrinet models and standardized by

the Workflow Management Coalition (WfMC) [138].

14



When choosing the best language to describe executable business processes,

there are various arguments in favour of BPEL or XPDL. For instance, BPEL is

arguable better fitted to describe distributed and collaborative processes, which is

expected since its goal is the web service orchestration. On the other hand, XPDL

is better defining standalone processes, since it is target at defining the process

diagram. For designers looking for interchange business process definitions with

detailed graphical information, XPDL may be the better choice, because it was

design to include all aspects of a BPDs such as X and Y position of the nodes,

while BPEL does not define in itself graphical aspects, and is targeted most exclu-

sively to automatic interpreters. Regardless of the advantages and disadvantages

of each standard, the fact is that BPEL has been winning the battle for the

preferred language in the definition of executable business process for composite

Web services. The above claim is supported by recent research and publications,

e.g. [28][55][86], recognising BPEL as the de facto standard for Web services

orchestration.

The prototypes developed for the ProAdapt framework use service compo-

sitions defined in BPEL. Executable languages such as BPEL provide all the

detailed information required to enact business processes, but without a way of

putting these processes into practice, they would not make much sense. A busi-

ness process execution engine provides the execution environment and the infras-

tructure for business process execution [58]. Execution engines are responsible

for enacting the various activities defined in the business process.

In order to execute a service composition defined in a language such as BPEL,

it is necessary to employ a Work Flow Management (WFM) System [65], which

is the component, or process, responsible for the automation of activities defined

15



in the service composition. Over the past few years, a number of execution

engines have been proposed for different environment and languages, such as

Silver [59], jBPM [125], Apache ODE [114], and IBM Websphere [77]. Silver

is a very peculiar SOAP and BPEL execution engine for mobile devices that

offer support for Java 2 Platform Micro Edition (J2ME). jBPM is an open-source

project that allows the execution of business processes specified using BPMN with

additional annotations. IBMWebsphere is a SOA platform with run-time support

for both Enterprise Service Bus and BPEL processes. Apache ODE is an open

source project targeted specifically at BPEL processes, with good community

support, easy installation, and service deployment procedures.

Given a proper way to represent the service composition and an engine to

execute it, there is still the problem of how to select the operations to form the

composition. In other words, we must know how to find services that satisfy the

functional requirements of our business process and how to proper choose between

different service candidates. The answers to these two questions are strongly

related to the adaptation of the composition itself. More details regarding this

subject can be found in Section 2.3.

1.3 Motivation and Research Challenges

The previous sections presented the overall context in which this thesis is in-

serted, including some of the challenges and motivations behind the topic of

dynamic adaptation of service compositions. In this section, we summarise these

motivations and research challenges and present some new insights that inspired

the worked proposed in this thesis.

16



The Service-Oriented Computing paradigm has attracted great interest from

industry and research communities around the world. Service integrators, de-

velopers, and providers are collaborating to address the various challenges in the

area. Various approaches and tools have been proposed to support different areas

of SOC such as (a) languages to describe services, (b) service design and develop-

ment, (c) service discovery, (d) service composition, and (e) service management

and monitoring.

Dynamically adaptable systems have also been the focus of study in several

areas of computing such as software engineering, robotics, control systems, pro-

gramming languages, and bio-informatics. The software engineering community

attaches great importance to this topic as demonstrated by regular workshops

held in conjunction with main conferences in the area (e.g. ICSE, FSE/ESEC,

SEAMS, ICSOC).

To deal with the challenges of SOC dynamic and demanding business envi-

ronment, service compositions need to be (a) self-configuring, compositions that

are able to automatically identify, select, and combine new services with which to

interact; (b) self-optimising, compositions that can select the best services with

which to interact in order to become more efficient; and (c) self-healing.

Despite the advances in the area, more work is required to support the devel-

opment of software systems based on dynamic composition of software services,

enabling the provision of new products to the market in a rapid and efficient way.

To be successful, these dynamic compositions should be able to adapt to various

situations, including (i) changes in or emergence of requirements, (ii) changes in

the context of the composition and participating services, (iii) changes in func-

tional and quality aspects of services in compositions, (iv) failures in services in

17



compositions, and (v) evolution of services.

Based on the need to support dynamic evolution and changes of business

activities, users’ demands, and service availability, it is important to provide ap-

proaches that consider the various autonomic aspects together (e.g., self-configuring,

self-optimising, self-healing, self-adapting) [118] in a proactive way, predicting

problems before they occur.

As defined above, proactive adaptation of service composition constitutes the

detection of the need for changes and implementation of changes in a composition,

before reaching an execution point in the composition where a problem may

exist. Such a problem may cause the process to generate erroneous, unexpected

behaviour, or even to halt.

Examples of such proactive actions include (1) the prediction that a service

used in a composition may be malfunctioning, unavailable, or no longer compliant

with various aspects of the system, followed by the implementation of necessary

changes in the composition even before this service is invoked during the execution

of the composition; (2) the identification of the parts of a service composition that

cannot fulfil a new requirement, again before execution of such parts; and (3) the

identification of compositions parts that need to be changed due to the existence

of a new better service, before the execution of these parts.

Ensuring QoS in Web services is a critical and significant challenge due to the

dynamic and seemly unpredictable nature of their context of execution. There

is often more than one business process available to execute a required task,

which means some level of competition, both for network resources and attention

of the market. Ensuring the correct execution of service compositions, while

satisfying the QoS requirements, is considered an important differentiating point

18



for businesses.

The overall adaptation aim for service compositions is to permit the correct

execution of business process and maintain or improve some system requirements

such as reliability, performance, and general aspects of quality of service (QoS).

In fact, the QoS parameters of Web services and compositions are one of the main

concerns for service providers. The reason is that business opportunities may be

lost, or penalties may be due if service compositions do not satisfy the expected

performance requirements of their customers. The strong relation between user

satisfaction, revenues, and the performance of a system was observed in a number

of previous research done in the field.

In research conducted by Amazon, it was observed that when the time to

generate the pages was increased by around 100ms, there was a drop on sales of

about 1%[92]. In the session What Google Knows presented by Marissa Mayer

at the Web 2.0 conference in 2006, she explained how a delay of 500ms when

generating search results could lead to a traffic and revenue drop close to 20%

[101].

The impact of degraded QoS values on business revenue, however, is not

limited to the largest online retailer or the giant of internet-related products

and services. In the competitive stock market, the TABB Group estimates that

a response time of about 5 milliseconds behind the competition could cause a

broker to lose $4 million in revenues per millisecond[75].

In summary, although services compositions appear as a solution for seam-

less integration of business processes over the Internet, this integration does not

come without a price. Service compositions use resources from numerous partner

services and need to be prepared for any possible changes induced by these part-

19



ner services. Such preparation comes in the form of self-adaptable and dynamic

service compositions.

Overall, the existing approaches that deal with such issue are fragmented and

in their initial stage of development, leaving space for further investigating the

topic of adaptation of service compositions.

1.4 Research Objectives and Hypotheses

This thesis explores techniques to achieve autonomous execution of Web service

compositions with a focus on the adaptation process. The general hypothesis of

the work is the following:

Proactive adaptation of service compositions can improve the performance,

reliability, and general conformance with system requirements of service

compositions when compared to traditional static and reactive adaptation

approaches.

The above general hypothesis can be broken down into the following sub-

hypotheses:

• It is possible to proactively identify the need for adaptation in service com-

positions by constantly monitoring the execution environment, systems re-

quirements, and the status of the service composition itself.

• It is possible to use a local service repository and proactively replace candi-

date operations in service compositions.

• It is possible to adapt service compositions in parallel to their execution

without stopping the business process.

20



• It is possible to avoid unnecessary changes in service compositions when

identified problems can be compensated by parts of the service composition

yet to be executed.

Given the above hypothesis, the general aim of the research is to support a

dynamic and proactive adaptation of service compositions through the use of mon-

itors, candidate service replacements, and techniques for prediction of problems

in order to improve the reliability, performance, and conformance of business

process.

The above general aim can be broken down into the following measurable

objectives:

Objective 1: Literature Review

To provide a literature review and analysis of works in relevant areas of the

research topic. The review needs to include topics such as service composi-

tion, monitoring, discovery, adaptation, and failure prediction techniques.

Objective 2: Prediction of Problems

To design and implement mechanisms to support the detection and proac-

tive prediction of events that may require adaptation of service composi-

tions.

Objective 3: Events Analysis

To deliver techniques to help understanding potential faults and to identify

the parts in a service composition that may be affected by detected or

predicted faults.

21



Objective 4: Adaptation Approaches

To analyse and specify relationships between the different ways of adapting

service compositions and the circumstances that may trigger adaptation.

Objective 5: Adaptation Framework

To specify an adaptation framework including techniques for monitoring,

detection and prediction of events that may require adaptation, and enforce-

ment of changes in a dynamic and proactive way. udies to demonstrate and

evaluate the work.

Objective 6: Evaluation

To develop scenarios and evaluate proof-of-concept tools that will be cre-

ated to support the techniques and mechanisms created for the Adaptation

Framework considering medium to large scale case studies.

1.5 Contributions

The ProAdapt framework includes the following major contributions:

Response Time Modelling: The framework offers a new technique to support

service operation response time modelling based on exponentially weighted

moving average (EWMA) function [67].

Signature mismatches: The framework considers dependencies that may exist

between the signature of service operations within a composition in order

to avoid adaptation of the composition that may lead to mismatches of

the signatures of the operations. In order words, the approach can avoid

22



a replacement due to signature mismatches or modify other parts of the

composition to treat the mismatches.

Independent Execution Instance Adaptation: Different from existing ser-

vice composition adaptation approaches, ProAdapt is able to reconfigure

single execution instances independently, acting in response of specific needs

for each execution instance, without interfering with other execution in-

stances currently running. ProAdapt supports adaptations that are re-

quired for specific contexts of each execution instance.

Parallel Adaptation: ProAdapt supports the adaptation and sharing of events

that may require adaptation in parallel of running instances, allowing for

faster and potentially more efficient adaptation procedures.

Load Balancing: The ability to handle execution instances individually, to-

gether with the sharing of information in parallel enables ProAdapt to

distribute the load between multiple service operations simultaneously.

Behavioural Compensation: In a extension of the ProAdapt framework we

propose a solution to deal with missing behaviour of candidate replacement

services by compensating such missing behaviour with other candidates,

which can be new services or the ones already deployed in the composition.

Following the list of major contributions, this work also includes some other

important additions to the field of service composition as presented below.

Spatial Correlation: ProAdapt employs a spatial correlation method to proac-

tively identify potentially unreachable operations, services and providers

23



by inspecting messages of network protocols such as TCP/IP, HTTP, and

SOAP.

Adaptation based on different classes of events : The framework supports

adaptation of service composition triggered by four different classes of situ-

ations, namely C1: problems that cause the composition to stop its execu-

tion; C2: problems that allow the composition to continue to be executed,

but not necessarily in its best way; C3: evolution of requirements; and C4:

emergence of better services.

N-M Operations Replacement: ProAdapt allows changes in service compo-

sitions performed by (a) replacing a single service operation in the compo-

sition by another service operation or by a group of dynamically composed

service operations (replacement of types 1-1 or 1-n), or (b) replacing a group

of service operations in a composition by a single operation or by a group

of dynamically composed service operations (replacement of types n-1 or

n-m).

Simulated Web Service Infrastructure : The second prototype developed

for the research includes a complete Web service infrastructure layer for the

network simulator three (NS-3) [62] that can be used by other researches

to perform experiments for service-based systems.

The contributions above lead to the publication of the following papers:

• Aschoff, R.R.; Zisman, A., “QoS-Driven Proactive Adaptation of Service

Composition,”. In Proceedings of the 9th international conference on Service-

24



Oriented Computing(ICSOC’11), Springer-Verlag, Berlin, Heidelberg, 421-

435. 2011 DOI=10.1007/978-3-642-25535-9 28.

• Aschoff, R.R.; Zisman, A., “Proactive adaptation of service composition,”

Software Engineering for Adaptive and Self-Managing Systems (SEAMS’12),

pp. 1-10, 4-5 June 2012 doi: 10.1109/SEAMS.2012.6224385.

We are also preparing a journal paper to be submitted to the TSE journal and

have been invited to submit a chapter in the book Engineering Adaptive Systems.

Moreover, we are planning to publish the ideas and results of the extension of our

framework (See Chapter 5). The list below summarises the planned publications.

• Parallel Adaptation of Service Composition

• Behaviour Compensation of Service Compositions

• ProAdapt: A Proactive Adaptation Framework for QoS-Aware Dynamic

Service Composition

1.6 Research Methodology

The research process is usually defined in two clear stages. First, the research

questions are made, and thus some process is followed to answer those questions.

This section describes the process undertaken to find the answers to the dynamic

adaptation problem investigated in this report. Our research process was based

on methods and good practice guidelines defined in the literature, such as the

works presented in [42], [81], and [83].

25



In the work presented in this thesis, we follow a research process composed of

eight-steps, namely: (1) Research Problem Formulation; (2) Literature Review;

(3) Objectives Definition; (4) Research Design; (5) Data Collection; (6) Analysis

of Data; (7) Generalisation and Interpretation; and (8) Preparation of Final

Report. These steps are better described below.

Research Problem Formulation

The research problem formulation is the first step followed in the research

process. This step must include an analysis of the importance of the topic of

adaptation in the context of service composition. In this context, the specific

area of concern is described, including what are the challenges or conditions to

be improved.

Literature Review

Reviewing the literature is an important step to establish a theoretical frame-

work and maintain a methodological focus. The critical reading of related work

can be used to acquire insights for the proposal of new theories or methods, as

well as to locate the research within a context, relating the findings to what has

been done.

Objectives Definition

The goals of the research must be defined clearly and specifically to inform

the reader about what the work described in this thesis attempts to attain. This

step includes three level of abstraction, namely: (a) a general hypothesis, (b)

sub-hypotheses, and (c) objectives.

Research Design

It is in the research design that we define the path that our research will

follow in the context of how to gather and process the required information for

26



the thesis. In such case, we need to revisit the hypothesis and objectives and

define the method for data collection and analysis. In our case, we decide to use

a quantitative research method, which is useful to analyse proposed hypotheses

through measurable variables.

Collecting Data

Considering that the research design is defined, together with the hypotheses

and objectives, the next step is to collect data from the experiments in order to

draw inferences and conclusions.

Analysing Data

Analysing the data or evaluating the results is the process used to extract in-

formation from the collected data and presenting it in order to test the hypotheses

and confront the objectives of the research. Considering that the research is a

work in progress, this step can be also used to revisit the hypotheses and objec-

tives

Preparation of Final Report

Finally, the last step is to write the thesis with the results of the research

conducted.

1.7 Outlines of this Thesis

The remaining of this thesis is structured as follows.

Chapter 2 - Literature Review

This chapter situate the current study within the body of literature and

provides a representative review of works related to the research topic of this

thesis. It includes a general discussion regarding adaptation in the context

27



of software engineering as well as a review of some of the works more closely

related to the topic of dynamic adaptation of service compositions.

Chapter 3 - ProAdapt Adaptation Framework

This chapter introduces the current stage of the adaptation framework de-

veloped in this thesis to support dynamic adaptation of service composi-

tions. The chapter presents an overview of the main concepts of the frame-

work and the architecture created to support these concepts. The chapter

also includes details of the process of adaptation and the techniques used

to analyse events and predict failures.

Chapter 4 - Experiments and Evaluation

This chapter presents the prototypes developed to verify the concepts, tech-

niques, and methods of the adaptation framework. For each of the proto-

types, the analysis of the collected data is presented and discussed.

Chapter 5 - Behavioural Compensation Extension

This chapter presents an extension for ProAdapt to support behavioural

compensation. It includes a running example with which the extension is

explained and also the results and evaluation of the experiment performed.

Chapter 6 - Conclusions and Future Work

This chapter highlights the current contributions of the research done hith-

erto and presents the future plans for the work.

28



Chapter 2

Literature Review

Software systems often go through various stages in their development life-cycle

in order to meet the defined requirements under the expected operating running

environments. However, it is arguably impossible to anticipate the requirements

and behaviour of all users or create a single best configuration for the system

that works all the time. Moreover, requirements and especially the running en-

vironment changes over time, potentially invalidating previous agreements. This

nonstatic environment forces software systems to support continuous adaptation

in order to avoid unwanted behaviour or loss of opportunities.

There are various works in the literature dealing with adaptation approaches

in the context of software systems, however, it is important to note that the focus

of this research is adaptation specifically targeted at service composition. Never-

theless, some core concepts are common and important for a better understanding

of the topic. The remaining of this section starts by introducing adaptation in

the general concept of Software Engineering, and progressively address the ap-

proaches targeting service compositions.

29



2.1 Software Engineering Adaptation

The adaptation of software systems has been extensively studied in various branches

of the software engineering field, including control engineering [134][44], software

architectures [82][47], self-adaptive systems theory [29], autonomic computing

[78], and fault-tolerant computing [123][112].

In control engineering, adaptation is concerned with the use of sensors to

monitor the devices being controlled and actuators that are able to make cor-

rections on the system according to the reasoning performed with the monitored

values. Different adaptation techniques, such as gain scheduling [133], automatic

tuning[148] and continuous adaptation [129] have been used in controllers for

more than twenty years [7].

An example of adaptation in the context of control engineering is the method

presented in [129] to reduce the acoustic feedback in hearing aids that contain a

substantial amount of gain. The authors use a continuous adaptation approach,

together with a delay in the forward or cancellation paths of the hearing aid

plant to achieve acoustic feedback reduction of more than 15 dB, increasing the

maximum insertion gain of a hearing aid using the approach. The approach is

somewhat similar to the work present in this thesis in the way that it constantly

adapts the filter coefficients based on the monitored signal, while our approach

constantly adapts service compositions based on monitored QoS values.

In a similar way to control engineering, self-adaptive systems are able to au-

tonomously evaluate their execution context and change their own behaviour in

order to meet or improve previously defined requirements. For example, a soft-

ware system can be designed as a multimodal display based on changing context

30



and user disabilities[131]. In other words, it is possible to select among possible

output formats, such as sound, image, and text, in order to present information

based on user preferences. A website can self adapt to increase the font size when

presenting information for elderly users, or play sounds instead of presenting texts

in case of blind users.

In a more ambitious goal, autonomic computing refers to the self-managing

computing model named after the human body’s autonomic nervous system. The

main overall aim of autonomic computing is the design of systems able to manage

themselves given high-level objectives specified by humans while keeping the com-

plexity of the system itself invisible to the user. To accomplish these ambitious

goals, IBM has proposed a conceptual guideline architectural named MAPE[35].

Figure 2.1 illustrate the MAPE model, which is consisted of a central knowledge

base surrounded by four modules: Monitor, Analyse, Plan, and Execute.

Figure 2.1: MAPE Architectural Guideline

The monitoring process is responsible to collect information about the man-

aged resources and execution context. The Analyse module extract and correlate

31



information from the monitored data to model adaptation situations. The plan-

ning phase uses policies to guide different adaptation procedures. Finally, the

planned actions are executed through controlled mechanisms. The MAPE model,

however, is purposely only to be used as a guideline. It is up to the system de-

signer to decide how each component is going to be implemented and where they

are going to be positioned.

Regardless of the software domain, perhaps the main reason that motivates

the need for adaptation is the faults that invariably occur in software systems,

especially distributed systems. In many application contexts, such as in business

process, the reliability of the overall system must be far higher than the reliability

of its individual components[80].

Software reliability can be defined as the probability that the software will

be functioning without failure under a given environmental condition during a

specified period of time[141]. In other words, some systems are designed so that

even in the event of faults risen by internal components, the overall system must

still attempt to accomplish its goal while meeting the defined requirements.

Observable
Fault

Monitoring
Detected by

Undetectable
Fault

FailureReasoning
Predicts

May lead to May lead to

Figure 2.2: Failure prediction process performed for fault tolerant systems

The failure and fault terms are thus key to the understanding of system reli-

ability. A failure is defined as a deviation from the conformance with the system

requirements specification for a specified period of time, while faults are failures

32



incurred by internal component or interacting systems [61].

Figure 2.2 illustrate this relation between faults and failures in the context

of fault tolerant systems. Generally speaking, as depicted in the picture, fault-

tolerant systems compute the probability of one or more observable faults causing

a system failure. A direct interpretation of such a system is that hidden or

undetectable faults can easily cause system failures since they are not computed

by the reasoning process. If those undetectable faults lead first to observable

faults, then the fault tolerant system can work as expected.

By predicting failures, fault-tolerant systems can adapt accordingly to prevent

such failures to happen and thus ensuring the system reliability. In the context of

service-based system, failures of external partner services are identified as internal

faults by the service composition. For example, whenever a service operation

deployed in a service operation does not meet its expected QoS aspects, or cannot

be invoked for some reason, a fault is observed.

Failure Tracking

Failure
Prediction

Symptom 
Monitoring

Detect Error 
Reporting

Undetected Error
Auditing

Figure 2.3: Classification of failure prediction techniques

As previously described, the ability to predict and prevent failures is of great

importance to ensure the system reliability. At the same time, the continuous

grow in complexity and size of the computer systems make almost mandatory the

use of a solid fault management method. The remaining of this section presents an

33



overview of the four major branches of failure prediction techniques as presented

in [126] and depicted in Figure 2.3.

Failure Tracking

Failure tracking is the method used to assert the probability of future failures

based on the occurrence of previous failures. The work in [37] presents an offline

Bayesian predictive approach which attempts to predict the probability distribu-

tion function of future failures given the occurrence of present and past failures.

The approach is applied to the Markov process model known as Jelinski-Moranda

[97] and besides been a complex offline method can also be used during runtime.

Failure Tracking can also be accomplished by exploiting the fact that failures

can usually occur next to each other, either in time or in space. An example of

work that examines such relation is [52], which presents a method for temporal

and spatial correlation of failures in distributed system. This approach has some

resemblance to our technique to predict faults in operations, service and providers

(see Section 3.3.1.2).

Symptom Monitoring

Symptoms of a software system can be seen as side effect of errors. Before a

failure can be observed in a system, there are some symptoms that can be detected

and exploited to predict, prevent or at least mitigate these failures. In other

words, failure-prediction techniques based on symptom monitoring analyse the

system behaviour and context in order to detect symptoms that can be perceived

as prelude of upcoming failures.

An example of symptom monitoring is presented in [88] through the form of a

function approximation. The work attempts to predict the resource utilization of

Apache web servers by collecting system variables such as memory use and then

34



building an auto-regressive model to predict the time of resource exhaustion.

The work in [104] uses instead a technique known as time series prediction.

Generally speaking, monitored values are seen as sequence of data points in time.

Time series forecasting is performed by modelling previous measured values to

compute future values. In the case of the work in [104], the system variable is the

memory usage of J2EE applications, which is monitored every twelve minutes.

Future memory usage and resource exhaustion is predicted by combine rough set

theory with wavelet networks to the collected data.

The previous approach retains some similarities to our own regarding the pre-

diction of data values using time series forecast. As described in Section 3.3.1.1,

we use exponentially weighted moving average to predict the expected service

operation response time.

Detected Error Reporting

In some cases, collecting and reasoning about system symptoms promptly is

not practical or indicated. In such cases, failure prediction can work using as input

some sort of discrete system error report. More precisely, failure prediction using

detected error reporting can be generalised as the reasoning function f(rn) =

P(n + k), where rn is the error report given at time tn and P(n + k) is the

prediction of what may happen at time t(n+ k).

This approach is employed in [84] to generate failure warning in high per-

formance Linux clusters. The authors extended the Open Source Cluster Ap-

plication Resources (OSCA) by introducing high availability (HA-OSCA). The

proposed method collects and aggregates hardware sensitive information, such

as temperature, voltage and power supply, and uses thresholds to predict and

prevent failures.

35



Undetected Error Auditing

In the previous branches of failure prediction, the approaches focus on analysing

an event that is observed or logged as a direct result of the use of a particular

function of the system. In the case of undetected error auditing approaches, the

idea is to proactively look for incorrect or undesired system states, even for those

parts that are not actually in use at the moment.

This search for undetected errors, or latent failure is exploited in [9]. The

authors propose a method to detect and predict latent sector errors in disk drive-

based storage systems. The contribution of the paper is in the fact that such

latent errors can be detected before the corresponding disk sectors are accessed

and thus, potentially avoiding system failures.

This section discusses topics and works in the general context of software

engineering for self-adaptable systems. Many concepts have been used in the

ProAdapt framework, such as the precise definition of faults and failures, and

the control loop of the MAPE architectural model. Moreover, two important

concepts of the ProAdapt framework were designed as the result of the research

done, reviewing general techniques for failure prediction. The spatial correlation

of availability and the function approximation of the response time were both

envisioned by adapting some ideas reviewed as general adaptation and failure

prediction. The next section closes the gap by targeting specifically on adaptation

approaches designed to work with service compositions.

36



2.2 Service Composition Adaptation

The highly dynamic nature where business processes for Web services operate,

which usually requires access to an infrastructure without centralised governance,

exacerbates the adaptation issue of service-based systems. In fact, the adaptation

of service compositions constitutes a major research challenge for service-based

systems[43][45][107].

Service compositions require access to numerous partner Web services that

might evolve over time, changing their structures, behaviours, and quality or just

becoming unavailable, potentially forcing the composition itself to adapt to these

new circumstances. An adaptable service-based system is thus defined as the one

that continuously monitors and modifies itself in order to satisfy new requirements

and to adjust to new conditions imposed by changes of the executing environment

[63].

Such definition for adaptable service-based systems can be viewed as an ex-

tension of what is expected from a fault tolerant system (see Section 2.1) by

considering adaptations of service composition triggered not only by observable

faults, but also extra events of interest. More precisely, the adaptations of ser-

vice compositions revolve around four main objectives, namely (a) recovery, (b)

context, (c) interoperability, and (d) optimisation [13].

The recovery is concerned with compensation actions for partially executed

service compositions. The execution context of service compositions changes rel-

atively often and adaptation strategies must act accordingly, with actions such as

replacing partner services to accommodate changes. While standards proposed

for Web services greatly reduce interoperability issues, the heterogeneity of Web

37



services creates a challenge. Web services may use different protocols and inter-

faces, which could cause signature mismatches between the service composition

and provider entities. Finally, optimisation is the need to continually improve

the general system performance.

In Chapter 1 an overview of the general adaptation classification is introduced

and briefly discussed, which is here illustrated by Figure 2.4. In this section we

revisit the previusly presented concepts and expand the discussion to introduce

some of the various approaches that have been proposed to accomplish the afore-

mentioned adaptation goals.

Static

Dynamic

Proactive

ReactiveAdaptation

Figure 2.4: Adaptation Approach Classification

As shown in Figure 2.4, the first level of categorisation defines adaptation

in static and dynamic ones. Dynamic adaptation approaches can be further

categorised as reactive or proactive.

While static adaptation focuses on assembling the pieces of the service compo-

38



sition during design time or while the system is not running, dynamic adaptation

occurs while the system is up and running. Dynamic adaptations can be classified

as reactive, when the idea is to correct some observable problem, or proactive,

when there is an attempt to predict such problems and thus act before they

happen.

Reactive adaptations aim to resolve the internal faults that can happen in

distributed systems and specially service-based systems in order to allow the

correct execution of system as a whole. This can be performed in a number of

ways but usually the faulty activity is identified and replaced. For instance, a

service composition may not receive a reply from a particular service operation.

In this case, a reactive adaptation must retry to invoke the operation or replace

the identified unreachable operation with another candidate service operation.

A Proactive adaptation on the other hand, aims to predict and prevent future

faults or failures of the service composition. As defined in [126], the prediction

of faults and failures is concerned with the identification of the occurrence of a

problem in the near future based on an assessment of the current state of the

system. More specifically, in the scope of service-based systems, fault prediction

is concerned with the assessment of what is the impact of service misbehaviour,

or of a group of services, in other parts of the service composition, while failure

prediction is concerned with the impact of observed and predicted faults in the

service composition as a whole.

The dynamic and competitive environment of business processes demands

continuous evolution of the business processes and their implementation. Given

this evolution demand, another example of proactive adaptation is to improve

the service composition even when there is no fault, failure or degradation of the

39



expected requirements. For instance, a proactive adaptation can continuously

search for new candidates of service operations in order to optimise the quality

of service characteristics of the service composition. The presented classification,

however, should be view only as a guideline. In fact, an adaptable service-based

system may employ more than one strategy to cover different scenarios and re-

quirements.

2.2.1 Static Adaptation

The first approaches for adaptable service-based systems have focussed on the

particular problem of automatic service composition during design time. In other

words, these approaches try to generate an executable service composition with

concrete service operations based on an abstract template and predefined require-

ments while the system is not in operation. More precisely, the initial approaches

for automatic service composition are mostly based on anticipated interactions

of services and matches between input and output functionality [95][107][16].

In [8] a framework is presented which support adaptation of service-based ap-

plications targeted at mobile resource-constrained devices in the heterogeneous

Beyond-3G Networking (B3G). The approach uses a Java programming model

for adaptive applications named Chameleon [14], which allows adaptation with

respect to a dynamically provided execution context based on generic code. This

generic code is used to generate a set of different Java components providing

different ways of implementing a provider/consumer application. The main dis-

advantage of the approach is the fact that adaptation happens at discovery time

and cannot evolve during run time.

40



The major drawback of these adaptations focused on the design time is the fact

that they only work when the system is not in operation. This condition means

that for any changes required in the system, it needs to be stopped, recompiled

with the required changes, and only then return to operation.

Automatic service composition while the system is not running is an impor-

tant step to help service-based system designers to produce an executable service

composition with concrete operations. It is also important when there are major

changes to the system and there is a need to identify new interactions between

partner services. Nonetheless, these approaches do not fit well when the system

is already running due to the great reaction time. In other words, it takes a long

time to adapt the system and all current requests to the business process must

be finished or dropped, which decreases the overall performance and reliability of

the system.

2.2.2 Reactive Adaptation

The solution to the above problem is to enable automatic service composition dur-

ing the system runtime, what is usually called dynamic service composition[1][25]

[27][34][120][121][15]. More precisely, approaches for dynamic service composition

are able to identify, aggregate, and replace compatible services operations during

execution time.

Initial approaches to dynamic service composition have been proposed to sup-

port adaptation of service compositions in a reactive way, where faults are identi-

fied and corrected at the same time as the execution engine is running, triggering

changes in service composition based on predefined policies [10], self-healing of

41



compositions based on detection of exceptions and repair using handlers [36], and

KPI analysis [76].

In [22] the authors present a framework based on planning techniques which

identifies recovery activities for context changes and constraint violations that

occur at run-time in order to guarantee that business goals are still achieved.

The work consists of a goal-based approach for adaptation where processes are

modelled as Adaptable Pervasive Flows (APFs) [21] and monitors are respon-

sible for triggering adaptation on demand. APF is a workflow-based paradigm

for the design and execution of pervasive applications. It allows the workflow

to be described as a set of abstract activities in terms of the goal they need to

achieve. During run-time, the workflow can thus be refined in an executable pro-

cess considering the execution context, available services, and workflow goal. In

order for the approach to work, the available services and goals must be manually

annotated.

Two similar rule-based adaptation approaches based on monitors are proposed

in [4] and [11]. The former is a context-based adaptation approach for service

compositions that uses negotiation and repair actions. In [11] the authors present

a strategy to re-organize a service composition in order to make it suitable for

monitoring and re-configuration triggered by changing in the execution contexts.

The main drawback in both cases is that the adaptation strategy becomes con-

strained by the monitor rules and adaptation actions that must be defined during

design time.

Another reactive approach based on dynamic re-configuration is presented in

[145]. The approach consists in repairing failed services with available candidate

services and ensuring the new composition still meets the user specified end-to-

42



end QoS constraints. The approach uses an inspection algorithm that designed to

take into consideration the re-configuration regions of the service composition. In

this case, it is possible to focus the adaptation only in the affected region, in which

case the business process can be less affected by adaptation. The approach also

uses extended constraints of QoS values as a way to relax the original constraints

of regions where some sub-process that meets the criteria is not found.

The work presented in [6] describes an approach to automatically recover from

system failures by using AI planning. The main goal is to capture the system

state after a failure, and by using the plan, reach an acceptable recovered state.

The AI planning chosen is based on three artifacts: domain, initial state, and

goal state. The domain is immutable, and encodes the semantics of the system.

The initial and goal state may change, and are the current system state and the

desired system state respectively.

The work presented in [6] reduces the downtime associate with traditional

recovery techniques, by reducing the time needed to go from a failure state to

a recovered state. This is accomplished by using an AI plan that dynamically

constructs a knowledge base about status of failure plus different paths to get in

recovered states. However, despite it is successful in fast recovery from failure

status; the approach does not take into account failure prediction, what could

improve the overall system performance. Moreover, the domain artifact used in

AI planning cannot be changed during runtime, or in other words, it does not

support changes in the business environment.

[93] presents a simple way to dynamically compose Web services by changing

the semantic of WS-BPEL language while maintaining the syntax unaltered. The

authors defend that by following an established specification such as BPEL no

43



additional tasks are need from programmers. The solution works by intercept-

ing calls to BPEL partners and, based on specific criteria, looking through the

repository and redirects the call to the best available partner.

Figure 2.5: Example of ruintime adaptation using dynamically composed Web
services

Figure 2.5, summarises the work in [93] through an example which contains

an initial serial composition of two Web services (WS1 and WS2). The first

steps performed are to check the repository for changes (step 1 and 2). Let us

suppose that there were no changes in the repository, then the engine proceeds by

invoking WS1 (steps 3 and 4). Before every partner invocation the engine checks

for changes in the Web service repository, which means that before invoking WS2

it is verified one more time (steps 6, 7). Now, suppose that a new partner (WS3)

was registered at the repository and that it becomes more appropriate to the

composition than WS2. In this case, the engine is able to perceive this change

and then acts to alter the correspondents call (steps 8 and 9).

The main advantage of the approach presented in [93] is the ability to perform

runtime adaptation without syntactic changes in the BPEL language. The engine

is very simple and allows adaptation without system interruptions. Moreover,

44



the work presents an intuitive way to implements a Web service repository by

grouping semantically equivalent Web services and using XML base files instead of

complex databases. However, the approach lacks the ability to adapt to changes

at business level, in other words, the solution considers a static specification of

the business process and its requirements.

Another problem of the solution presented in [93] is the assumption that every

semantically similar partner has the same interface. It is a difficult assumption

and the authors are already working on how to solve this by introducing seman-

tic Web services. The same is valid to the structure of the repository. Grouping

partners only works because of the assumption of identical interfaces. Moreover,

it seems that this repository was thought to work only inside a company, since

we cannot expect the kindness of external companies to register in their process.

On the contrary, we should expect a tool to look in public repositories and ex-

tract the desired information. Moreover, in the approach, policies are analysed

operation by operation (one-to-one) and the engine does not consider QoS of the

entire process. This procedure could lead to optimisation of local problems that

does not correspond to an optimal global solution. This is particular true when

considering SLAs with fields that are traditionally inversely proportional, like

cost and estimated response time.

This one-to-one limitation is handled with an approach for replacing faulty

services in a group while maintaining QoS constraints [91]. The idea is to define

re-configuration regions to release planning overhead. Not only the work presents

a way in which services may be replaced using one-to-one, one-to-many, or many-

to-one service mappings, but by defining hierarchies regions and by searching

replaceable services only within these regions, re-configuration overhead is lowered

45



(see Figure 2.6 ).

Figure 2.6: Reconfigurable Regions (extracted from [91]).

Moreover, the idea of organizing services into classes facilitates replacing pro-

cedures. The approach enables changes at BPEL structure to be performed au-

tomatically, however, context changes are not considered. Additionally, as stated

before, single service failure does not necessarily means overall SLA disagreement.

In the above approaches the strategies for adaptation are concerned with the

replacement of a service in the composition by another service or a group of

services. These approaches are fine when the candidate services are compatible,

or in other words, when the interoperability is not affected. As described in

Section 1.1, in order for a request entity to interact with a provider entity, both

parties must agree on the interface and behaviour of the desired service.

46



These negotiations usually occur during design time, when a requester agent

is configured according to the expected behaviour of the desired service agent.

In a dynamic environment, however, due to the heterogeneity and independent

development of Web services, some interaction incompatibility may arise. To

ensure Web service interoperability in such dynamic execution context constitutes

a research challenge [20][89][139].

The work in [79] suggests two ways for dealing with mismatches in service

compositions, namely the creation of stand-alone adaptors and the use of aspect-

oriented adaptation by transforming the data types of the operation signatures,

instead of identifying replacement operations that can accept the dependency

mismatch. The approach relies on the use of patterns for capturing the recurring

differences and providing solutions to these differences.

As it was to be expected, the main disadvantage in the case of reactive ap-

proaches is that correction procedures start only after a fault has already oc-

curred. Furthermore, there is the possibility of a fault to induce an irreparable

system state. For example, in order to recover from an unavailable operation, the

adaptation approach may change the unavailable operation for another candidate

operation, however, the time lost trying to invoke the unavailable operation and

the time spent with the adaptation may well cause a nonconformity with the

service level agreement predefined for the composition.

2.2.3 Proactive Adaptation

To overcome the above problem, some approaches have recently been proposed to

support adaptation of service compositions in a proactive way [40][87][105][135].

47



These approaches extend the functionality provided by adaptable system based

on reactive adaptation with the prediction and prevention of general unwanted

behaviour in the execution of the service composition.

A proactive adaptation approach may work by observing a single internal fault

in order to predict and prevent future faults or by monitoring the system status in

order to assess the risk of a first fault. Nevertheless, dynamic service composition

techniques which use proactive adaptation methods usually outperform reactive

adaptation approaches due to the ability to avoid faults.

Some approaches have been proposed to support multilayered monitoring and

adaptation of service compositions [57][122][144]. The work in [122] uses adapta-

tion taxonomy and templates (patterns) created during design time to represent

possible solutions for adaptation problems.

The work in [57][144] dynamically identifies cross-layered adaptation strategies

for software and infrastructure layers. In [110] the authors propose approaches

based on aspect-oriented to support adaptation of service compositions with sup-

port for QoS aspects.

One of the first works to use a proactive solution for dynamic service composi-

tion was PREvent [87], which was designed to support prediction and prevention

of SLA violations in service compositions based on event monitoring and machine

learning techniques. The prediction of violations, however, is calculated only at

defined checkpoints in a composition based on regression classifiers prediction

models. It is important to support changes in compositions due to problems that

may occur in any part of the composition, as supported by ProAdapt.

In order to predict the probability that a change will actually effect the running

service the work presented in [111] presents a methodology named change impact

48



probability (CIP). In order to compute the CIP, the authors provide a grading

model for QoS values and changes that depends upon the degree of influence on

the SLA. Next, a prediction is made to assess how long the service will remain

at a given QoS level. Another model is then used to compute the possible start

time of each service in the composition. Finally, this information is used to

compute the CIP function and thus the probability of a change affecting the

service composition in execution. The main problem of this work is that it does

not consider structural changes of the service composition or the requirements

defined for the whole composition. It also needed to better define a threshold for

the CIP function.

The works in [105][135] advocate the use of testing to anticipate problems

in service compositions and trigger adaptation requests. The approach in [135]

supports identification of nine types of mismatches between services to be used

in a composition and their requests based on predefined test cases.

The work in [105] is similar to the work in [111] commented above in a way

that it tries to diminish the impact of unnecessary changes triggered by proactive

adaptation using a combination of online testing and monitoring technique in

order to determine failure probability within a confidence interval. The approach

is constituted of five main steps as presented in Figure 2.7, namely (1) Determine

Representative Data, (2) Determine Current Confidence, (3) Execute Tests, (4)

Predict Failure Occurrence, (5) Decide on Proactive Adaptation.

The first step determines which of the data points collected so far are repre-

sentative of the service that is being observed. This is important because during

the execution of online tests, the service might have changed or new monitoring

data might have been collected (from the SBA instances running in parallel).

49



Figure 2.7: Steps performed by to achieve proactive adaptation with confidence

This means that some of the data will not be representative anymore or that

new, representative data should be considered. In step 3, test cases are generated

and executed in order to gather additional, representative data points for failure

prediction. After the previous steps have established a set of representative data

that exhibits the required confidence for failure prediction, Step 4 predicts the

actual occurrence of the failure. Step 5 decides on the actual proactive adapta-

tion of the SBA instances. The decision on such an adaptation is based on the

predicted failure probability from Step 4. For example, proactive adaptation is

triggered if the prediction is above a predefined threshold.

The solution takes into consideration two different approaches to start the

described steps. The first one considers triggering step 1 as soon as the monitoring

process discovers a failure. This strategy has the clear disadvantage of delaying

the adaptation, but it reduces the cost related to testing since it is triggered

when the potentials need for a proactive adaptation occurs. The second approach

triggers step 1 after each change of a partner of the SBA. Here, one the contrary of

50



first approach, adaptation can be performed early, on the other hand, the testing

routines could be intensive and the collected data may never be used. Moreover,

the creation of test cases is not easy and the paper does not specify how test

cases are created for modified compositions. Additionally, the work is focussed

only on service binds, which means that structural changes in a workflow are not

considered and new services cannot be dynamically found.

Online testing is also employed in [127]. The work presents an online testing

and monitoring framework focused on dynamic selection of service operations

by using quality prediction. Such proactive quality prediction is performed by

selecting test cases and performing online testing in parallel of the execution of

the service-based system to gather additional evidence for failure on top of the

monitoring process.

Similar to the approach presented in this report, in [18] the authors advocate

that the management of service compositions during runtime needs to consider

the structure of a composition and the dependencies between the participating

services, and propose an approach that determines the impact of each service in

a composition on its overall performance.

The solution presented in [106] uses a combination of proactive adaptation

techniques along the phases of the service life-cycle. The core concept is to use

these techniques to determine deviation from requirements based on monitored

failures. In the approach, functional and nonfunctional requirements are formal-

ized and the service composition also needs to be formalized in order to support

automated checks. The approach attempts to solve the problem of whether the

failure of a single service leads to a violation of the composition as a whole.

The work described in [106] reasoning is that when the expected behaviour

51



of some service operation invocation deviates from its assumption the past mon-

itoring data together with the assumptions about the not yet invoked services

operations and the service composition specification is checked against the gen-

eral requirements (SLA).

Figure 2.8: Requirements Monitoring Steps performed by to achieve proactive
adaptation with confidence (extracted from [106])

If the requirements are still satisfied, the composition can continue its exe-

cution, as depicted in Figure 2.8, otherwise it must be adapted. The approach

manages to cover adaptation along service life-cycle and formalisation of func-

52



tional and nonfunctional requirements allow proactive runtime check of service

compositions. However, the solution covers only one-to-one maps and does not

specify how options to replace services are discovered. Moreover, it does not

consider different adaptations for multiple parallel executing instances.

A solution that combines proactive adaptation and reactive adaptation is

presented in [72]. The approach presents a new model to represent service com-

position in order to include execution state of each service within the composition

in order to provide self-protecting and self-healing. The work firstly introduces

the notion of an execution instance as a memory structure to record information

concerning a single execution of the composite service.

Figure 2.9: Structured view of an example of execution instance (extracted from
[72])

Figure 2.9 presents a workflow and tree view of an execution instance as de-

fined in [72], where leaf nodes are referred to partners in WS-BPEL, while other

nodes present control logics. The execution instance maintains information de-

fined as attributes on nodes and edges as QoS Feature and Execution Feature.

A QoS feature is a set of quality parameters associated with service nodes and

control nodes. An execution feature contains control and execution information

related to edges. The notion of execution instances is also used in the work

53



described in this thesis to support independent adaptations. The execution in-

stances used by ProAdapt, however, are a bit more flexible to support structural

changes, faster computation of candidate operations, and faster verification of

SLA satisfaction of logic regions and the composition as a whole.

The work presented in [72] constitutes a two-stage adaptation model that in-

cludes How, Where, and When adaptation actions take place. The adaptation

is performed by three actions, namely (a) request redirection, (b) request recon-

struction, and (c) execution instance revision. The request redirection (a) is the

action involved in proactive adaptation and triggered by new service request.

The request reconstruction (b) is performed in a reactive way and triggered by

arrival of a failed or error response. The execution instance is revised (c) both in

proactive and reactive way by updating the QoS features.

More specifically, the required service is invoked directly if it is a dependable

one. The request is redirected on condition that an alternative service can be

found (the execution instance is updated accordingly). In the case of undepend-

able or no alternatives, the approach suggests the review of quality setting (with

a user) or the termination of the current execution. The adaptation process can

be triggered by a service change either if a recommended service is founded to be

unusable in the future execution or if a service is identified as possible threat to

break constraints defined in the SLA.

The combination of a proactive approach with a reactive approach presented

in [72] proved to be useful when dealing with QoS deviations. The defined concept

of execution instances provides a way to formally represent system requirements

as well as to store dynamic system state. However, the work does not specify how

a service community could work. This may have a great impact on the solution,

54



specifically regarding the time to select a substitute service. Moreover, it does

not consider changes at composition itself or the service composition SLA as a

whole.

This previous sections present a comprehensive review of the related work

to this thesis in the specific context of adaptation for service compositions. By

introducing the related work in a simple but efficient categorisation, it was easier

to present the approaches in a close to evolutionary way. Starting from static

approaches, passing from reactive adaptation and finally ending in the dynamic

and proactive adaptation approaches. By analysing the previous discussed works,

it seems that while there are some contributions about how to dynamically adapt

service compositions, these ideas are still scattered and cannot be envisioned

in practice yet. The next section addresses the problem of services selection,

regardless of the other adaptations concerns involved.

2.3 QoS-Aware Service Selection

The previous sections presented an overview of the various adaptation approaches

for service compositions. Despite the differences in how and when the need for

adaptation is identified or changes actually enacted, most adaptation approaches

rely on the selection of different concrete operations to perform the various busi-

ness process tasks. It is common among adaptation approaches to assume that

service operations are functionally equivalent and can be replaced by each other,

despite the interoperability issues that may arise. However, even under such as-

sumption, it is unrealistic to consider that different services have the same QoS

values and choosing candidate services with different QoS values for a single ser-

55



vice operation may direct effects the service compositions[137].

The number of functionally equivalent services with different QoS values such

as cost, reliability and response time have been consistently growing recently [140].

The problem of how to select and combine services to meet the QoS requirements

of the business process has being one of the main issues of service compositions.

An important discussion is then on the assessment of such QoS values. Service

providers, as the entities responsible for maintaining and making available its

services agents, sometimes shares the QoS information along with the service

description using techniques such as reputation [71] or fidelity [70]. The provided

values, however, are usually considered as unreliable because such values are

based on subjective estimates from customers in different execution contexts.

When it comes to third party evaluation of QoS values for services, testing

services directly to obtain such values [94] [100] and relying on previous feedback

is usually what is employed [142].

The QoS-based service selection work presented in [94] uses statistical vari-

ances and applies linear programming to decide which particular operation should

be selected based on end users constraints. The approach works as follows. Given

a set of service operations with the same functional properties, a QoS matrix is

formed where each row represents a candidate operation, while each column rep-

resents one of the QoS criteria for the particular operation.

The work presented in [94] assumes that QoS criteria can be collected via

active monitoring and users feedback. The active monitoring is similar to our

approach. It considers that each service operation execution can be actively

monitored by the service requester. The difference in the case of ProAdapt is

that we consider not only the execution time of the operation, but the availability

56



as well, and uses the monitored information to model and predict the behaviour

of each deployed service operation. In [94], only service selection is considered,

the composition, and thus, the impact of combining services with different QoS

values is not considered. Another point to note is that the approach uses a

maximum value to normalise the QoS matrix. This maximum value is debatable,

and creates uneven distributions based on nonexistent values. Moreover, different

QoS values are considered the same, even when they have clear different range of

values. This is one of the reasons why the normalisation performed by ProAdapt

considers the current minimum and maximum observed QoS values to compute

a factor between zero and one (see Equation 3.14).

A different approach which targets the prediction of QoS values based on

ranking computed with users reports is presented in [136]. The approach creates

the ranking by analysing QoS values advertised by service providers and also the

perception of the real quality of monitored services by consumers. This values

can be misleading due to false rating shared by both service providers and service

consumers. However, the approach employs a trust and reputation model to

address this problem.

Another example of trust models used to categorise quality aspects of Web

services is proposed in [38]. The approach establishes different levels of trust for

service costumers and provides an estimate of the quality aspects of a service-

based on a weight function that takes into consideration the trust levels and

different levels of importance for specific metrics of interest. Similarly, in [90]

a service selection approach is proposed to classify service QoS values regarding

the trustworthiness of provided data. The work considers both data coming from

service providers and feedback from users. In the case of data coming from the

57



providers, the observed QoS values are used to revise the informed values, while

in the case of user feedback a weight function is used.

In a slightly different approach, the authors in [39] present an approach for

decomposing the overall QoS values provided for composite services into their

composing services. The approach considers value provided for the composition

as a whole as well as trusted and known QoS values of the internal services in

order to make estimations. The biggest limitation of the approach is that the

internal logic of the business process must be disclosed, which is usually not the

case.

For composite services and in situations where a ranked list of expected values

is not enough, we can try to find the probability distribution of the desired QoS

value [68]. The work presented in [68] uses the knowledge of each probability

distribution of services used in a composition to compute the probability distri-

bution of the service composition as a whole. Such distributions can be used

to better understand the expected behaviour of the quality value of a composite

service and to assess the probability to meet the desired service level agreement.

A problem with such approach is that it relies too much on given QoS data

from the component services. This data must be gathered somehow and updated

frequently to produce the desired results.

Considering a set of service operations with their respective QoS parameters,

the next step in the service selection process is the actual choice of the operations

that will compose the executable business process. This optimisation problem

has been broadly discussed in the literature and is known as service composition

problem [3] [103] [69] [98].

Formally speaking, giving a service composition Sk with a set of abstract

58



operations Lk = {A1, A2, ...An} and for each Ax a set of candidate concrete

operations Rx = {C1
x, C

2
x, ..., C

m
x }; The problem of service composition is to find

a configuration G = {Ca
1 , C

b
2, ..., C

r
n} that satisfies defined requirements, such as

KPI and QoS.

NC(Sk) =
n
∏

i=1

mi (2.1)

The number of possible configurations for a composition is given by Equa-

tion 2.1, where Sk is a given service composition with n abstract operations and

mi is the number of candidates operations for the specific abstract operation Ai.

Essentially, Equation 2.1 indicates that the number of possible configurations

grows very fast in relation to the number of candidates and abstract operations.

Verifying all possible combinations using a brute-force algorithm can be very

time consuming. As surveyed in [132], different approaches have been proposed

to handle the problem of service composition by using different techniques, such

as linear integer programming [143][66], mixed integer programming [5][128], or

genetic programming[24][53][85].

A linear integer programming method is a mathematical optimisation ap-

proach to a problem that can be modelled with all unknown variables as integers.

In [143] such technique is used in an attempt to find the global optimal solution

for a service composition. The idea is to find the best solution for every possible

execution path and then merge the results together. This merging procedure at-

tempts to solve the conflict created when two different optimal paths use different

operations for a common branch, but a global optimal solution is not guaranteed.

In the case of mixed integer programming the restriction upon the domain of

59



the unknown variables are relaxed to just some of them. In order words, only some

variables are required to be integers. An example of mixed integer programming

can be view in the general optimal approach presented in [5]. The approach

considers compositions with internal loops and presents a strategy to deal with

the problem of no valid solution by using negotiation techniques. Differently from

our work, stateful Web services are considered, but the approach fails to model

conditional activities.

Another global optimisation approach based on mixed integer programming

is proposed in [128]. Unlike [143] and [5], the work presented in [128] completely

considers conditional activities and does not need to compute all possible paths,

since it models the conditional activities with probabilities. The approach is able

to compute an optimal solution in a reasonable time, but it fails to consider the

dependencies that may exist between service operations. Moreover, the solution

would require modification to be able to find a solution for a running instance.

While these previous integer programming approaches attempt to find the

best solution to the service composition problem, some other approaches target

heuristic suboptimal methods. A hill-climbing algorithm, where the basic idea is

to start with a first solution to the problem and then repeatedly improve it until

some constraints are met, is presented in [103] while generic algorithms are used

by [24],[53], and [85].

The previous approaches can be very efficient in finding optimal solution for

the problem of service composition, however, they present at least two major

problems. First, they fail to consider the dependencies between services opera-

tions. An exception is [53] which is one of the first works to consider the inter-

face matches between services as part of the problem to find an optimal service

60



composition. Second, they lack the simplicity to be used on running execution

instances.

In this section, various concepts related to service selections are discussed,

such as service discovery, categorisation, and composition. Even though some

approaches could potentially be handled as black boxes in a service-based adap-

tation system, they are usually very attached to the base adaptation model and

goals. A clear difference on the approach used in the ProAdapt framework is that

such composition, as well as the identification of the need for a new configura-

tion, needs to be computed as fast as possible. Even more than when comparing

with other adaptation approaches dues to the fact that more verifications are to

be performed and more adaptations are possible. The next section presents a

general discussion regarding the adaptation topics reviewed in this chapter.

2.4 Discussion

The current approaches for dynamic service composition are still fragmented and

in their initial stages of development. More specifically, the majority of the ap-

proaches reviewed try to focus in specific points of the adaptation challenge and

do not offer a complete framework to support the implementation of the proposed

ideas. In other words, while there are some contributions about how to dynami-

cally compose Web services, these ideas must be integrated in a framework that

supports the specification of business processes, execution of service composi-

tions, identification of candidate services, rebinding of deployed operations, and

dynamic changes in the composition workflow logic.

Existing approaches have at least four common drawbacks which are listed

61



below.

General Adaptation Scope - In existing approaches, when it is necessary to

adapt a service composition, the changes executed in a composition are

reflected in all instances of this composition. For instance, consider an

invoke activity I defined for a service composition that requires a service

agent A. If for a particular instance of a service composition, A needs to be

changed by another service agent B, all instances of the service composition

would have to use B as well. This is a clear limitation when trying to handle

issues that are particular to a specific instance of a service composition.

One should not confuse adaptation of instances of execution with the dy-

namic adaptation of service compositions while the processes are still exe-

cuting. While the first focus on a particular session or execution instance,

the other is simply the ability do adapt without stopping the service com-

position or execution engine.

For example, in the case in which the time to execute an operation O in a

service composition instance SC is greater than the expected time, causing

a nonconformity of the SLA for composition SC, it is necessary to adapt the

composition instance to respect the SLA; i.e., the adaptation may require

other operations yet to be executed to be replaced. However, this delay

in the execution time of operation O may not cause problems in other

composition instances that use O. Therefore, changes in all composition

instances that use O are unnecessary.

Prediction Based only on QoS Values - As outlines above, there are some

proactive approaches to adapt service compositions, but they are mainly

62



focussed in predicting the impact of QoS values that deviate from the con-

tract (SLA). However, there are other important points to cover such as

the ability to predict the availability of a certain service operations and the

ability to predict the impact of the need for adaptation in other parts of

the service composition and also other compositions deployed in the same

execution engine.

Limitation to Fault Tolerance - Existing approaches are limited to support

adaptations due to faults in service compositions. The ability to enable the

continued execution of a business process even in the presence of internal

faults while still satisfying system requirements is perhaps the most desir-

able feature of service composition adaptation approaches. However, there

are other situations in which no fault is observed or expected in a compo-

sition, but the system should adapt or could benefit from adaptation. For

instance, adapting composition due to new requirements or optimising the

composition when new better candidate services become available are both

desirable features that have no relation to internal faults.

User Interaction - There is no question that complex and large business pro-

cesses inadvertently require the interaction of the user, either to provide

input for the system or to execute required tasks. Such interactions with

users are usually not covered by adaptation approaches. Future adapta-

tion approaches should be able to support activities that describe the user

interaction due to its relevance to real business processes. This particular

activity, however, is usually poorly supported by service composition execu-

tion engines and is not covered by ProAdapt. We recognise the importance

63



of the user interaction, but ProAdapt does not currently supports it.

From the four drawbacks listed above, ProAdapt covers three of them. Missing

only support for user interaction. We are, However, considering to extend our

research and add support for user interaction (see Section 6.1).

2.5 Summary

This chapter presents a general map of the research field and position the work

described in this thesis within the context. This is done by first presenting the

general topic of adaptation in the context of software engineering, where the

concepts of adaptation in fields such as control engineering, software architectures,

self-adaptive systems theory, autonomic computing, and fault-tolerant computing

are discussed.

With the overall adaptation systems presented, the chapter reviews the related

work in the area of adaptation for service composition, and specifically discusses

the topic of service selection. Finally, the chapter presents a general discussion

regarding the surveyed approached.

The work described in this thesis complements current approaches by pro-

viding a fully operational framework to support dynamic adaptation of service

compositions tackling three out of the four issues presented above. The user in-

teraction issue is the only that is still to be covered. However, this is already a

work in progress that will be discussed in Chapter 6 (Future Plan).

64



Chapter 3

ProAdapt Adaptation Framework

As discussed in Chapter 1 and Chapter 2, there are still some open challenges

regarding the topic of dynamic adaptation of service compositions. In this con-

text, this chapter presents a new proactive adaptation framework named ProAd-

apt. The framework aims to improve the performance, reliability, and general

conformance of business processes with system requirements when compared to

traditional static and reactive adaptation approaches.

ProAdapt extends current approaches for dynamic service composition by

proactively and individually identifying the need for adaptation for each parallel

running instance of a service composition, while avoiding unnecessary changes

to the service composition, and distributing load request among different service

operations when necessary. It is an event-driven and QoS-aware fault tolerant

service composition framework that uses monitoring and prediction techniques to

prevent possible execution failures, and to continuously improve service compo-

sition.

The framework supports adaptation of service composition triggered by four

65



different classes of situations :

• C1 - Events that cause the composition to stop its execution. This class

includes events such as unavailability or malfunctioning of a deployed service

operation;

• C2 - Events that allow the composition to continue to be executed, but not

necessarily in its best way. When the network link is congested, for example,

the response times of some operations may be greater than expected. Such

fluctuations in the response time may require adaptation in order to comply

with SLA parameters of the composition;

• C3 - Evolution of requirements. The service provider may decide to update

the expected QoS parameters of the deployed service compositions. If the

current composition violates these new values, adaptation is required;

• C4 - Emergence of better services. Even when the system is running with-

out any problems, some events, such as the availability of new cheaper and

faster services can be used to improve the service compositions.

ProAdapt allows the reconfiguration of service compositions performed by (a)

replacing a single service operation in the composition by another service opera-

tion, or by a group of dynamically composed service operations (replacement of

types 1-1 or 1-n); or (b) replacing a group of service operations in a composition by

a single operation, or by a group of dynamically composed service operations (re-

placement of types n-1 or n-m). Furthermore, ProAdapt considers dependencies

that may exist between the signatures of service operations within a composition

66



in order to avoid changes in the composition that may lead to mismatches of the

signatures of the operations.

The chapter is structured as follows. Section 3.1 presents a first insight of

Proadapt framework. In Section 3.2 ProAdapt’s architecture is presented and

each component detailed. Finally, the adaptation process itself is described in

Section 3.3.

3.1 Overview

As mentioned above, ProAdapt is a proactive adaptation framework to support

dynamic reconfiguration of services compositions execution instances in order to

improve the performance, reliability, and general conformance of the compositions

instances with their requirements. To accomplish these ambitious goals ProAdapt

continuously monitor and analyse events of interest generated in the execution

environment in order to detect and prevent faults that could potentially lead to

compositions failures (see Section 2.1 for a review of faults and failures).

Figure 3.1 summarises the general adaptation process adopted by ProAdapt.

As show in the picture, various events are continuously monitored and reported

to be analysed. During the analysis phase, the framework verifies the reported

events, together with running execution instances, templates, and default bind-

ing information, to assess the need for adaptation and to perform any required

preprocessing, such as marking service operations as potentially unavailable. Fi-

nally, during the decision and enacting phases any executions instance, template,

or binding information can be modified.

One key aspect of ProAdapt is how the execution engine supports service

67



Events 

Monitoring

Analisis
Decisions and 

Enactions
Templates

Binding Information

Execution Instances

Figure 3.1: ProAdapt Overview

compositions. As described in Section 1.2, an execution engine is the piece of

software responsible for the execution of business processes described in the form

of executable service compositions. Different service compositions can be de-

ployed in an execution engine, and for each request of a particular composition,

a private session must be maintained in order to individually and correctly parse

input and output parameters.

In the same way that a Web Service Description (WSD) contains the abstract

part for the general definitions of the web service and a concrete part for the

binding information (see Section 1.1), for each service composition SCn deployed

in an execution engine, we have (a) an abstract composition template Tn consisting

of the workflow logic and (b) a set of binding information containing each deployed

service operation STn
.

The abstract template Tn contains invoke activities pointing to abstract web

service definitions. While executing a services composition SCn, the execution

engine uses the binding information STn
to identify the actual concrete operation

68



to be invoked. Without a way to dynamically update the binding information,

compositions are bound to use the same set of concrete operations, which results

in great issues when such operations degrade their performance or present any

fault. Thus, the binding information available for each deployed service compo-

sition is usually the main concern of adaptation frameworks.

This general approach of changing the binding information STn
for the service

composition SCn, however, is limited and presents some problems. First, it means

that any change performed in the binding information STn
will have impact in all

private sessions created for the service composition SCn. In other words, micro

adaptations focussed in particular sessions are not possible, reducing the relia-

bility of the business process in certain circumstances. Second, because changes

in the template itself are not covered, this approach only supports replacing the

binding information of one concrete operation with another.

This means that it is not possible to use a group of candidate operation as

replacement of a single deployed operation, or use a single candidate operation

as replacement for a group of deployed operations. The common adaptation

approaches focus only on faults enclosed to a service composition context. In

other words, faults observed for a private session are not shared across service

composition in an attempt to prevent potential faults and failures. Moreover,

because the usual approach is concerned with the reaction to internal faults,

other events of interest for the adaptation process, such as the appearance of

better services or new requirements, are not covered.

In order to solve these issues, instead of limiting adaptations to the binding

information of service compositions triggered by internal faults, ProAdapt uses

independent adaptable service composition execution instances that may be up-

69



dated not only by monitoring internal faults but any event of interest, including

faults and changes in the execution context or requirements. In addition, sim-

milarly to the work presented in [26], ProAdapt supports workflow evolution,

accepting changes in the workflow for running instances. Differently from the

proposal in [26], however, we are able to cope with exceptional or unplanned

event that affects only a specific instance of a workflow, but our strategy is lim-

ited to finding a set of service operations that are semantically equivalent to logic

regions defined in the workflow.

Execution Engine

Request SC
r

SC1 SC2 SCn. . .

Deployed Service 

Compositions

Request SCs

Request SCr
EI2
r  

EI1
r  

E
xe

cu
tio

n
 In

sta
n

ce
s

EIm
s  

Requester 1Requester 1

Requester 2Requester 2

Requester mRequester m

WS1 WS2 WSk
. . .

Web Services

Figure 3.2: Illustration of the Execution Engine accessing Execution Instances of
Service Composition.

Figure 3.2 illustrates the concept of independent execution instances used in

ProAdapt. As show in the figure, for each request m of a deployed service compo-

sition SCn, an execution instance EInm is created.Then, the execution engine can

invoke web services according to what is defined inside the execution instances.

70



Unlike current execution engines that rely on a general templae and binding

information for each service composition, as described above, each of our execu-

tion instances EInm includes a copy of the composition template Tn the binding

information STn
. In this context, for reasons of performance and optimisation,

a STn
is still maintained for Tn, but each execution instance EInm contains its

private template T n
m and binding information Sn

Tm
.

With this modification, adaptations enclosed to a particular instance are now

possible, without losing support for general or parallel adaptation. For example,

considering three execution instances (a) EIr1 , (b) EIr2 , and (c) EIs1 for the service

compositions SCr and SCs, changes in the local template for (a) T r
1 or its binding

information Sr
T1

have no impact in the local templates for (b) T r
2 and (c) T s

1 or

the binding information Sr
T2

and Ss
T1
.

It is possible, however, to flood the need for adaptation across parallel exe-

cution instances of the same or different service composition by accessing their

particular template and binding information. Moreover, considering a set of de-

ployed service compositions {SC1, SC2, ..., SCn}, future execution instances can

benefit from previous processed information by changing the default templates

Tx, 1 ≤ x ≤ n or the default binding information STx
, 1 ≤ x ≤ n, which are both

used to create the execution instances.

Faults are recurrent events for service compositions, and as explained in Sec-

tion 2.1, these faults may lead to dissatisfaction and can result in lost opportu-

nities for business processes. Reacting to faults after they are observed incurs

in obvious penalties, thus, preventing and avoiding faults is a very important

feature for adaptable service-based systems. Perhaps the most important fea-

ture of ProAdapt is indeed the ability to proactively identify potential fault points

71



in execution instances based on the monitored events and prevent such faults to

occur. Moreover, even in the absence of faults, ProAdapt may decide to proac-

tively optimise service composition. Resulting in faster, cheaper or more reliable

processes.

ProAdapt currently supports the prediction of faults and failures caused by

QoS deviation and unavailability of operations. Service composition execution

instances must comply with predefined SLA parameters, such as maximum re-

sponse time or cost for the whole composition. QoS deviations of deployed oper-

ations, mainly in the form of delayed response time, can lead to nonconformance

of the SLA.

In order to handle this issue, ProAdapt uses a QoS aggregation function that

is able to predict the expected QoS parameter values for the whole execution

instance and thus trigger adaptation when detected a possible SLA nonconformity

and, therefore, trigger the need for adaptation when a possible SLA discrepancy

(i.e., nonconformance) is detected. To prevent invoking unreachable operations

(unavailable or broken network link), the framework supports the prediction of

unreachable operations using failure spatial correlation[51].

In this work, the spatial correlation is considered as the strong availability

correlation between operation, services and providers. In other words, if an op-

eration is unavailable in one part of a service composition, it will most likely be

unavailable for other parts of the composition that also use the same operation.

Moreover, if the whole service or provider is unavailable, it would be wise to

proactively replace all deployed operations offered by the unavailable service or

provider to avoid the almost certain faults.

Regarding adaptations necessary due to unavoidable oscillation of the ob-

72



served QoS values of service operations, ProAdapt attempts to avoid executing

changes in a composition in the situations in which QoS faults generated by one

or more deployed operations can be compensated within the composition by other

deployed service operations.

Example: when the observed response time of an operation is greater than

its expected response time, the approach verifies the implication of this fault in

the execution instance as a whole in order to assess the need for adaptation. This

verification considers service level agreements (SLAs) specified for the whole com-

position and QoS parameter values obtained from previously invoked operations

as well as expect values for the yet to be invoked operation in order to identify if

a QoS fault can be compensated or accommodated. ProAdapt is ultimately con-

cerned with the correct execution of the composition under defined constraints.

Internal faults can be overlooked if the service level agreement (SLA) defined for

the composition remains satisfied.

The next section presents the ProAdapt architecture and describes its main

components.

3.2 Architecture

In the case of proactive approaches for dynamic service composition, situations

that may trigger the need for adaptation should be predicted before they lead to

faults and failures of the service compositions. As defined in [126], the prediction

of faults is concerned with the identification of the occurrence of a fault in the

near future based on the assessment of the current state of the system. In the

scope of service compositions, the prediction of faults and failures is concerned

73



with the assessment of the impact of a service, or group of services, misbehaviour,

performance degradation, or unavailability in the composition as a whole.

ProAdapt is a proactive adaptation framework consisting of four main steps,

namely (i) events monitoring, (ii) analysis and prediction of the events, (iii) deci-

sion of actions to be taken due to the events, and (iv) execution of the actions. In

order to support these four steps, an architecture was developed for the ProAdapt

framework with six main components, namely: (i) Composer, (ii) Execution En-

gine, (iii) Adaptor, (iv) Service Discovery, and (v) Event Analyser. An overview

of the architecture of the framework is shown in Figure 3.3.

All the components of the framework had to be implemented from scratch due

to the lack of support from current technologies. In fact, we were able to extend

an existing execution engine to suit our need but only for the first prototype of

our framework (see Section 4.1).

In summary, a system administrator specifies some business process and re-

lated SLA to be deployed in the execution engine. When clients request these

business process through the execution engine, it uses the composer to create an

execution instance that is particular to each request. All events produced by the

execution engine, such as successful or failed attempts to invoke an operation

are reported and analysed by the event analyser. Depending on the context and

generated events, the need for adaptation is identified and the adaptor compo-

nent updates the running execution instances. Details regarding each of the main

components of the framework are described below.

The composer is responsible for parsing business processes descriptions rep-

resented in different languages (e.g.; WS-BPEL [115]), and their associated Ser-

vice Level Agreements (SLAs), in order to generate the associated Execution

74



Composer

BPD + SLA

request

Clients

Execution Instances

Binding 

Information

Composition

Template

createsAdmin

specify

Execution 

Engine

executes

Events

generates

B
in

d
 

In
fo

rm
a

ti
o

n

R
e

p
o

si
to

ry

Service 

Discovery

updates
Event 

Analyser

monitors

Adaptor

triggers

requires

uses

generates

updates

reads

updates

Web Servicesrefers to

readsrequests

receives

Figure 3.3: Architecture overview of ProAdapt framework

75



Instances. The current approach is limited to compositions that use stateless ser-

vices; i.e.; compositions with service operations that can be replaced at any point

during its execution since there is no need to keep track of the interaction-specific

data as each subsequent interaction with a stateless service does not depend upon

the outcome of the previous interaction.

As explained in Section 3.1, the framework considers SLA parameters for the

whole composition in order to verify if QoS discrepancies require the need to

execute changes in a composition. Therefore, the SLA parameter values will be

represented in the internal representation of the business process.

x

Payment 

Interface x

Data 

Check

x

x
Payment

Anti

Fraud

+

In
 S

to
ck

Out of Stock

+

Wrong Data or Fraud

Data/Fraud Check OK

Cancel 

Payment

Dispatch

Good
Payment Received

e-Payment

Check 

Stock

Cancel 

Order
Payment Canceled

x O

PDF 

Invoice

Web 

Inform

Email 

Invoicex O

Default Action

Email Invoice Selected

PDF Invoice Selected

Notify Costumer

Start End Activity

x
Exclusive OR

+
Parallel

O
Inclusive OR

Finish Order

Figure 3.4: Example of a business process for ordering of goods

Figure 3.4 presents an example of a business process model using the BPMN

notation for ordering goods online. In Figure 3.4, the required operations of the

business process are represented as activities. As shown in the example, when a

customer makes an order, the system checks the stock and in case of availability of

76



the required goods, the system displays the interface for executing the payment.

In the case of a successful process execution, the payment is received and the

goods are dispatched to the customer. Otherwise, both the payment and the

order are cancelled. At the end of the business process execution, the customer

receives the transaction status from a web interface. In the case of a successful

execution, the customer receives an invoice by email or link to PDF file.

There are four different abstract activities or regions defined for Figure 3.4.

The Invoke Activity, which is the final level of abstraction before the actual binded

service operation, and three logic control regions, namely Parallel, Exclusive OR,

and Inclusive OR. The parallel region is self explanatory, each sub-activity within

the region will be executed in parallel. For instance, Data Check and Anti Fraud.

The distinction between the Exclusive OR and the Inclusive OR is that the last

admit more then one path to be executed. While Dispatch Good and Cancel

Order will never be executed together, Email Invoice and PDF Invoice may or

may not be executed together.

The Execution Engine is the component responsible for running the execution

instances. The execution engine receives a request for a particular business pro-

cess mapped to a service composition, requests an execution instance from the

composer and uses the logic and binding information provided by the execution

instance to manipulate input and output parameters.

As explained in the previous section, this work recognises that different private

sessions may face distinct circumstances which may temporary and potentially

affect only a single session. Moreover, the current state of each session is certainly

different, and adaptation procedures may well take into account these different

states.

77



In the framework, when a business process deployed in the execution engine is

requested, the associated composition template and default binding information

is used to generate an execution model instance of the business process. An

execution model instance extends the composition template with information

about the (i) execution flow, (ii) deployed endpoint service operations and their

locations, (iii) state of a service operation in a composition (e.g., executed, to

be executed, and executing), (iv) observed QoS values of a service operation

after its execution, (v) expected QoS values of a service operation, and (vii) SLA

parameter values for the service operations and the composition as a whole.

x

Payment 

Interface x

Data 

Check

x

x

Payment
Anti

Fraud

++

Cancel 

Payment

Dispatch

Good

Check 

Stock

Cancel 

Order

x O
PDF 

Invoice

Web 

Inform

x O

Activity:                 CheckStock

Provider:            LocalProvider

WebService:       OrderingTools

Operation:            StockCheck

Status:                      Executed

Exp. Rsp. Time:          100 ms

Obs. Rsp. Time:           98 ms

Cost:                                0 p

Fidelity:                          High

Reliability:                      90%

Activity:            PaymentInterface

Provider:            LocalProvider

WebService:          WebAdmin

Operation:      DyplayPayInterface

Status:                      Executed

Exp. Rsp. Time:         12000 ms

Obs. Rsp. Time:         12002 ms

Cost:                               0 p

Fidelity:                    Very High

Reliability:                    95%

Activity:              EmailInvoice

Provider:             MailServer

WebService:       POP3Mail

Operation:           SendEMail

Status:               To be Executed

Exp. Rsp. Time:         250 ms

Obs. Rsp. Time:         X ms

Cost:                               0 p

Fidelity:                    Medium High

Reliability:                    80%

...

Activity:                DataCheck

Provider:             StreamLine

WebService:       CardPayment

Operation:         SecurityCheck    

Status:                     Executing

Exp. Rsp. Time:         300 ms

Obs. Rsp. Time:         X  ms

Cost:                               3 p

Fidelity:                    Very High

Reliability:                    97%

Email 

Invoice

Process:                            Online Ordering

SLA Maximum Cost:                    25 p

SLA Maximum Time:               14000 ms

Expected Response Time:     13650 ms

Expected Cost:                              20 p

...

Figure 3.5: Execution model instance for the business process.

Figure 3.5 shows an example of part of an execution model instance for the

business process presented in Figure 3.4. Figure 3.5, shows the deployed endpoint

service operations for various activities, the QoS values for the whole execution

model instance and for the deployed endpoint service operations, the execution

78



status of the service operations, and some expected and observed QoS values. As

shown in Figure 3.5, the service operations executing the activity of CheckStock

and PaymentInterface are offered by the same services provider LocalProvider.

The DataCheck activity is offered by service provider StreamLine. The expected

cost and response time values for the whole execution model instance are based

on the deployed operation endpoints and their status.

The monitor verifies the service operations used in the instantiated execution

models and the possible replacement candidates’ operations in other to identify

any events that may lead to situations C1, C2 and C4 described in Section 3.1.

As shown in Figure 3.3, monitors can either intercept the messages exchanged

between the Execution Engine component and the Web Service Operations or

check the operations directly, for instance, using online testing. The current im-

plementation of the framework focuses only on the first strategy, intercepting calls

to the services, observing when new services become available, and checking the

QoS values of the operations. It also communicates with the adaptor component

to inform about observed events.

The service discovery component identifies possible candidate service opera-

tions to be used in the composition, or to be used as replacement operations in

case of problems. The work assumes the use of the service discovery approach

[130][146] which has been developed to assist with the identification of candidate

service operations. This approach advocates a proactive selection of candidate

service operations based on distance measurements that match functional, be-

havioural, quality, and contextual aspects. The candidate service operations are

identified in parallel to the execution of the compositions based on subscribed

operations, and are organised in descending order of best matches. The identi-

79



fied candidates’ operations are used to create and adapt execution models by the

adaptor component.

The adaptor together with the Event Analyser are the main components of

the framework. Together, they (a) receive events from the execution engine and

monitor components (situations C1, C2, and C4), and composer component (sit-

uation C3); (b) predict and analyse problems that may exist in the composition

based on these events; (c) identify the need for adaptation of the current exe-

cution model instances and/or templates; (d) decide on the actions to be taken;

(e) makes necessary changes in the execution model instances and/or templates;

and (f) informs the execution engine about changes made in the execution model

instances.

The decision of actions to be taken and changes in the compositions are made

based on the identified events and the list of available replacement candidate

service operations identified by the service discovery component. The next section

covers the adaptor component in more details.

It is important to note that in out current framework, the monitor is seen as

a sub-component of the event analyser, however, an external monitor could be

attached to the framework and generate events in parallel, such as new status of

service operations.

3.3 Adaptation Process

In the framework, the different steps for proactive adaptation of service compo-

sition are supported by the use of techniques for the prediction of QoS aspects;

the analysis of dependencies between service operations in a composition; and

80



the consideration of groups of service operations in a composition flow instead of

isolated operations.

As stated in Section 3.1, the adaptation process may be triggered by situations

of types C1 to C4. When an event from one of classes C1 to C4 occurs, the

monitor, the execution engine, or the composer components notify the adaptor.

The adaptor analyses the event, predicts faults and failures, verifies the need for

adaptation, and enforces the necessary changes.

The analysis of events is concerned with the implications of such events in

the deployed service compositions, mainly the need for adaptation of current

running and possible future execution instances. As discussed in Section 3.2, for

each request m of a deployed service composition SCn, an execution instance

EInm is created from the respective composition template Tn using an available

list of candidates’ operations. This process is optimised by maintaining a default

combination of candidates’ operations STj
for each deployed composition template

and customising it per execution instance. An important concept of the analysis

phase is the scope or impact of events analysed.

Section 3.2 explains how execution instances are independently adaptable,

without interfering with other instances. This does not mean, however, that

the analysis of an event is enclosed to a particular instance. The possibility

of constraining the required measures to a single instance is a feature of the

framework, not a mandatory employed solution. In other words, any event of

interest may potentially trigger the process of adaptation over several instances

in parallel.

Another important task of the analysis phase is to update the execution in-

stance with the monitored QoS values. An execution model instance can be up-

81



dated in several ways during its execution by: (a) changing the status of its oper-

ations (e.g., from “to be executed” to “executing” and “executed”), (b) changing

observed and expected QoS values of the operations, (c) changing the operation

endpoints, and (d) changing the composition workflow. The execution engine and

analysis step are responsible for points (a) and (b) cited above, while points (c)

and (d) are the results of actions enacted by the adaptor component.

Considering that the analysis of the events indicates the need for adaptation,

the phase of decision and execution of actions uses virtually the same process,

regardless of the class of situation observed or the execution instance status. This

is because the decision and execution of actions are performed using the same

algorithm.

The algorithm takes into consideration all information kept by the execution

instances along with the set of available candidates’ operations. More precisely,

all required information to adapt the execution instance, such as expected QoS

parameter values, predicted failures, and dependencies between operations, can

be obtained reading only the execution instance and the set of candidate service

operations.

The dynamic service composition algorithm is responsible for reorganising the

composition workflow by replacing service operations in order to meet the defined

requirements. The approach supports four types of possible replacements, namely

(a) one-to-one, (b) one-to-many, (c) many-to-one, and (d) many-to-many.

In other words, adaptations of the various execution instances can be per-

formed by changing a single deployed service operation by a candidate operation

(a), or a group of candidates’ operations (b). It is also possible to replace a group

of deployed operations by a single candidate operation (c) or a group of can-

82



didates’ operations (d). The method also supports the verification of signature

dependencies between service operations in order to avoid inconsistent composi-

tions that cannot be executed.

We define that an operation O2 has a signature dependency with an operation

O1 (i.e., O2 depends-by-signature on O1), when the output parameter (or its part)

of O1 is used as input parameter (or its part) in O2.

Example: consider operations PaymentInterface():Info and DataCheck (cus-

tomer:String, cardNumber:String):Boolean in Figure 3.4. Assume Info a complex

data type with parameters time:Time, local:Coordinate, name:String, cardNum-

ber:String. In this case, operation DataCheck() depends on operation PaymentIn-

terface(), since DataCheck() uses part of the output parameter of PaymentInter-

face() as one of its input parameters.

The solution employed in this work for the case of signature dependencies

is to replace the operations with candidates’ operations that would satisfy the

signature dependency, if they exist. This process of solving the signature depen-

dency may be recursive. This is because candidates’ operations chosen to solve

a signature dependency in a particular point of the execution model may cause

signature dependency issues in other parts of the composition.

3.3.1 Analysis of Events

As aforementioned, one of the key concepts built in the ProAdapt framework is

the ability to monitor the execution context and predict faults in order to prevent

composition failures, such as inability to complete the execution and nonconfor-

83



mity with SLA values. The framework currently supports two techniques for

failure prediction.

One of the failure prediction techniques is concerned with the impact of QoS

faults of internal components in the composition as a whole. More precisely, this

technique identifies QoS deviations of operations used in the execution instance

of a service composition and determines the need for adaptation based on impact

of such deviation on the composition as a whole.

Currently, the framework supports the prediction of the nonconformity with

SLA values for the whole composition using operations response time and cost

values. The second failure prediction technique supported by the framework is

concerned with the prediction of unreachable operations, services, and providers.

Moreover, the framework supports the analysis of events and trigger of the need

for adaptation in parallel with all execution instances.

The next sections provide details of the analysis performed with QoS events in

order to prevent a nonconformity with the SLA and the analysis of events observed

from the communication protocols to predict unreachable operations and avoid

composition failures, and presents the benefits of the parallel adaptation.

3.3.1.1 QoS Analysis

In recent years we have experienced an increase in the amount of available web ser-

vices with diverse features. Services that offer the same functionality are normally

chosen based on their different quality of service (QoS) parameters. However,

some of these parameters change constantly due to situations that are beyond

the control of both the requester and the provider of the service, such as the

availability and response time.

84



An important research problem for adaptable service-based system is con-

cerned with the handling of these oscillations of QoS parameters in order to

maintain the service level agreement defined in the service composition. In service

oriented computing, the ability to perform adaptation by considering the various

QoS values is usually known as QoS-aware dynamic service composition[109][31].

From the various existing QoS values defined for service operations, the re-

sponse time is arguably one of the most important; at the same time it is perhaps

the best example of a parameter that constantly changes its values over time

and between calls. This is due to two primary reasons. First, the performance in

terms of response time of a service operation varies a bit according to the load and

computational resources available for the operation to execute. Second, web ser-

vices are provided over a best effort network communication channel (Internet).

In other words, there are certain circumstances that may cause small or even

severe delays in service operations, directly impacting the service compositions

that are invoking such operations.

The work in this thesis concentrates on the analysis and prediction of the

response time of service operations as key QoS parameters, in order to meet SLA

values defined for service compositions. In addition, our framework identifies

the relationship that exists between the cost to use service operations and their

performance in terms of the response time. In summary, ProAdapt supports the

analysis of two strongly connected QoS parameters: response time and cost.

In order to guarantee compliance of the SLA response time and cost values

in a service composition execution instance, it is necessary to consider (i) the

aggregation of the response time values of the participating operations in a com-

position; (ii) the various processing times of the execution engine that encompass

85



activities such as marshalling and unmarshalling of messages, multiplexing and

demultiplexing of the communication channel, and process scheduling (see Sec-

tions 1.1 and 1.2); and (iii) the time for the adaptor to identify and analyse events

of interest and perform changes in the execution model when necessary.

Given a service composition SCn and the respective composition template Tn,

the response time for a related execution instance EInm is given by the function

below.

T (n,m) =
⊔

(n,m) + E(n) + A(n,m) (3.1)

where:

• T (n,m) is the time to complete the execution instance m from the service

composition n;

•
⊔

(n,m) is a function that returns the aggregated values of the observed and

expected response time of each service operations O1, O2, ...Or deployed in

EInm;

• E(n) is the expected overhead time of the execution engine for the compo-

sition template Tn;

• A(n,m) is the time required by the adaptor for the execution instance m

of the service composition n.

The aggregated response time
⊔

(n,m) can be seen as the expected mini-

mal time to complete an execution instance. Such minimal time could only be

achieved if we did not have to incur in overhead from the execution engine and no

86



adaptation process would take place. Given that it is necessary to have time to

orchestrate and pass messages around E(n), or to adapt the execution instance

when required A(n,m), the aggregated response time cannot be used alone. While

the adaptation process for a single execution instance is performed in parallel to

the execution or adaptations of other execution instances, it creates a single re-

striction for the instance that is being adapted. The operations not yet executed

cannot start. Thus, the need to include the adaptation time in order to compute

the expected response time for the service composition instance as a whole.

From the Equation (3.1) above, E(n) is the only element that does not depend

on the execution instance itself. In practice, there may be some small variation

in the expected overhead time of the execution engine for two execution instances

of the same composition, but our experiments show that such time is negligible

or difficult to predict. In case where there is no deviation from the expected QoS

values, there is no need for adaptation, thus, the expected overhead time of the

engine can be computed using the Equation (3.2) below.

EPC(n,m) = T (n,m)−
⊔

(n,m) (3.2)

As shown in Equation (3.2), the expected overhead time of the execution

engine is the observed completion time of the execution instance T(n,m), minus

the aggregated function of the observed response times of the operations for the

finished execution instance EInm.

Since this time may vary depending upon available resources and number of

parallel execution instances, ProAdapt continuously update the value with each

new completed execution instance. Such value is given by the Equation (3.3)

87



below.

Ex(n) =















EPC(n,m), if x = 0

Ex−1(n)+EPC(n,m)
2

, if x > 0

(3.3)

where, Ex is xth computation of the expected overhead time, A(n,m) = 0 and

EInm has finished its execution.

In other words, the expected overhead time is computed as the exponentially

weighted moving average based on the difference between the minimal time to

complete an execution instance
⊔

(n,m), and the observed final execution time

after the completion of the execution instance.

From the three parameters of the Equation (3.1) above, the adaptation time

A(n,m) is the only one that may not impact the final calculation, that is, no

adaptation was required. When changes are required and enacted, however, the

adaptation time is then logged and the expected response time for the whole

execution instance updated. This means that if another adaptation is required,

this previous logged adaptation time will be considered when attempting to find

a valid configuration to guarantee compliance with the SLA.

The aggregation of the response time values of the service operations in the

execution model considers different execution logics in a model such as sequence,

parallel, conditional selection, and repeat logics [128]. In the example in Fig-

ure 3.4, DataCheck and AntiFraud represent a parallel execution logic activity,

while DispatchGood and CancelOrder are conditional activities.

A simplified view of the logic regions within an execution context, as well as

the logic template of the execution instance can be obtained recursively as show

88



in Equation 3.4.

LR =















































































IO,

SEQ(LR,LR, ..., LR),

PAR(LR,LR, ..., LR),

XOR(LR,LR, ..., LR,BE),

IOR(LR,LR, ..., LR,BE),

RPT (LR,BE)

(3.4)

In Equation 3.4, a logic region (LR) is recursively defined as (a) a single invoke

operation (IO); (b) a set of logic regions in sequence (SEQ); (c) a set of logic

regions in parallel; (d) a set of logic regions in a conditional exclusive or (XOR);

(e) a set of logic regions in a conditional inclusive or (IOR); (f) a repeatable logic

region (RPT); those last three controlled by some Boolean expression (BE). The

logic regions b-f are known as control logic regions or control activities, since they

are responsible for the work flow of the business process.

In order to better explain the concepts presented in Equation 3.4, the steps

below presents a top down approach to identify these regions in the case of the

Goods Online Process defined depicted in Figure 3.4 (with Boolean expressions

hidden for simplicity).

1. LR1 = SEQ(IO1, LR2, LR3, LR4, where LR1 represent the top level region,

which is formed by a sequence of an invoke operation (IO1 = Check Stock),

and three other logic regions LR2, LR3, LR3;

2. LR2 = XOR(IO2, LR5, LR6), where LR2 is the e-Payment exclusive con-

89



ditional logic region. IO2 is the invoke operation Payment Interface, and

LR4 and LR5 two other logic regions;

3. LR5 = PAR(IO3, IO4), where IO3 and IO4 are Data Check and Anti

Fraude respectivaly;

4. LR6 = COND(IO5, IO6), where IO5 and IO6 are Cancel Payment and

Payment respectively;

5. LR3 = XOR(IO7, IO8), where LR3 is the Finish Order exclusive condi-

tional logic region. IO7 and IO8 are Dispatch Good and Cancel Order

respectively;

6. LR4 = IOR(IO9, IO10, IO11), where LR4 is the Notify Costumer inclusive

conditional logic region. IO9, IO10, and IO11 are Web Inform, Email

Invoice, and PDF Invoice respectively.

Figure 3.6 below presents graphical representation of the steps described

above. As shown in Figure 3.6, there are 11 operations logically organised be-

tween five control logic regions of four different types (parallel logic, inclusive

conditional, exclusive conditional, and sequential logic).

Since we assume that every logic region ultimately culminates to an invoke

operation, the process of computing the aggregated response time
⊔

(n,m) for a

EInm can thus be broken down to computing the expected response time of the

concrete service operation deployed for the particular invoke operation region,

and recursively compute the expected response time of the ascendant regions.

Example: in the case of the Goods Online Process, the expected response

90



LR_1 = SEQ (IO_1, LR_2, LR_3, LR_4)

XOR (IO_2, LR_5, LR_6)

PAR (IO_3, IO_4) XOR (IO_5, IO_6)

CheckStock

DataCheck

XOR (IO_7, IO_8)

IOR (IO_9, IO_10, IO_11)

PaymentInterface

AntiFraude CancelPayment Payment

DispatchGood Cancel

Web Email PDF

Figure 3.6: Simplefied view of the regions breakdown structure of the Goods
Online Process

time of both CancelOrder and Dispatch Good would be calculated, prior to com-

puting the expected time of the exclusive conditional logic region Finish Order.

We can define the region response time as:

RRT (LR) =















































































IORT (IOn), LR→ Invoke Operation

SEQRT (LR1, LR2, ..., LRn), LR→ Sequence

PARRT (LR1, LR2, ..., LRn), LR→ Parallel

XORRT,BE(LR1, LR2, ..., LRn), LR→ Exclusive OR

IORRT,BE(LR1, LR2, ..., LRn), LR→ Inclusive OR

RPTRT,BE(LR1), LR→ Repeat

(3.5)

where RRT(LR) is the generic function to compute the region response time of

the logic region LR, and IORT , SEQRT , PARRT , XORRT,BE, IORRT,BE, RPTRT,BE

91



are the concrete functions to compute, respectively, the expected response time of

invoke operations, sequential control logics, parallel control logics, exclusive con-

ditional control logics, inclusive conditional control logics, and repeatable control

logic. While the invoke, sequence, and parallel activities or logic regions are self

contained, the exclusive and inclusive conditional activities as well as the repeat

control logic require a Boolean expression (BE), as expected.

Table 3.1 presents the summary of how to compute the aggregated response

time for each of these logic regions presented above.

Table 3.1: Summary of the aggregated response time for logic regions.
Logic Region Aggregated Time
SEQ

∑n

i=1 RRT (LRi)
PAR max({RRT (LRi) : i = 1, . . . , n})
XOR max({RRT (LRi) : i = 1, . . . , n})
IOR max({RRT (LRi) : i = 1, . . . , n})
RPT k ∗RRT (LR1)

In the case of a sequence of logic regions such as SEQ(LR1, LR2, ..., LRn), the

aggregated response time is calculated as the sum of the response times of the

logic regions in the sequence. Likewise, the cost is computed as the sum of the

aggregated costs of the logic regions in the sequence. Equation(3.6) formalises

this definition for the response time.

SEQRT =
n

∑

i=1

RRT (LRi) (3.6)

In the case of parallel and conditional logic regions, the aggregated response

time is calculated as the maximum expected response time of the descendant

logic regions, as defined in the Equation (3.7) below. The use of the maximum

92



function for conditional regions could be seen as a pessimist approach, however

that is not the case. The composition needs to be reliable and thus, even in the

event of the most time consuming path, complete its execution while meeting the

SLA. The cost for the conditional logic is calculated similarly, but in the case of

parallel logic, the cost is computed as the sum of the aggregated costs of the logic

regions.

PARRT = XORRT = IORRT = max({RRT (LRi) : i = 1, . . . , n}) (3.7)

The repeatable logic control region is the trickiest one. In order to compute

the expected response time, one solution is to start with one execution of the

logic region, and then, adjust the factor as more execution instances are finished

in order to best estimate the average number of times a repeatable region is

executed (k in Table 3.1. It could also be possible to annotate the activity to

provide information regarding the expected number of execution, in which case

the solution would converge faster.

In the case of endless loop a different approach must be made. In this case the

process clearly does not completely terminate and we cannot expect to include all

executions of the loop in the general SLA expectation for the whole composition.

In this case a design decision must be made. For instance, if one knows a priory

that a endless loops is going to be used, such activity can be designed to be

included in the QoS considerations just once.

Finally, the aggregated response times and costs of the operations in a service

composition instance are calculated based on expected values of the operations

93



not yet executed, and the observed values of the operations already executed.

In other words, IORT (IOn) is either the observed response time collected for an

already executed operation, or an expected value of the response time of the

related operation in case it is yet to be executed or is still executing.

In the case of the expected cost of the regions, the aggregation process can

be done by using the values informed by the service providers only. This is due

to the fact that the cost of a concrete operation does not tend to change over

time frequently, and it is fair to assume that changes must be informed by the

service provider. Even then, the aggregation of the cost must be performed to

check if the execution instance complies with the SLA. Any replacement in the

execution instance, however, triggers another verification, in order to ensure that

the change still complies with the SLA when considering the execution instance

as a whole.

When it comes to the response time, however, things are not static. As

outlined in [40], the response time for an operation request combines the time for

executing the operation and the network time for sending the operation request

and receiving its response. During the experiments conducted in this thesis, it

was observed that there are also other times that should be considered such as

the time of marshalling/unmarshalling a request, and the time that a request

may need to stay in a queue in both client and server sides. The response time

of an operation can be defined as the Equation (3.8):

RT (On) = PT (On) +DT (On) (3.8)

where:

94



• PT (0) is the processing time for an operation O, which is given by service

providers;

• DT (0) is the deliver time which is the time to send a request and receive a

response after it been computed.

As shown above, the response time is considered a variable parameter that can

be affected due to changes in the network and system resources. In fact, both

processing and deliver times may suffer variations as described above. These

variations or their causes, however, do not need to be separately estimated for

the needs of this work, only the response time as a whole. Therefore, in order

to identify expected response time values, it is necessary to use techniques that

predict or approximate the behaviour of a function with random parameters. The

exponentially weighted moving average (EWMA) [108] is the technique employed

for this prediction since ProAdapt does extensive use of this prediction technique

in order to predict and prevent failures, and due to the fact that the expected

response time value of an operation changes greatly, but relatively smoothly over

time. It is relatively simple, does not consume too much memory or processing

powers, and is very fast to compute.

Given that OBn
t is the observable response time of the operation On in the

time t, the exponentially weighted moving average of the response time is given

by the Equation (3.9) below:

EWMAn
0 = PT (On)

EWMAn
t = α ∗OBn

t + (1− α) ∗ EWMAn
t−1 (3.9)

95



where:

• EWMAn
t is the expected response time value of operation On at time t;

• the coefficient α is a constant between 0 and 1 that controls the degree

of importance of old observations. A lower α discounts older observations

slower.

As shown in Equation (3.9), the initial EWMA value is started as the pro-

cessing time informed by the service provider. Such value is then updated with

each execution of the operation. As a second degree of cautiousness, ProAdapt

analyses the standard deviation of the observed values to create a boundary of

the expected result, as presented in Equation (3.10).

Bn
t = EWMAn

t + β ∗ SDn
t,x (3.10)

where Bn
t is the boundary value of the expected response time of operation On

at time t, β is as a constant parameter, and SDn
t,x is the standard deviation of

the observed response time series of On at time t using x previous observations.

3.3.1.2 Availability Analysis

When the execution engine invokes any service operation defined in an execution

instance, there are three possible outcomes, namely (a) successful, (b) delayed,

and (c) faulty. In the case of a successful invocation (a), the execution instance is

updated with the observed QoS values and no additional procedure is required.

Due to various reasons, such as congested network link or degraded perfor-

mance, the expected reply from service operations may be delayed. An operation

96



invocation is said to be delayed (b) if the reply message is not received within the

expected response time for the operation as defined in the previous Section 3.3.1.1.

Finally, when an operation is temporarily unreachable, attempts to invoke

the operation will generate a faulty outcome (c). This occurs if (1) the expected

reply message is lost, (2) the reply is discarded because it does not arrive before

a maximum timeout set for the operation, or (3) an error message is received

instead of the expected reply.

For all the cases (1-3) classified as faulty outcome (c), the execution engine

must try to execute the invoke activity again, either using the same deployed

operation or another candidate supplied by the adaptor. Invoking operations that

are out of reach can cause a lot of problems for business processes. Predicting the

unavailability of these operations in order to prevent fault invocations can save

time and business opportunities.

The technique for failure prediction supported by the framework aims at

proactively detect invoke activities which most likely will generate a faulty out-

come, and thus, provide alternatives to replace the potential faulty operations.

ProAdapt employs a method to predict availability of service operations based

on spatial correlations between operations, services, and providers. The idea is

to proactively detect invoke activities which most likely will generate a faulty

outcome and use the adaptation process to find alternatives for these operations.

More precisely, the technique uses events generated in case of a faulty out-

come, such as error messages, and the strong relationship of availability between

operations of the same service or provider, in order to identify other operations

deployed in the execution instance with a great likelihood of generating a fault.

Example: when an operation O becomes unavailable, the process looks for

97



other references to O in the logic flow of the execution instance and mark them

all to be replaced. This operation may be only temporarily unavailable or faulty

within a service S, which means that other operations serviced by S can still be

invoked. In the case such service S becomes unavailable, the process marks all

other operations of S been used in the execution instance to be replaced, since

these operations cannot be reached if the entire service is unavailable.

In the case above, the other services of the same provider may still be reach-

able, thus no action is performed to prevent the access to them. However, when

a provider P is unavailable, the process considers all services and operations de-

ployed in the execution instance that are provided by P to be replaced. These

different situations are identified according to internal and external messages ex-

changed while attempting to invoke a service operation.

As the example above may suggest, the framework defines three levels for

detection of spatial correlation, namely operations, services, and providers. The

levels are described in more details below.

Operation Level - The same service operation O may be used in different

points of a service composition. The spatial correlation may be used in execution

instances that have such recurrent operations to prevent the call of future occur-

rences of a given operation if it has already been identified as faulty at any point

of the execution instance. More precisely, after an operation O has been identified

as unreachable, for each invoke activity that uses O, a new candidate operation

must be identified. This event is basically identified by a message (e.g. SOAP

Fault Element) sent from the web service indicating that the required operation

is unavailable. In addition, monitors can constantly update the new status of a

service operation in parallel, making it available for running execution instances

98



or new execution instances. This is expected since the information regarding

the status of service operations is kept in a centralised way and can be updated

independently.

Service Level - When it is possible to identify that a faulty outcome was

caused by an unavailable service, it is wise to mark to be replaced all operations

in the composition offered by the service identified as unavailable. In this case,

the service provider itself can inform that the required service is not reachable

by replying with error messages (e.g. HTTP Error 404). The spatial correlation

is direct since it is not possible to reach an operation of an unavailable service.

The existence of operations offered by the same service in a composition is com-

mon, as is the temporary unavailability of services, making the spatial correlation

at service level very useful. The unavailability of a service S reachable by the

provider P is detected by error messages produced by P informing that S is not

deployed or available in P .

Provider Level - When a service provider is not available, depending on

the configuration of the machine or cluster in which the provider was available,

different error messages may be observed, such as connection exception. In other

words, even when the provider is not available, there are still messages to be

observed in order to detect such situation and differentiate from the other levels.

When an unreachable provider is detected, the prediction technique operates in

a similar way as in the levels presented before. More precisely, for a provider P

identified as unreachable, the process identifies all operations provided by P and

mark them to be replaced by the adaptor process.

Both techniques for prediction and aggregation of QoS parameters described

in Section 3.3.1.1 and the technique for predicting the availability of service oper-

99



ations described above can be seen as preprocessing activities for the adaptation

process. The techniques may change the status of service operations within or

across multiple execution instances and trigger the need for adaptation, but the

actual decision and reconfiguration are performed by the adaptation process de-

scribed in Section 3.3.2.1.

3.3.1.3 Parallel Analysis

As described in Section 3.1, ProAdapt was designed to analyse events and trigger

adaptation for one or multiple execution instances. The adaptation of multiple

execution instances for events observed for a single execution instance is possible

because of two techniques used in ProAdapt.

(1) First, before invoking any service operation, the execution instance re-

quests the status of such operation and in case it is out of reach an adaptation

is requested. By carefully examining the two previous sections and the prepro-

cessing phase, it becomes clear that even when for a single and independent

execution instance an operation is marked as potentially unavailable, or updated

with a severe degraded response time, these actions are reflected across all ex-

ecution instances that uses the same operation. The decisions taken for each

execution instance, however, will depend on the state of execution of each one of

them. In such a manner, ProAdapt is proactively avoiding the attempt to invoke

unreachable operations and thus saving time and computational resources.

(2) The second technique can be viewed as an extension of the first one. It

consists of a parallel analysis of the impact of observed events in an execution

instance, in other execution instances that are bound by the same events (e..g, use

the same unavailable operation). This parallel approach provides two outcomes,

100



namely (a) parallel triggering of adaptation, and (b) load balancing.

The parallel triggering of adaption, as the name suggests, is a mechanism to

flood the adaptation need across multiple execution instances in parallel. This

approach is different from the status checking presented above because an adap-

tation may be triggered before reaching the execution point where the potential

fault would be observed.

In a first analysis, the advantage of this parallel method may be difficult to

see, since the faulty operations can already be avoided by using the proactive

status checking together with the QoS and availability analysis presented in the

previous sections. The time in which the adaptation is triggered, however, may

be different using the parallel approach.

More precisely, the standard proactive adaptation may have to wait until

the point in the workflow where an unavailable or degraded operation would

be invoked in order to replace it and reconfigure the composition. On the other

hand, if the need for adaptation is triggered in parallel, an execution instance may

reconfigure itself early in the process, which potentially means more adaptation

options and high probability of success in adapting under given constraints.

As defined in the previous chapter, giving a service composition Sk with a

set of abstract operations Lk = {A1, A2, ...An} and for each Ax a set of can-

didate concrete operations Rx = {C1
x, C

2
x, ..., C

m
x }; A valid configuration G =

{Ca
1 , C

b
2, ..., C

r
n} is the one that satisfies defined the SLA and the number of pos-

sible configurations for a composition is given by Equation 2.1.

Considering Vt the set of size t of valid configurations at a given time, the

question is whether the parallel approach is able to improve the probability of

finding a configuration belonging to Vt.

101



Equation 2.1 considers that all abstract operations are free to be composed,

however, the execution instance status changes over time and some operations

are blocked. In other words, the operations that are executing or already finished

the execution cannot be changed.

If we consider T s
k the set of all possible combinations for the service com-

position Sk when s operations are free, the size of T s
k equals to NC(Sk) (see

Equation 2.1) when s = n, that is, when all activities are free. If the candidate

sets R1, R2, ...Rn have roughly the same size, the sizes of the sets T s
k , T

s−1
k , ...T 1

k

decreases exponentially.

P (x > 0)|x = |Vt ∩ T s| (3.11)

The probability of successful adaptation is related to the probability of having

at least one element in the intersection between the set of valid configurations

(Vt) and the set of possible configurations given the free operations (T s). In

other words, if x is the size of the intersection set between Vt and T s, the prob-

ability of successful adaptation is the probability of x been greater then 0 (see

Equation 3.11).

The set of valid configurations is the result of the execution context and

candidates’ operations. However, the parallel approach allows early adaptation,

increasing the number of free operations, and thus augmenting the probability of

finding an element in the aforementioned intersection.

102



3.3.1.4 Load Balancing Analysis

When performing changes in a service composition, the load of a particular in-

voke activity can be distributed over different candidate service operations in

order to increase or maintain the total throughput of the composition. If a de-

ployed service operation is unavailable, and there are no candidates with the same

expected throughput, a combination of more than one candidate operation can

be considered.

In ProAdapt a load balancing technique is used to verify if the throughput

of the service compositions can be maintained as initially specified for the com-

positions. The throughput specified for a service composition is reflected in the

activities and their deployed operations in the composition. The throughput of

each service operation in an execution instance is calculated and compared with

the maximum accepted throughput value, in order to avoid overloading the use

of the deployed operations.

This is done by using a throughput counter for each deployed operation. When

an execution instance is created, the counters associated with the operations are

incremented; when the operations are invoked during the execution of an instance,

their associated counters are decremented. The maximum accepted throughput

value of an operation is maintained in the bind information repository to allow

the composer and adaptor components know which operations can be used in an

execution instance, without causing operation to be overloaded.

Considering a service composition reduced to a sequence of logic regions

Su = {R1, R2, ..., Rn}, Tx the value of the throughput of the operation in Rx

with the lowest throughput, and Ex the number of execution instances executing

103



operations within Rx. Equation 3.12 shows the theoretical maximum number

of concurrent execution instances Mu for a service composition reduced to a se-

quence of logic regions Su.

Mu =
n

∑

i=1

Ti (3.12)

Equation 3.12, however, cannot be used to estimate the total number of con-

current execution instances regardless of the point of execution. In other words,

the execution instances must be distributed such that the number of execution

instances executing operations within Rx must be not more than the value of the

throughput of the operation in Rx with the lowest throughput (Ex ≤ Tx).

In fact, the achievement of the maximum theoretical throughput of the com-

position depends on the ration of incoming request. If the average response times

of the operations across logic regions are roughly the same, and new compositions’

request are uniformly distributed, we can assume a close to even distribution of

the number of execution instances executing operations within Rx. Equation 3.13

summarizes the new maximum value of concurrent instances under this scenario.

Mu = T ∗ n (3.13)

When ProAdapt verifies and increments the counters of the deployed opera-

tions during the creation of the execution instances and decrements the counters

after the operations are executed, it is actually using a safe approach to distribute

the load between operations, similar to the dedicated communication channel

achieved by circuit switching for ATM networks [50]. The drawback is that it

limits the amount of concurrent execution instances without actually exploiting

104



the maximum throughput of the deployed operations. An heuristic improvement

is to consider not Tx when creating instances, but n ∗ Tx, where n is the number

of sequential logic regions.

The counters registering the use of service operations are used both to (a)

avoid faults by checking the load before invoking an operation, and (b) proactively

create a plan of execution in order to avoid the need for adaptation.

After all the preprocessing performed during the analysis phase, the next

step is to take the decisions regarding the actions to be executed in order to

accommodate the required changes. The next section describes the Decision and

Execution of Actions phase of the adaptation process.

3.3.2 Decision and Execution of Actions

For any of the cases C1-C4 described in Section 3.1 there may be a need of

replacing one or more service operations in the composition template or execution

instances. This section describes the various steps in the adaptation process when

a service operation needs to be replaced. The decisions and actions performed by

the adaptor are concerned with the assessment of whether a new set of operation

endpoints need to be identified, selected, and used to change the composition.

In order to follow the steps in the adaptation process, consider O a service

operation in the execution model instance that needs to be replaced. This work

assumes that a candidate service operation for O is an operation, or a group of

dynamically composed operations, identified by the service discovery component

(see Figure 3.3) that can provide the same functionality of O. For instance, in

the example in Figure 3.5, a candidate replacement operation for StockCheck()

105



is an operation that verifies the existence of certain goods in stock, even if this

operation has different signatures, quality or contextual characteristics.

It is also assumed that a candidate operation O′ fully matches an operation

O in the execution instance if O′ and O have the same structural (signature)

and the QoS values of O′ do not violate the SLA values for the whole compo-

sition (functional match is already a criteria for an operation to be a candidate

operation).

In ProAdapt, when selecting a candidate replacement operation, the process

gives preference for matches in the operation signatures, instead of QoS values

that do not violate the SLA values of the composition. This is because it is

more cumbersome to make changes in the execution instance when there are

other operations in the model that depend on the signature of the one to be

replaced. More precisely, the matching of operation signature is a pre-requisite

for the matching of QoS values. Mismatches of operation signatures require the

use of either adapters or the replacement of conflicting operations. Moreover,

differences in QoS values may be compensated by other operations in the model

to be executed, or by trying to identify other operations that could compensate

the QoS aspects. Furthermore, differences in QoS do not cause the model to stop

its execution.

The process considers the various execution logics (regions) in a model such as

sequence, parallel, conditional selection, and repeat logics. The execution logics

are used (i) to calculate the aggregation of expected QoS values of operations in

the model, and (ii) to identify a group of operations in the model that may need

to be replaced by an operation or a group of dynamically composed operations.

During the adaptation process, the sizes of the considered execution logics are

106



incrementally increased if necessary. When a replacement solution cannot be

found for one execution logic El, the process considers the next larger execution

logic that contains El.

Example: in Figure 3.4, if a solution cannot be found for the operations

for activity PaymentInterface, the next execution logic to be considered is the

parallel logic with activities DataCheck and AntiFraud together with activity

PaymentInterface. The reason for considering execution logics (or their incre-

ments) is to allow a better performance for the adaptation process since it is

faster to analyse smaller regions in a model, and find a solution for that region,

instead of considering the composition as a whole.

For each operation O in the model involved in the adaptation process, a set

of candidate replacement operations SetCand(O) is identified for O ordered in

descending order of best matches. The candidate replacement operations can

either have (i) full match with O, (ii) match with only the signature of operation

O, or (iii) no match with the signature of O.

During the selection process, the operations in SetCand(O) that are consid-

ered as replacement options for O are operations that match at least the input

parameters of O (as explained above, the operations in SetCand(O) provide at

least the same functionality of O, and are not marked as faulty or unavailable. An

operation O′ in SetCand(O) is considered as a replacement operation if the data

types of the input parameters of O′ are subsumed under the input parameters of

O. This is because it is necessary to guarantee that the input parameters of O′

(yet to be executed) will be able to be defined by values that are available from

the parts of the model that have been executed. In the case of O being the first

operation in the execution instance, these values will be defined with the inputs

107



of the initial execution of the composition.

In other words, for each invoke activity of the execution instance, a set of

candidate replacement operations is identified by the service discovery tool, based

on functional and behavioural matching [130][146]. The identified candidates’

operations are ordered by the weighted sum of the normalised response time and

cost values of an operation, as per the Equation 3.14. The weights are used to

specify priorities in QoS values. The ordered list of candidate services is used as

part of an optimisation heuristic employed in the selection process described in

Section 3.3.2.1.

Given an abstract invoke operation Ii and a set of candidate concrete opera-

tions Oi
n, where Oi

1, O
i
2, and Oi

3 are example of candidates’ operations for Ii the

ranked order of these operations is given by the Equation 3.14 below.

V (Oi
n) = wRT ∗NormT (Oi

n) + wC ∗NormC(Oi
n) (3.14)

where:

• O is a candidate service operation;

• NormT (Oi
n) is the normalised value for the expected response time of the

candidate operation Oi
n;

• NormC(Oi
n) is the normalised value for the cost of the candidate operation

Oi
n;

• wRt and wC are weights used for response time and cost, with wRt+wC =

1.

108



Considering m the number of candidate operation for an invoke operation Ii,

the normalized value for the expected response time is given by the Equation 3.15

below.

NormT (Oi
n) =

Bn
t −min0≤x≤m Bx

t

max0≤x≤m Bx
t +min0≤x≤m Bx

t

(3.15)

where: Bn
t is given by Equation 3.10

Likewise, the normalized value for the cost of a candidate operation is given

by the Equation 3.16 below.

NormC(Oi
n) =

C(Oi
n)−min0≤x≤m C i

x

max0≤x≤m C i
x +min0≤x≤m C i

x

(3.16)

where: C(Oi
n) is the cost of the candidate operation Oi

n for the invoke operation

Ii.

For situations in class C1 (malfunctioning or unavailability), O may be just

one of the operations that need to be replaced, given that the availability analysis

(see Section 3.3.1.2) can identify other correlated operations to be replaced. In

this case, the process temporarily replaces these other unavailable operations by

a virtually created candidate, so that they can be considered when executing

the adaptation process. As described below, the process relies on expected QoS

values for all the operations in the model to be executed to verify violations of the

SLA values of the whole composition. These temporary replacement operations

must be changed during the execution of the adaptation process.

The overall idea of the process is to replaceO with an operation in SetCand(O),

by traversing the set of candidates’ operations in order, and choosing an operation

in the set that has the best match with O and does not cause problems to the rest

109



of the execution model, if possible. Examples of these problems are violations of

SLA values for the whole composition, or operation signature dependencies that

cannot be resolved. The process terminates when either a replacement operation

for O is identified in SetCand(O), or all the operations in the set are considered

without success. When analysing if it is possible to replace O by an operation

in SetCand(O), other operations not yet executed in the model may also need

to be replaced to resolve SLA violations or operation signature dependencies.

The adaptation process is recursive; it tries to identify replacement candidates’

operations for those operations.

In the situation in which operations that match the signature of O are iden-

tified, the process verifies if any of these operations can be used to replace O

by analysing if there are violations of the SLA values for the whole composition.

If the SLA values are not violated, the adaptation process uses the replacement

operation to change the execution model, and terminates (see Algorithm 3.1 and

Algorithm 3.2 for a more formal definition).

If the SLA values are violated, the adaptation process identifies the list of

operations in the model that have not yet been executed. For each of these

operations, the process tries to identify combinations of candidate replacement

operations that could maintain the SLA values of the whole composition, recur-

sively. The order in which the operations in the list are considered takes into

account execution logics (regions) in the model. When necessary, the execution

logics are incrementally enlarged, until a combination of replacement operations

is identified, or all remaining operations in the model are considered. If a combi-

nation of replacement operations is found, the execution model is changed, and

the adaptation process terminates.

110



In the situation in which no operation that matches the signature of O can

be used, or they did not exist in the set of candidates’ operations for O, the

adaptation process identifies within the list of operations in the execution model

that have not yet been executed, the operations that have a signature dependency

with the replacement operation for O. For each of these dependent operations,

the process verifies if the replacement operation can be used and accepted by the

dependent operation, or if replacement operations can be found for a dependent

operation.

In the case in which signature dependencies between operations could not be

resolved (i.e., no replacement operations can be found for a dependent operation

that accepts the replacement of operation O), the process verifies if operations

in the execution model can be replaced as a group by a candidate replacement

operation, or a set of dynamically composed operations. A group of operations

is considered based on execution logics, by adding one operation to the group at

each time. If candidate replacement operations are found, the execution model

is changed. If not, or there are no more operations to be added to compose

an execution logic, the model cannot be adapted, and the adaptation process

terminates.

The next section presents the method employed in ProAdapt to support dy-

namic adaptation, which uses the information provided during the analysis phase

to generate a valid configuration for the service composition.

3.3.2.1 Dynamic Composition

As stated in the previous sections, ProAdapt supports the monitoring of differ-

ent classes of events in order to predict faults, failures, and identify the need

111



for adaptation of one or various execution instances. Independently of the class

of situation analysed, preprocessing performed or granularity of the adaptations

required, the decision phase uses the same process to compute a new valid con-

figuration for execution instances.

As states in Section 1.2, formally speaking, service composition is the process

of composing services to provide a desired functionality under defined constraints.

Dynamic service composition is thus the process of composing and modifying

service composition during runtime. In general terms, since the functionality

of a service composition is already defined during runtime, the adaptation of

the composition templates and execution instances is considered an optimisation

problem based on the selection of appropriate combinations of candidate service

operations that satisfy the SLA parameters of a composition.

In order to avoid considering all possible combinations of service operations,

which is time consuming, ProAdapt does not try to identify the best combina-

tion, but it looks for some valid combination given current constraints (e.g.; the

candidates’ operations, the QoS parameters of the operations that have already

been executed, and the SLA parameter values of the whole composition).

In addition, ProAdapt uses a technique known as Intelligent backtracking,

which is used to reduce search in combinatorial feasibility problems by using

information derived from small sets of infeasible constraints discovered in one

part of the search space to avoid searching other, similar, regions [41]. The

idea is to ignore those combinations that are identified as invalid in the middle

of the selection process. This can happen when candidates’ operations used in a

combination cause the composition to be invalid, independent of other candidates’

operations in the combination.

112



Check 

Stocke-Payment Finish Order
Notify Costumer

Check1

StockCheck

Chek3

CardPayment

e-Payment2

e-Payment3

ProcessOrder GeneralNotification

GeneralNotification2

1

2

3

12 3 4

Activity Operation selection

C
a

n
d

id
a

te
s 

O
rd

e
r

Activity Order

Figure 3.7: Example of a scenario for the selection of operations.

Figure 3.7 presents an example of a possible combination of operation end-

points for a simplified version of the execution model instance shown in Figure 3.5.

More specifically, suppose that the model in Figure 3.5 has already been modi-

fied with activities e-Payment, NotifyCustomer, and FinishOrder, represented as

boxes in Figure 3.5. Each activity in Figure 3.7 has a set of possible candidate

operation endpoints in order of best match. As shown in Figure 3.7, activity

CheckStock has three candidates’ operations while activity FinishOrder has only

one candidate operation. The numbers on the top of the activities represent the

order in which these activities are executed in the composition. In the example,

suppose operation CardPayment becomes unavailable. Consider that for activity

CheckStock operation StockCheck has already been executed.

In the first time of the selection process, the approach identifies combination e-

Payment2, ProcessOrder, GeneralNotification, and StockCheck. However, suppose

this combination does not satisfy the required SLA values for the composition. In

this case, the selection process marks the combination as invalid and continues to

try for another combination. Suppose the second selected combination satisfies

113



the required SLA values and does not generate signature mismatches. In this case,

the selection process identifies e-Payment3, ProcessOrder, GeneralNotification,

and StockCheck as the new valid combination.

In addition, the selection process considers a special candidate which repre-

sents an artificial best combination of the available candidates for the particular

abstract operation. More precisely, this artificial best candidate will have the

best QoS parameters of all candidates and no constraint. This approach is useful

to discard paths that are known to be invalid since early stages, and thus save

time to find a valid configuration. Moreover, only operations that are free and

available are considered.

In other words, the process retrieves the status of an abstract operation in

the execution instance. An abstract operation is allowed to be replaced only if

it belongs to the future path of operation to be invoked. Operations executed,

in execution, or not reachable due to conditional flows, are not considered for

adaptation. Similarly, operation that are marked as unavailable in the Bind

Information Repository are not considered as candidade replacement.

The basic process for service selection comprises two procedures (a) Adapt

and (b) Reconfigure. The first one sets a temporary environment for the recon-

figuration procedure, while the last is the recursive backtrack algorithm to select

candidates while satisfying constraints.

Algorithm 3.1 presents a pseudo-code for the Adapt procedure. The input

of the algorithm is a service composition instance. In the first part of the algo-

rithm, from line 2 until line 4 some local variables are set. The first step is to

extract the template or workflow of the received instance (line 2). Next, from

the extracted template, we get the list of all abstract operations deployed in the

114



Algorithm 3.1 Adaptation Algorithm

1: procedure Adapt(instance)
2: template← instance.getTemplate()
3: listAbstractOp← template.getListOfAbstractOp()
4: deployedMap← instance.getDeployedMap()
5: for all abstractOp ∈ listAbstractOp do
6: candList← bindInfoRepository.get(abstractOp);
7: specialCandidate← createSpecial(candList);
8: candList.insertLast(specialCandidate);
9: deployedMap.update(abstract, specialCandidate);

10: end for
11: compositionOK ← Reconfigure(instance, bindInfoRepository, 0)
12: return compositionOK

13: end procedure

template, regardless of the logic structure. Finally, we get the map between the

list of abstract operations defined for the template and the deployed candidate

operations chosen for the instance.

The next part of the algorithm is a for loop that iterates over all abstract

operation of the execution instance and creates a special candidate which repre-

sents an artificial best combination of the available candidates for the particular

abstract operation. In line 6 the algorithm creates the local variable candList to

hold the list of all possible candidates available in our Bind Information Reposi-

tory (see Section 3.2).

More precisely, this artificial best candidate will have the best QoS parameters

of all candidates and no statical constraint. This approach is useful to discard

paths in the Backtrack algorithm that are known to be invalid since early stages,

and thus save time to find a valid configuration.

Line 14 calls the actual reconfiguration process and uses it returned value to

inform the status of the attempted adaptation or instance creation.

115



Algorithm 3.2 Reconfigure Instance Algorithm

procedure Reconfigure(instance, candsMap, index)
2: listAbstractOp← template.getListOfAbstractOp()

abstract← listAbstractOp.get(index)
4: absSize← listAbstractOp.size()

candSize← candsMap.size()
6: allowed← abstract.isToBeExecuted()

compOK := false

8: if allowed then
attempt := 0

10: notFound := true

deployedMap← instance.getDeployedMap()
12: while (attempt < candSize− 1) & notFound do

candidate← candsMap.get(attempt)
14: if candidate is available then

deployedMap.update(abstract, candidate)
16: candidate.incrementLoad()

if index = absSize then
18: compOK ← checkConstraints(instance, candsMap)

else
20: compOK ← checkConstraints(instance, candsMap)

if compOK then
22: compOK ← Reconfigure(instance, candsMap, index+

1)
end if

24: end if
notFound := compOK

26: if notFound then
deployedMap.update(abstract, candsMap.get(candSize −

1))
28: candidate.decrementLoad()

end if
30: end if

attempt := attempt+ 1
32: end while

else
34: if index = absSize then

compOK ← checkConstraints(instance, candidatesMap)
36: else

compOK ← Reconfigure(instance, candidatesMap, index+ 1)
38: end if

end if
40: return compOK

end procedure

116



From the first line that set up the local variables for Algorithm 3.2, lines 6

and 7 deserve special attention. Line 6 retrieves the status of an abstract oper-

ation in the execution instance. An abstract operation is allowed to be replaced

only if it belongs to the future path of operation to be invoked. In other words,

operations executed, in execution, or not reachable due to conditional flows, are

not considered for adaptation. If the abstract operation is not allowed, the pro-

cedure returns the status of the attempted configuration (line 31) or proceeds to

the next index (line 33). Otherwise, the procedure will recursively attempt each

candidate (line 22), until a valid configuration is found or all indexes have been

tried.

3.4 Summary and Discussions

This chapter presents a proactive adaptation framework named ProAdapt, which

was designed and developed as part of work undertaken in this thesis. The

chapter starts by presenting the main goals and characteristics of the framework

and highlighting the classes of situation handled. Then, the general concepts

of ProAdapt are covered followed by the details regarding the components of

the proposed architecture. The chapter also includes details of the process of

adaptation and the set of strategies used by ProAdapt to predict the need for

adaptation and improve the performance and reliability of service compositions.

The ProAdapt framework constitute various components that perform differ-

ent tasks in order to accomplish the major goal of improving the performance,

reliability, and general conformance with system requirements of service com-

positions. The implementation of these various components does not follow a

117



complete decoupled paradigm due to performance optimisations, nevertheless,

the proposed components or techniques could easily be adapted to be used by

other frameworks, enhancing out contribution.

We have spent a great deal of time prototyping the various proposed solution

due to the complexity of the pieces of software involved. As mentioned before,

standard execution instances do not provide a way to differentiate between execu-

tion instances or to dynamically update service compositions. Some modifications

of the available tools were necessary to provide the required context for our ex-

periments, independently of the proposed solution. For instance, since we were

dealing with multitasking processes with high load, we even implemented a pro-

cess scheduler for the java virtual machine in order to handle large amounts of

parallel service composition requests. Another example of great implementation

effort was to provide a minimum infrastructure to work with service composition

on a simulated environment (NS-3) since the tool does not support the use of

services by default.

Various drawbacks presented on the surveyed approached were tackled, re-

sulting in different strategies such as the distribution of the load request amongst

multiple operations, the ability to perform isolated and parallel adaptations and

avoid unnecessary changes. Overall, we believe that we produced a good frame-

work for proactive adaptation of service compositions.

118



Chapter 4

Experiments and Evaluation

In order to demonstrate and evaluate the ProAdapt framework, some prototypes

were implemented. A total of three prototypes of the framework were imple-

mented in an iterative way.

The first prototype (Prototype I ) was implemented to demonstrate that the

framework could predict the need for changes in service compositions due to QoS

aspects such as response time and cost values, and unavailability of operations,

services and providers. The first prototype proved all of our sub-hypothesis to be

true, however, there was space for improvement, leading to two new prototypes.

The second prototype (Prototype II ) expanded Prototype I to support all the

different tasks executed by the adaptor component due to the four different classes

of situations that may trigger the need for adaptation (C1 to C4). Even though

all sub-hypothesis were already understood as true from the first prototype, the

prototype gives another step into a formal adaptation framework, as specified in

the fifth objective.

Finally, the finds of both Prototype I and Prototype II lead us to believe

119



that the framework could be further improved. (Prototype III ) supports parallel

adaptation of service composition that have overlapping service operations and

load balancing between candidate operations.

General Assumptions and Observations

• BPEL: All three prototypes assume service compositions expressed in WS-

BPEL.

• Stateless Services: Operations can be changed at any time of the execu-

tion process of the service composition

• Logic Regions: During our experiments we have not considered repeat

regions, such as While or For. The framework, however, can support such

activities, since it is only a matter of defining the aggregate function for

each of them (see Section 3.3.1.1).

• Requirements: Even though the framework supports the evolution of

requirements such as the cost or overall response time of the whole compo-

sition, such changes in the requirements were not considered in our experi-

ments. However, these requirements are considered for every new instance

created and the experiments consider changes of internal QoS aspects, thus

we believe very little would be added by including experimenters specifically

target at requirements evolution.

• Response Time: During our experiments, the response times used during

the analysis are collected from the request agent perspective. In the case

of response time for the whole composition, that time can be interpreted as

120



measured from the end user. While in the case of invoked operations, such

time is collected from the execution engine point of view.

In the following we describe each of the three prototypes, the experiments

executed for each prototype, and the results of these experiments.

4.1 Prototype I

The main goal of the first prototype was to verify the ability to dynamically

identify the need for adaptation in service compositions and to replace service

operations during run time.

Prototype I was implemented in Java. In this prototype the execution en-

gine and the adaptor components were implemented as a single component for

simplicity. The prototype assumes service compositions expressed in BPEL4WS

exposed as Web Services using SOAP protocol. The prototype also assumes op-

erations in the compositions and user requests emulated using SoapUI [74], and

exposed through Apache Axis 2 [119].

In Prototype I, candidate service operations are registered in a local memory-

based database, which is assumed to be maintained by the service discovery tool.

An external file containing the web service description could also be used to

populate the local candidate database.

To execute the composition instances an adaptation of the Apache ODE Exe-

cution Engine was used. Since Apache ODE does not provide a way to proactively

and dynamically adapt composition instances, we had to modify the tool to sup-

port our needs.

121



Basically, we changed Apache ODE to include additional information as anno-

tations in the request message regarding the service operation been invoked, such

as the associated service composition, user session, and logic region. Additionally,

a proxy was implemented to route the request messages to the desired providers.

Without such modifications, there would be not way to replace a deployed ser-

vice operation for a particular abstract invoke activity, or replace candidates for

individual instances.

In order to evaluate the work in Prototype I, a service composition with 12

invoke activities was developed and mapped to 12 distinct service operations,

distributed within sequence and parallel execution logics. Figure 4.1 presents the

service composition used in the evaluation.

Act00

Act01 Act03 Act06

Act02

Act05 Act08

Act04 Act07

+
Parallel

+ +

x Act09

Act10

Activity

+

Act11

Sequence

Figure 4.1: Experiment service composition

For all experiments concerning Prototype I (see Section 4.1.1), the 12 opera-

tions used in the composition had the same syntactic description, but each oper-

ation implemented a different functionality. These operations were configured to

require two input parameters and produce one output result. Each operation had

different associated costs and processing time values, as summarised in Table 4.1.

The experiments were conducted using five different machines, namely: (a)

122



Table 4.1: Configuration of experiment environment.

Machine Configuration Services Operations
Cost 

(pence)

Processing 

Time (ms)

Network Links 

(Mb/s)

Client (C)
Turion 1GHz 2GB 

RAM
- - - C-A  = 3.0

Adaptor (A)
Core 2.33 GHz 

3GB RAM
- - - -

Provider P1
Pentium 4.3 GHz 

1GB RAM

S0:O00,O04,O08 

S1:O01,O05,O09  

S2:O02,O06,O010 

S2:O02,O06,O010 

S3:O03,O07,O011

100 150 A-P1 = 1.0

Provider P2
Core 1.86 GHz 

2GB RAM

S0’:O00,O04,O08 
S1’:O01,O05,O09 

S2’:O02,O06,O010 
S3’:O03,O07,O011

150 100 A-P2 = 1.5

Provider P3
Pentium 3.0 GHz 

3GB RAM

S0”:O00,O04,O08 
S1”:O01,O05,O09 

S2”:O02,O06,O010 
S3”:O03,O07,O011

300 50 A-P3 = 3.0

client machine responsible to create simultaneous requests to the service composi-

tion, simulating several concurrent users; (b) adaptor engine machine connected

to three service providers; and (c) one machine for each service provider P1,

P2, P3. The machines were connected using a network switch that allowed fine

control of the communication link characteristics such as bandwidth control.

Figure 4.2 presents a summary of the testbed configuration including the

speed of the network links between the machines. We used different speeds for

the network links to emulate bottleneck situations that may occur when using an

Internet environment.

Each service provider contains four different services, with each service im-

plementing three different operations (see Table 4.1) that can be used in the

composition created for the experiment (see Figure 4.1). More specifically, each

123



Ox presented in Table 4.1 is a service operation that implements the required

functionality of the abstract invoke activities Actx presented in Figure 4.1.

The operations in the four services in provider P1 are similar in terms of their

functionality to the ones in providers P2 and P3, in order to simulate possible

candidate replacement operations. We assumed different costs and processing

time values for the operations in the various providers as summarised in Table 4.1.

Adaptor Engine

S’0 S’1

Client 

Machine

. . .
3.0 Mb/s

S’2 S’3

Provider 2

S0 S1 S2 S3

S’’0

S’’1

S’’2

S’’3

Provider 1

Provider 3

3.0 Mb/s

1
.5

 M
b

/s
1

.0
 M

b
/s

Figure 4.2: Testbed Configuration for Prototype I

It is a well-known fact that in a real scenario the operations used in a composi-

tion may be from different providers. In the experiment, for the initial execution

model a decision was made to use all operations from the same provider (P1) to

enforce a more realistic bottleneck situation. This does not invalidate the experi-

ments since it is important to consider the network capacity between the adaptor

124



and providers.

Moreover, the simulations were performed considering the parameters shown

in Table 4.2. The size of each request or reply message in an operation was

around 60 bytes. The expected SLA values for the composition were defined for

cost as 2800 pence, and for response time as 3.5 seconds. Moreover, since the

cost associated with operations do not change over time, the weights for the cost

and response times were defined as 0.9 and 0.1, respectively (see Section 3.3.1.1

for details about how weights are used to specify priorities in QoS values).

Table 4.2: Experiments parameters for Prototype I
M. Size Cost Time C. Weight T. Weight EWMA T. EWMA W.
60 Bytes 2800 p 3.5 s 0.9 0.1 1.5 0.6

These two QoS aspects were considered because of their importance for service-

based systems (see Section 1.3), the strong correlation that exists between re-

sponse time and cost aspects (there is normally an increase in the cost when

providing faster services), and the possibility of demonstrating the prediction of

response time values for the composition and their deployed operations.

For the EWMA function parameters (see Section 3.3.1.1), we used a threshold

of 1.5 and the weight for past expected response time values of 0.6. These values

were identified after executing the operations in the composition in Figure 4.1

several times, and verifying that with these values the expected response times

of the operations were below their observed times for 95% of the cases.

125



4.1.1 Evaluation

The first prototype was used to evaluate the framework from three different per-

spectives, as described below:

Study (I.1) : To demonstrate that the framework improves the composition

performance in terms of the time to execute and complete the whole com-

position when the availability of operations is proactively identified;

Study (I.2) : To demonstrate that in the event of faults or performance degra-

dation of service operations, the framework manages to adapt the compo-

sition instances, ensuring the SLA values;

Study (I.3) : To analyse the performance of the framework;

The evaluations performed with the three studies for the first prototype are

describe below.

Study I.1

For the first study of Prototype I, the evaluation analyses the performance

gain obtained by using the spatial correlation technique used in the approach.

More specifically, the study analyses the benefits of predicting the availability

of operations used in the composition (see Section 3.3.1.2) by comparing the

average time to finish the execution of the whole composition when there is no

need for adaptation with the different times to finish the execution of the whole

composition when availability is proactively detected in the three different levels,

namely (a) operations, (b) services, and (c) providers.

126



In the situations above, the processing times of the operations in providers P2

and P3 were set to the same as P1. This is necessary to create a homogeneous

environment and avoid using a replacement operation with faster processing time

and, therefore, diminishing the impact of the time wasted when trying to invoke

an unavailable operation.

In order to get an overall picture of the performance gain caused by the three

different levels of spatial correlation among operations, services, and providers,

provider P1 is set to be unavailable. However, depending on the levels of spatial

correlation used, the approach adapts the service compositions in different ways,

with direct impact in the time to complete each execution instance. Figure 4.3

presents the results of this experiment.

0

0.5

1

1.5

2

2.5

Normal Execution Operation Level Service Level Provider Level

R
e

sp
o

n
se

 T
im

e
 (

s)
 

Normal Execution Operation Level
            (a)

Service Level
          (b)

Provider Level
           (c)

Figure 4.3: Impact of spatial correlation on composition response times

The first bar in Figure 4.3 is plot for comparison and represents the average

normal execution time to finish the service composition.

As shown in the figure, for case (a) the time to execute the composition and

change all operations without considering any spatial correlation is two times

127



greater than the time to execute the composition without any need for adapta-

tion (normal execution). In other words, for the 12 operations, the adaptation

approach only identifies the fault after trying to execute each of them.

When the spatial correlation is performed at the service level (b), unsuccess-

ful invocations can be avoided for each operation from the service identified as

unavailable. This approach resulted in a improvement of the time to execute the

composition of about 36% when compared to case (a) and an increase in time of

close to 28% when considering the normal execution.

Finally, in study (c) spatial correlation is considered at all levels, which means

that all operations from the same service or provider of the one identified as

unavailable will be marked for replacement. In this case an execution instance

will observe only one fault, observed when the first activity that attempts to

invoke the operation O00 through the unreachable provider P1.

As shown in Figure 4.3, the adoption of the spatial correlation at provider level

was able to improve the execution time of the whole service composition by 43%

when compared to case (a) with a penalty of only 14% when considering the nor-

mal execution. Since we can interpret case (a) as basically an optimised reactive

adaptation approach, we can conclude that the results testify an improvement of

using the proactive adaptation approach using spatial correlation when compared

to the situation in which a non-proactive approach regarding availability is used.

Study I.2

For the second study of Prototype I, the client machine was configured to

support an incremental increase in the number of users invoking the composition.

128



More specifically, the study analysed Prototype I in 30 intervals of ten seconds

each (total of 300 seconds) with a rate of one user per second in the first interval

of ten seconds, two users per second in the second interval, and an increment of

one extra user every ten seconds reaching 30 users per second in the last interval.

0

10

20

30

40

50

0 30 60 90 120 150 180 210 240 270 300

N
u

m
b

e
r 

o
f 

U
se

rs
 

Experiment Time (s) 

Figure 4.4: Number of simultaneous users consuming resources.

It is worth noting that for each user request performed by the client machine,

12 operations need to be invoked, therefore, the number of simultaneous opera-

tions in execution for the experiment is greater than the number of user requests

in the various intervals. Moreover, at a certain time t in the experiment, the

number of users invoking the composition and consuming resources is greater

than the number of new users at t, since the time to execute the composition

without any problem is more than 1.5 seconds (see first column in Figure 4.3)

and, therefore, requests for the compositions are accumulated over time intervals.

The above simulation was used in order to provide an environment that could

on its own create faults to the composition in terms of response time and cost

values due to the number of users and network resources being consumed and,

therefore, allow the verification of the behaviour of ProAdapt in cases of faults.

129



0

1

2

3

4

5

6

0 30 60 90 120 150 180 210 240 270 300

R
e

sp
o

n
se

 T
im

e
 (

s)
 

Experiment Time (s) 

Read Values

Time SLA

Figure 4.5: Variation of composition response times during the experiment.

Figure 4.4 shows the number of concurrent users consuming resources during

the different times of the experiment. As expected, the accumulated number

of users is greater than the rate of new users invoking the composition. The

graph in Figure 4.4 shows a larger number of accumulated users towards the

end of the experiment. This is due to the fact that during this time there were a

larger number of invocations for the operations in the execution instances causing

degradation in the response times of the operations, delaying the execution of the

whole compositions, and accumulating even more requests.

Figure 4.5 shows the time to execute each execution instance of the compo-

sition (represented as squares) during the whole experiment, and the execution

instances that were able to adapt themselves and finish within the SLA response

time values (dotted line in the graph). As shown in the figure, the majority

of the execution instances managed to adapt themselves and finish within the

130



SLA response time value. The graph also shows a stable response time for the

execution instances in the beginning of the experiment and oscillations in the

response times starting at 200 seconds after the experiment has started. This is

because between 20 and 25 service composition requests per second, provider P1

reaches its full capacity, causing degradation in the operations response times,

and eventually, the need to adapt the composition execution instances so that

their respective SLA values are maintained.

The cases in which the execution instances did not finish before reaching the

SLA values for response time (cases above dotted line in Figure 4.5), were due

to bottlenecks in the providers and lack of available operations that could be

executed faster and with the cost values specified in the experiment.

0%

20%

40%

60%

80%

100%

1 1.5 2 2.5 3 3.5 4 4.5 5

Response Time (s) 

Cum.

SLA

Figure 4.6: Cumulative frequency distribution of response times.

In order to verify the impact of these cases, Figure 4.6 presents the cumulative

frequency distribution for the response times of the executions. As shown, the

response times of the executions where below 1.5 seconds for 80.65% of the cases

and in 99.69% of the cases the execution instances respected the SLA response

time values. Therefore, from a total of 4650 user requests performed during 300

131



seconds of running the experiments, only 14 user requests could not be completed

for the given SLA values.

Similarly, Figure 4.7 presents the cumulative frequency distribution for the

costs of the execution instances. As shown, the cheapest executions (1200 pen-

nies) occurred in 85% of the cases. The graph also shows that the SLA cost value

was respected in all 4650 requests, which was expected since the framework iden-

tifies only operations that respect the cost values when adapting the composition,

and cost values of the operations does not change over time in our experiments.

85%

90%

95%

100%

1200 1400 1600 1800 2000 2200 2400 2600 2800
Cost 

Cumulative %

Price SLA

Figure 4.7: Cumulative frequency distribution of cost.

Study I.3

As described above, the third case for Prototype I analyses the time spent to

adapt the execution instances, in order to verify the impact of such time in the

overall composition execution time.

132



0

0.5

1

1.5

2

2.5

3

3.5

0 30 60 90 120 150 180 210 240 270 300

A
d

a
p

ta
ti

o
n

 t
im

e
 (

m
s)

 

Experiment Time (s) 

Apadtation Time 

Figure 4.8: Adaptation time for each composition execution over the experiment.

Figure 4.8 shows the adaptation time measured in milliseconds for all ex-

ecutions in the experiment, while Figure 4.9 shows the cumulative frequency

distribution.

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

F
re

q
u

e
n

cy
 

Adapt Time (ms) 

Figure 4.9: Cumulative frequency distribution of the adaptation time.

As shown, in the majority of the cases the overall adaptation time is very

small when comparing with the time to execute the composition itself. Most of

133



the time, when required, the adaptation time comprised less than 0,0005% of the

time required ti finish the execution instances. Even for the longest adaptation

time observed, such ration was kept below 0,003%.

This results are possible because the adaptation can be performed while the

execution engine is waiting for the reply of invoked service operation. In other

words, the adaptation process can be performed in parallel. Moreover, the adap-

tation process is implemented in a way such that compositions are analysed based

on execution logics and without looking for the optimal combination of opera-

tions, but for combinations that meet given SLA values.

Overall, the results for the first prototype prove to be very positive and demon-

strate that the framework can support proactive adaptation of service composi-

tion during execution time, due to different QoS characteristics, more specifically,

due to response time and cost values. The experiments also show that the per-

formance of the adaptation process is good and that the process does not cause

significant penalties when changes in the composition are necessary.

4.2 Prototype II

The second prototype was implemented with the main goal of verifying the ability

to perform structural changes in the workflow and evaluate the performance of

each task required by the adaptation framework.

More specifically, Prototype II was implemented to analyse the duration of

each sub activity of the adaptation process, namely (a) time to identify if a re-

placement operation causes violation of the SLA values for the whole composition,

(b) time to resolve SLA violations, (c) time to identify signature dependency prob-

134



lems, (d) time to solve or attempt to solve signature dependency problems, (e)

time to adapt by changing groups of operations in a composition, and (f) time to

identify spatial correlations due to operation, service, and provider unavailability.

Because it was necessary to have full control of the web service infrastructure

(i.e. network links, request entity, provider entity, and discover entity) in order to

measure and understand the impact of each task and algorithm within the adap-

tation framework, a decision was made to implement Prototype II in a complete

simulated environment based on the Network Simulator 3 (NS3) [62].

NS-3 is a discrete-event network simulator that was proposed as a replacement

of the widely used NS-2 simulator [102]. It was developed with a new core from

scratch, using good software engineering strategies, what results in a well define

architecture, entirely written in C++ programming language, and with support

of open source community. One of the key aspect of the NS-3 simulator is the

attention to realism. The various core modules are designed to be a faithful

representation for real-world network devices and protocols.

The use of the NS-3 simulator makes some things a little easier for the pro-

grammer. For instance, one does not need to give much special attention for

handling race conditions and similar multithreading issues due to NS-3 be a dis-

crete simulator. This helped in reducing the complexity of the code for the

execution engine and execution instances. Moreover, the event-oriented nature

of the framework is much easily accomplished in the NS-3 environment due to

the simulator itself be presented in such a way. There is no need for special com-

munication code since passing events between components is a feature already

presented.

The list of benefits of using the NS-3 simulator in our experiments were not

135



short, however, it is important to note that all components of the framework

had to be implemented in C++ as components of the NS-3 stack. Some of these

components required additional modifications to suit the new requirements.

The service discovery, for instance, does not work with an external database

and was implemented just to make visible a set of services. The composer could

not rely on the same library previously used to interpret WS-BPEL files and a

new approach had to be employed.

Moreover, the foundation of NS-3 is very strong, providing support for both

IP and non-IP based networks, and many different communication protocols, but

it does not provide built-in support for services. In other words, there was no set

of components or libraries to create and use service operations. Therefore, a new

set of modules was implemented to simulate the required interaction between a

service requester and the required service operation. This included the implemen-

tation and addition to the NS-3 stack of protocols, such as the HTTP and SOAP.

Service operations, web services, and service providers were also implemented as

abstract entities with attached QoS parameters.

When a requester entity attempts to invoke a service operation, the bind

information is used to send the request to the correct provider, which will check

if the required service is register that in turn checks for the required operation. If

the service is not present, or a operations is not present, the relative error message

is produce, otherwise, a standard reply is produced. We do not implement the

service agent, but this standard reply is a valid answer for the operation with

processing time established by the QoS parameters of the provider.

The implemented components are loosely coupled and can potentially be

reused by other approaches and researchers, specially since we were able to pro-

136



vide with such implementation a simulated web service infrastructure environ-

ment. As stated in Chapter 1, such Simulated Web Service Infrastructure is one

of the main contributions of the work described in this thesis.

It is important to note that using a simulated infrastructure does not inval-

idate the experiment. In fact, because this work is concerned with the adapta-

tion of service compositions due to events collected or predicted in the execution

context, the simulated environment actually allows testing of the approach in

situations that would be difficult to be generated or manipulated on a real envi-

ronment.

Act01

Act02 Act03 Act04

Act05

Act06 Act07

Act08 Act09 Act10

x
Exclusive OR

+
Parallel

+

+

x x

+ +

Act11

Act12

Act13

Activity

Figure 4.10: Compositon workflow logic with invoke activites for evaluation of
Prototype II

The evaluation was executed in a service composition with 13 activities and

different types of execution logics, as shown in Figure 4.10. The 13 activities

in the composition are executed by 13 operations from ten distinct operation

endpoints. There were four candidate replacement operations for each service

operation Opi in the composition, which gives a total of 50 different operation

endpoints. The operations used in the experiments have different numbers and

137



types of input and output parameters. Moreover, each operation has at least a

signature dependency with another operation.

Prototype II was evaluated in terms of the performance of the adaptation

process using a Pentium 4 3GHz with 3GB RAM. More specifically, two studies

were analysed: (a) the performance of the main activities in the adaptation pro-

cess (study II.1); and (b) the performance of the whole adaptation process for

problems in different parts of the composition (study II.2).

In the same way as in Prototype I, both cost and response time were considered

as valid QoS aspects for the candidates service operations and the SLA values of

the whole composition. The combinations of the response time and cost values

for the operations used in the experiments were (5ms, 25p), (10ms, 20p), (15ms,

15p), (20ms, 10p), (25ms, 5p). Since both cost and response time were important

for the experiment, the same weights were used to order the candidate services.

The 50 endpoint operations in the experiment were associated with 25 different

services and five providers.

4.2.1 Evaluation

Study II.1

The first study case for Prototype II focused in the analyse of the duration

of each sub activity for the adaptation process (sub-activities (a) to (f) described

above ).

Table 4.3 shows the results of these times in nanoseconds for 100,000 exe-

cutions with mean, standard deviation (SD), median, minimum, and maximum

138



values. In activity (a) it is measured the time to compute the aggregation of the

observed and expected QoS values of deployed operations in a composition and

to verify if there is a violation of the SLA values of the whole composition. It is

important to note that this time is independent of where a problem occurs in the

composition since all the operations need to be considered.

Table 4.3: Performance per subactivity of the adaptation process.

(a) - 593 2 593 589 606

(b) - 84704 866 84802 82527 87018

1 dep 1119 11 1117 1110 1214

(c) 3 dep 3418 18 3419 3410 3498

5 dep 5891 25 5881 5865 5993

1 dep 8902 255 8775 8736 9646

5 dep 25406 333 25259 24965 26215

G 1 37346 439 37098 36669 38854

G 2 48653 788 48294 47561 51078

G 3 56394 514 56528 55575 57987

G 4 65278 541 65381 64372 67069

Oper. 885 13 881 871 979

Serv. 7031 95 1026 6765 7447

Prov. 18033 333 17960 17368 19276

Results

Act

(d) 

(e)

(f)

Max  (ns)Min  (ns)Med. (ns)SD (ms)Mean (ns)Cases

In order to analyse the time for activity (b), candidate replacement opera-

tions were introduced which did not create signature dependency problems, since

in this case the interest is in the time elapsed to resolve only SLA violations. The

result shown in Table 4.3 is for the worst case scenario in which the combination

of replacement operations that satisfies the composition uses all the last candi-

dates in the normalised list for each operation (see Equation 3.14). As shown in

139



Table 4.3, the time achieved by the approach is almost negligible, which can be

explained by the use of the optimisation technique to select candidates and to

the fact that we look for a possible combination, not necessarily the optimal one.

The analysis of activity (c) considered the situation in which an operation O

needs to be replaced and O has a dependent operation O′. The study included

situations in which O′ depends only on O, O′ depends on three operations includ-

ing O, and O′ depends on five operations including O (see signature dependencies

in Section 3.3). As the number of dependencies increases, so the required adapta-

tion time, since more verifications need to be performed. The results in Table 4.3

show the time to verify if O′ has dependency problems with one, three, and five

operations. The results show that the time to execute this situation increases

linearly with the number of dependencies.

In activity (d), the analyses considered similar scenarios as in (c), but now

the time to find a solution is also measured. In any of the considered cases, the

solution was identified for the last candidate replacement operation. For the case

in which there were five dependencies, the study considered a scenario in which

the current operation can only satisfy one dependency; the first candidate can

satisfy two dependencies; the third candidate can satisfy three dependencies, and

so on until reaching the fifth candidate that satisfies all five dependencies, which

creates a total of 19 verifications.

In the case of one dependency, one would expect a ratio of one to five between

the time to find a solution (d) and the time to identify the problem (c) in a

dependent operation, given that five candidates were used in the experiment.

The additional time shown in the results for the case of one dependency is due to

extra activities executed by the approach (e.g., selection of candidate operations

140



and execution of changes in the model). A similar situation is found for the case

of five dependencies given that 19 verifications where performed.

The measurements for activity (e) considered a problem in operation Op8 that

can only be resolved by trying to replace a group of operations in the composition.

A analyse was made for the time to resolve the situation in four different groups

of operations. More specifically, the study considered the following groups: G1

with operations Op8, Op9; G2 with operations Op8, Op9, Op10, Op11; G3 with

operations Op5, Op6, Op7, Op8, Op9, Op10, Op11, Op12; and G4 with all operations

in the composition (Op1-Op13).

The results in Table 4.3 show a linear increase with the number of execu-

tion logics used in the evaluation, and not with the number of operations being

grouped. This is due to the incremental increase of the execution logics by the

approach when trying to find a solution.

Activity (f) shows the times to identify spatial correlations when an operation,

service, and provider become unavailable. The study considered these cases as

initial steps for resolving problems in class C1, which are followed by the steps in

cases (a) to (e), explained above. The time spent in case of provider unavailability

is higher than the time for service unavailability, which is higher than the time

for operation unavailability, due to the number of operations associated with a

service and a provider.

The results in Table 4.3 demonstrate that activity (b) has the higher time

of execution due to the large number of combinations of replacement operations

that this case needs to consider. It is also observed from the results, that the

activity to group operations requires more time to be executed when compared

to the other activities.

141



Study II.2

In order to measure the performance of the whole adaptation process, the

second case for Prototype II considered extra signature dependencies between

operations in the composition, namely Op3 depends on Op1; Op9 depends on

Op5; Op12 depends on Op5; and Op13 depends on Op12 and Op4. In other words,

the output of some operations are directly required as input for other operations.

This case was analysed for problems in different parts of the composition.

More specifically, the study considered problems in operations (i) Op1, (ii) Op8,

and (iii) Op11. For situation (ii), the problem in Op8 occurred after operations

Op1, Op5, and Op2 have been executed. For case (iii), the problem in Op11

occurred after operation Op1, Op5, Op2, Op6, Op7, and Op8 have been executed.

Differently from activity (b) in study II.1, where the only combination that

satisfies the SLA values for the whole composition is the one that uses all the

last candidates for each operation, in this case there are other combinations that

satisfy the SLA values. However, the only combination that satisfies both SLA

values of the composition and signature dependencies of operations is the one

that uses the last candidate operations.

Table 4.4 shows the results of these experiments in milliseconds for 100,000

executions with their mean, standard deviation (SD), median, minimum, and

maximum values. These results involve all the activities discussed in Table 4.3.

As shown in Table 4.4, the adptation time for problems in an operation in the

beginning of the execution of the composition (Op1) is higher than the adaptation

time for an operation in the middle of the execution (Op8), which is higher than

the adaptation time for an operation in the end of the execution (Op11).

142



Table 4.4: Performance gor the whole adaptation process.

Metric Op1 Op8 Op11

Mean (ms) 1.015005 0.954445 0.206295

SD (ms) 0.004789 0.003574 0.017664

Min (ms) 1.0106 0.950112 0.202703

Median (ms) 1.01336 0.953046 0.203881

Max (ms) 1.04865 0.967082 0.698439

Problem Location

This is because, there is a need to verify more steps in the adaptation process

and consider more combinations of replacement operations when a problem occurs

in the beginning of the composition execution instead of towards the end. The

probability of finding a solution when a problem occurs in the beginning of the

execution is also higher than when the problem occurs towards the end due to

the number of available replacement candidates.

In other words, as soon as an issue is identified for an execution instance, less

operations deployed for the execution instance would have been executed. Thus,

more reconfiguration options would have been available and it would be more

likely to find a solution for the issue under the required SLA.

Overall, the results of the experiments performed for Prototype II show that

the time for the adaptation process is small when considered the time that it takes

to execute an operation, to send the operation request and receive its response

over the network, along with other times involved in the service composition

execution. Thus, the proposed adaptation process can be used without causing

143



considerable performance penalties to the execution of the composition.

4.3 Prototype III

The idea of the Prototype III was to study the parallel adaptation as described

in Section 3.3.1.3 and load balancing technique as desctibed in Section 3.3.1.4.

Since concurrent issues are strongly related to physical resources available and

how the operating systems manage them, the third prototype did not use the

virtual environment created for Prototype II and extended Prototype I instead.

More precisely, in order to demonstrate and evaluate the work we have im-

plemented a prototype tool of the framework in Java. The tool assumes service

compositions in BPEL4WS [73] exposed as Web Services using SOAP protocol,

and participating operations and user requests emulated using soapUI. The ser-

vice discovery tool was also implemented in Java and is exposed as a web service.

Prototype III aimed at demonstrating that the adaptation process may be

improved, resulting in better performance and reliability of service compositions,

when the analysis of events and detection of the need for adaptation is shared

and triggered among multiple instances of the same or different compositions

executing in parallel.

The approach has been evaluated in order to demonstrate if there are improve-

ments in the adaptation process in terms of the number of service compositions

that can adapt successfully. The evaluation considers the situation in which

the analysis of events and detection of the need for adaptation is shared and

triggered among multiple instances of the same service composition, or different

service compositions executed in parallel. Given that the process is the same for

144



these two cases, in the evaluation we considered multiple instances of the same

service composition.

In the experiments we assume that each of the various execution instances

starts its execution in different time-steps. We also consider that the number of

running execution instances at different points of their execution flow is approx-

imately the same. More specifically, the number of running instances executing

the initial part of their flows is similar to the number of those in the middle or

in the end of their execution flows.

4.3.1 Evaluation

Similarly to Prototype I, three perspectives were used to evaluate this prototype,

as described below:

Study (III.1) : To compare the performance of the use of the parallel and

proactive approach with the proactive approach only for a simple service

composition;

Study (III.2) : To extend the comparison between the parallel and proactive

approach with the proactive approach only for a complex service composi-

tion;

Study (III.3) : To analyse the performance of the load balancing technique;

In studies III.1 and III.2, we assume that one or more operations in the com-

position become unavailable. However, the approach supports a similar process

for the other types of problems (e.g.,violation of QoS values of an operation). The

145



evaluations performed with the three studies for the third prototype are describe

below.

Study III.1

For the first study, the idea was to show the performance improvement of the

parallel approach under a simple composition where it would be straight forward

to understand and interpret the results, without losing representativeness. We

decided to start using a service composition with a sequential workflow formed

by ten invoke activities, as shown in Figure 4.11.

Act01 Act02 Act03 Act04 Act05 Act06 Act07 Act08 Act09 Act10

Invoke Activity SequenceUnavailable Solution Area

Figure 4.11: Service composition workflow for evaluation of Scenario 1

Moreover, three different scenarios were created to simulate different circum-

stances as described below.

Study III.1 - Scenario 1: For this scenario we assume that at a certain time in

the experiment the service operation assigned to the last invoke activity (Act10) of

the worflow presented in Figure 4.11 becomes unavailable. Consider the existence

of a set of candidate service operations for each invoke activity (Act1 - Act10),

and that the use of any of the available candidate service operations for Act10,

along with the current assigned operations for (Act1 - Act09) would cause a

146



violation of the SLA value of the whole composition. Consider the existence of a

valid configuration for the service composition when replacing both the operations

assigned for activities Act9 and Act10.

We compared the number of execution instances that (a) were able to adapt

successfully (successful), (b) were not able to adapt (unsuccessful), and (c) did not

require adaptation because they were not affected by the problem (not required),

for the case in which we used the parallel and proactive approach with the case

in which we used only the proactive approach. We considered 50, 100, 150, and

200 execution instances of the composition shown in Figure 4.11.

0

20

40

60

80

100

120

140

160

180

200

Parallel

50

Proactive

50

Parallel

100

Proactive

100

Parallel

150

Proactive

150

Parallel

200

Proactive

200

Not Required

Unsuccessful

Successful

Figure 4.12: Comparison of the adaptation process for Case 1 - Scenario 1.

Figure 4.12 presents the results of this experiment. For each different number

of execution instances considered in the experiment, the first column represents

the results when using the parallel and proactive approaches (specified as parallel

for simplicity), while the second column represents the results when using only

the proactive approach (specified as proactive for simplicity).

As shown in Figure 4.12, when using the combined parallel and proactive

approaches there are many more instances that are adapted and finished success-

147



fully. This is because in the parallel approach, several execution instances that

are still in operation are notified about the unavailability of the operation associ-

ated with Act10, and have not yet executed the operation associated with Act09.

Contrary, in the case when only the proactive approach is used, the adaptation is

only attempted when the execution process tries to invoke the operation associ-

ated with Act10 and realises that this operation is unavailable. In this scenario,

the process requires the replacement of the operation associated with Act09 as

well. However, when attempting to invoke the operation associated with Act10,

the operation for Act09 has already been executed and cannot be replaced.

Figure 4.12 also shows that even when using the proactive approach only some

instances are able to finish successfully for all the different numbers of execution

instances used in the experiment. These instances are the ones that managed to

invoke the operation associated with Act10 before this operation became unavail-

able and, therefore, were able to finish their execution successfully.

Study III.1 - Scenario 2: In this scenario, we use the same service composi-

tion of Scenario 1, but we consider different positions in the composition where

the operation associated with an activity becomes unavailable. We consider the

situations in which the operations associated with activities Act04, Act07, and

Act10 become unavailable. In all three cases, we assume that a valid configu-

ration exists when replacing both the operation that becomes unavailable and

the one associated with the previous activity; i.e., operations associated with (i)

Act03 and Act04; (ii) Act06 and Act07; and (iii) Act09 and Act10. We assume

200 instances of the service composition executed at the same time.

Figure 4.13 shows the results of the experiments for situations (i) to (iii)

148



0

20

40

60

80

100

120

140

160

180

200

Parallel

i

   Proactive

i

Parallel

ii

   Proactive

ii

Parallel

iii

   Proactive

iii

Not Required

Unsuccessful

Successful

Figure 4.13: Comparison of the adaptation process for Case 1 - Scenario 2

above. As shown in the figure, when using only the proactive approach, in any

of situations (i) to (iii), none of the execution instances could be successfully

adapted. This is because the execution instances have already invoked the oper-

ations associated with the activities that occur before the activities that become

unavailable (activities Act03, Act06, and Act09).

The results also show that the number of execution instances that do not

require adaptation decreases when the problem occurs at a position closer to the

end of the composition; while the number of unsuccessful adaptation instances

increases. This is due to the number of running execution instances that are at

a point before, the same, or after the point in which the problem is identified,

during their execution. This also explains the reason for having similar numbers of

execution instances that do not require adaptation, for the parallel and proactive

approach and the proactive approach only, in situations (i) to (iii).

From Figure 4.13 we observe that when using the parallel and proactive ap-

proaches, the number of successful adaptation instances increases, as the problem

149



occurs at a position closer to the end of the composition. This is because the

number of execution instances that can be adapted increases, since there are more

instances at execution points before the operation becomes unavailable.

Study III.1 - Scenario 3: In this scenario, we compare the approaches when

using service compositions with a sequential structure, as in Scenarios 1 and

2, but of different sizes. We considered compositions with (i’) five, (ii’) ten,

and (iii’) fifteen activities. Similar to the above scenarios, we assume that in

each of the three compositions the operation associated with the last activity

becomes unavailable and that a valid configuration exists when replacing both

the operation that becomes unavailable and the one associated with the previous

activity. We assume 200 instances of the service composition executed at the

same time.

0

20

40

60

80

100

120

140

160

180

200

Parallel

i'

Proactive

i'

Parallel

ii'

Proactive

ii'

Parallel

iii'

Proactive

iii'

Not Required

Unsuccessful

Successful

Figure 4.14: Comparison of the adaptation process for Case 1 - Scenario 3

Figure 4.14 shows the results of the experiments for compositions (i’) to (iii’).

The results in the figure show an increase in the number of execution instances

150



that required adaptation as the size of the compositions increase. As in the case

of Scenario 2, this is due to the number of running execution instances that are

at a point before, the same, or after the point in which the problem is identified,

during their execution. Similarly, the results show an increase in the number of

successfull adaptations for bigger compositions. Similar to Scenarios 1 and 2, the

results show that when using only the proactive approach, in any of situations

(i’) to (iii’), none of the execution instances could be successfully adapted.

Study III.2

In this study we use the service composition shown in Figure 4.15. We consider

that the operations associated with activities Act04, Act15, and Act19 becomes

unavailable, and that, for each unavailable operation, the solution of a valid con-

figuration exists when replacing the operations associated with the previous and

next activities and the one that becomes unavailable. We assume 100 instances

of the service composition executed at the same time.

Act01 Act18 Act19 Act20

Invoke Activity SequenceUnavailable Solution Area

Act02

Act10

Act09

Act17

Act06 Act07 Act08

Act03 Act04 Act05

Act14 Act15 Act16

Act11 Act12 Act13

Parallel Activity Conditional Activity

i’’

ii’’

iii’’

Figure 4.15: Complex service composition workflow

151



The example in Case 2 differs from the scenarios in Case 1 since: (a) the

service composition is more complex with more activities organised in different

execution logics (conditional and parallel); (b) a valid configuration for the com-

position includes the replacement of operations associated with activities before

and after the operation that becomes unavailable; and (c) the operations that

become unavailable are associated with activities in different execution logics:

sequential, parallel, and conditional execution logics.

0

10

20

30

40

50

60

70

80

90

100

Parallel

i''

Proactive

i''

Parallel

ii''

Proactive

ii''

Parallel

iii''

Proactive

iii''

Not Required

Unsuccessful

Successful

Figure 4.16: Comparison of the adaptation process for Case 2

The results of this experiment are shown in Figure 4.16 for the unavailability of

(i”) Act04, (ii”) Act15, and (iii”) Act19. As it was expected, when the operation

that becomes unavailable is at the end of the composition (situation (iii”)), a

larger number of execution instances require adaptation since there are more

running instances at execution points before the operation becomes unavailable

(as in the previous scenarios). The results show that for situation (i”), half of

the execution instances did not require adaptation. For those execution instances

that required adaptation, half of them were successfully adapted.

152



We also observe that situation (i”) required more instances to be adapted

than situation (ii”). This is due to the fact that situation (ii”) is a conditional

execution logic and, therefore, not necessarily all the execution instances will

execute this path in the composition. This is not the case in situation (i”) in

which all the instances need to execute the respective path in the composition.

Study III.3

In our approach, the efficiency of the proposed technique to dynamically dis-

tribute the load of service operations requests among different service providers,

and in parallel with the execution of service composition instances, depends on

the number of requests for a particular service operation and the capacity of the

service operation to fulfil its requests. The size, complexity, and logic of a service

composition does not cause impact to the load balancing technique. Therefore, in

order to evaluate the load balancing technique, we used a simple service compo-

sition. More specifically, the evaluation was executed in a scenario with a single

invoke activity (IA) deployed in two operations given by two different providers

P1 as OP1, and P2 as OP2. We assumed both OP1 and OP2 configured with a

processing time of one second. Moreover, in the experiment we used a maximum

of 20 concurrent service composition instances and configured OP1 and OP2 to

be able to handle up to ten concurrent requests.

In order to introduce some random behaviour in the income rate of operation

requests, we simulated the compositions requests and assumed that each request

respects a uniform distribution with minimum zero and maximum one. In other

words, each of the 20 parallel processes generating concurrent requests sleeps for a

specific amount of time and generates a new request. After that, the process starts

153



again if the experiment is not over. This behaviour is depicted in Figure 4.17

Figure 4.17: State Machine of the Concurrent Requests Generator Process

In the above described experiment we expected to observe an improvement in

the overall performance of the execution engine in terms of the number of success-

fully concluded compositions requests. The basic idea is that if no distribution of

the load is in place, the best thing that an approach can do is to jump from one

operation to another as soon as it is detected as unavailable (e.g., an operation

that is not responding due to high traffic). Moreover, considering that no single

operation is suitable to answer all concurrent instances, it is almost mandatory to

employ some form of online testing to discover if the operation becomes available

again. Without a way to assess the availability of an operation, the composition

instances would just fail to be created since the system would indicate that no

operations is available to perform the required tasks. We implemented a basic

online testing procedure that periodically checks if the previously failed operation

is available and marks it in the local repository as available again.

In our experiments using the parallel adaptation with load balancing tech-

niques, the average time to finish an execution instances was about one second.

This was expected since the processing time of both OP1 and OP2 were config-

154



ured as one second. Moreover, there was only at most 20 concurrent requests, and

the combined throughput for OP1 and OP2 was 20. Therefore, no extra issues

were introduced. We noted that in the case in which the ability to distribute the

load between different operations was turned off, the average time to conclude an

execution instance rose to about 3 seconds. This was due to the fact that now

the Adaptor component had to constantly face an error due to the high load of

requests in either OP1 or OP2. Figure 4.18 presents a snapshot of the distribu-

tion of the requests made to OP1 in both experiments. As we can see, when the

load balancing technique is in place, the load distribution is much more homo-

geneous. The black line at 10 concurrent requests indicates the threshold for the

serving capability of OP1. Given that the approach with load balancing respects

the threshold for individual operations by identifying its maximum capability, no

issues are introduced. However, when such awareness is removed, and there is

no way to alleviate the load, the threshold is not respected. This causes errors,

requiring that adaptations are executed.

Figure 4.18: Comparisons of the distribution of operation request for a single
provider between the approach with and without load balancing.

155



4.4 Summary and Discussions

This chapter presented the prototypes of the ProAdapt framework proposed that

were developed to demonstrate and evaluate the ProAdapt framework. More

specifically, the chapter describes the process undertaken to verify the concepts,

techniques, and methods of the adaptation framework through three prototypes

of the framework that were implemented in an iterative way.

For the first prototype, we were mainly concerned with the ability to predict

the need for changes in service compositions and adapt this composition accord-

ingly, without stopping the business process. We have show in this chapter that

it was possible to predict the availability of service operations by using a spatial

correlation technique. Moreover, the QoS analysis (see Section 3.3.1.1) could be

successfully used to enforce the SLA values for the whole composition. The ben-

efits came with little overhead, since the additional time required to monitor and

adapt the execution instances was show to be very small, with little impact on

the overall response time for the composition as a whole.

With the results of the first prototype, we knew that the proactive adaptation

could be used in practice, that is, we could predict the need for changes and enact

these changes in parallel of the execution of the service composition.

This chapter also describes the second prototype (Prototype II ), which ex-

panded our first prototype with the ability to perform structural changes in the

workflow, and supported the four different classes of situations that may trigger

the need for adaptation (see Chapter 3). We have provided for Prototype II a

more deep discussion of the performance of the framework in terms of the dura-

tion of each sub activity of the adaptation process. After carefully analysing the

156



results, we came to the conclusion that ProAdapt could be used without causing

considerable performance penalties to the execution of the composition. This was

due to the fact that the required time for the adaptation process is small when

considering all other times involved in the service composition execution.

Finally, this chapter also presents the description and results concerning the

third prototype (Prototype III ), which extended Prototype I and Prototype II to

support parallel adaptation of service composition (see Section 3.3.1.3), and the

load balancing technique (see Section 3.3.1.4). We have shown that by using these

techniques the adaptation process could be improved, in terms of the number of

service compositions that can adapt successfully.

The next chapter presents a different branch of the ProAdapt framework.

An extension that targets the ability to compensate the expected behaviour of

service compositions by looking at the local repository of service operations and

iteratively querying a service discovery tool in order to find candidate replacement

services.

157



Chapter 5

Behavioural Compensation

Extension

Existing approaches for service composition assume that deployed services can be

replaced by other candidates that fulfil the structural and behaviour aspects of the

original service. However, it is not always possible to identify a service, or even a

group of services, that can fully satisfy the behaviour characteristics of another

service and, therefore, it is necessary to replace a service with the “best” possible

candidate and try to compensate the “missing” behaviour by other candidates in

the composition, or by identifying new services.

This section describes an extension of ProAdapt to support the above situa-

tion, which we we call behavioural compensation. In this extension, queries repre-

senting the characteristics of the services to be identified are generated based on

the expected behaviour of current deployed services and the service composition

workflow.

Services are identified based on matching of the structural and behavioural

158



aspects of the query and service descriptions. The behavioural compensation is

executed by decomposing the queries to identify services that together can fulfil

the requested behaviour.

The generated queries are used to identify services in service repositories that

can fulfil the queries and be used in the composition. The identification of services

is executed by an extension of the service discovery tool presented in [147].

More specifically, the service discovery tool matches structural (expected in-

terfaces of a service) and behavioural (expected functionality of a service) aspects

of queries with structural and behavioural service descriptions based on the com-

putation of distance measurements. The distance measurements indicate how

similar are the descriptions of a service with respect to a query, based on the

parts of the queries that are matched with the service descriptions.

The version of the service discovery tool in [147] identifies a single service that

fulfils the query, when such service exists. We have extended the work to support

the identification of more than one service that together can fulfil the query. The

new extension supports the situation in which a service that fulfils part of the

query is identified and the rest of the query not fulfilled by the identified service

is used to identify other services that match the rest of the query. These other

services can either be external services from the composition (i.e., services that

are not yet deployed in the composition), or services that are already used in the

composition.

As mentioned in the previous chapters, ProAdapt was designed to support

stateless services. This extension adds supports for additional constraints speci-

fied for the service composition, such as stateful services. The behavioural com-

pensation extension can be incorporated in the ProAdapt architecture as an extra

159



attempt of adaptation to be performed inside the adaptor component. If the stan-

dard adaptation approach fails, the behavioural compensation can be activated.

Assumptions and Decisions

• Service Specification: In the framework, a service is assumed to be spec-

ified by a set of XML facets representing different service aspects, including

structural facets describing the operations of services with their signatures

in WSDL, and behavioural facets describing behavioural models of services

in WS-BPEL.

• No Instance Adaptation: Due to the complexity of the behavioural

compensation approach, we have decide to not consider its use for instance

level adaptation. More specifically, after considering the computational

cost of the approach we decided that it was better to use the solution to

adapt service compositions and their templates, but not single execution

instances.

• Service Discovering Time: For this extension we do not analyse the time

that it takes for the service discovery tool to perform the matching since

this depends on the number of services in a repository and such analysis

has already been published in [147].

5.1 Running Example

In other to illustrate our approach, we use a running example of a Car Rental

Service (CRS) application. This example is an extension of the CRS applica-

tion described in [17]. Figure 5.1 shows an overview of the CRS application in

160



BPMN notation [30]. As shown in the figure, the example consists of a service

composition that is executed at a car rental office branch. The service compo-

sition interacts with six different types of services with their descriptions and

operations below, without their parameters for simplicity.

S1 Car Broker Service (CBS). Operations: startRental, stopRental.

S2 User Interaction Service (UIS). Operations: findCar, findcarCB.

S3 Car Information Service (CIS). Operations: lookupCar, markAvailable,

markUnavailable.

S4 Car Parking Sensor Service (CPSS). Operations: carEnter, carExit.

S5 Check Car Service (CCS). Operations: checkforDamage, checkforPetrol,

sendtoRepair.

S6 Payment Service (PS) Operations: calcpetrolBill, calcrepairBill, calctotal-

Bill, chargecreditCard.

The Car Broker Service (CBS) controls the operation of the branch. The

User Interaction Service (UIS) allows customers to request for a car. The Car

Information Service (CIS) maintains a database of available cars and allocates

cars to customers. The Car Parking Sensor Service (CPSS) senses when a car

enters or exits the parking lot of the branch. The Check Car Service (CCS)

verifies the status of the car in terms of any damage with the car and the level of

petrol in the tank of a car when the car in returned. The Payment Service (PS)

calculates the different types of extra expenses for the car and charges the credit

card of the user.

161



startRental

findCar

lookupCar

findcarCb

carExit

checkDamage checkPetrol

calcpetrol
Bill

markAvalable

No DamageNo Damage
DamagedDamaged

calctotalBill

sendtoRepair

calcrepair
Bill

chargecre
ditCard

Not_StopedNot_Stoped

stopRental carExit

markUna
vailable

StopedStoped
On 

Message
Service 

Invokation WhilePick Message ParallelExclusive OR

 carEnter

carEnter

Figure 5.1: Example of Car Rental Service

As shown in Figure 5.1, the CRS composition starts when it receives a

startRental message. After this the composition enters an infinite loop until

it receives a stopRental message. In the loop, the composition can receive a find-

car, stopRental, carEnter or carExit message. For each of these messages the

composition takes a different flow of execution and invoke different messages.

For example, in the case of a findcar message, the composition invokes the

lookupCar operation which returns either a negative value or an identifier for

162



an available car. This information is passed to the findcarCB operation to be

informed to the user. In the case of a carExit message, the composition invokes

markUnavailable operation in order to update the database about available cars.

In the case of a carEnter message, the composition performs a parallel exe-

cution flow and invokes the checkforDamage and the checkforPetrol operations.

In the situation in which the car is not damaged, the markAvailable operation is

invoked and the database of cars is updated. In the situation in which the car is

damaged, the operation sendtoRepair is invoked and the operation to calculate

the bill for repairing the car (calrepairBill) is invoked.

After operation checktoPetrol is invoked, operation calcpetrolBill is also in-

voked to calculate how much the user needs to pay for petrol in case the fuel tank

of the car is not fulled when the car is returned. After executing the parallel flow

above, the composition invokes the calctotalBill operation to calculate how much

in total the user still needs to pay and invokes the chargecreditCard operation.

5.2 Overview

Figure 5.2 shows an overview of the behavioural compensation extension. As

shown in the figure, the framework receives as inputs: a workflow (WF) repre-

senting the service composition or an application to be developed based on the

composition of services (e.g. the CRS application), and a set of service operations

that need to be replaced.

The first step is to generate a query to represent the operations that need to

be replaced in a service composition as well as the order in which they need to

be invoked. The generated query is used by the query-based service selection

163



Figure 5.2: Service Selection with Behavioural Compensation

component, which interacts with a service repository to identify services that

together can fulfil the queries, based on the match of query specifications and

structural and behavioural service descriptions.

The structural descriptions are interface descriptions of the operations of ser-

vices with their data types using WSDL [32]; while the behavioural descriptions

represent behavioural models of services describing the functionality of the ser-

vices using BPEL4WS [73].

The result of the matching process is a set of candidate services that “best”

match the queries; i.e., the services that match larger portions of the characteris-

tics of the queries. These characteristics include different aspects of the workflow

and the services that can be used in the workflow. They include structural (aka

syntactical interface) and behavioural flows representing expected functionality

from the services.

For each query, when there is an identified candidate service S that fully

164



matches the query, S is bound to the service composition. In the case in which

no service in the repository fully matches the query, the behavioural compensator

component analyses if the identified candidate services, or any of the already de-

ployed services in the composition, can be used to fulfil the “missing” behaviour

of the query (i.e., the behaviour parts of the query that is not matched by a ser-

vice), together with the associated structural parts of the query. The behavioural

compensator component also uses extra pre-defined constraints during the anal-

ysis. Examples of these constraints are concerned with: (i) operations that need

to be used from a particular service (due to previous agreement or contracts be-

tween the service providers and consumers), (ii) a group of operations that need

to be provided by a certain service, or even (iii) contextual or quality constraints

concerned with the operations (the time or cost to execute an operation).

In the case in which the “missing” behaviour of the query can be matched by

other services that were already discovered, and are already present in the work-

flow, these services are used and bound to the service composition. Otherwise,

new queries need to be generated for service selection with the repository. Note

that we do not need to generate new queries based on the workflow, but we only

need to change previously generated queries to take into account the operations

that are still missing.

5.3 Query-based Service Selection

For each query Q in the set of queries, the framework tries to identify a ser-

vice, or a set of services, that together can fulfil the structural and behavioural

characteristics of the query. As explained above, we have extended the service

165



discovery tool [147] to support not only structural and behavioural matching

between queries and services, but to also support behaviour compensation.

Matching between queries and services is executed based on ranking of services

due to computation of structural and behavioural distances between queries and

services. The distances capture the similarity of the services with respect to the

queries. The structural distance captures the linguistic similarities between the

names of the operations and the names of their respective parameter data types,

and the similarities between the structure of the data types of the parameters.

For our case study, this distance is said to be zero, and therefore, the service

found can be used as a candidate, when the functionality expressed in the queries

can be verified against the service aspects. If the query violates any of the defined

aspects and its constraints, the service is not considered as a candidate.

During the matching process, the structural and behavioural parts of a query

are evaluated against the structural and behavioural specifications of the ser-

vices and a distance between each of these services and the query is computed.

More specifically, the structural and behavioural evaluation of a query against

a service is executed by comparing operations in the structural part of a query

with operations in the WSDL specifications of the services, and by comparing be-

havioural part of a query with WS-BPEL specifications of the services to which

the structural parts are matched.

Matching: A match between a service and a query is found if for each operation

(Opi) in the query, the service has an operation which has the same name as

Opi, input parameters with data types that are supertypes of the types of the

input parameters of Opi, and output parameters whose types are subtypes of

the output of Opi. This is because when the above conditions hold, the input

166



information necessary to invoke Opi covers the input information needed by the

service operation, and the output information produced by the service operation

covers the output information expected by Opi. Furthermore, the service must

have a behavioural model satisfying at least part of the behavioural conditions of

a query.

Selection: When the above conditions are satisfied by a service S, a distance

between the query and the service is computed. This distance is used to rank the

service with respect to other services that satisfy the above conditions, and the

framework selects the service with the smaller distance for the query.

Structural distance: The structural distance between query and service oper-

ations is calculated by matching the signatures of service and query operations,

based on the comparison of the names of the operations, graphs representing the

data types of the input and output parameters of the operations, and names of

operations and parameters. The comparison of the input and output parameter

data type graphs is based on an algorithm that we have developed to detect mor-

phisms between service graphs, and to verify if a graph is a subgraph of another.

A detailed description of the algorithm and distances can be found in [147].

The structural distances are computed for each possible pair of an operation

in a query Q and an operation in a service S. After computing the structural

distance for each pair of query and service operations, the matching process iden-

tifies all possible mappings between the operations in Q and operations in S, in

which each operation in Q is mapped onto a single operation in S. For each iden-

tified mapping, the matching process computes the behavioural distance between

the mapped service and query operations.

Behavioural distance: The behavioural distance is calculated based on compar-

167



isons of paths representing the behavioural in a query (or conjunction of queries)

and behavioural service specification. More specifically, the behaviour matching

is executed by transforming BPEL4WS [73] behavioural specifications of each

service into a state machine and the behavioural part of the query into another

state machine, and verifying if each path in the state machine of the query can

be matched with a path in the state machine of the service. The path verification

analyses if the query path can be executed by the state machine of the service.

Transformation of BPEL4WS specifications into state machines is described in

[147].

As described above, it is possible to identify services that cannot fulfil the

whole structural and behavioural characteristics of a query. In this case, it is

necessary to compensate the “missing” parts of the query by identifying other

services that can fulfil these missing parts. The next section describes an approach

to deal with this situation.

5.4 Behavioural Compensation

In set theory, a set A is said to be a subset of B if all elements of A are also

elements of B. In this context, a partition of a set B is a division of B as a union

of non-overlapping and non-empty subsets of B. In other words, a partition of B

is a set X of subsets of B such that there is no intersection between the elements

of X and the union of all elements in X equals to B. The definition above is

the core to our solution for behavioural compensation. If a query Q is not fully

matched by a service, we decompose it into all its possible sub-queries, that is.

Considering Q a set o elements, the sub-queries can be defined as partitions of Q.

168



We then systematically explore each decomposition to find services that match

the respective sub-queries. We first check the services that are already bound

to the workflow (WF) and if a match is not found we check the repository as

explained in the section above.

Each query Q is partitioned into a list of all possible sub-queries of Q that

could satisfy structural and behavioural constraints represented in Q.

This can be represented in the following notation:

1. ∅ 6∈ D

2.
⋃

D = Q

3. (A ∈ D ∧B ∈ D ∧ A 6= B)⇒ A ∩B = ∅

Where D is a partition of Q, and
⋃

D is the union of all elements in D.

For example, assume Q = {S1.OP1 → S1.OP2 → S1.OP3}. The approach

creates the following D1 to D5 sets of sub-queries:

D1 = {{Op1→ Op2→ Op3}}

D2 = {{Op1}, {Op2→ Op3}}

D3 = {{Op1→ OP2}, {Op3}}

D4 = {{Op1→ Op3}, {Op2}}

D5 = {{Op1}, {Op2}, {Op3}}

The total number of partitions of an n-element set (i.e. the number of sub-

queries of a query) is the Bell number Bn, which satisfies the recursion defined in

169



Equation 5.1. The first Bell number are B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15,

B5 = 52, B6 = 203, B7 = 877, B8 = 4140, B9 = 21147, and B10 = 115975.

Bn+1 =
n

∑

k=0

(

n

k

)

Bk (5.1)

For each of these sub-queries, the approach tries to identify services that can

match a set of elements in the partitions that together include all operations in

Q and do not have common operations (i.e. the same ActivityName:OpName in

WF).

For sub-queries that do have common operations, we need to consider them

together, using logical and operation, that is supported by our tool. The approach

tries to identify services that can match distinct subsets of the operations in a

query, starting with the full query, that contains all operations. For the example

above, suppose that a candidate service S ′ that matches {Op1} is identified. In

this case, the other possible candidate services to fulfil Q can match either element

{Op2→ Op3}, or elements {Op2} and {Op3}.

5.5 Matching and Compensation Cases

To follow the different possible matching between queries and services, and how

these matches can be compensated, assume that a service S with the operations

OPi (1 ≤ i ≤ 6) becomes unavailable. Consider query Q, with operations from

service S, and service S1 as a candidate service for S.

Q : OP1->OP2->OP3->OP5->OP6

170



C1: S1 fully matches Q.

Action: Replace S by S1 in the service composition.

C2: S1 matches part of the signature of S, and for the part of the signature that

is matched, S1 fully matches the behaviour described in Q.

Actions:

1. Calculate the part of the query that is not matched (Q′);

2. Check if there is another service S2 that is already bound in the WF

that could match Q′. If such S2 exists, replace S by S1 and S2 in the

composition. Otherwise, invoke the service selection component with

a new query with Q′.

C3: S1 matches part of the signature of S, and S1 matches part of the behaviour

inQ for the part of the signature that is matched. In this case, the behaviour

of S1 can fall in one of the following examples, with respect to query Q:

a. S.OP1->S.Op3

b. S.Op1->S.Op3->S.OP4

c. S.Op1->S.Op4->S.Op3 (S has extra operations in the middle of the

logical flow)

d. S.Op4->S.Op1->S.Op3 (S has extra operations in the beginning of the

logical flow)

171



e. S.Op1->S.Op6->S.Op3

Actions:

1. If the behaviour of the operations in S appear in the correct order

when not considering the missig or additional parts of the signature

in the query (examples a, b, c, d), proceed to step 2; otherwise this is

not a valid candidate (example e).

2. If there are no other additional operations in the behaviour of S (ex-

ample a), proceed as in case C2; otherwise proceed to step 3 (examples

b,c,d).

3. If the additional operations in the bahaviour of S, which are not in the

query, can be found in the WF (i.e., the operations are supported in

WF by other services), and if these additional operations in S satisfy

the properties and constraints of WF (example b), proceed as in case

C2; otherwise, this is not a valid candidate (examples c, d, e).

C4: S1 fully matches the signature of S and S1 matches only part of the be-

haviour for that signature.

Action: This case will be treated as cases C2 or C3, depending on the

behaviour match. Note that the fact that S fully matches the signature of

S1, does not change on how to deal with the situation.

C5: There are no candidate services.

172



Action: In this case the execution of the service composition cannot be

continued, unless a service provider creates a service with the necessary

functionality.

The above matching and compensation cases are supported by the notion of

decomposition of a query into a list of partition described in Subsection 5.3.

Example: Consider query Q = {findCar → lookupCar → findcarCB} of the

Car Rental Service (CRS) and the query presented below. The decompositions

of query Q into sub-queries are:

D1 = {{findCar → lookupCar → findcarCB}}

D2 = {{findCar}, {lookupCar → findcarCB}}

D3 = {{findCar → lookupCar}, {findcarCB}}

D4 = {{findCar → findcarCB}, {lookupCar}}

D5 = {{findCar}, {lookupCar}, {findcarCB}}

The approach tries to identify a service that can be matched with D1. If

such service does not exist, the approach will try to identify services that can be

matched with the two elements inD2. If these services are not found, the approach

carries on trying to identify services that can be matched with the elements of

the other decompositions. In the case in which a service that matches certain

elements of a decomposition is identified, the approach tries to identify services

173



that match elements in other decompositions that together include all operations

in the query.

For the repository above, service S1 will be matched with set D1. However,

suppose that we have a repository with services S2, S3, S4, and S5 above, but

not with service S1. In this case, the elements of set D2 will be matched with

services S3 and S5, respectively. Another possibility is the match of elements in

decomposition D4 with services S2 and S4, respectively.

For another example, suppose that we have a repository with services S3, S4,

and S7 above. In this case, the first element of D2 {findCar} will be matched with

service S3, the second element of D4 {lookupCar} will be matched with service

S4, and the third element of D5 {findcarCB} will be matched with service S7. If

we consider the situation in which we have service S5 and S6 in the repository,

a possible match will be a match between the first element of P2 {findCar} with

service S6; and the match of the second element of P2 with either service S5 or

service S6.

Feasability

The decomposition and matching processes can be very expensive, given that

the number of sub-queries grows fast in response to the size of the query. The

two factors that impact its complexity and computational cost are generation of

sub-queries and the interactions with the service discovering tool.

Decompositions for the composition as a whole, logic regions, and services,

can be computed in parallel of the execution of the compositions but require

constant consumption of system memory. Thus, the generation of sub-queries

does not affect much the feasability of the approach.

The actual maximum number of interactions with the discovering tool how-

174



ever, depends on the number of distinct sub-sets of a query. Formally speaking,

the maximum number of attempts to compensate through decomposition is given

by the number of subsets of the power set of query minus one. In other words,

given a query with n elements, the maximum number of attempts would be 2n−1.

In our experiments, the actual number of interactions is roughly two thirds of

this maximum, which is related to the order in which sub-queries are attempted

and the available repository of candidate services. Considering that the commu-

nication with the service discovering tool is expensive, this is the major concern

regarding deploying out approach in a real setting.

5.6 Proof of Concept

We have implemented a prototype tool of the framework. The query genera-

tion uses SPIN tool for model checking. The service selection and behavioural

compensation components have been implemented in Java as an extension of the

service discovery tool described in [147]. The framework has been evaluated for

the Car Rental Service application in terms of its use in two cases. We describe

below these cases and the results of the evaluation.

Case 1: The use of the framework to identify services to be initially bound to

service compositions based on a service workflow.

For this case we evaluated the use of the framework to identify services based on

four different queries described below. The queries were chosen in such a way so

that they represent different query sizes, they cover different flows of execution

175



in the model, including cases in which the flow of executions involve loops and

do not involve loops.

Moreover, in the evaluation we consider two cases as described below:

Case 1.1: only the abstract operations are defined for the service composi-

tion, without information regarding the actual binding, that is, we do not know

what are the services or provides to be used. This simulates the case where a

designer knows what are the operations required but requires a discovering tool

in order to found the actual services.

Case 1.2: the deployed services are know, and thus, we make separate queries

per service.

In this evaluation we used a service repository with a mixture of services from

the domain of the Car Rental Service application, including the services listed in

Section 5.1 (services S1 to S6), and services from other domains.

176



Q1

< startRental, findCar, lookupCar, findcarCB, stopRental >

Q2

< startRental, findCar, lookupCar, findcarCB,

stopRental, carExit,markUnavailable, stopRental >

Q3

< startRental, carEnter, checkforDamage,

markAvailable, checkforPetrol, calcpetrolBill,

calctotalBill, chargecreditCard, stopRental >

Q4

< startRental, carEnter, checkforDamage,

sendtoRepair, calrepairBill, checkforPetrol,

calcpetrolBill, calctotalBill, chargecreditCard,

stopRental >

The results of the experiments for Case 1.1 are shown in Table 5.1. In the

table, for each query Qi described above we show: (i) the total number of decom-

positions of the query that were used to identify a solution, and the total number

of decompositions generated for that query (column Decompositions); (ii) the

total number of interactions with the service discovery component necessary to

identify a solution, and the total number of distinct elements generated for all

the decompositions (column SD Interactions); and (iii) the identified solution for

177



the query (column Solution). The total number of distinct elements generated

for all the decompositions represent the maximum number of interactions with

the service discovery component.

The number of interactions with the service discovery component is indepen-

dent of the time that it takes for the service discovery component to execute the

matching between a query (or decompositions of a query) and service specifica-

tions. As previusly stated, we are not considering the time that it takes for the

service discovery tool to perform the matching. We are interested in the number

of interactions with the service discovery component given the focus of the work

on behavioural compensation, and the concept of decompositions used to support

this focus.

Table 5.1: Results of the experiments for Case 1.1
Query Decompositions SD Interactions Solution
Q1 35 / 52 19 / 31 Sl1
Q2 645 / 877 79 / 127 Sl2
Q3 16889 / 21147 352 / 511 Sl3
Q4 94026 / 115975 664 / 1023 Sl4

Sl1: {{S1.startRental, S1.stopRental},

{S2.f indCar, S2.f indcarCB},

{S3.lookupCar}}

Sl2: {S1.startRental, S1.stopRental},

{S2.f indCar, S2.f indcarCB},

{S3.lookupCar, S3.markUnavailable},

{S4.carExit}}

Sl3: {S1.startRental, S1.stopRental},

178



{S4.carEnter},

{S5.checkforDamage, S5.checkforPetrol},

{S3.markAvailable},

{S6.calcpetrolBill, S6.calctotalBill,

S6.chargecreditCard}}

Sl4: {S1.startRental, S1.stopRental},

{S4.carEnter},

{S5.checkforDamage, S5.sendtoRepair,

S5.checkforPetrol},

{S6.calcrepairBill, S6.calcpetrolBill,

S6.calctotalBill, S6.chargecreditCard}}

In the example, services S1 to S6 identified for the queries in Case 1.1 are the

ones described in Section III.

As shown in Table 5.1, although the number of decompositions generated

for the bigger traces is large, the real number of interactions with the service

discovery component is small. This is because the process only tries to identify

each different element in the list of decompositions once.

Moreover, the size of the service repositories does not contribute to the num-

ber of interactions with the service discovery components. Furthermore, the order

in which the decompositions and their elements are used during the identifica-

tion of services influences the number of interactions with the service discovery

component and possible solutions identified for a query.

Another aspect that influences the solutions identified for the queries and

the number of interactions with the service discovery tool is the structure of the

179



state machines representing the behaviour of the services. For example, suppose

services Sa and Sb with the same sets of operations Op1, Op2, Op3.

Consider the sate machine for Sa with a path representing the operations in

sequence, while the sate machine for Sb with each of the operations as transitions

starting in the initial state. The behaviour represented in the state machine for

Sa is more restrictive in terms of the queries that can be matched to it, when

compared to the behaviour of the state machine for Sb.

However, in the case of a query representing the above three operations in

sequence and a repository with services Sa and Sb, the process will require a

single interaction with the service discovery tool, given that the process starts

by trying the decompositions with a single element composed by all the three

operations.

The results of the experiments for Case 1.2 are shown in Table 5.2. In the

table, for each query Qi we show: the queries generated by the projection of the

queries on the respective services (column Sub-Queries); and, as in Case 1.1, the

numbers of decompositions and interactions with the service discovery tool, and

the identified solutions. In this case, the solutions Sl1 to Sl4 are the same as in

Case 1.1, due to the use of the same repository.

Table 5.2: Results of the experiments for Case 1.2
Query Sub-Queries Decomposition SD Interaction Solution
Q1 Q5Q6Q7 3 / 5 3 / 7 Sl1
Q2 Q5Q6Q8Q9 4 / 7 4 / 10 Sl2
Q3 Q5Q10Q11Q12Q13 5 / 11 5 / 15 Sl3
Q4 Q5Q10Q14Q15 4 / 23 4 / 26 Sl4

The use of the operations of the various services described in Section 5.1

to split the query based on particular services generates a number of different

180



sub-queries for each original query. As show in Table 5.2, after the projections,

three sub-queries were generated for Q1, four sub-queries were generated for Q2,

five sub-queries were generated for Q3, and four sub-queries were generated for

Q4. The projection of the four queries generated eleven distinct sub-queries in

total, as shown in the list below. For each sub-query in the list, we present the

maximum number of decompositions (Dm), and the maximum number of possible

interactions with the service discovery (Im).

Q5 = {startRental→stopRental}{Dm = 2, Im = 3}

Q6 = {findCar→findcarCB}{Dm = 2, Im = 3}

Q7 = {lookupCar}{Dm = 1, Im = 1}

Q8 = {lookupCar→markUnavailable}{Dm = 2, Im = 3}

Q9 = {carExit}{Dm = 1, Im = 1}

Q10 = {carEnter}{Dm = 1, Im = 1}

Q11 = {checkforDamage→checkforPetrol}{Dm = 2, Im = 3}

Q12 = {markAvailable}{Dm = 1Im = 1}

Q13 = {calpetrolBill→calctotalBill→chargecreditCard}{Dm = 5, Im = 7}

Q14 = {checkforDamage→sendtoRepair→checkforPetrol}{Dm = 5, Im = 7}

Q15 = {calctotalBill→calcpetrolBill→caltotalBill

→chargecreditCard}

{Dm = 15, Im = 15}

The difference in the number of distinct sub-queries with respect to the num-

ber of total sub-queries generated is due to the overlap in the services used to

project the queries. On a real environment, if the queries are executed sequen-

tially, the identical parts do not need to be checked again.

181



In Table 5.2, the total number of decompositions for each query is given by

the sum of the number of possible decompositions for all sub-queries related to

that query. Similarly, the total number of possible interactions with the service

discovery component is given by the sum of the number of interactions for the

associated sub-queries.

As shown in the table, for each query, the number of decompositions of the

query that are used to identify a solution and the number of interactions with

the service discovery component necessary to identify a solution are the same as

the number of sub-queries for that trace. This is due to the fact that, for each

query, a solution was identified for the first decomposition of that query that

was checked against the repository. In all cases, the first decomposition has one

element composed by a sequence of all the operations in the query. Moreover,

the state machines of the services that were matched with the query accept a

sequence of the respective operations.

Overall, the above experiments have shown that the number of interactions

with the service discovery component in order to identify a match for queries

depends on (i) the order in which the query decompositions and their elements

are traversed, (ii) the structure of the state machines of the services representing

the behaviour of these services, and (iii) the existence of a solution for the queries

in the service repository.

Case 2: The identification of services to replace already deployed services in the

composition that become unavailable or need to be changed.

For this case we assume that Payment Service (PS) (service S6) in the Car Rental

182



Service application becomes unavailable and evaluate the use of the framework to

identify services that can replace the Payment Service (PS). For this evaluation

we used four different types of service repositories with different sets of candidate

services for Payment Service. The different set of candidate services in the four

repositories used in the experiment are shown below:

A: S1; S2; S3; S4; S5; S
′
6;

B: S1; S2; S3; S4; S5; S7; S8;

C: S1; S2; S3; S4; S5; S7; S9; S10;

D: S1; S2; S3; S4; S5; S9; S10; S11; S12;

Where services S1 to S5 are the same as the services described in Section III,

and the other services are as follows: S ′
6: a copy of S6 in Section III; S7: a service

with operations calcpetrolBill and calcrepairBill ; S8: a service with operations

calctotalBill and chargecreditCard ; S9: a service with operation calctotalBill ;

S10: a service with operation chargecreditCard ; S11: a service with operation

calcpetrolBill ; and S12: a service with operation calcrepairBill.

In these experiments, we consider the projection of the operations of service S6

in the workflow of the service composition of the CRS application, which produces

queryQ = {calcrepairBill → calcpetrolBill → calctotalBill → chargecreditCard}.

For the set of repositories considered in this case, each set of candidate services

present a single and distinct solution for the problem.

Table 5.3 presents the results of these experiments with the identified solutions

described below. As shown in the table, for repository A, the solution was found in

one interaction with the service discovery tool, while for the other repositories the

183



solutions were found in five, seven, and 15 interactions with the service discovery

tool. This is due to the different types of services that were matched to the

queries in the various repositories used.

Table 5.3: Results for Payment Service Compensation Experiment
Repository Decompositions SD Iteractions Solution

A 1/15 1/15 Sl1
B 4/15 5/15 Sl2
C 5/15 7/15 Sl3
D 15/15 15/15 Sl4

Sl1: {{S
′
6.calcrepairBill, S ′

6.calcpetrolBill,

S ′
6.calctotalBill, S ′

6.chargecreditCard}}

Sl2: {{S7.calcrepairBill, S7.calcpetrolBill},

{S8.calctotalBill, S8.chargecreditCard}}

Sl3: {{S7.calcrepairBill, S7.calcpetrolBill},

{S9.calctotalBill}, {S10.chargecreditCard}}

Sl4: {{S11.calcrepairBill}, {S12.calcpetrolBill},

{S9.calctotalBill}, {S10.chargecreditCard}}

5.7 Summary and Discussions

This chapter presents an extension for ProAdapt that is based on the automated

support for behavioural compensation in the cases when services cannot be found

that can fully satisfy the required specifications of the original services. The

chapter start with a brief explanation of the proposed extension and includes an

example of a car rental service that we use to illustrate the work.

184



We then present an overview of the approach, describing the various steps

and and expected flow of operation of the behavioural compensation approach.

Since for this extension the service discovery tool and its internal working is

so important, we describe the specific query-based service selection mechanism.

More specifically, how queries are created and candidate services identified based

on these queries.

Following the discussion regarding query-based service selection, we present

the strategy used for the behavioural compensation, including a illustrative ex-

ample of how it works. Then we present and discuss the five possible cases that

may happen when attempting to find candidate services using the proposed ap-

proach. Finally, we show some experiments that we have conducted to evaluate

the work.

As mentioned before, it is not always possible to identify a service, or even a

group of services, that can fully satisfy the behaviour characteristics of another

service. Some service require a specific order of messages and operations, and

these constraints must be follow if one expect to interact with the service.

The results obtained show the feasibility of our approach in providing ways

to identify if other services participating in the composition or available as can-

didates can be used to fulfil the expected behaviour of the service composition

while respecting the constraints of the deployed services.

However, there are a few drawbacks in our approach. For instance, it ter-

minates when the first possible solution is found. The solutions are attempted

based on the order in which decompositions of queries are traversed. In the case

of two or more possible solutions for a query there is no difference in the distance

returned by the solutions and, therefore, it is not possible to say if one solution

185



is better than the other. However, if we expand the work to consider other con-

straints such as quality or contextual aspects of the services, it could be possible

to have a solution that is better than another, depending on how these extra

constraints are matched.

Moreover, the behavioural compensation logic does not scale well, since the

number of partitions can increase really fast. If such logic is implemented at

the service discovering tool side, however, the process becomes more smooth,

since the knowledge of all available services can reduce the search space, saving

resources and giving a faster answer.

Despite these restrictions, we believe that our proposed behavioural compen-

sation approach is successful in its attempt to provide a solution for the identi-

fication of services based on matching of the structural and behavioural aspects

of queries and service descriptions. In addition, the solution was implemented in

a real testbed, which means less effort to adapt the solution for a final product.

The following chapter concludes the work presented in this thesis. We revisite

the objectives and hypotheses and presentes what we expect for now on.

186



Chapter 6

Conclusions and Future Work

In this report we presented the ProAdapt framework as the result of the work

performed in the area of adaptation of service compositions. ProAdapt is a QoS-

aware, dynamic, and proactive adaptation framework for service composition

that uses monitoring and prediction techniques to prevent possible execution

failures and to improve service composition continually. Moreover, the proposed

solution is able to identify individually the need for adaptation for each parallel

running instance of a service composition, while avoiding unnecessary changes,

and distributing load request among different service operations when necessary.

ProAdapt can also be seen as a hybrid adaptation approach, since it combines

the ability to both react to events and predict the need for adaptation. Reactive

adaptation, however, can also be seen as a special case of proactive adaptation

where the impact of a monitored event is eminent, and thus require prompt

reaction.

In what follows, we revisit the working hypotheses and objectives defined for

this thesis report in Chapter 1, and provide a discussion of the obtained remarks

187



and how we manage to address each of the objectives.

General hypothesis

Proactive adaptation of service compositions can improve the performance,

reliability, and general conformance with system requirements of service compo-

sitions when compared to traditional static and reactive adaptation approaches.

Sub-hypotheses

H.1 It is possible to proactively identify the need for adaptation in service com-

positions by constantly monitoring the execution environment, systems re-

quirements, and the status of the service composition itself.

H.2 It is possible to use a local service repository and proactively replace candi-

date operations in service compositions.

H.3 It is possible to adapt service compositions in parallel to their execution

without stopping the business process.

H.4 It is possible to avoid unnecessary changes in service compositions when

identified problems can be compensated by parts of the service composition

yet to be executed.

General Objective

To support a dynamic and proactive adaptation of service compositions through

the use of monitors, candidate service replacements, and techniques for prediction

of problems in order to improve the reliability, performance, and conformance of

business process.

Objectives

188



O.1: Literature Review

To provide a literature review and analysis of works in relevant areas of the

research topic. The review needs to include topics such as service composi-

tion, monitoring, discovery, adaptation, and failure prediction techniques.

O.2: Prediction of Problems

To design and implement mechanisms to support the detection and proac-

tive prediction of events that may require adaptation of service composi-

tions.

O.3: Events Analysis

To deliver techniques to help understanding potential faults and to identify

the parts in a service composition that may be affected by detected or

predicted faults.

O.4: Adaptation Approaches

To analyse and specify relationships between the different ways of adapting

service compositions and the circumstances that may trigger adaptation.

O.5: Adaptation Framework

To specify an adaptation framework including techniques for monitoring,

detection and prediction of events that may require adaptation, and en-

forcement of changes in a dynamic and proactive way.

O.6: Evaluation

To develop scenarios and evaluate proof-of-concept tools that will be cre-

ated to support the techniques and mechanisms created for the Adaptation

Framework considering medium to large scale case studies.

189



Hypothesis and Objectives Discussion

H.1 Since the first developed prototype we have been able to predict the need for

adaptation using QoS analysis (Section 3.3.1.1) and spatial correlation (Sec-

tion 3.3.1.2). These techniques were able to predict the need for adaptation

before reaching the point of the execution instance where the prediction

would turn into a fault. Moreover, the parallel analysis (Section 3.3.1.3)

goes even further in identifying the need for adaptation as soon as possible,

and thus augmenting the adaptation success rate.

H.2 Most of our research was focused on using a cacheable base of services, or

the Bind Information Repository (see Figure 3.3), which could be exter-

nally updated in any way by different tools, such as the one used during

the experiments [147]. This approach creates less of a problem to proac-

tively adapt compositions due to the fact that service replacements are not

found only when problems arise, but in parallel of the execution of service

compositions. During the behavioural compensation extension (Chapter 5),

however, the discovering tool is used more iteratively and on demand.

H.3 ProAdapt is able to go beyond the simple adaptation of service composition

by being able to adapt single execution instances independently in parallel

of other execution instances of the same or different service compositions

(see Figure 3.2). The two major challenges to accomplish this behaviour

was to extend the model representation of a running instance and modify

the execution engine to support such new model.

190



H.4 The compensation performed within the execution instance without adap-

tation is possible for the third class of events covered by ProAdapt, that

is, events that allow the composition to continue to be executed, but not

necessarily in its best way. As discussed in Section 3.3.1.1, these events

may not even cause a disruption at all if other parts of the composition are

to compensate for the observed deviation. In fact, that is true not only for

the parts of the service composition yet to be executed, as pointed out by

fourth sub-hypotheses, but also by operations within the execution instance

that outperformed their expected quality of service parameters, mainly the

response time.

O.1 A literature review was made in order to identify the current knowledge

related to the topic of the research. As a result a theoretical background

was created to serve as conceptual base for the proposed approach, and a

review of related works presented.

O.2 While studying the context of composite services, and more specifically the

mechanics or infrastructure that supports the execution of service composi-

tions, it becomes clear that predicting problems in service-based system is

not an easy task. This is mainly because service-based systems are actually

a system of systems which have no direct control of its internal components

(other systems). In this context, this work identifies that the detection

of problems in service compositions is concerned with deviations of the ex-

pected interaction model between the composition as a whole an its internal

components. This reports includes two prediction techniques related to the

core concept of service compositions, the interaction with service opera-

191



tions. The first technique focuses on the aggregation of QoS parameters of

individual components of the composition, and the modelling of expected

response time of operations to predict the probability of failure to execute

the service composition in accordance with the SLA (see Section 3.3.1.1).

The second technique, named spatial correlation, exploits the strong corre-

lation between the availability of operations of the same service or provider

to predict potential unreachable operations deployed in a composition.

O.3 As a result of the expected study to cover this objective, the current work is

able to analyse specific observed or predicted events and assess the impact

of these readings in the service composition. This work extends previous

approaches by enabling the analyses to be centred in a specific execution

instance, while at the same time creates the required means to expand the

analyses across multiple and parallel execution instances.

O.4 While different strategies for adaptation of service composition can be iden-

tified, such as renegotiation with provider entities, or deployment of addi-

tional service agents, this work is so far centred at the rearrangement of

service compositions, in terms of the internal logic and service components.

In this context, the idealised approach is able to adapt execution instances

individually, without affecting other instances at the same time that it is

possible to reverberate the need for adaptation across multiple executing

instances or even the ones yet to be created. The adaptation approach is

backed up by a backtrack selection algorithm, which is in charge of com-

puting a new set of deployed service operations for a specific execution

instance.

192



O.5 As the main result of the research conducted, a new proactive adaptation

framework (ProAdapt) was introduced. The framework supports techniques

for locating and selecting service operations, monitoring, detection, and pre-

diction of events that may required adaptation and enforcement of changes

in a dynamic and proactive way.

O.6 We have considered a range of scenarios, ranging for simple service com-

positions for illustration purposes, real case scenarios, and complex com-

positions created for our evaluations. As observed in Chapter 4 three pro-

totypes were implemented to support the proposed adaptation framework.

These prototypes include tools for locating service candidates, monitoring,

executing service compositions, and change the execution when necessary.

Different evaluations were conducted including the use of simulated and

real platforms.

6.1 Future Work

The experiments conducted during this work were useful to support our hypothe-

ses and incrementally improve our framework. ProAdapt supports the dynamic

adaptation of service compositions triggered by different classes of situations and

is able to predict faults and failures caused by QoS deviation and unavailability

of operations.

The results shows that ProAdapt, as well as its extension, can improve the

overall quality aspects of running service compositions, however, we had to make

certain assumptions to verify our solution and there are a few limitations. This

section presents some ways in which ProAdapt could be further improved.

193



Support for User Interaction. Through the research conducted in this

work it was noticed that existing approaches for service-based system adaptation

do not necessarily consider interactions of the users with the services. However,

several of the service-based applications require the user in the loop when service

compositions are executed.

An extension of the ProAdapt framework is planned to support user interac-

tion. More specifically, it is necessary to consider the time required by users to

interact with the system and provide response to the system and the impact of

this new activity in the process of QoS aggregation, prediction, and verification.

A first solution to consider the case of user interaction would be to ensure

the SLA constraints for specific logic regions, and lessen such constraints for the

composition as a whole. In such case, the SLA constraints would be ensured for

regions before and after a defined user interaction.

It is important to note that the user interaction is not supported by default

in implementations of BPEL4WS [73] execution engines. There are, however,

some existing extensions, such as the activity HumanTask defined for IBM Web-

Sphere [77].

Load Balancing Model. The use of the loading balancing technique in

ProAdapt is successful in providing alternatives paths to the execution of service

compositions under high loads. In order to avoid overloading services and receiv-

ing a degraded response, however, the strategy employed a solution that can limit

the maximum throughput of service operations. In order to improve the maxi-

mum throughput of the composition as a whole while avoiding overloading the

deployed operations, we are investigating the use of the congestion control algo-

rithm used in the TCP protocol to dynamically adjust the expected throughput

194



of service operations.

In the TCP protocol the amount of data that can be sent is dynamically

adjusted according to the sender and receiver capabilities. The main advantage

of such approach is that it is able to couple with variations in both the network

conditions as well as the current status of available internal resources, such as

memory and processing power, of both sender and receiver.

Service Interface Adaptors. As discussed before, the matching process

using in the service selection process takes into account both the syntax and

semantic description of candidate services. Even with the great number of func-

tionally equivalent services available in public providers nowadays, the interface

of such services is not standardized. They may require different input parameters

and produce different output values.

Things such as the names of the parameters, or their order, can usually be

relaxed in an experimental setup, but for a final product even these small dis-

crepancies on the interface of services can create a problem. An extension for this

work is to include adaptors that would amend the difference in the interfaces of

services that are semantically equivalent, in order to use them seamlessly in the

ProAdapt approach.

Additional Constraints. The prototypes implemented for the ProAdapt

framework consider basically the response time, cost, and throughput parame-

ters of service operations. We can extend such considerations with other different

types of constraints when attempting to adapt a service composition. By de-

signing decision, some services or group of services may have to be fixed in a

composition, which is not supported yet, but would require little effort to imple-

ment. Another example of constraints is the level of security or the quality of

195



the services as stated by some refutation system centred in users or consumers

opinions. The problem of service selection with behavioural compensation, for

instance, could be expressed as a constraint satisfaction problem.

Stateful Services. In order to handle more complex interactions with ser-

vice based systems, our proposed framework would have to couple with stateful

services. More precisely, stateful services keep some sort of state or information

between the service calls, and replacing them within an execution instance may

require additional steps, such as the rollback of operations already performed.

Our behavioural compensation extension is able to couple with the restriction

imposed by stateful services regarding the order that operations need to be in-

voked, but we consider a future improvement of our work the total support for

stateful services, mainly regarding the roll back of operations and the implications

in restabilising the correct execution of service operations.

6.2 Final Remarks

Our work support a dynamic, parallel, and proactive adaptation of service com-

positions through the use of monitors, candidate service replacements, and tech-

niques for prediction of faults and failure in order to continually improve the

reliability, performance, and conformance of business processes.

The research have identified various need for adaptation in service composi-

tion and ways to monitor or even predict events that may require adaptation.

Techniques were presented to support the dynamic selection of candidate ser-

vices and updating of compositions instances during run time, in parallel with

the execution of the service based system.

196



One of the greater advantages of the framework presented in this work is the

ability to adapt execution instances independently, which means that exceptional

circumstances can be treated locally and isolated. Execution instances are created

and maintained in such a way that it is virtually possible to have a different set

of deployed service candidates for each execution instance.

The results collected through experiments performed with the various im-

plemented prototypes are promising and show the advantage of the designed

proactive approach. There are, however, a number of limitations or threats to

validity, which may have an impacted our work. One of them is concerned with

the fact that the services operations in the execution instances of the composi-

tions are selected and replaced in our experiments based on a set of syntactically

and semantically equivalent services.

A particular limitation is the assumption of stateless services when select-

ing and replacing candidate operations. Even though it is safe to assume that

stateless services constitutes the majority of the available web services on public

databases, due to its simplicity, complex interactions are usually implemented

with stateful services. Considering stateful services, however, can be partially

achieved with our behavioural compensation extension, as described previously.

Another possible threat to validity is related to the scenarios used during our

experiments. Even though we used an illustrative real scenario to explain the

approach, the evaluations were performed in artificial service compositions. This

could be seen as a possible limitation to applicability; however, these scenarios

were created to either study the solution in simply cases or stress it with complex

situations in order to assess its efficiency. We believe that our choice for artificial

compositions proves the validity of the approach for general cases, rather than

197



been specific to some examples.

One of the advantages of ProAdapt when comparing to other adaptation

frameworks is the easiness in which the framework can be deployed in real set-

ting using the developed prototypes. Many similar approaches provide sound

theoretical frameworks but require a costly process to bring the ideas to the real

world.

In our prototypes, we have implemented real components such as proxies and

modified the ODE execution engine to work with real WS-BPEL specifications.

This is not usually the case for the surveyed approaches. As our prototypes and

evaluation scenarios were becoming more complex, however, we had to rely on

our simulated infrastructure.

There are some challenges to be overcame in order to bring the whole frame-

work into a real setting. This challenges are basically mostly to how the execution

engine process the service compositions. For ProAdapt to work, service opera-

tion invocation must me accompanied by the information regarding the related

execution engine and the point of execution inside such execution instance. More-

over, the execution engine must allow dynamic change of the executable service

composition.

The growing number of service databases indicates that finding semantically

equivalent operations services are not a major concern, however, these operations

are usually presented with different interfaces. These interfaces are taken into

account in our ProAdapt framework, but in order to improve its applicability

further, some adaptor, as described in Chapter 2, could be considered.

The applicability of ProAdapt is not limited to standard web service compo-

sitions. Many concepts of the service-oriented computing can be used in fields

198



such as cloud computing and Internet of Things (IoT. The service composition

for cloud services has recently gain attention an propose an alternative to im-

prove cloud services collaboration and integration. In this scenario, adaptation

approaches previously target at service compositions can be harnessed to devise

smarter adaptation strategies to could services.

The same is valid for the IoT, which considers a pervasive presence of object,

such as TVs, mobile phones, and sensors, which are able to cooperate among

themselves to reach a common goal [56]. The concepts of service composition

adaptation could be used to further improve the reliability of the applications in

the context of the Internet of Things.

199



References

[1] Aggarwal, R., Verma, K., Miller, J., and Milnor, W. Constraint

Driven Web Service Composition in METEOR-S. In Proceedings of the

2004 IEEE International Conference on Services Computing (Washington,

DC, USA, 2004), SCC ’04, IEEE Computer Society, pp. 23–30. 41

[2] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. Web Ser-

vices: Concepts, Architectures and Applications, 1st ed. Springer Publishing

Company, Incorporated, 2010. 2, 6, 12

[3] Anselmi, J., Ardagna, D., and Cremonesi, P. A qos-based selection

approach of autonomic grid services. In Proceedings of the 2007 workshop

on Service-oriented computing performance: aspects, issues, and approaches

(2007), ACM, pp. 1–8. 58

[4] Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., and Plebani,

P. Paws: A framework for executing adaptive web-service processes. IEEE

Softw. 24, 6 (Nov. 2007), 39–46. 42

[5] Ardagna, D., and Pernici, B. Adaptive service composition in flexible

processes. Software Engineering, IEEE Transactions on 33, 6 (2007), 369–

384. 59, 60

200



REFERENCES

[6] Arshad, N., Heimbigner, D., and Wolf, A. L. A planning based

approach to failure recovery in distributed systems. In Proceedings of the

1st ACM SIGSOFT Workshop on Self-managed Systems (New York, NY,

USA, 2004), WOSS ’04, ACM, pp. 8–12. 43

[7] Åström, K. J., Hägglund, T., Hang, C. C., and Ho, W. K. Au-

tomatic tuning and adaptation for pid controllers-a survey. Control Engi-

neering Practice 1, 4 (1993), 699–714. 30

[8] Autili, M., Benedetto, P., and Inverardi, P. Context-aware adap-

tive services: The plastic approach. In Proceedings of the 12th International

Conference on Fundamental Approaches to Software Engineering: Held as

Part of the Joint European Conferences on Theory and Practice of Soft-

ware, ETAPS 2009 (Berlin, Heidelberg, 2009), FASE ’09, Springer-Verlag,

pp. 124–139. 40

[9] Bairavasundaram, L. N., Goodson, G. R., Pasupathy, S., and

Schindler, J. An analysis of latent sector errors in disk drives. In ACM

SIGMETRICS Performance Evaluation Review (2007), vol. 35, ACM,

pp. 289–300. 36

[10] Baresi, L., Di Nitto, E., Ghezzi, C., and Guinea, S. A framework

for the deployment of adaptable web service compositions. Service Oriented

Computing and Applications 1 (2007), 75–91. 10.1007/s11761-007-0004-1.

41

201



REFERENCES

[11] Baresi, L., Ghezzi, C., and Guinea, S. Towards self-healing service

compositions. In PriSE04, First Conference on the Principles of Software

Engineering (2004). 42

[12] Bellwood, T., Capell, S., Clement, L., Colgrave, J., Dovey,

M., Feygin, D., Kochman, A., Macias, P., Novotny, M.,

Paolucci, M., et al. Universal description, discovery and integra-

tion specification (uddi) 3.0. Online: http://uddi. org/pubs/uddi-v3. 00-

published-20020719. htm (2002). 10

[13] Benbernou, S., Cavallaro, L., Hacid, M. S., Kazhamiakin, R.,

Kecskemeti, G., Poizat, J.-L., Silvestri, F., Uhlig, M., and Wet-

zstein, B. State of the Art Report, Gap Analysis of Knowledge on Prin-

ciples, Techniques and Methodologies for Monitoring and Adaptation of

SBAs, 2008. 37

[14] Benedetto, D. P. A framework for context aware adaptable software

applications and services, July 2010. 40

[15] Berbner, R., Spahn, M., Repp, N., Heckmann, O., and Stein-

metz, R. Heuristics for qos-aware web service composition. In Proceedings

of the IEEE International Conference on Web Services (Washington, DC,

USA, 2006), ICWS ’06, IEEE Computer Society, pp. 72–82. 41

[16] Bhaskaran, K., and Schmidt, M.-T. Websphere business integration:

An architectural overview. IBM Systems Journal 43, 2 (2004), 238–254. 40

202



REFERENCES

[17] Bianculli, D., Giannakopoulou, D., and Pasareanu, C. S. Inter-

face decomposition for service compositions. In ICSE (2011), pp. 501–510.

160

[18] Bodenstaff, L., Wombacher, A., Reichert, M., and Jaeger,

M. C. Analyzing impact factors on composite services. In Proceedings

of the 2009 IEEE International Conference on Services Computing (Wash-

ington, DC, USA, 2009), SCC ’09, IEEE Computer Society, pp. 218–226.

51

[19] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M.,

Ferris, C., and Orchard, D. Web Services Architecture, W3CWorking

Group Note. Tech. rep., W3C Working Group, February 2004. 2, 6, 7, 9

[20] Bordeaux, L., Salaün, G., Berardi, D., and Mecella, M. When

are two web services compatible? In Proceedings of the 5th interna-

tional conference on Technologies for E-Services (Berlin, Heidelberg, 2005),

TES’04, Springer-Verlag, pp. 15–28. 47

[21] Bucchiarone, A., Lafuente, A., Marconi, A., and Pistore, M.

A formalisation of adaptable pervasive flows. In Web Services and Formal

Methods, C. Laneve and J. Su, Eds., vol. 6194 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2010, pp. 61–75. 42

[22] Bucchiarone, A., Pistore, M., Raik, H., and Kazhamiakin, R.

Adaptation of service-based business processes by context-aware replan-

ning. In Service-Oriented Computing and Applications (SOCA), 2011 IEEE

International Conference on (Dec 2011), pp. 1–8. 42

203



REFERENCES

[23] Burstein, M. H., Hobbs, J. R., Lassila, O., Martin, D., McDer-

mott, D. V., McIlraith, S. A., Narayanan, S., Paolucci, M.,

Payne, T. R., and Sycara, K. P. Daml-s: Web service description

for the semantic web. In Proceedings of the First International Semantic

Web Conference on The Semantic Web (London, UK, UK, 2002), ISWC

’02, Springer-Verlag, pp. 348–363. 11

[24] Canfora, G., Di Penta, M., Esposito, R., and Villani, M. L. An

approach for qos-aware service composition based on genetic algorithms.

In Proceedings of the 7th annual conference on Genetic and evolutionary

computation (2005), ACM, pp. 1069–1075. 59, 60

[25] Canfora, G., Penta, M. D., Esposito, R., and Villani, M. L.

Qos-aware replanning of composite web services. In ICWS (2005), IEEE

Computer Society, pp. 121–129. 41

[26] Casati, F., Ceri, S., Pernici, B., and Pozzi, G. Workflow evolution.

Data & Knowledge Engineering 24, 3 (1998), 211–238. 70

[27] Casati, F., Ilnicki, S., Jin, L.-j., Krishnamoorthy, V., and Shan,

M.-C. Adaptive and dynamic service composition in eflow. In Proceedings

of the 12th International Conference on Advanced Information Systems En-

gineering (London, UK, UK, 2000), CAiSE ’00, Springer-Verlag, pp. 13–31.

41

[28] Chen, M., Tan, T., Sun, J., Liu, Y., Pang, J., and Li, X. Verifi-

cation of functional and non-functional requirements of web service com-

position. In Formal Methods and Software Engineering (2013), L. Groves

204



REFERENCES

and J. Sun, Eds., vol. 8144 of Lecture Notes in Computer Science, Springer

Berlin Heidelberg, pp. 313–328. 15

[29] Cheng, B. H., De Lemos, R., Giese, H., Inverardi, P., Magee, J.,

Andersson, J., Becker, B., Bencomo, N., Brun, Y., Cukic, B.,

et al. Software engineering for self-adaptive systems: A research roadmap.

In Software engineering for self-adaptive systems. Springer, 2009, pp. 1–26.

30

[30] Chinosi, M., and Trombetta, A. Bpmn: An introduction to the stan-

dard. Comput. Stand. Interfaces 34, 1 (Jan. 2012), 124–134. 13, 161

[31] Chiu, D., Deshpande, S., Agrawal, G., and Li, R. A dynamic

approach toward qos-aware service workflow composition. In Proceedings

of the 2009 IEEE International Conference on Web Services (Washington,

DC, USA, 2009), ICWS ’09, IEEE Computer Society, pp. 655–662. 85

[32] Christensen, E., Curbera, F., Meredith, G., and Weerawarana,

S. Web Service Definition Language (WSDL). Tech. rep., Mar. 2001. 10,

12, 164

[33] Christensen, E., Curbera, F., Meredith, G., and Weerawarana,

S. Web services description language (wsdl) 1.1, w3c working group note.

Tech. rep., W3C Working Group, March 2001. 6

[34] Colombo, M., Nitto, E. D., and Mauri, M. Scene: A service com-

position execution environment supporting dynamic changes disciplined

through rules. In ICSOC (2006), A. Dan andW. Lamersdorf, Eds., vol. 4294

of Lecture Notes in Computer Science, Springer, pp. 191–202. 41

205



REFERENCES

[35] Computing, A., et al. An architectural blueprint for autonomic com-

puting. IBM White Paper (2006). 31

[36] Console, L., Ardagna, D., Ardissono, L., Bocconi, S., Odile,

M., Drira, K., Eder, J., Friedrich, G., Fugini, M., Furnari,

R., Goy, A., Guennoun, K., Hess, A., Ivanchenko, V., Guillou,

X. L., Pencol, Y., Petrone, G., Pernici, B., Picardi, C., Pucel,

X., Robin, S., Roz, L., Segnan, M., Tahamtan, A., Tejie, A. T.,

Dupr, D. T., Harmelen, F. V., Vidal, T., and Subias, A. 9 ws-

diamond: Web servicesdiagnosability, monitoring, and diagnosis, 2008. 42

[37] Csenki, A. Bayes predictive analysis of a fundamental software reliability

model. Reliability, IEEE Transactions on 39, 2 (1990), 177–183. 34

[38] da Silva, I., and Zisman, A. A framework for trusted services. In

Service-Oriented Computing. Springer, 2012, pp. 328–343. 57

[39] da Silva, I., and Zisman, A. Decomposing ratings in service composi-

tions. In Service-Oriented Computing. Springer, 2013, pp. 474–482. 58

[40] Dai, Y., Yang, L., and Zhang, B. Qos-driven self-healing web service

composition based on performance prediction. J. Comput. Sci. Technol. 24,

2 (2009), 250–261. 47, 94

[41] Davey, B., Boland, N., and Stuckey, P. J. Efficient intelligent

backtracking using linear programming. INFORMS Journal on Computing

14, 4 (2002), 373–386. 112

206



REFERENCES

[42] Dawson, C. Practical Research Methods: A User-friendly Guide to Mas-

tering Research Techniques and Projects. UBS Publishers’ Distributors Pvt.

Limited, 2003. 25

[43] Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., and

Pohl, K. A journey to highly dynamic, self-adaptive service-based appli-

cations. Automated Software Eng. 15, 3-4 (Dec. 2008), 313–341. 3, 37

[44] Dumont, G. A., and Huzmezan, M. Concepts, methods and techniques

in adaptive control. In American Control Conference, 2002. Proceedings of

the 2002 (2002), vol. 2, IEEE, pp. 1137–1150. 30

[45] Dustdar, S., and Papazoglou, M. P. Services and service composition

- an introduction (services und service komposition - eine einführung). it -

Information Technology 50, 2 (2008), 86–92. 3, 37

[46] Dustdar, S., and Schreiner, W. A survey on web services composition.

Int. J. Web Grid Serv. 1, 1 (Aug. 2005), 1–30. 2, 12

[47] Erl, T. Service-oriented architecture: concepts, technology, and design.

Pearson Education India, 2005. 30

[48] Erl, T. SOA Principles of Service Design (The Prentice Hall Service-

Oriented Computing Series from Thomas Erl). Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2007. 2

[49] Farrell, J., and Lausen, H. Specification: Semantic annotations for

wsdl and xml schema (sa-wsdl), 2007. 11

207



REFERENCES

[50] Feng, T.-y. A survey of interconnection networks. Computer 14, 12

(1981), 12–27. 104

[51] Fu, S., and Xu, C.-Z. Exploring event correlation for failure prediction in

coalitions of clusters. In Proceedings of the 2007 ACM/IEEE conference on

Supercomputing (New York, NY, USA, 2007), SC ’07, ACM, pp. 41:1–41:12.

72

[52] Fu, S., and Xu, C.-Z. Quantifying temporal and spatial correlation of

failure events for proactive management. In Reliable Distributed Systems,

2007. SRDS 2007. 26th IEEE International Symposium on (2007), IEEE,

pp. 175–184. 34

[53] Gao, C., Cai, M., and Chen, H. Qos-aware service composition based

on tree-coded genetic algorithm. In Computer Software and Applications

Conference, 2007. COMPSAC 2007. 31st Annual International (2007),

vol. 1, IEEE, pp. 361–367. 59, 60

[54] Ghalimi, I. Why bpel. Why BPEL Matters. Retrieved from

http://itredux.com/2008/09/28/why-bpel. 14

[55] Ghandehari, M., and Stroulia, E. A lightweight coordination ap-

proach for resource-centric collaborations. In REST: Advanced Research

Topics and Practical Applications, C. Pautasso, E. Wilde, and R. Alarcon,

Eds. Springer New York, 2014, pp. 147–165. 15

[56] Giusto, D., Lera, A., Morabito, G., and Atzori, L. The Internet

of Things. Springer, 2010. 199

208



REFERENCES

[57] Guinea, S., Kecskemeti, G., Marconi, A., and Wetzstein, B.

Multi-layered monitoring and adaptation. In Proceedings of the 9th in-

ternational conference on Service-Oriented Computing (Berlin, Heidelberg,

2011), ICSOC’11, Springer-Verlag, pp. 359–373. 48

[58] Gunasinghe, T., and Kelly, T. Establishing a standard business pro-

cess execution architecture for integrating web services. In Proceedings

of the IEEE International Conference on Web Services (Washington, DC,

USA, 2005), ICWS ’05, IEEE Computer Society, pp. 365–372. 15

[59] Hackmann, G., Haitjema, M., Gill, C., and Roman, G.-C. Sliver:

A bpel workflow process execution engine for mobile devices. In Lecture

Notes in Computer Science (2006), vol. 4294, pp. 503–508. 16

[60] Hay, D. Requirements Analysis: From Business Views to Architecture.

Prentice Hall, 2011. 13

[61] Heimerdinger, W. L., Heimerdinger, W. L., Weinstock, C. B.,

Weinstock, C. B., Miller, T. R., and Col, L. Tech. rep., Pittsburgh,

Pennsylvania, USA. 33

[62] Henderson, T. R., Lacage, M., Riley, G. F., Dowell, C., and

Kopena, J. Network simulations with the ns-3 simulator. SIGCOMM

demonstration (2008). 24, 135

[63] Hielscher, J., Kazhamiakin, R., Metzger, A., and Pistore, M. A

framework for proactive self-adaptation of service-based applications based

on online testing. In Proceedings of the 1st European Conference on To-

209



REFERENCES

wards a Service-Based Internet (Berlin, Heidelberg, 2008), ServiceWave ’08,

Springer-Verlag, pp. 122–133. 37

[64] Hielscher, J., Metzger, A., and Kazhamiakin, R. Taxonomy of

adaptation principles and mechanisms. Tech. rep., 2009. 3

[65] Hollingsworth, D. Workflow Management Coalition: The Workflow

Reference Model, 1995. 15

[66] Huang, A. F., Lan, C.-W., and Yang, S. J. An optimal qos-based web

service selection scheme. Information Sciences 179, 19 (2009), 3309–3322.

59

[67] Hunter, J. S. The exponentially weighted moving average. J. QUALITY

TECHNOL. 18, 4 (1986), 203–210. 22

[68] Ivanovic, D., Kaowichakorn, P., and Carro, M. Towards qos

prediction based on composition structure analysis and probabilistic en-

vironment models. In Principles of Engineering Service-Oriented Systems

(PESOS), 2013 ICSE Workshop on (2013), IEEE, pp. 11–20. 58

[69] Jaeger, M. C., Mühl, G., and Golze, S. Qos-aware composition

of web services: An evaluation of selection algorithms. In On the Move to

Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE. Springer,

2005, pp. 646–661. 58

[70] Ji, X. Research on web service discovery based on domain ontology. In

Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd

IEEE International Conference on (Aug 2009), pp. 65–68. 56

210



REFERENCES

[71] Jiang-Hong, J. Z.-Y. H., and Zhao, W. An optimization model for

dynamic qos-aware web services selection and composition. Chinese Journal

of Computers 5 (2009), 019. 56

[72] Jun, N., Bin, Z., Xiangyu, Z., Zhiliang, Z., and Dancheng, L.

Two-stage adaptation for dependable service-oriented system. In Service

Sciences (ICSS), 2010 International Conference on (2010), IEEE, pp. 143–

147. iii, 53, 54

[73] Juric, M. B. Business Process Execution Language for Web Services

BPEL and BPEL4WS 2nd Edition. Packt Publishing, 2006. 14, 144, 164,

168, 194

[74] Kankanamge, C. Web Services Testing With Soapui. Packt, 2012. 121

[75] Kay, R. Introduction to network latency engineering. 19

[76] Kazhamiakin, R., Wetzstein, B., Karastoyanova, D., Pis-

tore, M., and Leymann, F. Adaptation of service-based applications

based on process quality factor analysis. In Service-Oriented Comput-

ing. ICSOC/ServiceWave 2009 Workshops - International Workshops, IC-

SOC/ServiceWave 2009, Stockholm, Sweden, November 23-27, 2009, Re-

vised Selected Papers (2009), A. Dan, F. Gittler, and F. Toumani, Eds.,

vol. 6275 of Lecture Notes in Computer Science, pp. 395–404. 42

[77] Keen, M., Balani, N., Natraj, A., Chaubal, A., Nadgir, D.,

Sharma, M., Steele, M., and Tost, A. Getting started with ibm

websphere business services fabric v6.1. IBM Redbooks, 2008. 16, 194

211



REFERENCES

[78] Kephart, J. O., and Chess, D. M. The vision of autonomic computing.

Computer 36, 1 (2003), 41–50. 30

[79] Kongdenfha, W., Motahari-Nezhad, H. R., Benatallah, B.,

Casati, F., and Saint-Paul, R. Mismatch patterns and adaptation as-

pects: A foundation for rapid development of web service adapters. IEEE

Trans. Serv. Comput. 2, 2 (Apr. 2009), 94–107. 47

[80] Koren, I., and Krishna, C. M. Fault-Tolerant Systems. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 2007. 32

[81] Kothari, C. Research Methodology: Methods and Techniques. New Age

International (P) Limited, 2004. 25

[82] Krafzig, D., Banke, K., and Slama, D. Enterprise SOA: service-

oriented architecture best practices. Prentice Hall Professional, 2005. 30

[83] Kumar, R. Research Methodology: A Step-by-Step Guide for Beginners.

SAGE Publications, 2014. 25

[84] Leangsuksun, C., Liu, T., Rao, T., Scott, S., and Libby, R. A

failure predictive and policy-based high availability strategy for linux high

performance computing cluster. In The 5th LCI International Conference

on Linux Clusters: The HPC Revolution (2004), Citeseer, pp. 18–20. 35

[85] Lécué, F. Optimizing qos-aware semantic web service composition.

Springer, 2009. 59, 60

[86] Leite, L. A. F., Oliva, G. A., Nogueira, G. M., Gerosa, M. A.,

Kon, F., and Milojicic, D. S. A systematic literature review of service

212



REFERENCES

choreography adaptation. Service Oriented Computing and Applications 7,

3 (2013), 199–216. 15

[87] Leitner, P., Michlmayr, A., Rosenberg, F., and Dustdar, S.

Monitoring, prediction and prevention of sla violations in composite ser-

vices. In IEEE International Conference on Web Services, ICWS 2010,

Miami, Florida, USA,July 5-10, 2010 (2010), IEEE Computer Society,

pp. 369–376. 47, 48

[88] Li, L., Vaidyanathan, K., and Trivedi, K. S. An approach for estima-

tion of software aging in a web server. In Empirical Software Engineering,

2002. Proceedings. 2002 International Symposium n (2002), IEEE, pp. 91–

100. 34

[89] Li, X., Fan, Y., Sheng, Q. Z., Maamar, Z., and Zhu, H. A petri

net approach to analyzing behavioral compatibility and similarity of web

services. Trans. Sys. Man Cyber. Part A 41, 3 (May 2011), 510–521. 47

[90] Li, Y., Zhou, M.-h., Li, R.-c., Cao, D.-G., and Mei, H. Service

selection approach considering the trustworthiness of qos data. Journal of

Software 19, 10 (2008), 2620–2627. 57

[91] Lin, K.-J., Zhang, J., Zhai, Y., and Xu, B. The design and implemen-

tation of service process reconfiguration with end-to-end qos constraints in

soa. Serv. Oriented Comput. Appl. 4, 3 (Sept. 2010), 157–168. iii, 45, 46

[92] Linden, G. Make your data useful. Presentation of Amazon results. Re-

trieved from http://www.scribd.com/doc/4970486. 19

213



REFERENCES

[93] Lins, F. A. A., dos Santos Júnior, J. C., and Rosa, N. S. Adaptive

web service composition. SIGSOFT Softw. Eng. Notes 32, 4 (July 2007).

43, 44, 45

[94] Liu, Y., Ngu, A. H., and Zeng, L. Z. Qos computation and policing

in dynamic web service selection. In Proceedings of the 13th international

World Wide Web conference on Alternate track papers & posters (2004),

ACM, pp. 66–73. 56, 57

[95] Lowe, D., Ed. BizTalk server. Osborne/McGraw-Hill, New York [u.a.],

2002. 40

[96] Lyu, M. R., Ed. Handbook of software reliability engineering. McGraw-

Hill, Inc., Hightstown, NJ, USA, 1996. 3

[97] M, X. Software Reliability Modelling. [Series on quality, reliability &

engineering statistics. World Scientific, 1991. 34

[98] Mabrouk, N. B., Georgantas, N., and Issarny, V. A semantic end-

to-end qos model for dynamic service oriented environments. In Proceedings

of the 2009 ICSE Workshop on Principles of Engineering Service Oriented

Systems (2009), IEEE Computer Society, pp. 34–41. 58

[99] Martin, D., et al. Daml-s (and owl-s) 0.9 draft release (may 2003).

Online http://www. daml. org/services/daml-s/0.9 . 10

[100] Maximilien, E. M., and Singh, M. P. Toward autonomic web services

trust and selection. In Proceedings of the 2nd international conference on

Service oriented computing (2004), ACM, pp. 212–221. 56

214



REFERENCES

[101] Mayer, M. What google knows. 19

[102] McCanne, S., Floyd, S., and Fall, K. The lbnl network simulator.

Software on-line: http://www. isi. edu/nsnam (1997). 135

[103] Menascé, D. A., Casalicchio, E., and Dubey, V. A heuristic ap-

proach to optimal service selection in service oriented architectures. In

Proceedings of the 7th international workshop on Software and performance

(2008), ACM, pp. 13–24. 58, 60

[104] Meng, H.-N., Qi, Y., Hou, D., and Chen, Y. A rough wavelet network

model with genetic algorithm and its application to aging forecasting of ap-

plication server. In Machine Learning and Cybernetics, 2007 International

Conference on (2007), vol. 5, IEEE, pp. 3034–3039. 35

[105] Metzger, A., Sammodi, O., Pohl, K., and Rzepka, M. Towards

pro-active adaptation with confidence: augmenting service monitoring with

online testing. In Proceedings of the 2010 ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems (New York, NY, USA,

2010), SEAMS ’10, ACM. 47, 49

[106] Metzger, A., Schmieders, E., Cappiello, C., Di Nitto, E.,

Kazhamiakin, R., Pernici, B., and Pistore, M. Towards proactive

adaptation: A journey along the s-cube service life-cycle. In MESOA: 4th

International Workshop on Maintenance and Evolution of Service-Oriented

Systems (2010). iii, 51, 52

215



REFERENCES

[107] Mike P. Papazoglou, Paolo Traverso, S. D., and Leymann, F.

Service-oriented computing: a research roadmap. Int. J. Cooperative Inf.

Syst. 17, 2 (2008), 223–255. 3, 37, 40

[108] Miyagi, M., Ohkubo, K., Kataoka, M., and Yoshizawa, S. Perfor-

mance prediction method for web-access response time distribution using

formula. In Network Operations and Management Symposium, 2004. NOMS

2004. IEEE/IFIP (april 2004), vol. 1, pp. 905 –906 Vol.1. 95

[109] Mokhtar, S. B., Liu, J., Georgantas, N., and Issarny, V. Qos-

aware dynamic service composition in ambient intelligence environments. In

Proceedings of the 20th IEEE/ACM international Conference on Automated

software engineering (New York, NY, USA, 2005), ASE ’05, ACM, pp. 317–

320. 85

[110] Moser, O., Rosenberg, F., and Dustdar, S. Non-intrusive moni-

toring and service adaptation for ws-bpel. In Proceedings of the 17th in-

ternational conference on World Wide Web (New York, NY, USA, 2008),

WWW ’08, ACM, pp. 815–824. 48

[111] Na, J., Gao, Y., Zhang, B., Huang, L.-p., and Zhu, Z.-l. Improved

adaptation of web service composition based on change impact probability.

In Proceedings of the 2010 Third International Conference on Dependability

(Washington, DC, USA, 2010), DEPEND ’10, IEEE Computer Society,

pp. 146–153. 48, 49

[112] Nelson, V. P. Fault-tolerant computing: Fundamental concepts. Com-

puter 23, 7 (1990), 19–25. 30

216



REFERENCES

[113] OASIS. Organization for the advancement of structured information stan-

dards. Website available from https://www.oasis-open.org. 14

[114] ODE. Apache ode - the orchestration director engine. Website available

from http://ode.apache.org/. 16

[115] Organization for the Advancement of Structured Informa-

tion Standards (OASIS). Web Services Business Process Execution

Language (WS-BPEL) Version 2.0, Apr. 2007. 74

[116] Palmer, N. Tech. rep. 14

[117] Papazoglou, M. P. Service -oriented computing: Concepts, characteris-

tics and directions. In Proceedings of the Fourth International Conference

on Web Information Systems Engineering (Washington, DC, USA, 2003),

WISE ’03, IEEE Computer Society, pp. 3–. 12

[118] Parazoglou, M., Traverso, P., Dustdar, S., and Leymann, F.

Service oriented computing: State of the art and research challenges. Com-

puter 40, 11 (2007), 38–45. 18

[119] Perera, S., Herath, C., Ekanayake, J., Chinthaka, E., Ran-

abahu, A., Jayasinghe, D., Weerawarana, S., and Daniels, G.

Axis2, middleware for next generation web services. In Proceedings of the

IEEE International Conference on Web Services (Washington, DC, USA,

2006), ICWS ’06, IEEE Computer Society, pp. 833–840. 121

217



REFERENCES

[120] Pernici, B., Ed. Mobile Information Systems: Infrastructure and Design

for Adaptivity and Flexibility. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2006. 41

[121] Pistore, M., Marconi, A., Bertoli, P., and Traverso, P. Au-

tomated composition of web services by planning at the knowledge level.

In Proceedings of the 19th international joint conference on Artificial in-

telligence (San Francisco, CA, USA, 2005), IJCAI’05, Morgan Kaufmann

Publishers Inc., pp. 1252–1259. 41

[122] Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., and Clarke,

S. Taxonomy-driven adaptation of multi-layer applications using tem-

plates. In Proceedings of the 2010 Fourth IEEE International Conference on

Self-Adaptive and Self-Organizing Systems (Washington, DC, USA, 2010),

SASO ’10, IEEE Computer Society, pp. 213–222. 48

[123] Pradhan, D. K. Fault-tolerant computing: Theory and technique, vol-

ume i. 30

[124] Russell, J., and Cohn, R. Process Flow Diagram. Book on Demand,

2012. 13

[125] Salatino, M. jBPM Developer Guide. Packt Publishing, 2010. 16

[126] Salfner, F., Lenk, M., and Malek, M. A survey of online failure

prediction methods. ACM Comput. Surv. 42, 3 (Mar. 2010), 10:1–10:42.

34, 39, 73

218



REFERENCES

[127] Sammodi, O., Metzger, A., Franch, X., Oriol, M., Marco, J.,

and Pohl, K. Usage-based online testing for proactive adaptation of

service-based applications. In Computer Software and Applications Con-

ference (COMPSAC), 2011 IEEE 35th Annual (2011), IEEE, pp. 582–587.

51

[128] Schuller, D., Polyvyanyy, A., Garćıa-Bañuelos, L., and

Schulte, S. Optimization of complex qos-aware service compositions. In

Proceedings of the 9th international conference on Service-Oriented Com-

puting (Berlin, Heidelberg, 2011), ICSOC’11, Springer-Verlag, pp. 452–466.

59, 60, 88

[129] Siqueira, M. G., and Alwan, A. Steady-state analysis of continuous

adaptation in acoustic feedback reduction systems for hearing-aids. Speech

and Audio Processing, IEEE Transactions on 8, 4 (2000), 443–453. 30

[130] Spanoudakis, G., and Zisman, A. Discovering services during service-

based system design using uml. IEEE Trans. Softw. Eng. 36, 3 (May 2010),

371–389. 79, 108

[131] Stephanidis, C., Paramythis, A., Akoumianakis, D., and

Sfyrakis, M. Self-adapting web-based systems: Towards universal ac-

cessibility. In 4th Workshop on User Interface For All, Stockholm, Sweden

(1998). 31

[132] Strunk, A. Qos-aware service composition: A survey. In Web Services

(ECOWS), 2010 IEEE 8th European Conference on (2010), IEEE, pp. 67–

74. 59

219



REFERENCES

[133] Talaq, J., and Al-Basri, F. Adaptive fuzzy gain scheduling for load

frequency control. Power systems, IEEE transactions on 14, 1 (1999), 145–

150. 30

[134] Tanner, J. Feedback control in living prototypes: A new vista in control

engineering. Medical electronics and biological engineering 1, 3 (1963), 333–

351. 30

[135] Tosi, D., Denaro, G., and Pezze, M. Towards autonomic service-

oriented applications. Int. J. Autonomic Comput. 1, 1 (Apr. 2009), 58–80.

47, 49

[136] Vu, L.-H., Hauswirth, M., and Aberer, K. Qos-based service selec-

tion and ranking with trust and reputation management. In On the Move to

Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE. Springer,

2005, pp. 466–483. 57

[137] Wan, S., Wei, J., Song, J., and Guan, H. Developing a selection

model for interactive web services. In Web Services, 2006. ICWS ’06. In-

ternational Conference on (Sept 2006), pp. 231–238. 56

[138] WfMC. Workflow management coalition. Website available from

http://www.wfmc.org. 14

[139] Wu, Z., Deng, S., Li, Y., and Wu, J. Computing compatibility in

dynamic service composition. Knowl. Inf. Syst. 19, 1 (Mar. 2009), 107–

129. 47

220



REFERENCES

[140] Xianglan, H., Yangguang, L., Bin, X., and Gang, Z. A survey

on qos-aware dynamic web service selection. In Wireless Communications,

Networking and Mobile Computing (WiCOM), 2011 7th International Con-

ference on (2011), IEEE, pp. 1–5. 56

[141] Xie, M. Software Reliability Modelling. Series on quality, reliability &

engineering statistics. World Scientific, Oct 1991. 32

[142] Xu, D., and Nahrstedt, K. Finding service paths in a media service

proxy network. In Electronic Imaging 2002 (2001), International Society

for Optics and Photonics, pp. 171–185. 56

[143] Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M., Kalagnanam,

J., and Chang, H. Qos-aware middleware for web services composition.

Software Engineering, IEEE Transactions on 30, 5 (2004), 311–327. 59, 60

[144] Zengin, A., Kazhamiakin, R., and Pistore, M. Clam: Cross-

layer management of adaptation decisions for service-based applications.

In Proceedings of the 2011 IEEE International Conference on Web Ser-

vices (Washington, DC, USA, 2011), ICWS ’11, IEEE Computer Society,

pp. 698–699. 48

[145] Zhai, Y., Zhang, J., and Lin, K. SOA Middleware Support for Service

Process Reconfiguration with End-to-End QoS Constraints. In Proceedings

of the 2009 IEEE International Conference on Web Services (Washington,

DC, USA, 2009), ICWS ’09, IEEE Computer Society, pp. 815–822. 42

[146] Zisman, A., Spanoudakis, G., and Dooley, J. A framework for dy-

namic service discovery. In Proceedings of the 2008 23rd IEEE/ACM In-

221



REFERENCES

ternational Conference on Automated Software Engineering (Washington,

DC, USA, 2008), ASE ’08, IEEE Computer Society, pp. 158–167. 79, 108

[147] Zisman, A., Spanoudakis, G., Dooley, J., and Siveroni, I. Proac-

tive and reactive runtime service discovery: A framework and its evaluation.

Transactions on Software Engineering . To appear. 159, 160, 166, 167, 168,

175, 190

[148] ström, K. J., and Hägglund, T. Pid controllers: theory, design, and

tuning. Instrument Society of America, Research Triangle Park, NC (1995).

30

222


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Web Services Architecture
	1.2 Services Composition
	1.3 Motivation and Research Challenges
	1.4 Research Objectives and Hypotheses
	1.5 Contributions
	1.6 Research Methodology
	1.7 Outlines of this Thesis

	2 Literature Review
	2.1 Software Engineering Adaptation
	2.2 Service Composition Adaptation
	2.2.1 Static Adaptation
	2.2.2 Reactive Adaptation
	2.2.3 Proactive Adaptation

	2.3 QoS-Aware Service Selection
	2.4 Discussion
	2.5 Summary

	3 ProAdapt Adaptation Framework
	3.1 Overview
	3.2 Architecture
	3.3 Adaptation Process
	3.3.1 Analysis of Events
	3.3.2 Decision and Execution of Actions

	3.4 Summary and Discussions

	4 Experiments and Evaluation
	4.1 Prototype I
	4.1.1 Evaluation

	4.2 Prototype II
	4.2.1 Evaluation

	4.3 Prototype III
	4.3.1 Evaluation

	4.4 Summary and Discussions

	5 Behavioural Compensation Extension
	5.1 Running Example
	5.2 Overview
	5.3 Query-based Service Selection
	5.4 Behavioural Compensation
	5.5 Matching and Compensation Cases
	5.6 Proof of Concept
	5.7 Summary and Discussions

	6 Conclusions and Future Work 
	6.1 Future Work
	6.2 Final Remarks

	References

