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Abstract. COWS is a recently defined process calculus for specifying and com-
bining service-oriented applications, while modelling their dynamic behaviour.
Since its introduction, a number of methods and tools have been devised to anal-
yse COWS specifications, like e.g. a type system to check confidentiality prop-
erties, a logic and a model checker to express and check functional properties of
services. In this paper, by means of a case study in the area ofautomotive systems,
we demonstrate that COWS, with some mild linguistic additions, can model all
the phases of the life cycle of service-oriented applications, such as publication,
discovery, negotiation, orchestration, deployment, reconfiguration and execution.
We also provide a flavour of the properties that can be analysed by using the tools
mentioned above.

1 Introduction

In recent years, the increasing success of e-business, e-learning, e-government, and
other similar emerging models, has led the World Wide Web, initially thought of as a
system for human use, to evolve towards an architecture forservice-oriented computing
(SOC) supporting automated use. SOC advocates the use of loosely coupled ‘services’,
to be understood as autonomous, platform-independent, computational entities that can
be described, published, discovered, and assembled, as thebasic blocks for building in-
teroperable and evolvable systems and applications. Whileearly examples of technolo-
gies that are at least partly service-oriented date back to CORBA, DCOM, J2EE and
IBM WebSphere, the most successful instantiation of the SOCparadigm are probably
the more recentweb services. These are sets of operations that can be published, lo-
cated and invoked through the Web via XML messages complyingwith given standard
formats. To support the web service approach, several new languages and technologies
have been designed and many international companies have invested a lot of efforts.

Current software engineering technologies for SOC, however, remain at the descrip-
tive level and lack rigorous formal foundations. We are still experiencing a gap between
practice (programming) and theory (formal methods and analysis techniques) in the de-
sign of SOC applications. The challenges come from the necessity of dealing at once
with issues like communication, co-operation, resource usage, security, failures, etc.
in a setting where demands and guarantees can be very different for the many differ-
ent components. Many researchers have hence put forward theidea of usingprocess
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calculi, a cornerstone of current foundational research on specification and analysis of
concurrent, distributed and mobile systems through mathematical — mainly algebraic
and logical — tools. Thus, many process calculi have been designed, addressing one
aspect or another of SOC and aiming at assessing the adequacyof diverse sets of prim-
itives w.r.t. modelling, combining and analysing service-oriented applications.

Due to their algebraic nature, process calculi convey in a distilled form the com-
positional programming style of SOC. Thus, for example, many well-known problems
related to services composition (e.g., messages not received, race conditions, deadlocks,
incompatible behaviours) could be investigated through anadequate and sufficiently ex-
pressive process calculus. A major benefit of using process calculi is that they enjoy a
rich repertoire of elegant meta-theories, proof techniques and analytical tools that can
be likely tailored to the needs of service-based applications. It has been already argued
that type systems, model checking and (bi)simulation analysis provide adequate tools
to address topics relevant to the web services technology (see e.g. [20, 24]). This ‘proof
technology’ can eventually pave the way for the developmentof automatic property
validation tools. Therefore, process calculi might play a central role in laying rigorous
methodological foundations for specification and validation of SOC applications.

By taking inspiration from well-known process calculi and from the standard lan-
guage for orchestration of web services WS-BPEL [22], in [15] we have designed
COWS (Calculus for Orchestration of Web Services), a process calculus for specify-
ing and combining service-oriented applications, while modelling their dynamic be-
haviour. We have shown that COWS can model different and typical features of web
services, such as, e.g., multiple start activities, receive conflicts, routing of correlated
messages, service instances and interactions among them. Since its definition, some
linguistic extensions have been introduced to model timed activities [17] and dynamic
service discovery and negotiation [19], thus obtaining a linguistic formalism capable
of modelling all the phases of the life cycle of service-oriented applications. A number
of methods and tools have also been devised to analyse COWS specifications, such as
the stochastic extension defined in [23] to enable quantitative reasoning on service be-
haviours, the type system introduced in [18] to check confidentiality properties, and the
logic and model checker presented in [9] to express and checkfunctional properties of
services. In this paper, by means of the ‘on road assistance scenario’, a case study in the
area of automotive systems defined and analysed within the EUproject S [2],
we provide a flavour of COWS main features and specification style, and illustrate the
classes of properties that can be analysed by using some of the tools mentioned above.

The rest of the paper is organized as follows. Section 2 introduces the scenario that
will be used throughout the paper for illustration purposes. Section 3 presents syntax
and main features of COWS; this is done in a step-by-step fashion while modelling
some services within the scenario and their orchestration.Section 4 shows that also
service discovery and negotiation can be naturally modelled in COWS by exploiting
some mild linguistic additions, i.e. timed activities, constraints and operations on them.
Section 5 sums up a type-based approach for expressing and enforcing confidential-
ity properties. Section 6 illustrates a logical verification framework including the logic
SocL for expressing functional properties of services and the on-the-fly model checker
CMC for verifying them. Section 7 concludes the paper with some final remarks.



2 On road assistance scenario

The ‘on road assistance scenario’ [13] is one of the scenarios in the area of automotive
systems defined and analysed within the EU project S [2] and describes some
functionalities that will be likely available in the near future. The scenario involves a
number of services that are discovered and bound at run-timeaccording to levels of
service specified at design time, so as to deliver the best available functionalities at
agreed levels of quality. A brief description follows.

The in-vehiclediagnosticsystem reports a severe failure when the car is no
longer drivable. The car’sdiscoverysystem then identifies garages, car rentals
and towing truck services in the car’s vicinity. At this point, the car’sreasoner
system selects a set of adequate services taking into account personalised poli-
cies and preferences of the driver, e.g. balancing cost and delay, and tries to
order them. Before being enable to order services, the ownerof the car has
to deposit a security payment, that will be given back if ordering the services
fails. Other components of the in-vehicle service platforminvolved in this as-
sistance activity are aGPSservice, providing the car’s current location, and an
orchestrator, coordinating all the described services.

An UML-like activity diagram of the orchestration of services is shown in Figure 1.
For simplicity, we assume that the orchestration is only triggered either by an ‘engine
failure’ or by a ‘low oil level’ sensor signal. The process starts with a request from
the orchestrator to the bank to charge the driver’s credit card with the security deposit
payment. This is modelled by the UML actionrequestCardCharge for charging the
credit card whose number is provided as an output parameter of the action call. In
parallel to the interaction with the bank, the orchestratorrequests the current location of
the car from the car’s internal GPS service. The current location is modelled as an input
to the requestLocation action and subsequently used by thefindServices interaction
which retrieves a list of services. If no service can be found, an action to compensate
the credit card charge will be launched. For the selection ofservices, the orchestrator
synchronises with the reasoner service to obtain the most appropriate (best) services.

Service ordering is modelled by the UML actionsorderGarage, orderTowTruck
andorderRentalCar. When the orchestrator makes an appointment with the garage, the
diagnostic data are automatically transferred to the garage, which could then be able,
e.g., to identify the spare parts needed to perform the repair. Then, the orchestrator
makes an appointment with the towing service, providing theGPS data of the stranded
vehicle and of the garage, to tow the vehicle to the garage. Concurrently, the orchestrator
makes an appointment with the rental service, by indicatingthe location where the car
will be handed over to the driver.

The workflow described in Figure 1 models the overall behaviour of the system.
Besides interactions among services, it also includes activities using concepts developed
for long running business transactions (e.g. in [11, 22]). These activities entail fault
and compensation handling, kind of specific activities attempting to reverse the effects
of previously committed activities, that are an important aspect of SOC applications.
Specifically, in the considered scenario, the security deposit payment charged to the



Fig. 1.Orchestration in the on road assistance scenario



s ::= kill (k) | u• u′!ē (kill, invoke)
|
∑l

i=0 pi • oi?w̄i .si | s | s (receive-guarded choice, parallel)
| {|s|} | [d] s | ∗ s (protection, delimitation, replication)

Table 1.COWS syntax

driver’s credit card must be revoked if either the discoveryphase does not succeed
or ordering the services fails, i.e. both garage/tow truck and car rental services reject
the requests. Moreover, if ordering a tow truck fails, the garage appointment has to be
cancelled and the rental car delivery has to be redirected tothe stranded car’s actual
location. Instead, if ordering the car rental fails, the overall process may not fail, as the
activity is enclosed in a sub-transaction.

3 COWS: a Calculus for Orchestration of Web Services

In this section, we report the syntax of COWS and explain the semantics of its primitives
in a step-by-step fashion while modelling the on road assistance scenario (the complete
specification can be found in [16]). Due to lack of space, herewe only provide an in-
formal account of the semantics of COWS and refer the interested reader to [15, 14] for
a formal presentation, for examples illustrating peculiarities and expressiveness of the
language, and for comparisons with other process-based andorchestration formalisms.
To get accustomed to using the language one can also useCMC [1], a tool supporting
the automated derivation of all computations originating from a COWS term.

3.1 Syntax

The syntax of COWS, given in Table 1, is parameterized by three countable and pair-
wise disjoint sets: the set of(killer) labels (ranged over byk, k′, . . .), the set ofvalues
(ranged over byv, v′, . . . ) and the set of ‘write once’variables(ranged over byx, y,
. . . ). The set of values is left unspecified, but we assume thatit includes the set of
names, ranged over bym, n, o, p, . . . , mainly used to represent partners and operations.
The language is also parameterized by a set ofexpressions, ranged over bye, whose
exact syntax is deliberately omitted. We just assume that expressions contain, at least,
values and variables, and do not include killer labels (that, hence, arenot communica-
ble values). Partner and operation names can be combined to designate communication
endpoints; e.g.p •o denotes the endpoint composed of the partnerp and the operation
o. Being values, partner and operation names can be exchangedin communication, but
dynamically received names can only be used to designate endpoints for service invoca-
tion. Indeed, endpoints of receive activities are identified statically because their syntax
only allows using names and not variables.

We usew to range over values and variables,u to range over names and variables,
andd to range over killer labels, names and variables. Notation ¯· stands for tuples of
objects, e.g. ¯x is a compact notation for denoting the tuple of variables〈x1, . . . , xn〉 (with
n ≥ 0). In the sequel, we shall use0 to denote empty choice and+ to abbreviate binary



choice. We will omit trailing occurrences of0, writing e.g.p • o?w̄ instead ofp • o?w̄.0,
and write [d1, . . . , dn] s in place of [d1] . . . [dn] s. We will write Z , W to assign a
symbolic nameZ to the termW.

The onlybindingconstruct is delimitation: [d] sbindsd in the scopes (the notions
of boundandfreeoccurrences of a name/variable/label are defined accordingly). In fact,
differently from most process calculi, receive activities in COWS bind neither names
nor variables. This enables e.g. easily modelling and updating the shared state of con-
current threads within each service instance. Delimitation can be used to generate fresh
names whose scope can later dynamically change because of taking place of communi-
cation. This is exactly as in theπ-calculus [21]. However, delimitation is more general
than the restriction of theπ-calculus since it can be also used to declare variables (thus
regulating the range of application of the substitutions generated by communications)
and to delimit the field of action of kill activities. Notably, killer labels are dealt with
differently from names and variables since, being not communicable values, their scope
is statically determined by the corresponding delimitation and can never change.

3.2 Basic operators for service orchestration

The COWS term representing the ‘orchestration’ in Figure 1 is

[pcar] ( Orchestrator | GPS | Discovery | Reasoner| SensorsMonitor)
| Bank | OnRoadRepairServices

The services above are composed by using theparallel compositionoperator | that
allows the different components to be concurrently executed and to interact with each
other. Thedelimitationoperator [] is used here to declare thatpcar is a (partner) name
known to all services of the in-vehicle platform, i.e.Orchestrator, GPS, Discovery,
ReasonerandSensorsMonitor, and only to them.

Orchestrator, the most important component of the in-vehicle platform, is

[xcarData] ( pcar •oeng fail?〈xcarData〉.sengfail + pcar •olowoil?〈xcarData〉.slowoil )

This term uses thechoiceoperator + to pick one of those alternative ‘recovery’ be-
haviours whose execution can start immediately. Thereceive-guarded prefixoperator
pcar •oi?〈xcarData〉. expresses that each recovery behaviour starts with areceiveactivity
of the formpcar • oi?〈xcarData〉 corresponding to reception of a request emitted, when a
failure arises, bySensorsMonitor(a term representing the behaviour of the ‘low level
vehicle platform’).Receives, together withinvokes, written asp • o!〈e1, . . . , em〉, are
the basic communication activities provided by COWS. Besides input parameters and
sent values, they indicate the endpointp • o through which the communication should
occur. p • o can be interpreted as a specific implementation of operationo provided
by the service identified by the logic namep. This naming mechanism allows a same
service to be identified by means of different logic names, i.e. to play more than one
partner role as in WS-BPEL. An inter-service communicationtakes place when the ar-
guments of a receive and of a concurrent invoke along the sameendpoint do match1,

1 The pattern-matching mechanism permits correlating messages logically forming a same in-
teraction ‘session’ by means of their same contents. We refer to [15, 14] for further details.



and causes replacement of the variables arguments of the receive with the correspond-
ing values arguments of the invoke (within the scope of variables declarations). For
example, variablexcarData, declared local toOrchestratorby means of the delimitation
operator, is initialized by the receive leading the recovery activity with data provided by
SensorsMonitor. Notice that, while executing a recovery behaviour,Orchestratordoes
not accept other recovery requests. We are also assuming that it is restarted at the end
of the recovery task.

The recovery behavioursengfail executed when an engine failure occurs is

[pe, oe, xloc, xlist]
( ( RequestCardCharge| RequestLocation.FindServices)
| pe •oe?〈〉. pe •oe?〈〉.SelectServices.

[xgarageGPS] ( OrderGarage.OrderTowTruck| OrderRentalCar) )

pe • oe is a scoped endpoint along which successful termination signals (i.e. com-
munications that carry no data) are exchanged to orchestrate execution of the differ-
ent components. Variablesxloc, xlist and xgarageGPS are used to store the value of the
car’s current location, the list of closer on road services discovered and the garage’s
GPS location, respectively. To present the specification ofsengfail in terms of the
UML actions of Figure 1, we have used an auxiliary ‘sequence’notation. Thus, e.g.,
RequestLocation.FindServicesindicates that execution ofRequestLocationterminates
before execution ofFindServicesstarts. Indeed,RequestLocation.FindServicesactually
stands for the COWS term

pcar •oreqLoc!〈〉 | pcar •orespLoc?〈xloc〉.

( pcar •of ind!〈xloc,ServicesType〉
| pcar •oservicesFound?〈xlist〉. pe •oe!〈〉 + pcar •oservicesNotFound?〈〉 )

whereRequestLocationandFindServicesare

RequestLocation, pcar •oreqLoc!〈〉 | pcar •orespLoc?〈xloc〉

FindServices, pcar •of ind!〈xloc,ServicesType〉
| pcar •oservicesFound?〈xlist〉. pe •oe!〈〉

Endpoints of service invocations can also contain variables as, e.g., in the term

OrderGarage, xgarage•oorder!〈pcar, xcarData〉 |

[xrepairNum] (pcar •ogarageFail?〈〉 + pcar •ogarageOK?〈xrepairNum, xgarageGPS〉)

Here, variablexgarage is used to invoke a garage service whose partner name is unknown
at design time. This garage will be selected dynamically by activity SelectServicethat,
through a communication, replacesxgarage with the actual partner name of the garage.
Indeed, in COWS dynamic binding of discovered services and service reconfiguration
rely on the exchange of partner and operation names in communication.

Bank, the last service we show in this section, can serve multiplerequests simulta-
neously. This behaviour is modelled by exploiting thereplicationoperator∗ to spawn



in parallel as many copies of its argument term as necessary.The definition ofBankis

∗ [xcust, xcc, xamount, ocheckOK, ocheckFail]
pbank•ocharge?〈xcust, xcc, xamount〉.

(< perform some checks and reply on ocheckOKor ocheckFail>

| pbank•ocheckFail?〈〉. xcust•ochargeFail!〈〉
+ pbank•ocheckOK?〈〉. [chargeID] ( xcust•ochargeOK!〈chargeID〉

| pbank•orevoke?〈chargeID〉.
< revoke chargeID>. xcust•orevokeOK!〈〉 ) )

Once prompted by a request, differently fromOrchestrator, Bankcreates one specific
instance to serve that request and is immediately ready to concurrently serve other re-
quests. Notably, each instance exploits communication on ‘internal’ operationsocheckOK

andocheckFail to model a conditional choice, and creates a new ‘charge identifier’ by
means of the delimitation operator (that acts here as the restriction operator of theπ-
calculus). Thus, if after some invocations the service receives a message along the end-
point pbank • orevoke to revoke a request, a certain number of service instances could be
able to accept it. However, the message is routed to the proper instance by exploiting,
as a correlation value, a unique identifier (that is namedchargeID in the term above)
characterizing the instance.

3.3 Fault and compensation handling

We now show how to modify the specification described in the previous section for
adding the fault and compensation activities depicted in Figure 1. For improving read-
ability, these activities are highlighted by a gray background to distinguish them from
‘normal behaviour’. For example, the term modelling the garage ordering is:

OrderGarage, xgarage•oorder!〈pcar, xcarData〉

| [xrepairNum] pcar •ogarageFail?〈〉.
( pcar •oundo!〈cc〉

| [p, o] (p•o!〈xloc〉 | p•o?〈xgarageGPS〉) )

+ pcar •ogarageOK?〈xrepairNum, xgarageGPS〉.

pcar •oundo?〈garage〉.

( xgarage•ocancel!〈xrepairNum〉

| pcar •ocancelOK?〈〉

| pcar •oundo!〈cc〉 | pcar •oundo!〈rentalCar〉 )

Thus, if ordering a garage fails, the compensation of the credit card charge is invoked
by sending a signalcc (abbreviation of ‘card charge’) along the endpointpcar •oundoand
the rental car delivery is redirected by assigning the car’scurrent locationxloc to the
variablexgarageGPS(this assignment is modelled by means of communication along the
private endpointp • o). Otherwise, a compensation handler is installed that is invoked
whenever tow truck ordering fails and, in that case, attempts to cancel the garage order
and to compensate the credit card charge and the rental car order.



To model fault handling and compensation behaviours, the term OrderGarageex-
ploits interactions along the endpointpcar • oundo. However, to better support the spec-
ification of these aspects, COWS provides two further constructs.Kill activities of the
form kill (k), wherek is a killer label, can be used to force termination of all unprotected
parallel terms inside the enclosing [k] , that stops the killing effect. Kill activities are ex-
ecutedeagerlywith respect to the other parallel activities but critical code, such as e.g.
fault/compensation signals and handlers, can be protected from the effect of a forced
termination by using theprotectionoperator{| |}. By exploiting these new features, the
recovery behavioursengfail becomes

[pe, oe, xloc, xlist, oundo, k ]
( ( RequestCardCharge| RequestLocation.FindServices)
| pe •oe?〈〉. pe •oe?〈〉.SelectServices.

[xgarageGPS] ( OrderGarage.OrderTowTruck| OrderRentalCar) )

whereRequestCardChargeandFindServicesare defined as

FindServices, pcar •of ind!〈xloc,ServicesType〉
| pcar •oservicesFound?〈xlist〉. pe•oe!〈〉
+ pcar •oservicesNotFound?〈〉.

( kill (k) | {|pcar •oundo!〈cc〉 | pcar •oundo!〈cc〉|} )

RequestCardCharge, pbank•ocharge!〈pcar, ccNum, amount〉
| {| [xchargeID] pcar •ochargeFail?〈〉. kill (k)

+ pcar •ochargeOK?〈xchargeID〉.

( pe •oe!〈〉 | pcar •oundo?〈cc〉.pcar •oundo?〈cc〉.

( pbank•orevoke!〈xchargeID〉

| pcar •orevokeOK?〈〉 ) ) |}

Thus, whenever services finding fails,FindServicesterminates the whole recovery be-
haviour and sends two signalscc along the endpointpcar • oundo. Similarly, if charg-
ing the credit card fails, thenRequestCardChargeterminates the whole recovery be-
havioursengfail. Otherwise, it installs a compensation handler that takes care of revoking
the credit card charge. Activation of this compensation activity requires two signalscc
alongpcar • oundo and, thus, takes place either wheneverFindServicefails or whenever
bothOrderGarageandOrderRentalCar(not shown here) fail.

4 Service publication, discovery and negotiation

We have demonstrated so far that COWS can model service specification, orchestra-
tion, reconfiguration, and execution. Now, we focus on otherimportant phases of the
life cycle of service-oriented applications. In fact, in a service-oriented architecture,
services can play essentially three different roles: the provider, the requester and the
registry. Providers offer functionalities and publish machine-readable service descrip-
tions on registries to enable automated discovery and invocation by requesters. In ad-
dition to the function that the service performs, service descriptions also include non-
functional properties, such as e.g., response time, availability, reliability, security, and



performance, that jointly represent thequality of the service(QoS). Some of these prop-
erties could depend on the current run-time configuration ofthe system (e.g. the maxi-
mum allowed bandwidth might depend on the actual load of the server), thus adynamic
discoveryprocess is often needed to find a provider that meets the requesters’ require-
ments. Moreover, since services are often developed and runby different organizations,
a key issue of the discovery process is to define a flexiblenegotiationmechanism that
allows two or more parties to reach a joint agreement about cost and quality of a ser-
vice, prior to service execution. The outcome of the negotiation phase is aService Level
Agreement(SLA), i.e. a contract among the involved parties that sets out both type and
bounds on various performance metrics of the service to be provided, and the remedial
actions to be performed if these are not met.

We want now to demonstrate that service publication, discovery and SLA negotia-
tion can be naturally modelled in COWS by exploiting the additions of ‘timed’ activities
and ‘constraints’. Timed activities have been introduced in [17], by adding specific rules
for modelling time passing to the COWS operational semantics, since it is not known to
what extent timed computation can be reduced to untimed forms of computation [25].
Specifically, COWS is extended with a WS-BPEL-likewait activity of the form� e,
that suspends the execution of the invoking service until the time interval whose dura-
tion is specified as an argument has elapsed and can be used as aguard for the choice
operator. Constraints have been introduced in [19], by exploiting the fact that COWS’
definition is parameterised with respect to a few sets of objects, namely the set of values
and that of expressions that operate on them. Notably, we do not take a definite standing
on which of the many kinds of constraints one should use. For example, one could use
crisp constraints, that can only be satisfied or violated, orsoftconstraints, that instead
can be satisfied with multiple consistency levels (these areusually expressed by means
of c-semirings[4] and interpreted as levels of preference or importance).From time to
time, the appropriate kind of constraints to work with should be chosen depending on
what one intends to model.

Still in [19] we argue that the concurrent constraint computing model can be easily
mimicked in COWS. This model of computation is based on a shared store of con-
straints that provides partial information about possiblevalues that program variables
can assume. In COWS the store of constraints is represented by the following service:

storeC , [p, o] ( p•o!〈C〉 | ∗ [x] p•o?〈x〉.( ps•oget!〈x〉 | [y] ps•oset?〈y〉.p•o!〈y〉 ) )

whereC is the multiset of constraints currently in the store, whileps is a distinguished
partner, andoget andoset are distinguished operations. Other services can interactwith
the store service in mutual exclusion, by acquiring the lock(and, at the same time, the
stored value) with a receive alongps • oget and by releasing the lock (providing the new
stored value) with an invoke alongps • oset. The programs running in parallel with the
store can act on it by performing operations for adding/removing constraints to/from the
store (tell andretract, respectively), and for checking entailment/consistency of a
constraint by/with the store (ask andcheck, respectively). For example, the service
tell c.s willing to perform operationtell c and then to continue as services can be
rendered in COWS as follows:

[p, o] ( p•o!〈c〉 | [y] p•o?〈y〉.[x] ps•oget?〈〈y, x〉〉.({| ps•oset!〈x] {y}〉 |} | s) )



Due to lack of space, we refer the interested reader to [19] for the implementation of
the other operations and further details.

Now, like in cc-pi [5], service descriptions and SLA requirements can be expressed
as constraints that can be dynamically generated and composed, and that can be used
by the involved parties both for service publication and discovery, and for the SLA
negotiation process. Consistency of the set of constraintsresulting from negotiation
means that the agreement has been reached. Timed activitiescan be exploited to allow
services not to get stuck forever waiting on a receive.

We use the on road assistance scenario to illustrate all suchfeatures and to put the
related mechanisms to work. Initially, each on road servicehas to publish its service
description on a service registry. For example, assume thata garage service description
consists of: a string identifying the kind of provided service, the provider’s partner
name, and a constraint that defines the garage location. Now,by assuming that the
registry provides the operationopub by means of the partner namepreg, a garage service
can request the publication of its description as follows:

preg •opub!〈“garage” , pgarage, gps = (4348.1143N, 1114.7206E) 〉

gps is what we call aconstraint variable. In fact, it is a specific name and, hence, is not
affected by substitution application. Constraint variables are used to avoid that taking
place of communication can make the store inconsistent. Indeed, suppose constraints in
the store may contain variables and consider the following example:

[x] ( store∅ | tell(x ≤ 5). (p•o!〈6〉 | p•o?〈x〉) )

After actiontell has added the constraintx ≤ 5 to the store, communication along the
endpointp•o can modify the constraint in 6≤ 5, thus making the store inconsistent. To
distinguish constraint variables from COWS (true) variables, the formers are written in
the typewriter style (e.g.x, y, . . . ). The service registry can be defined as

[oDB] ( ∗ [xtype, xp, xc] preg•opub?〈xtype, xp, xc〉.preg •oDB!〈xtype, xp, xc〉 | Rsearch)

For each publication request received along the endpointpreg • opub from a provider
service, the registry service outputs a service description along the private endpoint
preg • oDB. The parallel composition of all these outputs represents the database of the
registry. The subserviceRsearch, serving the searching requests, is defined as

Rsearch , ∗ [xtype, xclient, xc, oaddToList, oaskList]
preg •osearch?〈xtype, xclient, xc〉. [ps] ( store∅ | tell xc.R′ | List )

R′ , [k] ( ∗ [xp, xconst] preg •oDB?〈xtype, xp, xconst〉.

( {|preg•opub!〈xtype, xp, xconst〉|} | check xconst. preg•oaddToList!〈xp〉 )
|� δ. ( kill (k) | {| [xlist] preg •oaskList?〈xlist〉. xclient •oresp!〈xlist〉 |} ) )

When a searching request is received alongpreg •osearch, the registry service initializes a
new local store (delimitation [ps] makesstore∅ inaccessible outside of serviceRsearch)
by adding the constraint within the query message. Then, it cyclically reads a descrip-
tion (whose first field is the string specified by the client) from the internal database,



checks if the provider constraints are consistent with the store and, in case of success,
adds the provider’s partner name to a list (by exploiting an internal serviceList, that
provides operationsoaddToListandoaskList). After δ time units from the initialization of
the local store, the loop is terminated by executing a kill activity and the current list of
providers for service typextype is sent to the client. Notably, reading a description in
the database, in this case, consists of an input alongpreg • oDB followed by an output
alongpreg •opub; this way we are guaranteed that, after being consumed, the description
is correctly added to the database. It is worth noticing thatservice descriptions are non-
deterministically retrieved, thus the same provider can occur in the returned list many
times. This could be avoided by refining the specification, e.g. by tagging each service
description with an index (stored in an additional field) that is then exploited to read
the descriptions in an ordered way. Moreover, since our notion of time does not rely on
the so-called ‘maximal progress assumption’, i.e. communication does not prevent the
execution of timed transitions, there is no guarantee that any service at all is retrieved.

After the user’s car breaks down andOrchestrator is triggered, the service
Discoveryof the in-vehicle platform will receive fromOrchestratora request contain-
ing the GPS data of the car, that it stores inxloc, and a string identifying the kind of the
required services (see the specification in Section 3.2). Byexploiting the latter informa-
tion, it will know that it has to search a garage, a tow truck and a rental car service. For
example, the component taking care of discovering a garage service can be

preg •osearch!〈“garage” , pcar, dist(xloc, gps) < 20〉 | [xgarageList] pcar •oresp?〈xgarageList〉

where the constraintdist(xloc, gps) < 20 means that the required garages must be less
than 20 km far from the stranded car’s actual location.

Once the discovery phase terminates andReasonercommunicates the best garage
service toOrchestrator, the latter and the selected garage engage in a negotiation phase
in order to sign an SLA. First,Orchestratorinvokes the operationoorder provided by the
selected garage (seeOrderGaragedefinition at page 8); then, it starts the negotiation by
performing an operationtell that addsOrchestrator’s local constraints (i.e. constraints
with restricted constraint variables) to the shared globalstore; finally, it synchronizes
with the garage service, by invokingosync, for sharing its local constraints with it.

[cost, duration]
tell ( (cost < 1500∧ duration < 48) ∨ (cost < 800 ∧ duration > 48) ).
( xgarage•osync!〈cost, duration〉
| [xrepairNum] pcar •ogarageOK?〈xreapairNum〉. · · · + pcar •ogarageFail?〈〉. · · · )

In our example, the constraints state that for a repair in less than two days the driver is
disposed to spend up to 1500 Euros, otherwise he is ready to spend less than 800 Euros.

After the synchronization withOrchestrator, the selected garage service tries to im-
pose its first-rate constraintc = ((cost′ > 2000∧ 6 < duration′ < 24) ∨ (cost′ >
1500∧ duration′ > 24)) and, if it fails to reach an agreement withinδ′ time units,
weakens the requirements and retries with the constraintc′ = ((cost′ > 1700∧ 6 <
duration′ < 24) ∨ (cost′ > 1200∧ duration′ > 24)). Both constraints are specifi-
cally generated by the garage service for the occurred engine failure, by exploiting the
transmitted diagnostic data. Afterδ′′ time units, if also the second attempt fails, it gives
up the negotiation. This negotiation task is modelled as follows:



[xcost, xduration, cost
′, duration′]

pgarage•osync?〈xcost, xduration〉. tell (xcost= cost
′ ∧ xduration = duration

′).
( tell c. xclient •ogarageOK!〈repairNum〉
+� δ′ . ( tell c′. xclient •ogarageOK!〈repairNum〉

+� δ′′ . xclient •ogarageFail!〈〉 ) )

Notably, operationstell cannot be used as guards for the choice operator. Thus, a
term liketell c. s+� e. s′ should be considered as an abbreviation for

[p, q, o] ( check c. (p•o!〈〉 | q•o?〈〉. tell c. s) | � e. s′ + p•o?〈〉. q•o!〈〉 )

Intuitively, if the constraintc is consistent with the store, the timer can be stopped (i.e.
communication alongp • o makes a choice and removes the wait activity); afterward,
the constraint can be added to the store, provided that otherinteractions that took place
in the meantime do not lead to inconsistency. Otherwise, if the timeout expires, the
constraint cannot be added to the store.

5 A type system for checking confidentiality properties

The type system for COWS introduced in [18] permits expressing and forcing policies
regulating the exchange of data among interacting servicesand ensuring that, in that
respect, services do not manifest unexpected behaviours. This enables us to check con-
fidentiality properties, e.g., that critical data such as credit card information are shared
only with authorized partners. The type system has been obtained by tailoring to COWS
the type-based approach for protecting data in distributedsystems put forward in [12],
in the context of a higher-order functional programming language, and drawn on in [6],
in that of languages for global computing.

The types express the policies for data exchange in terms ofregions, i.e. sets of
service partner names attachable to each single datum. Service programmers can thus
settle the partners usable to exchange any given datum (and,then, the services that can
share it), thus avoiding the datum be accessed (by unwanted services) through unau-
thorized partners. Then, a type inference system (statically) performs some coherence
checks (e.g. the service used in an invocation must belong tothe regions of all data
occurring in the argument of the invocation) and derives theminimal region annota-
tions for variable declarations that ensure consistency ofservices initial configuration.
COWS operational semantics uses these annotations in very efficient checks (i.e. subset
inclusions) to authorise or block transitions, in order to guarantee that computations
proceed according to them. This property, calledsoundness, can be stated as follows: a
services is soundif, for any datumv in s associated to regionr and for all evolutions
of s, it holds thatv can be exchanged only by using services inr. As a consequence of
the type soundness of the language, it follows that well-typed services always comply
with the policies regulating the exchange of data among interacting services. In fact, it
is also possible to move all dynamic checks to the static phase. This would require a
static analysis that gathers information about all the values that each variable can as-
sume at runtime and uses these information to verify the compliance with the specified
policies. At the price of a more complex static phase, this approach, on the one hand,



would alleviate the runtime checks but, on the other hand, could discard terms that at
runtime would behave soundly since statically they cannot guarantee to comply with
their policies. We are currently evaluating and implementing the two approaches.

We illustrate now some relevant properties for the on road assistance scenario.
Firstly, a driver in trouble must be assured that information about his credit card and his
location cannot become available to unauthorized users. Thus, for example, the credit
card identifierccNum, communicated by activityRequestCardChargeto serviceBank,
gets annotated with the policy{pbank}, that allowsBankto receive the datum but prevents
it from transmitting the datum to other services. Other non-critical data, e.g.amount,
can be transmitted without an attached policy. The typed version ofRequestCardCharge
(where irrelevant fault/compensation details are omitted) is defined as follows

pbank•ocharge!〈pcar, {ccNum}{pbank}, amount〉
| [xchargeID] pcar •ochargeFail?〈〉 + pcar •ochargeOK?〈xchargeID〉.pe •oe!〈〉

Notably, the annotations set by programmers are written as asubscript of the datum
to which they refer to. Instead, the annotations put by the type inference, to better dis-
tinguish them from those put by the programmers, are writtenas a superscript of the
variable declaration to which they refer to. Thus, the syntax of variable delimitation be-
comes [{x}r ] s, which means that the datum that dynamically will replacex will be used
in s at most by the partners belonging to the regionr. Hence, once the type inference
phase ends,Bankgets annotated as follows

∗ [{xcust}
{pbank}, {xcc}

{pbank}, {xamount}
{pbank}, ocheckOK, ocheckFail]

pbank•ocharge?〈xcust, xcc, xamount〉.

(< perform some checks and reply on ocheckOKor ocheckFail>

| pbank•ocheckFail?〈〉. xcust•ochargeFail!〈〉
+ pbank•ocheckOK?〈〉.

[chargeID] ( xcust•ochargeOK!〈chargeID〉
| pbank•orevoke?〈chargeID〉.
< revoke chargeID>. xcust•orevokeOK!〈〉 ) )

Indeed, the annotations inferred for variablesxcust, xcc andxamountare derived from the
use of these variables made byBank. Thus, they are assigned region{pbank} because
they are only used in the receive alongpbank•ochargeand, of course, the partner name of
the endpoint must belong to the region of the variables.

Suppose instead that serviceBank(accidentally or maliciously) attempts to reveal
the credit card number through some ‘internal’ operation such aspint • o!〈{xcc}r〉, for
some regionr. ForBankto successfully complete the type inference phase, we should
have pint ∈ r. Then, as result of the inference, we would get the annotatedvariable
declaration [{xcc}

r ′ ] , for some regionr ′ with r ⊆ r ′. Now, the interaction between the
typed termsRequestCardChargeandBankwould be blocked by the runtime checks
because the datum sent byRequestCardChargewould be annotated as{ccNum}{pbank}

while the regionr ′ of the receiving variablexcc is such thatpint ∈ r ⊆ r ′ * {pbank}.
When delivering a datum, we can specify different policies according to the invoked

service. For example, when sending the car’s current location stored inxloc to services
OrderTowTruckandOrderRentalCar, we annotate it with the regions{xtowTruck} and



{xrentalCar}, respectively. This means that the corresponding service invocations get an-
notated as follows:

xtowTruck•oorder!〈pcar, {xloc}{xtowTruck}, xgarageGPS〉

xrentalCar •oredirect!〈xrentalNum, {xloc}{xrentalCar}〉

Notably, the used policies are not fixed at design time, butdependon the partner vari-
ablesxtowTruck and xrentalCar, and, thus, will be determined by the services that these
variables will be bound to as computation proceeds. For example, consider a towing
truck service annotated as follows:

TowTruck , ∗ [{xclient}
r1, {xcarLoc}

r2, {xgarageLoc}
r3, ocheckOK, ocheckFail]

ptowTruck•oorder?〈xclient, xcarLoc, xgarageLoc〉.

(< perform some checks and reply on ocheckOKor ocheckFail>

| ptowTruck•ocheckFail?〈〉. xclient •otowTruckFail!〈〉
+ ptowTruck•ocheckOK?〈〉.

[towTruckNum] xclient •otowTruckOK!〈towTruckNum〉 )

Now, the car’s current location can be communicated to the towing truck if, and only
if, the region of the variablexcarLoc that, after communication, will store the datum and
the region ofxloc do comply, i.e.r2 ⊆ {ptowTruck}.

As a final example, the on road services could want to guarantee that critical data
sent to the in vehicle services, such as cost and quality of the service supplied, are
not disclosed to competitors. For example, suppose that thetowing truck services, like
TowTruckbefore, must send the estimated travel time (ETT) to clients. To prevent this
datum from being sent to competitor services,ETT is communicated with an attached
policy that only authorizes the client partner to access it,as in the following activity

xclient •otowTruckOK!〈towTruckNum, {ETT}{xclient}〉

6 A logical framework for verifying functional properties

The logical verification framework introduced in [9] permits checking functional prop-
erties of services by abstracting away from the computational contexts in which they are
operating. Specifically, services are abstractly considered as entities capable of accept-
ing requests, delivering corresponding responses and, on-demand, cancelling requests,
over specified interactions. The ‘abstract’ service actions are the following:request(i, c),
response(i, c), cancel(i, c) and fail(i, c), where the namei indicates the interaction to
which the corresponding ‘concrete’ action (i.e. the actionoccurring in the COWS spec-
ification) belongs, andc denotes a tuple of correlation values that identifies a particu-
lar invocation of the action. For example,request(i, c) indicates that the corresponding
concrete action represents the initial request of the interaction i and its invocation is
identified by the correlation tuplec; similarly, response(i, c), cancel(i, c) and fail(i, c)
characterise actions that correspond to a response, a cancellation and a failure notifi-
cation, respectively, of the interactioni. The name of the interaction or the correlation
tuple will be omitted whenever they are not relevant. The correspondence between con-
crete actions used in the specifications and the abstract actions above must be defined
from time to time by the user through appropriate abstraction rules.



Our abstract notion of services can be modelled by Doubly Labelled Transition
Systems (L2TSs, [7]) in a very natural way. Thus, to formalize functional properties
of services, we have tailored UCTL [3], a branching time temporal logic interpreted
over L2TSs originally introduced to express properties of UML statecharts, to deal with
service-oriented aspects. The resulting logic, that we call SocL, combines the action
paradigm of ACTL [8] with predicates that are true over states. A key novelty ofSocL
is the possibility to specify parametric formulae to correlate service requests to the cor-
responding answers. Technically, correlation tuples in the actions ofSocL formulae can
use variables. Letvar be a correlation variable name; we use $var to indicate the binder
of the occurrences of %var. For example,request(i, 〈$var〉) denotes a request action for
the interactioni that is uniquely identified through the correlation variable $var. This
way, subsequent actions, corresponding e.g. to response tothat specific request, can
unambiguously refer it through %var.

SocL allows us to express several relevant abstract properties for the services within
the on road assistance scenario. A few examples follow.

1. AG acceptingrequest(engineFailure)
This formula means that the serviceOrchestrator is available, i.e. it is always
capable to accept a request for the interactionengineFailure. Indeed, a formula
like AGφ holds in a stateq of a given L2TS if, and only if, the formulaφ
holds in q and in all the states reachable fromq along each path starting from
q. acceptingrequest(engineFailure) is an atomic proposition that can hold or not
in a state of the L2TS and means that the service is able to accept a request for the
interactionengineFailure.

2. AG[request(garage, 〈$car〉)] AFresponse(garage,〈%car〉)∨fail(garage,〈%car〉) true
This formula means that all garage services contacted byOrchestratorarerespon-
sive, i.e. they always guarantee a response to each received request. Indeed, a for-
mula like [γ] φ means that in the next state of any path, reached by an action sat-
isfying the action formulaγ, the formulaφ holds; a formula likeAFγ φ holds in a
stateq if, and only if,φ holds inq or in one of the states reachable fromq (by a last
action satisfyingγ) along each path starting fromq. Notably, responses (both posi-
tive and negative) from the contacted garage service belongto the same interaction
garageof the garage appointment request and are correlated by the variablecar.

3. ¬E(true¬ response(charge)Urequest(garage)∨request(rentalCar)true)
This formula means that a garage or a rental car request can beprocessed only
after the driver’s credit card has been successfully charged. Indeed,¬ is the nega-
tion operator andE(φ χUγ φ′) is the until operator, that means that there exists
a path starting from the current state for whichφ′ holds at the starting state or
at a future state (reached by an action satisfyingγ), andφ has to hold until that
state is reached (by executing unobservable actions or actions satisfyingχ). No-
tably, some of the previously used operators can be derived from the until operator:
EFφ stands forE(true ttUtt φ), wherett is the action formula always satisfied,AGφ
stands for¬EF¬φ, AFγ true stands forA(truett Uγtrue), andEFγ true stands for
E(truett Uγtrue).

4. EFresponse(rentalCar,〈$rentalNum〉) EFfail(towTruck) AFcancel(rentalCar,〈%rentalNum〉) true
This formula means that, if renting a car succeeds and findinga tow truck fails,



Fig. 2. Excerpt of the concrete L2TS for the on road assistance scenario

then the rental car order must be cancelled (because the car must be redirected to
the driver’s current location). Notably, the cancelling request belongs to the same
interactionrentalCar of the rent confirmation and they are correlated by the vari-
ablerentalNum.

5. EFfail(rentalCar) EFresponse(towTruck) true
This formula means that if renting a car fails, tow truck (and, therefore, garage
appointment) can succeed.

6. AG[fail(towTruck)] AFcancel(garage) true
This formula means that if finding a tow truck fails, the garage appointment will be
revoked.

7. ¬E(true¬ response(garage)Urequest(towTruck)true)
This formula means that before looking for a tow truck, a garage must be found.

To check if a COWS term enjoys some abstract properties expressed asSocL for-
mulae, the following steps must be performed. Firstly, the LTS defining the semantics
of the COWS term (see [15] for a commented presentation of theLTS) is transformed
into an L2TS by labelling each state with the set of actions the COWS term is able to
perform immediately from that state. Of course, the transformation preserves the struc-
ture of the original COWS LTS. For example, the concrete L2TS obtained by applying
this transformation to the on road assistance scenario is shown in Figure 2. Notably, in
our L2TS arcs are labelled by set of actions, rather than by single actions as it is usual.

Secondly, since we are interested in verifying abstract properties of services, such as
those shown before, we need to abstract away from unnecessary details by transforming



Fig. 3. Excerpt of the abstract L2TS for the on road assistance scenario

concrete actions into abstract ones. This is done by means ofsuitableabstraction rules
that replace the concrete labels on the transitions with abstract actions (i.e.request(i, c),
response(i, c), cancel(i, c) andfail(i, c)) and the concrete labels on the states with atomic
propositions (such as, e.g.,acceptingrequest(i)). The transformation only involves the
concrete actions we want to observe; the concrete actions that are not replaced by their
abstract counterparts may not be observed. Thus, the application of the abstraction rules
transforms the concrete L2TS into an ‘abstract’ one. For example, the abstract L2TS
of the on road assistance scenario shown in Figure 3, is obtained by applying to the
concrete L2TS of Figure 2 the following abstraction rules:

Action : oeng fail → request(engineFailure)
Action : ocharge → request(charge)
Action : ochargeOK → response(charge)
Action : pgarage 1 •oorder〈$1, ∗〉 → request(garage, 〈$1〉)
Action : pgarage 2 •oorder〈$1, ∗〉 → request(garage, 〈$1〉)
Action : $1•ogarageOK → response(garage, 〈$1〉)
Action : $1•ogarageFail → f ail(garage, 〈$1〉)
Action : ocancel → cancel(garage)
. . .

Action : orentalCarOK〈$1〉 → response(rentalCar, 〈$1〉)
Action : oredirect〈$1, ∗〉 → cancel(rentalCar, 〈$1〉)
State: oeng fail → acceptingrequest(engineFailure)

Most of the rules are self-explicative, we comment on the remaining ones. Variables
“$n” (with n natural number) are used to define parametric abstraction rules. Also the
wildcard “ ∗ ” is used for increasing flexibility. The fourth and fifth rules prescribe
that whenever an action over the endpointspgarage 1 • oorder or pgarage 2 • oorder with
sent data〈pcar, data〉 (that match〈$1, ∗〉) occurs in the label of a transition, then it is
replaced by the abstract actionrequest(garage, 〈pcar〉). This way, the car partner name
pcar can be used to correlate responses from the contacted garageservice. Similarly,
the second-last rule prescribes that whenever an action over the operationoredirect with



sent data〈rentalNum, gps〉 occurs in the label of a transition, then it is replaced by
cancel(rentalCar, 〈rentalNum〉). The last rule works similarly, but it applies to labels
of states rather than to labels of transitions.

Finally, theSocL formulae are checked over the abstract L2TS. To assist the verifi-
cation process, one can useCMC [1], that is a model checker forSocL formulae over
L2TS, other than an interpreter for COWS terms. One can thus verify that, as expected,
all the abstract properties we introduced before do hold forthe COWS specification of
on road assistance scenario, but the first property, becauseOrchestratoris not a persis-
tent service capable of accepting and serving multiple requests (indeed, as we noted in
Section 3.2, it can only perform one recovery task at a time).

7 Concluding remarks

COWS falls within a main line of research that aims at developing process calculi
capable of capturing the basic aspects of service-orientedsystems and, possibly, of
supporting the analysis of qualitative and quantitative properties of services. We have
demonstrated that one can use COWS to model all the phases of the life cycle of SOC
applications such as publication, discovery, negotiation, orchestration, deployment, re-
configuration and execution. We believe that the methods andtools we have described
for expressing and checking properties of services are already an important added value
of using COWS as a modelling language.

The fact that several relevant aspects of SOC systems can be suitably addressed and
dealt with in an homogeneous and direct way by using a single linguistic low-level for-
malism somehow suggests that COWS could serve as a common andconvenient basis
to enable analysis of service-oriented applications by translation from higher level lan-
guages. As further steps in this direction, we are currentlystudying translations from
the service orchestration language WS-BPEL [22] and the S Reference Mod-
elling Language SRML [10] into COWS. A short-term goal of this activity is to define,
via translation in COWS, an operational semantics for thesetwo high level languages.
A long-term goal is to enable using proof techniques and analytical tools developed
for COWS, such as the type system and the logical verificationframework summed up
in this paper, and the stochastic extension defined in [23], to analyse service-oriented
applications programmed in WS-BPEL or modelled in SRML.
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