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Abstract. COWS is a recently defined process calculus for specifyirbcam-
bining service-oriented applications, while modellingithdynamic behaviour.
Since its introduction, a number of methods and tools haee bevised to anal-
yse COWS specifications, like e.g. a type system to checkdmmtiality prop-
erties, a logic and a model checker to express and checkdnatproperties of
services. In this paper, by means of a case study in the aeea@hotive systems,
we demonstrate that COWS, with some mild linguistic addi&iocan model all
the phases of the life cycle of service-oriented appliceticuch as publication,
discovery, negotiation, orchestration, deployment, négaration and execution.
We also provide a flavour of the properties that can be andlyg@ising the tools
mentioned above.

1 Introduction

In recent years, the increasing success of e-businesasrmrg, e-government, and
other similar emerging models, has led the World Wide Weltialty thought of as a
system for human use, to evolve towards an architectursefwice-oriented computing
(SOC) supporting automated use. SOC advocates the usesefyamupled ‘services’,
to be understood as autonomous, platform-independenpuaitional entities that can
be described, published, discovered, and assembled, bastoblocks for building in-
teroperable and evolvable systems and applications. Whily examples of technolo-
gies that are at least partly service-oriented date backOQBEBA, DCOM, J2EE and
IBM WebSphere, the most successful instantiation of the p@@digm are probably
the more recentveb servicesThese are sets of operations that can be published, lo-
cated and invoked through the Web via XML messages complyitiggiven standard
formats. To support the web service approach, several neyuéges and technologies
have been designed and many international companies haegtéd a lot of forts.
Current software engineering technologies for SOC, howesmain at the descrip-
tive level and lack rigorous formal foundations. We ard stiperiencing a gap between
practice (programming) and theory (formal methods andyaisatechniques) in the de-
sign of SOC applications. The challenges come from the iségesf dealing at once
with issues like communication, co-operation, resourcgyas security, failures, etc.
in a setting where demands and guarantees can be \féeyedit for the many dier-
ent components. Many researchers have hence put forwaiddheof usingprocess
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calculi, a cornerstone of current foundational research on spatificand analysis of
concurrent, distributed and mobile systems through matiiead — mainly algebraic

and logical — tools. Thus, many process calculi have beeigded, addressing one
aspect or another of SOC and aiming at assessing the adeafugiegrse sets of prim-

itives w.r.t. modelling, combining and analysing servaréented applications.

Due to their algebraic nature, process calculi convey inséligid form the com-
positional programming style of SOC. Thus, for example, ynaall-known problems
related to services composition (e.g., messages not egt@ace conditions, deadlocks,
incompatible behaviours) could be investigated throughdeguate and fliciently ex-
pressive process calculus. A major benefit of using procassilcis that they enjoy a
rich repertoire of elegant meta-theories, proof techrécared analytical tools that can
be likely tailored to the needs of service-based applioatitt has been already argued
that type systems, model checking and (bi)simulation amslgrovide adequate tools
to address topics relevant to the web services technolegygg. [20, 24]). This ‘proof
technology’ can eventually pave the way for the developnoérstutomatic property
validation tools. Therefore, process calculi might playeateal role in laying rigorous
methodological foundations for specification and valiolaf SOC applications.

By taking inspiration from well-known process calculi amdrh the standard lan-
guage for orchestration of web services WS-BPEL [22], in] [#® have designed
COWS (alculus for Orchestration of Web Servigea process calculus for specify-
ing and combining service-oriented applications, whiledeiting their dynamic be-
haviour. We have shown that COWS can moddietdlent and typical features of web
services, such as, e.g., multiple start activities, rexeonflicts, routing of correlated
messages, service instances and interactions among theee. i definition, some
linguistic extensions have been introduced to model timatiides [17] and dynamic
service discovery and negotiation [19], thus obtainingnguistic formalism capable
of modelling all the phases of the life cycle of service-ntexd applications. A number
of methods and tools have also been devised to analyse CO®¥¢Bications, such as
the stochastic extension defined in [23] to enable quaivita¢asoning on service be-
haviours, the type system introduced in [18] to check confidéty properties, and the
logic and model checker presented in [9] to express and clwackional properties of
services. In this paper, by means of the ‘on road assista@reso’, a case study in the
area of automotive systems defined and analysed within therBjdct Snsoria [2],
we provide a flavour of COWS main features and specificatigie sand illustrate the
classes of properties that can be analysed by using some tifdls mentioned above.

The rest of the paper is organized as follows. Section 2dires the scenario that
will be used throughout the paper for illustration purposection 3 presents syntax
and main features of COWS; this is done in a step-by-stepdashkhile modelling
some services within the scenario and their orchestraBention 4 shows that also
service discovery and negotiation can be naturally modeileCOWS by exploiting
some mild linguistic additions, i.e. timed activities, straints and operations on them.
Section 5 sums up a type-based approach for expressing &mtiag confidential-
ity properties. Section 6 illustrates a logical verificatibamework including the logic
SocL for expressing functional properties of services and théherfly model checker
CMC for verifying them. Section 7 concludes the paper with somal fiemarks.



2 Onroad assistance scenario

The ‘on road assistance scenario’ [13] is one of the scenarithe area of automotive
systems defined and analysed within the EU projest@ia [2] and describes some
functionalities that will be likely available in the neartfme. The scenario involves a
number of services that are discovered and bound at rundguerding to levels of
service specified at design time, so as to deliver the be#abieafunctionalities at
agreed levels of quality. A brief description follows.

The in-vehiclediagnosticsystem reports a severe failure when the car is no
longer drivable. The cardiscoverysystem then identifies garages, car rentals
and towing truck services in the car’s vicinity. At this ppithe car'sreasoner
system selects a set of adequate services taking into aqoersonalised poli-
cies and preferences of the driver, e.g. balancing cost atay,dand tries to
order them. Before being enable to order services, the oahtire car has

to deposit a security payment, that will be given back if oirtpthe services
fails. Other components of the in-vehicle service platfangolved in this as-
sistance activity are &@PSservice, providing the car’s current location, and an
orchestrator coordinating all the described services.

An UML-like activity diagram of the orchestration of seregis shown in Figure 1.
For simplicity, we assume that the orchestration is onlygtered either by an ‘engine
failure’ or by a ‘low oil level’ sensor signal. The processrss with a request from
the orchestrator to the bank to charge the driver’s credit e4dth the security deposit
payment. This is modelled by the UML actioaguestCardCharge for charging the
credit card whose number is provided as an output paramétireacaction call. In
parallel to the interaction with the bank, the orchestregquests the current location of
the car from the car’s internal GPS service. The currentiocas modelled as an input
to therequestLocation action and subsequently used by fimelServices interaction
which retrieves a list of services. If no service can be fouardaction to compensate
the credit card charge will be launched. For the selectioseo¥ices, the orchestrator
synchronises with the reasoner service to obtain the mpsbppate (best) services.

Service ordering is modelled by the UML actiooslerGarage, orderTowTruck
andorderRentalCar. When the orchestrator makes an appointment with the gattege
diagnostic data are automatically transferred to the ganapich could then be able,
e.g., to identify the spare parts needed to perform the rephéen, the orchestrator
makes an appointment with the towing service, providing@RS data of the stranded
vehicle and of the garage, to tow the vehicle to the garagec@oently, the orchestrator
makes an appointment with the rental service, by indicatiegocation where the car
will be handed over to the driver.

The workflow described in Figure 1 models the overall behavif the system.
Besides interactions among services, it also includegiies using concepts developed
for long running business transactions (e.g. in [11,22RheSe activities entail fault
and compensation handling, kind of specific activitiesrafitng to reverse thefiects
of previously committed activities, that are an importaspect of SOC applications.
Specifically, in the considered scenario, the security diéegmayment charged to the
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Fig. 1. Orchestration in the on road assistance scenario



si= kill(k) | u-ule (kill, invoke)
| Z!:O p-oW.s | s|s (receive-guarded choice, parallel)
|

{sh | [d]s | =s (protection, delimitation, replication)
]

Table 1. COWS syntax

driver's credit card must be revoked if either the discovemase does not succeed
or ordering the services fails, i.e. both gardge truck and car rental services reject
the requests. Moreover, if ordering a tow truck fails, theage appointment has to be
cancelled and the rental car delivery has to be redirectédetstranded car’s actual
location. Instead, if ordering the car rental fails, therallgorocess may not fail, as the
activity is enclosed in a sub-transaction.

3 COWS: a Calculus for Orchestration of Web Services

In this section, we report the syntax of COWS and explainéneastics of its primitives
in a step-by-step fashion while modelling the on road amstst scenario (the complete
specification can be found in [16]). Due to lack of space, exeonly provide an in-
formal account of the semantics of COWS and refer the intedagader to [15, 14] for
a formal presentation, for examples illustrating pecitlzs and expressiveness of the
language, and for comparisons with other process-basedrahdstration formalisms.
To get accustomed to using the language one can alsGM€k[1], a tool supporting
the automated derivation of all computations originatirayrf a COWS term.

3.1 Syntax

The syntax of COWS, given in Table 1, is parameterized byetlecrintable and pair-
wise disjoint sets: the set @killer) labels (ranged over bk, Kk, ...), the set ofvalues
(ranged over by, V, ...) and the set of ‘write once/ariables(ranged over by, v,
...). The set of values is left unspecified, but we assumeithatludes the set of
namesranged over byn, n, o, p, ..., mainly used to represent partners and operations.
The language is also parameterized by a seixpfessionsranged over by, whose
exact syntax is deliberately omitted. We just assume thattessions contain, at least,
values and variables, and do not include killer labels (thahce, ar@ot communica-
ble values). Partner and operation names can be combinedigndite communication
endpointse.g.p-.o denotes the endpoint composed of the parfnand the operation
0. Being values, partner and operation names can be exchangechmunication, but
dynamically received names can only be used to designafmerid for service invoca-
tion. Indeed, endpoints of receive activities are iderdifigatically because their syntax
only allows using names and not variables.

We usew to range over values and variabledp range over names and variables,
andd to range over killer labels, names and variables. Notatistands for tuples of
objects, e.gxis a compact notation for denoting the tuple of variakjgs. . ., x,) (with
n > 0). In the sequel, we shall u§¢o denote empty choice andto abbreviate binary



choice. We will omit trailing occurrences 6f writing e.g.p- 02w instead ofp- 02w.0,
and write fi,...,dy] sin place of fi] ...[dn] s. We will write Z = W to assign a
symbolic name to the termw.

The onlybindingconstruct is delimitation:d] s bindsd in the scopes (the notions
of boundandfreeoccurrences of a namariablelabel are defined accordingly). In fact,
differently from most process calculi, receive activities iniZ® bind neither names
nor variables. This enables e.g. easily modelling and upgl#te shared state of con-
current threads within each service instance. Delimitatian be used to generate fresh
names whose scope can later dynamically change becausengf pdace of communi-
cation. This is exactly as in the-calculus [21]. However, delimitation is more general
than the restriction of the-calculus since it can be also used to declare variables (thu
regulating the range of application of the substitutionsegated by communications)
and to delimit the field of action of kill activities. Notablkiller labels are dealt with
differently from names and variables since, being hot commblacalues, their scope
is statically determined by the corresponding delimitatmd can never change.

3.2 Basic operators for service orchestration

The COWS term representing the ‘orchestration’ in Figure 1 i

[ pear] (Orchestrator| GPS| Discovery| Reasonell SensorsMonitoy
| Bank| OnRoadRepairServices

The services above are composed by usingotimallel compositioroperator. | _ that
allows the diferent components to be concurrently executed and to inteticeach
other. Thedelimitationoperator []_is used here to declare thad,, is a (partner) name
known to all services of the in-vehicle platform, i@rchestrator GPS Discovery
ReasonernndSensorsMonitgrand only to them.

Orchestrator the most important component of the in-vehicle platforsn, i

[XcarDatal ( Pear* Oeng fail X XcarData)- Sengfail + Pear * Olowoil X XcarData) - Sowail )

This term uses thehoiceoperator._+_ to pick one of those alternative ‘recovery’ be-
haviours whose execution can start immediately. Tewive-guarded prefimperator
Pecar* 0i X Xcarbata)- - €XPresses that each recovery behaviour starts witheiveactivity

of the form pear + 0iXcarpata) COrresponding to reception of a request emitted, when a
failure arises, bysensorsMonitofa term representing the behaviour of the ‘low level
vehicle platform’).Receivestogether withinvokes written asp - ol{ey,. .., ey), are
the basic communication activities provided by COWS. Besithput parameters and
sent values, they indicate the endpginto through which the communication should
occur.p - 0 can be interpreted as a specific implementation of operatiprovided

by the service identified by the logic narpe This naming mechanism allows a same
service to be identified by means offérent logic names, i.e. to play more than one
partner role as in WS-BPEL. An inter-service communicataies place when the ar-
guments of a receive and of a concurrent invoke along the sapoint do match

1 The pattern-matching mechanism permits correlating ngesstogically forming a same in-
teraction ‘session’ by means of their same contents. We tefd5, 14] for further details.



and causes replacement of the variables arguments of thieeeatith the correspond-
ing values arguments of the invoke (within the scope of \deis declarations). For
example, variable,rpata, declared local t@®rchestratorby means of the delimitation
operator, is initialized by the receive leading the recpwamtivity with data provided by
SensorsMonitarNotice that, while executing a recovery behavigdichestratordoes
not accept other recovery requests. We are also assumini iheestarted at the end
of the recovery task.
The recovery behaviolsngtai executed when an engine failure occurs is

[ Pe, Oe, Xioc, Xiist]
( (RequestCardChargeRequestLocatiaffrindService3
| Pe+0e). Per 0cX). SelectServices
[Xgaragecpd ( OrderGarageOrderTowTrucK OrderRentalCaj )

Pe - O iS @ scoped endpoint along which successful terminationassg(i.e. com-
munications that carry no data) are exchanged to orchestsatcution of the dlier-
ent components. Variablegc, Xist and Xgaragecps are used to store the value of the
car's current location, the list of closer on road servicessavered and the garage’s
GPS location, respectively. To present the specificatiorsegfai in terms of the
UML actions of Figure 1, we have used an auxiliary ‘sequemegation. Thus, e.g.,
RequestLocatiafrindServicesndicates that execution &equestLocatioterminates
before execution dfindServicestarts. IndeedRequestLocatiarindServicegactually
stands for the COWS term

Pcar* OreqLod {) | pcar'orespLoc?<)(|oc>. .
('Pcar* Ofind!{Xioc, ServicesType
| Pear® OservicesFound{ Xiist)- Pe* Oel{) + Pcar* OservicesNotFound() )

whereRequestLocatioandFindServicesare
RequestLocatior: pear« OreqLoc! () | Pear* OrespLocX Xioc)

FindServices® pcar- Ofing! {Xioc, ServicesType
| pcar'OservicesFoun3<Xlist>~ pe'oe!<>

Endpoints of service invocations can also contain varigaatg e.g., in the term

OrderGarage= Xgarage* Oorder! { Pcar» XcarData) |
[ XrepairNuml ( Pear* OgarageFaiX) + Pear * OgarageoKX XrepairNum XgarageGPS)

Here, variablexgarage is Used to invoke a garage service whose partner name is wnkno
at design time. This garage will be selected dynamicallydiividy SelectServicthat,
through a communication, replacegyrage With the actual partner name of the garage.
Indeed, in COWS dynamic binding of discovered services andice reconfiguration
rely on the exchange of partner and operation names in coneation.

Bank the last service we show in this section, can serve multgr@ests simulta-
neously. This behaviour is modelled by exploiting teplicationoperator:_to spawn



in parallel as many copies of its argument term as necesBagydefinition ofBankis

# [ Xcust Xce Xamount OcheckOk OcheckFail
Poanke Ocharge?<xcusta Xces Xamoum>~
(< perform some checks and reply on Ocheckok OF OcheckFaib
| Poanke OcheckFaiI?<>~ Xcust® OchargeFaiI! <>
+ Poank* OcheckOK?<>~ [Chargelq ( Xcust* OchargeOK! (chargeID
| Poanke Orevoke?<Charge| D.
< revoke chargelD>. Xcust* Orevokeo ) ) )

Once prompted by a requestffdrently fromOrchestrator Bankcreates one specific
instance to serve that request and is immediately readyrtourcently serve other re-
quests. Notably, each instance exploits communicatioimb@rhal’ operation®checkok
and Ocheckrail t0 Model a conditional choice, and creates a new ‘chargdifahby
means of the delimitation operator (that acts here as thaatésn operator of ther-
calculus). Thus, if after some invocations the serviceivesea message along the end-
point prank* Orevoke tO reVoke a request, a certain number of service instanagd be
able to accept it. However, the message is routed to the progtance by exploiting,
as a correlation value, a unique identifier (that is nawteargelDin the term above)
characterizing the instance.

3.3 Fault and compensation handling

We now show how to modify the specification described in thevious section for
adding the fault and compensation activities depicted gufé 1. For improving read-
ability, these activities are highlighted by a gray backgrdto distinguish them from
‘normal behaviour'. For example, the term modelling theaggrordering is:

OrderGarage= Xgarage* Oorder! { Pcar» XcarData)
| [XrepairNun] Pcar- OgarageFaiI?<>~

( Pcar* Oundd (co)

| [p» 0] (p' o! (Xloc> | p- 0?<XgarageGP§) )
+ Pear* OgarageoKX XrepairNum XgarageGPS-
Pcar* Oundo?<garage-

( Xgarage® Ocance! (XrepairN um
| Pear* Ocancelok)
| Pcar Oundd{CC) | Pcar Oundd (rentaICar) )

Thus, if ordering a garage fails, the compensation of thditoard charge is invoked
by sending a signalc (abbreviation of ‘card charge’) along the endpqigd; - Oundo @nd
the rental car delivery is redirected by assigning the cauisent locationx,c to the
variablexgaragecps(this assignment is modelled by means of communicationggtioa
private endpoinp - 0). Otherwise, a compensation handler is installed thatvisked
whenever tow truck ordering fails and, in that case, attsrtgptancel the garage order
and to compensate the credit card charge and the rentalden or



To model fault handling and compensation behaviours, tima @rderGarageex-
ploits interactions along the endpoipds, - 0ungoe However, to better support the spec-
ification of these aspects, COWS provides two further congdtKill activities of the
formkill (k), wherek is a killer label, can be used to force termination of all wipcted
parallel terms inside the enclosing [ that stops the killing fect. Kill activities are ex-
ecutedeagerlywith respect to the other parallel activities but criticatle, such as e.g.
fault/compensation signals and handlers, can be protected frerdféct of a forced
termination by using therotectionoperator{_|. By exploiting these new features, the
recovery behaviousengrai becomes

[ Pe, Oe, Xioc, Xiist> Oundo K ]
( (RequestCardChargeRequestLocatiaffrindService3
| Pes0eX). Per 0cX). SelectServices
[Xgaragecpd ( OrderGarageOrderTowTruck OrderRentalCayj )

whereRequestCardChargendFindServicesre defined as

FindServices: pcare Ofing! {Xioc, ServicesType
| Pcar* OservicesFoun3<Xlist>~ Pe- 0! ()
+ Pecar* OservicesNotFound()-
( Kill (k) | {Ipcar' Oundo' <CC> | Pcar Oundo! <CC>|})

RequestCardChargé poank* Ocharge { Pear, CCNUmMamouny
| {] [XchargeID] pcar'ochargeFail?<>~ Kill (k)
+ Pear* OchargeOKX XchargelD)-
( Pe* 0e! ) | Pcar OundoXCC). Pcar- OundoXCC).
( Poank* Orevokd (XchargelD)
| pcar'orevokeOK?<>) ) I}

Thus, whenever services finding failindServiceserminates the whole recovery be-
haviour and sends two signads along the endpoinpcar « Oundo- Similarly, if charg-
ing the credit card fails, theRequestCardChargeerminates the whole recovery be-
havioursengtai Otherwise, it installs a compensation handler that takes af revoking
the credit card charge. Activation of this compensatioivagtrequires two signalsc
along pear * Oundo @nd, thus, takes place either whenevieidServicefails or whenever
bothOrderGarageandOrderRentalCarnot shown here) fail.

4 Service publication, discovery and negotiation

We have demonstrated so far that COWS can model servicefispdion, orchestra-
tion, reconfiguration, and execution. Now, we focus on othggortant phases of the
life cycle of service-oriented applications. In fact, in endce-oriented architecture,
services can play essentially thredfeiient roles: the provider, the requester and the
registry. Providers fder functionalities and publish machine-readable servescdp-
tions on registries to enable automated discovery and atimt by requesters. In ad-
dition to the function that the service performs, servicsadiptions also include non-
functional properties, such as e.g., response time, &iityareliability, security, and



performance, that jointly represent theality of the servic€QoS). Some of these prop-
erties could depend on the current run-time configuratich@system (e.g. the maxi-
mum allowed bandwidth might depend on the actual load oféinees), thus alynamic
discoveryprocess is often needed to find a provider that meets the sexrgerequire-
ments. Moreover, since services are often developed anohrdifferent organizations,
a key issue of the discovery process is to define a flexibfgotiationmechanism that
allows two or more parties to reach a joint agreement abosttaned quality of a ser-
vice, prior to service execution. The outcome of the negjotigphase is &ervice Level
Agreemen{SLA), i.e. a contract among the involved parties that satdoth type and
bounds on various performance metrics of the service to tged, and the remedial
actions to be performed if these are not met.

We want now to demonstrate that service publication, disgoand SLA negotia-
tion can be naturally modelled in COWS by exploiting the &dds of ‘timed’ activities
and ‘constraints’. Timed activities have been introducdd 7], by adding specific rules
for modelling time passing to the COWS operational semapgioce it is not known to
what extent timed computation can be reduced to untimedsaicomputation [25].
Specifically, COWS is extended with a WS-BPEL-likait activity of the form®,
that suspends the execution of the invoking service urgititne interval whose dura-
tion is specified as an argument has elapsed and can be usggiasidor the choice
operator. Constraints have been introduced in [19], byaitipy the fact that COWS’
definition is parameterised with respect to a few sets ofatbj@amely the set of values
and that of expressions that operate on them. Notably, wetake a definite standing
on which of the many kinds of constraints one should use. kKamgle, one could use
crisp constraints, that can only be satisfied or violatedsaft constraints, that instead
can be satisfied with multiple consistency levels (theseispally expressed by means
of c-semiringd4] and interpreted as levels of preference or importarfeym time to
time, the appropriate kind of constraints to work with stibloé chosen depending on
what one intends to model.

Still in [19] we argue that the concurrent constraint conmgytnodel can be easily
mimicked in COWS. This model of computation is based on aeshatore of con-
straints that provides partial information about possitakies that program variables
can assume. In COWS the store of constraints is representie fiollowing service:

storez = [p, 0] ( p-0!(C) | *[X] P+ 0XX).( Ps* Oget! (X) | [Y] Ps* OsetXY). P+ OY)))

whereC is the multiset of constraints currently in the store, wiilés a distinguished
partner, anabge; andoser are distinguished operations. Other services can intevisict
the store service in mutual exclusion, by acquiring the I@id, at the same time, the
stored value) with a receive alomg- o4t and by releasing the lock (providing the new
stored value) with an invoke alonm; - 0ser The programs running in parallel with the
store can act on it by performing operations for adgtienoving constraints tirom the
store tell andretract, respectively), and for checking entailmguonsistency of a
constraint bywith the store 4sk and check, respectively). For example, the service
tell c.swilling to perform operatiortell c and then to continue as servisean be
rendered in COWS as follows:

[p, 0] ( p-ol(c) | [y] p-0Xy).[X] Ps* OgetX(Y, X)).({ Ps Osed (X W {y}) | | 5))



Due to lack of space, we refer the interested reader to [I9h& implementation of
the other operations and further details.

Now, like in cc-pi [5], service descriptions and SLA requirents can be expressed
as constraints that can be dynamically generated and ca@dpasd that can be used
by the involved parties both for service publication anccdiery, and for the SLA
negotiation process. Consistency of the set of constragssiting from negotiation
means that the agreement has been reached. Timed actatidse exploited to allow
services not to get stuck forever waiting on a receive.

We use the on road assistance scenario to illustrate allfeattires and to put the
related mechanisms to work. Initially, each on road serhias to publish its service
description on a service registry. For example, assumethatage service description
consists of: a string identifying the kind of provided serjithe provider’s partner
name, and a constraint that defines the garage location. bipwssuming that the
registry provides the operatianp., by means of the partner narpgg, a garage service
can request the publication of its description as follows:

Preg* Opub!(“garage, Pgarage 9ps = (43481143, 1114720€E) )

gps is what we call aconstraint variableln fact, it is a specific name and, hence, is not
affected by substitution application. Constraint variableswsed to avoid that taking
place of communication can make the store inconsistenéddgsuppose constraints in
the store may contain variables and consider the followkagreple:

[X] (storg | tell(x < 5).(p-0!(6) | p-0XX)))

After actiontell has added the constraixk 5 to the store, communication along the
endpointp- o can modify the constraintin 8 5, thus making the store inconsistent. To
distinguish constraint variables from COWS (true) varabthe formers are written in
the typewriter style (e.x, vy, ...). The service registry can be defined as

[ODB] ( * [Xtype Xp’ Xc] preg' Opub?<xtype» Xp’ Xc) preg' ODB!<Xtype Xp’ Xc> | Rsearch)

For each publication request received along the endpmigt opu, from a provider
service, the registry service outputs a service descriiong the private endpoint
Preg* Ope. The parallel composition of all these outputs represdresiatabase of the
registry. The subservide®@°h serving the searching requests, is defined as

h a
RSN £ [ Xtype Xclient> Xc» OaddT oList OaskLis]

Preg* Osearch Xtype> Xclient; Xc)- [Ps] ( Storey | tell x.. R’ | List)

A
[

= [K] (= [Xp’ Xconsi Preg* ODBX Xtype Xp> Xconst-
( {Ipreg' Opub! <Xtypa Xp> Xconstl | check Xeonst Preg* OaddToList <Xp> )
| ©s. (Kill (K) | { [Xist] Preg® OaskListXXiist)- Xclient* Oresp!{Xist) [} ) )

When a searching request is received alpg- Osearch the registry service initializes a
new local store (delimitationds] makesstorg inaccessible outside of serviggea e

by adding the constraint within the query message. Theycltaally reads a descrip-
tion (whose first field is the string specified by the cliengnfr the internal database,



checks if the provider constraints are consistent with theesand, in case of success,
adds the provider’s partner name to a list (by exploitingraternal service.ist, that
provides operationSaqgtoList@Nd OaskLis)- After § time units from the initialization of
the local store, the loop is terminated by executing a kifivatg and the current list of
providers for service typaiype is sent to the client. Notably, reading a description in
the database, in this case, consists of an input afipgg opg followed by an output
alongpreg* Opub; this way we are guaranteed that, after being consumedgthaigtion
is correctly added to the database. It is worth noticing $leatice descriptions are non-
deterministically retrieved, thus the same provider cactuo@ the returned list many
times. This could be avoided by refining the specificatiog, ley tagging each service
description with an index (stored in an additional field)ttisathen exploited to read
the descriptions in an ordered way. Moreover, since oupnaif time does not rely on
the so-called ‘maximal progress assumption’, i.e. comiration does not prevent the
execution of timed transitions, there is no guarantee timasarvice at all is retrieved.
After the user’'s car breaks down ar@rchestratoris triggered, the service
Discoveryof the in-vehicle platform will receive frordrchestratora request contain-
ing the GPS data of the car, that it storeija, and a string identifying the kind of the
required services (see the specification in Section 3.2&xyoiting the latter informa-
tion, it will know that it has to search a garage, a tow tructl arental car service. For
example, the component taking care of discovering a gaergé&s can be

preg'osearcl" (“garag€, pcar, diSt(Xloc’ gps) < 20) | [XgarageLisﬂ Pecar Oresp?<xgarageList>

where the constrairdist(xqc, gps) < 20 means that the required garages must be less
than 20 km far from the stranded car’s actual location.

Once the discovery phase terminates Radsonecommunicates the best garage
service toOrchestrator the latter and the selected garage engage in a negotidtasep
in order to sign an SLA. FirsQrchestratorinvokes the operatiooyqer provided by the
selected garage (s€rderGaragedefinition at page 8); then, it starts the negotiation by
performing an operatiortell that add©rchestratois local constraints (i.e. constraints
with restricted constraint variables) to the shared glabaile; finally, it synchronizes
with the garage service, by invokimgyn, for sharing its local constraints with it.

[cost,duration]
tell ((cost < 1500 A duration < 48) v (cost < 800 A duration > 48)).
( Xgarage* Osynd {cost, duration)

| [XrepairNun] Pcar* OgarageOK?<XreapairNum)~ ©o + Pear® OgarageFaiI?<>~ o )

In our example, the constraints state that for a repair is tlean two days the driver is
disposed to spend up to 1500 Euros, otherwise he is readgtal$pss than 800 Euros.

After the synchronization witrchestrator the selected garage service tries to im-
pose its first-rate constraint= ((cost’ > 2000 A 6 < duration’ < 24) v (cost’ >
1500 A duration’ > 24)) and, if it fails to reach an agreement witliintime units,
weakens the requirements and retries with the constraiat((cost’ > 1700 A 6 <
duration’ < 24) v (cost’ > 1200 A duration’ > 24)). Both constraints are specifi-
cally generated by the garage service for the occurred ergilure, by exploiting the
transmitted diagnostic data. Aftéf time units, if also the second attempt fails, it gives
up the negotiation. This negotiation task is modelled ag\i:



[Xcost Xduration, cOst’, duration’]
Pyarage* OsyncX Xcost Xduration)- €11 (Xcost = cOSt’ A Xduration = duration’).
(tell C. Xglient* Ogarageo {re pairNum
+ Oy.(tell C'. Xlient* Ogarageor! (re pairNurm
+ O . Xclient* OgarageFail () ) )

Notably, operationsell cannot be used as guards for the choice operator. Thus, a
term liketell c. s+ ®.. S should be considered as an abbreviation for

[p,q,0] (checkc. (p-0l) | g-0%).tellcC. ) | ®e. S + p-0X).q-0!())

Intuitively, if the constraint is consistent with the store, the timer can be stopped (i.e.
communication along - 0 makes a choice and removes the wait activity); afterward,
the constraint can be added to the store, provided that witezactions that took place

in the meantime do not lead to inconsistency. Otherwisehdfttmeout expires, the
constraint cannot be added to the store.

5 A type system for checking confidentiality properties

The type system for COWS introduced in [18] permits expresand forcing policies
regulating the exchange of data among interacting senandsensuring that, in that
respect, services do not manifest unexpected behaviohiseMmables us to check con-
fidentiality properties, e.qg., that critical data such asldrcard information are shared
only with authorized partners. The type system has beelinautay tailoring to COWS
the type-based approach for protecting data in distribsystems put forward in [12],
in the context of a higher-order functional programmingaage, and drawn on in [6],
in that of languages for global computing.

The types express the policies for data exchange in termegidns i.e. sets of
service partner names attachable to each single datunic&@mogrammers can thus
settle the partners usable to exchange any given datumtfeerd,the services that can
share it), thus avoiding the datum be accessed (by unwasatgitss) through unau-
thorized partners. Then, a type inference system (stBtjgatrforms some coherence
checks (e.g. the service used in an invocation must beloigetwegions of all data
occurring in the argument of the invocation) and derivesritigimal region annota-
tions for variable declarations that ensure consistenseonfices initial configuration.
COWS operational semantics uses these annotations in fieigiet checks (i.e. subset
inclusions) to authorise or block transitions, in order tm@ntee that computations
proceed according to them. This property, cabedndnessan be stated as follows: a
services is soundif, for any datumv in s associated to regionand for all evolutions
of s, it holds thatv can be exchanged only by using services.iAs a consequence of
the type soundness of the language, it follows that weletypervices always comply
with the policies regulating the exchange of data amongacteng services. In fact, it
is also possible to move all dynamic checks to the static @ahEsis would require a
static analysis that gathers information about all the eslilhat each variable can as-
sume at runtime and uses these information to verify the tiamge with the specified
policies. At the price of a more complex static phase, thigraach, on the one hand,



would alleviate the runtime checks but, on the other handldcdiscard terms that at
runtime would behave soundly since statically they canmatrgntee to comply with
their policies. We are currently evaluating and implenanthe two approaches.

We illustrate now some relevant properties for the on roadstsice scenario.
Firstly, a driver in trouble must be assured that informatibout his credit card and his
location cannot become available to unauthorized usenss, Tibr example, the credit
card identifieccNum communicated by activitiRequestCardCharge serviceBank
gets annotated with the poli¢pyany, that allowsBankto receive the datum but prevents
it from transmitting the datum to other services. Other rdtieal data, e.gamount
can be transmitted without an attached policy. The typesioriofRequestCardCharge
(where irrelevant faylcompensation details are omitted) is defined as follows

Pbank* Ocharge! {Pcars {CCNUmlpbank}, amoung
| [XchargeID] Pcar OchargeFaiI?<> + pcar'OchargeOK?<XchargelD>~pe' Oe!<>

Notably, the annotations set by programmers are written sishacript of the datum
to which they refer to. Instead, the annotations put by tipe inference, to better dis-
tinguish them from those put by the programmers, are write@a superscript of the
variable declaration to which they refer to. Thus, the sywofasariable delimitation be-
comes {x}'] s, which means that the datum that dynamically will replaedll be used

in s at most by the partners belonging to the regioklence, once the type inference
phase end€Bankgets annotated as follows

* [{Xcust}{pba”k}, {Xee}Poa | {Xamount P, Ocheckok OcheckFail
Pbank* OchargeXX Xcust Xcc» Xamoun?-
(< perform some checks and reply on Ogheckok OF OcheckFait
| Poank* OcheckFaiI?O' Xcust® OchargeFaiI! O
+ Pbank* OcheckoKX)-
[chargelD ( Xcust: Ochargeo! {ChargelD
| Poanke Orevoke?<Charge| D
< revoke chargelD>. Xcyst* OrevokeoK () ) )

Indeed, the annotations inferred for variab¥gs, Xcc andXamountare derived from the
use of these variables made Bgnk Thus, they are assigned regifmyan because
they are only used in the receive alopgnk: Ocharge@nd, of course, the partner name of
the endpoint must belong to the region of the variables.

Suppose instead that serviBank (accidentally or maliciously) attempts to reveal
the credit card number through some ‘internal’ operatiothsas pjn; « 0'{{Xcc}r), for
some region. For Bankto successfully complete the type inference phase, we ghoul
havepi: € r. Then, as result of the inference, we would get the annoted€edble
declaration {x.¢}"'], for some region’ with r C r’. Now, the interaction between the
typed termsRequestCardChargand Bankwould be blocked by the runtime checks
because the datum sent RequestCardChargeould be annotated ggcNump, .4
while the regiornr’ of the receiving variable is such thapin: € r €1’ € {Poank-

When delivering a datum, we can specifyffdient policies according to the invoked
service. For example, when sending the car’s current locatiored inxqc to services
OrderTowTruckand OrderRentalCay we annotate it with the regiof®iowrruck and



{Xrentalcar}, respectively. This means that the corresponding sermiggcations get an-
notated as follows:

XtowT ruck® Oorder! { Pears {Xioc} {xowrrucd» XgarageGPS
XrentalCar* Oredirect! {XrentalNum {Xioc} (X enaicarl?

Notably, the used policies are not fixed at design time deytendon the partner vari-
ablesXiowTruck aNd Xrentaicar, @nd, thus, will be determined by the services that these
variables will be bound to as computation proceeds. For ei@nsonsider a towing
truck service annotated as follows:

TowTruck £ [{Xclient)"®, {XcarLoc}"?, {XgarageLo&rs, OcheckOk OcheckFail
PtowT ruck® Oorder X Xclient XcarLoc, XgarageLoo-
(< perform some checks and reply on Ogheckok OF OcheckFail >
| PtowT ruck OcheckFail?Oo Xclient* OtowT ruckFaif ()
+ ProwT ruck* OcheckokX)-
[tOWTI’UCkNUf’]]XC”em- OtowT ruckOK! (towTruckNun}l)

Now, the car’s current location can be communicated to theéni truck if, and only
if, the region of the variable., oc that, after communication, will store the datum and
the region ofx,c do comply, i.erz C {ProwTruck-

As a final example, the on road services could want to guagahtg critical data
sent to the in vehicle services, such as cost and quality eféivice supplied, are
not disclosed to competitors. For example, suppose thdbwiag truck services, like
TowTruckbefore, must send the estimated travel tifg@ T) to clients. To prevent this
datum from being sent to competitor service3, T is communicated with an attached
policy that only authorizes the client partner to accesasiin the following activity

Xclient* OtowT ruckok! (FOWTIUCKNUM{ET T}y ens)

6 A logical framework for verifying functional properties

The logical verification framework introduced in [9] persihecking functional prop-
erties of services by abstracting away from the computatioontexts in which they are
operating. Specifically, services are abstractly consitfles entities capable of accept-
ing requests, delivering corresponding responses andeorand, cancelling requests,
over specified interactions. The ‘abstract’ service actime the followingrequesti, c),
respons, ¢), cance(i, c) andfail(i, c), where the name indicates the interaction to
which the corresponding ‘concrete’ action (i.e. the actionurring in the COWS spec-
ification) belongs, and denotes a tuple of correlation values that identifies a @arti
lar invocation of the action. For examphleguesti, c) indicates that the corresponding
concrete action represents the initial request of theast@ni and its invocation is
identified by the correlation tuple similarly, responsé, c), cancei, ¢) andfail(i, c)
characterise actions that correspond to a response, allesiooeand a failure notifi-
cation, respectively, of the interactionThe name of the interaction or the correlation
tuple will be omitted whenever they are not relevant. Theespondence between con-
crete actions used in the specifications and the abstraoha@bove must be defined
from time to time by the user through appropriate abstraatites.



Our abstract notion of services can be modelled by Doublyellad Transition
Systems (ETSs, [7]) in a very natural way. Thus, to formalize functibpeoperties
of services, we have tailored UCTL [3], a branching time tenmaplogic interpreted
over L?TSs originally introduced to express properties of UMLestatarts, to deal with
service-oriented aspects. The resulting logic, that we®atL, combines the action
paradigm of ACTL [8] with predicates that are true over Safekey novelty ofSocL
is the possibility to specify parametric formulae to caatelservice requests to the cor-
responding answers. Technically, correlation tupleséreittions ofSocL formulae can
use variables. Latar be a correlation variable name; we us@ffto indicate the binder
of the occurrences of ¥&r. For examplerequesti, ($var)) denotes a request action for
the interaction that is uniquely identified through the correlation var@aBbar. This
way, subsequent actions, corresponding e.g. to resporntbatigpecific request, can
unambiguously refer it through 9ar.

SocL allows us to express several relevant abstract propeoti¢isé services within
the on road assistance scenario. A few examples follow.

1. AG acceptingrequestengineFailure
This formula means that the servi€@rchestratoris availablg i.e. it is always
capable to accept a request for the interacgagineFailure Indeed, a formula
like AG¢ holds in a stateq of a given LTS if, and only if, the formulag
holds inq and in all the states reachable frapalong each path starting from
g. acceptingrequestengineFailurg is an atomic proposition that can hold or not
in a state of the ETS and means that the service is able to accept a requesefor th
interactionengineFailure

2. AG[requestgarage ($car))] AFresponsgarage(¥can) vfail (garage(vecary) true
This formula means that all garage services contactedrbliestratorarerespon-
sive i.e. they always guarantee a response to each receiveestetndeed, a for-
mula like [y] ¢ means that in the next state of any path, reached by an aetion s
isfying the action formula, the formulag holds; a formula likeAF, ¢ holds in a
stateq if, and only if, ¢ holds inqg or in one of the states reachable frgrtby a last
action satisfyingy) along each path starting froga Notably, responses (both posi-
tive and negative) from the contacted garage service betotige same interaction
garageof the garage appointment request and are correlated byatreblecar.

3. _‘E(trU&responsecharge)Ureques([garage)vreques(rentalCar)true)
This formula means that a garage or a rental car request canobessed only
after the driver’s credit card has been successfully cltaigeleed - is the nega-
tion operator and(¢ U, ¢’) is the until operator, that means that there exists
a path starting from the current state for whighholds at the starting state or
at a future state (reached by an action satisfyihgand¢ has to hold until that
state is reached (by executing unobservable actions amacsiatisfyingy). No-
tably, some of the previously used operators can be deneedthe until operator:
EF ¢ stands folE(true Uy ¢), wherett is the action formula always satisfie®iG ¢
stands for-EF-¢, AF, true stands forA(trueq U, true), and EF, true stands for
E(trueq U, true).

4. EFresponseentalcar,($rentalNum) EFfaiI(towTruck) AFcance(rentalCar,(%rentalNum) true
This formula means that, if renting a car succeeds and finditayv truck fails,
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Fig. 2. Excerpt of the concreteTS for the on road assistance scenario

then the rental car order must be cancelled (because theusdr® redirected to
the driver’s current location). Notably, the cancellinguest belongs to the same
interactionrentalCar of the rent confirmation and they are correlated by the vari-
ablerentalNum

5. EFfaiI(rentaICalj EFresponsétowTruck) true
This formula means that if renting a car fails, tow truck (attterefore, garage
appointment) can succeed.

6. AG[fail(towTruck] AFcance(garage true
This formula means that if finding a tow truck fails, the gagagpointment will be
revoked.

7. _‘E(trU&responsegarage)Ureques((towTruck)true)
This formula means that before looking for a tow truck, a gamaust be found.

To check if a COWS term enjoys some abstract properties segpdeassocL for-
mulae, the following steps must be performed. Firstly, th& Idefining the semantics
of the COWS term (see [15] for a commented presentation of TI¥ is transformed
into an L°TS by labelling each state with the set of actions the COWS israble to
perform immediately from that state. Of course, the trams&dion preserves the struc-
ture of the original COWS LTS. For example, the concret€$ obtained by applying
this transformation to the on road assistance scenarimisrsin Figure 2. Notably, in
our LTS arcs are labelled by set of actions, rather than by sirajiers as it is usual.

Secondly, since we are interested in verifying abstragi@mies of services, such as
those shown before, we need to abstract away from unnegekails by transforming
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Fig. 3. Excerpt of the abstract3l'S for the on road assistance scenario

concrete actions into abstract ones. This is done by meaastableabstraction rules
that replace the concrete labels on the transitions wittratisactions (i.erequest, c),
responsé, ¢), cance(i, c) andfail(i, c)) and the concrete labels on the states with atomic
propositions (such as, e.@cceptingrequesti)). The transformation only involves the
concrete actions we want to observe; the concrete actiahath not replaced by their
abstract counterparts may not be observed. Thus, the apiphiof the abstraction rules
transforms the concrete’TS into an ‘abstract’ one. For example, the abstr&d®3.

of the on road assistance scenario shown in Figure 3, isr@atddy applying to the
concrete BTS of Figure 2 the following abstraction rules:

Action: Oengfai — requestengineFailurg

Action: Ocharge — requesfcharge

Action: Ochargeok — responsgcharge

Action: pgaragel'oorder<$L*> — requesfgarage ($1))
Action: pgarage_Z'Oorder<$:L*> — requesfgarage ($1))
Action: $1-0garageok — responsggarage ($1))
Action: $1-0garagerail — fail(garage ($1))

Action: 0Ocancel — cance({garage

Action: Orentaicarox{$1) — respons@entalCar, ($1))
Action: Oredirec{$L *) — cance{rentalCar, ($1))
State: Oengfail — acceptingrequesfengineFailurg

Most of the rules are self-explicative, we comment on theaieing ones. Variables
“$n” (with n natural number) are used to define parametric abstractles.rélso the
wildcard “ « " is used for increasing flexibility. The fourth and fifth rslgrescribe
that whenever an action over the endpoipdsage1 * Oorder OF Pgarage2 * Oorder With
sent datda pcar, data) (that match($1, =)) occurs in the label of a transition, then it is
replaced by the abstract actimguesfgarage {pcar)). This way, the car partner name
Pcar C&N be used to correlate responses from the contacted geeadee. Similarly,
the second-last rule prescribes that whenever an actiarnlweperatior,egirect With



sent datarentalNumgp9 occurs in the label of a transition, then it is replaced by
cance(rentalCar, (rentalNum). The last rule works similarly, but it applies to labels
of states rather than to labels of transitions.

Finally, theSocL formulae are checked over the abstra€t§. To assist the verifi-
cation process, one can uS#IC [1], that is a model checker f@ocL formulae over
L2TS, other than an interpreter for COWS terms. One can thufyveat, as expected,
all the abstract properties we introduced before do holdifeICOWS specification of
on road assistance scenario, but the first property, be€abestratoris not a persis-
tent service capable of accepting and serving multipleestsuindeed, as we noted in
Section 3.2, it can only perform one recovery task at a time).

7 Concluding remarks

COWS falls within a main line of research that aims at devielpprocess calculi
capable of capturing the basic aspects of service-oriesetéms and, possibly, of
supporting the analysis of qualitative and quantitativeperties of services. We have
demonstrated that one can use COWS to model all the phades lifetcycle of SOC
applications such as publication, discovery, negotiatiwohestration, deployment, re-
configuration and execution. We believe that the methods@wid we have described
for expressing and checking properties of services ara@ran important added value
of using COWS as a modelling language.

The fact that several relevant aspects of SOC systems cavithblg addressed and
dealt with in an homogeneous and direct way by using a siimgeilstic low-level for-
malism somehow suggests that COWS could serve as a commaoavehient basis
to enable analysis of service-oriented applications hystegion from higher level lan-
guages. As further steps in this direction, we are curresitigying translations from
the service orchestration language WS-BPEL [22] and thaogia Reference Mod-
elling Language SRML [10] into COWS. A short-term goal ofsthictivity is to define,
via translation in COWS, an operational semantics for thesehigh level languages.
A long-term goal is to enable using proof techniques andyaical tools developed
for COWS, such as the type system and the logical verificdteonework summed up
in this paper, and the stochastic extension defined in [@3n&alyse service-oriented
applications programmed in WS-BPEL or modelled in SRML.
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