
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Student Thesis No. 2394

Integration of Different Aspects of
Multi-Tenancy in an Open Source

Enterprise Service Bus

Santiago Gómez Sáez

Course of Study: Computer Science

Examiner: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova
Supervisor: Dr. Vasilios Andrikopoulos

Steve Strauch
Commenced: October 1, 2012
Completed: November 14, 2012

CR-Classification: C.2.4, D.2.11, H.3.4, C.2.3

Abstract

The EU project 4CaaSt aims to create an advance PaaS Cloud platform which supports the
optimized and elastic hosting of composite Internet-scale multi-tier applications. Cloud
computing is essentially changing the way services are built, provided and consumed.

Nowadays applications are composed out of multiple reusable services consisting of newly
developed services as well as legacy applications made available as services. These services do
not necessarily use the same protocols for communication. So a component for the mediation
between various protocols, dynamic service selection and routing based on non-functional
requirements is needed. Nowadays an Enterprise Service Bus (ESB) is used in Service-
Oriented Architectures (SOAs) to serve precisely these objectives. One important aspect of
bringing an ESB as building block into the Cloud is to enable multi-tenancy. This includes
multi-tenant aware management and administration of the ESB as well as multi-tenant aware
messaging.

In this student thesis we design and implement the extensions of the ESB and the components
needed for the integration and evaluation of two approaches to extend an open source
ESB for multi-tenancy support: the first covers the multi-tenant aware administration and
management and the second covers the multi-tenant aware messaging. Both approaches
require the extension of the ESB, which implements the Java Business Integration (JBI). As a
result, we provide an integrated prototype based on a scenario emerged from the EU project
4CaaSt and a performance’s evaluation of the extended JBI Components in the ESB.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivating Scenario . 2
1.3 Definitions and Conventions . 3
1.4 Outline . 5

2 Fundamentals 7
2.1 Service-Oriented Architecture . 7

2.1.1 Enterprise Service Bus . 8
2.2 Cloud Computing . 9
2.3 Multi-tenancy . 11
2.4 Java Business Integration . 13
2.5 OSGi Framework . 14
2.6 Apache ServiceMix . 15
2.7 Binding Components . 17

2.7.1 SOAP over HTTP . 17
2.7.2 Java Message Service (JMS) . 17
2.7.3 E-Mail . 18

2.8 Service Engine . 18
2.8.1 Apache Camel . 18

2.9 JBIMulti2 . 19

3 Related Works 21

4 Concept and Specification 25
4.1 Requirements . 25

4.1.1 Communication Requirements . 25
4.1.2 Integration Requirements . 28

5 Design 29
5.1 Integration Architecture . 29
5.2 Tenant Context . 30
5.3 Tenant-aware Normalized Message Format . 32
5.4 Tenant-aware Binding Components . 33

5.4.1 SOAP over HTTP . 34
5.4.2 JMS . 36
5.4.3 E-Mail . 39

iii

Contents

6 Implementation 41
6.1 System Overview . 41
6.2 Taxi Scenario Integration . 43
6.3 Multi-tenant Binding Components . 44

6.3.1 SOAP over HTTP . 45
6.3.2 JMS . 47
6.3.3 Email . 49

6.4 Multi-tenant Service Engine . 51
6.4.1 Apache Camel . 51

7 Test 53
7.1 Deployment and Initialization . 53
7.2 Multi-tenant Binding Components . 54

7.2.1 SOAP over HTTP . 54
7.2.2 JMS . 54
7.2.3 E-Mail . 55

8 Performance Evaluation 59
8.1 Specification . 59

8.1.1 Evaluation Requirements . 59
8.1.2 Evaluation Overview . 60

8.2 ESB Performance Evaluation Architecture . 61
8.3 Evaluation . 64

8.3.1 ESB Performance Evaluation Benchmark 64
8.3.2 ESB Performance Evaluation Analysis 66

9 Outcome and Future Work 71

Bibliography 73

iv

List of Figures

1.1 Taxi Scenario - Communication Diagram . 3

2.1 The Role of the service bus in SOA . 9
2.2 Multi-tenancy and Long Tail . 12
2.3 JBI Architecture . 14
2.4 Architecture of Apache ServiceMix . 16
2.5 JBIMulti2 System Overview . 20

5.1 Integrated Architecture . 30
5.2 Tenant-aware Normalized Message . 33
5.3 Tenant-aware SOAP over HTTP JBI BC Design Overview 35
5.4 Tenant-aware JMS JBI BC Design Approach 1 Overview 37
5.5 Tenant-aware JMS JBI BC Design Approach 2 Overview 38
5.6 Tenant-aware E-mail JBI BC Design Overview 39

6.1 Taxi Application - System Overview . 42
6.2 Implemented and Configured Binding Component (BC) for integration with

Taxi Scenario v2.0 . 43

7.1 Test of multi-tenant Hypertext Transfer Protocol (HTTP) BC 56
7.2 Test of multi-tenant JMS BC . 57
7.3 Test of multi-tenant Mail BC . 58

8.1 Performance Evaluation Components Overview 61
8.2 ESB Performance Evaluation Architecture . 63
8.3 ESB Performance Evaluation Package Structure 65
8.4 ESB Performance Evaluation Response time for 1KB Messages 67
8.5 ESB Performance Evaluation Throughput for 1KB Messages 68
8.6 ESB Performance Evaluation CPU Consumption 69

v

List of Figures

vi

List of Tables

8.1 ServiceMix evaluation performance scenarios 59

vii

List of Tables

viii

List of Listings

5.1 Tenant Context XSD in ESB requests . 31
5.2 Tenant-aware Endpoint Configuration . 34
5.3 Tenant-aware service URL . 34

6.1 Tenant Endpoint URI Example . 45
6.2 Tenant-aware SOAP over HTTP message example 46
6.3 Tenant-aware XML over JMS message example 47
6.4 Queue and Topic Examples in multi-tenant JMS BC 49
6.5 Tenant-aware XML over E-mail message example 50

8.1 ESB Performance Analysis Main Shell Script Invocation 64
8.2 ESB Performance Analysis Non Multi-tenant Shell Script Invocation 65
8.3 ESB Performance Analysis Multi-tenant Shell Script Invocation 66

ix

1 Introduction

Cloud computing is a recent pattern which describes a new consumption and delivery
model for IT Services based on the Internet. It provides dynamically on demand virtualized
resources as a service to customers through Web interfaces and standardized protocols with
the minimum management effort or service provider interaction. Computer resources (e.g.,
servers, storage, network) within a Cloud infrastructure are accessed and used by many
users. Therefore, functional requirements should be fulfilled at the provider’s side in terms of
management and usage.

The EU Project 4CaaSt [4Ca] aims to create an advanced Platform-as-a-Service (PaaS) Cloud
platform which supports the optimized and elastic hosting of composite internet-scale multi-
tier applications. The services supported by these applications should be able to support
different protocols. For this mediation between protocols an Enterprise Service Bus (ESB) is
used in Service-Oriented Architecture (SOA). However, one requirement must be fulfilled
when bringing the ESB into the Cloud: multi-tenancy awareness. The ESB should be modified
to be multi-tenant aware in terms of management and messaging.

1.1 Problem Statement

A Cloud infrastructure must serve multiple tenants simultaneously by virtualizing its re-
sources. This requirement allows a Cloud provider to maximize its infrastructure’s utilization,
lower its infrastructure costs and provide an appropriate Cloud usage market-price to the
tenants. The virtualization of resources means that the physical resources will be shared
by different tenants. This requires a multi-tenant aware infrastructure which has to be able
to isolate tenant data, communication, and computing. The communication to and from
the Cloud infrastructure must support different protocols. For this challenge we use an
Enterprise Service Bus, which was extended following two main approaches: management
and administration, and multi-tenant aware messaging.

Both of the approaches are outputs of the diploma thesis "Extending an Open Source Enter-
prise Service Bus for Multi-Tenancy Support Focusing on Administration and Management"
[Muh12] and master’s thesis "Extending an Open Source Enterprise Service Bus for Multi-
Tenancy Support" [Ess11].

This student thesis has the goal, in the first place, to design and implement the needed com-
ponents to integrate the above developed approaches. The management and administration
approach [Muh12] specifies and implements a multi-tenant management and administration
system for Apache ServiceMix 4.3.0 [ASM]. It provides tenant users interfaces for deploying

1

1 Introduction

and undeploying service assemblies, as well as management and administration artifacts for
managing and administrating the tenants and users utilizing the system. The multi-tenant
aware messaging approach [Ess11] aims to extend the Apache ServiceMix 4.3.0 [ASM] ESB
to provide multi-tenant support with respect to communication to allow its use as a Cloud
computing application. This multi-tenant support entails ensuring tenant isolation in the
communication to and from the ESB by extending the ESB’s JBI components in order to be
able to evaluate its functionality based on a scenario originated from the European project
4CaaSt [4Ca].

In the second place, this student thesis must present a testing and evaluation of the extended
multi-tenant aware version of the Apache ServiceMix ESB 4.3.0 [ASM]. The separated ap-
proaches’ implementations have been tested with a low number of tenants and a low message
consumption ratio. The goal of the ESB performance’s evaluation is to design and implement
a benchmark which will provide us with the needed load configurations for running different
testing scenarios. The output from these scenarios will be analytical data which will allow
us to evaluate the behavior and the performance of the ESB and the system in different
scenarios.

In the third place, we must integrate the extended ESB and the management and administra-
tion Application JBIMulti2 [Muh12] with the components that build up the Taxi Scenario of
the European project 4CaaSt [4Ca] to provide and evaluate an integrated prototype of the taxi
application.

1.2 Motivating Scenario

In this section we describe the motivating scenario which will be used for the verification of
the outcome of this thesis. The motivating scenario is an outcome from the EU project 4CaaST
[4Ca]. It is based on a taxi booking service implemented in a taxi application.

Taxi customers can book a taxi for a transportation from one location to another. In the
scenario, each of the taxi companies are tenants and each of the customers are users. The taxi
customer contacts the taxi company of their preference to book a taxi and provides the pick
up and drop off location (1). The contacted tenant forwards then the taxi request with the
information provided by the customer and the customer reply contact preference utilizing
one of the following three messaging protocols: Simple Object Access Protocol (SOAP) over
HTTP, Java Messaging Service JMS or E-Mail. The taxi request is forwarded through the
multi-tenant ESB (2) to the Taxi Service Provider (3), which locates taxi drivers in the area and
contacts the corresponding taxi drivers. Once the transport request is accepted by one of the
taxi drivers, the confirmation is sent back and a confirmation of the taxi service is sent to the
customer (4) (see Figure 1.1).

The taxi service provider activities are implemented as a BPEL process which orchestrates
the taxi scenario activities. The BPEL process invokes two external systems through the ESB
to obtain the following information: the Context-Management Framework [CCA] provides
information about the location of the taxi drivers and their contact details. When receiving

2

1.3 Definitions and Conventions

!"#$%&''($)"*+,%

Multi Tenant
ESB

Taxi Service
Provider

1

1

2

2 3

4

4

!""#$%&'()*&
+%,-./%*&

!"#$%&$'(()'

Figure 1.1: Taxi Scenario from the EU 4CaaSt project [4Ca]

the taxi driver location information, the distance information between the taxi driver location
and the customer location are calculated in the Google Web Services [GMA].

In Hagin’s approach [Hag11] the communication between the taxi service provider and
the external systems Context-Management Framework [CCA] and Google Maps Services
[GMA] is a point to point communication with two binding applications which mediate the
communication between the taxi service provider BPEL process and the external services. In
the prototype developed in this student thesis, the point to point communication is replaced
by a communication through the Apache ServiceMix 4.3.0 [ASM] multi-tenant aware ESB
version. The communication between the these components is not multi-tenant aware, so one
of the main goals of this ESB extended version is to provide backward compatibility support
for non multi-tenant communication. Both multi-tenant and non multi-tenant connections
between the components in the taxi application require the specification and development of
JBI components which will be described and evaluated in this thesis.

1.3 Definitions and Conventions

In the following section we will list the definitions and the abbreviations used in this student
thesis for understanding the description of the work. These will be used in the document.

3

1 Introduction

Definitions

List of Abbreviations

The following list contains abbreviations used in this document.

Axis2 Apache eXtensible Interaction System v. 2

BC Binding Component

BPEL Business Process Execution Language 2.0

EAI Enterprise Application Integration

EAR Enterprise Archive

ESB Enterprise Service Bus

IaaS Infrastructure-as-a-Service

JBI Java Business Integration

JDK Java Development Kit

JMS Java Message Service

JMX Java Management Extensions

JVM Java Virtual Machine

NIST National Institute of Standards and Technology

NMR Normalized Message Router

OSGi Open Services Gateway initiative (deprecated)

PaaS Platform-as-a-Service

POJO Plain Old Java Object

QoS Quality of Service

SaaS Software-as-a-Service

SE Service Engine

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol (deprecated)

UUID Universally Unique Identifier

WS* Web Services (Specifications)

WSDL Web Services Description Language

XML eXtensible Markup Language

4

1.4 Outline

HTTP Hypertext Transfer Protocol

DCE Distributed Computing Environment

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

MOM Message-Oriented Middleware

NM Normalized Message

NMF Normalized Message Format

SU Service Unit

SA Service Assembly

MEP Message Exchange Patterns

URI Uniform Resource Identifier

GAE Google App Engine

SMPP Short Message Peer-to-Peer

SNMP Simple Network Management Protocols

POM Project Object Model

WAR Web Application Archive

LRU Least Recently Used

1.4 Outline

In this section we will list and describe the main points described in this student thesis.

• Fundamentals, Chapter 2: we will give the necessary background on the different
concepts and technologies used for the realization of this student thesis.

• Related Works, Chapter 3: different approaches in the proposed problem have been
taken. We will discuss and compare them with the approaches we will take into account.

• Concept and Specification, Chapter 4: functional and non-functional requirements
will be discussed in this section, for both integration and evaluation analysis.

• Design, Chapter 5: we will give a detailed overview of the components which should
be modified and the components which should be integrated in order to meet the
requirements specified in this student thesis.

• Implementation, Chapter 6: the implemented components, as well as the necessary
extensions or changes will be detailed in this section from the point of view of coding
and configuration.

5

1 Introduction

• Test, Chapter 7: in this chapter we will test the final prototype based on the scenario
described in this document.

• Evaluation, Chapter 8: will perform an evaluation of the extension based on different
load scenarios to measure the impact of the outcome of this student thesis on the
performance.

• Outcome and Future Work, Chapter 9: we will give a conclusion of the developed
work and will give some ideas on which further issues can be taken into account in this
topic to extend the outcome of this thesis.

6

2 Fundamentals

In this chapter we give an explanation about the technologies and concepts to provide the
background information this student thesis relies on. We start describing the main architecture
this student thesis relies on: SOA and its fundamental component, the ESB, and give a review
in the patterns followed and in the technologies used.

2.1 Service-Oriented Architecture

The Open Group defines the Service-Oriented Architecture (SOA) as "an architectural style
that supports service orientation. Service orientation is a way of thinking in terms of services
and service-based development and the outcomes of services" [OPG06].

In the last years enterprises had the need to adapt the SOA architectural paradigm to the
their existing IT infrastructure and services to be able to respond to the economic and
technological growth they needed. Their distributed system infrastructure was not capable of
communicating with external software components wanted to be exposed as a service without
a previous agreement in messaging protocols, data types and encoding, and middleware. The
same problem could be found in software services inside the company which communicate
through its intranet. SOA provides the needed flexibility by building an architectural style
with the following benefits: loose coupling, interoperability, efficiency, and standardization.
The W3C group defines SOA as a form of distributed system architecture that is typically
characterized by the following properties [w3c04]:

• Logical view: the service is defined in terms of what is does and not in terms of how it
works.

• Message orientation: the internal structure of an agent is abstracted.

• Description orientation: a service is described by machine-processable meta data.

• Granularity: services tend to use a small number of operations with relatively large and
complex messages.

• Network orientation: Services tend to be oriented toward use over a network.

• Platform neutral: Messages are sent in a platform-neutral, standardized format deliv-
ered through the interfaces.

7

2 Fundamentals

The Service Oriented Architecture SOA defines three main roles: requester, provider and
broker and the four main operations: publish, find, bind, and invoke. The service provider
provides access to services, creates a description of a service and publishes it to the service
broker. The service requestor discovers a service by searching through the service descriptions
located in the service broker. When the service which best fits to his needs is found, the
discovering facility provides the concrete service endpoint and the consumer is responsible
for binding to it. With this information, the requestor can then bind to the concrete service
and finally execute a business activity [WCL+05].The service broker is responsible for hosting
a registry of services descriptions and for linking a requestor to a service provider.

The main component in a SOA is the ESB. The functionalities provided by a service bus
can simplify the process (publication, discovery, binding, and invocation) and make it more
transparent to provide an ease-to-use experience for a Web service based implementation of
SOA [WCL+05]. Chappel defines its function as an intermediate connection provisioning of
service providers with service consumers and thereby ensure decoupling of theses [Cha04].

2.1.1 Enterprise Service Bus

The lack of an unique standardized communication middleware between enterprise ap-
plications forced numerous distributed computing models (e.g. Distributed Computing
Environment (DCE), Common Object Request Broker Architecture (CORBA), Distributed
Component Object Model (DCOM), Message-Oriented Middleware (MOM), Enterprise Ap-
plication Integration (EAI), J2EE, Web Services, .NET) to appear. However, some of them
have tightly coupled interfaces between applications and services or have high investments
costs, and have in the past accomplished less than a 10% of connected enterprise applications
[Cha04]. Furthermore, with the increase of the number of applications utilizing a point-to-
point connection between them, an increase in the probability of a service failure increased,
being each of the applications a single point of failure. There was a need of an integration
environment with minimal (or any) integration efforts, which fulfilled SOA.

The ESB is the central component in SOA. It provides a loosely coupled, event-driven SOA
with a highly distributed universe of named routing destinations across a multi-protocol mes-
sage bus [Cha04]. An ESB provides an abstract decoupling between connected applications
by creating logical endpoints which are exposed as services and conform a multi-protocol
environment, where routing and data transformation are transparent to the service connected
to it. Furthermore, when using a ESB, in the first place, services are configured rather than
coded, demanding minimal adaptation, implementation and maintenance efforts. The pro-
grammer just has to implement the binding to the logical endpoint exposed as a service. In
the second place, ESB routing is based on a reliable messaging router. Applications don’t need
to include message system-failure forwarding mechanisms, to know which data formats are
needed in the consumed services, or to care about future changes in applications or services
the applications interact with. An ESB hides the complexity of orchestration between services
in business processes.

8

2.2 Cloud Computing

Chappel defines the combination of loosely coupled interfaces and asynchronous interactions
as a key concept of the bus terminology [Cha04]. An user of the bus can access every service
registered in the bus. For this purpose, it implements the SOA operations in order to make
them transparent to the user who can therefore focus on: plugging to the bus and posting
and receiving data from the bus.

Figure 2.1: The Role of the service bus in SOA [WCL+05]

When receiving a service description (Web Services Description Language (WSDL)) and data
from the service requester, the bus (see Figure 2.1) is responsible for selecting the service
which best fits to the description requirements, for binding the service requester with the
backend service through a route created between the logical endpoints and for making the
necessary data transformations to make able the communication between the parts.

One of the challenges in this student thesis is to change developed approach delivered in the
first prototype of the taxi scenario [4Ca]. In this the connections between the components of
the taxi scenario are point-to-point connection [Hag11]. Using an ESB as mediating compo-
nent between each of the taxi scenario components eliminates the point-to-point connection
and indeed the single point of failure risk of a point-to-point connection. Furthermore, the
supported transport protocols in the multi-tenant aware logical endpoints in the ESB are
increased in order to be able to provide the taxi scenario as a multi protocol service.

2.2 Cloud Computing

In the last years the term Cloud computing has been widely used in the IT sector. The National
Institute of Standards and Technology (NIST) defines Cloud computing as "a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable

9

2 Fundamentals

computing resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service provider
interaction" [NIS11]. The Cloud computing model is composed of five characteristics:

1. On-demand self-service: a cloud consumer consumes the cloud provider’s computing
capabilities automatically without the need of human interaction.

2. Broad network access: computing capabilities are available in the network and can be
accessed using standard mechanisms.

3. Resource pooling: computing capabilities in the cloud provider side are virtualized
to serve multiple consumers simultaneously using a multi-tenant model. The cloud
consumer generally has no sense of the provided resources.

4. Rapid Elasticity: computing and storage resources can be dynamically (and in some
cases automatically) provisioned and released to respond to the actual consumers’
demand.

5. Measured Service: resources’ usage is monitored and measured in a transparent way to
the cloud consumer and provider for control and optimization purposes.

The control that the cloud consumer has over the computer resources in a cloud provider
infrastructure is defined in three service models: Software-as-a-Service (SaaS), Platform-as-
a-Service (PaaS) and Infrastructure-as-a-Service (IaaS). SaaS provides to the cloud consumer
access and usage of cloud provider’s applications running on a cloud infrastructure. The
consumer has no control over the underlying infrastructure where the application he uses is
deployed. The customer can only control individual application’s configurations during his
usage of it. PaaS provides the customer with the needed capabilities to deploy applications
which’s programming language, required libraries, services and tools are supported by the
provider. The consumer has no control over the underlying infrastructure where he deploys
the application. IaaS is the model which gives most control to the consumer. Thus, the
consumer is able to deploy and run arbitrary software and has the control over operating
systems, storage and deployed applications, but has no management or control on the
underlaying cloud infrastructure.

The NIST defines four deployment models in Cloud computing. A private cloud consists
in a cloud infrastructure which is provisioned exclusively for one organization and used
by the members conforming the organization. It is comparable to processing facilities that
are enhanced with the Cloud computing characteristics. A community cloud is a cloud
infrastructure where its use is limited to organizations which share the same requirements. A
public cloud infrastructure can be accessed and used by the public. It is usually offered by
cloud service providers that sell cloud services made for general public or enterprises. Some
of the cloud consumers may process and store information which requires more control over
the infrastructure in which is located, or consume public Cloud computing resources during
peak loads in their private cloud infrastructure. The hybrid cloud model combines two or
more deployment models described above and the combination remains as a unique entity.

10

2.3 Multi-tenancy

Cloud computing and SOA are related models at an architectural, solution and service level,
according to IBM [OPG11]. Cloud providers expose their Cloud infrastructure as services as
part of a SOA solutions and the communication between Clouds in the Hybrid Cloud model
described above can be compared to a SOA communication solution between enterprises.
Cloud services are services that can be accessed by the cloud consumers. Therefore, we can
deduce that the SOA model can be applied in the Cloud computing approach and the need of
the ESB in a Cloud computing infrastructure is evident.

2.3 Multi-tenancy

In a Cloud computing environment where the SaaS is offered, the cloud consumer aims to
lower its business costs. Using a SaaS solution benefits the customer in the following fields
[CC06]:

• Software license is not acquired directly by the cloud consumer, but is owned by the
cloud service provider and sold to the customer as a subscription to the software
running in the cloud infrastructure.

• More than half of the IT Investments of a company are made in infrastructure and its
maintenance. In a SaaS solution this responsibilities are mainly externalized to the cloud
provider.

• A Cloud computing environment is based in the utilization of its resources simulta-
neously by a large number of cloud consumers. For example, a cloud provider that
offers a centrally-hosted software service to a large number of customers can serve all
of them in a consolidated environment and lower the customer software subscription
costs while maintaining or lowering the provider’s infrastructure, administration and
maintenance costs.

• The cost leverage in the software utilization allows the cloud providers to focus not
only on big enterprises capable of large IT budgets, but also on the small business that
need access to IT solutions.

The SaaS provider’s cost per customer can be maintained or lowered by designing its applica-
tions to be multi-tenant aware. With this approach, the provider can grant software which
serves multiple customers concurrently while obtaining a better utilization of its resources by
reducing no-load running and sharing code base and data. Chong and Carraro [CC06] defines
a well designed SaaS application as scalable, multi-tenant-efficient and configurable. With
this design patterns, the SaaS model enables the provider to catch the long tail. The business
software tends to demand the software vendor to give an individual attention to its software
customer, and in most of the scenarios an improvement in the customer’s infrastructure. This
fact leads to have a low reduction interval of the price at the software provider’s side, and in
consequence a limitation in software access from the software consumer’s side. However,
if the previous requirements are eliminated and the provider’s infrastructure is scaled to
combine and centralize customers’ hardware and services requirements, the price reduction

11

2 Fundamentals

limit can be decreased and, in effect, allow a wide range of consumers to be able to access this
services.

Figure 2.2: New market opened by lower cost of SaaS [CC06]

In the Figure 2.2 the economics of scaling up to a high number of customers while reducing
the software price is analyzed. This enables the Cloud computing providers to target a
new market formed by software consumers (e.g. small and medium businesses, individual
consumers, etc.) that are not able to afford the costing expenses of acquiring individual
software.

Multi-tenancy refers to the sharing of the whole technological stack (hardware, operating
system, middleware, and application instances) at the same time by different tenants and
their corresponding users [SAS+12]. There are several approaches to obtain multi-tenancy in
a shared infrastructure.

Chong et al. focuses in multi-tenant data architecture for achieving multi-tenancy in a SaaS
solution [FC06]. One of the most important requirement for an architect when creating a SaaS
is to grant customers with an optimized data isolation while maintaining the administration
and management of the provider’s data infrastructure cost-effective. Their model defines an
isolation range where the isolation degree depends on how the tenant’s data is allocated in
their database system. The most simple approach assigns one database per tenant. However,
its maintenance cost increases with the number of tenants. The second approach proposed is
the allocation of tenant’s data in a shared database but in different database schemas. More
tenants can be supported in this model while providing a moderate degree of data isolation.
The most cost-effective approach is reached by allocating tenant data in shared databases
and schemas. In this, the largest number of tenants can be served but an extra security
implementation is needed in order to ensure that a tenant cannot access other tenant’s data.

Nevertheless, there are more important challenges when deploying multi-tenant aware SaaS
solutions which are compositions of multiple services in a SOA environment. Individual SOA
services may differ in configuration aspects as well as in the number of tenants sharing the

12

2.4 Java Business Integration

same service instance. Mietzner et al. classifies services in three instance types: single instance,
arbitraty instance and multiple instance [MUTL09]. These differ in the number of instances
of the service deployed per tenant and the configurability of the deployed service, as well
as the possibility to mix single and multiple instances for fullfilling, for example, a Quality
of Service (QoS) pattern. These different types of services should be able to communicate
with each other by introducing special integration patterns between them (e.g ESB with
multi-tenancy awareness).

In a Cloud computing environment offering a PaaS solution, both of the approaches should
be taken into account. The first one relies on the requirements which cover the administration
and management concerns in the data stored by the tenants’ deployed applications while the
second one relies on the mediation needed in the communication between the services. Using
an ESB as the mediator of the tenant aware communication profits tenants by eliminating the
need of a middleware investment for communicating with their deployed application.

2.4 Java Business Integration

When integrating with external enterprises’ applications, the lack of standardized technolo-
gies triggered to the use of vendor or self-implemented technologies. The solution to this
problem is reached in the Java Business Integration (JBI) defined by the Java Community by
maximizing the decoupling between components and defining an interoperation semantic
founded on standards-based messaging. This allows components developed by different
vendors to interoperate in a multivendor "echosystem" [JBI05].

The integration system is made up of plug-in components which communicate using a
standardized internal message exchange format. The decoupling between the components
in a JBI environment is obtained by a standardized message format usage and by the usage
of a mediator instead of a direct connection between the components. The communication
mediator between components in a JBI environment is the Normalized Message Router
(NMR). Its main functionality is the routing of the internal standardized Normalized Message
(NM) between the components. However, it can perform additional processing during the
message exchange. The NMR fields are defined as an eXtensible Markup Language (XML)
document format payload, metadata conforming the header and a non XML document format
attachment referenced by the payload.

The JBI specification defines two different types of components which are categorized in two
types:

• A Service Engine (SE) provides transformation and composition services to other com-
ponents.

• A BC provides the connectivity between the external services and the JBI environment.
They support many different types of protocols and isolate the JBI environment by
marshaling and demarshaling the incoming or outgoing message into the internal
standardized NM format.

13

2 Fundamentals

Both components listed above can function as service consumers or service providers fol-
lowing a WSDL-based, service-oriented model. The consumer endpoint provides a service
accessible through an endpoint which can be consumed by other components, while the
provider endpoint consumes a functionality exposed as a service and accessible through an
external endpoint. The routing of NM starts when a message exchange between components
is created (bidirectional communication pipe, a DeliveryChannel, between the communicating
endpoints) and continues with the target of the specified service endpoint for processing (see
Figure 2.3). The NMR supports four asynchronous message exchange patterns differing in
the reliability and direction of the communication.

JVM

JBI Environment

Normalized Message Router

M
anagem

e nt Fram
ew

ork

C
om

ponen t Fram
ew

o rk

SE1 SE2

BC1 BC2

SU

SU
SU

SU

SUSU

Management Client

External
Service Provider

External
Service Consumer

Legend
SE Service Engine
BC Binding Component
SU Service Unit

Internal Invocation
External Invocation
Container

Figure 2.3: Overview of JBI Architecture. Figure 4 in JBI specification document [JBI05].

In Figure 2.3 we can observe that one or more Service Unit (SU) are contained in a BC. The
SUs are component-specific artifacts to be installed to a SE or a BC [JBI05]. The service units
are packed in a Service Assembly (SA), usually as ZIP files, where it is specified each of the
components where each of the SUs should be deployed. The JBI environment provides a Java
Management Extension Java Management Extensions (JMX) Framework for installation, life
cycle management, addition, and monitoring and control of the components conforming to
the environment defined by the JBI specification.

2.5 OSGi Framework

The OSGi defines a framework for deployment support in a Java Virtual Machine (JVM) of
downloaded or extended applications known as bundles. This framework requires OSGi-
friendly devices a minimum system’s resources usage by providing dynamic code-loading

14

2.6 Apache ServiceMix

and bundle lifecycle management. An OSGi bundle is the packaging of a group of Java classes
and required and provided capabilities’ meta-data as a JAR file for providing functionality
to end users. OSGi bundles can be downloaded, extended and installed remotely or locally
in the platform when needed without the need of system reboot. Installation and update
of bundles during their lifecycle are also managed by the framework, which uses a service
registration for selection, update notifications, or registry of new service objects offered by
a deployed bundle. This feature is the main key for connecting bundles whose’s services
require during runtime capabilities provided by another bundles. The framework defines a
bundle’s requirement capability as a dependency.

The OSGi framework defines 5 different layers and a bundle’s lifecycle [OSG11]. An optional
Security Layer provides the infrastructure for deploying and managing applications which
must be controlled during runtime. The Module Layer lists the rules for package sharing
between the deployed bundles. The lifecycle of a bundle can be modified during runtime
through an API provided in the lifecycle layer. The main operations implemented are install,
update, start, stop or uninstall.

2.6 Apache ServiceMix

In this student thesis we aim to integrate two approaches to extend an Open Source ESB
for multi-tenancy support and to evaluate its performance in different configurable loading
scenarios prior and after the extension. Essl evaluates individually different ESB solutions
in terms of messaging, integration, runtime, security, QoS, multi-tenancy and extensibility.
The absence of technical details on multi-tenancy and the different multi-tenant approach
implemented in his highest ranked ESB solution, WSO2 ESB, leads to the selection of the
Apache Servicemix ESB [Ess11]. Apache ServiceMix is delivered as a non multi-tenant ESB.
This feature has been improved separately in the Apache ServiceMix 4.3.0 [ASM] with the
implementation of the two approaches that will be integrated in this thesis. In the document
we will refer to Apache ServiceMix 4.3.0 as ServiceMix.

ServiceMix allows multi-vendor components and services to be integrated by complying to
the JBI specification. It includes a complete JBI container supporting the JBI specifications
[ASM]:

• Routing between logical endpoints through a NMR (see Figure 2.4)

• JBI Management MBeans

• JBI deployment support

ServiceMix is an integration container based on the OSGi Framework implementation Apache
Karaf [APA11b]. It provides a light environment in which components and applications can
be deployed in a loose coupled way. Apache Karaf provides an extensible management com-
mand line console where management of the components lifecycle, such us OSGi bundles, JBI
components or SAs, can be done in an user friendly way (see Figure 2.4). Furthermore, a hot
deployment directory is shipped with the ESB package where users can deploy OSGi bundles,

15

2 Fundamentals

JBI components wrapped in SA’s, etc. just by copying the file into it. The undeployment is
done automatically when the user deletes the file from the deploy directory.

Reliable messaging is supported by the integration with an Apache ActiveMQ instance out-of-
the-box [AMQ] with a configurable broker, which allows incoming and outgoing connections
from several binding components and outside the ESB. ServiceMix ships with different JBI
components deployed. In this thesis we will concentrate on the following ones: SOAP over
HTTP, JMS, E-Mail and Apache Camel. Apache Camel is a powerful open source integration
framework based on EAI [APA11a]. The user can configure logical endpoints between BCs
and different routing paths between them by deploying their configuration wrapped in a SA
in the deploy directory. Different Maven plugins can make the configuration of a JBI or SE as
simple as possible by providing different built archetypes which generates the SU files and
directories where the developer can configure the component [AMV].

Figure 2.4: Architecture of Apache ServiceMix [ASM]

The NMR routes the messages between the endpoints created by the JBI components (see
Figure 2.4). This endpoints are divided in two types: consumers and providers. A consumer
endpoint is exposed as a service while a provider endpoint consumes a service. When
a message arrives to a consumer endpoint of a JBI component, it is transformed into a
Normalized Message Format (NMF). The NMF is the protocol neutral format which is
routed in a JBI environment and described in Section 2.4. Muhler has implemented the
administration and managing approach in ServiceMix by developing an OSGi bundle which
uses management and administration functionalities provided in the extensible management
libraries for controlling the lifecycle of the deployed JBI components and has extended the
HTTP BC to make it multi-tenant aware [Muh12]. Essl has implemented the communication
approach by extending the marshalling and demarshalling in different JBI BCs to include
multi-tenancy awareness in the NM. In this thesis we will extend the JMS and E-mail BCs to
make them multi-tenant aware and modify approaches taken into account in the marshaling
and demarshaling of incoming and outgoing requests. After the extension we will evaluate
the impact of our implementation in ServiceMix’s performance by extending and using a

16

2.7 Binding Components

configurable load benchmark provided by AndroitLogic [Ltd12].

2.7 Binding Components

In this Section we describe the JBI BCs this student thesis focus on and the transport protocols
they support. As specified before, ServiceMix ships with a list of installed BCs. The user can
use maven archetypes to configure and create JBI endpoints in the installed JBI BCs. The
endpoint configuration files are packed in SUs and in one SA one or more SUs can be packed
for deployment.

2.7.1 SOAP over HTTP

ServiceMix ships with a JBI BC named servicemix-http, which supports SOAP over HTTP. Its
communication channel is managed by a HTTP server based on Jetty 6 for incoming requests
and by a Jakarta Commons HTTP Client for outgoing requests. It provides support for SOAP
versions 1.1 and 1.2, and for different Message Exchange Patterns (MEP), as well as several
WS* properties.

SOAP defines an XML message format which is sent over the network and a set of rules for
processing the SOAP message in the different SOAP nodes which build the message path
between two endpoints [WCL+05]. A SOAP message is a composition of three main elements:
a SOAP envelope, header and body. A SOAP envelope may contain zero or more header and
one body. The header may contain processing or authentication data for the final SOAP node
or for the intermediate nodes through the message is routed. The message payload or business
data is included in the SOAP body. SOAP is used as a message framework for accessing
Web services in loose coupled infrastructures [WCL+05]. The Web service consumer specifies
the functionality to invoke in the SOAP body. If the Web service functionality has a request-
response MEP, a SOAP message is used to send the response data when the corresponding
operation has been executed successfully or the error data in case an error occurred during
execution.

SOAP messages can be sent using different network protocols. In this student thesis we use
the standardized HTTP protocol.

2.7.2 JMS

The usage of enterprise messaging products allows the integration of loosely coupled com-
ponents and their combination to build a reliable and flexible system. The JMS specification
defines interfaces and semantics which allow clients to access an enterprise messaging product
and to reduce the complexity a developer must learn when using them [HBS+02].

Hapner et al. define a JMS provider as an entity which implements JMS for a messaging
product [HBS+02]. JMS defines two main roles and two domains in a message exchange

17

2 Fundamentals

operation, which supports both synchronous and asynchronous communication. In a pont-to-
point approach, the message provider deposits a message in a queue. The queue is persistent,
this means that it stores the message until the message consumer reads successfully the
message from it. We can mostly compare the publish/subscribe approach with the multi-cast
protocol in a network, where one provider sends one message to multiple receivers. In
this approach one provider publishes a message in a topic to which several consumers are
subscribed. When the message is published, it is stored in the topic until all of the receivers
have received it. The message format separates the message in two main parts: header and
body. Users can set custom headers and the the message supports SOAP 1.1 and 1.2 in its
body, despite we send XML format in it.

In this student thesis we use the ActiveMQ 5.4.2 JMS provider which is integrated with
ServiceMix [ASM]. The Apache Karaf console provides several commands for administration,
management and view on the queues managed by the JMS broker [ASM]. In Chapter 6 we
explain in detail the JMS configuration patterns in ServiceMix.

2.7.3 E-Mail

The internet electronic mail transport is a widely well known and used specification. The
Internet Message Format structures an e-mail message in two main parts: header and body
[Gro08]. The header carries information about the user and receiver (e-mail addresses and
signature). The user can also set custom headers with string values. The body carries the
message the user wants to send, which is a US-ASCII text represented format. In this student
thesis we use XML format in both custom headers and message body.

ServiceMix ships with a non multi-tenant aware mail BC, which supports the following email
protocols: POP and IMAP for incoming e-mails, and SMTP for outgoing e-mails. It defines
two endpoint types: mail poller and mail sender. The mail poller is the consumer endpoint. It
polls every time interval (usually configured by the user) for incoming e-mails in the provided
e-mail account and transforms the e-mail into a NMF. The mail BC demarshals the NM into
an e-mail and sends it to the provided e-mail addresses.

2.8 Service Engine

As described previously, SE is a JBI component that consumes or supplies services within
a JBI container. They provide different kinds of services, e.g. business logic, routing, and
message transformation. In ServiceMix we will mainly concentrate on one: Apache Camel
[APA11a], which will be described in the following point.

2.8.1 Apache Camel

Apache Camel lets you create the Enterprise Integration Patterns to implement routing and
mediation rules in either a Java based Domain Specific Language (or Fluent API), via Spring

18

2.9 JBIMulti2

based XML Configuration files or via the Scala DSL [APA11a]. The Camel SE packed in a SU
is packed as a SA and is shipped with ServiceMix. The routing or mediation rules between
two or more endpoints can be specified in an Spring Configuration file or in a Plain Old Java
Object (POJO) file whose’s class extends the Apache Camel RouteBuilder class. The routing
patterns supported by Apache Camel are the point-to-point routing and the publish/subscribe
model. The configuration in a XML file reduces the configuration complexity to a minimum
effort of the developer. However, a configuration in a POJO class increases the developing
complexity but allows the developer to provide logic, filtering, dynamic routing, etc. In the
RouteBuilder class a developer can access, for example, the header of a NM and select the
target endpoint dynamically depending on the implemented logic.

The endpoints representation in Apache Camel is Uniform Resource Identifier (URI) based.
This allows this SEs to integrate with any messaging transport protocol supported in the
ESB, e.g. HTTP, JMS via ActiveMQ, E-Mail, CXF, etc. In this student thesis we implement a
multi-tenant aware approach for JMS support based on dynamic routing between tenants. In
the Chapters 5 and 6 this approach will be specified.

2.9 JBIMulti2

As mentioned in previous sections, Muhler has implemented a tenant-aware administration
and management approach for enabling multi-tenancy awareness in ServiceMix. A multi-
tenant system must fulfill several requirements, such as data and performance isolation
between tenants and users, authentication, specification of different user roles, resources
usage monitoring, etc. In a JBI environment, users deploy SAs (set of SUs containing BCs
and/or SE configurations) to a ServiceMix instance in order to create endpoints which are
exposed as services. In a multi-tenant JBI environment, we must ensure that the endpoints
configured by one tenant by deploying SA are accessible only by the tenant proprietary of
those endpoints. Furthermore, control over the deployed artifacts, as well as the different
users configured by one tenant, is needed.

The architecture of the JBIMulti2 system is represented in Figure 2.5. We can distinguish two
main parts in the system: business logic and resources. JBIMulti2 uses three registries for
storing configuration and management data. When a tenant (or a tenant user) is registered,
an unique identification number is given to them and stored in the Tenant Registry. Both
Tenant Registry and Service Registry are designed for storing data of more than one deployed
application. The former for storing tenant information and the latter for providing a dynamic
service discovery functionality between the different applications accessed through the ESB.
The Configuration Registry is the key of the tenant isolation requirement of the system. Each
of the stored tables are indexed by the tenant id value.

The system provides an user interface for accessing the application’s business logic. Through
the business logic, the management of tenants can be done by the system administrator or the
management of tenant’s users can be done by the tenants. Furthermore, when deploying the
different tenant’s endpoint configurations packed in SAs, the system first makes modifications
in the zip file for adding tenant context information and then communicates with the Apache

19

2 Fundamentals

Service Registry
PostgreSQL Cluster

ESB
ServiceMix Cluster

Resources

WSDL / SA

Web Service APIWeb UI

Service Registry Manager

Service Assembly Manager

User
Interface

Business
Logic

SA

Tenant Registry Manager Configuration Manager

Configuration Registry
PostgreSQL

Tenant Registry
PostgreSQL

JBI Container Manager

Figure 2.5: JBIMulti2 System Overview [Muh12]

ServiceMix instance by using a JMS Topic to which all the ServiceMix instances are subscribed
to. The JMS management service in ServiceMix deploys the received SA injected in the
received JMS message using the administration functionalities provided in ServiceMix. The
communication between the business layer and the ServiceMix instance is unidirectional.
When successful deployment, the endpoint is reachable by the tenant. When an error occur
during deployment, an unprocessed management message is posted in a dead letter queue.

JBIMulti2 requires the previous installation of components, e.g. JOnAS server, Apache Tomcat
(in version 1.0 of the Taxi Scenario, in version 2.0 Tomcat is depreceated), Postgresql, etc. The
initialization of the application is described in both Chapter 7 and in the JBIMulti2 setup
document [Muh].

20

3 Related Works

In this Chapter we discuss which approaches for multi-tenancy awareness have been already
implemented in different middleware solutions, as well as ESB evaluation benchmarks
implemented and shared by different vendors, and how they differ from the approaches
taken into account in this student thesis.

Several multi-tenant approaches have been discussed and implemented for the SaaS model.
Chong and Carraro provide a four-level maturity model for complying with scalability,
configurability, and multi-tenant efficiency in a SaaS delivery model [CC06]. Furthermore,
they present three models for managing multi-tenant data in a SaaS environment [FC06]. Gao
et al. perform an analysis identifying the accessible resources which can be possibly shared
between tenants. Moreover, they evaluate the isolation patterns and possible customization
approaches based on different multi-tenant scenarios [GGW+09]. By implementing multi-
tenancy approaches in a SaaS solution, SaaS providers can sell applications as configurable
Web services while optimizing their resources costs and usage and catching the long tail.

Walraven et al. identify two main disadvantages when designing and implementing multi-
tenancy in the application level [WTJ11]. In a multi-tenant SaaS solution the application
developer has to ensure data and configuration isolation between the tenants, as well as
isolating them from the application provider’s management data in the infrastructure. This
features add extra complexity when designing and implementing a SaaS solution respect
to single-tenant applications which are deployed per individual tenant in a PaaS model. In
addition, two multi-tenancy approaches are analyzed: multiple application instances and
one single application instance shared between multiple tenants. The former is adapted for
supporting up to dozens of tenants with hundreds of users per tenant, while the latter can
support a larger number of small tenants [GGW+09]. Each of the tenants demands individual
customization requirements which can’t be addressed by configuring the application, but
having to modify software in it [WTJ11]. However, in a PaaS solution this problem is
not reached when each of the tenants deploy their implemented or acquired applications
individually.

However, there are few Cloud providers which offer PaaS solutions with multi-tenant aware-
ness for deploying multi-tenant aware applications on top of it [SASL12]. Clients are focusing
on the costs savings and vendor alternatives for running their applications in a multi-tenant
shared container PaaS. This fact enables running middleware as a service, for example ESB-
as-a-service, across multiple tenants [WSO12]. Previous surveys and evaluations have been
done on different ESB solutions to analyze its multi-tenancy awareness. Some of the analyzed
solutions have been: Apache ServiceMix, Microsoft BizTalk Server, RedHat JBossESB, Mule
ESB, OW2 Petals ESB, IBM WebSphere ESB, WSO2 ESB. From the analysis performed, only
two ESB solutions provide multi-tenancy awareness: IBM WebSphere ESB and WSO2 ESB

21

3 Related Works

[Ess11]. WSO2 Carbon is an OSGi based platform which is shipped with several OSGi compo-
nents. The multi-tenancy pattern is reached by developing a SOA middleware on top of the
WSO2 Carbon which allows tenants to deploy components whose data, code, and requests
are isolated between tenants. The individual configuration and communication of each tenant
is managed by the Apache eXtensible Interaction System v. 2 (Axis2) engine, where the
individual configuration of each tenant is stored in a structure which cannot be accessed
by other tenants. Stored tenant data is not accessed directly by the tenants, but accessed
through a multi-tenant aware layer which includes tenant information to the data access
operations. IBM WebSphere ESB is shipped with multi-tenancy awareness by ensuring tenant
isolation in terms of tenant based identity and access management with the utilization of their
proprietary component IBM Tivoli Access Manager [PLW+07]. Both mechanisms applied
in the ESB solutions described above are not mechanisms which we can use and extend for
other ESB solutions. WSO2 ESB relies the tenant communication and administration on Axis2
and the IBM WebSphere ESB multi-tenancy approach is based on proprietary technologies
[SAS+12].

A similar approach to what we have taken for enabling multi-tenancy in ServiceMix is
described by Walraven et al. [WTJ11]. They propose a middleware support for tenant-specific
configuration for deploying component-based multi-tier applications. Our work differs
from the mentioned in the usage of tenant context information for allowing multi-tenant
aware management and administration, data and communication isolation. Moreover, our
implementation can be applied to any ESB solution which complies with the JBI specification,
while Walraven et al. approach implements a multi-tenancy support layer on top of Google
App Engine (GAE) which has built-in support for tenant data isolation and is compatible
with the used Guice dependency injection framework [Goo].

Several ESB performance evaluations have been done by different vendors and the analytical
results made public. WSO2 has evaluated the performance of ESB solutions from different
vendors in their Performance Testing - Round 3 [WSO08]. They include an evaluation
for ServiceMix v3.2.1 for different scenarios. However, we have discarded the utility of
their implemented benchmark because of two main reasons: the benchmark evaluates the
performance based on one tenant and multiple users requesting the same endpoint and the
ServiceMix version utilized for their evaluation is previous to the one we have extended.
Furthermore, they have detected an anomaly in the ESB which didn’t forward the incoming
SOAPAction to the backend service. AndroitLogic has presented their last ESB performance
evaluation over eight different ESB solutions in their Round 6, including ServiceMix 4.3.0, the
version we have worked on [Ltd12]. In this they define different scenarios which they use for
their performance analysis, e.g. Direct Proxy, the scenario we use for our evaluation. Because
of not being able to complete successfully the scenario involving XSL Transformations with
ServiceMix 4.3.0, the authors have not published the results for the different scenarios for
ServiceMix.

The benchmark used for the AndroitLogic Round 6 is not multi-tenant aware [Ltd12]. It is
used for testing different endpoints sequentially, not concurrently. However, it includes the
feature of configuring concurrent users invoking the same endpoint. In this thesis we reuse,
but adapt and extend, the AndroitLogic Driver in order to make it multi-tenant aware between

22

different endpoints while maintaining the non multi-tenant awareness for comparing the
impact of the modifications we have performed in the ESB solution. In Chapter 8 we discuss
the needed extensions and modifications for performing the evaluation of our multi-tenant
aware ESB.

23

3 Related Works

24

4 Concept and Specification

In this chapter we describe the requirements which the integrated prototype should meet
in terms of administration and management, and communication of a multi-tenant aware
ESB in a PaaS Cloud environment. Some of the requirements have been already met in the
implemented approaches in both diploma and master thesis and some are reengineered
for optimizing its performance in ServiceMix [Muh12], [Ess11]. After specifying them, we
provide an overview of the integrated prototype which we use for testing the taxi scenario
[4Ca].

4.1 Requirements

In this section we identify the functional and non-functional requirements that the outcome
of this thesis should comply to. The two approaches this thesis integrates identify several
functional and non-functional requirements in administration and management, and com-
munication in a multi-tenant aware ESB solution [Muh12], [Ess11]. We fully adhere the
former ones and we change, for performance and usability improvement, the latter ones. The
outcome of this student thesis should be tested using the taxi scenario [4Ca] described in
Section 1.2, and its performance should be evaluated using different scenarios based on the
Direct Proxy Service scenario from the AndroitLogic ESB Performance Round 6 [Ltd12]. Both
of the scenarios which are used in this thesis require two different integration requirements,
which are described in the Sections 4.1.2 and 8.1.1.

4.1.1 Communication Requirements

As described before, ServiceMix is shipped with several JBI BCs which support different
communication protocols, but are non multi-tenant aware. In a PaaS model, an ESB solution
as its main middleware should fulfill the functional and non-functional requirements which
are described in this section. We identify the requirements which are not in the scope of this
student thesis and reference the diploma or master thesis where these are fulfilled.

Functional requirements

The extension of ServiceMix for multi-tenancy awareness we implement in this student thesis
should conform the following functional requirements:

25

4 Concept and Specification

• Multi-protocol communication: ServiceMix is shipped with a set of JBI BCs and SEs
which conform a multi-protocol communication platform. The BCs which should sup-
port a multi-tenant aware communication must support the following communication
protocols: JMS, SOAP over HTTP and E-mail. In addition to the mentioned before, a
non multi-tenant aware communication has to be supported in the set of communication
protocols which the primitive prototype of ServiceMix supports, e.g. HTTP, JMS, E-mail,
Short Message Peer-to-Peer (SMPP), Simple Network Management Protocols (SNMP),
etc.

• Transparent tenant aware endpoint configuration: a configured JBI endpoint in Ser-
viceMix is reached by two main properties: service name and endpoint name, which
are both preceded by the user specified URI namespace. In a multi-tenant environment
where the tenants provide the same BCs or SEs, several endpoint properties should be
internally changed. This change has to be transparent to the user and the exposed JBI
endpoint should be accessible through a service represented by a standardized URI
format, which is standardized for the different multi-tenant aware BCs. As described
in Section 2.4, the configuration of a BC or a SE is described in a SU, which is packed
in a SA. The SA deployed by the different tenants should be isolated in two levels of
our system architecture: JBIMulti2 and ServiceMix. In JBIMulti2 this is achieved by
indexing the tables, where this packages are stored, with tenant information [Muh12]. In
ServiceMix the isolation between the tenants’ endpoints configuration must be ensured.

• Transparent tenant-aware creation and management of resources: the BCs we extend
for multi-tenancy support the following transport protocols: SOAP over HTTP, JMS
and E-mail. The services provided in the cited protocols consume different types of
resources that a JBI consumer endpoint depends on : a SOAP over HTTP consumer
endpoint has to be exposed as a Web service with WSDL description, while a JMS
consumer endpoint consumes messages from a created tenant topic or queue and the
E-mail consumes resources from an external mail server. The resources created when a
tenant endpoint is configured have to ensure isolation between tenants and have to be
accessible only by the tenant proprietary of the endpoint.

• Tenant-aware messaging: messages sent to and from the multi-access ESB consumer
and provider endpoints should be enriched with structured tenant context informa-
tion. The communication protocols provide different mechanisms for enriching their
messages. We analyze in the following chapters the tenant context information and
how they can be included in each of the protocols. Furthermore, the NMs exchanged
between endpoints belonging to one tenant should also contain tenant information.

• Tenant-aware routing: the routing mechanism between two or more tenant’s endpoints
has to be able to identify the tenant who make the request. The message has to be routed
only if the tenant invoking the consumer endpoint authenticates the communication.
With this requirement we ensure that one tenant can’t get a request routed through
another tenant’s endpoints, as well preventing the system from malicious attacks.

• Tenant aware correlation: In the previous requirement we specified the preconditions
which are set for routing a request in message exchange, but we didn’t specified the

26

4.1 Requirements

requirements for the responses. The multi-tenant aware ESB has to be able to correlate
both requests and the responses for each of the tenants and ensure that a synchronous
or asynchronous response is routed back to the appropriate tenant endpoint.

Non-functional requirements

The extension of ServiceMix for multi-tenancy awareness we implement in this student thesis
should conform to the following non-functional requirements:

• Security: the extended multi-tenant aware BCs should implement security mechanisms.
The tenant context information should be only visible to the tenant and the system,
to avoid possible system attacks. The multi-tenant aware BC should be capable of
unencrypting the tenants’ incoming messages and encrypting the routed outgoing
messages from the system to the backend service. Encryption and unencryption are
out of the scope of this student thesis. However, we provide each tenant consumer
endpoint with a tenant authentication mechanism before creating the NM and the
message exchange.

• Backward Compatibility: Servicemix is shipped with non multi-tenant aware binding
components. Therefore, we need our extended prototype to provide backward compati-
bility with the original BC configurations and non multi-tenant aware communications.

• Performance: the negative impact ServiceMix’s performance due to the extension for
enabling multi-tenancy awareness in the system should be minimized. Essl proposes
the use of tenant context information which requires the retrieval of extra tenant in-
formation from a Tenant Registry before creating the message exchange [Ess11]. This
implies an independent retrieval of data per request received in each tenant’s consumer
endpoint. The system should minimize the retrieval of external data to ServiceMix in
order to minimize the performance penalty due to implementation of the multi-tenant
communication approach.

• Scalability and Extensibility: the integrated prototype should offer clustering func-
tionality and scale appropriately in a Cloud infrastructure. JBIMulti2 complies admin-
istration and management between more than one instance of ServiceMix [Muh12].
However, the communication to the system composed of two or more instances of
ServiceMix should be managed in order to route the messages to a tenant’s consumer
endpoint located in one specific (or replicated in more than one) instance of ServiceMix.
The Horizontal Scalability is out of the scope of this student thesis. This feature is
contained in the diploma thesis "Extending an Open Source Enterprise Service Bus for
Horizontal Scalability Support" [Fes12]. The integrated prototype should be upgradable
and for this goal the decoupling of components have to facilitate changes in functional-
ity.

• Dynamic Service Discovery: a multi-tenant aware ESB in a Cloud environment must
provide dynamic discovery of the services the tenants provide. For this purpose,
the service broker can search the services which best fits for the consumer policy

27

4 Concept and Specification

requirements. This functionality is out of the scope of this student thesis, but being
implemented in the master thesis "Extending an Open Source Enterprise Service Bus for
Dynamic Discovery and Selection of Cloud Data Hosting Solutions based on WS-Policy"
[Ura12].

• Maintainability and Documentation: the source code provided in this student thesis
should be well commented and documented. Moreover, the provided documentation
should be user friendly and should lead to a ease setting up and extending the system
in the future.

4.1.2 Integration Requirements

The outcome of this student thesis must be integrated with the taxi scenario originated from
the 4CaaSt project to build the taxi application [4Ca]. For this purpose, and after analyzing the
different components forming the taxi application, we need to specify additional requirements
the system should fulfill for integration purposes. In the version two of the taxi application
the point-to-point connections between the Business Process Execution Language 2.0 (BPEL)
processes installed in OW2 Orchestra and the Web services these consume have to be replaced
with a communication through ServiceMix endpoints (Section 6.1). The BPEL processes
installed in Orchestra communicate using SOAP over HTTP protocol. Furthermore, some
of the components of the taxi application have to be multi-tenant aware to communicate
with the tenant aware JBI endpoints of the ESB (e.g. TaxiCompany and TaxiTransmitter),
and some components are non multi-tenant aware and have to communicate through non
multi-tenant aware JBI endpoints in ServiceMix (e.g. Processes installed in Orchestra, CMF
and GoogleServices). As last requirement to fulfill, the taxi request is mainly Orchestrated by
several BPEL processes which communicate with different services to retrieve information
and book a taxi. The overall process time is variable but synchronous. The multi-tenant
endpoints correlating one tenant’s taxi booking response have to be synchronized with the
process replying the taxi request.

28

5 Design

In this chapter we present the architectural and technological solution taken into account
to integrate two approaches for enabling multi-tenancy in a ESB solution [Ess11], [Muh12].
Furthermore, it fulfills the requirements described in the Chapter 4 and provides a detailed
design for easing the implementation cycle described in Chapter 6. We start defining the
architecture of the prototype we should implement in this thesis and we continue by giving
more details on specific components that need to be extended or modified. As discussed in
the previous chapters, some communication approaches taken into account in the master’s
thesis [Ess11] need to be improved. When describing them, we specify the main differences
and the main advantages of the design approach we take.

5.1 Integration Architecture

The tenant-aware architectural design of this student thesis is composed of two main parts:
administration and management, and communication through the ESB components. Muhler
proposes an administration and management system, JBIMulti2, which is described in Chapter
2 [Muh12]. In this system he extends components in ServiceMix and develops new ones
to fulfill tenant-aware management requirements. The communication between JBIMulti2
and the multiple instances of ServiceMix is established by a unidirectional connection to
a JMS topic each of the ESB instances subscribe to. In each of the ServiceMix instances
Muhler deploys the JMSManagement OSGi bundle which consumes the topic’s management
messages, which contain lifecycle instructions, e.g. install and uninstall SA, and the JBI BCs
to deploy, as message payload. When unsuccessful deployment, the instruction message is
stored in a queue of unprocessed messages. When successful deployment, the tenant-aware
endpoint configuration packed in a SA is installed in ServiceMix isolated from other tenants
by modifying the SA to reference it to a specific tenant. This reference is done by inserting
tenant context in an XML file saved in each of the SAs, which contains the tenant user and
tenant Universally Unique Identifier (UUID), and the tenant’s URL. We use this information
for authenticating the incoming tenant’s requests to the ESB.

In a Cloud environment the communication between tenant-aware endpoints in an ESB
must be isolated. ServiceMix does not provide this functionality. For this purpose, Muhler
extends the HTTP BC and the Apache Camel SE for enabling a transparent configuration
of tenant-aware endpoints (see Section 5.4). However, we consider that an ESB should
support tenant-aware communication in more than one communication protocol, and the
communication within tenant-aware endpoints has to be enriched with tenant information.
Hereby, we extend the JMS and the E-mail BCs to provide a multi-protocol tenant-aware

29

5 Design

communication environment (see Figure 5.1), and we include tenant information in the NM
for future message processing, e.g. tenant-aware QoS mechanisms in the ESB.

Apache ServiceMix Instance I

Apache ServiceMix Instance II

JBIMulti2

PostgreSQL

TenantRe
gistry

Config.Re
gistry

ServiceR
egistry

Web UI Web Service APIUser
Interface

Business
Logic

JBIContainerManager ServiceAssemblyManager

ServiceRegistryManager Config.RegistryManager TenantRegistry
Manager

ActiveMQ

Management
Messages.topic

<tenant URI>/
[queue | topic]

<tenant URI>/
[responseQueue |
responseTopic]

Unprocessable
Messages.queue

JMSManage_
mentService
OSGI Bundle

OSGi JBI Environment

Normalized Message Router

HTTP-MT

Camel-MT

JMS-MT MAIL-MT ...

Legend
Communication is not
obligatorily
established

Bidirectional
Communication

Unidirectional
Communication

Separation of the
different layers of the
Application

Figure 5.1: Architectural overview of the integration of the administration and manage-
ment, and communication approaches.

Backward compatibility is one of the most important non-functional requirements this thesis
should fulfill. We consider that a tenant-aware communication can be established between
two tenant’s endpoints if the incoming message has tenant information. To provide backward
compatibility, we don’t modify the original BCs and redeploy them, but create new ones
with our approaches implemented in them, e.g. servicemix-http-mt, servicemix-jms-mt,
servicemix-mail-mt. The namespace utilized in these BCs is modified in order to be able to
have both tenant and non tenant-aware BCs in the ESB.

5.2 Tenant Context

In a multi-tenant environment both incoming and outgoing requests to and from the ESB
should carry information which uniquely identifies the tenant. Each of the ESB BCs or SEs
involved in a communication between two external endpoints need to handle this information
in order to accept or reject message exchanges in the ESB.

30

5.2 Tenant Context

Muhler and Essl represent the required tenant information data in an XML schema [Muh12],
[Ess11]. In this they obtain the uniqueness of a tenant identifier by utilizing the UUID format
which is generated by the java class java.util.UUID in JBIMulti2 [Gro05], [Ess11]. Furthermore,
the tenant information representation distinguishes two main contexts: full tenant context
and simple tenant context. In the former the tenant information contains the tenant and user
identifiers, and optional key-value pairs entries, while in the latter the tenant information is
represented by a tenant context key. Essl proposes the use of a tenant context key in transport
protocols which are not extensible for supporting the tenant information representation as
structured data [Ess11], and the retrieval of the full tenant context information from the
system’s Tenant Registry. However, in this student thesis we modify this approach in order
to fulfill two main requirements: tenant authentication and performance optimization.

Bray et al. define XML documents as an entity container of parsed data made up of characters
[BPSM+08]. The tenant context information can be sent in the transport protocols we extend
as character chains complying the XML format representation, and embedded as properties
or headers values which are parsed in the ESB. We propose the usage of the full tenant
context in the transport protocols where text is supported either as a property or as a header
of the message sent to the ESB. In this, the tenant and user identification are mandatory in a
tenant-aware communication, while the optional key-value pairs are voluntary (see Listing
5.1).

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://jbimulti2.iaas.
uni-stuttgart.de/tenant-context"

4 targetNamespace="http://jbimulti2.iaas.uni-stuttgart.de/tenant-context">
5

6 <xsd:simpleType name="uuidType">
7 <xsd:restriction base="xsd:string">
8 <xsd:pattern value="[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}

" />
9 </xsd:restriction>

10 </xsd:simpleType>
11

12 <xsd:group name="tenantUserId">
13 <xsd:sequence>
14 <xsd:element name="TenantId" type="tns:uuidType" />
15 <xsd:element name="UserId" type="tns:uuidType" />
16 </xsd:sequence>
17 </xsd:group>
18

19 <xsd:element name="TenantContext">
20 <xsd:complexType>
21 <xsd:sequence>
22 <xsd:group ref="tns:tenantUserId" />
23 <xsd:element name="OptionalEntry" minOccurs="0" maxOccurs="unbounded">
24 <xsd:complexType>
25 <xsd:sequence>
26 <xsd:element name="Key" type="xsd:string" />
27 <xsd:element name="Value" type="xsd:anyType" />

31

5 Design

28 </xsd:sequence>
29 </xsd:complexType>
30 </xsd:element>
31 </xsd:sequence>
32 </xsd:complexType>
33 </xsd:element>
34 </xsd:schema>

Listing 5.1: Tenant context XSD of the incoming and outgoing messages to and from the
ESB. Modified XSD version based on Essl and Muhler [Ess11], [Muh12].

With this approach, we eliminate the latency caused by the single tenant context, where the
full tenant context data must be queried in two out of the three transport protocols we extend:
JMS and E-Mail. Furthermore, we develop an authentication mechanism which reuses the
tenant context information stored in each of the tenant-aware SAs. This feature adds parsing
load in the BCs but eliminates the latency produced by either a cache or database connection
and information querying per received request in the ESB. Furthermore, as the tenant and
user UUID identifies uniquely one tenant and user respectively, this information must be
encrypted before sending the request and unencrypted for authenticating the tenant in the
ESB. However, the confidentiality is out of the scope of this student thesis.

5.3 Tenant-aware Normalized Message Format

As described in Section 5.1, the communication between two tenant aware endpoints has
to be transparent to the tenant. The protocol neutral message format used in ServiceMix
in a message exchange is the NM. For tenant-awareness in the ESB we don’t only need
to configure isolated endpoints for each of the tenants, but also to provide tenant-aware
information in the message exchanged between the tenant endpoints in a transparent way to
the user. Essl proposes the enrichment of the ESB NM with the tenant information contained
in the request message or retrieved from the tenant registry, in the properties field of the NM
[Ess11].

Two or more properties are included in his message representation: tenant id, user id and
optional values. However, we consider that the structured tenant information in the in-
coming requests should be represented in a structured format in the NM properties. In
this approach we propose two property maps: jbimulti2.tenantcontext.mandatory and jbi-
multi2.tenantcontext.optional (see Figure 5.2). The former stores the tenant and user id, while
the latter stores the optional key-value pairs. The input message payload is transformed to
XML format and embedded as the message payload of the NM. The attachments contained
in the request are inserted as attachment in the NM.

32

5.4 Tenant-aware Binding Components

!"##$%"&'()*"(+"#&
!
"#$%&!'()*+,-./012$203420150/*$26$0478!9!
!!!!!012$2-6!9!"012$20::;<&!
!!!!!+=17;6!9!"+=17::;<&!
"#$%&!'()*+,-./012$203420150/4%-42$,!9!
!!!!!">18?&!9!"@$,+1?&!
!!!!!">18.&!9!"@$,+1.&!
!!!!!///!
///!

!"##$%"&'$()*$+&
!
"#$%&'()&*!
!!!"+(,-*!
!!!!!!"./012&34&5.*!
!!!!!!!!!"67(8*9$1%&751./&.!:.7/55&!;<"=67(8*!
!!!!!!!!!".(*:.4>?/7.!@7'4?A/6&$"=.(*!
!!!!!!!!!B!
!!!!!!"=./012&34&5.*!!!!
!!"=+(,-*!!
"#$%&'()&*!

!"#$%&'()*+
!
11100000110000110011000010111100
00011000011001100001011110000011
00001100110000101111000001100001
10011000010111000001100001100110
00010111100000110000110011000010

Figure 5.2: Tenant-aware NM created after tenant successful authentication.

5.4 Tenant-aware Binding Components

The multi-tenant approach implemented in the extension of the tenant-aware BCs should
manage the tenant endpoint configuration in a transparent way to the user, as well as it
must ensure that a message exchange involves only endpoints configured in a tenant’s
SU. ServiceMix defines an user endpoint by the user’s defined namespace followed by the
service name and the endpoint name. To ensure data isolation between tenants, Muhler
proposes the modification of the endpoint’s URI during the configuration of the endpoint
in the deployment phase [Muh12]. As described in the Listing 5.2, the tenant id will be the
key for isolating endpoints between tenants. The BC is able of creating as much services as
tenant-aware endpoints configurations are deployed in their SUs. It creates a common service
prefix which is followed by the tenant UUID, the service and endpoint name declared in the
XBean configuration file in the SU.

During deployment, ServiceMix configures the endpoints described in the bean definitions
files contained in the SUs. The BaseServiceUnitDeployer is used as the JBI SU manager in
ServiceMix. Its XBeanDeployer, which sets configuration data in each of the components, is
extended in out tenant-aware BC. Our extension injects data read from the tenant context file
in the SU and configures the endpoint with tenant-aware data. This mechanism allows two

33

5 Design

1 /*
2 input: tenantId, serviceLocalPart, endpointName, configuredServiceNamespacePrefix
3 example: {jbimulti2:tenant-endpoints/<tenant id>}TaxiServiceConsumer:

TaxiServiceConsumerEndpoint
4 */
5 serviceEndpoint ::= serviceName ":" endpointName
6 serviceName ::= "{" serviceNamespacePrefix tenantId "}" serviceLocalPart
7 serviceNamespacePrefix ::= "jbimulti2:tenant-endpoints/" | configuredServiceNamespacePrefix

Listing 5.2: Tenant-aware endpoint URI in extended Backus-Naur Form (EBNF) [Muh12].

tenants to deploy the same SU files and to get a different endpoint configuration after the
deployment.

In addition to a tenant-aware endpoint configuration, we need to manage the resources
consumed by each of the tenant-aware endpoints associated to each of the transport protocols
we support in the ESB. In the following sections we will describe how the resources are
created, distributed and destroyed in our multi-tenant environment.

5.4.1 SOAP over HTTP

In a HTTP consumer endpoint configuration during the deployment phase, the SU deployer
builds an URI for accessing the created service’s endpoint by attaching the service and
endpoint names to the default URI, e.g. http://localhost:8192/. In the multi-tenant approach,
Muhler creates dynamic URI by injecting tenant information read from the tenant context file
in the SU where the endpoint is configured [Muh12]. The dynamic URI is represented in the
Listing 5.3, where we can see that two tenants’ HTTP endpoints URI differentiate each other
in the tenants’ ids or tenants’ URLs.

1 /*
2 input: tenantId, tenantUri, serviceLocalPart, endpointName, configuredLocationUriPrefix
3 example: http://localhost:8193/tenant-services/<tenantid | tenantURI>/TaxiServiceConsumer/

TaxiServiceConsumerEndpoint
4 */
5 locationUri ::= locationUriPrefix (tenantId | tenantUri) serviceEndpoint
6 locationUriPrefix ::= "http://localhost:8193/tenant-services/" | configuredLocationUriPrefix
7 serviceEndpoint ::= "/" serviceLocalPart "/" endpointName

Listing 5.3: Tenant-aware service URL [Muh12].

In a Web service consuming environment, we have discussed in previous chapters that the
SOAP over HTTP protocol is used and the consumed Web service description is provided in
the WSDL file. In the tenant-aware ServiceMix each of the SOAP over HTTP JBI consumer
endpoints is exposed to the exterior as a Web service (see Figure 5.3). When this type of
endpoint is deployed in our multi-tenant approach, the Web service consumer can access
the Web service description by appending main.wsdl to the described URI in Listing 5.3.

34

5.4 Tenant-aware Binding Components

The WSDL description is dynamically modified during the endpoint configuration with the
tenant-aware endpoint’s URI.

!"#$%&'()*+,)--%.)+/"01)#+

!"#$%#&%'()%*+$")&,#-)(*,.&*!)&/'-)*0$1'$)(*

JBI Environment

4. Concept and Specification

!"#$%&%"'

Figure 4.1.: Overview of the system JBIMulti2. Arrows illustrate data flow between core
components and resources.

system is called JBI Multi-tenancy Multi-container Support (JBIMulti2), because it supports
many tenants and a cluster of ServiceMix instances.

JBIMulti2 relies on three data resources: the Tenant Registry, the Service Registry, and the
Configuration Registry. Tenant contexts are obtained from the Tenant Registry. It delivers tenant
users and their role inside the corresponding tenant (see Sect. 4.3.2). The Service Registry
stores service assemblies and service descriptions for each tenant, while isolating the data of
different tenants (see Sect. 4.2). All other non-tenant related and tenant related data is stored
by the Configuration Registry. This includes configurations created by system administrators
or tenant administrators. As service assemblies and services are stored to a separate Service
Registry, they must not be stored to the Configuration Registry (see Sect. 4.3.3).

We propose a graphical Web-based user interface named Web UI that exposes the functionality
of JBIMulti2. It can be used by system administrators and tenant users and supports all
use cases listed in Section 4.4. Likewise, all functionality supported by the Web UI must be
supported by a Web Service API as well (see Sect. 4.5.2). Currently, the prototype developed
within the scope of this diploma thesis only implements the Web Service API. However, a
concept for the layout of the Web UI can be found in Section 4.5.1.

The preceding components are built on top of an Integration Layer that encapsulates the access
to databases and the ServiceMix clusters. Moreover, it can initiate atomic transactions among
the resources. An extension component for ServiceMix provides integration with JBIMulti2.
It installs JBI components, processes service assemblies by adding a tenant context, and
deploys service assemblies. Once deployed, a service assembly must not interfere with the
service assemblies of other tenants. To ensure data isolation, the tenant context inside the
service units of a service assembly is processed by a set of new BCs and SEs. JBI components

24

WSDL

4. Concept and Specification

!"#$%&%"'

Figure 4.1.: Overview of the system JBIMulti2. Arrows illustrate data flow between core
components and resources.

system is called JBI Multi-tenancy Multi-container Support (JBIMulti2), because it supports
many tenants and a cluster of ServiceMix instances.

JBIMulti2 relies on three data resources: the Tenant Registry, the Service Registry, and the
Configuration Registry. Tenant contexts are obtained from the Tenant Registry. It delivers tenant
users and their role inside the corresponding tenant (see Sect. 4.3.2). The Service Registry
stores service assemblies and service descriptions for each tenant, while isolating the data of
different tenants (see Sect. 4.2). All other non-tenant related and tenant related data is stored
by the Configuration Registry. This includes configurations created by system administrators
or tenant administrators. As service assemblies and services are stored to a separate Service
Registry, they must not be stored to the Configuration Registry (see Sect. 4.3.3).

We propose a graphical Web-based user interface named Web UI that exposes the functionality
of JBIMulti2. It can be used by system administrators and tenant users and supports all
use cases listed in Section 4.4. Likewise, all functionality supported by the Web UI must be
supported by a Web Service API as well (see Sect. 4.5.2). Currently, the prototype developed
within the scope of this diploma thesis only implements the Web Service API. However, a
concept for the layout of the Web UI can be found in Section 4.5.1.

The preceding components are built on top of an Integration Layer that encapsulates the access
to databases and the ServiceMix clusters. Moreover, it can initiate atomic transactions among
the resources. An extension component for ServiceMix provides integration with JBIMulti2.
It installs JBI components, processes service assemblies by adding a tenant context, and
deploys service assemblies. Once deployed, a service assembly must not interfere with the
service assemblies of other tenants. To ensure data isolation, the tenant context inside the
service units of a service assembly is processed by a set of new BCs and SEs. JBI components

24

WSDL

4. Concept and Specification

!"#$%&%"'

Figure 4.1.: Overview of the system JBIMulti2. Arrows illustrate data flow between core
components and resources.

system is called JBI Multi-tenancy Multi-container Support (JBIMulti2), because it supports
many tenants and a cluster of ServiceMix instances.

JBIMulti2 relies on three data resources: the Tenant Registry, the Service Registry, and the
Configuration Registry. Tenant contexts are obtained from the Tenant Registry. It delivers tenant
users and their role inside the corresponding tenant (see Sect. 4.3.2). The Service Registry
stores service assemblies and service descriptions for each tenant, while isolating the data of
different tenants (see Sect. 4.2). All other non-tenant related and tenant related data is stored
by the Configuration Registry. This includes configurations created by system administrators
or tenant administrators. As service assemblies and services are stored to a separate Service
Registry, they must not be stored to the Configuration Registry (see Sect. 4.3.3).

We propose a graphical Web-based user interface named Web UI that exposes the functionality
of JBIMulti2. It can be used by system administrators and tenant users and supports all
use cases listed in Section 4.4. Likewise, all functionality supported by the Web UI must be
supported by a Web Service API as well (see Sect. 4.5.2). Currently, the prototype developed
within the scope of this diploma thesis only implements the Web Service API. However, a
concept for the layout of the Web UI can be found in Section 4.5.1.

The preceding components are built on top of an Integration Layer that encapsulates the access
to databases and the ServiceMix clusters. Moreover, it can initiate atomic transactions among
the resources. An extension component for ServiceMix provides integration with JBIMulti2.
It installs JBI components, processes service assemblies by adding a tenant context, and
deploys service assemblies. Once deployed, a service assembly must not interfere with the
service assemblies of other tenants. To ensure data isolation, the tenant context inside the
service units of a service assembly is processed by a set of new BCs and SEs. JBI components

24

WSDL

4. Concept and Specification

!"#$%&%"'

Figure 4.1.: Overview of the system JBIMulti2. Arrows illustrate data flow between core
components and resources.

system is called JBI Multi-tenancy Multi-container Support (JBIMulti2), because it supports
many tenants and a cluster of ServiceMix instances.

JBIMulti2 relies on three data resources: the Tenant Registry, the Service Registry, and the
Configuration Registry. Tenant contexts are obtained from the Tenant Registry. It delivers tenant
users and their role inside the corresponding tenant (see Sect. 4.3.2). The Service Registry
stores service assemblies and service descriptions for each tenant, while isolating the data of
different tenants (see Sect. 4.2). All other non-tenant related and tenant related data is stored
by the Configuration Registry. This includes configurations created by system administrators
or tenant administrators. As service assemblies and services are stored to a separate Service
Registry, they must not be stored to the Configuration Registry (see Sect. 4.3.3).

We propose a graphical Web-based user interface named Web UI that exposes the functionality
of JBIMulti2. It can be used by system administrators and tenant users and supports all
use cases listed in Section 4.4. Likewise, all functionality supported by the Web UI must be
supported by a Web Service API as well (see Sect. 4.5.2). Currently, the prototype developed
within the scope of this diploma thesis only implements the Web Service API. However, a
concept for the layout of the Web UI can be found in Section 4.5.1.

The preceding components are built on top of an Integration Layer that encapsulates the access
to databases and the ServiceMix clusters. Moreover, it can initiate atomic transactions among
the resources. An extension component for ServiceMix provides integration with JBIMulti2.
It installs JBI components, processes service assemblies by adding a tenant context, and
deploys service assemblies. Once deployed, a service assembly must not interfere with the
service assemblies of other tenants. To ensure data isolation, the tenant context inside the
service units of a service assembly is processed by a set of new BCs and SEs. JBI components

24

WSDL

Backend
Web-Service

Tenant1

Backend
Web-Service

Tenant2

!"#$%#&%'()%*+$")&,#-)(*,.&*/'$%'$0*1.23.$)$"(*

Legend

Endpoint
Interface
ESB
Endpoint

(1) and (2): SOAP over
HTTP Consumer
Endpoints

(3) and (4): SOAP over
HTTP Provider Endpoints

Bidirectional
Communication

Figure 5.3: Design overview of the multi-tenant HTTP JBI BC based on two tenants.

When a SOAP request reaches a tenant-aware consumer endpoint, we must ensure authenti-
cation before creating the NM. This functionality can be added in the SOAP to NM marshaler.
The marshaler transforms the incoming request into the internal ESB message format. If the
tenant context information contained in the SOAP header leads to a successful authentication,
the marshaller must insert the tenant context information and the optional key-values pairs
into the NM. Otherwise, an error should be sent to the requester and the administrator should
be notified. In our approach we use a SOAP error response for unsuccessful authentication
and we log the authentication attemps for system monitoring.

On the other side, in the tenant-aware HTTP provider endpoints, the BC must support
sending tenant-aware HTTP requests to external services. Each of the providers endpoints
are configured to reach a provided external service by de-marshaling the NM to an HTTP
(or SOAP over HTTP) request. The NM properties must be embedded as HTTP or SOAP
headers. The backend service must be manually configured by the tenant. The taxi scenario
converges all tenants’ request into a BPEL process which finds the available taxi. However, if
two or more tenants deploy SU which invoke different external backend Web services, the
WSDL or the URL must be provided (see Figure 5.3). However, the inclusion of this feature is
out of the scope of this thesis.

35

5 Design

5.4.2 JMS

ServiceMix is shipped with an ActiveMQ instance out-of-the-box which can be access through
console commands in Apache Karaf [ASM]. In this section we provide two approaches for
supporting tenant-aware routing between tenant-aware JMS JBI endpoints in the ESB. In
Section 5.2 we introduce the XML structured tenant context information the incoming request
must include. The JMS message format supports optional properties by defining the name
and the value of them [HBS+02]. The tenant context information is included as a message
property and the body contains the tenant data. Both data are required to be in XML format.

In the following sections we provide an overview on the two possible approaches which can
be taken into account. Both of the approaches have been implemented and tested, and our
design decision is discussed in the Chapter 6.

Design Approach 1

Tenant data isolation is a must in multi-tenant architectures. Hereby, we must ensure isolation
between the messages of different tenants. In this first approach, one of our main priorities is
to minimize the resource consumption, in this case the JMS queue and topic number, while
ensuring message isolation. In this approach, we propose a shared queue and topic between
the tenants’ JMS consumer endpoints. In a JMS configuration we can configure a message
selector based on a filter for consuming messages. This filter can be adjusted to each of the
tenant context information in the tenant endpoints. However, for future compatibility, the
JMS broker does not provide unencryption mechanisms before performing the filtering in the
endpoints, reason why we couldn’t continue with this approach.

However, Apache Camel provides a dynamic routing mechanism between target endpoints
called Recipient List [APA11a]. With this feature, we first unencrypt the message, authenticate
the tenant, and finally route it based on the tenant information contained in the message. In
the JMS queue mode, the unencryption of the message is done by a shared JMS consumer
endpoint which consumes from one shared queue, verifies if the communication is tenant-
aware, and statically routes the message to the dynamic router. We propose in this approach
a different authentication mechanism. The dynamic router is responsible for authenticating
the tenant before routing the request. For this purpose, we need a connection with the
tenant registry and configuration registry, but we need to minimize the latency produced
by a database connection. We propose a component which connects the ESB with the tenant
registry and includes a cache mechanism for recently tenants authenticated (see Figure 5.4).
When the tenant is successfully authenticated, the message exchange between the camel
router and the JMS provider endpoint is created, and the provider endpoint stores the tenant’s
message in the tenant’s queue.

In the publish/subscribe mode, the tenant JMS endpoints subscribe to a shared topic, but
only one endpoint is capable of unencrypting the received JMS message and creating the NM.
In the provider endpoint, the message is published in a tenant’s topic.

36

5.4 Tenant-aware Binding Components

PostgreSQL

!"#$%&'()*+,)--%.)+/"01)#+

!"#$%#&%'()%*+$")&,#-)(*,.&*!)&/'-)*0$1'$)(*

JBI Environment

Legend

Endpoint
Interface
ESB
Endpoint

(1) and (2): XML over JMS
Topic Consumer Endpoint

(3) and (4): XML over JMS
Provider Endpoint

ActiveMQ

taxiRequest.queue

taxiRequest.topic

<tenant1 URI>/
[providerqueue |
providertopic]

<tenant2 URI>/
[providerqueue |
providertopic]

Backend JMS
Consumer
Tenant 1

Backend JMS
Consumer
Tenant 2

OSGi

PostgresConnector and
CacheMechanism Bundle

TenantRe
gistry

Config.Re
gistry

Camel Recipient
List Routing

!"#$%#&%'()%*+$")&,#-)(*,.&*/'$%'$0*1.23.$)$"(*

(1A): XML over JMS Queue
Consumer Endpoint

Unidirectional
Communication

Routing in ESB

Figure 5.4: Design overview of a first approach of the multi-tenant JMS JBI BC based on
two tenants.

In both queue or topic cases, the tenant can provide their queue or topic name and connection
URL, or the tenant-aware BC will transparently create this resource for the tenant in the
out-of-the-box ActiveMQ. The names for the resources are shown in the Figure 5.4. In the
first case, the tenant has to provide the resource details before the deployment. However, this
feature is out of the scope of this student thesis. In our approaches we consider the creation
of resources which will be consumed by the tenants in our system.

37

5 Design

Design Approach 2

In this approach we focus on the performance rather than the resources consumption. For
both consumer and provider’s tenant-aware endpoints, one queue or one topic is created.
This can be thought as not scalable, but ActiveMQ can be configured to provide massive
scalability by setting a network of brokers [AMQ]. With this feature, the acceptable number
of queues and topics is linearly increased to the number of brokers conforming a network.

!"#$%&'()*+,)--%.)+/"01)#+

!"#$%#&%'()%*+$")&,#-)(*,.&*!)&/'-)*0$1'$)(*

JBI Environment

Legend

Endpoint
Interface
ESB
Endpoint

(1) and (2): XML over JMS
Consumer Endpoint

(3) and (4): XML over JMS
Provider Endpoint

!"#$%#&%'()%*+$")&,#-)(*,.&*/'$%'$0*1.23.$)$"(*

ActiveMQ

<tenant1 URI>/
[consumerqueue |
consumertopic]

<tenant2 URI>/
[consumerqueue |
consumertopic]

<tenant1 URI>/
[providerqueue |
providertopic]

<tenant2 URI>/
[providerqueue |
providertopic]

Backend JMS
Consumer
Tenant 2

Backend JMS
Consumer
Tenant 2

Unidirectional
Communication

Figure 5.5: Design overview of a second approach of the mutlti-tenant JMS JBI BC based
on two tenants.

With one queue and one topic per endpoint, at the consumer side we ensure that another
tenant’s SU component, e.g. marshaler, does not receive the message, and we discard the
need of the connection to the tenant registry during authentication. We can integrate the same
authentication method used in the extended HTTP and E-mail BCs marshalers, leading to a
better communication performance and to a bottleneck avoidance. This approach considers
the creation of one queue or topic per tenant-aware consumer endpoint in the ActiveMQ
shipped with ServiceMix and with a standardized name shown in Figure 5.5. The same
mechanism is adopted for a tenant-aware provider endpoint, which requires to consume one
queue or topic to send or publish a message. As in the first approach, this can be provided by
the tenant or can be created in our system.

38

5.4 Tenant-aware Binding Components

5.4.3 E-Mail

As the last BC this student thesis must extent for multi-tenancy awareness, we introduce a
design approach for the multi-tenant E-email BC. As described in Chapter 2, the E-mail BC
supports the following mail protocols: SMTP, IMAP, and POP3. In the tenant-aware consumer
endpoints we utilize the IMAP protocol and in the provider endpoints the SMTP (see Figure
5.6). As pre-condition for deployment, the tenant must provide his or her E-mail address and
access credentials for polling incoming messages and for sending the message.

When a message arrives to the tenant’s E-mail inbox folder, it is consumed by the tenant’s
endpoint. The E-mail message format should comply the following requirements: the request
is sent as a message body in XML format and the tenant context information in XML format
in an E-mail customized header. The authentication mechanism is the same as the one used in
the multi-tenant HTTP BC. In the tenant’s provider endpoint, the destination E-mail address
is taken, if exists, from the optional key-value pairs included in the request.

!"#$%&'()*+,)--%.)+/"01)#+

!"#$%#&%'()%*+$")&,#-)(*,.&*!)&/'-)*0$1'$)(*

JBI Environment

E-mail server
Tenant1

E-mail server
Tenant2

Legend

Endpoint
Interface
ESB
Endpoint

(1) and (2): XML over E-
mail Consumer Endpoints

(3) and (4): XML over E-
mail Provider Endpoints

!"#$%#&%'()%*+$")&,#-)(*,.&*/'$%'$0*1.23.$)$"(*

4. Concept and Specification

!"#$%&%"'

Figure 4.1.: Overview of the system JBIMulti2. Arrows illustrate data flow between core
components and resources.

system is called JBI Multi-tenancy Multi-container Support (JBIMulti2), because it supports
many tenants and a cluster of ServiceMix instances.

JBIMulti2 relies on three data resources: the Tenant Registry, the Service Registry, and the
Configuration Registry. Tenant contexts are obtained from the Tenant Registry. It delivers tenant
users and their role inside the corresponding tenant (see Sect. 4.3.2). The Service Registry
stores service assemblies and service descriptions for each tenant, while isolating the data of
different tenants (see Sect. 4.2). All other non-tenant related and tenant related data is stored
by the Configuration Registry. This includes configurations created by system administrators
or tenant administrators. As service assemblies and services are stored to a separate Service
Registry, they must not be stored to the Configuration Registry (see Sect. 4.3.3).

We propose a graphical Web-based user interface named Web UI that exposes the functionality
of JBIMulti2. It can be used by system administrators and tenant users and supports all
use cases listed in Section 4.4. Likewise, all functionality supported by the Web UI must be
supported by a Web Service API as well (see Sect. 4.5.2). Currently, the prototype developed
within the scope of this diploma thesis only implements the Web Service API. However, a
concept for the layout of the Web UI can be found in Section 4.5.1.

The preceding components are built on top of an Integration Layer that encapsulates the access
to databases and the ServiceMix clusters. Moreover, it can initiate atomic transactions among
the resources. An extension component for ServiceMix provides integration with JBIMulti2.
It installs JBI components, processes service assemblies by adding a tenant context, and
deploys service assemblies. Once deployed, a service assembly must not interfere with the
service assemblies of other tenants. To ensure data isolation, the tenant context inside the
service units of a service assembly is processed by a set of new BCs and SEs. JBI components

24

To: <user_
e-mail
address>

4. Concept and Specification

!"#$%&%"'

Figure 4.1.: Overview of the system JBIMulti2. Arrows illustrate data flow between core
components and resources.

system is called JBI Multi-tenancy Multi-container Support (JBIMulti2), because it supports
many tenants and a cluster of ServiceMix instances.

JBIMulti2 relies on three data resources: the Tenant Registry, the Service Registry, and the
Configuration Registry. Tenant contexts are obtained from the Tenant Registry. It delivers tenant
users and their role inside the corresponding tenant (see Sect. 4.3.2). The Service Registry
stores service assemblies and service descriptions for each tenant, while isolating the data of
different tenants (see Sect. 4.2). All other non-tenant related and tenant related data is stored
by the Configuration Registry. This includes configurations created by system administrators
or tenant administrators. As service assemblies and services are stored to a separate Service
Registry, they must not be stored to the Configuration Registry (see Sect. 4.3.3).

We propose a graphical Web-based user interface named Web UI that exposes the functionality
of JBIMulti2. It can be used by system administrators and tenant users and supports all
use cases listed in Section 4.4. Likewise, all functionality supported by the Web UI must be
supported by a Web Service API as well (see Sect. 4.5.2). Currently, the prototype developed
within the scope of this diploma thesis only implements the Web Service API. However, a
concept for the layout of the Web UI can be found in Section 4.5.1.

The preceding components are built on top of an Integration Layer that encapsulates the access
to databases and the ServiceMix clusters. Moreover, it can initiate atomic transactions among
the resources. An extension component for ServiceMix provides integration with JBIMulti2.
It installs JBI components, processes service assemblies by adding a tenant context, and
deploys service assemblies. Once deployed, a service assembly must not interfere with the
service assemblies of other tenants. To ensure data isolation, the tenant context inside the
service units of a service assembly is processed by a set of new BCs and SEs. JBI components

24

To: <user_
e-mail
address>

E-mail
E-mail

Bidirectional
Communication

Unidirectional
Communication

Figure 5.6: Design overview of the multi-tenant E-mail JBI BC based on two tenants.

39

5 Design

40

6 Implementation

As described in the Chapter 1, the outcome of this student thesis must be integrated with the
taxi scenario of the 4CaaSt project [4Ca]. In the Section 6.2 we describe the adaptations we
need to make in our initial multi-tenant approaches in order to support both tenant-aware
and non tenant-aware communications between the components. Furthermore, we specify
which components of the taxi application support multi-tenancy and which components
support only a non multi-tenant communication. In Section 6.3 we detail the implementation
approaches and challenges when developing the multi-tenant SOAP over HTTP, JMS, and
Email BCs.

The implementation of the different components in this student thesis is organized as a
hierarchical Maven project [AMV]. Apache Maven allows programmers to build different
Java-based projects by specifying the tasks and plugins in the Project Object Model (POM)
file which are executed during the building process of the project. Programmers can then
build using Maven different types of packages for deployment, e.g. Web Application Archive
(WAR), Enterprise Archive (EAR), SAs, and OSGi bundles. Furthermore, it provides support
for specifying the dependencies between modules stored in a local or remote maven repository
[AMV]. In this student thesis we have adapted and extended the maven project from Muhler
in order to provide a single project containing the necessary components for building and
deploying the taxi application [Muh12]. Maven provides several ServiceMix components
endpoints configuration archetypes, which are templates we use for configuring the endpoints,
and building the SU and SA for deployment. The original BCs implementation provided
by Apache and after extended for multi-tenant awareness are included in a Maven project,
built as a BC package, and referenced to by a specified namespace. For the tenant-specific
endpoint configuration we first create the SU package content using the maven archetype for
a specific endpoint in the BC, then set the configuration fields in the configuration file, and
reference the multi-tenant BC this SU configures. Finally, the SUs should be packaged in a SA
for deployment. The Java source code provided in this student thesis is compiled with the
Java Development Kit (JDK) 6.

6.1 System Overview

The taxi application is built up of different components running on 4 different servers with
a Java 6 jdk. The JOnAS v 5.3.0 hosts the management and logic of the application. Each
of the tenants deploy their TaxiCompany Web interface for taxi requestors’ usage and the
TaxiTransmitter for the taxi drivers’ usage. Both of the interfaces have to be tenant aware in
order to communicate through the tenant aware endpoints. As exposed before, a tenant’s

41

6 Implementation

request is routed between two tenant aware endpoints if a successful tenant authentication
occurs. The communication to and from the main BPEL processes (TaxiServiceProvider and
ContextIntegration, see Figure 6.1) is done through the ESB. We must indicate that the BPEL
processes are non multi-tenant aware and they receive and reply SOAP over HTTP requests
and responses respectively. Hereby the ESB must handle both tenant and non tenant aware
routing between this components, as well as between the main BPEL processes, CMF, and
GoogleServices adapters), by being able to create both tenant aware and non tenant aware
endpoints.

VM

Java 6 (JDK)

JOnAS v5.3.0

Extended Apache ServiceMix

TaxiCompany 1

TaxiTransmitter 1

TaxiCompany 2

TaxiTransmitter 2

Orchestra

TaxiServiceProvider
(BPEL Process)

ContextIntegration
(BPEL Process)

REST2SOAP
Google Services

REST2SOAP
C-CAST CMF

JBIMulti2

ActiveMQ PostgreSQL

TenantRegistry Config.Registry ServiceRegistry

JMSTopic

TaxiComp1.topic

TaxiComp2.topic

TaxiComp2.queue

TaxiComp1.queue

Figure 6.1: System overview of the version two of the taxi application [4Ca]. Note: the
queues and topics created for the different tenants, in this case TaxiCompany1
and TaxiCompany2 are created only when the tenant deploys an JMS endpoint
configuration

The JBIMulti2 utilizes three main components in the system: registries created in a Post-
greSQL database, resources in ActiveMQ and ServiceMix. When deploying a tenant’s SA
the application initiates an unidirectional communication to a management queue from
which a management OSGi bundle consumes the management messages from JBIMulti2
and performs managements operations in ServiceMix, such as deploy and undeploy. The
deployed multi-tenant SAs configure the tenants’ endpoints for BCs or SEs. When deployed
a multi-tenant SA which packages a JMS endpoint configuration, resources are transparently
created in the out-of-the-box ActiveMQ instance which is shipped with ServiceMix. However,
it is out of the scope of this student thesis an interface for connecting the different tenants
with the created JMS resources.

42

6.2 Taxi Scenario Integration

6.2 Taxi Scenario Integration

In this section we describe the implementation approaches for integrating the multi-tenant
ESB with the already developed components, in order to build the taxi application v2.0. In
the next section we divide the system described in Figure 6.1 (see Section 6.1) in two main
subsystems, based on the tenant-awareness of its components.

In the taxi application v2.0 we distinguish two main parts, one multi-tenant aware and
one non multi-tenant aware. The developed binding components in the ESB permit the
deployment of multi-tenant and non multi-tenant BCs. This feature enables the integration of
the components conforming the taxi application. The taxi application v2.0 utilizes the JOnAS
server for hosting the upper components shown in Figure 6.2 and uses SOAP over HTTP
communication protocol between its components.

VM

Java 6 (JDK)

JOnAS v5.3.0

TaxiC
om

pany 1

TaxiTransm
itter 1

TaxiC
om

pany 2

TaxiTransm
itter 2

Orchestra

TS
P

C
IP

REST2SOAP
Google Services

REST2SOAP
C-CAST CMF

JBIMulti2

PostgreSQL

TenantR
egistry

Config.
Registry

Service
Registry

Legend

Endpoint
Interface
ESB
Endpoint

(1) and (2): SOAP over HTTP
communication protocol for
TaxiCompany1 and TaxiCompany2

Bidirectional Communication

JMSManagementService
OSGI Bundle

Tenant
Context
Router

Tenant
Context
Enricher

Camel SE
(mt)

Extended Apache ServiceMix

Taxi Service Provider BPEL ProcessTSP
Context Integration BPEL ProcessCIP

Figure 6.2: Implemented and Configured BC for integration with Taxi Scenario v2.0 [4Ca],
[Muh12].

In this prototype we present two taxi companies, whose front-end components are their
corresponding taxi company and taxi transmitter Web interfaces, both tenant specific. They
communicate with the taxi service provider BPEL process through a single non multi-tenant
provider endpoint configured in the ESB. We follow the single endpoint approach for in-
voking the taxi service provider process due to the lack of multi-tenant support it provides.
An extension of the OW2 Orchestra engine for multi-tenancy awareness would enable a

43

6 Implementation

multi-tenant deployment of the taxi service provider process [OWO]. If more than one
instance of the processes can be deployed, e.g. one process per tenant, individual end-
points for invoking the different instances would be needed. The HTTP configuration in
the SU packed in the SA can be deployed by more than one tenant due to the namespace
modification the multi-tenant HTTP BC performs, e.g. the namespace used for the taxi appli-
cation http://www.taxiserviceprovider.eu/ transmitter/definitions is replaced with the namespace
jbi:endpoint:jbimulti2:tenant-endpoints/<tenantUUID> [Muh12]. However, the taxi application’s
BPEL processes deployed in Orchestra don’t implement multi-tenant awareness at the level
of the SOAP header. For this reason, the NM content is enriched with tenant-aware context
information retrieved from the ServiceName in a tenant-aware Camel SE and the message
sent to the BPEL processes contains the tenant id as additional element of the SOAP body
[Muh12]. The authentication of both taxi companies is made when the taxi booking request is
sent through the ESB. This authentication procedure is detailed in Section 6.3.

In this prototype we maximize the use of the ESB in the application. For this reason, we pro-
pose an implementation which wires the communication between the different components
in the application through the ESB. We modify the direct connection configuration between
the BPEL processes deployed in Orchestra, and the CMF and GoogleServices components (see
Figure 6.2, and configure non multi-tenant endpoints in the ESB through which the messages
between the components are routed.

The taxi service provider BPEL process, after calculating the nearest available taxi by request-
ing location and context information from both CMF and GoogleServices components, sends
a transport request to the taxi driver [Hag11]. In our prototype we present two sets of taxi
drivers, each one belonging to one specific company. For tenant-awarness purposes, we must
ensure that the transport request is routed to the appropriate taxi company. The routing
based on the tenant context is performed by the tenant context router, which builds the
tenant-aware route from the tenant id included in the transport request. With this approach
we ensure that one taxi company driver does not receive a transport request from another
taxi company. However, we should allude the lack of multi-tenant awareness in the CaaS
component the CMF retrieves the context data from [4Ca], [CCA]. This absence requires
the context integration provider BPEL processes to calculate the minimum distance to the
customer’s location for all the sets of taxis registered in the CaaS system [CCA]. Anyhow, the
multi-tenant awareness implementation in the CaaS system is out of the scope of this student
thesis.

6.3 Multi-tenant Binding Components

The main requirement in this student thesis is to enable multi-tenancy in ServiceMix by
integrating multi-tenant administration and management, and communication approaches.
The BCs supporting the communication protocols we focus on must be modified to ensure
isolation between endpoints while enabling the tenants to deploy a shared endpoint configu-
ration template. During deployment the internal endpoint deployer must make the necessary
configuration modifications to provide independent endpoints to the tenants.

44

6.3 Multi-tenant Binding Components

The tenant-aware endpoints in the ESB are configured conforming the JBI specification.
Endpoint properties are set in a SU, and one or more SUs must be packed in a SA for
deployment. Maven provides several templates for configuring endpoints in the supported
BCs in ServiceMix, which we utilize for generating the SAs the tenants deploy. Maven
archetypes generate the structure of the SU and the necessary files for setting the endpoint
properties. The file we focus on in this thesis is the xbean.xml file, where the endpoints’
properties are set in XML format, and the POM file, where the maven project properties are
described and the dependencies on other modules are listed. In the following sections we
detail which archetypes we use and which endpoint parameters we set.

6.3.1 SOAP over HTTP

The HTTP BC shipped with ServiceMix embeds the configuration of abstract endpoints which
support the HTTP communication protocol and the protocols build on top of it, such as SOAP
for Web services communication. Muhler enables multi-tenancy in this BC by injecting tenant
context information in the endpoint configuration namespace [Muh12]. In a SOAP over HTTP
communication protocol where a Web service operation is invoked through the ESB, the
ESB consumer endpoint should publish the WSDL the Web service consumer retrieves, and
the exposed service should be addressed by an URI. For both requirements, Muhler injects
tenant context information in the URI for accessing both the Web service endpoint and the
WSDL information (see Listing 6.1). With this approach two or more tenants can deploy the
same endpoint configuration, which is then modified with the tenant context information
during deployment. However, if two or more tenants invoke different Web services, in this
implementation their WSDL files should be included in the SUs.

1 /*
2 input: tenantId, tenantUri, serviceLocalPart, endpointName, configuredLocationUriPrefix
3 example: http://localhost:8193/tenant-services/54ed4755-5965-4b47-a121-d25907e29c04/

TaxiRequestService/TaxiRequestServiceEndpoint
4 */
5 locationUri ::= locationUriPrefix (tenantId | tenantUri) serviceEndpoint
6 locationUriPrefix ::= "http://localhost:8193/tenant-services/" | configuredLocationUriPrefix
7 serviceEndpoint ::= "/" serviceLocalPart "/" endpointName
8 WSDL Location ::= locationUri/main.wsdl

Listing 6.1: Tenant Endpoint URI Example [Muh12].

Nevertheless, multi-tenancy communication is not supported in Muhler’s approach. Tenant
endpoints are isolated from each other, but the internal NM routed in the ESB contains no
tenant information for processing it in the ESB, e.g. tenant based routing. For fulfilling this
requirement, we integrate and modify Essl’s approach for enabling multi-tenancy support
in communication [Ess11]. Essl proposes the extension of the consumer endpoint marshaler
and the injection of tenant information which is either contained in the incoming SOAP
request or retrieved from the tenant registry [Ess11]. Furthermore, he proposes backward
compatibility in multi-tenant endpoints without taking into account tenant authentication in

45

6 Implementation

the communication. This leads to the routing of messages which are not sent by the endpoint’s
tenant proprietary.

1 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:typ="http:
//www.taxiserviceprovider.eu/types">

2 <soapenv:Header>
3 <typ:tenantId>dc9cdf31-0cf1-4151-99c4-39c1a8d769a6</typ:tenantId>
4 <typ:userId>09539020-26af-43d2-970c-2464d710e3ac</typ:userId>
5 <typ:optionalEntry>
6 <typ:key>tenantName</typ:key>
7 <typ:value>typiCompany</typ:value>
8 </typ:optionalEntry>
9 <typ:optionalEntry>

10 <typ:key>userName</typ:key>
11 <typ:value>Mr. John Doe</typ:value>
12 </typ:optionalEntry>
13 <typ:optionalEntry>
14 <typ:key>mailUserContact</typ:key>
15 <typ:value>typicustomer1@googlemail.com</typ:value>
16 </typ:optionalEntry>
17 </soapenv:Header>
18 <soapenv:Body>
19 <typ:taxiBookingRequest>
20 <typ:customerID>110092</typ:customerID>
21 <typ:originLocation>Kronenstrasse 2, stuttgart</typ:originLocation>
22 <typ:destinationLocation>flughafenstrasse 1, stuttgart</typ:destinationLocation>
23 <typ:customerInfo>
24 <typ:phone>3333</typ:phone>
25 <typ:email>sss@fff</typ:email>
26 </typ:customerInfo>
27 </typ:taxiBookingRequest>
28 </soapenv:Body>
29 </soapenv:Envelope>

Listing 6.2: Tenant-aware SOAP over HTTP message example. Namespaces are imported
from the taxi scenario [4Ca].

In this student thesis we modify the communication approach and integrate it with Muh-
ler’s multi-tenant administration and management approach. In the first place we assume
that one tenant endpoint only accepts communications from the tenant propietary of that
endpoint. Therefore, each tenant must authenticate with the ESB with their tenant context
information (see Listing 6.2). We implement the tenant authentication in the consumer end-
point marshaler by retrieving the tenant context information stored in the tenant context
file in the deployed SU, and comparing it with the tenant context information contained
in the SOAP request. With this approach each SU contains a Java class which extends
the HTTP BC’s http.endpoints.HttpSoapConsumerMarshaler class, which is referenced from
the endpoint’s bean configuration. The tenant information contained in the header field
of the SOAP request is inserted by message interceptors as a NM map property named
javax.jbi.messaging.protocol.headers which contains as keys QNames and as values Document-
Fragment structures. When successful authentication, the NM is created with the data

46

6.3 Multi-tenant Binding Components

contained in the SOAP over HTTP request and the tenant context information is added as
property maps, with QNames values as keys and Objects as values, in the NM. In the provider
endpoint we extend the http.endpoints.HttpSoapProviderMarshaler for injecting the tenant
context information in the SOAP header field of the output message .

6.3.2 JMS

The JMS BC shipped with ServiceMix supports both SOAP over JMS and plain text over JMS
communication protocol. In this thesis we extend the second approach for enabling multi-
tenancy communication awareness. The transparent configuration of tenant-aware endpoint
in our extended version must be integrated with the JBIMulti2 application [Muh12]. Therefore,
we must provide the same deployment operations as the multi-tenant HTTP BC or multi-
tenant Camel SE, in order facilitate the integration with the JMSManagement Service compo-
nent of JBIMulti2. We extend the ServiceMix servicemix.common.xbean.BaseXBeanDeployer in
the multi-tenant JMS BC in order to perform the necessary changes in the endpoint configura-
tion during deployment. The BaseXBeanDeployer class provides management methods for
deploying endpoints whose configurations are described in the bean configuration file of the
SU.

During deployment operation, we modify the endpoint configuration and inject tenant
information retrieved from the tenant context file stored in the SU. As in the multi-tenant
HTTP BC, the endpoint namespace is modified with the tenant context information. Such
information is modified in the classes org.apache.servicemix.jms.endpoints.JmsConsumerEndpoint
and org.apache.servicemix.jms .endpoints.JmsProviderEndpoint. In Chapter 5 we specify two
design approaches for enabling multi-tenancy in the BC supporting the JMS protocol: one
shared queue or topic vs. one queue and one topic per tenant.

1 JMS Header
2 ---
3 JMS.propertyName = tenantContext
4 JMS.propertyValue (tenantContext) =
5 <?xml version="1.0" encoding="UTF-8"?>
6 <taxiScenario xmlns:typ="http://www.taxiserviceprovider.eu/types">
7 <typ:tenantId>892732f8-58ff-464d-883f-1099c36b8544</typ:tenantId>
8 <typ:userId>2a736c63-de32-410c-b9ce-0d00247a78db</typ:userId>
9 <typ:optionalEntry>

10 <typ:key>tenantName</typ:key>
11 <typ:value>TaxiCompany</typ:value>
12 </typ:optionalEntry>
13 <typ:optionalEntry>
14 <typ:key>userName</typ:key>
15 <typ:value>Mr. John Doe</typ:value>
16 </typ:optionalEntry>
17 <typ:optionalEntry>
18 <typ:key>mailUserContact</typ:key>
19 <typ:value>taxicustomer1@googlemail.com</typ:value>
20 </typ:optionalEntry>
21 </taxiScenario>

47

6 Implementation

22 ---
23 JMS Body
24 ---
25 JMS.body =
26 <?xml version="1.0" encoding="UTF-8"?>
27 <taxiScenario xmlns:typ="http://www.taxiserviceprovider.eu/types">
28 <typ:taxiRequest>
29 <typ:from>Universitaet strasse 38, Stuttgart</typ:from>
30 <typ:to>Koenigstrasse 12, Stuttgart</typ:to>
31 ...
32 </typ:taxiRequest>
33 </taxiScenario>
34 ---

Listing 6.3: Tenant-aware XML over JMS message example. Namespaces are imported
from the taxi scenario [4Ca].

In the first approach, we configure a JMS consumer endpoint which consumes messages
from a shared queue between tenants for incoming messages to the ESB. The NM messages
are enriched with the tenant context information included in the JMS message property
tenantContext (see Listing 6.3), and routed to a camel router, which is extended to support
tenant authentication. We deploy an OSGi bundle which provides the tenant authentication
operations and includes a Least Recently Used (LRU) cache mechanism which reduces the
number of queries to the database system when a tenant has authenticated in a recent past.
When successful authentication, the endpoint namespace is built with the tenant context
information and the message is routed to the tenant’s provider endpoint. For the dynamic
routing we use the @RecipientList annotation in a Java class which is referenced from the route
configuration in the camel context configuration. In the multi-tenant JMS provider endpoint
for both approaches we create for each tenant transparently the necessary resources for both
queue and topic options. The creation of resources is made during deployment. The queue
name is built in the JmsProviderEndpoint class from the tenant URI specified in the tenant con-
text file, e.g. for taxicompany the provided queue name is www.taxicompany.com/<ProviderQueue
| ProviderTopic>. In the tenant provider endpoint the marshaler builds the JMS message with
the tenant context information and sends it to the ProviderQueue or ProviderTopic. For the
topic model, we configure a shared topic in the consumer side. The consumer marshalers
in the tenant-aware endpoints perform the authentication. The marshaling operations for
tenant authentication, and the tenant-aware NM creation are described later in this section.
However, we describe in Chapter 7 the disadvantages of this approach for both topic and
queue models in the system’s performance.

In the second approach, we propose individual resources for the tenants in the JMS queue
and topic model. After injecting tenant context information in the endpoint configuration, the
queue or topic name is built with tenant information and a request and reply queue or topic
are created in the classes JmsConsumerEndpoint and JmsProviderEndpoint. The former can be
identified with ConsumerQueue | ConsumerTopic in the consumer endpoint and ProviderQueue
| ProviderTopic in the provider endpoint, and the latter with responseQueue | responseTopic in
both consumer and provider endpoints, as described in Listing 6.4. In this implementation

48

6.3 Multi-tenant Binding Components

we use an external ActiveMQ broker for management of queues and topics of the provider
endpoints.

1 Consumer Endpoint
2 www.taxicompany.com/<ConsumerQueue | ConsumerTopic>
3 www.taxicompany.com/<ResponseQueue | ResponseTopic>
4

5 Provider Endpoint
6 www.taxicompany.com/<ProviderQueue | ProviderTopic>
7 www.taxicompany.com/<responseQueue | responseTopic>

Listing 6.4: Queue and topic names examples in multi-tenant JMS BC.

The tenant context information is included in the tenantContext JMS custom header. It as a
string that complies the XML specification (see Listing 6.3) . This facilitates the marshaling of
the tenant context information for both tenant authentication, and enrichment of the NM. For
the former, we extend the class org.apache.servicemix.jms.endpoints.DefaultConsumerMarshaler
in the SU and reference it from the endpoint bean configuration. The tenant context informa-
tion in the message is compared with the tenant context information in the tenant context
file, and the NM is created when successful authentication. For the latter, we include in
the org.apache.servicemix.jms.endpoints.AbstractJmsMarshaler BC class marshaling support for
parsing the tenant context information and the JMS message content, and inserting the tenant
context in the NM. We follow the same procedure in the JMS provider endpoint and extend
the class org.apache.servicemix.jms.endpoints.DefaultProviderMarshaler. The tenant context infor-
mation set as a NM property is converted into XML format and included as a JMS message
property.

6.3.3 Email

The mail BC shipped with ServiceMix supports the E-mail specifications [Gro08]. In this
thesis we extend this BC to enable multi-tenant aware communication. The transparent
configuration of tenant-aware endpoints in our extended version must be integrated with
the JBIMulti2 application [Muh12]. Therefore, we must provide the same deployment op-
erations as the multi-tenant HTTP BC or multi-tenant Camel SE, in order to integrate it
with the JMSManagement Service component of JBIMulti2. We extend the ServiceMix ser-
vicemix.common.xbean.BaseXBeanDeployer in the multi-tenant mail BC in order to perform the
necessary changes in the endpoint configuration during deployment. The BaseXBeanDeployer
class provides management methods for deploying endpoints whose configurations are
described in the bean configuration file.

During the deployment operation, we modify the endpoint configuration by injecting tenant
information retrieved from the tenant context file stored in the SU. As in the multi-tenant
HTTP BC, the endpoint namespace is modified and tenant context information is included
in the endpoint’s namespace and configuration. Such information is modified in the classes
org.apache.servicemix.mail.MailPollerEndpoint and org.apache.servicemix.mail.MailSenderEndpoint.

49

6 Implementation

The SMTP and POP3 mail servers used in this student thesis for receiving and sending E-mails
must be provided by the tenant.

1 Email Custom Header
2 ---
3 Email.headerName = tenantContext
4 Email.headerValue (tenantContext) =
5 <?xml version="1.0" encoding="UTF-8"?>
6 <taxiScenario xmlns:typ="http://www.taxiserviceprovider.eu/types">
7 <typ:tenantId>892732f8-58ff-464d-883f-1099c36b8544</typ:tenantId>
8 <typ:userId>2a736c63-de32-410c-b9ce-0d00247a78db</typ:userId>
9 <typ:optionalEntry>

10 <typ:key>tenantName</typ:key>
11 <typ:value>TaxiCompany</typ:value>
12 </typ:optionalEntry>
13 <typ:optionalEntry>
14 <typ:key>userName</typ:key>
15 <typ:value>Mr. John Doe</typ:value>
16 </typ:optionalEntry>
17 <typ:optionalEntry>
18 <typ:key>mailUserContact</typ:key>
19 <typ:value>taxicustomer1@googlemail.com</typ:value>
20 </typ:optionalEntry>
21 </taxiScenario>
22 ---
23 Email Body
24 ---
25 Email.body =
26 <?xml version="1.0" encoding="UTF-8"?>
27 <taxiScenario xmlns:typ="http://www.taxiserviceprovider.eu/types">
28 <typ:taxiRequest>
29 <typ:from>Universitaet strasse 38, Stuttgart</typ:from>
30 <typ:to>Koenigstrasse 12, Stuttgart</typ:to>
31 ...
32 </typ:taxiRequest>
33 </taxiScenario>
34 ---

Listing 6.5: Tenant-aware XML over E-mail message example. Namespaces are imported
from the taxi scenario [4Ca].

We configure and modify both mail poller and mail sender endpoints in ServiceMix. In the
mail poller, we must ensure tenant authentication and NM enrichment with tenant context
information. The tenant authentication is implemented in the SU configuring the poller
endpoint. The org.apache.servicemix.mail.marshaler.DefaultMailMarshaler class can be extended
and then referenced from the endpoint bean configuration. We authenticate the tenant by
retrieving the tenant context data from both tenantContext header in the E-mail message and
the tenant context file in the SU (see Listing 6.5). Therefore, the tenant XML data contained
in the incoming E-mail data must be parsed before the creation of the NM. We modify the
org.apache.servicemix.mail.utils.MailUtils to parse and convert the tenant context xml data
into NM properties, and to set the destination E-mail addresses from the tenant context

50

6.4 Multi-tenant Service Engine

information. The DefaultMailMarshaler sets a NM property which contains the received XML
E-mail body (see Listing 6.5). For this reason, we should set the NM content with the data
received as E-mail body in the consumer endpoint marshaler. In the provider marshaler we
extend the org.apache.servicemix.mail.marshaler.DefaultMailMarshaler in order to set the list of
destination E-mail addresses in the To NM header.

6.4 Multi-tenant Service Engine

The integration of the multi-tenant ESB with the taxi scenario described in Figure 6.2 contains a
multi-tenant Camel SE which routes messages between tenant-aware endpoints. We describe
in this section the approaches that Muhler has implemented for the multi-tenant Camel SE
[Muh12].

6.4.1 Apache Camel

The Apache Camel router shipped with ServiceMix is non multi-tenant aware [APA11a]. The
internal routing in Camel is done between Camel URIs, which are transformed to JBI service
endpoint names in order to provide compatibility with JBI endpoints. The transformation
is performed in the Java class org.apache.servicemix.camel.CamelConsumerEndpoint. Muhler
has modified the implementation to inject tenant information during the transformation
operation, and provider and consumer endpoint creation operations [Muh12]. In the taxi
application we configure two tenant-aware Camel endpoints in the multi-tenant Camel SE.
The incoming message is enriched with tenant information and forwarded to the Web service
provider endpoint.

51

6 Implementation

52

7 Test

In order to ensure that we fulfill the requirements listed in Chapter 4, in this chapter we
provide a testing of the main components we implemented and we describe how we initialize
the different testing scenarios. In Section 7.2 we provide three different testing scenarios, one
per extended BC, and we monitor both incoming and outgoing messages to and from the
ESB.

7.1 Deployment and Initialization

The components conforming the taxi application are deployed in a single virtual machine.
The tests performed in Section 7.2 test each of the multi-tenant BC separately. We could
not integrate the JMS and E-mail communication protocols between the taxi application
components due to the support of only SOAP over HTTP messages between the components.
Therefore, we can divide the testing scenarios in two: the taxi application v2.0 prototype and
the individual multi-tenant BCs.

The taxi application v2.0 integrates various components which are deployed in a JOnAS
5.3 and JOnAS 5.2 server. It differs from the first version in the use of one server for the
deployment of the taxi companies and taxi transmitter Web interfaces, JBIMulti2 application,
Orchestra processes, and CMF and GoogleDirections components, instead of the usage of
two servers: JOnAS 5.2 and Apache Tomcat 7.0.23 [OWJ], [ATC]. A JOnAS 5.2 instance hosts
the JBIMulti2 EAR package and configures the database connections to the PostgreSQL 9.1.1
middleware [Muh12], [PSQ]. A JOnAS 5.3 instance hosts the two taxi companies and taxi
transmitters Web interfaces, Orchestra processes, and CMF and GoogleDirections components.
These could not be deployed in the same server instance as the JBIMulti2 application due to a
class loading failure Muhler also denotes. Therefore, in the instance hosting these components
we must deactivate the JAXWS service which loads the classes that conflict with the ones
included in the deployed packages. We have followed Muhler’s guide for installing the
JBIMulti2 application under JOnAS 5.2, and its connection to the Apache ServiceMix 4.3.0
through the JMSManagementService OSGi bundle and the Apache ActiveMQ 5.3.1 shipped
with the ServiceMix package [Muh12], [ASM], [AMQ]. For the BPEL processes we follow
Hagin’s installation guide in Orchestra [Hag11]. The endpoint configuration for the routes
between the processes, and the CMF and GoogleDirections connectors are packed in two SAs
and deployed in the ServiceMix deploy directory. The deployment of the SOAP over HTTP
consumer endpoints must be done through the JBIMulti2 application. For this reason, we
must use its Web service interface for tenant and endpoint administration. We use SoapUI 3.6
[SOA] for tenant and user creation, JBI BCs deployment, quota and contingent assignment,

53

7 Test

deployment of tenant-aware endpoints packed in a SAs, etc. These operations are included in
a SOAP test suite Muhler has created and we extend in this thesis.

However, due to the lack of a multi-protocol support in most of the components of the taxi
application, we were enforced to test the multi-tenant BCs separately. For these tests we
have adjusted a minimum of two tenants per multi-tenant BC. Tenant administration and SA
deployment is done using the JBIMulti2 application. We install a second instance of Apache
ActiveMQ the provider endpoints are connected to, as the ActiveMQ broker provided with
ServiceMix has no administration Web interface. We have also deployed a backend echo Web
service in Tomcat 7.0.23 for testing the multi-tenant HTTP BC using SoapUI 3.6 [ATC], [SOA].
The mail BC requires the creation of one E-mail account per tenant. These are created under
the GMail domain [Goo12].

7.2 Multi-tenant Binding Components

In this section we explain the individual tests which were run on each multi-tenant JBI BC.
The deployment of the JBI BCs and the tenants’ endpoint configuration first requires tenant
administration operations provided by the JBIMulti2 application, and included in the test
suit we have extended. Although we include screenshots with information of two tenants,
we run the tests for a minimum of 2 tenants in the application. For all the tenants, we deploy
the same endpoint configuration packed in a SA and sent to the JBIMulti2 application as a
base64 string.

7.2.1 SOAP over HTTP

This testing scenario requires a backend Web service. As described in this Chapter, we
implemented and deployed in Tomcat 7.0.23 two simple echo Web services: one implements
an In-Only MEP and one implements an In-Out MEP. Their WSDL must be included as a
file in both HTTP endpoint configurations in the SUs before deployment. For monitoring
purposes, we install Wireshark 1.2.7 to listen to the HTTP POST messages to and from the Web
service [Fou]. The SOAP messages are sent using test suites in SoapUI 3.6 to the tenant-aware
endpoint in the ESB [SOA]. In the test shown in Figure 7.1 we test the In-Out MEP Web service
for the tenant TaxiCompany. As SOAP headers we include the tenant context information
(tenantId and userId) for authentication, and as SOAP body the taxi transport details. The
Web service responses with the same information received in the SOAP body.

7.2.2 JMS

The test scenarios for the XML over JMS communication protocol have been done for both ap-
proaches described in Chapters 5 and 6. We have installed locally the HermesJMS application
and configured a remote connection to the ActiveMQ 5.3.1 broker in ServiceMix [her], [AMQ].
For the first approach, we connect to a shared TaxiRequest.queue or TaxiRequest.topic. The

54

7.2 Multi-tenant Binding Components

former is consumed by a non multi-tenant JMS endpoint and routed to the tenant-aware router.
We have noticed while testing that the database connection slows down the performance of
the Camel Recipient List Router, leading to the existence of a bottleneck. ServiceMix has four
status for a JMS message exchange: delivered, pending, dispatched, and inflight [ASM]. Many
of the messages were set with the inflight state, which means that the message exchange is
still pending, and this state blocked further exchanges until its completion. The testing of
the second approach gave us much better performance results. In this second approach, as
shown in Figure 7.2, one consumer and provider queue or topic is created per tenant. The
ActiveMQ 5.3.1 shipped with ServiceMix does not have the administration Web interface.
For monitoring purposes, we have installed a separate instance of ActiveMQ 5.2.0 in order
to be able to easily monitor the messages stored in the provider queue. The tenant context
information stored as a JMS property is parsed at the consumer side and is set at the provider
side as a JMS property.

7.2.3 E-Mail

A tenant-aware E-mail endpoint consumes or sends E-mail messages by connecting to the
E-mail server of the tenant. The tenant’s E-mail address must be provided in endpoint
configuration file packed in the SA. In the test shown in Figure 7.3 we have connected via
IMAP and SMTP the TaxiCompanyB E-mail endpoint with a mail box in Gmail [Goo12]. To set
a custom header in the E-mail we use Mozilla Thunderbird v13.0.1 mail application [Moz].
The E-mail message sent to the tenant-aware provider mail endpoint is sent to the E-mail
addresses contained in the tenant context header of the incoming E-mail message.

55

7 Test

Figure 7.1: Multi-tenant SOAP over HTTP test overview for tenant TaxiCompany. Wire-
shark v1.2.7 used for listening of incoming messages to the echo Web service
and SoapPUI 3.6 for invokation [Fou], [SOA].

56

7.2 Multi-tenant Binding Components

Figure 7.2: Multi-tenant XML over JMS test overview for tenant TaxiCompany. Provider
queue created in separate instance of ActiveMQ 5.2.0 and visualized with its
Web admin interface [AMQ].

57

7 Test

Figure 7.3: Multi-tenant XML over E-mail test overview for tenant TaxiCompanyB. Mes-
sage is routed to the E-mail addresses specified as key-value pairs in the E-mail
tenant context header.

58

8 Performance Evaluation

In the following sections we provide the requirements which should fulfill the performance
evaluation of the ESB solution we extend for multi-tenancy awareness. For this purpose, we
extend a load generator developed by AndroitLogic to enable it with tenant-aware messaging
[Ltd12]. Finally, we provide an overview of the components and systems involved in the
different scenarios of the evaluation, and the design approach and implementation of the
extension.

8.1 Specification

8.1.1 Evaluation Requirements

In this student thesis we provide a performance analysis on the integration of the multi-
tenant aware approaches in ServiceMix and measure the impact on the performance of the
extended prototype. For this purpose, we need to fix which measurements we use for the
evaluation. The driver should perform the following measurements: response time (measured
in milliseconds) and throughput (measured in number of messages sent per second) respect
to a backend service, and CPU and memory usage of the system hosting the instance of
ServiceMix. The evaluation has to be done in different scenarios, each of them sending
different messages number and sizes, for different multi-tenant and non multi-tenant aware
endpoint configurations, as described in Table 8.1 [SASL12].

Number of Endpoints Messages Size ServiceMix Instances Multi-tenancy awareness

1 0.5 / 1 KB 1 mt and non-mt
2 non-mt

2 0.5 / 1 KB 1 mt and non-mt
2 non-mt

4 0.5 / 1 KB 1 mt and non-mt
2 non-mt

10 0.5 / 1 KB 1 mt and non-mt
2 non-mt

Table 8.1: Specification of the different scenarios to be evaluated. In both multi-tenant
and non multi-tenant aware evaluations, one user per endpoint / tenant is
configured.
Legend: mt (multi-tenant aware), non-mt (non multi-tenant aware)

59

8 Performance Evaluation

AndroitLogic has developed a performance analysis driver which fulfills most of the above
requirements in different scenarios [Ltd12]. In our evaluation, we extend the Direct Proxy
scenario from the AndroitLogic ESB Performance benchmark [Ltd12]. However, it doesn’t
achieve one of the main requirements of this student thesis: multi-tenant aware messaging
and concurrent invocation between endpoints. Those two requirements should be included
in an extended version of the primitive driver. Furthermore, the extension should be utilized
with different ESB solutions and must be user-friendly configurable for the different scenarios.
The output of the driver measurements should be analyzed, therefore the output data must
be in structured format.

8.1.2 Evaluation Overview

In the Section 4.1 we have described the requirements that the evaluation should fulfill and
the needed modifications in the utilized benchmark. As exposed in Figure 8.1, the evaluation
is conformed by three main independent systems. We must ensure, for analyzable purposes,
that we approximate as much as possible to a Web service standard real scenario: service
requester invokes a backend service and both request and response are routed through
the network. In our evaluation we must utilize the ESB as a mediator between the service
requester and provider. In the first system (VM0), both service requestor and provider
are deployed. The communication measurements are taken in two different components:
throughput and response time in the AndroitLogic driver, while the number of incoming and
outgoing requests, as well as the visualization of the messages, have to be monitored in an
independent monitoring component.

In the second and third systems (VM1 and VM2 respectively) one instance of ServiceMix is
deployed for routing the messages between the AndroitLogic driver and the backend service.
A monitor component must perform the counting of the incomming and outgoing requests
to and from the ESB, and a system monitor component should measure the ESB’s resources
consumption. The connection between the components in VM0 and VM2 is represented with
a dashed line, because the VM2 is only use for non multi-tenant aware scenarios. Similarly, we
have connected the components in VM0 with the components in VM1 with a continuos line,
because this connection is used in both multi-tenant and non multi-tenant aware scenarios.

The JBIMulti2 application is used for deployment of the SAs which pack the endpoint
configurations in the SUs. However, we do not include the JBIMulti2 application in our
overview because we do not evaluate the JBIMulti2 performance, but the multi-tenant and
non multi-tenant ServiceMix independently from the JBIMulti2 application.

60

8.2 ESB Performance Evaluation Architecture

VM1

VM0

Backend Echo
Service

Extended
AndroitLogic

Driver

Communication Monitoring Component

VM2

Monitoring Component Monitoring Component

Sys. monitoring

Extended ServiceMix
Instance 1

Sys. monitoring

Extended ServiceMix
Instance 2

Figure 8.1: Overview of the components used for the ESB performance evaluation. Note:
In the evaluation two different monitors are used. For communication the
monitoring requires the counting and visualization of the incoming and outgo-
ing requests. For system monitoring, the CPU and Memory usage should be
measured.

8.2 ESB Performance Evaluation Architecture

AndroitLogic has developed in their ESB Performance Evaluation Round 3 a load generator
for different scenarios. After analyzing its main features, we found it suitable for our work,
but only if we can include tenant-awareness in the execution. We evaluate the SOAP over
HTTP communication protocol in both native ServiceMix HTTP BC and in the multi-tenant
HTTP BC. With this we want to evaluate not only the performance of the ESB solution we are
using in our Cloud infrastructure, but also the penalty caused by the multi-tenant awareness
implementation. The SOAP over HTTP protocol is well known for its usage in Web services.
In this evaluation we use as a backend Web service an Echo Service which logs the received
requests. For this purpose, we must push the scenarios as close as possible to a real Web
service consumption. Therefore, we divide the evaluation system in two virtual machines
connected by a network (see Figure 8.2).

The virtual machine one hosts the front and backends components: performance benchmark
and the Web service. The Web service is deployed in an Apache Tomcat server. The extended
performance benchmark is built of the following components: AndroitLogic driver, shell
scripts and data converters. The AndroitLogic driver support concurrent users invoking the
same endpoint, but not concurrent users between two or more endpoints. Furthermore, it
does not support message modification for including tenant information. For this purpose,
we have designed the shell scripts which can give support on those two requirements (see
Figure 8.2). In the first place, the shell script modifies or does not modify the message which
will be sent by the driver. In the second place, we perform concurrent invocations between

61

8 Performance Evaluation

endpoints by creating several Unix background tasks of the driver. Each of the tasks results
can be dumped in a shared file between the driver instances. However, the results come in
non structured format for analysis. Therefore, we convert the data using a converter provided
by AndroitLogic [Ltd12]. For monitoring the packet lost rate, we will listen on the server’s
port where the Web service listens with a well known monitoring tool, Wireshark [Fou].

We use the virtual machines two and three for hosting the ServiceMix instances. The two
instances are used only in non multi-tenant scenarios. For both multi-tenant and non multi-
tenant scenarios we must increase the number of concurrent calls to the endpoints. In
the requirement we specify scenarios of one, two, four, and ten endpoints. The system
performance measurement can be done by system commands. We provide a component
which take CPU and Memory measurements and converts its output to structured data for
analysis. However, the system memory usage measurements do not give variable percentages
over time. The percentage shown is the one associated with the memory consumption of
the JVM the ESB runs on, which is previously reserved and fixed over time. To get more
representative data, we measure the heap consumption of ServiceMix in the JVM using
Java Console, which give us a better representation of the variability between the different
scenarios (See Figure 8.2). For monitoring the communication, an instance of Wireshark can
also be used, but in our evaluation it is optional.

62

8.2 ESB Performance Evaluation Architecture

VMi (Ubuntu 10.04)

VM0 (Ubuntu 10.04)

Wireshark 1.2.7

Wireshark 1.2.7

Java 6 (JDK)

Extended ServiceMix
Instance 1

Java 6 (JDK)
Apache Tomcat 7.0.23

Backend Echo
Service

Scenario j sh
script

Legend

4. Concept and Specification

!"#$%&%"'

Figure 4.1.: Overview of the system JBIMulti2. Arrows illustrate data flow between core
components and resources.

system is called JBI Multi-tenancy Multi-container Support (JBIMulti2), because it supports
many tenants and a cluster of ServiceMix instances.

JBIMulti2 relies on three data resources: the Tenant Registry, the Service Registry, and the
Configuration Registry. Tenant contexts are obtained from the Tenant Registry. It delivers tenant
users and their role inside the corresponding tenant (see Sect. 4.3.2). The Service Registry
stores service assemblies and service descriptions for each tenant, while isolating the data of
different tenants (see Sect. 4.2). All other non-tenant related and tenant related data is stored
by the Configuration Registry. This includes configurations created by system administrators
or tenant administrators. As service assemblies and services are stored to a separate Service
Registry, they must not be stored to the Configuration Registry (see Sect. 4.3.3).

We propose a graphical Web-based user interface named Web UI that exposes the functionality
of JBIMulti2. It can be used by system administrators and tenant users and supports all
use cases listed in Section 4.4. Likewise, all functionality supported by the Web UI must be
supported by a Web Service API as well (see Sect. 4.5.2). Currently, the prototype developed
within the scope of this diploma thesis only implements the Web Service API. However, a
concept for the layout of the Web UI can be found in Section 4.5.1.

The preceding components are built on top of an Integration Layer that encapsulates the access
to databases and the ServiceMix clusters. Moreover, it can initiate atomic transactions among
the resources. An extension component for ServiceMix provides integration with JBIMulti2.
It installs JBI components, processes service assemblies by adding a tenant context, and
deploys service assemblies. Once deployed, a service assembly must not interfere with the
service assemblies of other tenants. To ensure data isolation, the tenant context inside the
service units of a service assembly is processed by a set of new BCs and SEs. JBI components

24

mssg

4. Concept and Specification

!"#$%&%"'

Figure 4.1.: Overview of the system JBIMulti2. Arrows illustrate data flow between core
components and resources.

system is called JBI Multi-tenancy Multi-container Support (JBIMulti2), because it supports
many tenants and a cluster of ServiceMix instances.

JBIMulti2 relies on three data resources: the Tenant Registry, the Service Registry, and the
Configuration Registry. Tenant contexts are obtained from the Tenant Registry. It delivers tenant
users and their role inside the corresponding tenant (see Sect. 4.3.2). The Service Registry
stores service assemblies and service descriptions for each tenant, while isolating the data of
different tenants (see Sect. 4.2). All other non-tenant related and tenant related data is stored
by the Configuration Registry. This includes configurations created by system administrators
or tenant administrators. As service assemblies and services are stored to a separate Service
Registry, they must not be stored to the Configuration Registry (see Sect. 4.3.3).

We propose a graphical Web-based user interface named Web UI that exposes the functionality
of JBIMulti2. It can be used by system administrators and tenant users and supports all
use cases listed in Section 4.4. Likewise, all functionality supported by the Web UI must be
supported by a Web Service API as well (see Sect. 4.5.2). Currently, the prototype developed
within the scope of this diploma thesis only implements the Web Service API. However, a
concept for the layout of the Web UI can be found in Section 4.5.1.

The preceding components are built on top of an Integration Layer that encapsulates the access
to databases and the ServiceMix clusters. Moreover, it can initiate atomic transactions among
the resources. An extension component for ServiceMix provides integration with JBIMulti2.
It installs JBI components, processes service assemblies by adding a tenant context, and
deploys service assemblies. Once deployed, a service assembly must not interfere with the
service assemblies of other tenants. To ensure data isolation, the tenant context inside the
service units of a service assembly is processed by a set of new BCs and SEs. JBI components

24

results

AndroitLogic
ResultstoStructureData

ResultstoStrucure
Data sh script

j = [non multi-
tenant, multi-tenant]

Loop Scenario j sh script

JConsole

Resources
measurement sh

script
top

SOAP HTTP
j Consumer
Endpoint 1

SOAP HTTP
j Consumer
Endpoint 10

...
SOAP HTTP
j Provider
Endpoint 1

SOAP HTTP
j Provider

Endpoint 10
...

AndroitLogic Driver

...

...

Optional
Component /
Communication
Bidirectional
communication

i = [1,2]

Figure 8.2: Architectural overview of the components used for the evaluation of the ESB
performance. Note: We evaluate only ServiceMix, not the integrated version of
ServiceMix with the JBIMulti2 application, in order to be able to perform a direct
comparison between the multi-tenant and the non multi-tenant ServiceMix.

63

8 Performance Evaluation

8.3 Evaluation

In this section we first describe the components we implemented to be able to reuse the
existing load performance driver from AndroitLogic ESB Performance Round 6 and adapt
it to the required multi-tenant scenarios [Ltd12]. In Section 8.3.2 we shortly describe the
deployment and initialization in the virtual machines under the Flexiscale network [Ltd] and
we evaluate the results obtained from the different scenarios.

8.3.1 ESB Performance Evaluation Benchmark

AndoitLogic has developed an ESB Performance Benchmark in their Round 6 [Ltd12]. Their
benchmark evaluates the ServiceMix behavior under different scenarios, which vary in the
request message size, number of requests per endpoint, and number of concurrent users
per endpoint. Their load generator is included in the org.adroitlogic.toolbox.javabench package
in their Management Toolbox application [Ltd12]. They provide an HttpBenchmark and
a data to csv format converter. The former makes HTTP POST requests to the specified
endpoint URL, and generates performance statistics, e.g. response time, throughput. The
latter converts the driver’s results to structured data for analysis. We reuse both components,
but develop components on top which create several instances of the javabench to invoke
multiple endpoints concurrently. Furthermore, we need to add tenant context information
before invoking the driver. The components are implemented in UNIX shell scripts.

In Figure 8.3 we describe the overall structure of our loader package. We define three scenarios:
scenario 1 is non multi-tenant aware and with one instance of ServiceMix, scenario 2 is non
multi-tenant aware with two instances of ServiceMix, and scenario 3 is multi-tenant aware
with 1 instance of ServiceMix [SASL12], [SAS+12]. The SOAP messages and the endpoints’
URLs are read from XML files stored in the scenariox folder. The messages vary from 500B to
100K. However, in this student thesis we perform the analysis for the 500B and 1K messages’
sizes. The main and secondary scripts used in this analysis are located under the main
scripts folders and the results generated are stored in the ResultsScenariox folder. In addition,
for the multi-tenant scenarios, the endpoint URL file must also contain the tenant context
information, e.g. tenantId and userId.

For the evaluation scenarios we create using the ServiceMix HTTP maven archetype 11 SUs.
Ten SUs contain non multi-tenant endpoint configurations of 10 consumer and 10 providers
which support the SOAP over HTTP communication protocol, while one SU is configured
to be deployed on the multi-tenant HTTP BC by 10 tenants, generating 10 tenant-aware
endpoints (10 tenant-aware consumer and provider endpoints). The deployment phase is
described in Section 8.3.2.

1 Load t e s t s c e n a r i o 1 and 2 s h e l l s c r i p t (non multi−tenant awareness) :
2 Usage : l o a d t e s t _ s c e n a r i o 1 scenar io1 |2 number_endpoints size_message (0 . 5K, 1K) o u t p u t _ f i l e
3 Load t e s t s c e n a r i o 3 s h e l l s c r i p t (multi−tenant awareness) :
4 Usage : l o a d t e s t _ s c e n a r i o 2 scenar io3 number_endpoints size_message (0 . 5K, 1K) o u t p u t _ f i l e

Listing 8.1: Invocation parameters in the main shell scripts of the benchmark.

64

8.3 Evaluation

ESB
Performance
Resources

loadtest1
sh

Scripts Scenario1 Scenario2 Scenario3

Results
Scenario1

Results
Scenario2

Results
Scenario3

loadtest2
sh

loop1 sh

loop2 sh

Endpoints

Messages

Endpoints

Messages

Endpoints

Messages

sys
usage sh

Figure 8.3: Overview of the package used for the evaluation of the ESB performance

For the non multi-tenant scenarios, we specify the needed invocation parameters in Listings
8.1, 8.2, and 8.3. The non multi-tenant aware shell script takes as one of the input parameters
the file path where the SOAP message is stored and creates the result scenario file name based
on the message size and the running scenario. Furthermore, the endpoints’ URLs are retrieved
from the endpoint configuration file and the script reads as many URLs as tenants we specify.
For supporting concurrent calls between endpoints, we create as many instances of the
javabench as endpoints by running a secondary script, the loop script (see Figure 8.3), which is
executed as a Linux background task. The scenario is divided in two phases: warm-up and
performance test. In the warm-up phase an amount of requests are concurrently sent to the
endpoints in order to warm-up the ESB and get consistent results, while in the performance
test phase we perform the measurements which can be analyzed. In the warmup phase the
initial request number is set to 10240 requests. This value is then increased exponentially,
and divided by the number of endpoints, as described in the following explanation. The
loop script increments exponentially the number of requests and divides it by the number of
endpoints in the ESB, e.g. during the performance test phase if an initial request number is set
to 20, then it sends to each endpoint 20 ∗ 2i, i = [1, 2, 3, 5, 6] divided by the number of invoked
endpoints in the scenario. The same sequence is applied for the multi-tenant scenario.

1 Loop s c e n a r i o 1 and 2 (non multi−tenant aware) :
2 Usage : loop_scenar io1 i t e r a t i o n s _ l o o p message_f i le n u m b e r _ i n i t i a l _ r e q u e s t s

65

8 Performance Evaluation

number_concurrent_tenants soap_act ion_header url_endpoint
3

4 [i t e r a t i o n s _ l o o p] : number of i t e r a t i o n s the loop w i l l be run .
5 [message_f i l e] : path to the f i l e conta in ing the SOAP message .
6 [n u m b e r _ i n i t i a l _ r e q u e s t s] : i n i t i a l number of reques t s .
7 [number_concurrent_tenants] : number of concurrent endpoints to send reques t s .
8 [soap_act ion_header] : SOAP a c t i o n header .
9 [url_endpoint] : endpoint ’ s URL.

Listing 8.2: Invocation parameters in the non multi-tenant shell script of the benchmark.

The approaches taken into account for the non multi-tenant scenarios are similar to the
multi-tenant scenario, as it is shown in Listing 8.2. The main difference relies on the need of
tenant context information injection before the SOAP message is read and sent over HTTP
concurrently to the tenant-aware endpoints. The concurrent reading of messages leads us to
the need of using temporal files to store the messages containing tenant context information.
The temporal files are created in the same directory as the requests files, and we modify the
content by reading the original request in the loop2 script shown in Listing 8.3 and using the
Linux sed command to inject the tenant context information read from the endpoints’ URL
definition file.

1 Loop s c e n a r i o 3 (multi−tenant aware) :
2 Usage : loop_scenar io2 s c e n a r i o phase 1 message_f i le number_ in i t i a l_ reques t

number_concurrent_tenants soap_act ion_header url_endpoint tenant id user id size_message
3

4 [s c e n a r i o] : s c e n a r i o number . In t h i s evaluat ion , scenar io3 .
5 [phase] : warmup or testESB .
6 [message_f i l e] : path to the f i l e conta in ing the SOAP message .
7 [number_ in i t i a l_ reques t] : i n i t i a l number of reques t s .
8 [number_concurrent_tenants] : number of concurrent endpoints to send reques t s .
9 [soap_act ion_header] : SOAP a c t i o n header .

10 [url_endpoint] : endpoint ’ s URL.
11 [t enant id] : tenant Id .
12 [user id] : userId .
13 [size_message] : message s i z e .

Listing 8.3: Invocation parameters in the multi-tenant shell script of the benchmark.

With the above approaches we fulfill the requirement of getting the response time and
the throughput when invoking and external Web service through an ESB. We have also
implemented scripts for monitoring the system resources with the top Linux command and
with the Java Console [Ora]. The former provides data at the system level, e.g. JVM memory
consumption, while the latter provides data about the exact amount of JVM resources the
ServiceMix process consumes.

8.3.2 ESB Performance Evaluation Analysis

In this student thesis we extend and add extra functionality to ServiceMix. Therefore we
need to measure its behavior and compare it with the baseline, which is the non multi-tenant
version of Apache ServiceMix 4.3.0 [ASM]. In the following sections we describe the systems

66

8.3 Evaluation

we use for evaluating the performance of the ESB, and we discuss some of the results we
obtained.

Deployment and Initialization

The different scenarios we run in this evaluation must approximate as much as possible
to real scenarios. Thus we utilize three Ubuntu 10.04 virtual machines in this evaluation
connected by the network in the Flexiscale infrastructure [Ltd]. One virtual machine hosts
the evaluation package and an echo Web service which implements the In-Only MEP and is
deployed in Tomcat 7.0.23. Wireshark 1.2.7 is installed for monitoring incoming and outgoing
requests to and from the echo Web service. In a second and third virtual machine we install
one instance of ServiceMix 4.3.0 and the system resources measurement scripts. We have
listed in Section 8.1 a set of multi-tenant and non multi-tenant scenarios. For the non multi-
tenant scenarios we have deployed in the ServiceMix deploy directory a SA containing the
configuration of 10 consumer and 10 provider endpoints. For the multi-tenant scenarios
we performed the operations described in Section 7.2 and deploy through JBIMulti2 10
tenant-aware consumer and 10 tenant-aware provider endpoints. Both tenant-aware and non
tenant-aware endpoints must be specified in the endpoint file the extended driver reads for
sending the SOAP requests.

Evaluation Analysis

0

5

10

15

20

25

30

35

40

45

0 16000 32000 48000 64000 80000 96000 112000 128000

Av
er
ag
e	r
es
po
ns
e	t
im
e	
m
se
c

Total	#	Requests

1VM‐NonMT‐
2	Endpoints

2VMs‐NonMT‐
2	Endpoints

1VM‐MT‐
2	Tenants

1VM‐NonMT‐
4	Endpoints

2VMs‐NonMT‐
4	Endpoints

1VM‐MT‐
4	Tenants

1VM‐NonMT‐
10	Endpoints

2VMs‐NonMT‐
10	Endpoints

1VM‐MT‐
10	Tenants

Figure 8.4: Response time of the different scenarios for 1KB SOAP over HTTP requests
[SASL12].

The numerical values obtained from the communication driver are distributed per endpoint.
Therefore, we make the average between the endpoints for each set of sent requests. The

67

8 Performance Evaluation

latency when increasing the number of endpoints in the system increases between 25%
and 45% for concurrent requests sent to 2, 4 and 10 endpoints (see Figure 8.4). We can see
that our extended version declines the original ServiceMix’s performance approximately
30% [SASL12]. Furthermore, we can observe that the response time for the different multi-
tenant scenarios does not increase proportional to the number of tenants, but shows a better
performance per endpoint. When distributing the requests between two ServiceMix instances
we have observed that the response time is substantially reduced when increasing the number
of endpoints.

0

20

40

60

80

100

120

140

160

180

0 160 320 480 640 800 960 1120 1280

Th
ro
u
gh
p
u
t
(t
ra
n
sa
ci
to
n
s
p
e
r
se
co
n
d
)

Requests

NonMT/1E

NonMT/2E

NonMT/4E

NonMT/10E

MT/1T

MT/2T

MT/4T

MT/10T

Figure 8.5: Throughput of the different scenarios for 1KB SOAP over HTTP requests
[SASL12].

When measuring the throughput, the analysis took us to the same deduction we discussed
above. When the number of endpoints decreases, we can observe a bigger gap between the
native and the extended version of ServiceMix. As we increase the number of endpoints, e.g.
10 endpoints, we can see that the gap between approaches is exponentially narrowed (see
Figure 8.5).

Finally, we have analyzed the CPU consumption of the process running the ServiceMix
instance. We can observe in the average CPU consumption that there is a gap between both
multi-tenant and non multi-tenant scenarios which increases when the number of endpoints
increases. However, when increasing the number of endpoints the average CPU consumption
stabilizes and maintains close to a constant value. The maximum CPU consumption values
decreases in the non multi-tenant scenarios when increasing the number of endpoints, while
for the multi-tenant scenario it linearly increases from two endpoints. In the 4 or 10 endpoints
scenarios, the maximum CPU consumption difference between the native and the extended
approaches are between 250% and 320% approximately (see Figure 8.6).

The tenant authentication procedure demands a greater number of resources when parsing the
SOAP headers and the XML data from the tenant context file. However, this decline caused by
the implemented authentication procedure and the marshaling of tenant context information
within the process is much lower that the decline caused by establishing a connection with

68

8.3 Evaluation

0

10

20

30

40

50

60

70

80

90

100

CP
U
 U
til
iz
at
io
n
(%

)

Max

Average

Figure 8.6: Overview of the CPU consumption over the different scenarios [SASL12].

an external database system and retrieving the tenant context information from an external
source to the process.

69

8 Performance Evaluation

70

9 Outcome and Future Work

The utilization of an ESB as the main piece of middleware for SOA in a Cloud environment
forces multi-tenancy awareness to be a must in its requirements. This student thesis integrates
the two main approaches for enabling multi-tenancy in an open source ESB: multi-tenant
aware messaging and multi-tenant aware administration and management, as well as ana-
lyzes and compares the performance of the native and extended ESB solution in different
scenarios, and produces as its main outcome an integrated version of the taxi application
[4Ca].

In Chapter 2 we first provide the needed background on the technologies, communication
protocols, and the main components this student thesis work with: ServiceMix and JBIMulti2
[ASM], [Muh12]. After acquiring the main knowledge of the solutions, we investigate in
Chapter 3 different solutions which support multi-tenancy, and analyze approaches which
have been already taken into account. Furthermore, we discuss the supported functionalities
of the AndoitLogic load generator driver, and the possibility of its reuse in our performance
analysis. The identification of requirements and the system overview presented in Chapter 4
guide us to perform the design of the different components of this student thesis in Chapter 5.
The design leads to a multi-tenant and multi-protocol aware version of ServiceMix, supporting
three communication protocols: SOAP over HTTP, JMS, and E-mail. Furthermore, we
provide an integration design for the taxi application v2.0 prototype and we reengineer
most of the implemented communication approaches in order to improve the system’s
performance and to add new functionalities, e.g. tenant context data structure modification,
tenant authentication, and tenant-aware isolated endpoints in the ESB. One of the main
requirements in a Cloud infrastructure is security. We implement tenant authentication but
not tenant data integrity and confidentiality. The tenant context information sent to and from
the ESB must be encrypted in future versions of the ESB.

Chapter 6 describes the challenges and approaches we faced for both the integration with
the taxi scenario and the extension of the different JBI BCs. As discussed in Chapter 6, one
of the main goals we have in the improved version of the taxi application is to maximize
the ESB usage between components and to integrate a multi-tenant aware ESB with non
multi-tenant aware components which build part of the taxi application, e.g. BPEL processes
under Orchestra, CMF and GoogleDirections components, etc. This contrast forced us to
perform changes in some of the taxi application components in order to adapt multi-tenancy
at the communication level. Future versions of the taxi application should support multi-
tenancy awareness in its components, and we consider that a bidirectional connection between
JBIMulti2 and the taxi companies Web interfaces should be set in order to retrieve the tenant
context information. Furthermore, the only communication protocol which actually supports
the taxi application is the SOAP over HTTP. We have extended both JMS and Mail JBI BCs

71

9 Outcome and Future Work

for supporting a multi-protocol communication between customers and taxi drivers in a
future version of the taxi application. This aspect directed us to build two different testing
environments, one for the taxi application and one for the individual testing of the extended
BCs described in Chapter 7.

For analytical purposes after implementation, we perform an evaluation of the performance in
Chapter 8 of both native and extended versions of ServiceMix. This student thesis reuses and
extends an existing SOAP over HTTP ESB performance benchmark. We adapt the benchmark
to support multi-tenancy and evaluate the obtained results from different scenarios. However,
we could not perform this analysis on more that one communication protocol. In the future it
would be interesting to run the same scenarios on the XML over JMS communication protocol.
Those results can give the ESB administrator a better output for offering the communication
protocols which best execute in our ServiceMix version. Furthermore, we perform the
evaluation of one important scenario in a Cloud infrastructure: dividing the load between
more than one ServiceMix instance by emulating a load balancer. The results showed that
the performance is not significantly increased with the increase of the number of endpoints,
and this approach can be not worth its expenditure. However, as we discussed, we emulate
load balancing. For more than one instance of ESB a load balancer should be integrated to the
extended system.

Finally, we have integrated a multi-tenant ESB which connect different endpoints via different
protocols, e.g. external consumers with external providers. However, data is nowadays the
most important asset of any business [FC06]. The offering of a data-as-a-service solution in a
Cloud environment where data can accessed through SOA mechanisms, ables the use of the
ESB as a data access layer. With this approach data can be accessed from everywhere just by
communicating with the ESB and without worrying about the underlying architecture, e.g.
database vendor, connection drivers.

72

Bibliography

[4Ca] 4CaaSt – EU Project. http://www.4caast.eu/.

[AMQ] The Apache Software Foundation. Apache ActiveMQ. http://activemq.
apache.org/.

[AMV] The Apache Software Foundation. Apache Maven. http://maven.apache.org/.

[APA11a] The Apache Software Foundation. Apache Camel User Guide 2.7.0, 2011. http:
//camel.apache.org/manual/camel-manual-2.7.0.pdf.

[APA11b] The Apache Software Foundation. Apache Karaf Users’ Guide 2.2.5,
2011. http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/
manual-2.2.5.pdf.

[ASM] The Apache Software Foundation. Apache ServiceMix. http://servicemix.
apache.org/.

[ATC] The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.
org/.

[BPSM+08] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Fifth Edition), November 2008. http://www.w3.
org/TR/REC-xml/.

[CC06] F. Chong and G. Carraro. Architecture Strategies for Catching the Long Tail,
April 2006. http://msdn.microsoft.com/en-us/library/aa479069.aspx.

[CCA] EU ICT Project Context Casting (C-CAST). http://www.ict-ccast.eu/.

[Cha04] D. A. Chappel. Enterprise Service Bus: Theory in Practice. O’Reilly Media, 2004.

[Ess11] S. Essl. Extending an Open Source Enterprise Service Bus for Multi-Tenancy
Support. Master’s thesis 3166, Institute of Architecture of Application Systems,
University of Stuttgart, 2011.

[FC06] R. W. Frederick Chong, Gianpaolo Carraro. Multi-Tenant Data Architecture, June
2006. MSDN, http://msdn.microsoft.com/en-us/library/aa479086.aspx.

[Fes12] F. Fest. Extending an Open Source Enterprise Service Bus for Horizontal Scal-
ability Support. Diploma Thesis 3317, Institute of Architecture of Application
Systems, University of Stuttgart, 2012.

[Fou] W. Foundation. Wireshark 1.2.7. http://www.wireshark.org/.

73

http://www.4caast.eu/
http://activemq.apache.org/
http://activemq.apache.org/
http://maven.apache.org/
http://camel.apache.org/manual/camel-manual-2.7.0.pdf
http://camel.apache.org/manual/camel-manual-2.7.0.pdf
http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/manual-2.2.5.pdf
http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/manual-2.2.5.pdf
http://servicemix.apache.org/
http://servicemix.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://www.ict-ccast.eu/
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://www.wireshark.org/

Bibliography

[GGW+09] B. Gao, C. J. Guo, Z. H. Wang, W. H. An, and W. Sun. Develop and
Deploy Multi-Tenant Web-delivered Solutions using IBM middleware: Part
3, March 2009. IBM, http://www.ibm.com/developerworks/webservices/
library/ws-multitenant/.

[GMA] Google Maps API Web Services. http://code.google.com/intl/en/apis/
maps/documentation/webservices/.

[Goo] Google. Google Guice Dependency Injection Frame. http://code.google.com/
p/google-guice/.

[Goo12] Google. GMail, 2012. www.googlemail.com.

[Gro05] N. W. Group. A Universally Unique IDentifier (UUID) URN Namespace, July
2005. http://tools.ietf.org/html/rfc4122.

[Gro08] N. W. Group. Internet Message Format, October 2008. http://tools.ietf.org/
html/rfc5322.

[Hag11] R. Hagin. Enabling Integration and Aggregation of Context Information into
WS-BPEL Processes. Master’s thesis, Institute of Architecture of Application
Systems, University of Stuttgart, 2011.

[HBS+02] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. Java Message
Service (JMS) 1.1 Final Release JSR-914, 2002. http://jcp.org/aboutJava/
communityprocess/final/jsr914/.

[her] Hermes JMS 1.14. http://www.hermesjms.com/confluence/display/HJMS/
Home.

[JBI05] Java Business Integration (JBI) 1.0, Final Release, 2005. JSR-208, http://jcp.
org/aboutJava/communityprocess/final/jsr208/.

[Ltd] F. Ltd. Flexiscale Cloud Infrastucture. http://www.flexiscale.com/.

[Ltd12] A. P. Ltd. ESB Performance - Latest Execution - Round 6, August 2012. http:
//esbperformance.org/display/comparison/ESB+Performance.

[Moz] Mozilla. Mozilla Thunderbird v13.0.1. https://www.mozilla.org/en-US/
thunderbird/.

[Muh] D. Muhler. Manual for the JBIMulti2 Implementation. Modified by Santiago
Gomez.

[Muh12] D. Muhler. Extending an Open Source Enterprise Service Bus for Multi-Tenancy
Support Focusing on Administration and Management. Diploma Thesis 3226,
Institute of Architecture of Application Systems, University of Stuttgart, 2012.

[MUTL09] R. Mietzner, T. Unger, R. Titze, and F. Leymann. Combining Different Multi-
tenancy Patterns in Service-Oriented Applications. In Proc. IEEE Int. Enterprise
Distributed Object Computing Conf. EDOC ’09, 2009.

74

http://www.ibm.com/developerworks/webservices/library/ws-multitenant/
http://www.ibm.com/developerworks/webservices/library/ws-multitenant/
http://code.google.com/intl/en/apis/maps/documentation/webservices/
http://code.google.com/intl/en/apis/maps/documentation/webservices/
http://code.google.com/p/google-guice/
http://code.google.com/p/google-guice/
www.googlemail.com
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322
http://jcp.org/aboutJava/communityprocess/final/jsr914/
http://jcp.org/aboutJava/communityprocess/final/jsr914/
http://www.hermesjms.com/confluence/display/HJMS/Home
http://www.hermesjms.com/confluence/display/HJMS/Home
http://jcp.org/aboutJava/communityprocess/final/jsr208/
http://jcp.org/aboutJava/communityprocess/final/jsr208/
http://www.flexiscale.com/
http://esbperformance.org/display/comparison/ESB+Performance
http://esbperformance.org/display/comparison/ESB+Performance
https://www.mozilla.org/en-US/thunderbird/
https://www.mozilla.org/en-US/thunderbird/

Bibliography

[NIS11] National Institute of Standards and Technology. The NIST Definition of Cloud
Computing, 2011. http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf.

[OPG06] The Open Group. The SOA Work Group: Definition of SOA, 2006. http://www.
opengroup.org/soa/soa/def.htm.

[OPG11] The Open Group. IBM Cloud Computing Reference Architecture 2.0,
2011. https://www.opengroup.org/cloudcomputing/uploads/40/23840/
CCRA.IBMSubmission.02282011.doc.

[Ora] Oracle. Java Console. http://docs.oracle.com/javase/6/docs/technotes/
guides/management/jconsole.html.

[OSG11] OSGi Alliance. OSGi Service Platform: Core Specification Version 4.3, 2011.
http://www.osgi.org/Download/Release4V43/.

[OWJ] OW2 Consortium. JOnAS: Java Open Application Server. http://wiki.jonas.
ow2.org/.

[OWO] OW2 Consortium. Orchestra: Open Source BPEL / BPM Solution. http://
orchestra.ow2.org/.

[PLW+07] I. Poddar, M. Li, Q. Wang, Y. C. Guo, and Z. Gan. Securing a composite
business service delivered as a software-as-a-service: Part I, secure multi-
tenancy with WebSphere Portal Server, September 2007. http://www.ibm.com/
developerworks/tivoli/library/t-cbssas/index.html#2.2.

[PSQ] PostgreSQL. http://www.postgresql.org/.

[SAS+12] S. Strauch, V. Andrikopoulos, S. G. Sáez, F. Leymann, and D. Muhler. Enabling
Tenant-Aware Administration and Management for JBI Environments. Institute
of Architecture of Application Systems (IAAS), University of Stuttgart, Stuttgart,
Germany. 2012 IEEE International Conference on Service-Oriented Computing
and Applications, 2012. (to appear).

[SASL12] S. Strauch, V. Andrikopoulos, S. G. Sáez, and F. Leymann. Implementation and
Evaluation of a Multi-Tenant Open-Source Enterprise Service Bus, 2012. Institute
of Architecture of Application Systems University of Stuttgart (under review).

[SOA] SmartBear Software. soapUI. http://www.soapui.org.

[Ura12] M. Uralov. Extending an Open Source Enterprise Service Bus for Dynamic
Discovery and Selection of Cloud Data Hosting Solutions based on WS-Policy.
Master’s thesis, Institute of Architecture of Application Systems, University of
Stuttgart, 2012. Not yet published. Realization in parallel to this student thesis.

[w3c04] Web Services Architecture, 11 February 2004. http://www.w3.org/TR/
ws-arch/.

75

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.opengroup.org/soa/soa/def.htm
http://www.opengroup.org/soa/soa/def.htm
https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://www.osgi.org/Download/Release4V43/
http://wiki.jonas.ow2.org/
http://wiki.jonas.ow2.org/
http://orchestra.ow2.org/
http://orchestra.ow2.org/
http://www.ibm.com/developerworks/tivoli/library/t-cbssas/index.html#2.2
http://www.ibm.com/developerworks/tivoli/library/t-cbssas/index.html#2.2
http://www.postgresql.org/
http://www.soapui.org
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/

Bibliography

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging, and More. Prentice Hall, 2005.

[WSO08] WSO2. WSO2 Enterprise Service Bus (ESB) Performance Testing - Round 3, June
2008. http://wso2.org/library/3740.

[WSO12] WSO2. Cloud Native Advantage: Multi-Tenant, Shared Container PaaS (White
Paper), June 2012. WSO2.

[WTJ11] S. Walraven, E. Truyen, and W. Joosen. A Middleware Layer for Flexible and
Cost-Efficient Multi-tenant Applications. Middleware 2011, 2011.

All links were last followed on November 12, 2012.

76

http://wso2.org/library/3740

Declaration

All the work contained within this thesis, except where otherwise
acknowledged, was solely the effort of the author. At no stage was
any collaboration entered into with any other party.

Stuttgart, November 14, 2012 ——————————–
(Santiago Gómez Sáez)

	Introduction
	Problem Statement
	Motivating Scenario
	Definitions and Conventions
	Outline

	Fundamentals
	Service-Oriented Architecture
	Enterprise Service Bus

	Cloud Computing
	Multi-tenancy
	Java Business Integration
	OSGi Framework
	Apache ServiceMix
	Binding Components
	SOAP over HTTP
	JMS
	E-Mail

	Service Engine
	Apache Camel

	JBIMulti2

	Related Works
	Concept and Specification
	Requirements
	Communication Requirements
	Integration Requirements

	Design
	Integration Architecture
	Tenant Context
	Tenant-aware Normalized Message Format
	Tenant-aware Binding Components
	SOAP over HTTP
	JMS
	E-Mail

	Implementation
	System Overview
	Taxi Scenario Integration
	Multi-tenant Binding Components
	SOAP over HTTP
	JMS
	Email

	Multi-tenant Service Engine
	Apache Camel

	Test
	Deployment and Initialization
	Multi-tenant Binding Components
	SOAP over HTTP
	JMS
	E-Mail

	Performance Evaluation
	Specification
	Evaluation Requirements
	Evaluation Overview

	ESB Performance Evaluation Architecture
	Evaluation
	ESB Performance Evaluation Benchmark
	ESB Performance Evaluation Analysis

	Outcome and Future Work
	Bibliography

