14 research outputs found

    Building Decision Procedures in the Calculus of Inductive Constructions

    Get PDF
    It is commonly agreed that the success of future proof assistants will rely on their ability to incorporate computations within deduction in order to mimic the mathematician when replacing the proof of a proposition P by the proof of an equivalent proposition P' obtained from P thanks to possibly complex calculations. In this paper, we investigate a new version of the calculus of inductive constructions which incorporates arbitrary decision procedures into deduction via the conversion rule of the calculus. The novelty of the problem in the context of the calculus of inductive constructions lies in the fact that the computation mechanism varies along proof-checking: goals are sent to the decision procedure together with the set of user hypotheses available from the current context. Our main result shows that this extension of the calculus of constructions does not compromise its main properties: confluence, subject reduction, strong normalization and consistency are all preserved

    Tarski's influence on computer science

    Full text link
    The influence of Alfred Tarski on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is the work of Tarski on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, modeltheoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page

    From formal proofs to mathematical proofs: a safe, incremental way for building in first-order decision procedures

    Get PDF
    We investigate here a new version of the Calculus of Inductive Constructions (CIC) on which the proof assistant Coq is based: the Calculus of Congruent Inductive Constructions, which truly extends CIC by building in arbitrary first-order decision procedures: deduction is still in charge of the CIC kernel, while computation is outsourced to dedicated first-order decision procedures that can be taken from the shelves provided they deliver a proof certificate. The soundness of the whole system becomes an incremental property following from the soundness of the certificate checkers and that of the kernel. A detailed example shows that the resulting style of proofs becomes closer to that of the working mathematician

    Formal verification of a generic framework to synthesize SAT-provers

    Get PDF
    We present in this paper an application of the ACL2 system to generate and reason about propositional satis ability provers. For that purpose, we develop a framework where we de ne a generic SAT-prover based on transformation rules, and we formalize this generic framework in the ACL2 logic, carrying out a formal proof of its termination, soundness and completeness. This generic framework can be instantiated to obtain a number of veri ed and executable SAT-provers in ACL2, and this can be done in an automated way. Three instantiations of the generic framework are considered: semantic tableaux, sequent and Davis-Putnam-Logeman-Loveland methods.Ministerio de Ciencia y TecnologĂ­a TIC2000-1368-C03-0

    From LCF to Isabelle/HOL

    Get PDF
    Interactive theorem provers have developed dramatically over the past four decades, from primitive beginnings to today's powerful systems. Here, we focus on Isabelle/HOL and its distinctive strengths. They include automatic proof search, borrowing techniques from the world of first order theorem proving, but also the automatic search for counterexamples. They include a highly readable structured language of proofs and a unique interactive development environment for editing live proof documents. Everything rests on the foundation conceived by Robin Milner for Edinburgh LCF: a proof kernel, using abstract types to ensure soundness and eliminate the need to store proofs. Compared with the research prototypes of the 1970s, Isabelle is a practical and versatile tool. It is used by system designers, mathematicians and many others

    Knuth-Bendix Completion with Modern Termination Checking, Master\u27s Thesis, August 2006

    Get PDF
    Knuth-Bendix completion is a technique for equational automated theorem proving based on term rewriting. This classic procedure is parametrized by an equational theory and a (well-founded) reduction order used at runtime to ensure termination of intermediate rewriting systems. Any reduction order can be used in principle, but modern completion tools typically implement only a few classes of such orders (e.g., recursive path orders and polynomial orders). Consequently, the theories for which completion can possibly succeed are limited to those compatible with an instance of an implemented class of orders. Finding and specifying a compatible order, even among a small number of classes, is challenging in practice and crucial to the success of the method. In this thesis, a new variant on the Knuth-Bendix completion procedure is developed in which no order is provided by the user. Modern termination-checking methods are instead used to verify termination of rewriting systems. We prove the new method correct and also present an implementation called Slothrop which obtains solutions for theories that do not admit typical orders and that have not previously been solved by a fully automatic tool

    Eight Biennial Report : April 2005 – March 2007

    No full text
    corecore