
Formal verification of a generic framework

to synthesize SAT-provers

Francisco–Jesús Mart́ın–Mateos, José–Antonio Alonso, Maŕıa–José
Hidalgo and José–Luis Ruiz–Reina

Computational Logic Group
Dept. of Computer Science and Artificial Intelligence, University of Seville
E.T.S.I. Informática, Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain
E-mails: {fmartin,jalonso,mjoseh,jruiz}@cs.us.es

Abstract. We present in this paper an application of the ACL2 system to generate
and reason about propositional satisfiability provers. For that purpose, we develop a
framework where we define a generic SAT-prover based on transformation rules, and
we formalize this generic framework in the ACL2 logic, carrying out a formal proof of
its termination, soundness and completeness. This generic framework can be
instantiated to obtain a number of verified and executable SAT-provers in ACL2, and
this can be done in an automated way. Three instantiations of the generic framework
are considered: semantic tableaux, sequent and Davis–Putnam–Logeman–Loveland
methods.

1. Introduction

A common practice in program verification is stepwise refinement. This
means that essential properties of programs can be first proved at a very
abstract level, considering only a generic specification of the program,
skipping technical details of concrete implementations. Thus, the
properties proved can be deduced for a given implementation of the
generic specification, by simply showing that this implementation is a
concrete instance of the generic procedure. Further refinements of the
implementations (in order to obtain better performance) can still be
verified by showing that they compute the same results as an-other
verified implementation. In this paper, we describe an application of this
technique to reason formally about a family of propositional
satisfiability (SAT) decision procedures, using the ACL2 system.

SAT provers are an important component of many applications in
theorem proving in particular and artificial intelligence in general [9], so
it makes sense the development of formally verified SAT decision
procedures, as a way of certifying this “proof engine” component [18].

The reason why we have chosen ACL2 as the logic and prover used to
reason about this procedures, is that this system provides a framework

∗ This work has been supported by project TIC2000-1368-C03-02 (Ministry of

Science and Technology, Spain), cofinancied by FEDER founds.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/200977543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

where reasoning and computing can be done. ACL2 [12] is a program-
ming language, a logic for reasoning about programs in the language,
and a theorem prover supporting formal reasoning in the logic. So the
procedures can be implemented, executed and formally verified in the
same system.

Three case studies are considered: semantic tableaux, sequent calcu-
lus and the Davis–Putnam–Logeman–Loveland method. The common
pattern of all these SAT procedures is that they can be described as rule
based transformation systems. For that purpose, we develop a generic
framework into which these SAT-provers can be placed. A generic SAT-
prover is formalized in ACL2 and its main properties are proved; using
functional instantiation, concrete instances of the generic framework
can be defined to obtain formally verified and Common Lisp executable
SAT-provers. As a byproduct, we have developed a tool to make the in-
stantiation process more convenient, obtaining in an automated way the
concrete and executable procedures and the instances of the theorems
proved for the generic framework.

This paper is an extended and revised version of [15]. It is organized
as follows. In Section 2 we define a generic framework in order to build
a generic transformation based SAT-prover, and we sketch a proof of its
termination, soundness and completeness properties. We also describe
how three well-known SAT-provers methods (tableaux, sequent cal-
culus and Davis–Putnam–Logeman–Loveland method) can be placed
into the generic framework. In Section 3 we show how this framework
has been formalized in ACL2 and how its main properties has been
proved. In Section 4 we describe how these generic definitions and the-
orems has been instantiated, to obtain verified and executable Common
Lisp definitions of tableaux based, sequent based and Davis–Putnam–
Logeman–Loveland SAT-provers. Finally, in Section 5 we draw some
conclusions.

Due to the lack of space we will skip details of the mechanical
proofs and for the same reason some function definitions will be
omitted. The complete formalization is available in [16].

2. A generic framework to develop propositional
SAT-provers

Analyzing some well-known methods of proving propositional sat-
isfiability (such as sequent, tableaux or Davis–Putnam–Logeman–
Loveland), we can observe a common behavior. They do not work
directly on formulas but on objects built from formulas. The objects are
repeatedly modified using expansion rules, reducing their complexity

3

(p→ q) ∧ p
T1

(p→ q) ∧ p

p→ q

p

T2

�� QQ

(p→ q) ∧ p

p→ q

p

¬p q

T3

�� QQ

HH��

(p→ q) ∧ p

p→ q

p

¬p q

σ(p) = 1

σ(q) = 1

Figure 1. An example of tableaux method

in such a way that their meaning is preserved. Eventually, from some
kind of simple objects, a distinguished valuation proving satisfiability of
the original formula can be obtained. If no such object is found, then
unsatisfiability of the original formula is proved. We must point out
that these objects are not only theoretical structures used to describe
the method (e.g. lists or sets of formulas), but they can be real data
structures used in the implementation (e.g. arrays, linked lists, hash
tables, ...) of the SAT procedures.

We can see this behavior in the semantic tableaux method, by means
of the example shown in Figure 1. From the formula (p → q) ∧ p the
initial tree T1 with a single node is built. In a first step the formula
is expanded obtaining one extension with two formulas p → q and p
(tree T2). In a second step the formula p → q is expanded obtaining
two extensions, the first with the formula ¬p and the second with
the formula q (tree T3). The left branch becomes closed (i.e., with
complementary literals) and the right one provides a model σ. Thus,
the tableaux method can be seen as the application of a set of expansion
rules acting on branches of trees (the objects) until a branch without
complementary literals is obtained. For this branch, a distinguished
valuation (making that branch true) is easily obtained. Otherwise, all
branches are closed and unsatisfiability is proved.

Our goal in this section is to describe a generic framework where
these methods can be fit. First we introduce some notation. We consider
an infinite set of proposition symbols Σ and a set of truth values, B =
{t, f}, where t denotes true and f denotes false. P(Σ) denotes the set
of propositional formulas on Σ (the truth values are not considered as
formulas), where the basic connectives are ¬, ∧, ∨, → and ↔. The
complement of a formula F , denoted as F , is defined such that F = G
if F = ¬G, and F = ¬F otherwise. A literal is a formula p or ¬p, where
p ∈ Σ. A clause is a finite sequence of literals. A valuation is a function

4

σ : Σ −→ B; we denote VΣ the set of all valuations defined on Σ. The
valuations are extended to P(Σ) in the usual way. We denote σ |= F
when σ(F) = t, and we say that σ is a model of F . A valuation σ is a
model of a clause C, if it is a model of some literal in C. The capital
Greek letters Γ and ∆ (possibly with subscripts) denote finite sequences
of formulas (we sometimes use the term list instead of finite sequence).
We will use the notation 〈e1, ..., ek〉 to represent a finite sequence, and
O∗ to denote the set of finite sequences of elements of the set O. We say
that x is a member of the list 〈e1, ..., ek〉, denoted as x ∈ 〈e1, ..., ek〉,
if ∃i, 1 ≤ i ≤ n, such that x = ei. We write 〈Γ1, F,Γ2〉 or Γ1, F,Γ2,
to distinguish the formula F in a sequence of formulas. Finally, Ord
denotes the class of all ordinals.

2.1. A generic algorithm for proving propositional
satisfiability

DEFINITION 1. A Propositional Transformation System (PTS, for
short) is a triple G = 〈OG ,;G, |=G〉, where OG is a set, and ;G and
|=G are binary relations such that ;G⊆ O×(O∗∪{t}) and |=G⊆ VΣ×O.

We will call OG the set of propositional objects (or simply objects) and
;G the set of expansion rules. Intuitively, the objects are the structures
used by a propositional SAT-prover and the expansion rules describe
the steps that it performs. Note that we allow rules of the form O ;G 〈〉
and rules of the form O ;G t. The first one represents dead ends in the
search for satisfiability, and the second one represents successful ends.
When σ |=G O, we say that σ is a distinguished valuation for O. The
idea is that when a successful end is found, the distinguished valuations
for the last object provide a model of the original formula. Intuitively,
the relation |=G translates the relation |= from formulas to the objects
used by the SAT-prover.

DEFINITION 2. Given a PTS G = 〈OG,;G , |=G〉:

1. A computation rule is a function r : O −→ O∗ ∪ {t} such that
r ⊆;G.

2. A representation function is a function i : P(Σ) −→ O.

3. A measure function is a function µ : O −→ Ord.

4. A model function is a function γ :Ot−→VΣ, where Ot ={O ∈ O :
O ;G t}.

5

Given a PTS G = 〈OG ,;G, |=G〉, a computation rule r and a repre-
sentation function i, we define the following algorithm SATG for proving
satisfiability of a propositional formula.

ALGORITHM 1 (SATG). The input to this algorithm is a proposi-
tional formula F and it proceeds as follows:

1. Let L = 〈i(F)〉.

2. While L is a non-empty list, do:
Select Oj a member of the list L = 〈O1, ..., On〉.

a) If r(Oj) = t, then stop and return 〈Oj〉.
b) If r(Oj) = 〈O′1, ..., O′m〉 (m ≥ 0),

then let L = 〈O′1, ..., O′m, O1, ..., Oj−1, Oj+1, ..., On〉.

3. Return f.

The intuitive idea is simple: given F , we start with the initial object
i(F) and repeatedly apply the expansion rules until t is obtained or
until there are no more objects left. Termination of this process will be
guaranteed by a measure function µ. The strategy to apply the rules
is determined by the given computation rule r and by the selection
strategy of objects of the list L. Note that assuming the existence of a
computation rule means that for every object there is at least one rule
that can be applied to it.

It can be proved that under some conditions that we give below, if
t is obtained from an object Oj , then we can obtain a distinguished
valuation using a model function and this valuation turns out to be
a model of the original formula. Under the same conditions, if f is
obtained, the original formula is unsatisfiable.

DEFINITION 3. We say that SATG is complete if for all F ∈ P(Σ)
such that ∃σ ∈ VΣ : σ |= F , then SATG(F) 6= f . We say that it is sound
if for all F ∈ P(Σ) such that SATG(F) 6= f , then ∃σ ∈ VΣ : σ |= F .

THEOREM 1. Let G = 〈OG ,;G, |=G〉 be a PTS, r a computation
rule, i a representation function, µ a measure function and γ a model
function, such that the following properties hold:

P1: Oi ∈ r(O) =⇒ µ(Oi) < µ(O)

P2: F ∈ P(Σ) =⇒ (σ |= F ⇐⇒ σ |=G i(F))

P3: O ∈ O ∧ r(O) 6= t =⇒ (σ |=G O ⇐⇒ ∃Oi ∈ r(O), σ |=G Oi)

6

P4: O ∈ O ∧ r(O) = t =⇒ γ(O) |=G O

then the algorithm SATG terminates for any formula and is complete
and sound. Furthermore, if SATG(F) = 〈O〉 then γ(O) |= F .

Termination Proof. In the termination proof of SATG, we will use a
multiset relation built from the measure function. Roughly speaking,
a finite multiset over A is a subset of A “with repeated elements”. Let
us briefly recall the notion of multiset relation. Given a relation < on a
set A, we define the multiset relation induced by < on the set of finite
multisets over A, denoted as <mul, in the following way: N <mul M
if there exist X,Y finite multisets over A, such that Ø 6= X ⊆ M ,
N = (M \ X) ∪ Y and for all y ∈ Y there exists x ∈ X such that
y < x. Intuitively, this means that a smaller multiset can be obtained by
removing a non-empty subset of elements, and adding elements which
are smaller than some element removed. In [7] it is proved that <mul

is well-founded whenever < is well-founded.
Let us now prove the termination of SATG. For that purpose,

we must prove that point 2 is a finite loop. Assume that the list
of objects in point 2 is 〈O1, ..., On〉, the selected element is Oj and
r(Oj) = 〈O′1, ..., O′m〉, with m ≥ 0.

We consider the relation <µ in O defined as follows O1 <µ O2 if
and only if µ(O1) < µ(O2). Obviously, <µ is a well founded relation
on O. Then, for every k, O′k <µ Oj by P1. Therefore, the multiset
{O′1, ..., O′m, O1, ..., Oj−1, Oj+1, ..., On} is smaller than {O1, ..., On} with
respect to the multiset extension of <µ (which is also well-founded).
This proves termination of SATG.

Completeness Proof. First of all note that, by P3, if the algorithm
reaches point 2-(b), σ is a distinguished valuation of some object in the
list considered in point 2 if and only if it is a distinguished valuation
of some object in the new list built in point 2-(b).

If σ |= F then, by P2, σ |=G i(F). Then, by the above observation,
in every list considered in point 2 exists O such that σ |=G O. Therefore
the list in point 2 cannot become empty and, since the algorithm termi-
nates, in some step an object O′ such that r(O′) = t will be considered.
Then SATG(F) = 〈O′〉 6= f .

Soundness Proof. If SATG(F) = 〈O〉 then r(O) = t and, by P4,
γ(O) |=G O. Then, by the property noted in the completeness proof,
in every list considered in point 2 exists O ′ such that γ(O) |=G O′.
Therefore, this holds for the initial list considered 〈i(F)〉, i.e., γ(O) |=G
i(F), and, by P2, γ(O) |= F .

7

2.2. Semantic Tableaux

We now show how the semantic tableaux method can be seen as a
propositional transformation system, and how a simple SAT-prover
based on this method can be seen as a particular instance of the
algorithm SATG.

Let us first overview the propositional tableaux method, following
the description given in [8]. This method is a refutation system: to
prove that a formula F is valid, it starts with a finite tree with only
one node labeled with ¬F and applies a set of expansion rules until it
generates a contradiction. From a more constructive point of view, the
method tries to build a model of the formula ¬F . If this is not possible,
then F is valid.

The tableaux expansion rules are concisely presented using the
uniform notation [19]1. Using this notation, non-literal formulas are
classified as doubly negated, α-formulas or β-formulas, as we show in
the following tables:

Double negation component

¬¬X X

α α1 α2

X ∧ Y X Y

¬(X ∨ Y) ¬X ¬Y
¬(X → Y) X ¬Y

β β1 β2

X ∨ Y X Y

¬(X ∧ Y) ¬X ¬Y
X → Y ¬X Y

X ↔ Y X ∧ Y ¬X ∧ ¬Y
¬(X ↔ Y) X ∧ ¬Y ¬X ∧ Y

Note that the α-formulas are equivalent to the conjunction of their
components α1 and α2, the β-formulas are equivalent to the disjunction
of their components β1 and β2, and the doubly negated formulas are
equivalent to their unique component.

The method acts as follows. Let T be a finite tree, with its nodes
labeled with propositional formulas, and θ a branch in T with an oc-
currence of a non-literal formula F . If F is ¬¬X, then the branch θ is
extended adding a new node labeled with X. If F is an α-formula, then
the branch θ is extended adding two nodes labeled with the components
α1 and α2 of the formula. If F is a β-formula, then the branch θ is
extended producing two branches at the end, each one with a node
labeled, respectively, with the components β1 and β2 of the formula.

A branch θ is (atomically) closed if there exist two nodes in θ labeled
with complementary (literal) formulas. The method is applied until

1 We extend the uniform notation to include equivalence.

8

every branch is closed. In this case the original formula F is valid. If
there is a non closed branch θ such that every occurrence of a non-literal
formula in θ has been expanded, then the formula ¬F has a model and
the formula F is not valid. In this case a model of ¬F can be built
from the literal formulas in θ and we say that θ provides a model. See
Figure 1 for an example.

We now describe the PTS T = 〈OT ,;T , |=T 〉 associated with the
semantic tableaux method. In this PTS,OT is the set of finite sequences
of formulas (representing tableaux branches), σ |=T θ if and only if
σ makes true every formula in the branch θ, and ;T is the relation
described by the following rule schemata:

RT 1 : 〈Γ1, G,Γ2,¬G,Γ3〉;T 〈〉
RT 2 : 〈Γ1,¬G,Γ2, G,Γ3〉;T 〈〉
RT 3 : 〈Γ1,¬¬G,Γ2〉;T 〈〈Γ1, G,Γ2〉〉
RT 4 : 〈Γ1, α,Γ2〉;T 〈〈Γ1, α1, α2,Γ2〉〉
RT 5 : 〈Γ1, β,Γ2〉;T 〈〈Γ1, β1,Γ2〉, 〈Γ1, β2,Γ2〉〉
RT 6 : Γ ;T t if Γ does not have non-literal nor complementary formulas

The rule schemata RT 3,RT 4 andRT 5 correspond with the tableaux
expansion rules presented above. The rule schemata RT 1 and RT 2

check if a branch is closed and the rule RT 6 checks if a branch provides
a model.

Given concrete representation, computation rule, measure and
model functions for this PTS, we define a propositional tableaux
method, which we call SATT , as a concrete version of the generic
procedure SATG. By Theorem 1, this procedure will be sound and
complete if properties P1 to P4 are verified. We now define these four
functions, proving the properties in passing.

The representation function iT is defined such that for every F ∈
P(Σ), iT (F) = 〈F 〉; that is, the only branch in the initial tree considered
by the semantic tableaux method. Obviously, σ |= F ⇐⇒ σ |=T i(F)
(property P2).

We can consider any computation rule, rT , such that, for every
branch θ, rT (θ) is the result of applying one of the above rule schemata
to θ, whenever such rule may be applied. Several versions of the se-
mantic tableaux method could be represented by different computation
rules. For example, if the rule schemata RT 1 and RT 2 have less pri-
ority than the others, then the expansion rules are applied until every
branch is atomically closed. To finish the expansion process when the
branches are closed, the rule schemata RT 1 andRT 2 should have higher
priority than the others. Another point could be the preference order
between the rule schemata RT 3 and RT 4, without bifurcation, and
the rule schemata RT 5, with makes a bifurcation. Taking into account

9

these ideas, we can define several computation rules and hence, several
propositional theorem provers based on semantic tableaux associated
with the above PTS.

In order to define the measure function, we define the uniform mea-
sure [1]2, denoted as u, as follows: u(F) = 5 ∗ δ↔(F) + 2 ∗ (δ∧(F) +
δ∨(F) + δ→(F)) + δ¬(F), where δ◦(F) computes the number of oc-
currences of the connective ◦ in F . This measure has the following
properties: u(α1) + u(α2) < u(α), u(β1) < u(β), u(β2) < u(β) and
u(X) < u(¬¬X). We define the measure function, µT , as the sum of
the uniform measure of the formulas in a branch. By the properties
of u, the expansion rules reduce the measure of a branch; therefore
θi ∈ rT (θ) =⇒ µT (θi) < µT (θ) (property P1).

The uniform notation ensures that an α (β) formula is logically
equivalent to the conjunction (disjunction) of its components and a
doubly negated formula ¬¬X is also logically equivalent to X. Hence,
if θ ;T L with L 6= t, it can be easily proved that σ |=T θ ⇐⇒
∃θi ∈ L, σ |=T θi. According to our definition of computation rule, this
trivially implies property P3.

Finally, we define the model function γT such that for every branch
θ without non-literal nor complementary formulas, γT (θ) |= p if and
only if p is a positive literal occurring in θ. Obviously, if rT (θ) = t then
γT (θ) |=T θ (property P4).

Then, by Theorem 1, the algorithm SATT terminates for any for-
mula and is complete and sound. The algorithm applied to the example
of Figure 1 performs the following steps (represented as 7−→

SATT
):

〈〈(p→ q) ∧ p〉〉 7−→
SATT

〈〈p→ q, p〉〉 RT 3

7−→
SATT

〈〈p,¬p〉, 〈p, q〉〉 RT 2

7−→
SATT

〈〈p, q〉〉 RT 1

7−→
SATT

〈〈p, q〉〉 RT 5

The set of rule schemata proposed could be improved to obtain a
more efficient propositional theorem prover from the associated PTS.
For example, the rule schemata RT 1 could be mixed with the rule
schemata RT 2, RT 3 and RT 4 to avoid occurrences of complementary
formulas. Following this idea, we have defined another PTS T ′ =
〈OT ′ ,;T ′ , |=T 〉 associated with the semantic tableaux method in which
the propositional objects are lists of formulas without complementary
elements and the rule schemata are the following:

RT ′1 : 〈Γ1,¬¬G,Γ2〉;T ′ 〈〉 if G ∈ 〈Γ1,Γ2〉
RT ′2 : 〈Γ1,¬¬G,Γ2〉;T ′ 〈〈Γ1, G,Γ2〉〉 if G 6∈ 〈Γ1,Γ2〉

2 We extend the measure provided in [1] to include equivalence.

10

RT ′3 : 〈Γ1, α,Γ2〉;T ′ 〈〉 if α1 ∈ 〈Γ1,Γ2〉 or α2 ∈ 〈Γ1,Γ2〉
RT ′4 : 〈Γ1, α,Γ2〉;T ′ 〈〈Γ1, α1, α2,Γ2〉〉 if α1 6∈ 〈Γ1,Γ2〉 and α2 6∈ 〈Γ1,Γ2〉
RT ′5 : 〈Γ1, β,Γ2〉;T ′ 〈〉 if β1 ∈ 〈Γ1,Γ2〉 and β2 ∈ 〈Γ1,Γ2〉
RT ′6 : 〈Γ1, β,Γ2〉;T ′ 〈〈Γ1, β1,Γ2〉〉 if β1 6∈ 〈Γ1,Γ2〉 and β2 ∈ 〈Γ1,Γ2〉
RT ′7 : 〈Γ1, β,Γ2〉;T ′ 〈〈Γ1, β2,Γ2〉〉 if β1 ∈ 〈Γ1,Γ2〉 and β2 6∈ 〈Γ1,Γ2〉
RT ′8 : 〈Γ1, β,Γ2〉;T ′ 〈〈Γ1, β1,Γ2〉, 〈Γ1, β2,Γ2〉〉

if β1 6∈ 〈Γ1,Γ2〉 and β2 6∈ 〈Γ1,Γ2〉
RT ′9 : Γ ;T ′ t if Γ does not have non-literal nor complementary formulas

For this PTS we have considered the same representation function,
measure function and model function as we have presented for T . Sev-
eral computation rules can be considered, taking into account similar
considerations than for T .

A final improvement can be considered in both PTSs: the expansion
rules can be defined in such a way that duplications in the resulting
branches can be avoided.

2.3. Sequents and the Gentzen System

We denote sequents as Γ⇒ ∆, where Γ and ∆ are lists of formulas.
An atomic sequent is a sequent in which every formula is atomic. A
valuation σ makes the sequent Γ⇒∆ true if and only if ∃X ∈ Γ(σ 6|=
X) ∨ ∃Y ∈ ∆(σ |= Y); otherwise, we say that σ makes Γ⇒∆ false.
The following are the axiom and rules of Gentzen System G′ presented
in [10], with two additional rules about equivalence:

Γ1, F,Γ2⇒∆1, F,∆2

(Axiom)

Γ1,Γ2⇒F,∆

Γ1,¬F,Γ2⇒∆
(¬-left)

F,Γ⇒∆1,∆2

Γ⇒∆1,¬F,∆2

(¬-right)

Γ1, F,G,Γ2⇒∆

Γ1, F ∧G,Γ2⇒∆
(∧-left)

Γ⇒∆1, F,∆2 Γ⇒∆1, G,∆2

Γ⇒∆1, F ∧G,∆2

(∧-right)

Γ1, F,Γ2⇒∆ Γ1, G,Γ2⇒∆

Γ1, F ∨G,Γ2⇒∆
(∨-left)

Γ⇒∆1, F,G,∆2

Γ⇒∆1, F ∨G,∆2

(∨-right)

Γ1,Γ2⇒F,∆ Γ1, G,Γ2⇒∆

Γ1, F → G,Γ2⇒∆
(→-left)

F,Γ⇒∆1, G,∆2

Γ⇒∆1, F → G,∆2

(→-right)

Γ1, F,G,Γ2⇒∆ Γ1,Γ2⇒F,G,∆

Γ1, F ↔ G,Γ2⇒∆
(↔-left)

11

(p→ q) ∧ p⇒ (p→ q) ∧ p⇒
(p→ q), p⇒

(p→ q) ∧ p⇒
(p→ q), p⇒
p⇒p q, p⇒

(p→ q) ∧ p⇒
(p→ q), p⇒
p⇒p q, p⇒

Figure 2. An example of sequent method

F,Γ⇒∆1, G,∆2 G,Γ⇒∆1, F,∆2

Γ⇒∆1, F ↔ G,∆2

(↔-right)

Note that in these rules the symbols ∆ and Γ represent lists of
formulas and no conditions are imposed about them. Thus, each rule
is actually a rule schema that can be instantiated with specific lists
of formulas ∆s and/or Γs. In particular, the Axiom rule represents an
infinite set of axioms.

A formula F has a proof in the Gentzen System if the sequent⇒F
can be obtained from the axioms by applying the rules. This proof can
be built from the sequent⇒F by applying the rules in reverse order:
in every step a set of unproved sequents is considered (initially the
only unproved sequent is⇒ F), a rule is chosen to decompose one of
these sequents, an instance of the rule conclusion, and it is replaced
with the rule premises adequately instantiated. If the set of unproved
sequents becomes empty, then the formula F has a proof in the Gentzen
System (and therefore it is valid). If an unproved sequent cannot be
decomposed with the rules, then the formula F is not valid and this
sequent provides a countermodel of it. See [10] for more background
about the sequent method.

From a constructive point of view, the Gentzen System can be used
to build a countermodel of a formula, whenever this formula is not
valid. Therefore, to use this method to build a model of a formula F ,
the initial sequent must be⇒¬F or, equivalently, F ⇒. An example
with the formula (p→ q) ∧ p is shown in Figure 2. The initial sequent
is (p→ q)∧p⇒. The rule ∧-left can be used to decompose this sequent,
obtaining the sequent (p→ q), p⇒. Next, the rule →-left can be used,
obtaining the sequents p⇒ p and q, p⇒. The first one can be solved
with the Axiom rule, but the second one cannot be decomposed. This
last sequent provides a countermodel of the initial sequent (that is, p
and q true) and, hence, a model of the formula (p→ q) ∧ p.

Again, this method can be seen as a SAT-prover obtained from
a propositional transformation system. We now describe the PTS
S = 〈OS ,;S , |=S〉 associated with the sequent method. In this PTS,
OS is the set of sequents (represented as pairs of lists of formulas),
σ |=S S if and only if σ makes S false (note the difference with the

12

tableaux case, where the distinguished valuations make the branches
true), and ;S the set of rules given by the following rule schemata:

RS1 : 〈Γ1, F,Γ2〉⇒〈∆1, F,∆2〉;S 〈〉
RS2 : 〈Γ1,¬F,Γ2〉⇒∆ ;S 〈〈Γ1,Γ2〉⇒〈F,∆〉〉
RS3 : 〈Γ1, F ∧G,Γ2〉⇒∆ ;S 〈〈F,G,Γ1,Γ2〉⇒∆〉
RS4 : 〈Γ1, F ∨G,Γ2〉⇒∆ ;S 〈〈F,Γ1,Γ2〉⇒∆, 〈G,Γ1,Γ2〉⇒∆〉
RS5 : 〈Γ1, F → G,Γ2〉⇒∆ ;S 〈〈Γ1,Γ2〉⇒〈F,∆〉, 〈G,Γ1,Γ2〉⇒∆〉
RS6 : 〈Γ1, F ↔ G,Γ2〉⇒∆ ;S 〈〈F,G,Γ1,Γ2〉⇒∆, 〈Γ1,Γ2〉⇒〈F,G,∆〉〉
RS7 : Γ⇒〈∆1,¬F,∆2〉;S 〈〈F,Γ〉⇒〈∆1 ,∆2〉〉
RS8 : Γ⇒〈∆1, F ∧G,∆2〉;S 〈Γ⇒〈F,∆1,∆2〉,Γ⇒〈G,∆1,∆2〉〉
RS9 : Γ⇒〈∆1, F ∨G,∆2〉;S 〈Γ⇒〈F,G,∆1 ,∆2〉〉
RS10 : Γ⇒〈∆1, F → G,∆2〉;S 〈〈F,Γ〉⇒〈G,∆1 ,∆2〉〉
RS11 : Γ⇒〈∆1, F ↔ G,∆2〉;S 〈〈F,Γ〉⇒〈G,∆1 ,∆2〉, 〈G,Γ〉⇒〈F,∆1 ,∆2〉〉
RS12 : Γ⇒∆ ;S t if Γ⇒∆ is an atomic sequent and Γ ∩∆ = Ø

These rule schemata correspond to the Gentzen System rules pre-
sented above. The rule schemata RS1 corresponds with the Axiom rule.
The rule schemata RS2, RS3, RS4, RS5 and RS6 correspond to the left
rules, and the rule schemata RS7, RS8, RS9, RS10 and RS11 to the
right rules. The rule RS12 checks if a sequent is atomic and the Axiom
rule cannot be applied to it.

As in the case of the tableaux method, we define a procedure SATS ,
obtained from the generic procedure SATG , by giving concrete compu-
tation rule, representation, measure and model functions for the above
PTS.

The representation function iS builds the sequent F ⇒ for every
F ∈ P(Σ). Thus, σ |= F ⇐⇒ σ |=S iS(F) (property P2).

We consider any computation rule, rS , such that, for every sequent
S, rS(S) is the result of applying one of the above rule schemata to
S, whenever such rule could be applied. We can consider several com-
putation rules representing different versions of the sequent method,
depending on the preference order considered in the rule schemata.

We define the measure function µS as the number of occurrences of
propositional connectives in a sequent. The expansion rules reduce this
number, therefore Si ∈ rS(S) =⇒ µS(Si) < µS(S) (property P1).

Given an expansion rule S ;S L with L 6= t, it can be easily proved
that σ |=S S ⇐⇒ ∃Si ∈ L, σ |=S Si. By our definition of computation
rule, this implies property P3.

Finally, we define the model function γS such that for every atomic
non-axiom sequent S, γS(S) |= p if and only if p occurs in the left part
of S. Obviously, if rS(S) = t then γS(S) |=S S (property P4).

Then, by Theorem 1, the algorithm SATS terminates for any formula
and is complete and sound. The algorithm applied to the example of
Figure 2 performs the following steps (represented as 7−→

SATS
):

13

〈〈(p→ q) ∧ p〉⇒〉 7−→
SATS

〈〈p→ q, p〉⇒〉 RS3

7−→
SATS

〈p⇒p, 〈q, p〉⇒〉 RS5

7−→
SATS

〈〈q, p〉⇒〉 RS1

7−→
SATS

〈〈q, p〉⇒〉 RS12

The set of rule schemata proposed could be improved to obtain a
more efficient propositional theorem prover from the associated PTS.
We could consider similar ideas as the presented for the tableaux me-
thod. For example, the rule schemata RS1 could be mixed with the
rule schemata RS2 to RS11 avoiding occurrences of the same formula
in both sides of a sequent. The expansion rules also could be defined
avoiding repetitions of formulas in the left side or the right side of a
sequent.

2.4. Davis–Putnam–Logeman–Loveland method

The Davis–Putnam–Logeman–Loveland (DPLL for short) method [5, 6]
is a procedure to decide the satisfiability of a set of clauses. Thus, if
FC is a procedure to obtain a set of clauses logically equivalent to a
formula F , we can use the DPLL method to decide the satisfiability of
F , applying the method to FC(F).

The basic operation in this method is the reduction of a set of clauses
with respect to a literal. In this operation a literal L appearing in a
clause is assumed to be true and then the set is reduced accordingly,
removing the clauses in which L occurs and removing the literal L from
the clauses in which it appears. More precisely, given a set of clauses S
and a literal L, we define SL = {C − {L} : C ∈ S and L /∈ C}.

Roughly speaking, the DPLL method starts with an initial set of
clauses and reduces the problem of checking its satisfiability to check
the satisfiability of some of its reductions by a given literal. In every
step a set of clauses S is considered, and one of the following actions is
performed:

− If S is empty, then it is satisfiable and the set of literals used in
the reduction process to obtain S from the original set of clauses
is a model of the original set of clauses.

− If S contains the empty clause, then it is removed and the next set
of clauses is considered.

− If S contains an unitary clause {L}, then S is removed and the set
of clauses SL is considered.

− Otherwise, a literal L occurring in some clause of S is chosen, S is
removed and the sets of clauses SL and SL are considered.

14

HH�� σ(q) = 1

σ(p) = 0

HHHH
����

{{p, q}, {¬p, q}, {¬p,¬q}}

{{}} {}

{{q}, {¬q}} {{q}}
q

p ¬p

q

Figure 3. An example of DPLL method

This process is iterated until one of the sets obtained is empty (in
which case the original set of clauses is satisfiable) or until all the
sets finally obtained contain the empty clause (and then the initial set
of clauses is unsatisfiable). An example with the set of clauses S =
{{p, q}, {¬p, q}, {¬p,¬q}} is shown in Figure 3. Initially, the literal p
is chosen and S is replaced with Sp = {{q}, {¬q}} and S¬p = {{q}}.
Sp contains the unitary clause {q}, and the new set of clauses is Sp,q =
{{}}, which contains the empty clause and therefore it is removed. S¬p
contains the unitary clause {q}, and the new set of clauses is S¬p,q =
{}. This last set of clauses is satisfiable, and the literals used in the
reduction process provide a model of S.

We now present a propositional transformation system reflecting the
Davis-Putnam method. First, it must be noticed that the set of literals
used in the reduction process is needed to build a model of the original
set of clauses. Thus, the objects must be pairs 〈S,M〉 where S is a set
of clauses and M is the set of literals used in the reduction process to
obtain S. Therefore, M cannot contain complementary literals and for
every L in M , neither L nor L is in some clause in S. We denote OD
this set of objects.

Second, note that the reduction process finishes when the object
〈〈〉,M〉 is obtained. In this case M is the set of literals used in the
reduction process to obtain the empty set of clauses. Thus, M provides
a model of the initial set of clauses. Then, the distinguished valuations
of 〈〈〉,M〉 must be models of every literal in M . In addition, to ensure
property P2, the distinguished valuations of the initial object 〈S, 〈〉〉
must be models of every clause in S. Taking into account these consid-
erations, we say that a valuation σ is a distinguished valuation of an
object 〈S,M〉 if and only if σ is a model of every clause in S and every
literal in M , and we define σ |=D 〈S,M〉 if and only if 〈S,M〉 ∈ OD
and σ is a distinguished valuation of 〈S,M〉.

15

Finally, the PTS associated with the DPLL method is D = 〈OD,;D
, |=D〉. Where OD and |=D are as described above and;D is the relation
given by the following rule schemata:

RD1 : 〈S,M〉;D 〈〉 if the empty clause is in S
RD2 : 〈S, 〈L1, . . . , Ln〉〉;D 〈〈SL, 〈L,L1, . . . , Ln〉〉〉

if the unitary clause {L} is in S
RD3 : 〈S, 〈L1, . . . , Ln〉〉;D 〈〈SL, 〈L,L1, . . . , Ln〉〉, 〈SL, 〈L,L1, . . . , Ln〉〉〉

where L is a literal in a clause in S
RD4 : 〈〈〉,M〉;D t

where 〈S,M〉 and 〈S, 〈L1, . . . , Ln〉〉 are elements in OD.
As in the previous subsections, we define the functions needed to de-

fine the procedure SATD as an instance of the generic procedure SATG .
In this case, the representation function iD builds a pair 〈FC(F), 〈〉〉,
where FC is assumed to be a correct procedure to obtain a set of clauses
logically equivalent to F ; that is, σ |= F ⇐⇒ σ |= FC(F) ⇐⇒ σ |=D
iD(F) (property P2).

We consider a computation rule, rD, that applies the expansion rules
schemata in the following preference order RD1, RD4, RD2 and RD3.
This order reduces the number of reduction steps. First, we try to
identify the dead ends, using the rule RD1, and the sucessful ends,
using the rule RD4. Then, we try to simplify the objects using the rule
RD2 because this does not produce bifurcations. Finally, we apply the
rule RD3. Anyway, any other order of application of these rules could
be used.

We define the measure function µD, such that, for every 〈S,M〉 ∈
OD, µD(〈S,M〉) is the total number of literals of the clauses of S. The
expansion rules reduce this value, therefore 〈Si,Mi〉 ∈ rD(〈S,M〉) =⇒
µD(〈Si,Mi〉) < µD(〈S,D〉) (property P1).

Given an expansion rule 〈S,M〉 ;D L with L 6= t, it can be easily
proved that σ |=D 〈S,M〉 ⇐⇒ ∃〈Si,Mi〉 ∈ L, σ |=D 〈Si,Mi〉. By our
definition of computation rule, this implies property P3.

Finally, we define the model function γD such that for every pair
〈〈〉,M〉 and p ∈ Σ, γD(〈〈〉,M〉) |= p if and only if p ∈M . Obviously, if
rD(〈S,M〉) = t then S = 〈〉 and γD(〈S,M〉) |=D 〈S,M〉 (property P4).

Then, by Theorem 1, the algorithm SATD terminates for any for-
mula and is complete and sound. The algorithm applied to the formula
(p→ q) ∧ p performs the following steps (represented as 7−→

SATD
):

〈〈〈{¬p, q}, {p}〉, 〈〉〉〉 7−→
SATD

〈〈〈{q}〉, 〈p〉〉〉 RD3

7−→
SATD

〈〈〈〉, 〈q, p〉〉〉 RD2

7−→
SATD

〈〈〈〉, 〈q, p〉〉〉 RD4

Again, the set of rule schemata proposed could be improved to
obtain a more efficient propositional SAT prover from the associated

16

PTS. For example, the rule RD4 could be changed to detect the end
of the reduction process when a set of clauses S only has pure literals
(those that only appear positive or negative in the set of clauses) and
the rule RD3 could be changed to choose only non-pure literals.

3. Formalizing the generic SAT-prover in ACL2

Now we describe a tool based on the theoretical development presented
in Subsection 2.1. This tool builds a certified propositional theorem
prover from a Propositional Transformation System and its associated
functions as it was described in Algorithm 1, whenever the properties
P1, P2, P3 and P4 are satisfied. It is built on top of the ACL2 system.
In this section, we show how the generic development of Subsection 2.1
is formalized in ACL2.

3.1. A brief introduction to ACL2

ACL2 is a programming language, a logic for formal reasoning about
programs defined in the programming language, and a theorem prover
supporting mechanized reasoning in the logic. It is developed by J
Moore and Matt Kaufmann in the University of Texas at Austin, con-
sidered as an “industrial-strength” successor of Nqthm, also known as
the Boyer-Moore theorem prover.

As a programming language, ACL2 is an extension of a subset of
Common Lisp, containing most of the applicative part of that language.
The ACL2 logic is a quantifier-free, first-order logic with equality,
describing the functions of the programming language. The syntax
of terms is that of Common Lisp and the logic includes axioms for
propositional logic and for a number of Lisp functions and data types.
Rules of inference of the logic include those for propositional calculus,
equality and instantiation.

One important rule of inference is the principle of induction, that
permits proofs by well-founded induction on the ordinal ε0. The theory
has a constructive definition of the ordinals up to ε0, in terms of lists
and natural numbers, given by the predicate e0-ordinalp and the
order e0-ord-<.

By the principle of definition (using defun), new function definitions
are admitted as axioms only if there exists a measure in which the
arguments of each recursive call decrease with respect to a well-founded
relation, ensuring in this way that no inconsistencies are introduced by
new definitions.

Some higher order functionality is provided by means of the
encapsulate mechanism [13] which allows the user to introduce new

17

function symbols by axioms constraining them to have certain prop-
erties (to ensure consistency, a witness local function having the same
properties has to be exhibited). Inside an encapsulate, the properties
stated need to be proved for the local witnesses, and outside, they
work as assumed axioms. This mechanism behaves like an universal
quantifier over a set of functions abstractly defined with it.

A derived rule of inference, called functional instantiation, gives
some features of a higher order logic by allowing to instantiate the
function symbols of a previously proved theorem, replacing them with
other function symbols or lambda expressions, provided it can prove
that the replacements satisfy the constraints on the old symbols.

The ACL2 theorem prover mechanizes the logic. The prover is
mainly based on applying simplification and induction. Roughly speak-
ing, when the prover tries to prove a conjecture, it simplifies the
formula. If it obtains t, then the conjecture is proved. Otherwise, it
guesses an (often suitable) induction scheme, and recursively tries to
prove the subgoals generated.

The theorem prover is automatic in the sense that once submitted a
conjecture (by the command defthm), the user can no longer interact
with the system. But in a wider sense, the prover is interactive: non-
trivial results often fail to be proved unless the user previously proves
lemmas that can be used in subsequent proofs as rewriting rules. In this
way, the user can help the prover to find a preconceived hand proof.
This is the way we have interacted with the system to obtain the results
presented in this section. For a detailed description of ACL2, we refer
the reader to the ACL2 book [11].

3.2. Definition of the generic algorithm

The first step to reason in ACL2 about the algorithm SATG, is to define
in the ACL2 logic the functions introduced by the generic framework
presented in Section 2.1. The names of these ACL2 functions and their
intended meanings are shown in the following table:

gen-object-p(O) O ∈ O
gen-repr(F) i(F)
gen-comp-rule(O) r(O)
gen-dist-val(σ,O) σ |=G O
gen-model(O) γ(O)
gen-measure(O) µ(O)
gen-select(lst) selects an element from a list lst

These functions are not introduced in the ACL2 logic using the
principle of definition. Since they are generic, we define them by means

18

of the encapsulate mechanism, constraining them to have certain
properties3. In this case, the properties about the generic functions
are the following4:

Assumption: gen-object-p-gen-repr
propositional-p(F)→ gen-object-p(gen-repr(F))

Assumption: gen-object-p-gen-comp-rule
gen-object-p(O1) ∧ (O2 ∈ gen-comp-rule(O1))
→ gen-object-p(O2)

Assumption: e0-ordinalp-gen-measure
e0-ordinalp(gen-measure(O))

Assumption: P1
O2 ∈ gen-comp-rule(O1)
→ gen-measure(O2) < gen-measure(O1)

Assumption: P2
propositional-p(F)
→ (gen-dist-val(σ, gen-repr(F)) ↔ models(σ, F))

Assumption: P3
gen-object-p(O) ∧ (gen-comp-rule(O) 6= t)
→ (gen-dist-val(σ, O)

↔ gen-dist-val-list(σ, gen-comp-rule(O)))

Assumption: P4
gen-object-p(O) ∧ (gen-comp-rule(O) = t)
→ gen-dist-val(gen-model(O), O)

Assumption: gen-select-member
consp(lst) → (gen-select(lst) ∈ lst)

The first three properties state that the functions gen-repr,
gen-comp-rule and gen-measure take values as expected, when acting
on elements of their intended domains. The properties named P1, P2,
P3 and P4 are the corresponding formalization of the properties P1,
P2, P3 and P4, respectively, as defined in the hypothesis of Theorem 1.

3 The local witnesses are irrelevant to the definition of the generic algorithm and
the proof of its properties, so we omit them here.

4 The expressions provided to ACL2 are written in Common Lisp notation but,
to improve their legibility, we present them here using a “infix” notation.

19

The functions propositional-p and models are defined in a previous
ACL2 formalization about the syntax and semantics of propositional
logic; they define, respectively, the propositional formulas and models
of formulas. The function gen-dist-val-list can be seen as a general-
ized disjunction of the predicate gen-dist-val acting on the objects of
a list. The symbol < denotes the “less than” relation between ordinals.
Finally, note that we also introduce a function gen-select, that selects
an element from any non-empty list. This function is needed in the
definition of the generic SAT algorithm.

Once the functions of our generic framework have been intro-
duced, we define in ACL2 the function generic-sat, implementing
the algorithm SATG:

Definition:
generic-sat-lst(O-lst) =

if endp(O-lst) then nil (1)
else let* O be gen-select(O-lst), (2)

rest be remove-one(gen-select(O-lst), O-lst),
expansion be gen-comp-rule(O) (3)

in if expansion = t then list(O) (4)
else generic-sat-lst(expansion @ rest)

Measure: gen-measure-lst(O-lst)
Well founded relation: <mul

Definition:
generic-sat(F) = generic-sat-lst(list(gen-repr(F)))

where the symbol @ is the “append” operation between lists.
Note that the main function of this algorithm is given by the re-

cursive function generic-sat-lst, acting on a list of objects to be
expanded. This function implements the while loop in the definition
of SATG. The termination of this loop is justified by the measure
gen-measure-lst(O-lst) and the multiset well-founded relation <mul.
We will explain more about this issue in the next subsection.

When a rule of the form 〈O, t〉 is applied to a selected object O,
the algorithm returns a singleton list containing O (4). According to
the property assumed about the function gen-model, this object has a
distinguished valuation. Thus, returning the object is useful to provide
a model of the input formula. On the other hand, when there are no
more objects to be expanded, the algorithm returns f, represented as
the ACL2 symbol nil (1).

This algorithm is left unspecified in two aspects: first, no concrete
computation rule is defined by the generic function gen-comp-rule (3);

20

second, the object to which the expansion rule is applied, selected by
the abstractly defined function gen-select, is not specified (2).

3.3. Termination

As it was pointed out in Subsection 3.1, new function definitions are
admitted in ACL2 only if there exists a well-founded measure in which
the arguments of each recursive call decrease. In the case of the function
generic-sat-lst the heuristics of ACL2 are not able to find a suitable
termination argument, so we must explicitly provide a measure on its
argument an show that this measure decreases in every recursive call
with respect to a well-founded relation.

The only predefined well-founded relation in ACL2 is e0-ord-<,
implementing the usual order between ordinals less than ε0. The func-
tion e0-ordinalp recognizes those ACL2 objects representing such
ordinals. If we want to define a new well-founded relation in ACL2,
we have to explicitly provide a monotone ordinal function, and prove
the corresponding order-preserving theorem (see [11] for details).

To show termination of generic-sat-lst, we follow the lines
described in the informal proof given in Section 2.1. The measure
associated to its argument is given by a function gen-measure-lst that
computes the list of the ordinal measures of the objects of a given list.
This measure decreases with respect to the multiset relation induced
by e0-ord-<.

Since e0-ord-< is well-founded, so is its induced multiset relation [7].
A formal proof of the well-foundedness of the multiset relation induced
by given well-founded relation was formalized in the ACL2 logic in
[17], where the defmul tool was also developed. This tool automatically
generates the definitions and prove the theorems needed to introduce
in ACL2 the multiset relation induced by a given well-founded relation.
In our case, we only need the following defmul call:

(defmul (e0-ord-< nil e0-ordinalp e0-ord-<-fn nil nil))

This automatically generates the definition of mul-e0-ord-<, (de-
noted as <mul in the following), implementing the multiset relation on
finite multisets (lists) of ordinals induced by the relation e0-ord-<.
And it also automatically proves the theorems needed to introduce
this relation as a well-founded relation in ACL2. See details about the
defmul syntax in [17].

The main termination property of generic-sat-lst is given by the
following theorem, establishing that the measure gen-measure-lst de-
creases in every recursive call with respect to the well-founded relation
<mul:

21

Theorem: generic-sat-lst-termination-property
let* O be gen-select(O-lst),

rest be remove-one(gen-select(O-lst), O-lst),
expansion be gen-comp-rule(O)

in consp(O-lst) ∧ (expansion 6= t)
→ gen-measure-lst(expansion @ rest)

<mul gen-measure-lst(O-lst)

Having proved this theorem (and given that <mul is well-founded, as
it was automatically proved by the above call to defmul) the definition
of generic-sat-lst is shown to be terminating and it is admitted in
the logic (and therefore, the definition of generic-sat).

3.4. Soundness and completeness

The following theorems establish the formal properties of the function
generic-sat (soundness and completeness):

Theorem: soundness-generic-sat
propositional-p(F) ∧ generic-sat(F)
→ models(generic-mod(F), F)

Theorem: completeness-generic-sat
propositional-p(F) ∧ models(σ, F) → generic-sat(F)

Due to the lack of existential quantification in the ACL2 logic, the
soundness theorem has to be formulated by explicitly giving a model
of the formula F . This model can be easily obtained from the result
returned by the generic-sat procedure, as defined by the function
generic-mod:

Definition:
generic-mod(F) =

if consp(generic-sat(F))
then gen-model(first(generic-sat(F)))

else nil

The above two theorems formalize Theorem 1 in ACL2. They
are proved along the lines of the informal proof given in Section
2.1, basically first proving by induction analogous properties about
generic-sat-lst. Of course, the properties assumed about the generic
functions showed in the Subsection 3.2 play a crucial role. See details
of the mechanical proof in [16].

22

4. Instantiating the generic framework

Concrete SAT-provers will be given by defining concrete counterparts
of the abstractly defined functions given in Subsection 3.2. With these
concrete functions, one can define concrete versions of the algorithm
generic-sat.

We can also obtain concrete versions of the termination, sound-
ness and completeness theorems: if the assumed properties about the
generic functions are verified by the concrete functions, then by func-
tional instantiation we can easily conclude termination, soundness and
completeness of the concrete SAT-prover.

4.1. An overview of the instantiation process

We describe in this section how we perform the instantiation process in
order to obtain a certified specific SAT-prover as a concrete instantia-
tion of the generic framework. First of all, we need a concrete version
of the generic functions given in Subsection 3.2. Let us assume, for ex-
ample, that we have a PTS such that its associated functions are given
by functions named object-p, repr, comp-rule, dist-val, model,
measure and select, concrete counterparts of the generic functions
defined in Subsection 3.2, and reflecting the given PTS. We also need
the functions dist-val-list, a generalized disjunction of the predicate
dist-val over a list of objects, and object-list-p, a recognizer for
proper (null terminated) lists of objects.

The following steps would have to be performed in order to obtain
a certified SAT-prover:

1. The above concrete counterparts of the generic functions have
to be defined in ACL2. We will assume that these functions are
executable (that is, they are not defined via encapsulate).

2. Concrete versions of the assumed properties about the generic
functions (given in Subsection 3.2) have to be proved.

3. The concrete counterparts of the derived functions (with the final
goal of defining the concrete version of the function generic-sat),
have to be defined. Note that these functions will be executable.

4. Finally, concrete versions of the termination, soundness and com-
pleteness theorems have to be formulated and proved by functional
instantiation from the generic theorems.

The same procedure would have to be done for every concrete in-
stantiation of the generic framework, so it makes sense to use a tool to

23

mechanize this process to some extent. In particular, the last two steps
can be completely automated.

In [14], we describe a user tool that we developed to instantiate
generic ACL2 theories. This tool turns out to be a valuable help in this
context, where we have developed a generic theory about SAT-provers
and we want to instantiate the theory to obtain concrete, formally
verified and executable SAT-provers.

This tool mainly consists of a macro named def-generic-theory,
which receives as argument a string identifying the theory and a se-
quence of ACL2 events (definitions and theorems), some of which are
labeled to be instantiated. When an ACL2 book5 developing a generic
theory is created, we include a call to this macro. The effect of the macro
call is to define another macro that automatically builds concrete events
as instances of the generic events, and to instruct the prover to establish
the generated theorems by functional instantiation of the generic ones
(thus, they are automatically proved).

For example, in the book that formalizes the generic framework
for SAT-provers (as described in the previous section), we include the
following:

(def-generic-theory *generic-sat*

<events>)

Here <events> is a sequence containing the events corresponding
to the generic definitions and theorems that can be instantiated by
other ACL2 books. In particular, the definition of generic-sat and the
theorems establishing its properties. When this macro call is executed,
it defines a new macro that receives as input a functional substitution,
generates the corresponding functional instantiation of the instantiable
events.

For example, once the functions implementing the concrete coun-
terparts of the generic functions are defined and we have proved
that they verify the assumed properties, we include the book
with the generic SAT-prover formalization. At that point, a macro
definstance-*generic-sat* is automatically defined, and we can
use this macro to automatically generate instantiated events for the
concrete SAT-prover, as follows:

(definstance-*generic-sat*

((gen-object-p object-p)

5 A collection of ACL2 definitions and proved theorems is usually stored in a
certified file of events (a book in the ACL2 terminology), that can be included in
other books.

24

(gen-object-list-p object-list-p)

(gen-repr repr)

(gen-dist-val dist-val)

(gen-dist-val-list dist-val-list)

(gen-comp-rule comp-rule)

(gen-select select)

(gen-measure measure)

(gen-model model))

"-concrete")

Note that this macro receives as input a functional substitu-
tion, associating every function of the generic framework with its
concrete counterpart. Note that the functions object-list-p and
dist-val-list must also be included. It also receives a string, used
to name the new events generated, by appending it to the name of
the original event. For example, in the above call, we used the prefix
"-concrete".

The result of this macro call is the automatic generation of the events
needed to define and verify in ACL2 the concrete SAT-prover. As a con-
sequence, the definition of a function named generic-sat-concrete

is generated, as a functional instance of generic-sat. And also the
following theorems, establishing the soundness and completeness of
generic-sat-concrete, are automatically generated and proved:

Theorem: soundness-generic-sat-concrete
propositional-p(F) ∧ generic-sat-concrete(F)
→ models(generic-mod-concrete(F), F)

Theorem: completeness-generic-sat-concrete
propositional-p(F) ∧ models(σ, F)
→ generic-sat-concrete(F)

Note that, once the concrete counterparts of the generic functions
verifying the properties showed in Subsection 3.2 are proved, no addi-
tional interactive proof effort is needed to define and verify the concrete
and executable SAT-prover.

4.2. A tableaux based SAT-prover

Along the lines of Subsection 2.2, we have defined in ACL2 several
tableaux based instantiations of the generic framework. For that
purpose we have defined a tableaux version of the generic functions
given in Subsection 3.2: tableaux-object-p, tableaux-repr,

25

tableaux-comp-rule, tableaux-dist-val, tableaux-model,
tableaux-measure and tableaux-select.

For the first tableaux based SAT-prover, these functions are defined
as suggested in Subsection 2.2. For example, the definition of the com-
putation rule is the following (recall that in this case, objects are lists
of propositional formulas, representing branches in a tableau):

Definition:
tableaux-comp-rule(θ) =

if closed-tableau(θ) then nil RT 1

else let F be one-formula(θ)
θ′ be remove(F ,θ)

in if doubly-neg-p(F)
then list(add(neg-neg-component(F),θ ′)) RT 2

elseif alfa-formula-p(F)
then list(add(component-1(F),

add(component-2(F),θ′)))) RT 3

elseif beta-formula-p(F)
then list(add(component-1(F),θ′)),

add(component-2(F),θ′))) RT 4

else t RT 5

Here the function closed-tableau checks if a branch has comple-
mentary formulas. In this case, the empty list is returned. Otherwise,
a formula is selected using the function one-formula, and the branch
is expanded according to the type of the formula selected, as described
by the rules ;T .

Note that this computation rule implements a strategy for applying
the tableaux expansion rules in a preference order. This order is im-
plicitly given by the function one-formula. Any other strategy could
have been defined, provided that the properties assumed about the
generic functions could be proved for the concrete counterparts. In this
case, these properties are proved easily, except for P3 and P4, which are
somewhat more elaborate.

Once the assumed properties in the generic framework have been
proved for the tableaux case, we can automatically instantiate the
generic SAT-prover algorithm as we have described in the previous
subsection. As a result, we obtain a certified function implementing
the algorithm SATT discussed in Section 2.2.

We have also considered the improved PTS T ′ presented in the last
paragraphs of Section 2.2. In this case objects are lists of formulas
without complementary elements and the computation rule is defined
applying the transformations of ;T ′ in the order presented in Section

26

2.2. The SAT-prover obtained is more efficient than the one based on
the PTS T .

4.3. Sequent and DPLL based SAT-prover

We follow an analogous procedure to define and verify, sequent and
DPLL instantiations of the generic SAT-prover. This is done by a macro
call similar to that used in the tableaux case.

As with tableaux, the functional substitution used in the macro
call relates the generic functions with their concrete counterparts. Of
course, these concrete functions have to be previously defined, their
properties proved and the book with the generic development included.
These functions are defined as suggested in Subsections 2.3, for the
sequent based SAT-prover, and 2.4, for the DPLL based SAT-prover.

4.4. Executability

Functions in the ACL2 logic are total. This means that according to
its logical meaning, every function in the logic returns a value for every
input. Nevertheless, the ACL2 system provides a mechanism to specify
the intended domain of a function by means of logical formulas, called
“guards”. Although this specification is actually ignored by the logic,
the guard verification mechanism allows to evaluate the function di-
rectly in Common Lisp: if the guards of a function are verified, then it
is ensured that when the function is evaluated on arguments satisfying
its guard, then all subsequent function calls during that evaluation
will be on arguments satisfying the guard of the called function. The
proof obligations generated by the guard verification mechanism ensure
this property. Since the primitive Common Lisp functions of ACL2
has guards consistent with the Common Lisp specification, an ACL2
function with its guards verified is Common Lisp compliant and can be
evaluated, on arguments satisfying its guard, directly in the underlying
Common Lisp.

The main properties about the generic functions needed in the proof
obligations generated by the guard verification mechanism have been
included in the generic theory. In this way, the instantiation process
builds the corresponding properties in the concrete cases, automatizing
the guard verification process. Since the instantiation process verifies
the guards of the functions implementing the concrete SAT-prover, they
are executable in any compliant Common Lisp (with the appropriate
ACL2 files loaded).

27

Table I. Times to solve the N -queens problem

N Tableaux T Tableaux T ′ Sequent DPLL

2 0.000 0.000 0.000 0.000

3 0.030 0.030 0.010 0.000

4 0.250 0.230 0.090 0.010

5 1.200 1.070 0.430 0.040

6 106.040 99.190 36.690 0.140

7 375.670 364.460 129.020 0.230

In Table I we present some results of applying the verified SAT-
provers to the N -queens problem6.

The performance of these SAT-provers is far from the results that
can be obtained by using any of the current state-of-art SAT-provers.
Nevertheless, our emphasis in this paper is not on eficiency, but on
obtaining formally verified implementations that can be executed in
a widely used programming language like Common Lisp. Of course,
efficiency is important and in fact it is our next goal: more efficient
SAT-provers could be obtained by using more efficient data structures
and techniques, and a formal proof of its correctness could be obtained
by proving equivalence theorems with the implementations presented
here.

5. Conclusions and further work

We have presented an application of the ACL2 system to the formal
verification of a family of SAT decision procedures. That is:

• We have introduced an abstract framework where we describe the
essential properties of a family of SAT provers. As a result, we
have defined a generic SAT prover and proved its termination,
soundness and completeness.

• This abstract framework has been formalized and its main prop-
erties proved in the ACL2 system.

6 All results are in seconds of user CPU on a AMD Athlon(tm) XP 2200+

28

• We have shown how the abstract framework can be functionally in-
stantiated for a number of concrete SAT provers. This instantiation
process can be automated to some extent.

• From these concrete instances, we have obtained compliant Com-
mon Lisp executable and formally verified SAT provers.

Since SAT provers are a core component in many practical appli-
cations of automated deduction and artificial intelligence, we think
that formal verification of executable SAT provers is interesting. As
N. Shankar points out in [18], verification of “little proof engines” is
one of the challenges for automated reasoning in mathematically rich
domains. This work can be seen as a first approach to that goal.

We also think that the work presented here is a good example
of the formalization of a generic theory in ACL2 and how a generic
development can be instantiated to obtain a number of concrete and
executable instances. It is also worth pointing that this work motivated
the definition of a tool [14] in ACL2 that can be used to automatize
the instantiation of generic ACL2 theories.

As for the proof effort, the following table summarizes the number
of definitions, theorems and hints needed to formalize and prove each
section. The last column includes information about the number of
theorems that need non-trivial hints from the user (we do not count
hints for enabling or disabling previous lemmas). This data and the
number of theorems, give us an idea of the automation degree of the
proofs.

Table II. Proof effort

Section Definitions Theorems Hints

Generic algorithm 16 45 9

Uniform notation 10 15 0

Tableaux based SAT-prover T 13 40 9

Tableaux based SAT-prover T ′ 16 53 9

Sequent based SAT-prover 20 44 5

Clauses and FC procedure 26 64 6

DPLL SAT-prover 22 48 6

As for the human time required to complete the whole develop-
ment presented here, we needed about two years of partial dedication.

29

Initially we developed independent SAT provers based on seman-
tic tableaux and sequents. After that, we realized that the common
structure of both methods could be generalized. This suggested our
development of the generic instantiation tool, presented at the third
ACL2 workshop [14]. Finally, the generic framework for SAT-provers
was presented in the LOPSTR conference [15]. As we have noted in
the introduction, this work is an extended and revised version of this
paper.

There is some related work in mechanical verification of SAT-
provers. A classical example is Boyer and Moore’s propositional tautol-
ogy checker [2], presented as an IF-THEN-ELSE normalization procedure
and verified using Nqthm (the predecessor of ACL2). This example
has been formalized in other systems as well. A more recent work is
done by Caldwell [4] using Nuprl and program extraction to obtain a
mechanically verified sequent proof system for propositional logic.

The methodology we have followed turns out to be suitable for
mechanical verification. Reasoning first about the generic algorithm
allows us to concentrate on the essential aspects of the process, making
verification tasks easier. Functional instantiation allows us to verify
concrete instances of the algorithm, without repeating the main proof
effort and allowing some kind of mechanization of the process.

As pointed out at the end of Subsection 4.4, an additional step in this
methodology could be refinement. We could define more efficient func-
tions and obtain their properties by proving equivalence theorems with
the less efficient ones. In particular, ACL2 allows the use of efficient
data structures by means of single-threaded objects, which implement
destructive operations with an applicative semantics [3]. Our future
work will follow this line: using single-threaded objects to implement
efficient and verified SAT provers.

References

1. M. Ben-Ari. Mathematical Logic for Computer Science. Springer–Verlag, 2001.
2. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.
3. R. S. Boyer and J S. Moore. Single-threaded objects in ACL2. In Practical

Aspects of Declarative Languages, LNCS 2257, pages 9–27, Springer–Verlag,
2002.

4. J. Caldwell. Classical Propositional Decidability via Nuprl Proof Extraction
Proceedings of the 11th International Conference on Theorem Proving in Higher
Order Logics, (TPHOLs’98). pg 105-122, LNCS 1479, Springer, 1998.

5. M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the Association for Computing Machinery, 7(3): 201–215, 1960.

30

6. M. Davis, G. Logemann and D. Loveland. A machine program for theorem-
proving. Communications of the Association for Computing Machinery, 5(7):
394–397, 1962.

7. N. Dershowitz and Z. Manna. Proving Termination with Multiset Orderings. In
Proceedings of the Sixth International Colloquium on Automata, Languages and
Programming, LNCS 71, pages 188–202. Springer–Verlag, 1979.

8. M.C. Fitting. First-Order Logic and Automated Theorem Proving. Springer–
Verlag, New York, 1996.

9. J. Gu, P. W. Purdom, J. Franco and B. W. Wah. Algorithms for the satisfiability
(SAT) problem: A survey. In Satisfiability Problem: Theory and Applications,
DIMACS: Series in Descrete and Applied Mathematics and Computer Science,
vol. 35, American Mathematical Society, 1997.

10. J.H. Gallier. Logic for Computer Science, Foundations of Automatic Theorem
Proving. Harper and Row Publishers, 1986.

11. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, 2000.

12. M. Kaufmann and J S. Moore. ACL2 Version 2.7, 2001.
Homepage: http://www.cs.utexas.edu/users/moore/acl2/

13. M. Kaufmann and J S. Moore. Structured Theory Development for a
Mechanized Logic. Journal of Automated Reasoning, 26(2): 161–203, 2001.

14. F.J. Martin–Mateos, J.A. Alonso, M.J. Hidalgo, and J.L. Ruiz–Reina. A
Generic Instantiation Tool and a Case Study: A Generic Multiset Theory, 2002.
3rd Intl. Workshop on the ACL2 Theorem Prover and its Applications. Grenoble,
2002.

15. F.J. Martin–Mateos, J.A. Alonso, M.J. Hidalgo, and J.L. Ruiz–Reina. Verifica-
tion in ACL2 of a generic framework to synthesize SAT-provers. In Logic Based
Program Synthesis and Tranformation, LNCS 2664. Springer–Verlag, 2003.

16. F.J. Martin–Mateos, J.A. Alonso, M.J. Hidalgo, and J.L. Ruiz–Reina. A
generic framework for SAT-provers (formalization in ACL2).
http://www.cs.us.es/clg/theories/acl2/gen-sat

17. J.L. Ruiz–Reina, J.A. Alonso, M.J. Hidalgo, and F.J. Martin. Termination in
ACL2 using multiset relation In Thirty Five Years of Automating Mathematics,
Applied Logic Series, vol. 28, Kluwer Academic Publishers, 2003.

18. N. Shankar. Little Engines of Proof. In FME 2002: Formal Methods - Getting
IT Right, LNCS 2391. Springer–Verlag, 2002.

19. R.M. Smullyan. First-Order Logic. Springer–Verlag: Heidelberg, Germany,
1968.

20. H. Zhang and M.E. Stickel. Implementing the Davis–Putnam method Journal
of Automated Reasoning, 24(1–2):277–296, 2000.

