10 research outputs found

    INFLUENCE OF FOREST COVERAGE IN THE SURFACE ALBEDO

    Get PDF
    The surface albedo controls the energy balance between the surface and the atmosphere, being a primordial variable to identify climatic variations. The objective of this study was to evaluate the changes of the surface albedo in different Land Use and Land Cover in the Atlantic Forest biome from images TM/Landsat 5 and OLI/Landsat 8, verifying its variation in 30 years. The images used were path-row 221-080, which covered the Floresta Nacional de São Francisco de Paula on the dates of 1987 and 2017. The albedo was obtained by the method of the Surface Energy Balance Algorithm for Land, while the mapping of Land Use and Land Cover was performed by the Bhattacharyya algorithm, identifying four thematic classes. Finally, the albedo was crossed with the thematic classes, evidencing their variation in function of the changes in the land cover. The surface albedo ranged from 6 to 22%, but the year 1987 concentrated albedo values higher than in 2017. The native forest presented superior albedo to the Forest Plantations in both dates due to the structure of the canopy of this class. The spatial analysis of the albedo exposes the relation of this climatic variable to the cover of the terrestrial surface. Thus changes in the vegetation cover cause alterations in the albedo, influencing changes in the radiation and atmospheric fluxes

    Albedo on cropland: Field-scale effects of current agricultural practices in Northern Europe

    Get PDF
    Agricultural land use and management affect land surface albedo and thus the climate. Increasing the albedo of cropland could enhance reflection of solar radiation, counteracting the radiative forcing (RF) of greenhouse gases (GHGs) and local warming. However, knowledge is lacking on how agricultural practices affect albedo under local conditions, and on the benefits of individual practices. In this study, field measurements were made in 15 paired plots at a site in Northern Europe to determine albedo, net shortwave irradiance and RF impacts under various common crops, cultivation intensities and tillage practices. Field data for 2019-2020 were compared with satellite-based albedo for the surrounding region in 2010-2020. At regional level, different combinations of soil type, yearly weather and agricultural practices led to great variability in the albedo of individual crops, despite similar pedo-climatic conditions. At field level within years, albedo differences were determined mainly by crop type, species-specific phenology and post-harvest management. Annual albedo was higher with perennial ley (0.20-0.22) and winter-sown crops (0.18-0.22) than with spring-sown crops (0.16-0.18) and bare soil (0.13). Barley had the highest albedo among winter and spring cereals. In summer, when increased albedo could alleviate local heat stress, oats reduced net shortwave irradiance at the surface by 0.8-5.8 Wm(-2) compared with other cereals, ley, peas or rapeseed. Delayed or reduced tillage gave high local cooling potential (up to-13.6 Wm(-2)) in late summer. Potential benefits for global mean climate as GWP(100 )per hectare and year reached-980 kg CO(2)e for avoiding black fallow,-578 kg CO(2)e for growing a winter-sown variety and-288 kg CO(2)e for delayed tillage. Thus realistic albedo increases on cropland could have important effects on local temperatures and offset a substantial proportion of the RF deriving from field-scale GHG emissions on short time-scales

    Biogeophysical impacts of peatland forestation on regional climate changes in Finland

    Get PDF

    Assessing the influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions

    Get PDF
    Variation in snow albedo feedback (SAF) among CMIP5 climate models has been shown to explain much of the variation in projected 21st Century warming over Northern Hemisphere land. Prior studies using observations and models have demonstrated both considerable spread in the albedo, and a weak bias in the simulated strength of SAF, over snow-covered boreal forests. Boreal evergreen needleleaf forests are capable of intercepting snowfall throughout the snow season, which has a significant impact on seasonal albedo. Two satellite data products and tower-based observations of albedo are compared with simulations from multiple configurations of the Community Climate System Model (CCSM4) to investigate the causes of weak simulated SAF over the boreal forest. The largest bias occurs in April-May when simulated SAF is one-half the strength of SAF in observations. This is traced to two canopy snow parameterizations in the land model. First, there is no mechanism for the dynamic removal of snow from the canopy when temperatures are below freezing, which results in albedo values in midwinter that are biased high. Second, when temperatures do rise above freezing, all snow on the canopy is melted instantaneously, which results in an unrealistically early transition from a snow-covered to a snow-free canopy. These processes combine to produce large differences between simulated and observed monthly albedo, and are the sources of the weak bias in SAF. This analysis highlights the importance of canopy snow parameterizations for simulating the hemispheric scale climate response to surface albedo perturbations. A number of new experiments are described as recommendations for future work.4 month

    Boreal forest albedo and its spatial and temporal variation

    Get PDF
    Surface albedo refers to the fraction of solar irradiance that is reflected by a surface. Accurate characterisation of the albedo of various land cover types is required for evaluating the energy exchange between the Earth s surface and the atmosphere. The optical and structural properties of a surface determine its albedo. Boreal forest albedo can vary due to factors such as tree species composition, forest structure, understorey vegetation composition, and seasonal changes in vegetation and snow cover. The aim of this study was to characterise typical albedos of Finnish forests dominated by different tree species, evaluate the seasonal variation in forest albedo, and to estimate the effects of structural forest variables and understorey composition on forest albedo or spectral reflectance. To achieve these aims, forest albedo was measured in-situ using pyranometers, estimated from satellite data and calculated using a forest albedo model. Unmixing methods were used to estimate forest albedo from coarse spatial resolution MODIS albedo retrievals and understorey spectral reflectance from Landsat observations. Mature or middle aged pine, spruce and broadleaved deciduous (mainly birch) forests had distinctly different albedos in both summer and winter. Coniferous forest albedo was lower and showed less seasonal variation than albedo in open areas or broadleaved deciduous forests. Albedo of pine was somewhat higher than that of spruce. Snow cover on the ground and canopy increased forest albedo. Young stands with an assumedly high proportion of deciduous species in the under- and overstorey were characterised by a higher albedo than the mature coniferous forests. The high albedo at early succession rapidly decreased as the forest matured. The forest floor was typically covered by green understorey vegetation with rather low albedo, which decreased the influence of a changing canopy cover or leaf area index (LAI) on forest albedo. The spectral reflectances of the understorey varied with site fertility and forest age.Metsän albedoksi kutsutaan sitä osuutta metsään saapuvasta auringonsäteilyn energiasta, joka ei sitoudu metsään vaan heijastuu takaisin taivaalle. Metsän albedon tiedetään vaihtelevan muun muassa puulajin, metsän rakenteen ja lumipeitteen mukaan, mutta näiden vaihtelujen suuruutta ei ole Suomessa tarkemmin arvioitu. Tietoa albedosta tarvitaan kun arvioidaan metsien energiatasetta sekä metsien vaikutusta ilmastoon. Tämän tutkimuksen tavoitteena oli arvioida kuinka suomalaisten metsien albedo vaihtelee puulajin, metsän rakenteen, aluskasvillisuuden ja vuodenaikojen vaihtelun mukaan. Aineistona käytettiin maastossa tehtyjä albedomittauksia, satelliittimittauksista laskettuja arvoja sekä mallinnusta. Maastossa tehdyistä mittauksista saadut tulokset ovat vain suuntaa-antavia pienen koealamäärän takia. Satelliittikuva-aineistojen tulkinnassa käytettiin apuna malleja, joilla voitiin arvioida heijastusarvoja kuvanalkioita suuremmassa mittakaavassa. Kasvukauden aikainen vaihtelu havumetsien albedossa oli melko pientä, mutta lehtimetsissä albedo oli keväällä ja syksyllä lumettomana aikana hieman matalampi kuin keskikesällä. Lumipeite kasvatti albedoa sekä havu- että lehtimetsissä. Albedo oli kaikkina vuodenaikoina matalin kuusimetsissä, hieman korkeampi mäntymetsissä ja korkein lehtimetsissä. Poikkeuksen muodostivat jaksot, jolloin havumetsien latvus oli lumen peitossa keskitalvella. Saman puulajin keski-ikäisissä tai varttuneissa metsissä lehtiala tai latvuspeittävyys vaikutti lumettoman ajan albedoon vain vähän, mikä saattoi osittain johtua melko matalasta aluskasvillisuuden albedosta. Nuorissa havumetsissä albedo oli suurempi kuin varttuneissa, mikä todennäköisesti johtui nuorten metsien pienemmästä lehtialasta sekä aluskasvillisuuden suuremmasta näkyvyydestä. Aluskasvillisuuden aallonpituudesta riippuva heijastus muuttui metsikön varttuessa ja riippui metsätyypistä

    A multiscale remote sensing assessment of subtropical indigenous forests along the wild coast, South Africa

    Get PDF
    The subtropical forests located along South Africa’s Wild Coast region, declared as one of the biodiversity hotspots, provide benefits to the local and national economy. However, there is evidence of increased pressure exerted on the forests by growing population and reduced income from activities not related to forest products. The ability of remote sensing to quantify subtropical forest changes over time, perform species discrimination (using field spectroscopy) and integrating field spectral and multispectral data were all assessed in this study. Investigations were conducted at pixel, leaf and sub-pixel levels. Both per-pixel and sub-pixel classification methods were used for improved forest characterisation. Using SPOT 6 imagery for 2013, the study determined the best classification algorithm for mapping sub-tropical forest and other land cover types to be the maximum likelihood classifier. Maximum likelihood outperformed minimum distance, spectral angle mapper and spectral information divergence algorithms, based on overall accuracy and Kappa coefficient values. Forest change analysis was made based on spectral measurements made at top of the atmosphere (TOC) level. When applied to the 2005 and 2009 SPOT 5 images, subtropical forest changes between 2005-2009 and 2009-2013 were quantified. A temporal analysis of forest cover trends in the periods 2005-2009 and 2009-2013 identified a decreasing trend of -3648.42 and -946.98 ha respectively, which translated to 7.81 percent and 2.20 percent decrease. Although there is evidence of a trend towards decreased rates of forest loss, more conservation efforts are required to protect the Wild Coast ecosystem. Using field spectral measurements data, the hierarchical method (comprising One-way ANOVA with Bonferroni correction, Classification and Regression Trees (CART) and Jeffries Matusita method) successfully selected optimal wavelengths for species discrimination at leaf level. Only 17 out of 2150 wavelengths were identified, thereby reducing the complexities related to data dimensionality. The optimal 17 wavelength bands were noted in the visible (438, 442, 512 and 695 nm), near infrared (724, 729, 750, 758, 856, 936, 1179, 1507 and 1673 nm) and mid-infrared (2220, 2465, 2469 and 2482 nm) portions of the electromagnetic spectrum. The Jeffries-Matusita (JM) distance method confirmed the separability of the selected wavelength bands. Using these 17 wavelengths, linear discriminant analysis (LDA) classified subtropical species at leaf level more accurately than partial least squares discriminant analysis (PLSDA) and random forest (RF). In addition, the study integrated field-collected canopy spectral and multispectral data to discriminate proportions of semi-deciduous and evergreen subtropical forests at sub-pixel level. By using the 2013 land cover (using MLC) to mask non-forested portions before sub-pixel classification (using MTMF), the proportional maps were a product of two classifiers. The proportional maps show higher proportions of evergreen forests along the coast while semi-deciduous subtropical forest species were mainly on inland parts of the Wild Coast. These maps had high accuracy, thereby proving the ability of an integration of field spectral and multispectral data in mapping semi-deciduous and evergreen forest species. Overall, the study has demonstrated the importance of the MLC and LDA and served to integrate field spectral and multispectral data in subtropical forest characterisation at both leaf and top-of-atmosphere levels. The success of both the MLC and LDA further highlighted how essential parametric classifiers are in remote sensing forestry applications. Main subtropical characteristics highlighted in this study were species discrimination at leaf level, quantifying forest change at pixel level and discriminating semi-deciduous and evergreen forests at sub-pixel level

    Automated proximal sensing for estimation of the bidirectional reflectance distribution function in a Mediterranean tree-grass ecosystem

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2015-2016Los sistemas automáticos de proximal sensing permiten adquirir información espectral de las cubiertas terrestres elevada frecuencia temporal, que puede relacionarse con observaciones remotas o de otros tipos de sensores como los sistemas de eddy covariance. Si bien inicialmente los sistemas automáticos empleaban sensores multi-banda, en los últimos años se ha incrementado el uso de sensores hiperespectrales. Si bien estos sensores ofrecen información redundante y de alta resolución espectral, las mediciones están sujetas a múltiples fuentes de incertidumbre; tanto instrumentales (dependencias de la temperatura o el nivel de señal) como direccionales (dependencia de la geometría de observación e iluminación). Las dependencias instrumentales pueden ser minimizadas, por ejemplo, controlando la temperatura del instrumento o el nivel de señal registrado. En otros casos, es necesario parametrizar y emplear modelos para corregir los datos. En la presente tesis doctoral los capítulos 1 al 3 presentan la caracterización completa de un espectrómetro de campo instalado en un sistema automático. Los capítulos 1 y 2 analizan las fuentes de no linealidad en este instrumento, una de las cuales no había sido anteriormente descrita en este tipo de instrumentos. El tercer capítulo muestra el conjunto completo de modelos de corrección de los efectos instrumentales y la cadena de procesado correspondiente. Por otro lado, los sistemas automáticos se enfrentan a efectos direccionales ya que adquieren mediciones continuamente durante el ciclo solar diario y bajo cualquier condición de iluminación. Esto maximiza los rangos de los ángulos de iluminación y también de la fracción difusa de la irradiancia. Esta variabilidad de condiciones de iluminación, combinada con una variación de los ángulos de observación permite obtener la información necesaria para caracterizar las respuestas direccionales de la cubierta observada. Algunos sistemas automáticos multi-angulares ya han sido empleados para realizar esta caracterización mediante la estimación de la Función de Distribución de Reflectividad Bidireccional (BRDF) en ecosistemas homogéneos. Sin embargo, esto no se ha conseguido aún en áreas heterogéneas, como es el caso de los ecosistemas tree-grass o de sabana. Así mismo, los trabajos previos no han considerado los efectos de la radiación difusa en el estudio del BRDF. En el capítulo 4 proponemos una metodología que permite desmezclar y caracterizar simultáneamente la función de distribución de reflectividad hemisférica-direccional de las dos cubiertas de vegetación presentes en el ecosistema, pasto y arbolado. También se analizan los efectos de las diferentes características del método. Finalmente, los resultados se escalan y se comparan con productos globales de satélite como el producto BRDF de MODIS. La conclusión obtenida es que se requieren más esfuerzos en el desarrollo y caracterización de sensores hiperespectrales instalados en sistemas automáticos de campo. Estos sistemas deberían adoptar configuraciones multi-angulares de modo que puedan caracterizarse las respuestas direccionales. Para ello, será necesario considerar los efectos de la radiación difusa; y en algunos casos también la heterogeneidad de la escena

    Automated proximal sensing for estimation of the bidirectional reflectance distribution function in a Mediterranean tree-grass ecosystem

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2015-2016Los sistemas automáticos de proximal sensing permiten adquirir información espectral de las cubiertas terrestres elevada frecuencia temporal, que puede relacionarse con observaciones remotas o de otros tipos de sensores como los sistemas de eddy covariance. Si bien inicialmente los sistemas automáticos empleaban sensores multi-banda, en los últimos años se ha incrementado el uso de sensores hiperespectrales. Si bien estos sensores ofrecen información redundante y de alta resolución espectral, las mediciones están sujetas a múltiples fuentes de incertidumbre; tanto instrumentales (dependencias de la temperatura o el nivel de señal) como direccionales (dependencia de la geometría de observación e iluminación). Las dependencias instrumentales pueden ser minimizadas, por ejemplo, controlando la temperatura del instrumento o el nivel de señal registrado. En otros casos, es necesario parametrizar y emplear modelos para corregir los datos. En la presente tesis doctoral los capítulos 1 al 3 presentan la caracterización completa de un espectrómetro de campo instalado en un sistema automático. Los capítulos 1 y 2 analizan las fuentes de no linealidad en este instrumento, una de las cuales no había sido anteriormente descrita en este tipo de instrumentos. El tercer capítulo muestra el conjunto completo de modelos de corrección de los efectos instrumentales y la cadena de procesado correspondiente. Por otro lado, los sistemas automáticos se enfrentan a efectos direccionales ya que adquieren mediciones continuamente durante el ciclo solar diario y bajo cualquier condición de iluminación. Esto maximiza los rangos de los ángulos de iluminación y también de la fracción difusa de la irradiancia. Esta variabilidad de condiciones de iluminación, combinada con una variación de los ángulos de observación permite obtener la información necesaria para caracterizar las respuestas direccionales de la cubierta observada. Algunos sistemas automáticos multi-angulares ya han sido empleados para realizar esta caracterización mediante la estimación de la Función de Distribución de Reflectividad Bidireccional (BRDF) en ecosistemas homogéneos. Sin embargo, esto no se ha conseguido aún en áreas heterogéneas, como es el caso de los ecosistemas tree-grass o de sabana. Así mismo, los trabajos previos no han considerado los efectos de la radiación difusa en el estudio del BRDF. En el capítulo 4 proponemos una metodología que permite desmezclar y caracterizar simultáneamente la función de distribución de reflectividad hemisférica-direccional de las dos cubiertas de vegetación presentes en el ecosistema, pasto y arbolado. También se analizan los efectos de las diferentes características del método. Finalmente, los resultados se escalan y se comparan con productos globales de satélite como el producto BRDF de MODIS. La conclusión obtenida es que se requieren más esfuerzos en el desarrollo y caracterización de sensores hiperespectrales instalados en sistemas automáticos de campo. Estos sistemas deberían adoptar configuraciones multi-angulares de modo que puedan caracterizarse las respuestas direccionales. Para ello, será necesario considerar los efectos de la radiación difusa; y en algunos casos también la heterogeneidad de la escena
    corecore