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ABSTRACT 

The subtropical forests located along South Africa’s Wild Coast region, declared as 

one of the biodiversity hotspots, provide benefits to the local and national economy. 

However, there is evidence of increased pressure exerted on the forests by growing 

population and reduced income from activities not related to forest products. The ability 

of remote sensing to quantify subtropical forest changes over time, perform species 

discrimination (using field spectroscopy) and integrating field spectral and multispectral 

data were all assessed in this study. Investigations were conducted at pixel, leaf and sub-

pixel levels. Both per-pixel and sub-pixel classification methods were used for improved 

forest characterisation. Using SPOT 6 imagery for 2013, the study determined the best 

classification algorithm for mapping sub-tropical forest and other land cover types to be 

the maximum likelihood classifier. Maximum likelihood outperformed minimum distance, 

spectral angle mapper and spectral information divergence algorithms, based on overall 

accuracy and Kappa coefficient values. Forest change analysis was made based on 

spectral measurements made at top of the atmosphere (TOC) level. When applied to the 

2005 and 2009 SPOT 5 images, subtropical forest changes between 2005-2009 and 

2009-2013 were quantified. A temporal analysis of forest cover trends in the periods 

2005-2009 and 2009-2013 identified a decreasing trend of -3648.42 and -946.98 ha 

respectively, which translated to 7.81% and 2.20% decrease. Although there is evidence 

of a trend towards decreased rates of forest loss, more conservation efforts are required 

to protect the Wild Coast ecosystem. 

Using field spectral measurements data, the hierarchical method (comprising One-way 

ANOVA with Bonferroni correction, Classification and Regression Trees (CART) and 

Jeffries Matusita method) successfully selected optimal wavelengths for species 

discrimination at leaf level. Only 17 out of 2150 wavelengths were identified, thereby 

reducing the complexities related to data dimensionality. The optimal 17 wavelength 

bands were noted in the visible (438, 442, 512 and 695 nm), near infrared (724, 729, 750, 

758, 856, 936, 1179, 1507 and 1673 nm) and mid-infrared (2220, 2465, 2469 and 2482 

nm) portions of the electromagnetic spectrum. The Jeffries-Matusita (JM) distance 

method confirmed the separability of the selected wavelength bands. Using these 17 
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wavelengths, linear discriminant analysis (LDA) classified subtropical species at leaf level 

more accurately than partial least squares discriminant analysis (PLSDA) and random 

forest (RF). 

In addition, the study integrated field-collected canopy spectral and multispectral data 

to discriminate proportions of semi-deciduous and evergreen subtropical forests at sub-

pixel level. By using the 2013 land cover (using MLC) to mask non-forested portions 

before sub-pixel classification (using MTMF), the proportional maps were a product of two 

classifiers. The proportional maps show higher proportions of evergreen forests along the 

coast while semi-deciduous subtropical forest species were mainly on inland parts of the 

Wild Coast. These maps had high accuracy, thereby proving the ability of an integration 

of field spectral and multispectral data in mapping semi-deciduous and evergreen forest 

species. 

Overall, the study has demonstrated the importance of the MLC and LDA and served 

to integrate field spectral and multispectral data in subtropical forest characterisation at 

both leaf and top-of-atmosphere levels. The success of both the MLC and LDA further 

highlighted how essential parametric classifiers are in remote sensing forestry 

applications. Main subtropical characteristics highlighted in this study were species 

discrimination at leaf level, quantifying forest change at pixel level and discriminating 

semi-deciduous and evergreen forests at sub-pixel level. 
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General Introduction 

1.1: Introduction 

Forests are of vital importance to the natural ecosystem including humans and 

biodiversity. There are a number of benefits derived from forests. In Southern Africa, the 

subtropical biome covers less than 0.25% of the total area (Low and Rebelo, 1996) and 

supports about 14% of its terrestrial birds and animals (Geldenhuys and MacDevette, 

1989). South Africa has seven biomes and the forest biome is the smallest, occupying 

only 0.1-0.2% of the total land area (Castley and Kerly, 1996). In the Wild Coast region, 

these forests cover about 50 000 hectares (ha) altogether with each forest patch being 

generally less than 100 ha (Berliner, 2011). Most of indigenous forests in this area belong 

to the subtropical forests type, hence for the purpose of this study the subtropical 

indigenous forest are referred to as subtropical forests. The management of these forests 

are managed by the Department of Agriculture, Forestry and Fisheries (DAFF), 

municipalities and conservation non-governmental organisations (NGOs) (Castley and 

Kerly, 1996). Management is complicated by the forests’ proximity to local communities 

resulting in uncontrolled use. While indigenous forests are of paramount importance and 

their degradation an issue of major concern, the conservation of South Africa’s coastal 

subtropical forests is often a challenging task.  

In South Africa, forests and other woody biomes are essential for their economic 

contribution at national and local levels. The South African national and local government 

statutes allow for sustainable use of forest resources by nearby communities. The 

economic benefits include: supplying fuel (wood), timber, medicines (Brigham et al., 

1996); ecotourism (Grossman and Gandar, 1989); regional carbon sequestration 

(Scholes and Hall, 1996); as well as habitats for biological diversity (Cowling et al., 1997). 

Besides immediate forest benefits such as food, medicine and raw materials, forest 

resources are also essential for carbon sequestration. Emissions from forest degradation 

are a major contributor of carbon emissions into the atmosphere and addressing forest 

degradation is part of the United Nations programme for Reducing Emissions from 

Deforestation and forest Degradation (UN-REDD+) initiatives for combating climate 
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change (Mertz et al., 2012). Related to the issue of carbon emission is that the 

conservation of forests and thickets provides an essential terrestrial carbon store (Mills 

and Cowling, 2006). If forest use by humans is not managed, there is a big risk of 

exploitation. 

Anthropogenic use of forests often leads to their overexploitation, which in turn may 

result in deforestation and degradation. The consequence of this unsustainable 

exploitation is usually a negative knock-on effect for both the environment and those 

communities reliant on the forest resources.  

The coastal subtropical forests of South Africa are under threat from firewood 

collection, agricultural land expansion, holiday resort expansion and dune mining (Trimble 

and van Aarde, 2011). A study by Obiri et al. (2002) has shown that in Pondoland nine 

out of the widely used twenty high-value forest species were overexploited. The negative 

effects emanating from the overexploitation have prompted to efforts to reduce use as 

enshrined in the national statutes. 

The main drivers of increased forest use by humans in the Wild Coast are the declining 

agricultural production and lack of alternative economic activities (Shackleton et al., 

2013). Migrant labour remittances, livestock, subsistence farming, non-timber forest 

products and social grants are among the main sources of cash income for many 

households (Shackleton et al., 2007b). The exploitation of forests is high in forests near 

local villages compared to those owned by the state. There are therefore conflicts in forest 

resource use between local communities who live close to forests and the national 

government department (DAFF) that promotes sustainable forest management. 

Forestry monitoring, which is one of the management tools, has been applied using 

remote sensing. Remote sensing imagery, both from satellites and aircrafts, have been 

used in assessing forests, processes that would have been difficult using ground research 

methods (Zwiggelaar, 1998). Past forestry applications of remote sensing in Southern 

Africa include land-cover mapping in the Southern African savannah (Griscom et al., 

2010, Hüttich et al., 2011), monitoring savannah rangeland deterioration (Munyati et al., 

2011), as well as analysing vegetation patchiness and its implications (Kakembo, 2009). 

Remote sensing applications allow early and late season, spatial and spectral analysis 
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for forest monitoring (Shapira et al., 2013). Another reason for forest change monitoring 

is the need to keep track of changes due to wildfires, which in some instances cause 

extensive damage constituting a national disaster. Like many of the areas dominated by 

indigenous forests, the Wild Coast region urgently requires sustainable forest 

management tools like remote sensing-based forest monitoring. This study uses a 

combination of the hyperspectral and multispectral data sources with the aim of aiding 

forest management.  

Despite the promotion of sustainable forest utilisation the previous section highlighted 

the threats presented by human activities especially along the dense indigenous forests 

along the coast. In South Africa indigenous forests are managed under two different 

tenure systems with links to the tribal trust land annexure (Johnson, 1983), state and 

communal management. The regulations used in forest management are enshrined in 

the environment-related Acts (Africa, 1998, National Environmental Management: 

Biodiversity Act, 2004, South Africa, 1998) in line with national conservation objectives. 

Reduced forest cover is due to the two processes of deforestation and forest degradation. 

Deforestation is defined as the removal of trees leading to earth surface changing from 

forest to other land cover types (FAO, 2000, Mon et al., 2012). Forest degradation on the 

other hand refers to the reduction in capacity to provide goods and services (FAO, 2000). 

Asner et al. (2004) highlighted that the two process are closely related because in a 

number of cases degradation precedes deforestation and hence it is challenging to 

analyse the two separately using remote sensing. Remote sensing based monitoring of 

forests is on the increase mainly due to the need to reduce degradation and deforestation 

as well as evaluating intervention mechanisms. Forest change is used in this study to 

account for forest loss due to deforestation and change due to degradation. The next sub-

sections constitute an outline of the components of the problem investigated in the 

present study. 

Multispectral monitoring of forest changes 

Internationally, multispectral and hyperspectral remote sensing approaches are often 

used in forest modelling. The majority of forest monitoring programmes are based on 

multispectral imagery, such as Landsat (Hansen et al., 2013), Advanced Very High 
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Resolution Radiometer (AVHRR) (Sivanpillai et al., 2007) and Moderate Resolution 

Imaging Spectroradiometer (MODIS). The two latest satellites (SPOT 6 and 7) from the 

SPOT series have spatial resolutions of 6m (Airbus Defence and Space, 2014), which 

can support forest monitoring. At the same time, the South African government is in the 

process of developing and launching its own high resolution multispectral satellite (EO-

SAT 1) (SANSA, 2014). The conditions and changes in forests give more reason for forest 

monitoring using remote sensing. Multispectral imagery has a number of advantages 

compared to the hyperspectral ones and these mainly involve both data availability and 

cost.  

 

1.2: Problem Statement 

A comprehensive national forest monitoring programme that utilises remote sensing 

methods is lacking in South Africa. This is despite the country having a “good” ranking in 

forest change monitoring capacity (Romijn et al., 2012) by the United Nations 

Collaborative Programme on Reducing Emissions from Deforestation (UN-REDD) 

programme. According to study by Rahlao et al. (2012) on the potential contribution of 

forestry to South Africa’s climate change mitigation, it has lower rates of forest cover and 

national deforestation compared to other countries, hence its reluctance to participate in 

UN-REDD+. The reluctance to participate in programmes like this one may have been 

the reason for not prioritising a monitoring programme. 

Field spectroscopy, dimension reduction and species discrimination 

challenges 

Hyperspectral remote sensing has been used in the past for forest conservation related 

studies at all platform levels, that is, satellite, airborne and ground-based. Airborne based 

applications in vegetation species discrimination include characterisation for grasslands 

(Mutanga and Skidmore, 2004), predicting plant water in Eucalyptus grandis (Oumar and 

Mutanga, 2010), discriminating pest attacks (Ismail et al., 2008), papyrus swamps 

discrimination (Mutanga et al., 2009), and also commercial tree species discrimination 

(Peerbhay et al., 2013). There has been some work focussing on ground level 
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hyperspectral remote sensing (using a spectrometer/spectroradiometer) to discriminate 

Eucalyptus globulus, Eucalyptus nitens and their F1 hybrid (Humphreys et al., 2008) and 

also, conifer species recognition (Gong and Yu, 2001). Most of these examples have 

been applied to different environments dominated by a variety of land cover surfaces such 

as mangroves, forest plantations and grasslands. There are some undertaken in tropical 

and subtropical environments. There is a need for up-to-date information on forest 

species to allow for decisions that seek to achieve sustainable management (Schmidt 

and Skidmore, 2003). Among those that focussed tropical forests are the discrimination 

of lianas from tree species (Castro-Esau et al., 2004). A few studies have been applied 

to the discrimination of subtropical forest species at leaf scale (Fung et al., 2003).  

Field spectroscopy, a ground-based form of hyperspectral remote sensing, provides 

many of the advantages of spaceborne and airborne hyperspectral sensors. Species 

discrimination using field spectroscopy uses a set of statistical learning algorithms, which 

identify patterns in the training data and create models using these patterns. The 

classifiers used in species discrimination include support vector machines (Melgani and 

Bruzzone, 2004), neural networks, random forests, linear discriminate analysis (LDA), 

partial-least discriminant analysis (PLS-DA) and Naive Bayes (Bickel and Levina, 2004). 

Generally, there is no single classifier that outperforms the others as choice depends on 

prevailing constraints such as accuracy, time for development as well as the nature of the 

classification problem (Li et al., 2006). Against this background, it would be essential to 

determine the best classifier method for identifying subtropical forest species on the Wild 

Coast region of South Africa. 

There are challenges in using hyperspectral remote sensing (airborne and satellite-

based) in large-scale projects, including costs, data availability and the logistics involved 

in acquiring the imagery. The practicality of using hyperspectral remote sensing imagery 

is less for developing countries compared to the developed ones due to these reasons. 

However, monitoring programmes that characterise forest species on a large-scale using 

a combination of field spectroscopy and multispectral remote sensing are still few. 
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Integrating multispectral and hyperspectral remote sensing 

Combining the two data sources has the potential to provide more information on 

surface features, such as forests. Methods that integrate multispectral and hyperspectral 

data sources are encouraged, as they consolidate their respective advantages. The 

integration of these two provide information over a wider area therefore answering one of 

the modern day science challenges – that of upscaling, since most models and algorithms 

are derived from scale studies (Wu and Li, 2009).  

Integrating the two data sources has another challenge in the form of different scales. 

The proximity of the spectroradiometers and other instruments used in field spectroscopy, 

to the surfaces of interest gives it a finer scale and spatial resolution. In summary, 

hyperspectral data has a large spectral coverage with small spatial coverage while 

multispectral data has large spatial coverage but is spectrally under sampled (Kruse and 

Perry, 2009). Integrating the two data sources, therefore, seems ideal for forest mapping 

and modelling. Furthermore, it determines the humans’ observation ability (Marceau and 

Hay, 1999). Essentially, an integration of multispectral and hyperspectral data has the 

potential to supply accurate and consistent information on the state of forests, especially 

South Africa’s threatened indigenous forests. 

In summary, the main opportunities exploited by the study are examining the best 

methods for land cover classification for forest change analysis (multispectral data), 

dimension reduction for subtropical species discrimination (field spectroscopy data), 

species discrimination method (field spectroscopy data), and the integration of 

multispectral and field spectroscopy to discriminate semi-deciduous and evergreen forest 

species. Understanding these methods would make it easier for monitoring programmes 

to translate into management decisions (Christensen and Ringvall, 2013). This research 

involved data collection to enable monitoring subtropical forests changes in the Wild 

Coast region of South Africa. The region is located around the town of Port St John’s. The 

main aim and objectives of the study are presented in the next sections. 
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1.3: Aim 

The overall aim of this study was to conduct a multiscale assessment of the subtropical 

forests along the Wild Coast of South Africa using remote sensing as a way of quantifying 

forest change, discriminating species and semi-deciduous and evergreen forests. 

1.4: Study Objectives 

The main objectives of this study were to: 

 Determine a supervised classification algorithm with highest accuracy and then 

quantify changes in subtropical forests from 2005 to 2013 using multispectral 

remote sensing data in the Wild Coast area of South Africa;  

 Determine the optimal wavelengths for the discrimination of the subtropical forest 

species and evaluate their separability using field spectroscopy at leaf scale;  

 Identify the best classifier for the discrimination of subtropical forest species at leaf 

level based on measured accuracy; and 

 Discriminate proportions of semi-deciduous and evergreen forest species using an 

integration of multispectral and field spectral data. 

1.5: Thesis Outline 

The organisation of this study is outlined here as starting with the General Introduction 

(Chapter 1), then Characterisation of the study area (Chapter 2), Remote Sensing Use in 

Subtropical Forest Change Analysis: A Literature Review (Chapter 3), Methodology 

(Chapter 4), Multi-temporal Analysis of Subtropical Forest between 2005 and 2013 

(Chapter 5), Selection of Optimal Wavelengths for Subtropical Forest Species 

Discrimination (Chapter 6), Subtropical Forest Species Discrimination using Field 

Spectroscopy (Chapter 7), Discriminating Semi-deciduous and Evergreen Subtropical 

Forests Species Using Integrated Multispectral and Field Spectroscopy (Chapter 8), 

before presenting a Synthesis and Conclusion (Chapter 9). There are four results based 

chapters (Chapters 5 to 8), from which the major research highlights were generated.  

Chapter 1: General Introduction 
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This section outlines the research aims, objectives and research problem. Moreover, 

previous studies in forest mapping and species discrimination are critically examined to 

provide the context of the study. In this way, research gaps are highlighted and it provides 

reasons supporting a study of this nature in forest management. 

Chapter 2: Characterisation of the study area 

The main aim of this chapter is to identify the current physical and socio-economic 

conditions in the study area as these important issues are integral to sustainable 

indigenous forest management. An explanation of these conditions also highlight the 

pressures (both natural and manmade) on the subtropical forests along the Wild Coast. 

 

Chapter 3: A review of literature on subtropical forests and remote sensing 

applications 

Forestry conservation in South Africa links to global trends that are driven by scientific 

information. This chapter evaluates the current national, regional and international 

statutes and examines the remote sensing methods used in forest monitoring. The 

chapter has the comprehensive literature to cover all the results-based chapters 

indicated. 

 

Chapter 4: Methodology 

This chapter explains all the data collection and analysis methods. The methods were 

linked to the set objectives of the study and they include procedures for data collection, 

analysis, validation and visualisation of the results. Consequently, methods sections are 

not presented in the respective results-based chapters. The methods selected should be 

replicable in other forests with environmental conditions similar to the Wild Coast region. 

 

Chapter 5: Multi-temporal analysis of subtropical forest changes between 2005 

and 2013 

The fifth chapter determined the best method for supervised land cover classification 

of 2013 SPOT 6 multispectral imagery among the four: maximum likelihood estimation 

(MLE), minimum-distance (MIN), spectral angle mapper (SAM) and spectral information 
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divergence (SID). The best method in terms of accuracy (MLE) was then applied to the 

other two years of 2005 and 2009. A comparison of the classification results for the three 

years (2005, 2009 and 2013) and the changes between the two periods of 2005-2009 

and 2009-2013 are discussed. Conclusions were then made on the changes in 

subtropical forest over the two periods. The 2013 classified map and SPOT 6 image were 

to be later used in Chapter 8.  

Chapter 6: Selection of optimal wavelengths for subtropical forest species 

discrimination 

The selection of significant and optimal wavelength bands for the discrimination of the 

subtropical indigenous forest species using dimension reduction in field spectroscopy is 

explored in this chapter. A set of results from the dimension reduction and validation 

exercise using One Way Analysis of Variance (ANOVA) with Bonferroni correction, 

Classification and Regression Tree Analysis (CART) and the Jeffries Matusita (JM) 

distance method is presented. A discussion and conclusion summarised these results in 

relation to accuracy levels and other studies. 

 

Chapter 7: Subtropical forest species discrimination using field spectroscopy 

Chapter 7 deals with the application and evaluation of three classifiers. Three classifier 

algorithms (linear discriminant analysis, partial least squares discriminant analysis and 

random forest) were tried on the training data set and later evaluated for accuracy using 

an independent validation dataset. The most suitable classifier for the subtropical forest 

species was then identified by comparing the overall accuracy and Cohen’s Kappa 

coefficient results. 

 

Chapter 8: Discriminating semi-deciduous and evergreen subtropical forests 

species using integrated multispectral and field spectroscopy 

The last results-based chapter analyses proportions of semi-deciduous and evergreen 

forest species after integrating multispectral and field spectroscopy data. The chapter also 

discusses the results, their accuracy levels as well as effectiveness of the techniques and 

data used. 
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Chapter 9: Synthesis and Conclusion 

The final chapter merges the different strands of this study and integrates conclusions 

made in Chapters 5-8. It examines how the new information as well as proposed 

methodology would assist in subtropical forest management. The chapter further 

examines how the results have answered all the initial research questions, met set 

objectives and suggests further research directions.  
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Characterisation of the Study Area 

2.1: Introduction 

The focus of this chapter is to characterise the Wild Coast’s physical and socio-

economic setup to contextualise subtropical forests changes in the study area. The Wild 

Coast area of the Eastern Cape experiences subtropical weather conditions and the 

landscape consists of state forests and communal households. The relationship between 

the forests and neighbouring communities has attracted researchers’ attention for many 

years. The fragile coastal ecosystem, lucrative tourism ventures and an increase in 

population of the surrounding communities create an environment where grass-roots 

issues meet nature conservation. The detailed information on the physical and socio-

economic setup of the area is necessary in a study like this one, where the emphasis is 

on characterising forest changes and their spectral properties. 

2.2: Location 

The study area comprises of coastal indigenous forests, savannah grasslands, 

woodlands and human settlements around Port St Johns in the Eastern Cape. The 

boundaries of the study area are the town of Port St Johns (north-eastern tip end), the 

Indian Ocean, Mthatha Mouth (on the southern end), Mthatha river (the western end), 

and the Mthatha-Port St Johns road to the north (refer to Figure 2.1 below). The central 

part of the study area is approximately 90 km from the town of Mthatha. Parts of the study 

area lie in both Nyandeni and Port St Johns Local Municipalities. The main urban centres 

in the study area are Libode, Ngqeleni and Port St Johns. 
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Figure 2.1: Map showing the study area  

2.3: Climatic Conditions 

Vegetation is influenced by climatic conditions hence a clear understanding of the 

prevailing conditions is necessary since this study covers phenological classification. The 

area, which is part of the Wild Coast region of the East coast of South Africa has a warm 

and humid climate with an annual average rainfall range of 650mm to 1000mm that falls 
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mainly in summer (Port St John's Local Municipality, 2010) and is predominantly in the 

form of light showers. Daily average temperature ranges between 21°C and 28°C in 

January and July respectively (Port St John's Local Municipality, 2010). Much of the 

fieldwork was done between May and mid July 2013, coinciding with the winter and mid-

winter seasons in South Africa. Spectral variability between semi-deciduous and 

evergreen forests species was expected to be high during this time of the year. The 

seasonal calendar of South Africa is summarised in Table 2.1 below: 

Table 2.0: The seasons of South Africa (WeatherSA, 2014) 

Season Calendar dates 

Autumn 1 March to 31 May 

Winter 1 June to 31 August 

Spring 1 September to 30 November 

Summer 1 December to 28/29 February 

 

2.4: Terrain Characteristics 

The topography of the study area comprises of high-lying areas around the northern 

portion (along the Mthatha-Port St Johns road) which descends towards the Indian Ocean 

on the southern boundary. The altitude ranges from zero to approximately 600 metres 

above sea level. The landscape is dominated by the fragmented forests, woodlands, 

grassland and densely populated hilltop settlements (Obiri et al., 2002). Access to some 

portions is difficult due to the steeply undulating topography and lack of roads. Mthatha, 

Umzimvubu, Mneno and Umngazi are the major rivers that drain the area. 
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Figure 2.2: Drainage of the study areas (adapted from the National river database 
(Department of Water Affairs and Forestry, 2006).  

Geological formations present in the area are Ecca (most dominant), Balfour, 

Middleton, Dwyaka, Tillite and Natal groups (Port St John's Local Municipality, 2010). 

These groups occur together with the following associated soil types: sandstones, 

siltstone, quartzitic mudstone, diamictite and shale.  
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Figure 2.3: Geological Map (Adapted from geological map series) 

2.5: Vegetation 

The area is partly composed of the coastal subtropical vegetation region, grassland 

and thicket. The national floristic classification system for indigenous forests classified 

forests in the Wild Coast as Transkei Coastal Platform Forests (Von Maltitz et al., 2013). 

The area falls under the Eastern Cape belt ecoregion (Kleynhans et al., 2005). 

Woodlands and indigenous forest species cover most parts of the area. The indigenous 

forests are mainly of the subtropical type whose distribution in South Africa is attributed 

to climate change during the Quartenary period (Griffiths and Lawes, 2006). Common 

species in woodlands include Acacia karoo and Lantana camara. Indigenous natural 

forests have species such as Millettia grandis, Heywoodia lucens, Englerophytum 

natalense (Obiri et al., 2002), Ficus natalensis and Celtis africana. The area has been 

noted to have exceptional endemic plant species leading to the region gaining a 

“biodiversity hotspot”, one of only 230 such sites in the world (Bennie, 2011). 
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2.6: Population and socio-economic setup 

The main land use patterns in the study area include communal grazing land, natural 

forests, commercial forests, subsistence agriculture and horticulture farms (Obiri et al., 

2002). According to the last Census of 2011, the two local municipalities of Nyandeni and 

Port St Johns have a population of 290 390 and 156 136 respectively (Statistics SA, 

2011a, Statistics SA, 2011b). These population figures translate to population growth 

rates of 0.57% and 0.61%, respectively since the 2001 Census. There is a mixture of land 

tenure forms but a big portion of land is demarcated communal land thereby being held 

under Community Trusts. The local traditional leaders have jurisdiction to communal 

trusts land. The rest is state and freehold land with the latter dominating in the major 

urban settlements of Port St Johns (Port St John's Local Municipality, 2010), Ngqeleni 

and Libode. It is worth noting that the majority of indigenous forest belongs to the state, 

managed on its behalf by DAFF. 

The economic activities in the study area include tourism, fishing and subsistence 

agriculture. Statistics from the 2011 Census give the unemployment rate at 44.8% and 

50.3% for Nyandeni and Port St Johns local municipalities respectively (Statistics SA, 

2011a, Statistics SA, 2011b). Agriculture practised is mainly subsistence rain-fed crop 

production with maize being the widely grown crop (Port St John's Local Municipality, 

2010). However, subsistence agriculture fails to meet the most families’ overall needs and 

little is sold (Aliber and Hart, 2009). There are a number of tourism projects in the area 

taking advantage of the rugged terrain and pristine environmental condition earning the 

region its nickname, the Wild Coast. Main tourism activities are horse and hiking trails, 

fishing, river cruising and nature-based activities such as game viewing and enjoying the 

magnificent natural beaches. Household income in the area is between US$32-US$160 

per month with pensions and migrant worker remittances (Obiri et al., 2002). Forests and 

other natural resources, therefore, provide supplementary income to the rural populace.  

2.7: Summary 

The uniqueness, ecological fragility and potential threats to the Wild Coast’s 

subtropical forests have been highlighted in this chapter. The characterisation of the study 
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area successfully noted that the Wild Coast of South Africa is rich in biodiversity and the 

subtropical forests are part of this unique feature. Among one of the conclusions of this 

chapter is the fact that the increasing population could be detrimental to the subtropical 

forests. Human use of forest resources remains one of the main managerial problems for 

forest managers and the local leadership. The climatic conditions provide enough rainfall; 

sunshine and temperatures for the forests to thrive but the local socio-economic 

conditions within the local communities seem to be a major threat to the health of the 

subtropical forests along the Wild Coast. 
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Remote Sensing Use in Subtropical Forests Change 

Analysis: A Literature Review  

 

3.1: Introduction 

The indigenous forests of South African face natural and man-made threats and 

remote sensing has potential of providing a monitoring framework. There have been some 

studies for floristic classification of indigenous forests nationally and other parts of the 

country (Cawe, 1996, Lötter et al., 2014, Von Maltitz et al., 2013), which were mainly one-

off exercises. Remote sensing on the other hand, provides the ability to quantify forest 

changes over time because of repetitive data. Remote sensing makes use of the concept 

of imaging spectroscopy, which acquires imagery of an object through measuring energy 

arriving at the sensor (Meer et al., 2002). The image spectra in turn provide useful 

information about the objects of interest. The main advantage of remote sensing in 

forestry is that it provides useful information for forest conservation, formulate policy and 

provide insights into future forest condition and health (Franklin, 2001). In areas with 

rugged terrain and limited accessibility, terrestrial mapping is difficult and expensive; 

hence the use of remote sensing in vegetation classification (Salovaara et al., 2005). 

Remote sensing images provide synoptic and repetitive biophysical and biochemical 

vegetation data for large areas over long periods of time (Franklin, 2001).  

A detailed analysis of the status of indigenous forests, legal framework and remote 

sensing approaches are presented in this chapter. The chapter discusses these aspects, 

starting from indigenous forests narrowing down the review to subtropical type of forests, 

which are dominant in the study area. This chapter essentially provides the theoretical 

background to cater for the respective results-based chapters. 
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3.2: The state of subtropical forests in South Africa 

3.2.1 Benefits of subtropical forests 

South Africa has a variety of climatic regions, which in turn affect the structure and 

characteristics of vegetation zones. Subtropical forest species are part of the country’s 

indigenous forests; the areal extent and benefits from indigenous forests make their 

sustainable utilisation an important consideration. By definition, indigenous forests are 

vegetation formations dominated by mainly trees, which are firstly indigenous to South 

Africa and which reach a minimum height of 10m when at maturity stage. There are 

common forest management goals for both society and landowners. The benefits of 

forests are broadly divided into two: direct and indirect benefits.  

The direct forest benefits are either timber-related or non-timber forest products 

(NFTPS). The timber uses by local communities are mainly for construction poles and 

firewood. The non-timber products include medicines, food (Scholes, 2004), habitat for 

wildlife (Cowling et al., 1989) and useable water resources. A study in the Pondoland part 

of the Wild Coast revealed that much of the tree utilisation was for construction poles, 

especially for poles with circumference sizes ranging between 10 and 20cm (Obiri et al., 

2002). Generally, NFTPS bring direct benefits to rural South Africa through consumption 

and trade. Cash income from NFTPs is used to complement the generally low income of 

the local communities. Shackleton and Shackleton (2004) found the annual average 

ranging from R1000-R12000 per household. According to the same study, the reliance 

on NFTPS on the Wild Coast is mainly due to a decline in cash revenue from subsistence 

farming, fishing, tourism and migrant labour remittances. Forest use is not only restricted 

communities living near the forests, but ecotourism and markets for products also benefit 

the urban population (Cocks and Wiersum, 2003). However, rural communities rely more 

on the forests compared to those in urban areas (Shackleton et al. (2007a). 

The indirect benefits include ecological services such as carbon sequestration, less 

carbon emissions from burning and water regulation (Shackleton et al., 2007a). Forests 

have the potential to regulate atmospheric carbon dioxide through carbo sequestration 

(Scholes, 2004). With all these benefits, it becomes important to manage forest resources 

sustainably for both conservation and developmental reasons (Shackleton, 2001).  
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In summary, indigenous forests have a wide usage in South Africa. Geldenhuys (1999) 

found that 94% of canopy tree species and 77% of subtropical forest species have either 

traditional or commercial use. The threats currently confronting these forests are 

summarised in the next section.  

3.2.2 Threats to subtropical forest at national level and global level 

With all the benefits that indigenous forests bring to the national and local economies, 

it is clear that conservation and the sustainable forest use is the main goal of many 

government departments, local municipalities and traditional leadership structures. The 

benefits and use are the main drivers of the threats, especially if these uses are not 

regulated. South Africa’s forest policies changed especially since the 1994 democratic 

dispensation, to include controlled use even in state-controlled indigenous forests. Some 

studies have summarised this problem as being caused by underdevelopment, poverty 

and limited opportunities of the areas near the forest patches, particularly  by communities 

with direct  dependence on forest resources (Sunderlin et al., 2005). Although poverty 

can be a driver of forest overexploitation, high standards of living also negatively affects 

forests (Sunderlin et al., 2005). With few economic alternatives, communities living near 

forests often expand agricultural land into forested lands (Sunderlin et al., 2005). 

Besides the threat of forest overutilization to sustainability, there is a cumulative 

negative effect to livelihoods of communities dependent on forest products in the wake of 

forest depletion (Brosius, 1997). The motivation for all the monitoring and identification of 

threats is driven by the need to maintain a sustainable supply of resources over time and 

minimise conflicting economic, ecological or social demands on resource use (Guldin and 

Guldin, 2003).  

 

3.2.3 The legal framework for indigenous forest conservation 

There are international initiatives aimed at reducing deforestation through policies that 

advocate for sustainable use of the forest resources. The main driving forces for the two 

process of deforestation and degradation have been summarised as the growing world 

population and increases in technological ability to extract forest resources (Franklin, 

2001). The international legal framework for forest conservation is motivated by the need 
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to combat deforestation, reduce carbon emissions and promote biodiversity. The Kyoto 

Protocol also promotes vegetation observation and characterisation through advocating 

for mitigating human activities such as afforestation and promoting reforestation (Schulze 

et al., 2002). There is an international framework for monitoring carbon sinks through the 

UNREDD+. UNREDD+ has a framework of policies on a carbon stock mapping approach 

to indigenous forests. The Plan of Implementation of the World Summit on Sustainable 

Development, held in Johannesburg in 2002 called for integrated indigenous disaster 

management (UN 2002). Forest monitoring is significantly important in this context, since 

vegetation acts as fuel for wildfires (Carlson and Burgan, 2003). In summary, international 

agreements and environmental degradation concerns have increased pressure on 

accountability in forest use and sustainable management practices, thus leading to more 

forestry monitoring programmes (Kangas, 2006). 

The national government of South Africa has the mandate for conserving woodlands 

and forest resources. South African conservation laws allow for the sustainable utilisation 

of forest and woodland resources. South African forests are divided into three broad 

groups, namely; woodlands, indigenous forests and plantation forests (DAFF, 2012). The 

mandate is envisioned in the department’s main goal, which is to ensure renewed growth, 

transformation and sustainable use of forestry resources (DAFF, 2012). The National 

Forestry Act of 1981 gives DAFF the mandate to guide decisions affecting forests, 

research, monitoring of forests, dissemination of information and reporting (South Africa, 

1998). The National Forestry Act of 1998 also sets out provisions for the community 

management of forests that are in specially designated community forests. The chiefs do 

the management and enforcement of conservation goals in these forests on behalf of the 

communities. Community forest management has had its fair share of success stories 

and failures (Porter-Bolland et al., 2012, Rasolofoson et al., 2015).  

According to the National Forest Act of 1998, the Minister is empowered to declare a 

list of protected forest species and all the listed trees are protected against cutting, 

damage, destruction, collection, removal, transportation, export, purchase and donation 

except when one is furnished with a license from DAFF (DAFF, 2014). These regulations 

also apply to the forest products derived from such trees with perpetrators liable for 

prosecution in courts of law. The latest list published on the 29th of August 2014 has 47 
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indigenous trees species (DAFF, 2014) and it includes Mimusops caffra, one of the 

dominant species identified in this study. This makes this study particularly relevant, since 

it leads to improved mapping of indigenous forests containing protected tree species. It 

is worth noting that this study only observed dominant species; therefore, there are 

significant chances of the presence of more protected species within the Wild Coast’s 

subtropical forests. 

3.3: Multispectral remote sensing use in forest management 

Forest monitoring programmes have gained popularity due to a number of reasons, 

which include the need to develop long-term plans aimed at conserving, planting, 

thinning, harvesting and other treatments in the forests (Erk et al., 2003). An assessment 

of the effectiveness of forest use and compliance to legal and best practice frameworks 

is made possible through monitoring. Satellite remote sensing provides the most practical, 

feasible and effective method of monitoring forest ecosystems (Schull et al., 2011). 

Traditional forest field research is often costly, time-consuming and affected by issues of 

accessibility, hence remote sensing is the best option (Kent and Coker, 1992). Remote 

sensing modelling of forest change is an option but is only made possible if rigorous 

accuracy assessment and validation are conducted (Goetz et al., 2009). 

Monitoring programs are important components of integrated environmental research. 

Monitoring programmes are vital because they provide scientific objectives focusing on 

learning and understanding the monitored system, information for management decisions 

(Yoccoz et al., 2001), and databases to support decision makers and assisting the 

decision making processes (Lovett et al., 2007). The techniques used include using the 

vegetation indices, spectral mixture analysis and multiple regression (Liu et al., 2009). 

The Normalised Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index 

(SAVI) have been widely used as surrogate indicators of vegetation condition and have 

been extended to reflect degradation, climate change, soil erosion and biological 

conservation (Xu et al., 2012).  

There are a number of remote sensing-based forest monitoring programmes, including 

the US Forest Inventory and Analysis (Olsen et al., 1999), the Swedish National Forest 
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Inventory (Axelsson et al., 2010), National Inventory of Landscapes in Sweden (Stahl et 

al., 2011) and the Earth Observation for Sustainable Development of Forests (EOSD) in 

Canada (Wulder et al., 2007). Other environment-related monitoring programmes are, the 

Ecological Monitoring and Assessment Network (Tegler et al., 2001), the UK Butterfly 

Monitoring Scheme and the Great Britain Countryside Survey (Petit, 2009), the 

Norwegian Monitoring Program for Agricultural Landscapes in Norway (Dramstad et al., 

2002, Fjellstad et al., 2001); Spatial Indices for Land Use Sustainability in Austria 

(Peterseil et al., 2004). Some of the forests monitoring endeavours have been conducted 

through land cover mapping, with results interpreted with special focus on the changes in 

forested areas. On a smaller scale, land cover change analysis provides a way of 

monitoring forest coverage and change to other classes. It is these ways of assessing 

forest change that make use of per-pixel (each pixel is allocated one class) as opposed 

to sub-pixel (each pixel allocated to different classes with varying proportions) 

classification. Much of these forest monitoring programmes have been developed in 

developed countries with little effort made in developing countries such as South Africa 

The majority of these monitoring programmes make use of supervised classification 

methods to map forest-covered lands. Past forestry applications of remote sensing in 

Southern Africa include land-cover mapping in southern African savannah (Griscom et 

al., 2010, Hüttich et al., 2011), monitoring savannah rangeland deterioration (Munyati et 

al., 2011), analysing vegetation patchiness and its implications (Kakembo, 2009). The 

classification algorithms used in forest management are presented in the next section. 

3.3.1 Classification algorithms applied to forest management 

The classification algorithms used in mapping forests and other land cover analyses 

are many; varying in terms of how they estimate classes for unknown pixels. The 

classification methods used in forest analysis are divided into two broad groups, namely 

object-based and pixel-based. Notwithstanding the use of two pixel-based classification 

methods in the present study, the following sub-sections examine object-based methods 

in forest characterisation. 
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a) Object-based classification algorithm 

Object based methods use spectral information, shape, texture and contextual 

relationship to allocate classes to raw images (Ke et al., 2010). The use of all these 

factors, which are related to vegetation, achieved improved vegetation classification 

(Mallinis et al., 2008, Yu et al., 2006). Basic units in object-based classification are called 

segments. In forestry, the methods merge pixels into segments that correspond to 

different forest stands (Woodcock and Harward, 1992). Examples of specific algorithms 

that fall under object-based used in forest classification are point-based (Heyman et al., 

2003) and rule-based segmentation. Mixed results have come out of the comparison 

studies between object and pixel-based methods. While in some studies the object-based 

approach achieved better accuracy (Dorren et al., 2003), there are also cases when pixel-

based outperformed the object-based using Quickbird imagery (Wang et al., 2004). This 

study restricted itself to pixel-based methods, since the study area had other land cover 

classes such as grass and water requiring more spectral discrimination than adding other 

characteristics like texture and shape. 

b) Pixel-based classification algorithms 

Pixel-based classification refers to those methods, which only delineate classes based 

on spectral measurements. Per-pixel methods are further split into two: per-pixel and sub-

pixel, based on how each pixel is allocated to class membership. While per-pixel methods 

allocate a pixel to one class, sub-pixel methods allow unknown pixels to have proportions 

of all classes under consideration. Per-pixel classification results from assigning each 

pixel to a cover type that has the most similar signature, while sub-pixel classification 

evaluates the degree of membership of each pixel in all classes, including unspecified 

and unknown classes. 

Per pixel classification 

Per-pixel classification algorithms lead to the assignment of each pixel to a single class 

thereby making assumptions of pure (Foody, 2002a), discrete and mutually exclusive 

pixels (Congalton and Green, 2008). These algorithms are grouped into two broad groups 

of parametric and non-parametric classifiers. Parametric classifiers are based on linear 

relationships between independent and dependent variables while the non-parametric 
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ones assume the opposite. The parametric ones include the maximum likelihood classifier 

(MLC), nearest distance, minimum distance (MD) and parallelepiped (PPD) (Shafri et al., 

2007, Wang and Jia, 2009). Where the data are not normally distributed, the non-

parametric methods have higher chances of success. These include spectral angle 

mapper (SAM), k-nearest neighbours (KNN), neural network (NN), spectral vector 

machines (SVM), decision trees, spectral information divergence (SID) (Knorn et al., 

2009, Petropoulos et al., 2010, Tan et al., 2011, Wang and Jia, 2009, Yagoub et al., 

2014). Past studies have used algorithms, which include MLC (Erbek et al., 2004), MD 

(Dwivedi et al., 2004), SAM (Kruse et al., 1993), SVM, SID (Chang, 1999) and PPD 

(Atkinson and Lewis, 2000) algorithms. 

The commonly used algorithm is the parametric method MLC and its use includes 

applications in the subtropical biome in Argentina (Zak et al., 2004), land use and land 

cover (LULC) change in coastal Egypt (Shalaby and Tateishi, 2007). Besides applications 

being in different geographic locations, the MLC was observed to outperform other 

parametric methods of MD and PPD (Tso and Mather, 2001), when data are normally 

distributed. However, success is not guaranteed in non-normally distributed data (Sohn 

and Rebello, 2002). There are incidences when non-parametric per-pixel methods 

performed better than parametric ones including MLC, for example by decision trees 

(Otukei and Blaschke, 2010, Rogan et al., 2002) and by spectral angle mapper 

(Nangendo et al., 2007).  

Sub-pixel classification 

Sub-pixel classification algorithms have one assumption, that of exhaustive definition 

of classes to be mapped (Campbell, 1996, Congalton and Green, 2008). They are also 

referred to as unmixing or soft classification methods, because they do not lead to definite 

classes but proportions of all classes. In coarser multispectral imagery, these 

assumptions are difficult to fulfil due to the presence of mixed pixels (Campbell, 1996, 

Wang and Jia, 2009). Multispectral images, such as the SPOT 5 and 6, have coarser 

pixels, making mapping of vegetation types or species difficult due to mixed spectral 

signatures. Mixed pixels result when cover classes are smaller than spatial resolution of 
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the sensor in use (Zhu, 2005). Sub-pixel classification aims to reduce the effect of pixel 

mixing. 

Specific examples of algorithms that perform pixel unmixing in forest mapping and 

modelling are linear spectral unmixing (Kuusinen et al., 2013, Weng and Lu, 2008), 

spectral mixture analysis (SMA) (Thorp et al., 2013), multiple endmember spectral 

mixture analysis (MESMA) (Roberts et al., 1998) and the mixture tuned matched filtering 

(MTMF) (Jia et al., 2006). All these methods involve unmixing using estimation of 

endmembers representing the cover classes for each pixel.  

Proportional images from sub-pixel methods are important in mapping and monitoring 

of forest characteristics due to their recognition of the spatially heterogeneous mixture of 

species, shadow, soil, and epiphytes compared to just one cover type (Goodwin et al., 

2005). Each proportional map shows the approximate sub-pixel abundance and spatial 

distribution of that endmember (Adams et al., 1986). Another advantage of these methods 

is their ability to detect and map proportions of small features occurring at sub-pixel level 

such a less dominant cover type such as sparse trees (Tompkins et al., 1997).  

MTMF is different from other unmixing methods since it requires no prior knowledge or 

identification of all endmembers (Mehr and Ahadnejad, 2013). The abundance of 

endmembers is estimated by maximising responses of the known, user-defined, 

endmembers while minimising the unknown, hence the words “matched filtering” 

(Williams and Jr, 2002). Some studies recorded improvements in classification after using 

these sub-pixel classifiers (Bastin, 1997, Fisher and Pathirana, 1990, Foody, 1996, 

Gottlicher et al., 2009). MTMF had a higher accuracy than  per-pixel classification method 

of SAM in mapping forest canopy fuel attributes (Jia et al., 2006).  

This study examines among other things, the application pixel unmixing to discriminate 

semi-deciduous and evergreen forest species in South Africa’s Wild Coast region using 

both field spectral and multispectral data. The rationale is that within multispectral pixels 

there are mixtures of semi-deciduous and evergreen indigenous forests species. Masking 

is done before classification to restrict processing only to subtropical forests. The 

exclusion of areas of no interest is common in sub-pixel classification since it reduces the 

potential for spectral confusion (Foody, 2002a).  
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Against this wide background on classifiers, it is evident that there are no universally 

agreed upon algorithms, due to differences in environments, features of interest and data 

distribution.  

3.3.2 Forest management programmes using multispectral imagery  

International initiatives on forest monitoring using remote sensing are either being done 

by United Nations (UN) agencies, International Non-Governmental Organisations and 

researchers. The United States of America’s national agencies of National Aeronautics 

and Space Administration (NASA) and United States Geological Survey (USGS) are also 

active in this field since they own most of the operational satellites. For most of the global 

forest monitoring programmes, images from the Landsat programme have been widely 

used, for example, the Forest Resource Assessment (FRA) and the Global Forest Watch 

programme (Hansen et al., 2013). The Global Forest Watch programme by the World 

Resources Institute (WRI), launched in February 2014, is the most recent effort in 

mapping global forest cover changes. A global online map of forest gains and losses is a 

product of this initiative (Hansen et al., 2013). Other sensors used include Advanced Very 

High Resolution Radiometer (AVHRR) in the AVHRR Global Land Cover (Loveland et al., 

2000) and MODIS in the MODIS Land Cover Classification product (Hansen et al., 2000). 

These multispectral images were chosen due to the need for most of these programmes 

to have world coverage. However, the success of national and local level applications of 

these global programmes has been limited.  

There are also national and regional programmes in place, which apply remote 

sensing. Notable examples include land cover or forest monitoring systems in Australia 

(ADE, 2014, Lehmann et al., 2015), USA’s Forest Inventory and Analysis (FIA) (Barrett 

and Gray, 2011) Germany, European Union’s CORINE (EEA, 2007) Programmes, the 

Democratic Republic of Congo (DRC), Zambia, Indonesia, Ecuador and Paraguay (UN-

REDD, 2012). Some specifically monitor forest fires (Barrett and Gray, 2011) or forest 

health (Olsen et al., 1999). All in all, remote sensing has been recognised for its ability to 

monitor forests and hence the wide usage in different parts of the world as a management 

tool. 
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3.3.3 Tree phenology and multispectral remote sensing 

Phenology is one the important characteristic of forest species, which is essential for 

forest management. Phenology refers to the timing of the plant processes (Wu et al., 

2014), including the growing season and shedding of leaves by deciduous trees. Remote 

sensing has been instrumental in monitoring vegetation especially the growing season, 

through mapping dynamics of green vegetation (Hmimina et al., 2013). These 

phonological dynamics are not only important to forest management but they also 

determine the biogeochemical fluxes of carbon dioxide (Garrity et al., 2011). Therefore, 

forest phenology is essential, as it determines how much carbon dioxide is being 

sequestered by forests at any particular time (Richardson et al., 2009). For instance, 

deciduous forest species sequester less carbon during winter, when they lose many 

leaves. Semi-deciduous trees are those, which shed their leaves to cope with stress 

conditions (Calvão and Palmeirim, 2011). Evergreen on the other hand cope with stress 

internally while maintaining an intact green foliage (Calvão and Palmeirim, 2011). 

A time series of multispectral remote sensing data have been used to map 

phenological characteristics either using vegetation indices (VIs) such as the normalised 

difference vegetation index (NDVI) (Zhang and Goldberg, 2011). Garrity et al. (2011) 

noted that remote sensing applications to tree phenology are becoming important in 

global change studies. A notable state in deciduous forests phenology is fall foliage 

coloration, which is the stage when the greenness decreases during senescent stage in 

the fall (Zhang and Goldberg, 2011). Studies have shown the existence of a correlation 

between NDVI and the greenness in deciduous forests (Blackburn and Milton, 1995), 

coniferous forests (Jönsson et al., 2010) and semi-arid shrubland (Kennedy, 1989). 

Forest species may be classified based on their leaf conditions during the fall season. 

Cover classification based on phenology is possible (Leinenkugel et al., 2013, Rautiainen 

et al., 2009) especially if remote sensing data used coincide with leaf fall or the winter 

regeneration period. Remote sensing mapping of phenological classes (in deciduous and 

evergreen forest) has been mainly conducted using per-pixel algorithms and multispectral 

data (Achard and Estreguil, 1995). Different multispectral sensors were used to perform 

phenology-based classification (Leinenkugel et al., 2013, Zhang and Goldberg, 2011). 
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The classification of different phenological-based classes is done through measuring 

greenness on images. However, sensor characteristics, vegetation types and surface 

background features all affect the applicability of these models in different environments 

(Drake et al., 1999, Purevdorj et al., 1998).  

3.3.4 The relevance of SPOT 5 and 6 in subtropical forest 

characterisation 

Among the multispectral sensors used in previous studies on forest change and 

phenological classification are MODIS (Walker et al., 2012), AVHRR, Landsat (Knorn et 

al., 2009, Kozak et al., 2008) and SPOT HRVIR HRV (Rautiainen et al., 2009). These 

were mostly medium resolution sensors. With a spatial resolution of 10 metres, SPOT 5’s 

High Resolution Geometrical (HRG) images fall under the medium resolution sensors. In 

the present study, SPOT 5 imagery for the years 2005 and 2009 was classified to allow 

forest change analysis (Chapter 5). However, the 2013 SPOT image had to be resampled 

to 10m to allow a comparison of the classified map with the 2005 and 2009 products from 

SPOT 5. As shown in the table below, the four multispectral bands are located in the 

green, red, near infrared and mid infrared portions of the electromagnetic spectrum. In 

this thesis, nanometres (nm) are used as the measure of wavelength. The spectral 

characteristics of SPOT 5 HRG images are summarised in Table 3.1 below. 

 

Table 3.1: SPOT 5 Spectral properties (CNES, 2005) 

Band Band Width Spatial Resolution 

Band 1 500-590 nm (Green) 10m 

Band 2 610-680 nm (Red) 10m 

Band 3 780-890 nm (Near infrared) 10m 

Band 4 1580-1750 nm (Mid infrared) 10 m 

The SPOT 6 satellite that was launched on the 9th of September 2013 with four 

multispectral and one panchromatic bands (Yuan et al., 2014). SPOT 6 has a spatial 
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resolution of 6 metres among its multispectral bands and the four bands located in the 

blue, green, red and near infrared parts of the electromagnetic spectrum. Like other very 

high resolution (VHR) images such as Rapideye, Geoeye-1 and WorldView 2, SPOT 6 

has an advantage of enhanced capabilities, stereo, monoscopic and multiview images 

(Stumpf et al., 2014). SPOT 6 sensor is a multispectral sensor with 5 bands including the 

panchromatic one, with a swath of 60 km and revisit frequency of about 3 days (Airbus 

Defence and Space, 2014). The multispectral band specifications for SPOT 6 images are 

shown in Table 3.2 below: 

Table 3.2: Band specifications for SPOT 6 images (Airbus Defence and Space, 2014) 

Band Number Wavelength Spatial Resolution 

Band 1 Blue (0.455 – 0.525 µm) 6 m 

Band 2 Green (0.530 – 0.590 µm) 6 m 

Band 3 Red (0.625 – 0.695 µm) 6 m 

Band 4 Near-Infrared (0.760 – 0.890 µm) 6 m 

 

The state of the indigenous forests in 2013 was examined after SPOT 6 imagery 

classification. Chapter 8 integrated SPOT 6 multispectral with field spectral data to 

determine proportions of semi-deciduous and evergreen forests using sub-pixel 

classification. The high spatial resolution meant an improved sub-pixel characterisation 

of the subtropical forests. The location of the sensor’s high spatial resolution bands make 

it ideal for a study of this nature. Similar studies include use of SPOT 6 and other high 

resolution imagery in characterising aquatic vegetation (Allen and Suir, 2014) and 

estimating seasonal leaf area index using Rapideye (Tillack et al., 2014). 

  

3.4: Hyperspectral remote sensing applications in forests 

Species discrimination using multispectral remote sensing is often challenging due to 

spectral overlaps and the spectral and spatial resolution being low (Rosso et al., 2005); 
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hence the need for hyperspectral remote sensing. Hyperspectral remote sensing, or 

imaging spectroscopy, consists of three groups, that is, spaceborne, airborne and field 

based. Field-based hyperspectral remote sensing, also referred as field spectroscopy, 

makes use of spectrometers or spectroradiometers to measure canopy and leaf spectra. 

Airborne and spaceborne hyperspectral data is acquired in the form of hyperspectral 

images. While field spectroscopy measures in situ reflectance, hyperspectral images do 

provide top of the atmosphere (TOA) measurements, which can be modelled to top of the 

canopy (TOC). Hyperspectral remote sensing acquires data in as wide range of spectra 

that enables users to extract differences in spectral signatures (Aspinall et al., 2002). 

These images detect very narrow bands, for example 2 to 4 nm and hyperspectral 

sensors may record different absorption features such as chlorophyll (Franklin, 2001). 

However, one of the problems of hyperspectral data use has been access especially of 

some airborne hyperspectral platforms such as AVRIS particularly by most developing 

countries.  

Hyperspectral remote sensing is more suitable for identifying spectral differences 

between species that have vast differences in leaf angle, crown structure and colour 

(Cochrane, 2000). Species discrimination normally works for monotypic stands that occur 

in large stratifications (Zomer et al., 2009). The two general groups for species 

discrimination methods are empirical and physical based methods. These methods are 

used to identify and discriminate dominant plant species and functional types using 

empirical and physically-based methods (Dennison and Roberts, 2003). Empirical based 

methods, which rely on known leaf and canopy spectra therefore make adoption of 

methods in other environments a challenge (Schull et al., 2011). The physical based 

approach is based on the radiative transfer model of canopy spectral invariants. Canopy 

spectra were used to measure forage quality using regression modelling (Guo et al., 

2010).  

3.4.1 Forest leaf properties and spectral behaviour 

In forests, leaves contribute more to the total reflectance. The most notable factors are 

solar angle, plant chemistry, leaf chemistry, climatic conditions, surface conditions and 

plant structure (Barrett and Curtis, 1999). Species discrimination and classification 
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exploits the spectral behaviour of different species when exposed to light from the sun or 

artificial sources. The generalised spectral curve differs with different forest species and 

this is depicted by the behaviour in certain portions of the electromagnetic spectrum. The 

success of a spectral discrimination exercise depends on the chosen spectral sections of 

the spectrum (Vaiphasa et al., 2007). The vegetation reflectance curve depicts a certain 

unique shape that is determined by the above factors, which differ with different species. 

Besides the leaf’s internal structure, water content and other leaf-based factors, it is worth 

noting that there are other factors, which affect reflectance in forest leaves and canopies. 

Factors affecting vegetation reflectance include phenological stage, leaf properties (leaf 

area and leaf angle distribution), vegetation height, tree size, fractional cover of 

vegetation, background effect, as well as health and water content of leaves (Woodstock 

et al., 2002). 

In order to understand spectral discrimination in a forest, there is a need to know the 

behaviour and influences of different factors within the main wavelength regions. These 

unique sections of vegetation reflectance curve are the visible bands, red edge, near 

infrared and mid-infrared sections. In the visible bands, variability of reflectance curves is 

mainly due to species’ different reflectance to visible light sources (Curran, 1989), 

especially at the cell wall-air interface of both mesophyll sponge and palisade (Barrett 

and Curtis, 1999). At wavelengths 500-750 nm, there is absorption due to pigments such 

as chlorophylls a and b, carotenes and xanthophyll (Barrett and Curtis, 1999). In the red-

edge zone, there is separation of species that have leaf structure, pigments and water 

content (Curran, 1989). The near-infrared region is characterised by species’ spectra 

differing more due to differences in internal leaf structure such as intercellular volume 

(Curran, 1989). There is high reflectance and low absorption because of the leaf’s internal 

structure especially between 750 and 1350 nm (Barrett and Curtis, 1999). Internal 

structure and foliar biochemical contents of the leaf determines dissimilarity in the mid-

infrared zone (Curran, 1989). There are absorption features between 1350 and 2500 nm 

due to water content in leaves. (Barrett and Curtis, 1999).  

Although hyperspectral remote sensing is ideal for species discrimination, it is 

susceptible to data redundancy problems at band level (Adam and Mutanga, 2009, Bajwa 

et al., 2004). There are also concerns on the use of hyperspectral remote sensing, which 
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include the influence of atmospheric variation, soil background, leaf distribution and 

orientation (Asner et al., 2000). This is mainly a problem in arid and semi-arid 

environments. The data redundancy issues are often solved by methods for wavelength 

selection, also termed band selection or dimension reduction methods. 

3.4.2 Dimension reduction methods 

The presence of many bands in hyperspectral data is problematic due to covariance  

matrix inversion (Vaiphasa et al., 2007), a scenario called the Hughes phenomenon 

(Sreekala and Subodh, 2011). There is also the risk of overfitting the classification due to 

redundancy imposed by co-linearity of the bands (Mutanga et al., 2009). It does become 

necessary to reduce band number by selecting the most relevant ones. Dimension 

reduction, therefore, reduces processing burden as well as deepens the understanding 

regarding appropriate regions for indigenous forest discrimination. High dimensionality 

introduces redundancy since most of the neighbouring wavelength bands have highly 

correlated information (Chan and Paelinckx, 2008) therefore presenting need for selection 

methods. Dimension reduction procedure there seek to identify wavelengths bands which 

are optimal for discriminating the target variable without losing information (Adam and 

Mutanga, 2009). 

Among the methods used in species discrimination are the partial-least square 

(Peerbhay et al., 2013), principal component analysis (Castro-Esau et al., 2004, Gutiérrez 

et al., 2014), wavelet transform (Bruce et al., 2002). stepwise discriminant analysis 

(Manjunath et al., 2013, Vyas et al., 2011), genetic algorithms (Vaiphasa et al., 2007), 

integrating Kruskal-Wallis with Classification and Regression Trees (CART) (Fernandes 

et al., 2013); and sequential forward floating (Nakariyakul and Casasent, 2009). Of note 

is another hierarchical method that involves One-Way Analysis of Variance ANOVA with 

posthoc and CART (Adam and Mutanga, 2009). In the present study, the selected bands 

were evaluated using the Jeffries-Matusita or Bhattacharya distance methods (Fernandes 

et al., 2013, Schmidt and Skidmore, 2003). The step-by-step explanation of the 

hierarchical method of dimension reduction method used in this study is contained in the 

Methodology chapter.  
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3.4.3 Species discrimination methods used in hyperspectral remote 

sensing 

Many factors affect light reflectance of vegetated surfaces. In forests, leaves contribute 

more to the total reflectance. Most notable factors are solar angle, plant chemistry, leaf 

chemistry, climatic conditions, surface conditions and plant structure (Barrett and Curtis, 

1999). Species discrimination and classification exploit the spectral behaviour of different 

species when exposed to light from the sun or artificial sources. The generalised spectral 

curve differs with different forest species and this is depicted by the behaviour in certain 

portions of the electromagnetic spectrum. The success of a spectral discrimination 

exercise depends on the chosen spectral sections of the spectrum (Vaiphasa et al., 

2007). The vegetation reflectance curve depicts a certain unique shape that is determined 

by the above factors, which differ with different species. 

The spectral profile of forest leaves and canopies is manipulated differently by various 

classifiers to achieve species discrimination. Examples of the classifiers used in species 

discrimination using hyperspectral remote sensing include the linear discriminant analysis 

(LDA) Clark (Clark et al., 2005), partial-least square discriminant analysis (PLS-DA) 

(Peerbhay et al., 2013), neural networks (Armando et al., 2013), Naïve Bayes (Bickel and 

Levina, 2004) and random forest algorithm (Chan and Paelinckx, 2008). These classifiers 

differ in the way they use statistics to make the discrimination. Some studies refer to them 

as machine learning algorithms. Each of the classifiers has had success in different 

studies as shown by a few examples. LDA, PLSDA and RF were the three classifiers 

tested for accuracy in the discrimination of subtropical forest species at leaf-scale using 

the selected wavelengths from the hierarchical method. 

Linear methods work with an assumption of multi-normality of the data or that the ratio 

between observations and variables greater than 2 or 3 (Ballabio et al., 2006). The 

methods identify linear combinations of features describing or separating two or more 

classes by maximising the between group variance while minimising within group 

variance (Gromski et al., 2014). Among its advantages is the issue of being simple and 

fast to execute, although it struggles with large numbers of classes (Gromski et al., 2014). 

It is noteworthy, however, that the current study only had 15 classes, hence the 
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disadvantage of large numbers had less impact. In a study by (Clark et al., 2005), the 

LDA performed well in the identification of tropical rain forest species.  

PLSDA is a linear method which searches for variables and directions at a multivariate 

scale to explain the class categories (Paz-Kagan et al., 2014). It is based on the partial 

least square regression of categorical variables or continuous data. (Gromski et al., 2014) 

The strengths of the model were evaluated using the overall accuracy and Kappa 

coefficient values. Despite it being used in species discrimination, the method may also 

be used for wavelength selection. Previous research on species discrimination using 

PLS-DA include discriminating six commercial forest species (Peerbhay et al., 2013) and 

corn from grasses and weeds (Longchamps et al., 2010). 

Although the Random Forest (RF) is also useful as a dimension reduction technique 

(Ismail and Mutanga, 2011), it was used as a classifier for leaf-scale discrimination of 

subtropical forest species in the present study. Breiman (2001) defined the RF as non-

parametric classifier consisting of tree-like structures with each tree selecting the most 

important class. The pixel will then be allocated the most popular class among the 

submissions from various individual trees. The RF is part of “ensemble learning” 

algorithms, which create many classifies and aggregate their result for final classification 

(Liu et al., 2013). Unlike other methods, more trees give a limiting value for the 

generalisation error thereby avoiding over-fitting of the model (Breiman, 2001). The 

method also possesses an internal validation mechanism called ‘out-of-bag bootstrapping 

(OOB) estimate of error’, hence the method does not require further validation (Chan and 

Paelinckx, 2008). Examples of the use of the random forest method with high accuracy 

include discrimination of tree species (Dalponte et al., 2012), papyrus vegetation (Adam 

et al., 2012) and in ecotope mapping (Chan and Paelinckx, 2008).  

3.4.4 Upscaling of field spectroscopy and its integration with 

hyperspectral and multispectral imagery 

Field spectroscopy on its own has shown ability to establish phenological changes 

(Carvalho et al., 2013, Cole et al., 2014) while multispectral images did the same on their 

own (Tillack et al., 2014). The capabilities of the two on their own coupled with the 

availability of the high spatial resolution SPOT 6 imagery motivated the present study, 
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especially the last part on data integration and sub-pixel classification. The upscaling of 

field spectroscopy has been done to model leaf level reflectance to top of the canopy 

(TOC) and top of the atmosphere (TOA) measurements (Cho et al., 2010, Kempeneers 

et al., 2004). Canopy reflectance can also be simulated from leaf reflectance using 

radiative transfer models such as 4SAIL, PROSAIL and PROSPECT-SAILH (Cho et al., 

2008, Jacquemoud et al., 2009). 

The integration of field spectroscopy data has been mainly with hyperspectral images, 

from both spaceborne and airborne platforms due to similar high spectral resolution. 

Notable examples include the integration of spectroscopic data with hyperspectral 

imagery to discriminate tropical forest species (Clark et al., 2005). However, there are 

also examples of integration of field spectroscopy with multispectral data in vegetation 

studies (Curatola Fernández et al., 2013, Mutanga et al., 2015). One of the challenges of 

the integration with multispectral imagery is to do with spectral resolution differences. 

Field spectroscopy data cover a wider spectral range than multispectral remote sensing. 

In previous studies, resampling field spectra was done to Sumbandila (Oumar and 

Mutanga, 2010), Quickbird (Fernández et al., 2013) and to WorldView-2 (Mutanga et al., 

2015) sensors in order to overcome this challenge. 

3.5: Summary 

In summary, the subtropical part of the forest biome of South Africa face threats, which 

are linked to the consumption by communities both in urban and local communities. In 

this chapter, evidence is presented to confirm remote sensing as a key tool in forest 

management. Different remote sensing data sources and classifiers were presented with 

their previous success in analysing forest characteristics. The classifiers used in field 

spectroscopy and multispectral images are many and each has its own merits and 

demerits. This review also shows that there is no universally accepted classifier, since 

performance varies with field of application, features and environment of interest. 

Therefore, in both forest change analysis and species discrimination, an effort is made to 

identify the most suitable classifier. There is much information that can be derived from 

field spectral and multispectral data including forest type, forest change and species 

discrimination. The information is presented at leaf, pixel and sub-pixel levels. 
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Multispectral images give a synoptic view of forest conditions while field spectroscopy 

allows more spectral characterisation. This research is thus motivated by other integration 

studies in the past, as well as prospects of improved characterisation of forests through 

data integration. 
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Methodology 

4.1: Introduction 

As explained earlier in Chapter 1, this chapter is an overarching one in which all the 

methods and data analysis techniques used are presented. A description of the sampling 

design and field data collection processes is provided first.  

4.2: Sampling design 

Sampling is a process employed to select a number of units for measurement in order 

to make accurate estimations about conditions in the area of study (Franklin, 2010). The 

sampling procedure used was stratified random sampling, which was best suited for 

collecting unbiased data that allows broader scale inferences to be drawn. Stratified 

random sampling is a probability sampling technique that divides the study area into two 

or more non-overlapping sub-populations (strata) that are sampled using different 

inclusion probability rules (Gregoire and Valentine, 2004). The selected sampling 

technique was suitable for this study since it is more forest specific than other land cover 

types. The lack of land cover homogeneity in the study area made stratified random 

sampling ideal for this kind of study as well. Non-forested and forested areas were the 

two strata types. 

A division of the study area into forested land and non-forested land was necessary. 

The inclusion probability was 0.95 for forested lands and 0.05 for non-forested lands. An 

inclusion probability allows for the insertion of a rule for sample selection (Gregoire and 

Valentine, 2004); that is, either from a forested or non-forested portion of the study area. 

The formula used for calculating the sampling frame is shown in Equation 1 below. 

Selected points acted as central points for 30*30 square quadrats for the collection of 

independent and additional data such as land cover type and dominant species.  

(Equation 1) 

 

Where: n is the number of sample units 

𝑛 =  (
𝑡𝐶𝑉

𝐸
)

2
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  E is the allowable percentage of error 

  CV represents confidence interval 

  t is the value from the t distribution table    (Erk et al., 2003) 

 

A confidence interval is a measure of variability of size or density of a study area’s 

forests (Erk et al., 2003). The allowable percentage of error of 5%, confidence interval of 

30, and a t value of 2 were selected in calculating sample size. The calculated sampling 

size was 100 sampling units but some sites turned out to be inaccessible and thus only 

71 points were analysed. Higher values of confidence interval, such as 30, normally work 

for forests whose size and density are not uniform (Erk et al., 2003). The selected points 

are shown in Figure 4.1 below. 

 

Figure 4.1: Sampling points in the study area in Port St Johns. 

The 71 data points mentioned above were for collecting field data used in forest change 

analysis (Chapter 5). The field spectral measurements were made from 24 random points 

out of the 71 selected. A total of 132 leaf spectra were collected from these points and 
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used in Chapter 6 and 7 while 24 spectral reflectance samples from dominant species 

were used in Chapter 8. 

4.3: Primary Data collection 

Data for this study were collected from a number of sources, including field-collected 

data, multispectral images and leaf spectral measurements. The following sections 

explain the data collection techniques used. 

4.3.1 Field data collection 

Ancillary field data were collected for the period May-July 2013. The research team 

(that included forest officers from DAFF) identified the species within sampling plots by 

either their Botanical or Xhosa names. The randomly selected points were navigated 

using a handheld centimetre level precision Ashtech®ProMark2™ Global Positioning 

System (GPS). Upon reaching the selected sites, field data for cover, canopy species, 

altitude and other forest related variables were collected within a 30m square quadrat, 

using the selected point as a centre of this quadrat. The research team that navigated its 

way into one of the forest patches to collect field data is shown in Plate 4.1. 
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Plate 4.1: An example of a section of one of the indigenous forests in the study area 

4.3.2 Multispectral data used 

SPOT 5 and 6 scenes with four multispectral bands were sourced from the South 

African National Space Agency (SANSA). The SPOT 5 multispectral bands were from the 

High Resolution Geometrical 2 (HRG 2) sensor and the SPOT 6 instrument. These 

images were used in multispectral analysis for forest change analysis and improved forest 

cover mapping. The spatial resolution of the two instruments SPOT 5 and 6 are different 

at 10m and 6m respectively. SPOT 5 and 6 were chosen as sensors of choice due to their 

availability and affordability and general convenience in developing countries, such as 

South Africa. There was no SPOT 5 imagery for 2013 hence the mixture of the sensors. 

All the images used were for the same season (period between March to July) and 

selection of the years 2005, 2009 and 2013 were mainly due to the availability of clear 

images in that same season. However, the spectral bands and wavelength ranges 

covered by the respective bands are the same. Spatial resampling was applied to all the 

images in order to render them comparable. SPOT 6 imagery was resampled to 10m 

resolution.  
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4.3.3 Spectral measurements of forest species’ leaf spectra 

Ground-based hyperspectral data were collected using a spectroradiometer, Spectral 

Evolution PSR-3500. Hyperspectral remote sensing is quantified by the percentage of 

light emitted from a surface compared to all light directed to the object of interest that is 

incident on the sample (Armando et al., 2013). In-situ spectral measurements were made 

during the day when the sun angle was equal or greater than 45º. This instrument has a 

wavelength range of 350-2500 nm and a spectral resolution of 3 nm for wavelength 

interval 350-700 nm, 10 nm at 700-1500 nm and 7 nm at 1500-2100 nm. The 

spectroradiometer had a leaf clip with an internal light source for measuring leaf 

reflectance. A leaf clip with an internal power source has the ability to measure reflectance 

with less distortion from the soil background and other small species (Vaiphasa et al., 

2005). The instrument was calibrated using a white reflectance panel after every 15 

minutes to minimise variation due to changes in sun angle during measurements. This 

procedure was meant to limit the effect of bidirectional reflectance. 

Data collection involved leaf preparation and leaf spectral measurement. Five samples 

were collected from different parts of each tree’s canopy. The spectral response of each 

forest species at each sampling site was measured 5 times; this was from leaves coming 

off different parts of the tree canopy. All in all data was collected from 24 sampling sites 

in the study area therefore we obtained 24 spectra for dominant species (used in Chapter 

8) and 132 leaf reflectance samples (used in Chapter 6 and 7). Plate 4.2 below illustrates 

the spectroradiometer and the attached leaf clip used in collecting leaf spectra.  
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Plate 4.2: The Spectral Evolution Spectroradiometer PSR3500 series 

Fifteen dominant indigenous species (listed in Table 4.1 below) were identified. 

Table 4.1: Number of reflectance samples measured in this study 

Botanical Name 
Number of 
samples 

Brachylaena discolour 5 

Buxus natalensis 16 

Cassine palilosa 4 

Celtis Africana 10 

Cryptocarya latifolia 10 

Ficus natelensis 6 

Grewia lasiocarpa 5 

Halleria lucida 5 

Harpephyllum caffrum 5 

Heywoodia lucens 10 

Millettia grandis 15 

Millettia sutherlandii 5 

Mimusops caffra 10 

Searsia chirindensis 5 

Vepris undulate 10 

Total 132 
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4.4: Data Analysis  

This section presents methods used in multispectral, hyperspectral (spectral 

discrimination), classifier development and improvement of multispectral images using 

field spectroscopy data. The study employed ENVI Image Analysis software for analysis 

multispectral images and as well their integration with field spectroscopy with data. Data 

analysis for selection of optimal wavelengths and species discrimination at leaf scale were 

conducted in R Statistical Computing software (R Development Core Team, 2008). In 

some most cases different classifier require a different R package and these are 

mentioned under the data analysis methods of the respective classifiers. 

4.4.1 Methods used in multispectral analysis of forest changes. 

Spot 5 and 6 multispectral images were pre-processed by way of geometric and 

atmospheric correction to eliminate location distortions and errors due to atmospheric 

constituents respectively. The study used ENVI 5.0 software for all multispectral analysis. 

The atmospheric correction algorithm called Quick Atmospheric Correction (QUAC) was 

employed, which makes use of central wavelengths and their radiometric calibration 

(Bernstein et al., 2008). The method has advantages in terms of speed and avoiding 

calculation of first-order radiation transport when compared to the physics-based models 

like Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) (Bernstein et al., 

2012). Output images represented surface reflectance scaled into byte-signed integers 

and used a reflectance scale factor of 10000. Images for the years 2005, 2009 and 2013 

underwent the same QUAC procedure before the subsequent step of supervised hard 

classification. 

A land cover-based classification was conducted in the form of supervised hard 

classification. Forest Managers at the Umtata Office of DAFF assisted in identifying 

various forest-based land cover classes on the multispectral images of the period 2004-

2013. The main motivation for using DAFF officials was that most of the images in this 

range were historical and these officials already had several years’ experience working 

in the study areas. As such, they could identify land cover features easily as well as 

provide some context. The main classes identified were water, bare/built-up, 

grassland/pasture, woodland, less dense forest and dense forest. These classes were 
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adopted and modified from the United States Geological Survey’s (USGS) Land Use Land 

Cover (LULC) levels. Four supervised classification algorithms were tested on the 2013 

SPOT 6 image, namely maximum likelihood, minimum distance, spectral angle mapper 

(SAM) and spectral information divergence (SID). The four algorithms perform different 

statistical procedures to allocate unknown pixels to different classes. Given these 

differences, it was imperative to evaluate their performance in land cover classification 

with special interest in changes in subtropical forests. 

a) Maximum Likelihood Algorithm (MLA) 

Maximum likelihood algorithm (MLA) is a hard classification technique, which calculates 

the probability of any pixel being a member of any of the cover classes and assigns a 

pixel to its most likely class (highest probability value) (Atkinson and Lewis, 2000, Shafri 

et al., 2007). This classifier uses statistics to allocate classes to the rest of the image 

based on their location in relation with the equi-probability contour around training data 

set points. These contours represent the probability of membership to a certain class and 

they tend to decline away from the mean centre (Mather and Koch, 2011). The 

parameters of location, shape and size of the ellipse represent the mean, variance and 

covariance of the features (Mather and Koch, 2011). It works when distribution of training 

data is based on a normal Gaussian model (Jensen, 2005, Tan et al., 2011). MLA uses 

the following discriminant function in allocating pixels of the image a class: 

𝑔𝑖(𝑥) = ln 𝑝(𝑤𝑖) −  
1

2
ln|∑ 𝑖| −  

1

2
(𝑥 − 𝑚𝑖)𝑡 ∑ 𝑖−1(𝑥 − 𝑚𝑖)   Equation 2 

Where:  

𝑝(𝑤𝑖) is the probability of wi class occurring that is assumed equal for all classes 

𝑥 is n-dimensional data (n represents the number of bands) 

i represents class 

mi represents mean vector 

|∑ 𝑖| is the determinant of covariance matrix in class wi 

∑ 𝑖−1 is the inverse matrix of the determinant of covariance matrix in class wi  

          (Shafri et al., 2007). 

The discriminant 𝑔𝑖(𝑥) was calculated for all the classes and for each pixel, the class 

with the highest value was selected as its final class.  
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b) Minimum Distance classifier 

The minimum distance algorithm uses the spectral feature space’s Euclidean distance 

between the value of the unknown pixels and class means (Atkinson and Lewis, 2000) to 

assign unknown pixels to different classes. The method estimates class mean vectors 

and then assigns pixels to classes whose mean is at a minimum distance from the pixel 

data vector (Dwivedi et al., 2004). There is an option of users defining the distance 

threshold and if a pixel is further than the user-defined distance, it is classified as 

‘unknown’. In this study, no distance threshold was defined since the aim was to classify 

all pixels and then evaluate the classification using independent data. In such a scenario, 

unclassified pixels would have complicated the classification. 

The minimum distance classifier has the main advantage of being quick in its 

calculation but its main disadvantage is the assumption that classes are symmetric in a 

multispectral space (Dwivedi et al., 2004). In cases of no symmetric boundaries between 

classes, the minimum distance algorithm is likely to cause a misclassification of pixels 

(Hubert-Moy et al., 2001).  

c) Spectral Angle Mapper (SAM) 

The Spectral Angle Mapping (SAM) algorithm uses the coefficient of proportionality 

(cosine theta) to allocate classes to unknown pixels (Mather and Koch, 2011) and this 

coefficient is a measure of difference in the shapes of spectral curves. The method 

compares spectral similarity by calculating the angle between reference spectrum and 

each pixel vector in an n-dimensional space (Kruse et al., 1993). Dimensionality is 

determined by the number of bands on the multispectral images. The smaller the angle, 

the closer the target is to reference spectrum.  

In the present study, the maximum angle was not specified to limit the presence of 

unclassified pixels. The advantages of SAM include being simple and time efficient due 

to its linearity (Garcia-Allende et al., 2008). Another advantage this technique has is that 

illumination differences across landscapes do not distort the final classification result 

(Harken and Sugumaran, 2005). There is more emphasis given to target reflectance 

characteristics by suppressing the influence of shading effects and assumes that data are 

normally distributed (Petropoulos et al., 2010).  
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d) Spectral Information Divergence (SID) 

Spectral Information Divergence (SID) is a spectral classification method that uses a 

divergence measure to match pixels to reference spectra. SID considers each pixel to be 

a random sample, defines each pixel’s probability distribution and assesses the 

probabilities between the spectra to measure the similarity between two pixels (Chang, 

1999). The smaller the divergence, the more likely the pixels are similar and pixels with a 

measurement greater than the specified maximum divergence threshold are not classified 

(Du et al., 2004). The formula for determining SID is well explained in Chang (1999) where 

it outperformed the spectral angle mapper. Its main advantage is that of being a random 

probabilistic approach as opposed to a SAM’s deterministic approach (Chang, 1999). In 

this study, SID was used for per-pixel instead of mixed pixel classification. 

e) Accuracy Assessment 

The performance of the four classification algorithms were evaluated using overall 

accuracy and the Kappa coefficient from a confusion matrix. The confusion matrix is the 

most widely used method of measuring accuracy in remote sensing (Foody, 2002b). 

There are many accuracy measures that can be derived from a confusion matrix, all with 

their strengths and weaknesses (Lark, 1995). Some studies recommended use of two or 

more measures from the confusion matrix (Muller et al., 1998). In this study, overall 

accuracy and the Kappa coefficient were chosen to capture the accuracy levels of the 

classification methods. Although other accuracy methods have been proposed (Pontius 

and Millones, 2011) in place of Kappa, this study used Kappa due to its continued use 

(Cracknell and Reading, 2014, Rozenstein and Karnieli, 2011). Another point to note is 

that the main metric for accuracy assessment was overall accuracy and Kappa was there 

to confirm overall accuracy results. Another reason for using Kappa is that this study 

adhered to the good practices on sampling design, response design and analysis thereby 

improving the performance of Kappa (Olofsson et al., 2014). Although Kappa is highly 

correlated to overall accuracy (Olofsson et al., 2014), the study used both methods as 

way of performing a double confirmation of the accuracy. The independent data was then 

used for validation using the confusion matrix.  
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Accuracy assessment is a measure for map quality and in this case goes further and 

evaluates the performances of different algorithms on the 2013 SPOT 6 imagery. It also 

helps in understanding errors (Foody, 2002a) within satellite image data. Overall accuracy 

is defined as the percentage of correctly classified pixels and is calculated by the following 

formula based on the confusion matrix: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑎𝑖𝑖𝑖

𝑁
       Equation 3 

Where  ∑ 𝑎𝑖𝑗𝑖  = sum of diagonal cells (the correctly classified points) 

N = total number of sample pixels 

Overall accuracy ranges from 0-100%, where higher percentages mean higher 

accuracy levels of the classification method. Although there is no acceptable overall 

accuracy threshold for land cover classification, this study adopted 85% from an earlier 

study (Thomlinson et al., 1999). Overall accuracy was supported by the Kappa coefficient 

that measures levels of agreement between the classified image and ground truth data. 

The Kappa coefficient was calculated from the confusion matrix using the following 

formula: 

Kappa =
Ν ∑ 𝑎𝑖𝑖−∑ 𝑎𝑖𝑖+𝑎+𝑖𝑖𝑖

𝑁2−∑ 𝑎𝑖+𝑎+𝑖𝑖
       Equation 4 

Where  𝑎𝑖𝑖 = pixels from the ith class that have been classified as ith class 

𝑎+𝑖 = is the ith column marginal (sum of row entries) 

N = total number of samples pixels (Hubert-Moy et al., 2001) 

The values of Kappa range from 0-1 with values closer to 1 depicting high level of 

agreement between the classified map and validation data. Kappa results were 

interpreted using the rules mentioned in Table 4.2 and adapted from a related study 

(Landis and Koch, 1977). 

4.4.2 Selection of significant wavelengths for species discrimination 

Pre-processing of field spectroscopy data involved using a moving average and 

spectrum differential processing to eradicate soil background effects. The pre-processing 

technique also removed high frequency noise. The first step in this scenario was 

visualising the mean spectra for the observed 15 indigenous forest species in order to 
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assess if spectral separability was possible using all wavelengths. The Spectral Evolution 

Spectroradiometer’s inbuilt software converted canopy spectral measurements to 

reflectance measurements in percentage. As shown in Figure 5.1 in chapter 5, plotting 

mean spectra for all the species in all wavelengths showed less information on 

separability. The spectral profiles of all forest species depicted less variation compared 

to profiles of forests and other surfaces like grassland, hence the use of statistical 

methods to identify significant bands and their separability.  

The comparability of the indigenous forest species and hyperspectral data 

dimensionality were the major challenges in indigenous species classification. The 

Shapiro-Wilk test was included as a preliminary statistical test for assessing the data’s 

fulfilment of the assumption of normality. The hierarchical method for dimension reduction 

was used. It involves One Way Analysis of Variance (ANOVA) with post hoc analysis, as 

well as Classification and Regression trees (Breiman et al., 1984), as used in previous 

studies (Adam and Mutanga, 2009, Padalia et al., 2013, Visser et al., 2013).  

After determining significant wavelength spectral separability, the Jeffries-Matusita 

distance method measured their spectral separability. Below are the four general steps 

taken. Data analysis for selection of wavelengths was conducted using different packages 

of R Statistical Computing Software (R Development Core Team, 2008). 

 

a) One Way ANOVA with post hoc correction 

The need to test and select significant bands for species discrimination makes this 

stage essential. At this stage, what is tested is whether there is a significant difference in 

species reflectance in different bands or not. Some authors used this step as a first step 

towards species discrimination (Adam and Mutanga, 2009). While others preferred 

methods such as” wrapper feature selection (Vaiphasa et al., 2005), genetic search 

algorithms (Vaiphasa et al., 2007), sequential forward floating selection (Serpico and 

Bruzzone, 2001) and principal component analysis (Armando et al., 2013, Lee and 

Seung, 1999, Tsai et al., 2007). Band selection/dimension reduction is critical in the 

spectral separability exercise because it reduces the problem of high dimensional 
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complexity, wavelengths correlations and data redundancy (Balabin and Safieva, 2011, 

Vaiphasa et al., 2007). 

A One-Way Analysis of Variance (ANOVA) with Bonferroni correction at 95% 

confidence intervals (p < 0.05) was used. One way ANOVA is a statistical test of 

differences in mean spectral reflectance values for all combinations of 15 forest species 

at each measured wavelength band. These two techniques assist in narrowing down to 

significant bands for indigenous species discrimination. The three 

conditions/assumptions of ANOVA are that data should be randomly sampled, normally 

distributed and data type be interval/ratio (Barrett and Curtis, 1999). The spectral 

reflectance used met all ANOVA criteria. A significant difference among species’ 

reflectance at each wavelength was determined using the null hypothesis for ANOVA’s 

F-test, stating that there is no significant difference between pairs of species at each 

wavelength. The research hypothesis stated that there was a significant difference in the 

species reflectance of subtropical forest species between different wavelengths. The 

following formula summarises both the null and research hypotheses: 

𝐻0: 𝜇350 =  𝜇351 =  𝜇352 =  𝜇353 … … … . =  𝜇2500  

𝐻1: 𝜇350 ≠  𝜇351 ≠  𝜇352 ≠   𝜇353 … … … . ≠  𝜇2500    Equation 5 

Where: H0 represents Null Hypothesis 

𝜇𝑥 is the mean reflectance of the measured 15 forests species at x spectral 

wavelength band from (350nm to 2500nm) 

ANOVA tested the above hypothesis using an F test, which is calculated from within-

group and between-group variances. A set of equations below best illustrates how the 

ANOVA procedure is calculated: 

𝐴𝑁𝑂𝑉𝐴 𝐹 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  
𝑠𝑤

2

𝑠𝑏
2       Equation 6 

Where:  𝑠𝑤
2  represents the within group variance 

   𝑠𝑏
2 represents the between-groups variance (Walford, 2011). 

The next stage after ANOVA was a post-hoc comparison procedure, Bonferroni, which 

controls the rate of performing a Type 1 error across multiple combinations. A Type 1 
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error represents the probability of rejecting a null hypothesis by mistake. The rationale 

behind the tests is that when using ANOVA, the F-statistic only indicates a difference 

between the means somewhere among the combinations. The post-hoc procedure, 

therefore, compares each mean with every other mean and reduces the probability of 

committing a Type 1 error. The adjustment is done in R statistical software where the 

resulting p values are evaluated for a significant difference of the different wavelengths 

among the different species combinations. The results from the ANOVA test indicate at 

which wavelengths forest species are most likely to be spectrally different, hence the need 

for further selection of most optimal spectral regions using the classification and 

regression trees method. 

b) Classification and regression trees algorithm 

The classification and regression trees (CART) method analyses the explanatory 

variables and makes binary divisions to reduce deviance in the response variable 

(Lawrence and Wright, 2001). The method has been used in classification and recursive 

partitioning for the past 30 years (Breiman et al., 1984). In this case, the explanatory 

variables are the spectral reflectance values while the species name lists are the 

response variables. Unlike results from ANOVA, results from CART do not guarantee 

separability of species based on individual wavelength bands (Visser et al., 2013). CART 

classifies explanatory variables using a two-stage approach of selecting the best fit for 

each response variable, as well as the best overall fit (Berk, 2008). In both stages, the 

method uses the sum of squares to split the data first to determine the best fit for each 

predictor and finally for the overall best fit. Within and between variance among the 

response variables determine the sum of squares measure (Berk, 2008). After these two 

stages, data splits into two subsets. Training data is used in selecting wavelength bands 

for splitting after searching for possible variable combinations. This allows the selection 

of an optimum number of bands for species classification (Visser et al., 2013). CART 

algorithm repeats the two-stage splitting process on the two subsets and the next 

subdivisions until there is a set of homogenous nodes, a process called recursive 

partitioning. The output of this method is a graph, which resembles an inverted tree 

showing main/root node being the trunk, splitting nodes branches and final/terminal nodes 

being the leaves.  
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The final homogenous nodes therefore show the grouping of reflectance values based 

on species. Information about the bands that allow the discrimination of these species 

comes in the form of rules for splitting at each node. Classification of final nodes is 

according to the response variables; that is, species name. However, it does not show 

the separability of the identified wavelengths in discriminating subtropical indigenous 

forest species. The next section, therefore, tested the separability of these identified 

bands using a distance measure called the Jefferies-Matusita (JM) separability index. An 

evaluation of the importance of the previous step of ANOVA was conducted by comparing 

results from CART analysis using the bands from the 99% confidence level regions 

against the full set of bands.  

c) Spectral separability analysis 

After selecting the significant bands, Jeffries-Matusita (JM) separability index was used 

to test the sensitivity of pairs of classified classes, that is, the different subtropical 

indigenous species. JM measures the average distance between two class density 

functions (Fernandes et al., 2013). The main reason for performing spectral separability 

was to minimise chances of Type 1 error (Vaiphasa et al., 2005) hence the need to 

confirm the separability of the selected wavelengths. The measure accurately quantifies 

spectral separability between pairs of variables and is calculated from the Bhattacharya 

distance (Adam and Mutanga, 2009, Glenday, 2008, Padalia et al., 2013, Vaiphasa et al., 

2005). In this study, the JM distance method evaluated the separability of the different 

species using the statistically significant wavelengths selected in previous sections of 

ANOVA with posthoc and CART. The significant spectral bands used in this separability 

analysis were selected from one-way ANOVA with Bonferroni correction and CART. 

Calculation of the JM separability index was based on the following equation (Equation 

5): 

𝐽𝑀𝑖𝑗 = √2(1 − 𝑒−𝐵𝐷)       Equation 7 

Where 𝐵𝐷 =
1

8
(𝜇𝑖 − 𝜇𝑗)

𝑇
(

𝐶𝑖+𝐶𝑗

2
)

−1

(𝜇𝑖 − 𝜇𝑗) +
1

2
𝐼𝑛 (

1

2
|𝐶𝑖+𝐶𝑗|

√|𝐶𝑖|x|𝐶𝑗|
) Equation 8 

   BD represents Bhattacharya distance 
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i and j are the spectral responses, 

   C is the covariance matrix of i and j, 

μ is the mean vector of spectral response, 

T is the transposition function and  

|C| is the determinant of C.    (Glenday, 2008) 

The output for JM distance analysis is a spectral distance ranging between 0 and 2 

(Vaiphasa et al., 2005). JM distance values evaluate separability between pairs of 

species. A separability index of about  ≤1.95 is widely accepted as depicting a strong 

separability (Glenday, 2008) between the indigenous forest species. A JM distance value 

of 2 depicts a classification procedure that is 100% accurate while 0 implies that selected 

signatures are totally inseparable (Lasaponara and Masini, 2007). The JM distance value, 

therefore, determined if reflectance at the selected optimal wavelengths were showing 

separability. This is translated to the ability of reflectance at the selected wavelengths to 

discriminate the 15 subtropical forest species. 

4.4.3 Developing and evaluating classifiers for species 

discrimination 

Using the selected significant wavelengths, all measurements were then divided into 

two, one (65%) for classifier development and the other (35%) for testing the classifiers. 

The overall aim of classifiers is to assign each pixel to predefined classes and help predict 

classes for new instances (Li et al., 2006). In designing the best method for indigenous 

forests, three machine learning based classifiers were performed. The three classifiers 

included in this section consisted of Linear Discriminant Analysis (LDA), Partial Least 

Squares Discriminant Analysis (PLS-DA), and Random Forest (RF) analysis. All data 

manipulation steps were employed using relevant tools (packages) in R Statistical 

Computing software.  

a) Linear discriminant analysis (LDA) 

Linear discriminant analysis (LDA) uses statistics to find linear combinations of features 

that can discriminate data into different classes. In some studies, the method is referred 

as Fischer’s linear discriminant analysis (Guimet et al., 2006, Koger et al., 2003). The 

method works when there are many continuous independent and one categorical 
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dependent variable. LDA is implemented using scatter matrix analysis by finding a linear 

transformation which best discriminates the classes and then classifies the data using a 

distance matrix within the transformed space (Li et al., 2006). When the number of classes 

is more than two, the matrices, transformation and classification are calculated using the 

following set of equations (9-11). The intra-class matrix is obtained using the first formula 

(equation 4). 

∑̂𝑤 = 𝑆1 +∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 𝑆𝑛 = ∑ ∑ (𝑥 − 𝑥̅𝑖)𝑥∈𝐶𝑖

𝑛
𝑖=1 (𝑥 − 𝑥̅𝑖)′   Equation 9. 

Inter-class matrix is then obtained using the following calculation: 

∑̂𝑏 = ∑ 𝑚𝑖(𝑥̅𝑖 − 𝑥̅)(𝑥̅𝑖 − 𝑥̅)′𝑛
𝑖=1        Equation 10 

Where  n is the number of classes 

  𝑚𝑖 represents the number of training samples of each class 

  𝑥̅ reflects the total mean vector    (Li et al., 2006). 

Regarding the intra and inter-class matrices (Equations 9 and 10), a linear 

transformation Ф is calculated that is ultimately used in the classification of training data. 

The classification of a new feature z is achieved using: 

𝑎𝑟𝑔𝑚𝑖𝑛 𝑑(𝑧Φ, 𝑥̅𝑘Φ)        Equation 11 

Where  𝑥̅𝑘 is the centroid of k-th class 

  d is a distance metric such as Euclidean distance or cosine measure (Li et 

al., 2006). 

The LDA classifier was developed and evaluated on independent data using the MASS 

package in R, a package focussed on applied statistics (Venables and Ripley, 2002). 

b) Partial Least Squares Discriminant Analysis (PLS-DA) 

Partial least squares (PLS) method is a multivariate form of multiple regression that fits 

training data into a species discrimination model. PLS is similar to the principal 

component analysis (PCA) whereby information in the form of a large number of collinear 

variables are compressed into few non-correlated components making up a prediction 

function (Dorigo et al., 2007). The less important factors carry information from random 
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spectral noise and background effects. PLS differs from PCA in that it only compresses 

the most important information from the variables and this reduces the overfitting of data, 

a typical stepwise regression analysis problem (Huang et al., 2004). The utility of PLS 

performs both dimension reduction and classification in a single operation (Dorigo et al., 

2007). When the PLS is applied to classification of dependent variables, then it is called 

partial least squares discriminant analysis (PLS-DA). In PLS-DA a set X of variables uses 

partial least squares regression to describe the categories on a set Y of predictor variables 

(Pérez-Enciso and Tenenhaus, 2003).  

The method was interrogated for its ability to discriminate subtropical forest species. 

Several studies have found that the method performs more accurately compared to the 

traditional regression techniques (Hansen and Schjoerring, 2003, Huang et al., 2004) due 

to its ability to manipulate large number of variables with co-linearity (Pérez-Enciso and 

Tenenhaus, 2003). In this case, the method was used in the classifier development 

process using the selected wavelength bands from the previous chapter on wavelength 

band selection. PLS-DA discrimination was conducted using the DISCRIMINER package 

in R (Pérez-Enciso and Tenenhaus, 2003).  

c) Random Forest (RF)  

Random forest (RF) is a tree based classifier which uses the bagging technique to 

classify the training dataset and it achieves this using the random feature subspace and 

out-of-bag estimates (Breiman, 2001, Chan and Paelinckx, 2008). It belongs to ensemble 

classification methods, which use a variety of methods to do the classification. The 

methods work by constructing a large number of classification trees from the training 

dataset using random feature selections and then votes for the most popular ones to be 

adopted (Breiman, 2001).  

The method selected the final output from the popularity of the individual trees making 

up the model. Although validation of the RF could be done using the out-of-bag (OOB) 

estimation (Breiman, 2001), this study used a training dataset instead. The rationale 

behind ensemble classifiers, like RF, is that they achieve higher accuracy compared to 

methods that use one learning algorithm (Chan and Paelinckx, 2008). Among the 

advantages of the RF is its ability to handle high dimensional data (Gislason et al., 2004) 
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as well as accurately classify in cases where amongst the explanatory variables there is 

no single or small group that can distinguish classes (Breiman, 2001). 

Overall accuracy and Cohen’s Kappa coefficient were calculated in the next section as 

a method of comparing the performance of the RF with the other two methods (LDA and 

PLSDA). The algorithm was processed using the RF package in R, which is based on 

Breiman and Cutler's random forests (Breiman, 2001). 

d) Comparison of the discriminant methods 

Two techniques were used to evaluate the performance of the selected classifiers on 

the independent validation dataset. The two techniques are the overall accuracy and the 

Cohen’s Kappa coefficiency. These two were chosen due to their evaluating categorical 

classification ability to work data, which is not normally distributed. The overall accuracy 

is calculated from the confusion matrix and is interpreted as the percentage of correctly 

classified cases (Foody, 2002b). The method calculates overall accuracy by dividing 

correctly classified samples (diagonal values on a confusion matrix) by the total number 

of samples. However, some studies have criticised it for the failure to sideline correct 

classifications due to chance (Congalton, 1991, Rosenfield and Fitzpatricklins, 1986). The 

Cohen’s Kappa coefficient was therefore used to deal with chance agreement as 

suggested in previous studies (Smits and Dellepiane, 1999). 

The Cohen’s Kappa quantitatively compares the level of agreement between classified 

and true datasets. Weighted kappa values were also incorporated to deal with 

classifications that may be due to chance (Ben-David, 2008). The statistics can be 

calculated either with or without weighting. Both methods make calculations based on the 

differences between the observed and expected agreement (Viera and Garrett, 2005). 

The method was widely used to evaluate classification results (Koedsin and Vaiphasa, 

2013, Naidoo and Hill, 2006, O'Grady et al., 2013, Pu, 2010). The unweighted Cohen’s 

Kappa statistic was calculated using the equation below (equation 10): 

𝑘 =
𝑝𝑜−𝑝𝑐

1−𝑝𝑐
         Equation 12 

Where po is the proportion of pixels with observed agreement, and  

 pc is expected theoretical proportion by chance selection (Cohen, 1960) 
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The equal-spacing weighting method includes a weighting factor for each cell that uses 

the following formula: 

𝑤𝑖𝑗 =
1−|𝑖−𝑗|

𝑔−1
        Equation 13 

Where  i,j represents the location of cells, and 

g is the number of categories.    (Cohen, 1968) 

There is no one agreed interpretation of Kappa values (O'Grady et al., 2013) but these 

values were interpreted using values table of conclusions from Landis and Koch (1977). 

The Kappa thresholds and their corresponding interpretation are shown in Table 4.2 

below. A final decision was made based on the calculated Kappa values. The Kappa 

values, in turn, show the level of agreement between the predicted and actual 

classification results. The best classifier is one that has higher accuracy levels and one, 

which shows a high agreement between predicted and reality. Shown in Table 4.2 below 

are the interpretation rules that were adopted: 

Table 4.2: Interpretation of Kappa (Landis and Koch, 1977) 

Kappa value Interpretation 

< 0  "No agreement" 

0.01-0.20 "Slight agreement" 

0.21-0.40 "Fair agreement" 

0.41-0.60 "Moderate agreement" 

0.61-0.80 "Substantial agreement" 

0.81-0.99 "Almost perfect agreement" 

 

Conclusions were made on the best method for discriminating the indigenous forests 

of the Wild Coast region of South Africa. These conclusions took into consideration some 

of the underlying assumptions of the different methods. 
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4.4.4 Sub-pixel classification using field spectral and multispectral 

data 

Before performing sub-pixel classification, a mask was created using the per-pixel 

classification algorithm (MLC) to remove non-forest portions of the study area. The 

integration of per-pixel and sub-pixel classifiers is through the preliminary masking of the 

image before performing the latter method. The mask was built on the classified image 

from the first section on per-pixel classification based forest change analysis. According 

to Foody (2002a), conducting masking before sub-pixel classification improve the 

resulting proportional maps since it avoids spectral confusion. Using the 2013 classified 

map, a mask was developed using the areas classified as indigenous forests. This was 

used to mask out non-forest areas from the original 2013 images. Per-pixel classification 

refers to algorithms that allocate each pixel to one and only one class based on a logic 

that a pixel can only fully be a member of a class or not . Sub-pixel classification 

techniques, on the other hand, allow each pixel to have multiple and partial memberships 

to identified classes (Wang, 1990).  

a) Integrating field spectral and SPOT 6 multispectral data 

Leaf reflectance spectra were resampled to SPOT 6 bands and then assessed in terms 

of their accuracy in phenological classification of subtropical indigenous forests. 

Resampling was the method of choice because of its ability to integrate field spectra with 

multispectral images (Oumar and Mutanga, 2010). The rationale is to integrate the 

strengths of multispectral and field spectroscopy to improve the classification of 

subtropical indigenous forests. The combined framework for this method includes hard 

classification, as shown in Figure 4.2 below: 
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Figure 4.2: Outline of methodology for improving forest classification. (Adapted from 
Curatola Fernández et al. (2013)) 

Combining per-pixel and sub-pixel classification techniques can improve mapping of 

cover variables as witnessed in previous research studies, including bracken fen status 

classification (Fernández et al., 2013), and tropical vegetation (Gottlicher et al., 2009). In 

the present study, land cover mapping using a per-pixel classification algorithm provided 

a non-forest mask used to remove areas not classified as subtropical forests from the 

2013 SPOT 6 image. This image was used in the sub-pixel classification, integrated with 

field spectroscopy data. 
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b) Sub-pixel discrimination of semi-deciduous and evergreen forest species 

Sub-pixel classification was achieved in this study by using a partial unmixing and sub-

pixel abundance estimation method called Mixture-Tuned Matched Filtering (MTMF) 

(Boardman, 1998, Williams Parker and Hunt, 2002). The method quantifies abundances 

of the endmembers within each pixel using a combination of linear spectral unmixing and 

matched filter methods. Matched filtering is used when maximising the response of the 

known endmember without knowing other endmembers of an unknown background 

(Dopido et al., 2011). MTMF incorporates linear unmixing through mixed pixel leverage 

and feasibility-induced constraints (Dopido et al., 2011).  

MTMF was chosen over other unmixing methods due to its ability to give better results 

from a sample with few endmembers as well its elimination of false positives from 

abundance images (Dehaan and Taylor, 2003). The method also calculates an output 

infeasibility score based on the interaction of the target spectrum and composite 

background. Other researchers have used the MTMF in mapping leafy spurge, a noxious 

weed, (Mundt et al., 2007, Williams Parker and Hunt, 2002), and also irrigation-induced 

salinisation (Dehaan and Taylor, 2003). Results from unmixing methods like the MTMF 

are highly dependent on input endmembers. Thus, changes in endmembers lead to 

changes in results. 

Results from MTMF are two MF score images showing the degree of matching of each 

endmember (semi-deciduous and evergreen forests) in each image pixel as well as two 

infeasibility images. The MF score maps show the relative degree of match of each pixel 

with the training spectrum (Mitchell and Glenn, 2009). The correctly classified pixels are 

shown in the respective MF score maps with values closer to 1 and low infeasibility 

values. Infeasibility values are in the form of noise sigma values, hence the lower the 

values the less the background noise. A 2-D scatterplot was then used to determine the 

best matches to the endmember spectra by plotting the MF score against infeasibility.  

The interactive classification using the scatterplot was used based on previous 

examples from a study on leafy splurges (Mitchell and Glenn, 2009). Ground truth data 

then evaluated the performance of MTMF using the producer’s, user's and overall 

accuracy values. These were calculated from an error/confusion matrix. The producer's 
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accuracy is the fraction of correctly classified pixels with regard to all pixels of that ground 

truth class. 

4.5: Summary  

This chapter presented all methods used to meet the objectives of the study and their 

respective results (Chapters 5-8). Data collection and analysis were done at leaf, canopy 

and top-of-atmosphere levels. Four per-pixel classification algorithms were tested for their 

accuracy in classifying the study area using the confusion matrix. By applying the selected 

method on 2005 and 2009 multispectral images, forest change analysis was conducted 

to quantify changes over the periods 2005-2009 and 2009-2013. The hierarchical method 

was used to identify optimal bands for the discrimination of sub-tropical forest species at 

leaf level (Adam and Mutanga, 2009). The selected three machine learning algorithms for 

the subsequent leaf level discrimination were LDA, PLSDA and RF. MTMF, a sub-pixel 

classification technique, was selected for mapping the proportions of the phenological 

groups. Overall accuracy and Kappa coefficient were selected for validation of the 

classification exercise at leaf and top-of atmosphere.  
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Multi-temporal Analysis of Subtropical Forest 

Changes between 2005 and 2013 

5.1: Introduction 

The conservation of subtropical forests in the coastal regions of South Africa remains 

one of the big tasks of national government. In the light of the prevailing conditions, this 

section aims to assess land cover change at four-year intervals for the years 2005, 2009 

and 2013 with a special focus on the subtropical indigenous forests. Earlier research has 

shown that selective logging causes increased vulnerability to fires (Cochrane, 2001), 

alters forest composition and structure and diminishes animal and forest resources 

(Nepstad et al., 1992) 

Forest change also causes other negative effects such as forest area reduction, forest 

edge increase, and subdivision of large forested areas (Laurance et al., 2000). Threats 

to wildlife survival and changes in tree and animal species composition are some of the 

specific impacts. Forest changes occur at varying spatial scales; there is a need to 

understand the dynamics of these changes and landscape dynamics in the region to aid 

the sustainable management of the forests. The study area along the Wild Coast of South 

Africa has a unique landscape comprising subtropical forests, woodlands, grasslands, 

rivers and wetlands.  

Since there are a number of classification algorithms, the one with highest accuracy 

was adopted and incorporated in Chapter 8. Besides mapping forest change, this chapter 

paves way for Chapter 8 where there is an integration of field spectral and SPOT 6 data. 

Having decided on the best method, classification of the images from past years would 

allow the quantification of subtropical forest changes in the area.  The focus of this chapter 

was to monitor forest change using multispectral remote sensing imagery from SPOT 5 

and SPOT 6. Specifically, the chapter serves to:  

 evaluate the performance of 4 different classification algorithms (maximum 

likelihood, minimum distance (MD), spectral angle mapper (SAM) and spectral 

information divergence (SID) in mapping land cover classes (such as forests, 

woodland, water, bare/built-up and grassland) and  
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 quantify forest changes between 2005 and 2013 using multispectral imagery for 

years the 2005, 2009 and 2013.  

Conclusions were then drawn based on the observed forest change trends from 2005 

to 2013. Recommendations for sustainable management of the forests would then be 

made based on the changes identified.  

5.2: Results 

5.2.1 Comparing four classification methods using the 2013 SPOT 6 

image 

In the light of the first objective of determining the best classification method for land 

cover classes using multispectral, the 2013 SPOT 6 image was classified using the MLC, 

MD, SAM and SID. The following maps (Figures 5.1 - 5.4) show classification results from 

the four algorithms.  
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Figure 5.1: MLC classification results for the 2013 image 
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Figure 5.2: MD classification results for the 2013 image 

 

Figure 5.3: SAM classification results for the 2013 image 
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Figure 5.4: SID classification results for the 2013 image 

The maps were evaluated for accuracy using confusion matrix-derived metrics of overall 

accuracy and Kappa coefficient. Determining the best classification was achieved by 

comparing the overall accuracy and kappa coefficient values of the resultant maps from 

the four different classification algorithms. Confusion matrices for individual classification 

methods are shown in Tables 10.1 - 10.4, which are in Appendix 1. The summary of the 

results of this exercise are presented in the following table (Table 5.1). 

Table 5.1: Summary of confusion matrices of the four classification algorithms 

Algorithm Overall Accuracy 
Kappa 
Coefficient 

Kappa 
interpretation 

Maximum Likelihood  88.75 0.69 
Substantial 
agreement 

Minimum distance 43.66 0.18 Slight agreement 

Spectral Angle Mapper 42.25 0.004 No agreement 

Spectral Information 
Divergence 

32.39 0.04 Slight agreement 

 

According to the accuracy results presented in Table 5.1 above, the MLC algorithm is 

the most accurate method when compared to the other three methods of MD, SAM and 

SID. With an overall accuracy of 88.75% and a Kappa coefficient of 0.69, MLC shows 

high accuracy as well as a substantial agreement between observed and classified data. 

Consequently, mapping of subtropical forests and other land cover classes was based 

on MLC because of its high accuracy and levels of agreement between the classified map 

and reality on the ground. The resulting maps from classification of images of the three 

years of 2005, 2009 and 2013 are presented in the next section. 

5.2.2 The state of indigenous forests, woodlands and other land 

cover for the years 2005, 2009 and 2013 

The maximum likelihood classification algorithm was applied to images from the SPOT 

5 HRG sensor for 2005, 2009 and 2013. The final land cover maps for the years 2005, 

2009 and 2013 provided the state of subtropical forests, woodlands and other land cover 

classes. The following three maps (Figures 5.5, 5.6 and 5.7) present the state of forests 
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woodlands for the years 2005, 2009 and 2013. The first one depicts the situation that was 

prevailing in the study area in 2005 and the subtropical forests have a wider coverage 

than the 2009 and 2013 maps in Figures 5.5 and 5.6. The forests are mainly concentrated 

along the coastal regions of the study area. 

 

Figure 5.5: The state of the environment in 2005 

According to the classification results shown by the above map (Figure 5.5), area 

coverage of the subtropical forests in 2005 was about 46700.96 hectares. In the 

classification maps, the subtropical forests are referred to as natural forests (presented 

in dark green) and they are distinguished from woodlands based on tree height when 

mature. In 2005, most of the coastal portions of the study area were covered by 

subtropical forest. Figure 5.6 and 5.6 provide maps of the forests and other land cover 

classes in the years 2009 and 2013. 
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Figure 3: The state of the environment in 2009 
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Figure 4: The state of the environment in 2013 

The forests, woodlands and other land cover types areal coverage in 2005, 2009 and 

2013 is presented in Table 5.2 (in hectares). The figures show a decrease in subtropical 

forests from 2005 to 2013 in the study area. Much of the change was witnessed between 

2005 and 2009 compared to the period between 2009 and 2013. 

Table 5.2: The coverage of indigenous forests and other cover classes (in hectares) 

Cover Class 2005 2009 2013 

subtropical 
forest 

46700.96 43052.54 42105.56 

woodland 43607.48 44140.30 44882.11 

grassland 51427.68 41386.30 60687.73 

Bare/built-up 26176.8 37613.51 20584.79 

water 651.68 784.21 548.7264 

burned 827.6 2392.48 554.2812 

Total 169392.20 169369.34 169363.20 

The trends in Table 5.2 show that while subtropical forests are decreasing in area, 

woodlands and grasslands have been increasing. The above results can also be 

evaluated in terms of differences between the periods 2005-2009 and 2009-2013 are 

shown in Table 5.3 in the next section. 

 

5.5.3 Change analysis for the periods 2005-2009 and 2009-2013 

Visual interpretation of maps and a quantification of the land cover classes show a 

decline in indigenous forests in the study area. The coverage of the different land cover 

classes can be interpreted in terms of the difference change between the two four-year 

periods of 2005-2009 and 2009-2013 (Table 5.3 below). 
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Table 5.3: Land cover change differences between periods 2005-2009 and 2009 

Cover Class 
2005-2009 

Change  
in ha 

% Change 
2005-2009 

2009-2013 
Change  

in ha 

% Change 
2005-2009 

natural forest -3648.42 -7.81 -946.98 -2.20 

woodland 532.82 1.22 741.81 1.68 

grassland -10041.38 -19.53 19301.43 46.64 

bare/built-up 11436.71 43.69 -17028.72 -45.27 

water 132.53 20.34 -235.48 -30.03 

burned 1564.88 189.09 -1838.20 -76.83 

 

As can be inferred from Table 5.3, the subtropical forests decreased in area in both 

periods 2005-2009 and 2009-2013 by 3648.42 and 946.98 hectares respectively. These 

changes translate to -7.81% and -2.20% change for the two respective periods. From a 

conservation point of view, this is a considerable change in forest cover in an 8-year 

period. The significance of the land cover change were then analysed using a student t-

test. In this case, the two periods of 2005-2009 and 2009-2013 were analysed to see if 

the observed trends were significantly different. The null hypothesis was that there is no 

significance difference between 2005-2009 and 2009-2013. The student t-test results are 

presented in Table 5.4 below. 

Table 5.4: Testing for significance between area for classes in 2005 and 2009 

 2005-2009 2009-2013 

Mean -3.81 -1.023533333 

Variance 49537768.02 133480834.3 

Observations 6 6 

Pearson Correlation -0.953371181  

Hypothesized Mean 
Difference 

0  

df 5  

t Stat -0.000371217  

P(T<=t) one-tail 0.499859084  

t Critical one-tail 2.015048372  
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P(T<=t) two-tail 0.999718167  

t Critical two-tail 2.570581835   

 

The results of the t-test show that p>0.05 (p=0.999 from Table 5.4 above) hence the 

null hypothesis was rejected. The null hypothesis stated that cover changes between the 

two periods (2005-2009 and 2009-2013) were significantly different (p< 0.05) at 95% 

confidence interval). It can thus be concluded that the trends in land cover change in the 

area between the two periods have not changed significantly. Although, the statistical test 

tested changes in all cover classes, there is a need for intervention to reduce the 

subtropical forests changes in this biome. 

5.3: Discussion 

In comparing the classification algorithms on the SPOT 6 image for 2013, the maximum 

likelihood (88.75% overall accuracy and 0.69 Kappa) outperformed the other three 

algorithms. After adopting maximum likelihood in classifying multispectral images for 

2005 and 2009,The overall accuracy and kappa coefficient values for MLC were highest, 

hence the most accurate among the selected four algorithms. Results show the method 

having the highest level of agreement between classified and ground truth data. The 

superiority of the method in classifying the 2013 image is similar to and thus reinforces 

the findings of earlier studies on mapping land cover in an urban setup (Dewan and 

Yamaguchi, 2008), forest species using (Pu, 2010), mapping mangrove species (Wang 

et al., 2004), forested forests and peatlands (Townsend and Walsh, 2001). The 

performance of MLC has been better when compared with certain classifiers in some past 

studies. Examples include its studies by Al-Ahmadi and Hames (2009), comparison with 

artificial neural network (Erbek et al., 2004) and with object-based method (Wang et al., 

2004).  

The multi-temporal analysis revealed a negative changes occurring within subtropical 

forests and other land cover classes within the study area. The observed trend in the 

subtropical forests further confirm the threats posed to these forests from a number of 

physical and human-induced factors as presented in earlier studies (Lawes and Obiri, 

2003b, Shackleton et al., 2013). The local authorities and the central government have 
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stated there are programmes to limit forest loss in the study area, but this study illustrates 

deterioration trends. 

While subtropical forests show a decrease, the opposite is true for woodlands over the 

same periods (2005-2009 and 2009-2013). The increase in woodlands over the years 

can be explained by their invasive and pioneer species capabilities. This is supported by 

an earlier study which found that woodland tree species, such as Acacia karoo, invade 

abandoned fields on Wild Coast (Shackleton et al., 2013). They in turn, however, allow 

succession that later gives way to the re-introduction of subtropical forests. 

5.4: Conclusion 

The chapter compared the performance of four supervised classification methods 

(maximum likelihood, minimum distance, spectral angle mapper and spectral information 

divergence) over the study area in South Africa’s Wild Coast using SPOT 6 imagery. The 

supervised maximum likelihood classification performed best in this area comprising 

subtropical forests, woodlands and other land cover classes. The Kappa coefficient of the 

method showed the highest level of agreement compared to other methods. In this case, 

MLC proved its capability of classifying a study area that covered predominantly 

subtropical forests better than the three other methods of MD, SAM and SID. MLC 

highlighted the importance of linear per-pixels methods compared to the non-parametric 

methods of SAM and SID. 

The importance of MLC is not restricted to this chapter’s objective of quantifying forest 

change but it was also evaluated in Chapter 8 of its ability to combine with a sub-pixel 

classifier to discriminate semi-deciduous and evergreen forest species. It is in the same 

chapter that will also evaluate the integration of field spectra and multispectral data. 

The spatio-temporal analysis of subtropical forests changes from 2005-2013, revealing 

a decreasing trend in forests and an increase in woodlands and bare/built-up lands. 

Multispectral imagery from the SPOT 5 HRG and SPOT 6 sensors proved their capability 

in mapping land cover in landscapes dominated by forests. The hectares lost in 

subtropical forests and related increase in other land cover classes give an indication of 

potential forest loss drivers which should be addressed. The t-test indicates that there are 

no significant changes in the general land cover change over the two periods (2005-2009 
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and 2009-2013) and again this calls for more intervention efforts in conservation in the 

area. There is a need to improve on the sustainable use of subtropical forests on the Wild 

Coast and this should be addressed by all the stakeholders, namely traditional leaders, 

communities, business owners, national and local government departments. 

Overall, this chapter not only identifies the best method for land cover classification, it 

also shows the trends in forest changes, which can aid decision making in sustainable 

forest management. The final maps and figures of changes may be used by decision 

makers such as DAFF management, local municipalities and traditional leaders in making 

choices that foster the sustainable use of forests. The method and imagery from the 

SPOT series of data can therefore provide much needed data to assist monitoring. There 

are chances of continuing with such a forest monitoring programme using the forthcoming 

EO-SAT 1 (a national satellite programme). 
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Selection of Optimal Wavelengths for Subtropical 

Forest Species Discrimination 

 

6.1: Introduction 

The ability to distinguish features such as forests, soil and rocks through the application 

of hyperspectral remote sensing has led to an increase in remote sensing use in natural 

resource management. Hyperspectral sensors have advantages over multispectral ones, 

which are limited in both spatial and spectral resolution (Vaiphasa et al., 2005). The 

identification of forest species through the minor spectral variation due to structure and 

biochemistry of leaves (Clark, 2011, Zhang et al., 2012) is possible when using 

hyperspectral remote sensing and discrimination methods can be classified into two 

general groups: empirical and physically based methods. The use of field spectroscopy 

in discriminating terrestrial vegetation has been utilised in studies regarding tropical 

mangrove species (Vaiphasa et al., 2005), coniferous forests (Lukes et al., 2011) as well 

as commercial plantations (Peerbhay et al., 2013).  

The present chapter focused on investigating the capability of hyperspectral remote 

sensing to discriminate indigenous forest species. Spectral reflectance data acquired 

using a spectroradiometer (Spectral Evolution PSR-3500) fitted with a leaf clip with an 

artificial light source was used. The underlying hypothesis of this study is that it is possible 

to separate different forest species based on their unique spectral reflectance. Data were 

analysed by applying the four steps in normality testing: One-way Analysis of Variance 

(ANOVA), classification and regression tree (CRT) analysis and validating the identified 

wavelengths bands using the Jeffries-Matusita distance method. This chapter assesses 

the spectral properties of indigenous subtropical forest species, and identifies the 

significant wavelengths for indigenous species discrimination. It also evaluates the 

separability of the identified wavelengths. 
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6.2: Results 

The indigenous species under inspection are Brachylaena discolour, Buxus natalensis, 

Cassine palilosa, Celtis africana, Cryptocarya latifolia, Ficus natelensis, Grewia 

lasiocarpa, Halleria lucida, Harpephyllum caffrum, Heywoodia lucens, Millettia grandis, 

Millettia sutherlandii, Mimusops caffra, Searsia chirindensis and Vepris undulate. An initial 

exploration of spectral measurements depicted the general spectral profile of vegetation. 

A spectral curve to visualise the average reflectance of subtropical forest species from 

the study area is presented in Figure 6.1 below. 

 

 

Figure 6.1: Mean spectral reflectance of the identified indigenous forest species 

The plot of the mean spectra above shows the general trends of the reflectance and 

little information on reflectance regions that are likely to be spectrally separable.  
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6.2.1 Band selection  

The selection of significant wavelengths for species discrimination was achieved by 

applying the three stage hierarchical method involving ANOVA with post hoc correction, 

Classification and Regression Tree analysis and Jeffries Matusita distance method 

(Adam and Mutanga, 2009). 

a) Significant differences between wavelength bands using One-Way 

ANOVA with Bonferroni correction. 

One way ANOVA investigated all the wavelength bands for significant differences in 

the spectral reflectance of different subtropical forest species. In this case, the null 

hypothesis formulated states that; there is a significant difference in mean leaf spectral 

reflectance among the different wavelength bands. The ANOVA results indicated that all 

wavelength bands, except for 11, have p values of less than 0.05; hence, the null 

hypothesis was rejected and the research hypothesis was accepted for the 2098 bands. 

The p-values are illustrated in Figure 6.2 below and they show higher values occurring 

between 350 and 450nm. 
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Figure 6.2: The distribution of p-values after One Way ANOVA (Wavelength in 
nanometres) 

Although ANOVA is good at investigating the difference among a group of variables, it 

does not show that one variable is more different from the rest (Barrett and Curtis, 1999). 

Hence, a post-hoc test was employed to test for differences among pairs of species. 

Instead of making conclusions based on these results, the Bonferroni correction method 

was performed to minimise the probability of performing a Type 1 error. At the 95% 

confidence, ANOVA with Bonferroni correction results indicated that all except 144 

wavelength bands had p < 0.25 resulting in the rejection of the null hypothesis (H0) and 

acceptance of an alternative hypothesis (H1). As shown in the Figure 6.3 below, 

wavelength bands that were accepted for further analysis (p<0.05) were mainly located 

in higher wavelengths. The wavelength bands that proved to be not significantly different 

from each other were located at 350-436, 439-441, 443, 449, 517-568 nanometres. 
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Figure 6.3: The distribution of Bonferroni corrected p-values among the reflectance at 
different wavelength bands. 

It was therefore deduced that the remaining 2007 wavelength bands have mean 

reflectance spectra, which are significantly different from each other. According to the 

hierarchical method, this indicates the existence of a combination of reflectance spectra 

among this group that can spectrally discriminate the indigenous forest species. The 

results from ANOVA with Bonferroni correction method became inputs into the 

classification and regression tree analysis, described in the next section. 

b) Selection of significant wavelength bands using Classification and 

Regression Tree analysis (CART) 

Using repetitive partitioning and modelling, the CART model managed to identify the 

optimal wavelengths from the significantly different ones identified by One-Way ANOVA 

with Bonferroni correction. The following tree diagram summarises the decision of the 

tree method and the identified wavelengths (prefixed by V). The branches to the right fulfil 
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the condition on the branching node (YES) while those on the left do not (NO). The 

method has discarded other wavelengths that do not contribute significantly to the 

discrimination of the identified subtropical forest species. The CART results are presented 

in the form of a tree in Figure 6.4 below. According to these results, the method identified 

17 wavelengths that can spectrally differentiate the identified 15 subtropical forest 

species. 

 

Figure 6.4: The Classification and Regression tree showing optimal wavelengths for 
indigenous species discrimination. 
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The CART procedure identified 17 wavelength bands that are more significant for the 

discrimination of the subtropical indigenous species. These wavelengths were 438, 442, 

512, 695, 724, 729, 750, 758, 856, 936, 1179, 1507, 1673, 2220, 2465, 2469 and 2482 

nanometres. Lastly, the spectral separability of the identified wavelengths was evaluated 

using the Jeffries-Matusita (JM) distance method, as shown in the next section. 

c) Separability analysis 

The JM separability results (Table 6.1 below) show separability of the identified 

wavelengths in their discrimination of the respective indigenous forest species The 

majority of combinations in Table 6.1 had distance values greater than 0.05, which is 

interpreted as a sign of high levels of separability. The values are interpreted as showing 

a 100% accuracy in separability when they are equal or closer to 2 while 0 implies that 

selected signatures are totally inseparable (Lasaponara and Masini, 2007). In other 

words, the JM distance method also works as a method of evaluating the preceding steps, 

that is, one-way ANOVA and the classification and regression tree (CART) methods. 

Table 6.1 below summarises the JM distances between the identified wavelengths, which 

have an implication on their spectral separability. 
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Table 6.1: JM Distance values showing spectral separability values for selected significant wavelengths 

 438 442 512 695 724 729 750 758 856 936 1179 1507 1673 2220 2465 2469 

442 0.00                

512 0.02 0.03               

695 0.57 0.61 0.44              

724 2.00 2.00 2.00 2.00             

729 2.00 2.00 2.00 2.00 0.27            

750 2.00 2.00 2.00 2.00 1.42 0.90           

758 2.00 2.00 2.00 2.00 1.48 1.00 0.01          

856 2.00 2.00 2.00 2.00 1.60 1.14 0.03 0.01         

936 2.00 2.00 2.00 2.00 1.59 1.10 0.01 0.01 0.01        

1179 2.00 2.00 2.00 2.00 1.23 0.60 0.12 0.18 0.25 0.19       

1507 1.85 1.86 1.82 1.56 1.17 1.60 1.93 1.94 1.96 1.96 1.92      

1673 2.00 2.00 2.00 1.99 0.04 0.39 1.44 1.50 1.61 1.60 1.27 0.88     

2220 1.74 1.75 1.70 1.27 1.64 1.88 1.99 1.99 1.99 2.00 1.99 0.15 1.40    

2465 0.41 0.43 0.28 0.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.61 1.99 1.35   

2469 0.32 0.35 0.21 0.06 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.65 1.99 1.41 0.01  

2482 0.28 0.31 0.17 0.07 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.68 1.99 1.46 0.02 0.00 
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Table 6.1 indicates that the selected wavelengths for subtropical forest species are 

statistically separable. The table also shows less accuracy (values close to zero) in 

separability between wavelengths that are in the visible portion of the electromagnetic 

spectrum. However, this phenomenon is only present when pairing wavelengths from the 

visible portion among themselves. 

6.3: Discussion 

In this chapter, the issue of dimension reduction for the discrimination of subtropical 

forest species was analysed. A preliminary analysis of the mean spectra for individual 

species yields provided no information on the location of optimal wavelengths for species 

discrimination. The shape and location of absorption features of all the 15 subtropical 

forest species appear similar, hence difficult to differentiate through visual inspection. The 

similarity of the species is due to leaf anatomy and biochemical properties that have close 

resemblance. However, the spectral reflectance of the different subtropical species are 

not exactly the same due to differences in biochemical concentrations as well as pigment 

concentration (Martin et al., 1998). 

The hierarchical approach identified the 17 wavelengths that are essential for 

subtropical indigenous forest species and these are 438, 442, 512, 695, 724, 729, 750, 

758, 856, 936, 1179, 1507, 1673, 2220, 2465, 2469 and 2482 nm. These wavelengths 

are located in the visible, red-edge, near infrared (NIR) and mid-infrared (MIR) portion of 

the electromagnetic spectrum. The presence of wavelengths in the red-edge further 

confirms the importance of this region in spectral discrimination of different vegetation 

species (Vrindts et al., 2002). Similar studies have found different portions of spectrum 

being more important and these include shortwave infrared (SWIR) for discriminating 

soybean from weeds (Gray et al., 2009), red edge as well as NIR regions for papyrus 

discrimination (Adam and Mutanga, 2009). Another point worth noting is that among the 

optimal wavelengths are four bands from the visible portion of the spectrum which are 

similar to previous research on tropical forest species (Clark et al., 2005).  

Spectral variability among the species is due to water content (Grant, 1987), leaf 

structure and biochemistry (such as chlorophyll content, epiphyll and herbivory) (Clark et 
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al., 2005). While this may not be the first study on field spectroscopy used in spectral 

discrimination, dimensions and number of species involved work toward providing novel 

information on indigenous subtropical species identification and monitoring. The following 

studies managed to apply similar methods on few predictor variables: five tropical 

mangrove species (Koedsin and Vaiphasa, 2013), four swamp wetland species (Adam 

and Mutanga, 2009), discriminating two crops from coniferous weeds (de Castro et al., 

2012), and two Eucalyptus species (Arumugasundaram et al., 2011).  

The study has demonstrated the applicability of the hierarchical methodology in 

selecting significant wavelengths (Adam and Mutanga, 2009, Vaiphasa et al., 2005) in 

subtropical indigenous tree species of South Africa. Despite the potential presented in 

this study, one should take note that spectra measured using a leaf clip and artificial light 

were used. The complexity introduced by a real-world scenario include the following 

factors: effect of background vegetation; soils and water; difference between artificial light 

and the sun; difference in canopy formations and changes in daily climatic conditions 

(Ramsey and Jensen, 1996). 

6.4: Conclusion 

This chapter clearly demonstrates that spectral characterisation of the subtropical 

indigenous forests is possible using field spectroscopy. From the above results, the leafy-

level spectral discrimination of indigenous forest species along the coastal region of South 

Africa is possible using in-situ spectra measurements. Based on this chapter’s results, 

the following conclusions are made: 

 The methods used (One-way ANOVA with Bonferroni correction and CART) 

successfully identified wavelengths that are not correlated, statistically significant 

and spectrally separable. The potential of the statistical methods that form the 

hierarchical method in selecting optimal wavelengths for subtropical indigenous 

forest species discrimination is demonstrated in the present study.  

 The discrimination of the subtropical forest species identified the following optimal 

17 wavelength bands in the Visible (438, 442, 512 and 695 nm), Near Infrared 
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(729, 750, 758, 856, 936, 1179, 1507 and 1673 nm) and Mid-infrared (2220, 2465, 

2469 and 2482 nm) as spectrally separable. 

 The selected 17 wavelengths are spectrally separable as shown by the results 

from the JM distance analysis were values closest to 2. These high values show 

100% accuracy separability between sets of wavelengths. 

The information presented in this chapter is useful in large-scale species discrimination 

of indigenous species based on airborne or spaceborne hyperspectral images. The 

selected optimal wavelengths for subtropical forest species discrimination were recorded 

for use in the next chapter on classifier selection using field spectroscopy and machine 

learning methods. These wavelengths, therefore, were inputs into model optimisation and 

evaluation. 
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Subtropical Forest Species Discrimination Using 

Field Spectroscopy  

7.1: Introduction 

Subtropical forests along the Wild Coast region of South Africa are part of the 

Maputaland-Pondoland-Albany biodiversity hotspot (Shackleton et al., 2013). The whole 

region is estimated to have 50 000 hectares (ha) of indigenous forest fragments (Berliner, 

2011). Subtropical forests play a critical role in supporting livelihoods, as well as carbon 

sequestration. Remote sensing has proven its usefulness in broad classification of forests 

and monitoring forest change in humid tropics (Hansen et al., 2008). Field spectroscopy, 

a form of remote sensing, permits species discrimination at leaf and canopy levels on its 

own. With the high floral richness along Wild Coast (Lawes and Obiri, 2003a), their 

spectral discrimination provides scientific knowledge that can aid their management. It 

will also add to what is known about these forests. Species discrimination at leaf or 

canopy levels provides the necessary spectral information about forests and it can 

support wider area discrimination. The applications of spatial species discrimination maps 

is very useful in biodiversity assessments of an area (Lucas et al., 2008), as well as 

supporting forest management by government departments (DAFF and DEA), as well as 

local authorities. 

Vegetation classification is often difficult due to the comparability (or lack of it) of the 

different species types (Jia et al., 2011). Discrimination of forest species in humid 

environments is often difficult because of high plant diversity, which translates into high 

spectral variation Clark (Clark et al., 2005). Leaf-scale spectral variations are mainly due 

to leaf biochemical properties and morphology (Asner, 1998, Clark et al., 2005, Roberts 

et al., 2004). However, a number of classifiers have been successfully used in species 

discrimination in various studies (Gutiérrez et al., 2014, Somers and Asner, 2013). The 

classifiers are also referred to as machine learning methods due to their extensive use of 

statistical computations to analyse data and make predictions. Some of the widely used 

classifiers for this type of discrimination include the linear discriminant analysis (LDA) 
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(Clark et al., 2005), partial-least squares discriminant analysis (PLSDA), neural networks 

(de Castro et al., 2012), and RF (Chan and Paelinckx, 2008).  

The objective of this chapter was to identify the best classifier for the discrimination of 

the dominant subtropical forest species among the LDA, PLSDA and RF. This chapter 

utilised selected optimal wavelengths (detailed in the preceding chapter). Field collected 

spectral details were divided into training (65%) and testing (35%) data; that is, for 

calibrating and validating the respective classifiers. Therefore, 99 samples were used as 

the training data set while 33 observations were used as the validation data set.  

The selection of the best classifier was based on accuracy metrics of overall accuracy 

and Cohen’s Kappa coefficient, derived from the confusion matrix. The data collection 

and analysis methods used in this chapter are fully explained in Chapter 4. Conclusions 

were then made on the best among the three methods for the discrimination of subtropical 

forest species. 

7.2: Results 

 

7.2.1 Species discrimination techniques  

The following are results showing the performance of the four classification algorithms 

on discriminating the subtropical indigenous forest species.  

a) Linear discriminant analysis technique 

When an LDA-based classifier was applied to independent validation data, the overall 

accuracy was 86.05%. The same LDA classifier’s application on validation data can be 

illustrated by the diagram below (Figure 7.1), which plots LD1 against LD2, the first and 

second discriminants used in modelling the data. 
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Figure 7.1: Scatterplot showing indigenous species classification based on two major 
discriminants (LD1 and LD2). 

The results above depict a classification using the LDA based classifier with an overall 

accuracy level of 86.05%. The Cohen’s Kappa coefficient for this classifier was 0.8460. 

Based on this Kappa coefficient, it was concluded that there was an almost perfect 

agreement between LDA results and validation data. 

b) The partial least square discriminant analysis (PLSDA) classifier 

The performance of the classifier was evaluated by using the overall accuracy 

percentage when the model was applied to the independent validation data set. The 

overall accuracy of this method was 0.627907. The interpretation is that if independent 

data is classified by the classifier, the probability of the correct discrimination of all species 

is approximately 62.79%. The Cohen’s Kappa coefficient for the method was 0.1394. The 

two measures show that the classification using PLSDA had slight agreement between 

classification results and validation data. 
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c) The random forest classifier 

The classifier ranged the selected wavelength bands based on their importance in the 

classifier. Figure 7.2 below show the importance of the selected wavelengths in 

discriminating the 15 sub-tropical forest species.  

 

Figure 7.2: Variable importance 

According to Figure 7.2 above, RF identified the 729nm wavelengths as the most 

important while the 724nm one ranked last in variable importance. The selected 

wavelength bands were inserted into a random forest classifier using the training data 

set. When the classifier was applied on independent data, there was an overall accuracy 

of 37.21% meaning the resulting discrimination is accurate by approximately 37.21%. 

Further analysis of the discrimination results using the Cohen’s Kappa evaluation yielded 

an unweighted Kappa coefficient of 0.31746. Accuracy assessment results showed a very 

low overall accuracy but the Kappa illustrated a fair agreement between RF results and 

validation data. 
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7.2.2 Accuracy assessment results for the three algorithms 

The decision on the algorithm to use for subtropical indigenous forests was reached 

after comparing the Cohen’s Kappa coefficients for the three coefficients. Among the 

various machine-learning classifiers used in this chapter, the one with the highest 

Cohen’s Kappa coefficient was the Linear Discriminant Analysis (LDA) followed by the 

Partial Least Squares Discriminant Analysis (PLSDA) and lastly the Random Forest 

classifiers. The rest of the values are shown in Figure 7.3 below: 

 

Figure 7.3: Overall Accuracy and Cohen’s Kappa coefficients for LDA, PLSDA and RF 

 

This section demonstrates that the LDA based classifier performs better at 

discriminating subtropical forest species than the other two approaches. Both overall 

accuracy and Cohen’s Kappa coefficient for LDA were higher when compared to similar 

statistics for PLSDA and Random forest. According the overall accuracy values shown 

above (Figure 7.3), the LDA had highest accuracy followed by PLSDA and lastly RF. 

However, when considering Cohen’s Kappa coefficient values, LDA had highest 

agreement between species discrimination results and ground truth data followed by RF 
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and lastly PLSDA. The overall interpretation of both overall accuracy and Cohen’s Kappa 

identify LDA as being the best classifier for sub-tropical forest species discrimination 

among the three. 

7.3: Discussion  

Using the optimal wavelengths selected in the previous section, this chapter presented 

classifier optimisation and evaluation of three classifiers viz; LDA, PLSDA and RF. Of 

these three methods, the LDA (86.05% overall accuracy and an 84.60% Kappa 

coefficient) displayed the highest accuracy in comparison to PLSDA and RF. Both overall 

accuracy and Cohen’s Kappa values confirmed the superiority of LDA in discriminating 

subtropical forest species at leaf level. If the Cohen’s Kappa values are interpreted 

according to Landis and Koch (1977), LDA discrimination results had an almost perfect 

agreement with validation data compared to PLSDA’s slight agreement and RF’s fair 

agreement. 

The performance of the LDA was consistent with its performance in other studies 

where it satisfactorily classified tropical forest species (Castro-Esau et al., 2006, Feret 

and Asner, 2011). In a way, these results showed the ability of a parametric discriminant 

method (LDA) performing better than a non-parametric one (RF) in discriminating 

subtropical forest species at the leaf level. This provides evidence that conventional 

parametric methods like the LDA perform better in certain environments than non-

parametric ones. 

The performance of the LDA, without comparing it to the other two PLSDA and RF, 

also vindicates the strength of the hierarchical method of selecting wavelengths (in 

Chapter 6). The selected wavelengths have led to species discrimination with high 

accuracy levels. If the selected wavelengths had not been optimal for the observed 

species’ discrimination, accuracy levels would most likely have been low. This chapter is 

also further proof that although subtropical forests have high species and spectral 

variations, machine learning algorithms such as the LDA are able to discriminate them 

using field spectra. 
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7.4: Conclusion 

This chapter has demonstrated the ability of the LDA in the identification of a classifier 

for discriminating subtropical forest species with satisfactory accuracy. The number of 

indigenous forest species classified in this study also shows the ability of the approach in 

discriminating more than five spectrally significant forest species. The results 

demonstrate further opportunity in using field spectroscopy data in the classification of 

hyperspectral imagery from airborne and spaceborne platforms such as NASA's Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) and EO-1 Hyperion. 

The application of the three methods and evaluation of their performance on 

independent data were done with an overall aim of meeting one of the study’s key 

objectives. The objective addressed in this chapter is that of identifying the best classifier 

for subtropical species discrimination. Based on the results obtained, the following 

conclusions are made: 

1. At leaf-scale, the LDA is highly accurate, compared to PLSDA and Random Forest 

in the discrimination of subtropical indigenous forest species. Accuracy 

assessment of the three methods using independent data resulted in LDA, PLSDA 

and Random Forest classifiers having overall accuracies of 86.05 %, 62.79 % and 

37.2 % respectively. 

2. The Cohen’s Kappa coefficient also proved that LDA discrimination results had the 

highest level of agreement between classified and ground truth data. The 

agreement level is higher than PLSDA and RF discrimination. 

3. The study proves that LDA based classifier managed to classify 15 species using 

the leaf spectral reflectance whose optimal wavelength dimensionality had been 

reduced by the hierarchical method. This approach should be a useful guideline 

for subtropical indigenous forest species classification in other similar 

environments.  
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Discriminating Semi-deciduous and Evergreen 

Subtropical Forests Species Using Integrated 

Multispectral and Field Spectroscopy 

8.1: Introduction 

High-resolution multispectral images such as SPOT 6 are becoming widely available 

at affordable rates and their applications are widespread in forestry monitoring, for 

example assessing changes in vegetation structure and so forth (see Chapter 5). Field 

spectroscopy on the other hand improves the spectral analysis of vegetation using 

several bands. While field spectroscopy is good at discrimination of species at the leaf 

level, multispectral images provide larger cover classification. There is a need for 

characterisation of indigenous forests as a way of further understanding their natural and 

human-induced changes. The current and previous chapters have detailed analysis on 

significant wavelength selection, species discrimination at leaf level and multispectral-

based forest change analysis (Chapters 6, 7 and 8 respectively). The assimilation of field 

spectroscopy data with multispectral data is a highly complex and difficult task due to 

spectral and spatial differences. In this chapter, the simulated field spectral data were 

combined with 2013 SPOT 6 imagery to perform sub-pixel classification of forests into 

evergreen or semi-deciduous.  

In deciduous or coniferous classification of forests, the main considerations are tree 

leaves and how the trees produce their seeds. The location and prevailing conditions in 

the area result in the trees being either semi-deciduous or evergreen. Deciduous refers 

to trees that lose their leaves during winter and in the Wild Coast the duration of shedding 

leaves is small hence the term semi-deciduous. However, there is also variability within 

semi-deciduous and evergreen forest species that can be attributed to leaf structure. 

Dicotyledonous leaves have more airspaces within their spongy mesophyll tissue than 

monocotyledonous leaves of same age and thickness (Raven et al., 2005). Research has 

noted that dicotyledonous trees have a higher reflectance in the NIR than 

monocotyledonous (Gausman and Weidner, 1985). 
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The chapter also seeks to: (1) manipulate spectral feasibility of high spatial resolution 

multispectral imagery such as SPOT 6 and field spectroscopy data to discriminate semi-

deciduous and evergreen forest species and (2) to evaluate its performance on using 

independent data. The ground level field of view (FOV) were chosen with one target (that 

is one tree species belonging to one phenological group) while SPOT 6 imagery had 

mixed pixels in most forest patches. Mixed pixels are a combination of the spectra of the 

targets that they contain (Biewer et al., 2009) in this case, semi-deciduous and evergreen 

subtropical forest species. 

The sub-pixel classification and validation procedures conducted in this chapter are 

explained in detail in Chapter 4 (methodology) under data analysis section. An evaluation 

of the classification was done using the error/confusion matrix using the locational data 

from the ground-collected data. Overall, producers and user’s accuracy levels were 

calculated from the matrix. The results of both classification and accuracy assessments 

are presented in the next sub-section of this chapter. 

8.2: Results 

The following sub-section examines the results of resampling, sub-pixel classification 

and the subsequent accuracy evaluation. The aim is to provide proof of the integration of 

multispectral and field spectroscopy data in characterisation of subtropical forests. 

8.2.1 Resampled spectra 

The resampled mean spectra of semi-deciduous and evergreen forest species did not 

show much variation. When the resampled spectra were combined with multispectral 

imagery for sub-pixel classification the results were images showing proportions of the 

two classes in each pixel. This is illustrated in Figure 8.1 below. 
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Figure 8.1: Resampled mean spectra for semi-deciduous and evergreen forest species. 

The reflectance curve for resampled spectra shows that there is spectral variability in 

the green (between 525 and 600 nm) and near infrared (between 525 and 600 nm) 

portions of the electromagnetic spectrum. The resampled spectra that were later 

incorporated into the sub-pixel classification of the subtropical forests and the results are 

presented in the next section. 

8.2.2 Sub-pixel classification into semi-deciduous and evergreen 

forest 

Sub-pixel classification results show the proportions of the indigenous forests that are 

semi-deciduous or evergreen in each pixel within the subtropical forests. The two maps 

below show MF (matched filter) scores for semi-deciduous (Figures 8.2) and evergreen 

(Figure 8.3) subtropical forest species. These maps show the proportions of the two 

phenological classes that are within each pixel. 
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Figure 8.2: MF Score map showing proportions of semi-deciduous subtropical forest 
species in each pixel 

Semi-deciduous subtropical forests have higher proportions in inland areas, as shown 

in Figure 8.2. Higher MF score values show higher proportions of the abundance of the 

respective class. In the case of semi-deciduous subtropical forests of the Wild Coast, 

these higher values (between 0.5 and 1 MF scores) are mainly located inland. The map 

shows that the highest MF score is approximately 0.666 while the lowest one is -0.522. 

When a pixel has an MF score of less than zero, the method interpreted it as one occupied 

by background features which are not in the same class as the class being mapped. 

However, proportions of semi-deciduous forests are low along coastal forests as 

presented by almost red colour along the coast. The proportions for evergreen subtropical 

forests are shown in the map below (Figure 8.3). 
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Figure 8.3: MF Score map showing proportions of semi-deciduous subtropical forest 
species 

The above map (Figure 8.3) shows evergreen forest species proportions through MF 

scores from an MTMF sub-pixel classification procedure. Contrary to the proportions of 

semi-deciduous forest species, the evergreen forest proportions are higher along the 

coast and to the north-eastern part (around Port St Johns area). With MF score values 

ranging between -0.622 and 0.805, there are indications some pixels are almost entirely 

covered by evergreen forest species. A comparison of highest MF scores of the two 

phenological classes, shows that the evergreen classification has the highest MF score 

of 0.805 compared to 0.667 for semi-deciduous. The infeasibility maps for semi-

deciduous and evergreen forests are shown in the appendix section (Figure 10.1 and 

10.2 respectively). 

It is possible to “harden” the soft classification results or allocate each pixel to a single 

class using a 2-D scatterplot. Allocating the pixels to one of the classes allows accuracy 
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assessment of the above sub-pixel classification using the mixture-tuned matched filtering 

method. The hardening processing is shown in Figure 8.4 below where a 2D scatterplot 

is made pitting MF score and infeasibility maps for semi-deciduous forest. The selection 

of pixels with MF scores with values higher than 0 (shown in purple in Figure 8.4 below) 

highlighted pixels that were classified as outright semi-deciduous. Pixels with MF score 

values less than 0 were not included in either semi-deciduous since they show the 

presence of background features not belonging to the semi-deciduous class. 
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Figure 8.4: Scatterplot and map showing semi-deciduous classification 

The pixels shown in red are the ones classified as definite semi-deciduous subtropical 

forest in the study area. The application of the 2D scatterplot selection of evergreen 

forests is shown in Figure 8.5 below:   
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Figure 8.5: Scatterplot and map showing evergreen forests 

The 2D scatterplot in Figure 8.5 above shows the selected evergreen forest pixels 

based on the MF scores and infeasibility values. The selected pixels are shown in green 

in the scatterplot and mapped in red for clarity. Results show that evergreen forests are 
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mainly located along the coast and the north-eastern tip (approximately within an 8 km 

radius from Port St Johns) of the study area.  

After combining the two maps for pixels that were outright semi-deciduous and 

evergreen forest, some pixels were not put into either of the classes. In other words, some 

pixels were not classified into either of the two classes after the hardening process. These 

pixels would have attained MF scores of less than 0 in both semi-deciduous and 

evergreen MF score maps. An evaluation of the MTMF method for mapping proportions 

of semi-deciduous and evergreen forest species for each pixel within subtropical forests 

is presented in the sub-section. 

8.2.3 Evaluating classification results using confusion matrix 

Accuracy assessment yielded the following confusion matrix from which overall 

accuracy, user’s and producer’s accuracy coefficients for the all classifications and the 

respective phenological classes were taken. Table 8.1 presented the confusion matrix 

from the evaluation of the discrimination of subtropical semi-deciduous and evergreen 

forest species in the study area.  

Table 8.1: A confusion matrix for soft classification results 

C
la

s
s

if
ie

d
 

Ground truth 

 
Semi-

deciduous 
Evergreen Total 

User's 
accuracy 

Producer's 
accuracy 

Semi-
deciduous 

8 1 9 0.8889 0.6154 

Evergreen 5 10 15 0.6667 0.9091 

Total 13 11 24   

 

The overall accuracy of the whole sub-pixel classification is 75%. The conclusion is 

that there are 75% chances of any pixel on the final maps being correctly classified as 

semi-deciduous or evergreen forest. The producer’s accuracy values for semi-deciduous 

and evergreen were 61.54% and 90.91% respectively. These percentages show the 

percentages of ground truth correctly classified. Based on the ground truth data, 

evergreen points from ground truth data were more accurately classified as 90.91% 

compared to 61.54% for the semi-deciduous ones.  
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Reliability figures of the two classified maps semi-deciduous and evergreen forest 

species) were examined using user’s accuracy values. The classified maps were 88.89% 

and 66.67% reliable for semi-deciduous and evergreen forest respectively. If one uses 

the classified map and navigates to any pixel classified as semi-deciduous, there is an 

88.89% chance that it will actually be reflecting a semi-deciduous forest species. The 

same applies to evergreen pixels from the classified map that had a 66.67% chance of 

being evergreen on the ground. 

8.3: Discussion 

Mixed-tuned matched filter method successfully performed sub-pixel classification of 

proportions of semi-deciduous and evergreen species within the subtropical forests of 

South Africa’s Wild Coast. Using validation data, comprising of 24 samples, the method 

had an overall accuracy of 75%, which is classified as fair. The producer’s and user’s 

accuracy values show that the method is reliable in mapping both semi-deciduous and 

evergreen forest species. However, applying some form of hard classification using the 

2-D scatterplot shows that not all pixels are allocated to the two classes of semi-deciduous 

and evergreen forests. These are the pixels whereby the MF score is less than 0 and the 

infeasibility is slightly higher. Pixels with very low (less than 0) MF scores and high 

infeasibility values were not selected as a way of rejecting false positives from the 

classification.  

The results further strengthens the effectiveness of combining classifiers (maximum 

likelihood and MTMF) as well as different spectral data sources (SPOT 6 imagery and 

field spectroscopy data) in subtropical forest classification at both pixel and sub-pixel 

levels. The acknowledgement of the supervised maximum likelihood emanates from the 

fact that the image used in this chapter had been masked using a subtropical forest mask 

from a land cover classification in Chapter 5. The strengths of using multiple classifier 

resonates with past studies in land cover classification (Steele, 2000). While per pixel 

classification is generally accurate in terms of land cover classification (which identified 

the coverage of the subtropical forests), sub-pixel classification went ahead and mapped 

the proportions of semi-deciduous and evergreen species within these forests.  



102 
 

8.4: Conclusion 

The chapter has highlighted the effectiveness of combining multispectral remote 

sensing data from the SPOT 6 sensor and field spectroscopy data in the discrimination 

of semi-deciduous and evergreen forest species. The resulting maps show proportions of 

semi-deciduous and evergreen forest species within each pixel of the subtropical forests. 

The two data sources with their different spatial scale combine well to identify various 

forest proportions, an essential element of large scale monitoring of this fragile biome in 

South Africa. The rich and diverse forest species that are within the Wild Coast’s 

subtropical forests need protection, hence phenological classification provides another 

dimension to available spatial data about these forests. 

Although, this chapter explored the phenological classification for only one year, that 

is 2013, there is room for a continuous monitoring of the forest changes and spatial 

implication of these two broad classes. A comparison between years will require data to 

be collected within similar climatic conditions and around the same time of the year. 

Further analysis within these species may look at phenological classification in summer, 

spring and winter seasons in order to have information regarding forest conditions in all 

seasons. 

Integrating the two data sources obtained at different scales also supported the value 

of a multiscale approach to forest modelling and monitoring. The scale issue was 

addressed by exploiting spectral resolution. Field spectroscopy was resampled to the 

same spectral coverage as the multispectral SPOT 6 imagery, thereby allowing the sub-

pixel classification of the subtropical forests into proportions of semi-deciduous and 

evergreen forest species. 
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Synthesis and Conclusion 

9.1: Introduction 

The indigenous forests of South Africa face a number of challenges that threaten their 

existence. The majority of these indigenous forests are located along the Wild Coast of 

the Eastern Cape and KwaZulu Natal Provinces. The subtropical biome contains much 

of the country’s biodiversity despite it being small and fragmented (Eeley et al., 2001). 

The need to assess the status of subtropical forests on South Africa’s Wild Coast is mainly 

motivated by growing population, as well as declining yields from subsistence agriculture 

and remittances from migrant labour (Shackleton et al., 2013). Remote sensing as a 

spatial analysis tool provides answers to conservation related questions, such as where 

and how much change has occurred in the forests.  

The results-based chapters (Chapter 5-8) have investigated subtropical forest species 

along the Wild Coast at different scales and spectral levels. In this chapter, a synthesis 

of the study’s findings, recommendations and directions for future research are provided. 

The present study has successfully quantified forest changes between 2005 and 2013, 

determined optimal wavelengths for subtropical forest discrimination, selected best 

classifier for leaf scale discrimination and identified semi-deciduous from evergreen 

forests at sub-pixel level. The discrimination of semi-deciduous and evergreen forest 

species made use of integrated field spectral and multispectral data as well as two 

classifiers. This is after showing the strength of multispectral integration of these data 

sources. The main findings of this study can be grouped into four broad themes based on 

the objectives of the study. There are all explained in the following objective-derived sub 

sections: 

9.1.1 Determining the best supervised classification algorithm for 

mapping subtropical forest changes 

The MLC proved to be the best classifier compared to MD, SAM and SID in classifying 

different land cover classes, including subtropical forest. The performance of the MLC 

also highlights the superiority of a linear per-pixel compared to non-parametric per-pixel 

methods (SAM and SID). After comparing the respective classification algorithms, this 
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study confirmed that medium resolution images such a SPOT 5 can play an important 

role in assessing forest change. Declining trends of the subtropical forest areal coverage 

over the two periods of 2005-2009 and 2009-2013 were identified. That notwithstanding, 

the student t-test revealed that although figures suggest a decrease in forest cover, 

change among all the classes between the two periods is not significant. These trends in 

forest change call for conservation efforts geared towards improved management of 

indigenous forests along the Wild Coast of South Africa.  

9.1.2 Selection of optimal wavelengths for subtropical forest species 

discrimination using field spectroscopy  

Results proved that the important wavelengths for discriminating subtropical forest 

species are located in the visible, red edge, near infrared and mid infrared portions of the 

electromagnetic spectrum. The selection and evaluation of the optimal wavelengths has 

been demonstrated in Chapter 5. After identifying 15 different species from sampling 

points, only 17 wavelengths were optimal for their spectral discrimination. The optimal 

wavelengths were 438, 442, 512 and 695 nm (in the visible); 729, 750, 758 nm (red edge); 

856, 936, 1179, 1507 and 1673 nm (near infrared) and 2220, 2465, 2469 and 2482 nm 

(mid-infrared) portions of the electromagnetic spectrum. By managing to identify 

significant optimal wavelengths, the study confirmed that the indisputable capability of the 

hierarchical method in this task. Thus the hierarchical method, comprising One-way 

ANOVA with Bonferroni correction, CART and JM distance, successfully identified the 

optimal wavelengths and evaluated their separability. Although the method was initially 

applied to the discrimination of papyrus vegetation (Adam and Mutanga, 2009), this study 

proved its application in subtropical forest species. Upscaling studies and other forms of 

extrapolation may therefore concentrate on the observed wavelengths and their general 

location on the electromagnetic spectrum. 

9.1.3 Identifying the best classifier for leaf level discrimination of 

subtropical forest species 

Using the selected wavelengths in the preceding chapter, the LDA has proven its 

capability to discriminate subtropical forest species at leaf level. Based on the accuracy 

metrics, there is evidence that the LDA outperformed PLSDA and RF methods. On a 
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general note, it proves the importance of linear machine learning algorithms in species 

discrimination compared to non-parametric ones (e.g. RF). PLSDA is another parametric 

algorithm that was outperformed by the LDA, but its accuracy levels were higher than RF, 

again confirming the importance of parametric methods. 

9.1.4 Discriminating proportions of semi-deciduous and evergreen 

forest species using sub-pixel classification after integrating 

multispectral imagery and field spectroscopy 

Integrating multispectral (SPOT 6) and field spectra data led to the successful 

discrimination of semi-deciduous and evergreen subtropical forests at sub-pixel level. 

Field spectra of the semi-deciduous and evergreen subtropical forest species was 

collected in the field as point data and integrated with high-resolution multispectral data. 

The subsequent sub-pixel classification served to upscale hyperspectral to multispectral 

data. The proportional maps of the two classes are a form of upscaling, since they 

discriminate semi-deciduous and evergreen forests for the whole study area. The method 

also proved the importance of multiple classifiers, as proportional maps were a product 

of MLC and MTMF. The MLC provided a general land cover classification of which was 

used to create a mask to remove non-forested parts of the study before sub-pixel analysis. 

The study also highlighted the importance of Mixed-Tuned Matched Filtering (MTMF) at 

sub-pixel level classifications since it concentrated on the provided classes (semi-

deciduous and evergreen), while supressing the unknown. 

9.2: Conclusion 

A declining trend of subtropical forests has been identified; species discrimination at 

leaf level is achievable using field spectra; so is the integration of SPOT 6 and field 

spectra for mapping semi-deciduous and evergreen forests species. These conclusions 

are made based on the following observations from this study: 

 The MLC is the best classification algorithm (88.75% overall accuracy and a Kappa 

coefficient of 0.69) for mapping land cover classes (including subtropical forest) in the 

study area. The other algorithms that were outperformed are MD (43.66% overall 
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accuracy and Kappa coefficient of 0.18), SAM (42.25% overall accuracy and Kappa 

coefficient of 0) and SID (32.39% overall accuracy and Kappa coefficient of 0.04). 

 An MLC based forest change analysis using SPOT 5 and 6 showed a decrease in 

forest areal cover during both periods 2005-2009 (3648.42 ha) and 2009-2013 

(946.98 ha). The two values show a decreasing temporal trend in forest cover in the 

area of 7.81% and 2.20% for the 2 periods respectively. The t-test proved that the 

changes in all land cover classes over the two periods are not significantly different 

(p>0.05).  

 Out of the 2150 wavelengths, the hierarchical method (involving One-Way ANOVA 

with Bonferroni correction and CART) identified only 17 optimal ones for subtropical 

forest species discrimination. The selected 17 are 438, 442, 512, 695, 724, 729, 750, 

758, 856, 936, 1179, 1507, 1673, 2220, 2465, 2469 and 2482 nm. They were located 

in the visible, red-edge, near infrared and mid-infrared portions of the electromagnetic 

spectrum. The JM distance method confirmed (most sets had index values of > 1 and 

closer to 2.0) the ability of the selected wavelengths to do species discrimination by 

measuring separability between sets of the selected ones. 

 In this study, the LDA proved its capability to discriminate subtropical forest species 

since it performed better in comparison to the PLSDA and RF. It is essential to include 

the linear based statistical methods when performing leaf-level discrimination of 

subtropical forest species. 

  Integrated multispectral and field spectral data managed discriminate the proportions 

of semi-deciduous and evergreen indigenous forest species with 75% overall 

accuracy. The proportions were discriminated at sub-pixel level using the Mixture 

Tuned Matched Filtering (MTMF). These results do not only prove integration of 

multispectral and field spectroscopy data but also served to upscale hyperspectral to 

multispectral data for subtropical forest characterisation. 

9.3: Recommendations 

Forest resources are facing immense pressure from other land uses, hence their 

monitoring is essential, especially in a country like South Africa, where the forest biome 

only covers 0.1-0.2% of the total terrestrial area (Castley and Kerly, 1996). However, 
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there are no indications that technological advances are embraced in national decision-

making processes. The future of forest conservation, especially subtropical forests, is not 

very bleak. Developing a forest monitoring programme based on SPOT 5 HRG and SPOT 

6 multispectral imagery can provide much-needed information about the state of the 

indigenous forests, such as the subtropical type in the Wild Coast region. In light of the 

findings of this study, the following are perceived research directions in as far as 

subtropical forests are concerned: 

 Although the parametric methods (MLC and LDA) were better in this study, further 

studies may confirm this with other subtropical forest stands along the coast of 

South Africa or other countries with similar climatic conditions. 

 There is potential for a similar integration methodology between field spectroscopy 

and multispectral imagery with red-edge band(s), such as WorldView2, Rapideye 

or ESA’s Sentinel 1, to yield additional information about the subtropical forests. 

Characteristics like phenology and even their species make-up may be easily 

detected if monitoring is done over time.  

 Another point of departure may be simulating field spectra to top-of-canopy 

reflectance or measuring canopy reflectance and integrate with multispectral data 

for further characterisation of subtropical forests.  

 Other characteristics such as plant water differences may also be investigated in 

subtropical forests. 
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Appendices 

 

Appendix 1: Additional Results (Per-pixel classification) 

 
The following results are confusion matrices for the individual classification algorithms 

of 2013 SPOT 6 image. 

Table 10.1: Confusion matrix for MLC classification on the 2013 SPOT 6 image.  

 Ground Truth     

Class grassland 
subtropical 

forest 
woodland Total 

Producer's 
Accuracy 

User's 
Accuracy 

grassland 7 1 0 8 0.88 0.88 

subtropical 
forest 

0 52 2 54 0.91 0.96 

woodland 1 4 4 9 0.67 0.44 

Total 8 57 6 71   

Overall Accuracy  88.73 %,    Kappa coefficient 0.69 

 

Table 10.2: Confusion matrix for MD classification on the 2013 SPOT 6 image 

 Ground Truth     

Class grassland 
subtropical 

forest 
woodland Total 

Producer's 
Accuracy 

User's 
Accuracy 

grassland 6 1 0 7 75 85.71 

subtropical 
forest 

1 25 3 29 43.86 86.2069 

woodland 0 19 0 19 26.76 0 

Other 
classes 

1 12 3 16   

Total 8 57 6 71   

Overall accuracy  43.66,    Kappa coefficient 0.18 
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Table 10.3: Confusion matrix for SAM classification on the 2013 SPOT 6 image 

 Ground Truth     

Class grassland 
subtropical 

forest 
woodland Total 

Producer's 
Accuracy 

User's 
Accuracy 

grassland 3 2 0 5 37.5 60 

subtropical 
forest 

0 27 6 33 47.37 81.82 

woodland 2 22 0 24 0 0 

Other 
classes 

3 6 0 9   

Total 8 57 6 71   

Overall accuracy  42.25,    Kappa coefficient 0.004 

 

Table 10.4: Confusion matrix for SID classification on the 2013 SPOT 6 image 

 Ground Truth    

Class grassland 
subtropical 

forest 
woodland Total 

Producer's 
Accuracy 

User's 
Accuracy 

grassland 5 5 5 15 62.5 33.33 

subtropical 
forest 

2 18 1 21 31.58 85.71 

woodland 0 32 0 32 0 0 

Other 
classes 

1 2 0 3   

Total 8 57 6 71   

Overall Accuracy  32.39 %,    Kappa coefficient 0.0353 
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Appendix 2: Additional Results (Sub-pixel classification)

 

Figure 10.1: Semi-deciduous infeasibility map 

 

Figure 10.2: Evergreen infeasibility map 


