154,589 research outputs found

    Scientific Objectives for UV/Visible Astrophysics Investigations: A Summary of Responses by the Community (2012)

    Get PDF
    Following several recommendations presented by the Astrophysics Decadal Survey 2010 centered around the need to define "a future ultraviolet-optical space capability," on 2012 May 25, NASA issued a Request for Information (RFI) seeking persuasive ultraviolet (UV) and visible wavelength astrophysics science investigations. The goal was to develop a cohesive and compelling set of science objectives that motivate and support the development of the next generation of ultraviolet/visible space astrophysics missions. Responses were due on 10 August 2012 when 34 submissions were received addressing a number of potential science drivers. A UV/visible Mission RFI Workshop was held on 2012 September 20 where each of these submissions was summarized and discussed in the context of each other. We present a scientific analysis of these submissions and presentations and the pursuant measurement capability needs, which could influence ultraviolet/visible technology development plans for the rest of this decade. We also describe the process and requirements leading to the inception of this community RFI, subsequent workshop and the expected evolution of these ideas and concepts for the remainder of this decade.Comment: 22 pages, 1 figure, 3 table

    The Hubble Deep Field North SCUBA Super-map III - Optical and near-infrared properties of submillimetre galaxies

    Full text link
    We present a new sub-mm Super-map in the HDF-North region (GOODS-North field), containing 40 statistically robust sources at 850 microns. This map contains additional data, and several new sources, including one of the brightest blank-sky extragalactic sub-mm sources ever detected. We have used the ACS HST images and ground-based near-IR observations from GOODS to develop a systematic approach for counterpart identification. 72 per cent of our sources with optical coverage have a unique optical counterpart using our new techniques for counterpart identification, and an additional 18 per cent have more than one possibility that meet our criteria in the ACS images. We have found a much higher ERO rate than other sub-mm surveys, due to the increased depth in the optical images. The median photometric redshift (and quartile range), from optical and near-infrared data, is 1.7 (1.3-2.5) for the radio-detected sub-mm sources, and rises to 2.3 (1.3-2.7) for the radio-undetected sub-sample. We find interesting correlations between the 850 micron flux and both the i magnitude and the photometric redshift, from which there appears to be an absence of high redshift faint counterparts to the lower flux density SCUBA sources. While the quantitative morphologies span a range of values, in general the sub-mm galaxies show larger sizes and a higher degree of asymmetry than other galaxy populations at the same redshifts.Comment: 20 pages, 11 eps figures. Accepted for publication in MNRAS December 17, 200

    Single image example-based super-resolution using cross-scale patch matching and Markov random field modelling

    Get PDF
    Example-based super-resolution has become increasingly popular over the last few years for its ability to overcome the limitations of classical multi-frame approach. In this paper we present a new example-based method that uses the input low-resolution image itself as a search space for high-resolution patches by exploiting self-similarity across different resolution scales. Found examples are combined in a high-resolution image by the means of Markov Random Field modelling that forces their global agreement. Additionally, we apply back-projection and steering kernel regression as post-processing techniques. In this way, we are able to produce sharp and artefact-free results that are comparable or better than standard interpolation and state-of-the-art super-resolution techniques

    Radio emission and jets from microquasars

    Full text link
    To some extent, all Galactic binary systems hosting a compact object are potential `microquasars', so much as all galactic nuclei may have been quasars, once upon a time. The necessary ingredients for a compact object of stellar mass to qualify as a microquasar seem to be: accretion, rotation and magnetic field. The presence of a black hole may help, but is not strictly required, since neutron star X-ray binaries and dwarf novae can be powerful jet sources as well. The above issues are broadly discussed throughout this Chapter, with a a rather trivial question in mind: why do we care? In other words: are jets a negligible phenomenon in terms of accretion power, or do they contribute significantly to dissipating gravitational potential energy? How do they influence their surroundings? The latter point is especially relevant in a broader context, as there is mounting evidence that outflows powered by super-massive black holes in external galaxies may play a crucial role in regulating the evolution of cosmic structures. Microquasars can also be thought of as a form of quasars for the impatient: what makes them appealing, despite their low number statistics with respect to quasars, are the fast variability time-scales. In the first approximation, the physics of the jet-accretion coupling in the innermost regions should be set by the mass/size of the accretor: stellar mass objects vary on 10^5-10^8 times shorter time-scales, making it possible to study variable accretion modes and related ejection phenomena over average Ph.D. time-scales. [Abridged]Comment: 28 pages, 13 figures, To appear in Belloni, T. (ed.): The Jet Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009

    EXIST: The Ultimate Spatial/Temporal Hard X-ray Survey

    Get PDF
    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed mission to conduct an all-sky imaging hard x-ray (HX) survey (~5–600 keV) with ~0.05mCrab sensitivity (5σ; 6mo.; ~5–100keV) comparable to the ROSAT soft x-ray survey, and to provide the maximum sensitivity and resolution (spatial and temporal) HX imager as the Next Generation GRB mission. Its primary science goals are to i) identify and measure obscured AGN and constrain the accretion luminosity of the universe as well as the cosmic IR background from Blazar spectra coincident with GeV-TeV observations, ii) measure spectra, variability and locations for the faintest GRBs to study the most energetic events in the universe and the earliest epoch of star formation, and iii) study black holes on all scales, from x-ray transients to luminous AGN. EXIST would incorporate a very large area (~8m^2) imaging Cd-Zn-Te detector and coded aperture telescope array with nearly half-sky instantaneous view which images the full sky each orbit. With fixed zenith pointing, it could be mounted on the ISS or a free flyer and would complement both GLAST and Constellation-X science if launched before 2010, as recommended by the Astronomy and Astrophysics Decadal Survey

    Expansion and Collapse in the Cosmic Web

    Get PDF
    We study the kinematics of the gaseous cosmic web at high redshift with Lyman alpha forest absorption in multiple QSO sightlines. Using a simple analytic model and a cosmological hydrodynamic simulation we constrain the underlying three-dimensional distribution of velocities from the observed line-of-sight distribution of velocity shear across the plane of the sky. The distribution is found to be in good agreement with the intergalactic medium (IGM) undergoing large scale motions dominated by the Hubble flow. Modeling the Lyman alpha clouds analytically and with a hydrodynamics simulation, the average expansion velocity of the gaseous structures causing the Lyman alpha forest in the lower redshift (z = 2) sample appears about 20 percent lower than the local Hubble expansion velocity. We interpret this as tentative evidence for some clouds undergoing gravitational collapse. However, the distribution of velocities is highly skewed, and the majority of clouds at redshifts from 2 to 3.8 expand typically about 5 - 20 percent faster than the Hubble flow. This behavior is explained if most absorbers in the column density range typically detectable are expanding filaments that stretch and drain into more massive nodes. We find no evidence for the observed distribution of velocity shear being significantly influenced by processes other than Hubble expansion and gravitational instability, like galactic winds. To avoid overly disturbing the IGM, winds may be old and/or limp by the time we observe them in the Lyman alpha forest, or they may occupy only an insignificant volume fraction of the IGM. (abridged)Comment: 63 pages, 26 figures, AAS Latex; ApJ, in pres
    corecore