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Abstract. Example-based super-resolution has become increasingly pop-
ular over the last few years for its ability to overcome the limitations of
classical multi-frame approach. In this paper we present a new example-
based method that uses the input low-resolution image itself as a search
space for high-resolution patches by exploiting self-similarity across dif-
ferent resolution scales. Found examples are combined in a high-resolution
image by the means of Markov Random Field modelling that forces their
global agreement. Additionally, we apply back-projection and steering
kernel regression as post-processing techniques. In this way, we are able
to produce sharp and artefact-free results that are comparable or better
than standard interpolation and state-of-the-art super-resolution tech-
niques.
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1 Introduction

Super-resolution (SR) plays an important role in image processing applications
nowadays due to the huge amount of low resolution video and image mate-
rial. Low resolution is a consequence of using low-cost imaging sensors for im-
age/video acquisition, such as webcams, cell phones and surveillance cameras.
Furthermore, the increasing popularity of HDTV makes the SR methods neces-
sary for resolution enhancement of NTSC and PAL recordings.

The task of SR is to infer a high-resolution image from one or more low res-
olution images. Among many SR techniques, two approaches can be identified:
classical and example-based approach. Classical SR methods attempt to recon-
struct a high-resolution (HR) image from a sequence of degraded low-resolution
(LR) images taken from the same scene at sub-pixel shifts [1, 2]. Each output
pixel is related to one or more input pixels by the acquisition or degradation
model. If there is an insufficient number of LR images, prior knowledge can be
used as an additional source of information. Classical SR in practice, however,
is limited to the the magnification factor smaller than two [4]. Example-based
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2 Single Image Example-Based Super-Resolution

SR is able to overcome this limitation. The goal of the example-based approach
[3, 4] is to fill in the missing high frequencies by searching for highly similar
patches in the external database that also contains high-resolution information.
The method actually consists of two steps: a learning and a reconstruction step.
The former involves searching for k nearest neighbours in the database for each
LR patch of the input image, while the latter combines the corresponding HR
patches of those nearest neighbours to form the HR image.

A problem with example-based methods is that they involve storing and
searching large databases. Searching the database can be avoided by using it
only to learn the interpolation functions [5, 6], but still this external database
is necessary. Additionally, it is not guaranteed that the database contains the
true high-resolution details which may cause the so called “hallucination” effect.
Furthermore, this database needs to be large enough to provide good results
which makes learning or searching computationally more demanding.

A solution to the previously mentioned problems is to use the LR input
image itself as a search space in the learning phase, as implied originally in
[3]. Based on this idea, several single image super-resolution techniques have
been developed [7, 8]. In [8], all examples are obtained by searching for nearest
neighbours within the Gaussian pyramid of the input LR image. This example-
based part is combined with the classical SR approach to yield an HR image
with an arbitrary magnification factor. The use of a single image is justified
by the level of patch redundancy within the same scale and across different
levels of Gaussian pyramid. Following this reasoning, we have also developed
a single-image super-resolution algorithm that, in addition to these non-local
similarities within and across scales, uses sparsity constraints to perform image
super-resolution [9].

In this paper we propose a novel single image example-based super-resolution
algorithm which combines the learning phase of [8] by searching for examples
within the Gaussian pyramid of the input image itself and the reconstruction
phase of [3], which uses the Markov Random Field (MRF) model to reconstruct
the HR image. The main benefit of such learning approach is that no external
database is required which results in faster search and absence of “hallucination”
effect (when compared with [3]). On the other hand, using MRF in the recon-
struction enables us to stay in the example-based domain without combining it
with classical SR as in [8]. There are a few advantages to this in comparison
with [8]. First of all, we can use only one level of the pyramid as the search
space whose sub-sampling factor corresponds to the magnification factor instead
of multiple levels with non-integer sub-sampling factor and, thus, again decrease
the computation time. Second, we reconstruct only the HR image of the de-
sired resolution rather than employing course-to-fine reconstruction of images
at intermediate resolutions. Finally, we avoid sub-pixel registration which often
causes inaccurate results.

Another contribution of this paper is that we show that a simpler and faster
method can be used for inference in MRF instead of belief propagation used
originally in [3]. We use our method from [10] called neighbourhood-consensus
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Fig. 1. The proposed single-image example-based super-resolution method.

message passing. Our results of the complete algorithm on different test im-
ages demonstrate a comparable or better performance than state-of-the-art SR
techniques.

This paper is organized as follows. Sec. 2 describes our method for single
image example-based SR, where Sec. 2.1 explains in more details the learning
phase and Sec. 2.2 the reconstruction phase. Finally, we present and discuss the
experimental results in Sec. 3 and we give our conclusion in Sec. 4.

2 Proposed Single Image Example-Based Method

We propose a single-image example-based super-resolution method which uses
MRF to model the HR image as a collection of overlapping HR patches whose
possible candidates are obtained from the input LR image itself. The algo-
rithm can be divided into three main phases: learning, reconstruction and post-
processing (see Fig. 1). In the learning phase, we find candidate patches of
each unknown HR patch by first searching for k nearest neighbours of its corre-
sponding known LR patch from the input image. This search exploits the patch
redundancy across different scales of the Gaussian pyramid. We then extract
the HR pairs of the found neighbours (called “parent” patches) from the input
image and we use them as candidate patches for corresponding locations in the
HR image, because we assume that the LR and HR patches are related in the
same way across different scales. What follows is the reconstruction phase, which
models the HR image as a MRF and performs inference on this model. MRF
model has a great advantage over the simpler alternative, i.e. choosing the best
match at each location, as we will demonstrate shortly.

Finally, we apply post-processing techniques to eliminate remaining artefacts.
We use back-projection [1] to ensure the consistency of the HR result with the
input LR image. In case of a small input image and high magnification factor,
the search space may become too small for good matches to be found. This
will result in visible artefacts so we also use steering kernel regression [11] that
produces a smooth and artefact-free image while still preserving edges, ridges
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Fig. 2. An illustration of the process of learning candidate patches.

and blobs. Post-processing together with MRF modelling allows us to obtain
competitive SR result even with only having LR image as the algorithm’s input.

In the remaining of this section we will describe in details the learning and
reconstruction phase.

2.1 Learning Candidate Patches

In this section we will explain how to use the single input image to obtain
candidate patches. We use the example-based part of the algorithm from [8] in
the sense that we search for similar patches within the Gaussian pyramid and
use their “parent” HR patches for further reconstruction. However, our approach
differs in the reconstruction step which enables us to perform simplified and
faster search. Specifically, we search in only one level of the Gaussian pyramid
whose sub-sampling factor is equal to the magnification factor for the reasons
that will be explained shortly.

We start from the LR input image I0 which is then blurred and sub-sampled
with the integer factor s to yield the lower level of the Gaussian pyramid I

−s. The
final goal is to reconstruct the image with a resolution that is s times higher than
the original resolution. We will denote this HR image with H = Is. The image
I
−s will serve as a search space for matches of each patch from the image I0. In
details, the search and matching process has the following course, as illustrated
in Fig. 2. For each pixel p ∈ I0, where p = (x, y) actually represents coordinates
of the pixel in the image grid, we take its surrounding patch op (denoted by L on
Fig. 2) and search for its k nearest neighbours (kNNs) in the image I

−s. Those
neighbours are the patches that have the lowest sum of squared differences with
op. Once kNNs ynp , n = 1, .., k, are found, their “parent” patches xnp , n = 1, .., k,
(denoted by P on Fig. 2) are extracted from the given image I0.

The “parent” patch represents a HR component of the HR-LR pair, where
LR component is the LR patch. If the location of the central pixel of the LR
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Fig. 3. MRF model: xp are unknown HR patches and yp measured LR patches.

patch ynp (found kNN) is p̃ ∈ I
−s, then the location of the central pixel of the

“parent” patch xnp is sp̃ ∈ I0 and its size is s times the size of the LR patch.
These parent patches can now serve as candidate patches for each location sp
in the HR image H which corresponds to the starting location p in the input
LR image I0. This is the reason for the same value s of the magnification and
sub-sampling factor.

2.2 High-Resolution Image Reconstruction

After the algorithm described in the previous subsection, we have k candidate
patches xnp , n = 1, .., k, for each location sp ∈ H . These locations correspond
to starting locations p ∈ I0 so we will refer to them with the index p. They
are s pixels apart from each other in each direction in the HR grid. The naive
approach would be to choose the best match, i.e. the nearest neighbour, at each
location. Since the neighbouring patches will normally overlap, we can simply
take the average in the overlap region. Although this solution could speed up the
search process (because we only search for one nearest neighbour), the resulting
image will have visible artefacts (Fig. 4).

Instead of just choosing the HR patch based on its agreement with the avail-
able data (the input image), we can take into account the relationship that
inevitably exists between neighbouring locations in H in the sense that neigh-
bouring patches should agree in the overlap region. This means that the sum of
squared differences in the overlap region is minimal. Furthermore, we would like
to observe the image as a whole rather than a collection of local assumptions.
In this respect, we can formulate the choice of patches as a global optimization
problem over the whole HR image by using the MRF framework [12]. For this
purpose, we adopt the concept of [3] with a few major differences. First of all,
our candidate patches are obtained from the input image itself, without using
an external database. Moreover, they consist of raw pixel values instead of high
frequency details so there is no need for preprocessing of the search space. Fi-
nally, we use our inference method for optimization which is simpler and faster
than loopy belief propagation (LBP) [13] which was originally used.

Specifically, we model H as an undirected graph (Fig. 3) whose hidden nodes,
indexed by p, represent the overlapping HR patches in the HR image that can
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Fig. 4. Cropped version of zebra image 2x magnification. From left to right: best match
result, MRF result with LBP as inference method, MRF result with NCMP as inference
method.

take one of the values from the set {xp}. Each hidden node is connected to the
observed node (measured data) which is the LR patch op around pixel p ∈ I0 .

To completely define MRF model we still have to define compatibility func-
tions between observed and hidden nodes (so called local evidence) and neigh-
bouring hidden nodes. The former determines how much the unknown data
agrees with measured data and the latter encodes prior information on the dis-
tribution of the unknown image. Local evidence is taken to be the Gaussian
function of the matching error, i.e. sum of squared differences, between starting
LR patch op and found k nearest neighbours ynp :

φp(y
n
p , op) = exp(−‖ynp − op‖

2/2σ2

R), (1)

Compatibility between neighbouring hidden nodes is the Gaussian function
of the matching error in the region of overlap ROV of two neighbouring HR
patches:

ψp,q(x
n
p , x

m
q ) = exp(−‖ROVn

q,p − ROVm
p,q‖

2/2σ2

N ). (2)

σR and σN are the noise covariances which represent the difference between
some “ideal” training samples and our image and training samples, respectively.
Now, we have to choose one patch from the candidate set at each node that best
fits the above constraints over the whole graph. This can be achieved by finding
maximum a posteriori (MAP) estimates:

Ĥ = x̂ = argmax
x

P (x|I0) (3)

P (x|I0) ∝
∏

p,q

ψp,q(x
n
p , x

m
q )

∏

p

φp(y
n
p , op), (4)

where φp is defined in equation 1 and ψp,q in equation 2. This is generally
a difficult problem to be solved exactly, but there is a number of approximate
inference algorithms that can yield an approximate solution. We use our inference
method called neighbourhood-consensus message passing (NCMP) [10] which is
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simpler and and faster than LBP while the results are qualitatively very similar.
Comparison of different approaches for HR image reconstruction is shown in Fig.
4. On the left we see the result of the best match approach which has a lot of
artefacts due to its greedy nature. Using a MRF model produces much better
result even if we use a simple inference method like NCMP (right image).

Fig. 5. Cropped castle image 2x magnification. From left to right and top to bottom: bi-
cubic interpolation, MRF result, MRF with back-projection, MRF with back-projection
and kernel regression.

3 Experimental Results

We tested our method on several images and compared it to the standard in-
terpolation technique, like bi-cubic interpolation, and state-of-the-art SR tech-
niques from [8], which is another single-image SR method, and [14], which uses
a parametric learned edge model. In all experiments the LR patch size was 3x3
and HR patch size 3sx3s, while parameters of MRF compatibility functions σR
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Fig. 6. Cropped version of man image 2x magnification. From left to right: bi-cubic
result, result of [14], result of the proposed method.

and σN slightly varied over different images. The number of nearest neighbours
was k = 10.

In the first experiment, we demonstrate the effectiveness of our technique for
sufficiently large search space. Fig. 5 shows the castle image and the results of our
super-resolution algorithm with the magnification s = 2. It can be seen that the
output of the MRF, without any post-processing, gives already reasonably good
results. For example, all edges are sharp without “jaggy” artefacts which are
visible in the result of bi-cubic interpolation. Back-projection further improves
the result by eliminating artefacts and enhancing textures (e.g. texture on the
roof). Finally, kernel regression only slightly smooths the image and can even
be left out as a post-processing step in this case.

Table 1. RMSE and SSIM comparison of our method and bi-cubic interpolation result.

norm. RMSE SSIM

Image Our Bi-cubic Our Bi-cubic

Zebras 0.3589 0.3948 0.9097 0.9043

Skyscraper 0.2573 0.2789 0.9275 0.9163

Butterfly 0.1371 0.1484 0.9572 0.9564

We also compare our result with two state-of-the-art methods from [8] and
[14]. In Fig. 6 we can see that the proposed method eliminates “jaggies” along
the lines present in the results of reference methods, e.g. lines on the collar of
the sweater. Our method also outperforms reference methods for higher mag-
nification factor, as shown in Fig. 7. It manages to produce the sharpest lines
without “jaggy” or “ghosting” artefacts that are present in the results of [8] and
[14], while keeping the result visually pleasing. Both results were obtained with
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Fig. 7. Cropped version of chip image 4x magnification. Top-left: bi-cubic result. Top-
right: result of [14]. Bottom-left: result of [8]. Bottom-right: result of the proposed
method.

the input LR image of the small size. We believe that the difference would be
even more significant for bigger input images.

In Table 1 we give quantitative results of a few images from Berkeley seg-
mentation database 1. We calculated the root mean square error (RMSE) and
structure similarity index (SSIM) [15] between our super-resolution/bi-cubic in-
terpolation result and ground truth. Our method produces smaller error and
higher structure similarity score than bi-cubic interpolation. The quantitative
improvement is, however, limited since the improvement is concentrated in edge
regions, which represent small portion of the whole image.

4 Conclusion

In this paper we have presented a novel single-image super-resolution method
based on MRF modelling. Unknown high-resolution image is modelled as a MRF

1 eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
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whose nodes are overlapping high-resolution patches. Possible candidates for
these nodes are found within only one level of the Gaussian pyramid of the in-
put low-resolution image. To choose the best candidate in maximum a posteriori
sense, we used our previously developed inference method called neighbourhood-
consensus message passing, which makes this step fast and simple. Additionally,
we performed back-projection and steering kernel regression to further improve
the results. Results show that our method greatly outperforms standard tech-
niques, while being visually better or comparable with state-of-the-art tech-
niques.
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