101 research outputs found

    Design considerations for a hierarchical semantic compositional framework for medical natural language understanding

    Full text link
    Medical natural language processing (NLP) systems are a key enabling technology for transforming Big Data from clinical report repositories to information used to support disease models and validate intervention methods. However, current medical NLP systems fall considerably short when faced with the task of logically interpreting clinical text. In this paper, we describe a framework inspired by mechanisms of human cognition in an attempt to jump the NLP performance curve. The design centers about a hierarchical semantic compositional model (HSCM) which provides an internal substrate for guiding the interpretation process. The paper describes insights from four key cognitive aspects including semantic memory, semantic composition, semantic activation, and hierarchical predictive coding. We discuss the design of a generative semantic model and an associated semantic parser used to transform a free-text sentence into a logical representation of its meaning. The paper discusses supportive and antagonistic arguments for the key features of the architecture as a long-term foundational framework

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen

    A Survey of GPT-3 Family Large Language Models Including ChatGPT and GPT-4

    Full text link
    Large language models (LLMs) are a special class of pretrained language models obtained by scaling model size, pretraining corpus and computation. LLMs, because of their large size and pretraining on large volumes of text data, exhibit special abilities which allow them to achieve remarkable performances without any task-specific training in many of the natural language processing tasks. The era of LLMs started with OpenAI GPT-3 model, and the popularity of LLMs is increasing exponentially after the introduction of models like ChatGPT and GPT4. We refer to GPT-3 and its successor OpenAI models, including ChatGPT and GPT4, as GPT-3 family large language models (GLLMs). With the ever-rising popularity of GLLMs, especially in the research community, there is a strong need for a comprehensive survey which summarizes the recent research progress in multiple dimensions and can guide the research community with insightful future research directions. We start the survey paper with foundation concepts like transformers, transfer learning, self-supervised learning, pretrained language models and large language models. We then present a brief overview of GLLMs and discuss the performances of GLLMs in various downstream tasks, specific domains and multiple languages. We also discuss the data labelling and data augmentation abilities of GLLMs, the robustness of GLLMs, the effectiveness of GLLMs as evaluators, and finally, conclude with multiple insightful future research directions. To summarize, this comprehensive survey paper will serve as a good resource for both academic and industry people to stay updated with the latest research related to GPT-3 family large language models.Comment: Preprint under review, 58 page

    Design and Implementation Strategies for IMS Learning Design

    Get PDF
    SIKS Dissertation Series No. 2008-27The IMS Learning Design (LD) specification, which has been released in February 2003, is a generic and flexible language for describing the learning practice and underlying learning designs using a formal notation which is computer-interpretable. It is based on a pedagogical meta-model (Koper & Manderveld, 2004) and supports the use of a wide range of pedagogies. It supports adaptation of individual learning routes and orchestrates interactions between users in various learning and support roles. A formalized learning design can be applied repeatedly in similar situations with different persons and contexts. Yet because IMS Learning Design is a fairly complex and elaborate specification, it can be difficult to grasp; furthermore, designing and implementing a runtime environment for the specification is far from straightforward. That IMS Learning Design makes use of other specifications and e-learning services adds further to this complexity for both its users and the software developers. For this new specification to succeed, therefore, a reference runtime implementation was needed. To this end, this thesis addresses two research and development issues. First, it investigates research into and development of a reusable reference runtime environment for IMS Learning Design. The resulting runtime, called CopperCore, provides a reference both for users of the specification and for software developers. The latter can reuse the design principles presented in this thesis for their own implementations, or reuse the CopperCore product through the interfaces provided. Second, this thesis addresses the integration of other specifications and e-learning services during runtime. It presents an architecture and implementation (CopperCore Service Integration) which provides an extensible lightweight solution to the problem. Both developments have been tested through real-world use in projects carried out by the IMS Learning Design community. The results have generally been positive, and have led us to conclude that we successfully addressed both the research and development issues. However, the results also indicate that the LD tooling lacks maturity, particularly in the authoring area. Through close integration of CopperCore with a product called the Personal Competence Manager, we demonstrate that a complementary approach to authoring in IMS Learning Design solves some of these issues

    Understanding Legacy Workflows through Runtime Trace Analysis

    Get PDF
    abstract: When scientific software is written to specify processes, it takes the form of a workflow, and is often written in an ad-hoc manner in a dynamic programming language. There is a proliferation of legacy workflows implemented by non-expert programmers due to the accessibility of dynamic languages. Unfortunately, ad-hoc workflows lack a structured description as provided by specialized management systems, making ad-hoc workflow maintenance and reuse difficult, and motivating the need for analysis methods. The analysis of ad-hoc workflows using compiler techniques does not address dynamic languages - a program has so few constrains that its behavior cannot be predicted. In contrast, workflow provenance tracking has had success using run-time techniques to record data. The aim of this work is to develop a new analysis method for extracting workflow structure at run-time, thus avoiding issues with dynamics. The method captures the dataflow of an ad-hoc workflow through its execution and abstracts it with a process for simplifying repetition. An instrumentation system first processes the workflow to produce an instrumented version, capable of logging events, which is then executed on an input to produce a trace. The trace undergoes dataflow construction to produce a provenance graph. The dataflow is examined for equivalent regions, which are collected into a single unit. The workflow is thus characterized in terms of its treatment of an input. Unlike other methods, a run-time approach characterizes the workflow's actual behavior; including elements which static analysis cannot predict (for example, code dynamically evaluated based on input parameters). This also enables the characterization of dataflow through external tools. The contributions of this work are: a run-time method for recording a provenance graph from an ad-hoc Python workflow, and a method to analyze the structure of a workflow from provenance. Methods are implemented in Python and are demonstrated on real world Python workflows. These contributions enable users to derive graph structure from workflows. Empowered by a graphical view, users can better understand a legacy workflow. This makes the wealth of legacy ad-hoc workflows accessible, enabling workflow reuse instead of investing time and resources into creating a workflow.Dissertation/ThesisMasters Thesis Computer Science 201

    Modelling Incremental Self-Repair Processing in Dialogue.

    Get PDF
    PhDSelf-repairs, where speakers repeat themselves, reformulate or restart what they are saying, are pervasive in human dialogue. These phenomena provide a window into real-time human language processing. For explanatory adequacy, a model of dialogue must include mechanisms that account for them. Artificial dialogue agents also need this capability for more natural interaction with human users. This thesis investigates the structure of self-repair and its function in the incremental construction of meaning in interaction. A corpus study shows how the range of self-repairs seen in dialogue cannot be accounted for by looking at surface form alone. More particularly it analyses a string-alignment approach and shows how it is insufficient, provides requirements for a suitable model of incremental context and an ontology of self-repair function. An information-theoretic model is developed which addresses these issues along with a system that automatically detects self-repairs and edit terms on transcripts incrementally with minimal latency, achieving state-of-the-art results. Additionally it is shown to have practical use in the psychiatric domain. The thesis goes on to present a dialogue model to interpret and generate repaired utterances incrementally. When processing repaired rather than fluent utterances, it achieves the same degree of incremental interpretation and incremental representation. Practical implementation methods are presented for an existing dialogue system. Finally, a more pragmatically oriented approach is presented to model self-repairs in a psycholinguistically plausible way. This is achieved through extending the dialogue model to include a probabilistic semantic framework to perform incremental inference in a reference resolution domain. The thesis concludes that at least as fine-grained a model of context as word-by-word is required for realistic models of self-repair, and context must include linguistic action sequences and information update effects. The way dialogue participants process self-repairs to make inferences in real time, rather than filter out their disfluency effects, has been modelled formally and in practical systems.Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Account (DTA) scholarship from the School of Electronic Engineering and Computer Science at Queen Mary University of London

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers
    corecore