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Modelling Incremental Self-Repair Processing
in Dialogue

Julian Hough

Abstract

Self-repairs, where speakers repeat themselves, reformulate or restart what they are saying, are
pervasive in human dialogue. These phenomena provide a window into real-time human lan-
guage processing. For explanatory adequacy, a model of dialogue must include mechanisms that
account for them. Artificial dialogue agents also need this capability for more natural interac-
tion with human users. This thesis investigates the structure of self-repair and its function in the
incremental construction of meaning in interaction.

A corpus study shows how the range of self-repairs seen in dialogue cannot be accounted for
by looking at surface form alone. More particularly it analyses a string-alignment approach and
shows how it is insufficient, provides requirements for a suitable model of incremental context
and an ontology of self-repair function.

An information-theoretic model is developed which addresses these issues along with a sys-
tem that automatically detects self-repairs and edit termson transcripts incrementally with min-
imal latency, achieving state-of-the-art results. Additionally it is shown to have practical use in
the psychiatric domain.

The thesis goes on to present a dialogue model to interpret and generate repaired utterances
incrementally. When processing repaired rather than fluentutterances, it achieves the same
degree of incremental interpretation and incremental representation. Practical implementation
methods are presented for an existing dialogue system.

Finally, a more pragmatically oriented approach is presented to model self-repairs in a psy-
cholinguistically plausible way. This is achieved throughextending the dialogue model to include
a probabilistic semantic framework to perform incrementalinference in a reference resolution
domain.

The thesis concludes that at least as fine-grained a model of context as word-by-word is re-
quired for realistic models of self-repair, and context must include linguistic action sequences
and information update effects. The way dialogue participants process self-repairs to make infer-
ences in real time, rather than filter out their disfluency effects, has been modelled formally and
in practical systems.

Submitted for the degree of Doctor of Philosophy

Queen Mary University of London

2015
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Chapter 1

Introduction

I begin with examples of the phenomena this thesis is concerned with in the context of a dialogue:

GARETH Do you know who done the picture?
→ KEITH Yeah... no, I mean no.

GARETH Right. Your first answer was ‘yeah’, wasn’t it?
KEITH I meant no.
GARETH Well, why did you get...?

→ KEITH Uhh... I don’t know.
GARETH Am I making you nervous?

→ KEITH No. I mean, yeah.
GARETH Hmmm. That’s interesting.

(‘The Office’, BBC comedy, Series 1, 2001, episode 2.)

Self-repairs and edit terms, the concern of this thesis, areitalicised, underlined and marked

with an arrow. This example shows the interactive effect of repaired utterances and how they

construct meaning in dialogue. People are aware of their ownand their dialogue partner’s disflu-

encies, and process their meaning as easily and quickly as they do fluent contributions.

I believe the remit of a model of human language comprehension and production needs to

include mechanisms for self-repair for it to have explanatory adequacy. From the beginning of the

field of conversation analysis (CA) it was observed that theyare abundant in natural conversation,

take varied forms and adopt different communicative functions (Schegloff et al., 1977; Schegloff,

1992). Self-repairs are the most common type of repair phenomena in dialogue as the initial CA

work and more recent statistical corpus work has shown, appearing with different frequency

between dialogue domains and speaker groups (Shriberg, 1996; Bortfeld et al., 2001; Colman

and Healey, 2011). Different types of self-repair can be elicited from speakers in experiments,
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both in description tasks (van Wijk and Kempen, 1987) and in dialogue settings (Healey et al.,

2011) with some degree of predictability. Experimental results have shown how hearers process

speech repairs as easily as fluent utterances, and in fact in specific cases the speed of incremental

semantic processing can be increased when hearing repaired, rather than fluent, speech (Brennan

and Schober, 2001). Finally, the distribution of self-repairs across speakers has been a useful tool

in the psychiatric domain as it can predict outcomes for patient adherence to treatment (McCabe

et al., 2013).

Despite this overwhelming empirical evidence that self-repair is a core mechanism of linguis-

tic and cognitive processing, it is positioned at the periphery of theoretical and computational

linguistics. In fact, self-repairs are rendered anomalousand unworthy of formal treatment by

many mainstream accounts of the human language faculty, a stance originally endorsed by the

formal linguisticcompetence-performancedistinction championed by Chomsky (1965). Conse-

quently, due to its status as a “performance” phenomenon, describing and explaining self-repair

was not a motivating factor for popular theories of syntax such as the principles and parameters

approach (Chomsky, 1981) or the minimalist program (Chomsky, 1995), whose objective was to

maximise descriptive coverage of structures over written strings of different languages, a stance

which much of theoretical linguistics has adhered to since.It has been left to formal accounts of

dialogue to characterize self-repair in a systematic way, and only in recent preliminary accounts

(e.g. Ginzburg et al., 2007, 2014).

In terms of the distribution of research effort, the story isanalogous in computational lin-

guistics, wherein the most often used task for training and evaluating parsers is the transduction

of trees from sentences in the Wall Street Journal section ofthe Penn Treebank (Paul and Baker,

1992), an American English text corpus. This is a task that clearly does not pose the full chal-

lenge of interpreting on-line natural dialogue data where self-repairs and other non-sentential

phenomena are the norm rather than the exception. Despite this field bias, the work begun by

Shriberg (1994) began to comprehensively deal with speech repairs and other disfluencies by

providing annotation schemes for dialogue transcripts anddeveloping computational models for

integrating disfluency detection within speech recognition, spawning a recognized detection task

that has attracted various statistical approaches (Shriberg and Stolcke, 1998; Liu et al., 2003;

Maskey et al., 2006). More linguistically motivated detection and correction approaches have

been taken with Heeman and Allen (1999)’s multiple knowledge source based model for im-
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proving speech recognition through finding structural patterns of repairs and discourse markers,

Johnson and Charniak (2004)’s string-alignment approach to detecting disfluencies and Snover

et al. (2004)’s lexically-driven model for detection, all addressing the task of automatic structural

processing of self-repairs. While some of these approachesare linguistically inspired, they treat

repair detection as a tagging problem orthogonal to other linguistic processing and as a method

to filter out disfluencies before processing cleaned utterances; this thesis sets out to move away

from such an approach.

Modelling self-repair and disfluency has been more of an imperative for models of human

speech production (van Wijk and Kempen, 1987; Levelt, 1983,1989) and psycholinguistically

motivated NLG (natural language generation) (De Smedt, 1990, 1991; Neumann, 1994; Guhe,

2007) rather than comprehension or parsing. The earlier psycholinguistic models used speech

repairs to give insights into the mechanisms underlying speech production, for example analysing

self-corrections in terms of recovering from incorrect lemma selection from the lexicon (van Wijk

and Kempen, 1987) or the evidence for self-monitoring beinga crucial part of speech production

(Levelt, 1983, 1989). As will be described, these approaches have inspired implementations

into working interactive dialogue systems (Skantze and Hjalmarsson, 2010; Buß and Schlangen,

2011), albeit with simplifications for the purposes of practical system building.

In modelling self-repair computationally, I follow an approach akin to Mark Johnson’s pro-

posed modification of the parsing paradigm:

“One way to achieve an open-world approach to parsing while maintaining the stan-
dard closed-world conception that grammars generate only grammatical analyses is
to abandon the claim that a parse is a proof of the grammaticality of the input sen-
tence. One way to do this is toincorporate explicit models of disfluencies into the
parsing process.”
Mark Johnson. 2011. How relevant is linguistics to computational linguistics? in
Linguistic Issues in Language Technology. Vol. 6 (7).CSLI

While combination of parsing and disfluency detection has recently been attempted in line

with this proposal (Rasooli and Tetreault, 2013, 2014; Honnibal and Johnson, 2014), this thesis

intends to go beyond this by not only extending repair processing ability to full NLU (natural

language understanding), NLG and dialogue management models, but also to the grammar (the

general linguistic processing model), setting out to propose unifying repair mechanisms shared

by all these processes.
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1.1 The importance of self-repair in dialogue

The ostracism of self-repair data by formal accounts of language processing, which may be due

to methodological preferences and philosophical sensibilities, stands in contrast to an empirical

stance of building models that account for real dialogue data. In these models self-repair phe-

nomena are given equal importance to fluent utterances. The seminal CA paper that highlighted

the regularity and systematicity of self-repairs noted that they vary in cause and form, and are

“neither contingent upon error, nor limited to replacement” (Schegloff et al., 1977, p. 363)– in

line with this, this thesis intends to explore the fullest taxonomy of self-repair that can be ob-

served in dialogue. Directly parallel to this, it addressesthe more practical question of how a

dialogue system should be designed to process self-repairsand fluent utterances in an integrated

and efficient way. These strands of enquiry are very much partof the same effort, under the as-

sumption that a computationally implemented dialogue system can be seen as a cognitive model

(McDonald, 1987; Schlangen, 2009).

It is surprising that dialogue theorists and dialogue system designers have dedicated dis-

proportionately little research effort to self-repair, instead favouring treatment of ‘higher-level’

repair phenomena that are considered more contingent on interaction – for example clarification

requests (Purver, 2004; Rodrı́guez and Schlangen, 2004; Ginzburg, 2012). However, self-repair

need not be seen as a ‘low-level’ process which is confined to acorrection mechanism at the

phonetic or lexical levels, although a subset could be described as such. Not only do people

process self-repairs and other disfluencies as easily as fluent utterances, but furthermore, people

can be aware of them phenomenologically. For example, internal states such as forgetfulness or

nervousness can be demonstrated and inferred by dialogue participants as the opening example

and the one below demonstrate (again self-repairs are italicised and marked with an arrow but

here the reference to the self-repair from the other dialogue participant is underlined, with notes

in square brackets):

PAMELA the illusions of this life, in you know, I
→ PAMELA in (.) I, uh, I, I.

DARRYL eh be eh be[imitating a stutter]
PAMELA my favourite word when I was twelve was paradox.

(Santa Barbara corpus, file SBC0005.
Husband and wife free conversation.)

Darryl and Gareth’s demonstration of the awareness of theirinterlocutor’s self-repair show

that accounts which excise the repaired material at the phonetic level, before semantic processing,
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are clearly unsatisfactory, not just in terms of theoretical plausibility, but also in terms of forming

the basis for dialogue systems with more natural interaction capabilities. An interactive approach

to the phenomena is clearly preferable, as disfluency and repair markers can be seen as signals

optimal for not just the speaker’s formulation purposes, but also for the hearer’s understanding

that the interlocutor has a production problem or intends tochange their prior contribution, under

the assumption of least joint communicative effort (Clark,1996).

From an implementational perspective, recent interactivesystems with self-repairing capa-

bility have been shown to have positive effects on user experience, resulting in interactional

advantage and greater efficiency in task-based micro domains (Skantze and Hjalmarsson, 2010;

Buß and Schlangen, 2011; Kousidis et al., 2014), even thoughthe self-repair capability is con-

fined to simplified generation and synthesis and dialogue management components, rather than

interpreting their meaning in NLU. While intuitively, it seems odd and impractical to design a

computational system that ‘makes mistakes’ in its vocal interaction with human users, in fact not

only do systems which generate self-repairs seem more pleasant to use, a system with natural

self-repair behaviour can increase communicative clarity. For example, information giving dia-

logue systems that can revise their communicative goals andmake this obvious to a listener are

far clearer, as can be seen in the preference for (1.2) over (1.1) below:

(1.1) System: I have two seats available. I have one seat available.

(1.2) System: I have two seats...uh no... one seat available.

(Guhe and Schilder, 2002)

Recently, modelling the dialogue semantics of self-repairhas also received attention through

Ginzburg and colleagues (Ginzburg et al., 2007; Ginzburg, 2012; Ginzburg et al., 2014), though

this currently lacks an incremental grammar to interface with their higher level discourse model.

Given the lack of a unified account of self-repair within a single framework, one question which

this thesis addresses is:Where should self-repair processing be situated within a dialogue system,

and how are parsing, generation and dialogue models of self-repair connected?

1.2 The need for an incremental processing approach

This thesis investigates self-repair from an incremental perspective. While the technical meaning

of incrementality and its different aspects in dialogue will be fleshed out later, here I introduce
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Figure 1.1: Non-incremental (left) and incremental (right) dialogue systems from Skantze (2014)

this asthe construction of meaning in real time as linguistic information is processed. A stronger

motivation for an on-line processing model of human language beyond the requirements of mod-

elling self-repair comes from an evolutionary perspective. It is obvious humans need the ability

to interpret information in incoming linguistic stimuli asquickly as possible: as Briscoe (1987)

and Milward (1991) point out, the inability to process incomplete utterances such as “Look out,

there’s a fall-. . . ” would surely result in a survival disadvantage. On-line build-up of meaning is

a more realistic view of interpretation rather than the delayed computation over complete senten-

tial utterances, and so partial structures should be as wellstudied as complete ones. In language

production, given a hearer candecodeinformation on-line and incrementally, it must surely be

possible for a speaker toencodethat information in their speech using a similarly incremental

build-up of meaning, therefore both the comprehension and production processes must share

similar mechanisms. In this regard,compound contributions, where a speaker begins an utter-

ance and their interlocutor then completes or extends it, have shown to be pervasive in dialogue

(Howes et al., 2011), and are very much a shining beacon for the incremental perspective in

addition to the repair phenomena described here.

As well as being empirically motivated, the computational benefits of incrementality are

clear. Several recent approaches show promising benefits tointeractive systems: DeVault et al.

(2011) show how partial automatic speech recognition (ASR)results can be incrementally used

to narrow the space of possible semantic representations for a semantic parser and Skantze and

Schlangen (2009) show how partial ASR results can be used forincreasing speed of interpret-

ing user input in micro-domains in dialogue. These systems fulfil one central desideratum of

incremental processing, termedWundt’s Principleby Willem Levelt, which is that each process-

ing component should be triggered into activity by a minimalamount of its characteristic input
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(Levelt, 1989). Schlangen and Skantze (2009) introduce a dialogue system framework built on

this principle, which can be summarized as in Figure 1.1 where the processing steps of a non-

incremental dialogue system can be seen on the left-hand side while an incremental one can be

seen on the right. In the non-incremental system, the processing steps, beginning with that clos-

est to the speech input, the ASR, must complete in their entirety before passing their results to

downstream modules, whereas the processors in the incremental system may begin processing

with partial input, and output partial results, resulting in shorter delays to the final response,

and also engaging the higher-level modules such as speech understanding early on to guide the

lower-level decisions.

Several other principles of incrementality will be described in detail in Chapter 3, and given

a suitable definition and methods for evaluating them, the second major underlying question to

this thesis can be posed:To what extent can the principles of incremental dialogue processing be

adhered to in self-repair processing, and what changes to dialogue models are required to make

this possible?

1.3 The aims and scope of this thesis

In order to address the above questions, the analytic part ofthis thesis falls into two main sec-

tions: (i) dialogue corpus analysis and building of empirical models (ii) building of formal and

computational models.

1.3.1 Empirical corpus work and automatic repair detection

As will be explained, corpus studies on disfluencies in natural dialogue (Shriberg, 1994, 1996;

Shriberg and Stolcke, 1998; Heeman and Allen, 1999; Bortfeld et al., 2001; Colman and Healey,

2011) variously fall short in analysing self-repair phenomena in sufficient detail to build a broad-

coverage empirical model. The precise short-comings will be discussed in Section 2.5. The

corpus work in Chapter 4 aims to be sufficiently detailed as toinform the building of repair pro-

cessors in detection, parsing and generation which can process self-repair incrementally. The

analysis will be multi-faceted, using multiple knowledge bases such as syntactic, lexical, seman-

tic and pragmatic information, in the spirit of Heeman and Allen (1999) and Liu et al. (2003), but

with an aim to produceinterpretableresults rather than a pure application evaluation that previ-

ous practical approaches to the problem have carried out. Chapter 5 then describes the building of
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an evaluated incremental repair detector that improves on the incremental performance of state-

of-the-art repair detection systems with a model that is time-linear and strongly incremental in

its operation.

1.3.2 Formal modelling and dialogue system module design

The principal contribution for formal and implemented dialogue systems is the analysis, design

and evaluation of parsing and generation models for self-repairing capability, as well as for their

general incremental processing requirements. Chapter 6 describes a semantics-driven model

of generation and parsing which incorporates self-repair in a psycholinguistically plausible and

computationally efficient way, with methods for practical implementation also given. Chapter 7

extends the model to account for psycholinguistic results,and to achieve this it requires access

to a situation model, rather than just a generation and parsing context. The models and prototype

implementations are not extended to voice synthesizers andautomatic speech recognizers (ASR).

This is not due to any theoretical commitment, but more due tokeeping the problem defined in

terms of syntactic-semantic processing for clarity’s sakeand of course due to limitations of time

for completion of this project. However, considerations asto how the parsing and generation

modules developed interface with state-of-the-art ASR andsynthesis will be taken.

1.4 Structure of this thesis

The structure of the remainder of this thesis is as follows:

Chapter 2: A review of empirical approaches to characterizing and investigating self-

repair with proposed directions for research.

Chapter 3: A review of computational and formal approaches to modelling, detecting,

parsing and generating self-repair phenomena with proposed directions for research, in-

cluding the incremental requirements for dialogue systemsand self-repair models.

Chapter 4: A corpus study investigating the relationship between structural, syntactic,

lexical, semantic and dialogue-level context and the presence and form of repairs.

Chapter 5: Definition and evaluation of an incremental self-repair detection system STIR

which achieves state-of-the-art incremental performance.
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Chapter 6: Definition of a self-repair processing model into a formal dialogue framework

and prototype incremental NLU and NLG modules.

Chapter 7: Extension of the framework in Chapter 6 so the modules interface with a

probabilistic semantics to model the semantic and pragmatic effects of self-repairs and

incremental processing in general in dialogue.

Chapter 8: Conclusions from the thesis and discussion on potential future work arising

from it.
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Chapter 2

Empirical Approaches

Self-repair has been studied within a variety of empirical paradigms, including conversation anal-

ysis (CA), experimental psychology and corpus linguistics. These approaches consider the vari-

ous forms, causes, effects, statistical distribution, classification, utterance and dialogue position,

syntactic, phonological and phonetic aspects of self-repair, with the principal intention to pro-

vide descriptive and explanatory cognitive models of the phenomenon. The key approaches will

be outlined here, with assessment of their coverage and the assumptions they adopt. Section 2.5

summarizes where this previous work is inadequate, in termsof its failure to describe and explain

all the self-repair phenomena in sufficient detail for broad-coverage and potential for computa-

tional implementation, and directions for future empirical work are outlined.

2.1 The form of self-repair events

Self-repair phenomena in spoken language are events where aspeaker will begin an utterance

and, at some point after commencing, noticeably reformulate or restart their current utterance to

continue their contribution, or else extend or repair an entire contribution after an apparent turn

completion, either immediately after their own contribution or after an interposed contribution

from another conversation participant. To illustrate the phenomena under discussion, the fol-

lowing are typical self-repairs found in natural spoken dialogue of the first position (same-turn),

self-initiated type:

(2.1) “. . . but my kids are only elementary [ grades, + levels ]right now”
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(Switchboard conversation number sw4325)

(2.2) “And because[this is such+ this is for television], [ [it’s a + we have a market range of] +

{like,} it’s an international market range]”

(AMI corpus)

(2.3) “Peter went[ swimming with Susan, +{or rather,} surfing] yesterday”

(Constructed example from anonymous Semdial 2012 reviewer)

For terminological and annotation purposes, following Shriberg (1994); McKelvie (1998)

and the Switchboard corpus disfluency annotation schema (Meteer et al., 1995), first position

self-repairs will be discussed in terms of a division into the part of the utterance before the repair,

which can be called theoriginal utterance, the reparandum(the part of the contribution that

is repaired, notationally the strings from the opening square bracket up to the repair point+),

a possibly nullinterregnum(the words between the{} brackets) and the followingrepair (the

words after theinterruption point+ up to the closing square bracket), and finally thecontinuation

of the utterance after the end of the repair, in the below structure:

John
︸ ︷︷ ︸

original utterance

[ likes
︸ ︷︷ ︸

reparandum

+ {uh}
︸ ︷︷ ︸

interregnum

loves ]
︸ ︷︷ ︸

repair

Mary
︸ ︷︷ ︸

continuation

(2.4)

The structural divisions made in (2.4) not only provide consistent terminology for technical

discussion but are also important for practical reasons: automatic processing of self-repairs, as

will be shown in Chapter 3 relies on the persistence of these divisions, despite the fact that not

all of the above components of a repair are always present.

For hearers and computational interpretation systems, detecting these structures is not a triv-

ial task, however it is a necessary one to compute the meaningof a repair in a dialogue. Much of

this thesis investigates the capacity of a system to detect these structures in order to compute the

semantics of the repaired utterance appropriately. On the production side of the repair process,

speakers and generators who produce such utterances must decide on-line where to begin repair-

ing and which part of their utterance to repair. While these decisions are influenced by far more

than just the surface form or acoustic context of their utterances, speakers and generators use

this information in their utterance incrementally built upso far to decide what they are repairing

and how to do it. In terms of the application of this annotation structure, an interpreter needs to

decide where to place the brackets and cross and compute the inferences made by the detection,



2.2. CA classification and study of self-repair27

and a generator needs to know how to generate utterances suchthat they adopt these structures

to allow appropriate interpretation.

Using the surface analysis afforded by the bracketing system, several self-repairs can occur

within the same utterance, some in succession, and some resulting in recursive embedding of the

annotation structure, as shown from the second (nested) self-repair onwards in example (2.2),

above. Also, as will be described below, I broaden the remit of first position self-repair beyond

reformulation and restarting, as is demonstrated by what I will call, for now, edit termssuch as

(2.5), where, unlike the other types there is no verbal reparandum and consequently no downgrad-

ing of discourse status of any part of the utterance built up so far (at least on a lexical-semantic

level) with the onset of the repair– these have also been called abridged repairs (Heeman and

Allen, 1999),foward-looking disfluencies(Ginzburg et al., 2014) and in CA paradigms often fall

within transition spacerepairs (Schegloff et al., 1977; Healey and Thirlwell, 2002). Stand-alone

edit terms have a discourse function, and for now I commit to this being a repair-like function,

but with different update effects on the dialogue context. Edit terms will be notated, as with

interregna as falling within{} brackets and will be termed edit terms whether they fall within an

interregnum or not.

(2.5) “John goes to Paris{uh} from London”

(Constructed example)

At this point, I briefly make the distinction between first position self-repairs and disfluencies:

the former is not necessarily a proper subset of the latter, as utterances which are abandoned for

external reasons may be disfluent, but with no attempt at repair. Repair involves work by the

speaker to alter their utterances and this repair action hasa communicative function in dialogue.

While I focus on the most common type of self-repair, the firstposition variety, these fall within

a bigger set which includethird positionand third turn self-repairs, which will be discussed in

more detail below in Section 2.2.1.

2.2 CA classification and study of self-repair

It is useful to consider the distribution of self-repair phenomena in dialogue, both absolutely,

and in terms of their distribution within all types of repair. Researchers in conversation analysis

(CA) have studied self-repair since near the establishmentof the field. Since CA is inherently
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an interaction-oriented discipline, repair was analysed for its role in sequential turns in a dia-

logue (assuming shared time between the speaker and the hearer), rather than just for syntactic

surface-form regularity. Schegloff et al. (1977) established the idea of anorganization of repair

in communication, making distinctions between different repair classes based on thespeakerof

the repair (self-repair orother-repair), theinitiator of that repair — whether it was caused by

the speaker (self-initiated) or the hearer (other-initiated) of the turn being repaired — and the

positionof the repair relative to the turn being repaired, which is its sequential position in dia-

logue turn structure, eitherwithin the same turn (first position), in the transition spaceafter an

apparently complete turn, in the immediately following turn (second position), or in the third turn

after the initiation (third positionor third turn)- see examples (2.6)-(2.11) below for the types of

self-repair originally defined.

Schegloff et al. (1977) provided several important insights into self-repair phenomena, such

as the fact they are not equivalent to speech errors: often there are no noticeable phonological

or syntactic mistakes before the repair point (see the examples below) and conversely speech

errors are often not repaired. Their categorizations are useful in that they showed systematic-

ity and regularity of repair events within perspicuous dimensions. Schegloff et al. make the

observation about repair in dialogue that “self-correction and other-correction are related orga-

nizationally, with self-correction preferred to other-correction” (ibid., p.362). Although lacking

quantitative results, they showed through CA analysis someconvincing evidence for the pref-

erence for self-repair through annotated examples.1 In terms of the causes of these phenom-

ena, they observed self-repair could issue from other-initiation, not just from self-initiation, and

that this was a prevalent phenomenon: “other-initiations overwhelmingly yield self-corrections”

(Schegloff et al., 1977, p.376)– this can be seen as a description of a repair initiated by a turn

by the interlocutor called aclarification request(Purver et al., 2003) orNTRI (Next turn repair

initiator) (Levinson, 1983, p.339). In analysing self-repair more systematically than had been

done previously and implicitly arguing for the psychological systematicity of the mechanism,

they also observed how repairfailure could result from self-initiation, defining a failed repairat-

tempt as one that is “marked by an overt withdrawal of the repair effort” (Schegloff et al., 1977,

p.362,fn)– see the abandoned turn in example (2.7).

(2.6) “Sure enough ten minutes later[the bell r-+ the doorbell rang]”’

1The claim is backed up with empirical distributional data inColman and Healey (2011) that will be
discussed below.
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(self-initiated first position self-repair)

(2.7) ‘[Awl I her + [All I + [Awl I ree- + [all you- + all I ree-]]] ]”
(failed first position repair issuing from self-initiation)

(2.8) “He had dis uh Mistuh[W- + {whatever k- I can’t think of his first name}Watts] on, the
one thet wrote that piece”
(self-initiated first position self-repair with long interregnum ‘aside’)

(2.9) M: He’s stage manager.
(2.0)
M: He’s actually first assistant but- he’s calling the show
(self-initiated transition space self-repair)

(2.10) Hannah: And he’s going to make his own paintings.
Bea: Mm hm
Hannah: And- or I mean his own frames.
(self-initiated third position self-repair (third turn))

(2.11) A: Have you ever tried a clinic?
B: What?
A: Have you ever tried a clinic?
(other-initiated third position self-repair)

The finding of heavy preference for self-initiated self-repair in dialogue was attributed to the

fact that opportunities for self-initiation arise before opportunities for other-initiation, so when

trouble is detected, it is highly likely to be resolved by thespeaker who detects it as quickly as

possible, either through a same-turn (first position) self-interruption and repair (example (2.6)),

or through extending at the transition point (TP) after a seemingly complete turn (example (2.9)).

However, a repair initiated by the repair maker’s interlocutor (the hearer) after the trouble source

can involve a third position self-repair (example (2.11)) (subtly different tothird turn self-repair

example (2.17), as will be explained below), the initiationnormally taking the form of a clarifi-

cation request.

2.2.1 Third position and third turn repair

Schegloff (1992) develops the previous CA analysis of thirdposition (P3) repairs such as ex-

ample (2.11) in detail, and claims the phenomenon is a prototypical case study of breakdown

in inter-subjectivity and shared understanding in conversation. Schegloff carries out a detailed

analysis of P3 repairs, identifying four structural components, which, while they are not always

all necessarily present, can normally be found occurring ina canonical order. There is always a

trouble source turn (TS) produced by the speaker, which could be considered as constituting the
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reparandum. The components of the consequent repair turn defined from Schegloff’s analysis of

natural dialogues in American English are, in order, as follows:

• A -Repair initiation. Normally takes the form of a discourse marker such as “well”, or

“no”, singly or in multiples, and occasionally replaced by “oh” or in combination with it

(e.g. “oh no”). Schegloff makes the distinction between theonset of P3 repair and the

onset of a disagreement turn clear.

• B - Agreement/acceptance component. The most likely component to be omitted. It almost

exclusively appears in response to a second position complaint by the hearer.

• C - Rejection component. The speaker rejects the interpretation that he/she infersthe turn

containing the trouble source had been given by the hearer. The three alternating formats

of this component are described as: (i) specification of a misunderstanding of problematic

reference, often by the form “I don’t meanX” (ii) specification of misunderstanding of

illocutionary force, where the form is “I’m notXing, whereX is the name of some illocu-

tionary action (e.g. “I’m not asking you...”), or (iii) the misunderstanding being referred

to by a pronoun (“I don’t meanthat”)- example (2.12) shows a P3 repair with components

A, B and C.

• D - The repair proper. The component least likely to be omitted from the P3 repair struc-

ture. This may take the form of a “clearer repeat”- see the first attempt at repair, theDrep

type in excerpt (2.15) below- or more likely use of the phrase“I mean” followed by an

idiomatic contrasting paraphrase of the trouble source (e.g. the paraphrase by Ken in the

D component in excerpt (2.13)) and/or a reformulation of thetrouble source (see excerpt

(2.14)) and/or specification (see Lehroff’s “Is it- rain(ing)? uh windy? or what?” (Dspec)

following the clearer repeat (Drep) in (2.15)) and/or an explanation type repair (see the

caller’s explanation in (2.16)). The other operation that may happen is characterizing the

trouble source as non-serious if it was taken as serious, usually by means of a phrase to the

effect of “I was joking”.
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(2.12) Excerpt showing “rejection” component C of a P3 repair from (Schegloff, 1992,

p.1306)2

Agnes: I love it.

(0.2)

(TS) Portia: Well, honey? I’ll pob’ly seeyuh one a’ these day:s

Agnes: Oh::God yeah

Portia: Uhh huh!

Agnes:
[
We-

Agnes: B’t I c- I jis’ couldn’ git down there.

(A,B) Portia:
[
Oh- [Oh I know.

(C) I’m not askin yuh tuh come dow-

Agnes:
[
Jesus.

[
I mean Ijis’- I didn’ have

five minutes yesterday.

(2.13) Excerpt showing “paraphrase” form of D component of aP3 repair from (Schegloff,

1992, p.1310)

Roger: Yeah. But t(h)ell me is everybody like that or am

I just out if it.

(TS) Ken:
[
I-Not to change the subject but-

Roger: Well don’tchange the subject. Answer me.

(A,D-,B) Ken:
[
No I mea- I’m on the subject

(B,D) I’m on the subject. But- I-I mean “not to

interrupt you but-” uh a lotta times I’m sitting

in class, I’ll start- uh I could be listening to

the teacher and my mind’ll be fourmillion miles

away.

2Traditional CA conventions apply to the excerpts here, and are presented as they were in the original
text, with overlapping speech ([), lengthened syllables (e.g. “e:dge”), emphasis with underlining and pause
length indicated with bracketed numbers denoting their length in seconds such as (3.0). The trouble source
(TS) and the 3P A-D components which are present are annotated here on the left side. Many thanks to
Saul Albert, who generously made available and explained the LaTeX code for CA-style transcripts on his
research blog http://saulalbert.net/blog/2012/06/how-to-do-ca-transcriptions-in-latex/
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(2.14) Excerpt showing “reformulation” type of D componentof a 3P repair from (Schegloff,

1992, p.1311)

(TS) Host: Whaddiyuh afraid of.

Caller: I dun’kno:w, see uh

(A,D) Host Well I mean waitam’n. What kind of fear izzit. ’R

you afraid yer gunnuh drive off the e:dge? ’R you

afraid thet uh yer gonnuh get hitwhile yer on it?=

(2.15) Excerpt showing “clearer repeat” (Drep) and “specification” (Dspec) types of D

component of a 3P repair from (Schegloff, 1992, pp.1311-12)

Lehroff: What isthe weathuh. Out in that area now.

TS Zebrach: No winds, er it’s squalling, rain, the winds are

probably out of the north,- west, at uh estimated

gusts of uh sixty five miles an hour.

( ): (Whew!)

Zebrach: Sustained winds of about thirty five to forty five

miles per hour. And uh anticipated duration,

Drep,Dspec Lehroff: How is the wah- weather period outside. Is it-

rain(ing)? uh windy? or what?

(2.16) Excerpt showing “explanation” form of D component ofa P3 repair from (Schegloff,

1992, p.1312)

Host: Good evening, WNBC,

TS Caller: Good evening, this is uh, oh boy.

Host: ehh heh heh hyah hyah!

(A,D) Caller:
[
No I was listening to the

commercial, and I’m just kinda- confused fer a min-ute

Schegloff (1997) treatsthird turn repairs as qualitatively differently to third position repairs

- see example (2.17), where there is no claim of trouble or clarification in the interpolated turn.
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(2.17)

TS B: And he’s going to make his own paintings

A: Mm hmm.

A, Drep B And- or I mean his own frames

A: Yeah
(third turn repair, from (Schegloff, 1997, p. 32)

Some third turn repairs could be similar in form to transition space type self-repairs such

as example (2.9). The distinction between these two assumesthat the interposed turn from the

conversation partner allows different possible continuations– Ginzburg et al. (2014) show the

parallels and differences between these.

As can be seen, the detailed breakdown of third position self-repairs is an incredibly com-

plex task, and is very difficult to achieve from transcripts;CA-level annotation is needed to get a

procedural handle on describing the different forms and possible causes, and the interpretations

are incredibly subtle. As will be seen below, identifying a third position self-repair is particularly

problematic for human dialogue annotation: it requires ascertaining the initiator of the repair,

which is often contingent on identifying the presence of a clarification request preceding it. Cor-

pus studies on clarification requests have used multiple dimensions of dialogue information to

characterize these phenomena (Purver, 2004; Rodrı́guez and Schlangen, 2004).

2.3 Statistical corpus studies

2.3.1 Annotation protocols and reliability

Before discussing the results and analyses of statistically-driven corpus studies, it is worth briefly

discussing the methods by which corpora can be annotated forself-repair, either by human an-

notators or by automatic means, and the issue of reliabilityand agreement.

Healey et al. (2005) present a systematic effort to test the reliability of a human annotation

scheme for repair, developing Healey and Thirlwell (2002)’s annotation protocol for identifying

the different CA types of repair in raw dialogue transcripts(see Figure 2.1 with the self-repair

types circled). The authors tested the validity and reliability of the protocol through an analysis

of two of the authors coding a corpus of repair sequences drawn from the CA repair literature

with their original coding removed. The validity of the protocol was shown to be encouraging

overall, with 75% of the repairs being assigned the same category as that of the original papers.
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After analysing the breakdown of their target phenomena, itappears that the rate of successful

identification was in fact identical for the self-repair phenomena (P1-SI-SR(first position self-

repair), P1-SI-SR(transition space), P1 fail, P3-SI-SR (third turn), P3-OI-SR(third position)) as

it was for the other-repair phenomena (P2-OI-OR, P2-NTRI, P2-NTRI fail) at 75% for both sets.

The within-turn self-repairs (P1-S1-SR) had the highest identification out of the sub-categories

at 88% and the lowest were P1 failures (50%).

Despite the identical identification rate overall of self and other repair, there was a difference

in the reliability measures (inter-annotator agreement scores) between self-repair and other-repair

as this was 63% and 73% respectively- the authors report thatmost frequent mismatch was be-

tween events annotated as P1 formulation problems and P1 articulation problems, and that the

levels of agreement were primarily reduced in situations where one judge identified a repair event

where the other did not, rather than differing in their classification judgements- this suggests that

the protocol itself is fairly precise should the repair be identified. Within self-repairs, P1 (63%)

and P3 (62%) had almost identical agreement levels. Interestingly the identification of repairs

had greater agreement (63%) than repair initiators (50%).

The results suggest the potential of a rigorously defined repair protocol for use on raw tran-

scripts but with the caveat that while the classification once a repair event is identified can be

quite reliable (the high classification rate for P1-SI-SR, the first position repair being particularly

encouraging), the difficulty in getting a reliably agreed upon protocol for initial identification of

a repair phenomena persists.

Annotating causes of self-repair may be problematic, as suggested by the error in distin-

guishing between articulation and formulation P1 repairs described above, and by the fact that

annotators cannot ascertain from form alone what the exact nature of the underlying problem is,

and even with CA-level of contextual analysis, this can be difficult. However annotation for first

position self-repairs in transcripts can be systematized more straightforwardly, by marking dis-

fluent parts of utterances in the transcript (Shriberg, 1994; Meteer et al., 1995) according to the

annotation scheme in (2.4), and use of this coding scheme will be described in the work below.

2.3.2 Statistical distribution of self-repair in the repair space

The early CA analyses of repair identified the various types of repair according to their position

in dialogue and their initiator, but did not include an accurate analysis of their frequency of

occurrence in human conversation. Colman and Healey (2011)provide a statistical distribution
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Figure 2.1: Repair Identification Protocol from Healey et al. (2005).

of different types of self-repair in a comparative corpus study of normal (non-task orientated)

dialogues from the British National Corpus (BNC, Burnard, 2000) and task-oriented dialogues

from the HCRC Map Task corpus (Anderson et al., 1991). They devise an annotation based

on Healey et al. (2005)’s repair protocol explained above, the gloss for which can be seen in

Table 2.1, with examples of the repair types in Table 2.2.

GLOSS REPAIR PROTOCOL CATEGORY
Repeat Position 1 Self-Initiated Self-Repair ‘Articulation’
Restart Position 1 Self-Initiated Self-Repair ‘Formulation’
Transition Position 1 Self-Initiated Self-Repair in Transition Space
Clarification Request (CR) Position 2 Next Repair Initiator (NTRI)
Correction Position 2 Other-Initiated, Other-Repair
Follow-up Position 3 Other-Initiated, Self-Repair
Reformulate Position 3 Self-Initiated Self-Repair

Table 2.1: Gloss for repair annotation in Colman and Healey (2011).
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GLOSS EXAMPLE
Repeat Follower: which is due we–due west?
Restart Giver: so you’re underneath them. . .between them?
Transition Giver: and, start going down Southeast. . . . . .you go

past a pine forest on your right
Clarification Request (CR) Giver: past a forge on your right?

Follower: past a what?
Correction Giver: right to the end of. . . paper

Follower: the very end of the map?
Follow-up Follower: so you want me to go. . . east. . . then south?

Giver: no, south then east we may have a different map
Reformulate Giver:right. . . now,have you got the hot wells?

Follower: they’re over a bit
Giver: or hot springs?

Table 2.2: Examples for annotation scheme from Colman and Healey (2011).
Example repairs initalics

The distribution they found in natural conversation in the BNC dialogues confirmed the CA

observation for the preference of speakers for self-repairover other-repair (see Figure 2.2). In

terms of the overall frequency of repair events however theyfound a difference between corpora:

repair occurred once every 36 words, or every 5 turns, in natural conversation (BNC), compared

to once every 20 words, or every 2.5 turns, in task-oriented dialogue (Map Task). This suggests

that task difficulty has a systematic effect on how likely speakers are to repair. Significant statis-

tical differences were also found in the distributions of repair– restartsare much more prevalent

in task-oriented dialogues (Map Task) than in free conversation (BNC) (see the difference in

distributions in the bar charts in Figures 2.2 and 2.3), which suggests a preference for making

utterances optimally clear through revising previous contributions in task-oriented domains. The

transactional nature of map-following and instruction giving puts a higher demand on clarity

from speakers in the ‘route-giving’ instructor role, and this skewing between roles was shown to

be significant, with route-givers exhibiting significantlymore restarts, reformulations, transition

space repairs and follow-ups (i.e. self-repairs) in their speech and clarification requests and cor-

rections (i.e. other repairs) being significantly more frequent in the follower’s speech. What is

striking here is support shared between CA analysis and quantitative analysis for the fact that re-

pair is aslocal to the trouble source as possible in the course of a dialogue,and that its frequency

is influenced by the domain. The role of self-repair in interaction will be discussed in more detail
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below in Section 2.4.2.

Figure 2.2: Repair Distribution in Ordinary Conversations(BNC) (Colman and Healey, 2011).

Light Bars = ‘Self’, Grey Bars = ‘Other’

Figure 2.3: Repair Distribution in Task-Oriented Dialogues (Map Task) (Colman and Healey,

2011). Light Bars = ‘Self’, Grey Bars = ‘Other’

2.3.3 Types of self-repair and disfluency surface forms in corpora

Moving to a within-utterance level of analysis of self-repairs in particular, Shriberg undertook

the first major computational corpus work on disfluencies in her thesis (Shriberg, 1994) and

in subsequent papers (Shriberg, 1996; Shriberg et al., 1998, inter alia), with the intention of

improving speech processing in automatic systems.
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Shriberg (1994)’s thesis provided a systematic way of characterizing the different types of

repair and disfluency forms. She also provided a robust annotation protocol for disfluency types

which could be semi-automated. She identified types by the relationship between thereparandum

andrepair components of the speech repair (see Section 2.1), as can be seen in Tables 2.3 and 2.4.

Shriberg provided a reliable decision protocol for coding disfluency, in the bracketing scheme

described above in (2.4), differentiating between the different surface forms of speech repairs and

other disfluencies, and defining the different classes through intersecting the presence of different

members of the annotation symbols{∼, f ,s,d, r,c, i} assigned to words and partial words with

their meanings as in Table 2.3 giving the classification as shown in Table 2.4. The classes were:

filled pause (FP), articulation disfluency (ART), hybrid disfluency (HYB), substitution (SUB),

insertion (INS), deletion (DEL), repetition (REP) and conjunction (CON), the last class occurring

between speaker sentences. The reliability of this protocol meant it could be scalable and semi-

automated.

2.3.4 Distribution of repairs and their relation to other di sfluencies

The overall distribution of these repairs across three different dialogue domains can be seen in

Figure 2.4, where the most common type in all three domains isthe filled pause (FP) and the X-

axis reads off the rank of frequency across all three domainsfrom left-right. It was observed that

in terms of interaction with position of the interruption point, per-word rates by position showed

that the three most common disfluency types (FP, REP, and DEL)were much more likely to

occur in initial position than in medial position. The remaining types appear to be roughly equally

likely in initial and medial positions. This suggests an interaction between the self-repair strategy

employed and the length of their utterance so far, an issue that will be addressed in Chapter 4.

2.3.5 Characterizing retrace lengths with statistical modelling

While work had been done on characterizing the forms of self-correction in terms of the per-

missible syntactic points of a sentence from which a speakercould retrace (Levelt, 1983, 1989),

these accounts did not address theprobability of the retrace occurring from each of these pos-

sible points or the probable length of how much of the utterance was to be retraced given these

positions. To address this, Shriberg and Stolcke (1998)’s corpus study developed a quantitative

model of repetition-type self-repairs that was purely wordposition based to attack the central

question:when speakers retrace, what predicts how far back they go?(Shriberg and Stolcke,
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Table 2.3: Tag set for type of disfluent words (Shriberg, 1994, p. 57)

1998, p.2183).

From 1115 conversations from the Switchboard disfluency-tagged corpus that had been marked
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Table 2.4: Disfluency type annotation scheme for dialogue (Shriberg, 1994, p. 78)

for sentence boundaries and disfluencies, they harvested 30,524 disfluent utterances containing

one or more retraced words. In gathering their data, they first observed that retracing did not

occur across sentence boundaries nor go back to mid-word points of a previously uttered word.

They characterized retracing in terms of the number of retraced words in the sentencek (i.e. the

length of the reparandum, from[ up to the+), and the number of words in the utterance before
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Figure 2.4: Distribution of disfluency types (Shriberg, 1994)

the repair was initiatedm (that is the number of words from the beginning of the utterance before

the repair point+). Their word-based measures can be seen in Figure 2.5.

Figure 2.5: Word-based measures used in Shriberg and Stolcke (1998)’s study.

Their central finding is the apparent exponential decay in frequency ink with increasing

values ofm: in other words, speakers are much more likely to trace back one word than they are

two words, and so on. They also identified the exception to this trend for all values ofm in the

boosted frequency of retraces spanning the entire length ofthe utterance so far, i.e. whenk= m.

See the final “hooks” of the lines in Figure 2.6 for values ofm≤ 6.

There is also an exponential decay in this boosted probability value ofk= m retraces, in that

the skip back is exponentially less likely to happen when theutterance is one word further on;

for example when a speaker is only two words into a sentence the extra probability that they will

skip back to the start is around 70%, whereas four words into asentence this is only around 5%
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(Shriberg and Stolcke, 1998, p.2185).

Figure 2.6: Distribution of Retrace Lengths by Position. From (Shriberg and Stolcke, 1998)

Additionally, their results clearly show the uniform relationship between the probability of

retracing from N words back and that of retracing from N+1 words back- this shown by the

straightness of the lines in Figure (2.6) which indicate a proportionally decreasing logarithmic

frequency of occurrence for increasing values ofk. It is suggested by the authors that the reason

for this uniformity is due not only to constituency boundaryreasons where it is more effortful

to restart larger constituents3 but also for processing andtemporal factors: they claim that if

speakers are optimizing speaker time rather than silence time, they retrace more when they need

more time to reformulate.

The other interesting aspect of their model is that, except for the boosted probability of re-

tracing the entire length of the sentence, the likelihood ofa retrace of a given lengthk is equally

likely regardless of the number of words uttered in the sentence so farm (the distance from the

beginning of the utterance to the repair point) - this can be seen graphically by the close prox-

imity of the frequency points for each value ofk in all the m-value lines, except whenk = m.

The authors do not offer a complete explanation for this, butthis constitutes clear evidence that

speakers show a tendency to retrace aslocally to the trouble source as possible. Eklund (2004)’s

thesis drew similar conclusions about verbatim retracing and its regularity in that the maximum

retrace length observed among several corpora was 4.

3It is worth bearing in mind the observation by Levelt (1989) that in English, a predominately syntac-
tically right-branching language, under hierarchical phrase-structure type syntactic analyses every word
typically marks the onset of some constituent.
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The authors concede that the model requires some syntactic constituency considerations to

get greater coverage. They show this through conducting Monte Carlo experiments on part-of-

speech (POS) tagged versions of all the retraces in the corpus used for their model. Taking the

value ofm for each sentence they generate asimulated retraceby selecting a random value fork

associated with them value in question, taken from the empirical distribution from the data, and

taking the reparandum as beginning wordk-words back. In their comparison, they found that for

the majority of POS types the simulation produced close to the frequency obtained from the real

data. However, they mention that the word position based distribution under-determined (failed

to predict) the frequency ofprepositionsbeing retraced, with speakers showing a preference for

retracing from preposition onsets above the quantitative prediction (which they report as still

being high, probably due to the fact that prepositions frequently begin phrases of only 2 words,

but this was still not high enough). The authors also interestingly report that the model over-

predicted for verbs, claiming a weighted preference of speakers not to retrace from verb phrase

onset boundaries.

In summary, the purely quantitative model they proposed predicts the retrace points with mea-

surable success without any notion of syntactic constituency. The model, while simple, places

certain constraints on any generative model of retracing asa word position only based analysis of

data gives some interesting regularities that could not be gleaned by analysing syntactic category

alone.

2.3.6 Distribution of discourse markers in interregna

Heeman and Allen (1999)’s model for automatic disfluency detection and correction will be

discussed below in Section 3.1 for its efficacy in application, but it is worth describing the useful

empirical data on self-repairs found in their task-oriented TRAINS corpus (Heeman and Allen,

1995). In particular, they present corpus statistics on thepresence of discourse markers such as

“well” and “actually” and the distribution of filled pauses in the editing terms of repairs. They

provided useful evidence about repair strategies (and consequently were used for improving a

model of repair detection and correction, as will be described).

The role of discourse markers for predicting the presence and type repair was explored, with

the statistics in Table 2.5 demonstrating that discourse markers were part of the interregnum or

the onset of the repair for 40% of fresh starts, 13.8% of modification repairs and 10% of abridged

repairs, with a significantly higher occurrence in the onsetof modification repairs. This suggests
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Abridged Repair Modification Fresh starts
Number of repairs 423 1301 671
DM in editing term 36 60 155

DM in alteration onset 8 126 147
Either 41 179 269

Table 2.5: Frequency of discourse markers in the editing term of speech repairs and as the alter-
ation onset in Heeman and Allen (1999)’s Trains corpus

that while on its own the presence of a discourse marker cannot be strongly predictive of a given

repair type, there is a difference in the distribution of thetypes of repair form which contain a

discourse marker.

2.4 Psycholinguistic approaches

This section summarizes a number of approaches to experimentally finding the causes and com-

municative effects of producing and comprehending self-repairs.

2.4.1 Causes and syntactic form of first position self-repair

Levelt (1983)’s study aimed to systematically identify theform and causes of self-repair in a

rule-based manner. In a corpus study Levelt demonstrated the frequent parallelism between the

reparandum and the repair, and the syntactic and semantic felicity of self-repairs. He showed the

listener faces thecontinuation problemof how to integrate the material from the repair phase into

the previous material.

To address this he developed the “well-formedness” rule (WFR), which stated that for an

original utterance (O) plus repair (R),{OR} is well formed if and only if there is a string C such

that the string{OC or R} is well-formed, where C is a completion of the constituent directly

dominating the last element of O. For example for “Is [the nurse +{er} the doctor] interviewing

patients?” the coordination test would apply and give “Is the nurse or the doctor interviewing

patients?”, giving a well-formed repair. He claimed this rule applied to all but a minority of the

957 repairs in his corpus.

In computational linguistics Hale et al. (2006) implemented the WFR in a disfluency detec-

tion system, marginally altering the rule as follows :

(2.18) “Well-formedness rule for repairs (WFR) A repair〈αγ〉 is well-formed if and only if
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there is a stringβ such that the string〈αβ and∗ γ〉is well-formed, whereβ is a

completion of the constituent directly dominating the lastelement ofα (and is to be

deleted if that last element is itself a sentence connective)” (Hale et al., 2006, p. 163)

While their results on reparandum word detection were not competitive with other systems

that will be described in Chapter 3, Hale et al. (2006) showedthe inclusion of the WFR to their

system improved their results.

A challenge to the WFR came from van Wijk and Kempen (1987), who investigated the rule

empirically, conducting self-repair eliciting experiments. They concluded that there must be two

strategies at work for computing the shape of self-repairs,one calledreformulationand the other

called lemma substitution. They argued that the WFR only applied for reformulation, whereas

for lemma-substitution, there were more complicated processes at work involving a prosodic unit

called the phonological phrase.

In terms of identifying causes, Levelt (1989) indicated that self-monitoringwas the key to

self-initiated self-repairs. These causes can be broken down, informally, into 7 self-posed ques-

tions that a speaker may ask themselves during speech production in conversation (Levelt, 1989,

pp.460-462):

• Is this the message/concept I want to express now?

• Is this the way I want to say it?

• Is what I’m saying up to social standards?

• Am I making a lexical error?

• Are my syntax and morphology all right?

• Am I making a sound form error?

• Has my articulation the right speed, loudness, precision, fluency?

Central to all of these questions is the notion of a feedback loop from one’s own speech

signal to one’s speech comprehension system, suggesting a speaker does not have full control

over their articulation and formulation, requiring instead continual detection of trouble during

speech production – see Figure 2.7. While the nature of the trouble encountered ranges from

the articulation concerns up to high-level concerns of social propriety, the hearer of the utterance

is not considered in much detail in Levelt’s account, which given the nature of the questions is

surprising. Having said this, the notion of self-monitoring gave the model of speech production a
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Figure 2.7: Levelt’s model of the speaker with the internal feedback loop.(Levelt, 1989, p.9)

causal explanation for self-repair and has become an important concept for psycholinguistic ex-

perimentation and computational modelling (Guhe, 2007; Skantze and Hjalmarsson, 2010). The

tri-partite model ofconceptualisation, formulationandarticulation also gave a neat functional

decomposition of the speech production process and computational generation– I will return to

this in the next chapter.

2.4.2 The role of self-repair in interaction

In contrast to the focus on individual language use in the autonomous transmission account of

psychology, a more interactive stance can be taken towards self-repair that holds interesting in-

sights. Clark (1996) claimed conversation participants manage the production and interpretation

of communicative acts with the leastcollaborativeeffort, (that is the smallest aggregate effort

of the speaker and hearer), suggesting self-repair is sometimes the optimal strategy for manag-

ing interactive situations. While the speaker may incur some processing cost in repairing the

utterance, the predicted overall reduction of communicative effort is beneficial enough to make

it worthwhile, concordant with the premise that “utterances are truly products of speakers and
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addressees acting jointly” (ibid., p.286). Clark points out that taking the interactive approach,

the distinction between self and other repair made explicitin Schegloff et al. (1977) begins to

disappear, as the source of trouble in a dialogue may be difficult to attribute to a particular partic-

ipant, as the failure to comprehend an utterance cannot be determined simply from failure of the

speaker of the utterance to make himself clear, but from interactive trouble sources, orgrounding

trouble.

For first position self-repair, in line with Levelt and Shriberg’s work, Clark (1996) describes

a three interval model, consisting of anoriginal delivery(utterance up to the repair point),haitus

(interregnum) andresumed delivery(utterance from beginning of the repair onwards). While

the intervals apply to an individual dialogue participant’s utterances, the phases are discussed

in terms of their role in interaction: the hiatus signals a problem to the hearer, often explicitly

marked as a filled pause form of ‘um’ and ‘uhh’, which Clark andFox Tree (2002) consider offi-

cial words in English because of their communicative function, and which can signal the down-

grading part of the original delivery (reparandum). In linewith his views on meta-communicative

signals in general, Clark’s central claim is that repairs produce informative signals about the ut-

terances themselves.

Clark distinguishes four types of resumption to categorizedifferent repair types:

1. Instant replacementse.g. ‘have I ever [tel-{} + talked] to you about Cookstown County

Tyrone?’

2. Trailing replacementse.g. ‘if [she’d been{} + he’d been ] alive’

3. Anticipatory replacementse.g. ‘he [thinks E-{} + thinks Ella’s] worried about something’

4. Fresh startse.g. [we must ha-{} + ] we’re{.} big enough to stand on our own feet now’

While these categories seem similar to the surface-level characterization in Shriberg (1996)’s

taxonomy, Clark’s explanation of the phenomena is more communication oriented. One thing he

makes clear is that self-repairs can be treated as communicative signals and that a characterization

of self-repair should not involve the removal of previouslycommitted material from the common

ground of the dialogue participants. He stresses that replacement does not mean obliteration of

the original utterance, as the following simple example demonstrates:

(2.19) “ [ the interview, was{. . .} it was ] all right.”
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(Clark, 1996, p.266)4

This illustrates that while replacement would mean “it was all right” can be interpreted as the

new presentation of the utterance (i.e. the repair), the pronoun “it” is the anaphoric reference to

the antecedent “the interview”, so the reparandum cannot beremoved from short-term memory

nor be inaccessible syntactically or semantically. Not only is the repaired material accessible, it

is crucial for meaning construction.

Ferreira et al. (2004)’s experiments investigate the lingering effect of the reparandum in more

detail, and show that experimental subjects over 40% of the time will judge ungrammatical re-

pairs such as “Simon says you should [ drop +{uh} put ] the frog” as grammatical, due to the

effect of having processed the argument structure of ‘drop’before ‘put’ is encountered. Clearly a

repair’s effect on incremental linguistic processing is more complex than it would initially seem.

2.4.3 Use of repair processing in comprehension

Brennan and Schober (2001) investigate the effect of disfluent instructions on participants in

a simple image selection experiment, showing results whichback up Clark (1996)’s idea that

the identification of a repair itself has positive effects ona hearer’s comprehension due to para-

linguistic cues that the reparandum is a trouble source. They experiment with three types of

repaired instructions: mid-word interruptions (e.g. “Move to the yel-purple square”), mid-word

interruptions with a filler (e.g. “Move to the yel- uh, purplesquare”) and between-word inter-

ruptions with no filler (e.g. “Move to the yellow- purple square”). Equivalent fluent instructions

(e.g. “the purple square”) and disfluency-excised instructions that replace the reparandum and

interregnum with pauses of equal length (e.g. “the .. purplesquare”) were used for comparison

and to isolate the effect of the repair processing and to account for different prosodic quality of

the onset of the repair phase (as their preliminary off-linestudy found the pitch to be higher than

the reparandum word onset).

Each of the instruction types were played to subjects who hadto select the target object

from a visual scene of 2 objects in three of the experiments, and from 3 objects in the remaining

one. To mitigate the time advantage of repaired utterances and repair-excised utterances versus

naturally fluent ones, reaction times were measured relative to the onset of the word describing

4Core and Schubert (1999) give a similar example with “have the engine take the oranges to Elmira,
um, I mean, take them to Corning”, where semantic processingaccess to “the oranges” in the reparandum
is required to resolve the meaning of “them”.
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the target referent (i.e. the beginning of “purple” when thetarget was the purple square). The

accuracy of the subjects’ first object selection was also calculated.

Across all four experiments the speed of response and accuracy of subjects in selecting the

correct object followed a similar pattern within the disfluent instruction conditions: the fastest

and most accurate responses came upon hearing mid-word interruptions with a filler (“..the yel-

uh, purple square”), the next most accurate came in the between words without fillers condi-

tion (“..the yel-, purple square”) and the least accurate performance came in the between-words

condition (“..the yellow, purple square”); there was no difference in speed between the last two

conditions. Perhaps the most important finding from all experiments was that the mid-word in-

terruptions with filler condition resulted in faster responses from the onset of the target word than

the equivalentfluent instruction, with no significant loss in accuracy. The othertwo disfluency

conditions resulted in less accurate results than the fluentcondition, and faster response times in

two of the experiments where there was a time limit.

When they investigate repetition repairs in the last experiment (e.g. “Move to the yell- yellow

square”) these again yielded faster response times than fluent utterances but with a lower error

rate than the replacement repairs with no fillers and between-words condition, however with

slower responses and no more accuracy than the mid-word interruptions with fillers condition,

which was consistently the fastest and jointly most accurate condition across all experiments.

The authors suggest the increased reaction time from the target onset word in the mid-word

interruptions with fillers condition setting could have several causes: use of information that the

interrupted word signals an intention to revoke the object choice, the phonetic form of the filler

word, the time delay permitted by the filler word to compute the repair, the contrast in semantics

or stress of the repair word, or any combination of these factors.

To factor out the possible effect of the phonetic form of the filled pause ‘uh’, they introduce

filler-excised versions of the repaired instructions (“..the yel- .. purple square”), but with the

repair onset occurring at the same time as the original instruction. This resulted in the same level

of performance from subjects as the filler condition. This suggests it was not the form of the

filler but the time allowed to compute that a repair has occurred that helped subjects– note when

the repaired instructions have no filler or pause for an interregnum subjects were less accurate.

The fact that the between-word condition lead to slower and less accurate responses suggested

the indication of repair is weaker without the combination of the partial word and filler– subjects
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cannot draw the information that their (virtual) instructor intended to replace the reparandum as

readily.

Brennan and Schober (2001)’s experiment confirmed the use ofincremental information pro-

cessing in self-repair comprehension within two simple domains: one where the subject had to

pick a target referent from two objects of the same shape but with different colours, and one

where the subject picked from three objects, again with the varying property being colour. The

effect of the ‘disfluency advantage’ in reaction time was attenuated in the three-object condi-

tion, however it was still positive for the mid-word interruption with filler condition. I show a

summary of the experimental conditions and instruction types in Figure 2.8 and the experimen-

tal results in Table 2.9 in terms of speed and accuracy rank based on the significant interactions

reported.

From a semantic processing point of view, one could concludethat in the two-object condi-

tion, subjects factor out one of two objects in computing thereparandum referent incrementally,

allowing them to make the simple binary decision more quickly, whereas in the more complex

domain the information content from the repair is lessened–while it helped factor out one of the

objects a choice remained between the other two.

In addition to confirming the hypothesis that hearers compensate for a disfluency by comput-

ing the meaning of the repair faster relative to its onset than in an equivalent fluent utterance, the

authors conclude that the less misleading the reparandum is(where a full incorrect colour word

is the most misleading, followed by a partial incorrect colour word, with partial repeat repairs

not being misleading at all) the more accurate hearers are incomputing the meaning of the repair

(or in this simple domain, resolving the referent).

2.4.4 Incremental elicitation and effect of self-repair indialogue

As for experimental work on self-repair in dialogue domains(rather than in non-interactive in-

struction following), Healey et al. (2011) explored incremental processing in text-based dialogue

through the DiET chat-tool methodology (Healey et al., 2003), which permits the real-time ma-

nipulation of dialogue turns during character-by-character chatroom-like conversations. The ex-

periment elicited third position other-initiated self-repairs or follow-ups (Colman and Healey,

2011) from participants through the insertion of “spoof” clarification requests (CRs). The CRs

were automatically generated by the system during a participant’s typed turn and took the form of

a repeated noun phrase (NP) that had just been typed in the turn with an additional question mark,
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Type of instruction example
Mid-word interruption w. filler “Move to the yel- uh, purple square”
Mid-word interruption “Move to the yel-purple square”
Between-word interruption “Move to the yellow- purple square”
Mid-word interruption (repeat) “Move to the yel-yellow square”
Filler+reparandum replaced w. pause“Move to the ... purple square”
Filler replaced w. pause “Move to the yel- .. purple square”
Reparandum replaced w. pause “Move to the .. uh, purple square”
Fluent “Move to the purple square”
Conditions:
Exp. 1: 2 objects.
Exp. 2: 3 objects.
Exp. 3: 2 objects. Time limit. Filler replaced by pause, reparandum

replaced by pause conditions included
Exp. 4: 2 objects. Time limit. Same as Exp. 3 but with repetition repair

condition included.

Figure 2.8: Instruction fluency conditions and experimental conditions in Brennan and Schober
(2001)

Speed (accuracy) rank
Type of instruction Exp. 1 Exp. 2 Exp. 3 Exp. 4
Mid-word interruption w. filler 1 (1=) 1 (1=) 1= (1=) 1= (1=)
Mid-word interruption 2= (4) 4= (4) 3= (6) 3= (7)
Between-word interruption 2= (5) 4= (5) 3= (7) 3= (8)
Mid-word interruption (repeat) x x x 5 (1=)
Filler replaced w. pause x x 1= (1=) 1= (1=)
Reparandum replaced w. pause x x 5= (1=) 6= (1=)
Filler+reparandum replaced w. pause4 (1=) 2 (1=) 5= (1=) 6= (1=)
Fluent 5 (1=) 3 (1=) 7 (1=) 8 (1=)

Figure 2.9: Summary of Brennan and Schober (2001)’s experimental results
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appearing on the screen of the targeted dialogue participant to originate from another dialogue

participant (e.g. B’s fake turn on A’s screen inA: John went to town. B: John? ).

There was a within-subjects manipulation ofinsertion pointin that probe CRs were inserted ei-

ther after a constituent boundary (e.g. after a completed NP) or within an incomplete constituent

(e.g. after a determiner). There was also a between-subjects manipulation of theorigin of the

CR, in that “fake” turns in one condition were displayed on the screen as if originating from the

participant’s dialogue partner and in the other condition made to appear, as explained prior to the

experiment to participants, as if generated by an artificialdialogue agent (chatbot).

The results in terms ofresponse timeshowed no reliable effect between the different insertion

points, however participants were quicker to respond to thechatbot’s CRs. In terms ofreformu-

lation- that is whether the target word in the CR was paraphrased butsemantically equivalent-

again there was no reliable effect of insertion point, however responses to the chatbot were more

likely to reformulate the target. The third comparison, which was the likelihood of arestart

showed a reliable difference with respect to insertion point, as probe CRs inserted within an in-

complete constituent were more likely to elicit restarts offrom the beginning of the typed turn in

comparison to the CRs at constituent boundaries. An interesting result for Human-Computer In-

teraction (HCI) was also found in this comparison in that participants were more likely to restart

in response to a ratified dialogue partner than in response tothe a chatbot’s probe.

2.4.5 The effect on self-repair of the status of dialogue participants

Healey et al. (2011)’s chatbot results give an insight into the difference between interaction with

side participants and interaction with primary addressees, a finding further corroborated by Es-

hghi (2009). Additionally, viewed from an HCI perspective,the responses to the chatbot provide

an interesting parallel to the statistical corpus comparison of disfluencies in the Switchboard

(SWBD) and AMEX travel agency human-human dialogues and theAir Travel Information Sys-

tem (ATIS) human-computer dialogues in (Shriberg, 1996). Shriberg’s results showed that a

human participant addressing a computational dialogue system (in the ATIS corpus) is not only

far more fluent than in normal human-human conversation, butmore interestingly, that this dif-

ference can be attributed to the three of Shriberg’s repair types which are not classified as artic-

ulation errors– filled pauses, repetitions, and deletions.The results suggested people were less

likely to insert floor-holders and less likely to repeat in speaking to a computerized dialogue

system than to a human dialogue partner, which are observations consistent with the chatbot
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interaction findings in Healey et al. (2011).

In both of these cases there is a systematically different behaviour in terms of orientating to

artificiality, with more reformulation (and hence less openly disfluent utterances) in the chatbot

condition in Healey et al.’s experiment and conversely a significant tendency to speak fluently to

the system in the ATIS dialogues.

The results suggest the causes of different classes of self-repair can be attributed to interac-

tional factors and the status of the hearer, rather than being solely due to processing demands or

perception that is external to a dialogue. There is still thequestion of domain-specificity, and

whether a more open chat-like conversation would yield different results. It is clear this experi-

mental paradigm could be used to elicit different types of self-repair from human participants.

2.4.6 The role of self-repair in psychiatry and mental stateattribution

In terms of practical use, analysing the distribution of self-repair rates has been found to be

effective in analysing doctor-patient interactions in psychiatric therapy sessions and their effec-

tiveness. Howes et al. (2012) showed that in psychiatric therapy situations between schizophrenic

patients and doctors, participants are much more likely to self-repair than in normal dialogues,

and do less other-repair.

Furthermore, McCabe et al. (2013) showed how self-repair rate correlated with treatment

adherence for schizophrenic patients, in that those who didless self-repair but more other-repair

(clarification) were more likely to adhere to treatment. Self-repair was shown to correlate with

negative symptomsof schizophrenia, such as the ‘flat effect’ of displaying little interest or emo-

tion in communication, a finding that backed up early observations of this correlation by Leudar

et al. (1992).

Additionally, the degree to which expectation about mentalstates has effects on how hearer’s

interpret self-repair incrementally was found by Arnold etal. (2007). They set up an experiment

similar to Brennan and Schober (2001)’s object selection task as described above, presenting

hearers with fluent (“Click on the red. . . ”) and disfluent instructions with an elongated deter-

miner and filled pause (“Click on [pause] thee uh red. . . ), being presented with normal everyday

objects and difficult-to-name novel objects. They found thedisfluent instructions made novel

objects more expected, as shown through eye-gaze measurements indicating on-line hypotheses

of referents from the onset of the color word. However, the novelty bias was sharply attenuated

when the listener was told the speaker had object agnosia (i.e. poor ability to recognize objects),
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presumably due to the inference from the hearer that the speaker would have difficulty naming

familiar objects, not just rare ones. This shows the interactive effect of repair and the fact it

is used to make inferences about an interlocutor’s mental state, rather than being ignored and

filtered out as noise in a speech signal.

2.5 Summary and directions for research

Given the evidence of the pervasiveness of self-repair in dialogue and the potential for various

analytical uses, it is clearly a phenomenon worthy of study.Any model of dialogue must account

for it to have any cognitive plausibility. Ginzburg et al. (2014) make the analysis of disfluency

to friction in physics– while an idealised model can do without it, one that pertains to model

empirical evidence cannot.

Generally, there seem to be two stances in the literature on empirical approaches to self-

repair as regards its psychological status, one being very interactive (CA; Clark, 1996; Healey

et al., 2011) and the other more autonomous and processing focussed (Levelt, 1989; van Wijk

and Kempen, 1987). However, in both cases, there is a principle of locality in self-repair. Clark

summarizes this in hisprinciple of repair: “When agents detect a problem serious enough to

warrant a repair, they try to initiate and repair the problemat the first opportunity after detecting

it”(Clark, 1996, p.284).

The statistics from Shriberg and Stolcke (1998)’s study along with Schegloff et al. (1977)’s

observation of preference for self-initiated same-turn self-repair indicates optimal repair strate-

gies are geared towards the most immediate reaction possible to a trouble source, with the

slight hook in the trend for entire utterance restarts indicating the benefit of complete refor-

mulation/starting ‘afresh’. From the micro-level of soundform and word position to the larger

intervals of dialogue contribution it becomes clear that self-repair takes place as quickly as pos-

sible.

Additionally, the re-use of structure as shown by Levelt’s well-formedness rule shows a prin-

ciple of least effort: consistent forms of self-repair makeinterpretation easier for a hearer. While

this rule may not cover all cases, it certainly has some regularity. Also, there is empirical ev-

idence that addressees use the information in reparanda andfilled pauses to their processing

advantage in reference domains (Brennan and Schober, 2001;Arnold et al., 2007) and that it is

indeed necessary to retain the reparandum to compute the meaning of an expression for anaphoric
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and elliptical forms in the repair phase (see example (2.19)). Computational models of reference

resolution and referring expression generation that account for these results will be presented in

Chapter 7.

There has been substantial work on disfluency categorization (Shriberg, 1994, 1996), but

work needs to be done to create a self-repair ontology with a level of detail sufficient to inform

the building of a computational model of self-repair in a dialogue system. There are slightly

orthogonal proposals of self-repair types and their annotation in the literature depending on the

task at hand: either more coarse-grained turn-level annotation that is interactionally focussed

(Healey et al., 2005; McCabe et al., 2013) or more oriented towards automatic detection purposes

(Shriberg, 1994, 1996). What is clear that an empirically solid model with appropriate detail is

required, and an annotation scheme to accompany it.

One level of detail not hitherto addressed in detail is investigating precisely how the syntac-

tic, semantic and dialoguecontextof self-repair corresponds to its form: self-repairs tend to be

analysed in isolation in the more fine-grained corpus studies. There needs to be more investiga-

tion into how hearers use the incoming information incrementally to predict and process repairs,

including analysis of edit terms in terms of their form and their predictive ability for upcom-

ing repair. Corpus work investigating this will not only be useful for acquiring evidence about

the context of self-repair events and their types, but couldalso provide a test-set of phenomena

against which computational models could be evaluated. I return to this in Chapter 4, which

describes a study investigating the detail required for an ontology of self-repairs in dialogue.
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Chapter 3

Computational and Formal Approaches

This chapter surveys historical and state-of-the-art computational models of self-repair detection

and processing and its treatment within theoretical and implemented natural language under-

standing (NLU), natural language generation (NLG) and dialogue systems. The commonly used

repair detection evaluation techniques are introduced here, as are the principal formal and com-

putational tools that will be used in Chapter 6. A summary of the approaches and an outline of

the research questions motivating the computational and formal elements of the thesis are given

in Section 3.5.

3.1 Automated processing of self-repairs

3.1.1 Detection and correction using multiple knowledge based language models

There have been several statistical language model driven systems for detecting and correcting

first position self-repairs (in the computational linguistics community often referred to asdis-

fluency detection), using multiple knowledge source language models which include acoustic,

lexical and other information from speech. A representative sample of these approaches is sur-

veyed here.

Heeman and Allen (1999) present a multiple knowledge sourcestatistical language model

for detecting and correcting self-repairs in the task-oriented TRAINS corpus (Heeman and Allen,

1995). This was the first time that the task of automatic speech recognition (ASR) was proposed

as a joint task with tagging part-of-speech (POS), discourse markers, speech repairs and intona-
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tional phrase boundaries in dialogue data, working under the premise that the outcomes to all of

these sequence classification tasks were connected and would aid each other’s performance.

The authors incorporate detection and correction mechanisms for speech repairs and also ba-

sic repair classification, differentiatingfresh starts(repairs without clearly substitutive reparan-

dum and repair phases and which restart an utterance unit),modification repairs(repeats and

substitutive repairs) andabridged repairs(those consisting solely of an edit term, which contains

filled pauses or discourse markers, but without reparandum or repair phases, where the following

words are a syntactically felicitous continuation of the original utterance; e.g. “we need to,um,

manage to get the bananas to Dansville more quickly” (Heemanand Allen, 1999, p. 530) and see

example (2.5) in the previous chapter). The correction process for all repair types is formulated

as one of successfully identifying the extent of the reparandum and the edit term, if there is one

present.

Introducing the task of detectingdiscourse markerssuch as the italicised utterance unit-initial

phrases in example (3.1) below was also novel, and they showed its interaction with repair detec-

tion and correction. They observed the various communicative functions of discourse markers,

such as signalling the upcoming addition of new information(e.g.and thenin example (3.1)) or

upcoming summarisation (e.g.so in example (3.1)), in addition to their function as repair signals

either as stand-alone edit terms, interregna or as repair onset words. They managed to identify

discourse markers in their multiple knowledge source probabilistic model with high accuracy,

with a recall of 0.973 and precision of 0.963.1

(3.1) and thenwhile at Dansville take the three boxcars

so that’s a total of five

(from (Heeman and Allen, 1999, p. 531))

The authors discuss the interaction of repair detection with ASR, discourse marker detection

and POS-tagging. For example, repair hypotheses can be usedto rule out unlikely POS assign-

ments as certain POS combinations can only occur over a repair boundary but not in a fluent

sequence, e.g. the determiner preposition sequenceDT PRParound the interruption point + in

“I can run trains [ on the + in the ] opposite direction” (Heeman and Allen, 1999, p. 533). The

connection between repair presence and word sequence hypotheses is also clear here –“the in” is

1While the authors give accuracy results as percentages to 4 significant figures, here I give them in
decimal form to 3 s.f. as will be done for all accuracy resultsin this thesis.
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unlikely in a fluent sequence but is permissible at a repair onset boundary.

The authors incorporate repair tags, edit term tags and intonation phrase boundary tags as

sequence models in their overall language model. The repairtag indicates the position of the

start of the repair phase onset and its type, taking values ofmodification (Mod), fresh start (Can)

or abridged (Abr). For edit terms, different tags indicate the extent of the edit term: aPushtag

indicates the start, anET tag between words indicates an edit term in progress and aPopends

the edit term. Edit term detection allows the repair detector and corrector to work more reliably

as the correspondences between reparandum and repair phases in modification repairs can be

derived contiguously. An example of an utterance with a modification repair with an edit term

according to this annotation scheme can be seen below:2

(3.2) that’ll get there at four a.m.Pushoh ET sorryPop Mod at eleven a.m.%

from (Heeman and Allen, 1999, p. 546)

They build probabilistic sequence classifiers of these sequence tags and therefore redefine

ASR as a task as a joint maximisation of the most likely word, POS, repair tag, discourse marker

and intonation phrase boundary sequences given the acoustic signal. For each of the sequence

classifiers, the authors implement decision tree learners which use local contextual information

from relevant tag sequences to make decisions – this avoids estimating a large complete joint

distribution but still allows the trees to select features most relevant to their task, not constraining

the context only to previous sequences within their own classification task, e.g. the POS tag-

ger could use words, repair and intonation boundary contextual information in addition to the

previous POS tags hypothesised.

In their repair detection and correction classifiers they predict repair structures indicating the

word correspondences between reparandum and repair phases: these correspondences include

matching (repeated) words markedm(i.e. [ I + I ] =m.m) replacement (substitution) correspon-

dences markedr (i.e. [ I + you ] = r.r ), inserted words in the repair markedx (i.e. I [ love +

really love] =m.xm) and words deleted from the reparandum (i.e. [ I + ] =x. ). One problem

with the approach acknowledged by the authors was sparsity of repair structures: they report that

1,302 modification repairs (non-deletes) take on 160 different repair structures in the TRAINS

corpus, with only 47 (29.4%) occurring at least twice. The correction task of identifying repairs

2The intonational phrase tag is a binary one that indicates whether a word ends a given intonational
phrase, marked with%.
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through template matching is aided by using information from the language model in the decision

process to filter out false positives. They also include a feature encoding that a repair has already

been detected in the utterance due to observation that in TRAINS, 35.6% of repairs overlap.3

Limiting their testing to transcripts, rather than evaluating the full task including ASR, they

test repair detection and correction in terms of recall and precision on the transcripts. The best

overall repair detection recall achieved was 0.768 with precision at 0.867, however repair correc-

tion (reparandum and edit term detection), which from an NLUperspective, is arguably the more

important part of repair identification, did not perform as successfully, with an overall recall of

0.659 and precision of 0.743. Within modification repairs their performance in detection and

correction was considerably better (detect r=0.809, pr=0.834; correct r=0.780, pr=0.804) than

it was for fresh starts (detect r=0.486, pr=0.692; correct r=0.362, pr=0.516). Abridged repairs

were processed with good accuracy (detect r=0.759, pr=0.825; correct r=0.757, pr=0.823). They

also show that distinguishing fresh starts and modificationrepairs as separate categories was use-

ful, showing a 7.0% boost in detection accuracy and 6.6% correction improvement over a model

collapsing the distinction.

While direct comparison with other approaches explained below is not possible due to the

different test data and metrics used, the apparently moderate success in reparandum detection

is not surprising due to the sparsity problem. While the factthat the repeat sequencem.m is

the most common modification repair structure may be very useful for an incremental classifier,

there is a long tail in the distribution of repair structures. I assume fresh starts were particularly

problematic to identify due to the lack of POS or word-level parallelism and available templates,

frequent occurrences of which can be exploited in detectingmodification repairs, but not for fresh

starts.

In addition to the novel re-statement of voice recognition language models, a desirable prop-

erty of their system is that results could in principle be obtained word-by-word incrementally, as

they use Markov processes for each sequence classifier, in which classification of the current tag

only conditions on the previous states rather than allowinglook-ahead, however the stability of

their repair detection and correction hypotheses is not discussed.

In a later system, Liu et al. (2003) also demonstrate how multiple knowledge sources includ-

ing acoustic information can be used to detect disfluency interruption points, claiming this can

3It is not clear this is the same kind of overlap as nested and chaining repairs described by Shriberg
(1994).
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be best achieved by a total combination of prosodic cues, word-based and POS-based cues (Liu

et al., 2003, p.957), rather than any subset of those knowledge sources. They claim the task of

deciding how far to go back with the onset of a disfluency to be removed “is best found using

knowledge-based rules.” (ibid.). In the same spirit as Heeman and Allen (1999), they also de-

scribed how “specific disfluency types can be aided by the modeling of word patterns” (ibid.). As

their system architecture shows in Figure 3.1, a statistical prosody model, word-based language

model and POS language model were trained to produce the bestoutput in terms of interrup-

tion point hypotheses from speech input. Acoustic information from speech forced aligned with

human transcription and ASR results were passed to ahidden-eventlanguage model (HELM)

which was trained not just to output the best word hypothesisfrom the speech signal but also the

most likely repair interruption points as hidden events.

They also develop a specific repetition pattern LM, motivated by the fact that specific lexical

repetition patterns are sparse in the data, however as described in Chapter 2 repetition in itself is

a strong indicator of repair, and as an event is far less rare than individual lexical instances of re-

peated words. They build the repetition LM by estimating a combination of the probability of the

repetition patterns occurring in data and the probability of the ‘cleaned’ word sequences after the

reparandum region predicted by the repetition model is removed from the word sequence. In test-

ing, repetition events are predicted by the repetition LM and the probability for valid sequences

of the repetition events are calculated. The overall probability of each sequence is calculated

in the standard way for the cleaned word-based LM until the interruption point however for the

repetition events, the repetition pattern LM N-gram probability is used instead of the word-based

probability.

They test their model on ASR results and human transcriptions in order to avoid the effect

of word errors in recognition outputs and give detailed results for the transcription condition,

which had better accuracy. For detecting repair interruption points, a combined model using the

word-based hidden-event LM, a similar POS-based model and aprosody model achieved a recall

of 0.568 and precision of 0.813. To isolate the effectiveness of their repetition pattern language

model, they test on the transcript data and achieve a recall of 0.807 and precision of 0.701 in

detecting repetition repair interruption points, improving from 0.678 and 0.773 when using the

word-based HELM alone.

Reparandum onset indentification using their HELM achieveda recall of 0.464 and precision
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Figure 3.1: System architecture for disfluency detection and classification (Liu et al., 2003)

of 0.757, however the repetition model LM achieved improvedoverall accuracy (r= 0.615, pr=

0.686). They claim that the results for reparandum onset position detection would be improved

by obtaining more accurate IP hypotheses.

Incorporating a disfluency model more directly into n-best list based combined ASR and

statistical machine translation (SMT) system was recentlyachieved by Cho et al. (2014), using

insights from this work and subsequent LM-based approaches. While their disfluency detection

results were not competitive to other approaches mentionedhere, SMT performance and ASR

performance was improved due to the incorporation of the disfluency model.

3.1.2 Deterministic parsing and string editing

As stated in the introduction, the parsing community’s normal implementational focus has tradi-

tionally been on written text rather than dialogue data, andfor this reason it has become a techni-

cally difficult challenge to incorporate disfluencies into standard grammars and parsers. Parsing

utterances with repairs was originally formulated as classifying the reparandum correctly and

excising it from the parse tree of the final sentence, an approach which continues today.

Hindle (1983) proposed the first parser-first approach to theproblem, introducing a determin-

istic parser which permitted one possible syntactic structure for a string, but invokedcorrection

rules which recognized editing signals such as filled pauses and reparanda. The rules included

a surface copy editorwhich simply removed from the view of the parser the left-hand string of

a pair of repeated strings either side of an editing signal (i.e. interregnum). Failing that, slightly

more psycho-linguistically informed repair detection wascarried out by acategory copy editor,

which matched for constituent categories in its parsing buffer, and deleted the left-hand copy, and
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stack copy editorwhich looked for copies of incomplete structures in the reparandum to expunge.

This system was elegant, however it is worth noting that one of the strategies employed, the

surface deleting of the reparandum from the input string, does not make for good psychological

plausibility according to the evidence in Chapter 2. If the model was considered a model for un-

derstanding speech, taking physics into consideration, let alone cognitive processes, would make

it unrealistic, as the words cannot beun-heard, however this approach still underlies repair detec-

tion research (Rasooli and Tetreault, 2014; Honnibal and Johnson, 2014), as I will discuss below.

Furthermore, Hindle’s parser used known interruption points and worked on the correction part

of repair processing rather than detection, however detecting interruption points is a non-trivial

problem for automatic approaches.

3.1.3 Processing speech repairs with a noisy channel model

Johnson and Charniak (2004) present the first generative approach to processing self-repairs, in

a noisy channel model of speech repair detection. They formulated the task of parsing utterances

with repaired speech as finding the ‘cleaned’ utterance thatis most likely one generated by an

underlying fluent source language model and the most likely to generate the observed ‘noisy’

utterance (the ‘noise’ being the disfluencies)- see Figure 3.2. For their channel model, they build

a S-TAG (Synchronous Tree Adjoining Grammar Shieber and Schabes, 1990) based transducer

that yields complex sentences which are strings of tuples ofwords from the ‘noisy’ sentence (raw

utterance with disfluencies) and corresponding words from the source sentence (clean underlying

‘intended’ utterance), using simple S-TAG rules.

The system is trained to yield string pairs which maximise the probability of the overall noisy

channel modelP(X|U) yielding cleaned utterancesX from raw utterance stringsU . Using the

Bayesian noisy channel model formulation, this is achievedby a maximisation of the likelihood

of the combination of the S-TAG based channel modelP(U |X) generating the noisy strings and

the language modelP(X) as in equation 3.3. The decoding task can therefore be viewedas search

for the most likely underlying clean sentencex∈ X given the observed noisy utteranceu.

arg max
X

P(X|U) = arg max
X

P(U |X)P(X) (3.3)

The S-TAG grammar in the channel model generates sentencesZ, where eachz∈ Z consists

of a sentence of tuples of the form〈raw word inu, cleaned word inx〉. The second element will
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be⊘ (the null string) if it is classified as part of a reparandum (i.e. removed from the output), so

an underlying cleaned sentencex consisting of the string of the first tuple elements will always

be a substring of the noisy sequenceu, the string of the second tuple elements. If the second

element of the tuple is not a reparandum word then both elements have the same lexical value.

Note the TAG rules do not assign grammatical structure to words (i.e. the TAG parser is not

a syntactic parser), rather they generate the strings of noisy utterancesU from the underlying

cleaned utterancesX and yield a tree structure representing the repair-reparandum alignments

such as that in Figure 3.3. The model uses the context-sensitive properties of TAG (specifically

the ability to deal with crossed serial dependencies) as a way of dealing with the ‘rough copy’

dependencies often present in speech repairs.

The auxiliary trees used in the derivations have the tuples〈raw word inu, cleaned word in

x〉 as their terminal nodes, i.e. the words that compose sentences Z as described above, and

simple reparandum-repair alignment rule categories for their non-terminals (copy, delete, insert,

substitute), indicating the correspondence between their left and right daughter terminals. They

contain the repair category alone if they have a single daughter, i.e. in the case of nodes where

interregnum trees are attached. More technically, as can beseen in Figure 3.3, the non-terminals

divide into three categories –Nwx (the preceding wordwx is not part of a repair),Rwx:wy (the

preceding word in a reparandum and its corresponding word ina repair phase, if these two words

are identical then it is a repetition, if they are different then there is a substitution, ifwx is⊘ this

is an insert and ifwy is ⊘ this is a delete) and the other non-terminal isI , which dominates the

interregnum word sequences. Note the trees withNwx andI mothers always rightward branch in

a finite state fashion, which allows the probability of theserule applications to be obtained by

normal n-gram language model estimation– the authors traina bigram model for the non-repair

Nwx headed trees and a unigram interregnum model forI headed trees. See the derived tree for

“..want a flight [ to Boston, +{ I mean} Denver ]” in Figure 3.3.

The S-TAG parser runs inO(n5) on the length of the input sequence, which they limit to

word windows of length 12 as the system stochastically predict a repair as beginning every word.

A chart is used to store all the possible repair sequences. The space and time complexity issues

here will be discussed in Section 3.5 and also in Chapters 4 and 5.

For their evaluation they use what has become the standard metric for evaluating repair detec-
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Figure 3.2: Parsing model for disfluencies from Johnson (2011).

tion systems, first introduced in Charniak and Johnson (2001)- the F-score4 of reparandum words

rm retrieved. To calculate the precision and recall to give this result, if we take the total num-

ber of words hypothesised as being in a reparandum asrmhyp, the number of correct hypotheses

rmcorrect and the total number of gold standard reparandum words in thetranscript asrmgold we

have:

4This is technically the F1-measure but will be shortened to ‘F-score’ for the remainder of the thesis.
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Figure 3.3: TAG-based derivation of a repaired utterance (Johnson and Charniak, 2004).

precision=
rmcorrect

rmhyp

recall=
rmcorrect

rmgold

F-score= 2×
precision× recall
precision+ recall

(3.4)

In testing their model they show how the system performs bestby using a statistical parser

based language model forP(X) with an F-score of 0.798, rather than using bigram (F-score =

0.756) or trigram (F-score = 0.768) language models. It is worth mentioning their model was

not trained on overlapping repairs, which is surprising given that a grammar-based approach

should be more suited to this problem than sequence labelling approaches, given their embedded
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structure (Shriberg, 1994).

Incrementalising the noisy channel model

The model I consider most suitable for incremental dialoguesystems in previous work is Zwarts

et al. (2010)’s incremental version of Johnson and Charniak(2004)’s noisy channel repair de-

tector, as it incrementally applies structural repair analyses and is evaluated for its incremental

properties. Following Johnson and Charniak (2004), instead of using a parsing model their sys-

tem uses an n-gram language model trained on roughly 100K utterances of reparandum-excised

(‘cleaned’) Switchboard data. As above, the channel model is a statistically-trained S-TAG parser

whose grammar has simple reparandum-repair alignment rulecategories for its non-terminals and

words for its terminals. The parser hypothesises all possible repair structures for the string con-

sumed so far in a chart, before pruning the unlikely ones, however these are processed in a strictly

left-to-right manner from the input string. It performs equally well to the non-incremental model

by the end of each utterance (F-score = 0.778), and can make detections early via the addition of

a speculative next-word repair completion category to their S-TAG non-terminals.

In terms of incremental performance, they report the novel evaluation metric oftime-to-

detectionfor correctly identified repairs, achieving an average of 7.5 words from the start of the

reparandum and 4.6 from the start of the repair phase. They also introducedelayed accuracy, a

word-by-word evaluation against gold-standard disfluencytags up to the word before the current

word being consumed (in their terms, theprefix boundary), giving a measure of the stability of

the repair hypotheses. They report an F-score of 0.578 at oneword back from the current prefix

boundary, increasing word-by-word until 6 words back whereit reaches 0.770. These results are

the point-of-departure for the work in Chapter 5.

3.1.4 Other successful machine learning approaches

There has been a competitive effort to improve accuracy for disfluency detection on transcripts

since Johnson and Charniak (2004)’s work. Qian and Liu (2013) achieve the best reported perfor-

mance on the Switchboard disfluency test corpus, achieving an F-score for detecting reparandum

words of 0.841. They use a three step detection system using weighted Max-Margin Markov

(M3) networks: (1) detection of edit-terms/fillers/interregna (2) detection of reparandum words,

and (3) refining the previous steps, using a cost-sensitive error function.

In an earlier model Georgila (2009) introduces a post-processing method of Integer Linear
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Programming (ILP) to improve overall accuracy of various off-the-shelf methods, reporting an F-

score for detecting reparandum onset words at 0.808 and repair onsets at 0.825 for a CRF model.

While these results are impressive, the systems do not operate incrementally: they maximise the

overall likelihood of tag sequences in utterances, using utterance-global constraints, rather than

focussing on incremental accuracy, and so are not as suitable as other approaches discussed here

for the purposes of this thesis.

3.1.5 Joint parsing and repair detection

Recently, there has been increased interest in left-to-right repair detection: Rasooli and Tetreault

(2014) and Honnibal and Johnson (2014) present dependency parsing systems with reparandum

detection which perform similarly, the latter equalling Qian and Liu (2013)’s F-score at 0.841.

However, while operating left-to-right, these systems arenot designed or evaluated for theirin-

crementalperformance. The use of beam search over different repair hypotheses in Honnibal and

Johnson (2014) is likely to lead to unstable repair label sequences, and they report repair hypothe-

sis ‘jitter’ in reparandum word detection. Both of these systems use a non-monotonic dependency

parsing approach that immediately removes the reparandum from the linguistic analysis of the

utterance in terms of its dependency structure and repair-reparandum correspondence, which I

will argue does not allow optimal integration into interesting NLU systems.

Miller and Schuler (2008) presented an earlier left-to-right parsing and repair detection model

that achieved an F-score of 0.680 on the Switchboard test data. They use right-corner-transform

of syntactic trees to make an EDITED headed sub-tree be derivable incrementally and achieved

the best results by using a Hierarchical Hidden Markov Model(HHMM) as their parsing mecha-

nism. The reason for the moderate success may be the encodingof repairs into a grammar causes

sparsity in training: repair is a general processing strategy not restricted to certain lexical items

or POS tag sequences. Again no incremental performance information is given. This was the first

attempt to directly incorporate self-repair into the grammar directly, rather than orthogonally to

it.

3.2 Incremental NLG and self-repair

In this section I discuss various approaches to incrementality and self-repair within natural lan-

guage generation (NLG) frameworks.
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3.2.1 Background: NLG architectures

Before reviewing some of the more psychologically motivated models of generation that deal

with self-repairs, the standard structure of an NLG system should be considered.

The most well known functional decomposition in NLG is the separation of thestrategicand

tactical levels of language generation. This was first outlined by Thompson (1977), who claimed

a functional modelling approach to human language production could do more than contempo-

rary theoretical linguistics, particularly the transformational grammar tradition, in terms of the

explanatory adequacycalled for by Chomsky (1965). Thompson claimed linguisticswas fail-

ing to deliver the promise of an explanation as tohow language users produce utterances, so

he formulated the problem in terms of designing a computational system capable of generating

human-like linguistic behaviour.

Thompson positioned the strategic level as the more complexand interesting of the two levels,

claiming that given high-level, not necessarily linguistic, information received from the rest of

the cognitive model such as theintention to bring about some state of events through speech,

a model of thehearerand a representation of thepropositionalcontent to be communicated, it

could make decisions including selecting speech acts and lexical items and how best tochunkthe

information; its role was essentially to decidewhat to say. This information could then be passed

on in a serial manner to the tactical level, whose easier taskwas to transform it into a sequence

of words to send to the speech channel, using linguistic constraints applied to the lexical items;

the role of the tactical component was effectively making the final decisions as tohow to say it.

Thompson’s characterization of generation reduced the import of the tactical level, claiming

if the nature of it was taken as “given” (Thompson, 1977, p.656), research would be free to focus

on the more “importantencoding decisions” (ibid., p.656) of the strategic component. However,

the nature of tactical generation continues to be far from given and concordance amongst theories

seems hard to come by. Even more strikingly, the overall architecture of NLG systems is far from

uniformally agreed upon: since the tactical-strategic distinction was made, three-part (Levelt,

1989; Reiter and Dale, 2000), multi-modular (Kempen and Hoenkamp, 1987; Neumann and

Finkler, 1990; Zarrieß and Kuhn, 2013) alternatives have been proposed, with modularity being

employed for reasons of computational efficiency and psychological plausibility. Furthermore,

an NLG system designed for interactive purposes such as dialogue modelling requires further

adjustments from standard architectures, including interleaving with parsers (Neumann, 1998;



3.2. Incremental NLG and self-repair69

Purver and Kempson, 2004) and interfaces to other components of a dialogue system (Skantze

and Hjalmarsson, 2010), as will be discussed below.

Logical form equivalence and inputs to generation

Deciding on the most suitable representation for the inputsto a generation system is an unre-

solved problem. Not only is there is a lack of standardized input (Belz et al., 2010), there is the

issue of deciding on which parts of the generation system should be able to access the input. The

foundations of these problems have been formalized as theproblem of logical form equivalence

(Appelt, 1987; Shieber, 1988,inter alia.), which originated from a goal to eliminate the need for

the strategic component of generation to have any grammatical knowledge.

Following Shieber (1993) and Van Deemter and Halldórsson (2001)’s explanation, the prob-

lem is roughly as follows: given that the strategic component of a generator, thereasoner, is

non-linguistic in nature, its input to the tactical component of generation is a logical form (LF)

which is not influenced by the grammar. If two LF input representations have the same mean-

ing as far as the logic of the reasoner is concerned (e.g.P→ Q and ¬P∨Q if the LFs were

propositional logical forms), given the role of the tactical generator is to find the appropriate

meaning-string pair in the grammar, it should generate identical strings given these two different

inputs. However in the grammar within the generator each string is paired to one LF (thecanon-

ical logical form) for a given interpretation, without necessarily being linked to the other LFs

that represent the same meaning as, or at least arelogically equivalent, to the canonical LF.5 This

one-to-one pairing from LF to meaning is a necessary featureof generation for it to remain a

tractable problem: whileP→Q and¬P∨Q may ‘mean’ the same thing in the logical language,

if we assignP = “Bert dances” andQ = “Ernie sings”, intuitively, the string “if Bert dances then

Ernie sings” should not be generated by¬P∨Q, nor should “Bert does not dance or Ernie sings”

be generated byP→ Q. Given certain equivalence rules in logic such as commutativity (e.g.

P∧Q≡ Q∧P) or the conditional equivalence given above (P→Q≡ ¬P∨Q) many traditional

(and formally well-behaved) logics are therefore unsuitable for providing LFs.

This problem would suggest that the notion of equivalence oftwo or more LFs in the in-

put representation would need to be narrowed somewhat from logical equivalence to something

closer tosyntactic identity, and hence the strategic component must be adapted to the require-

ments of the tactical generator and the grammar. Shieber (1993) suggests this approach just

5Ambiguous strings may of course have more than one candidatecanonical LF, but this is irrelevant to
the problem as they are different interpretations rather than equivalent ones.
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escapes the problem, claiming it is rooted deeper in the AI knowledge representation problem

and the philosophical problem of meaning identity. HoweverShieber suggests a resolution could

be possible with a linguistically oriented suggestion: it should involve a new input representa-

tion language “that characterizes exactly the semantic distinctions that ramify in natural language

syntax.” (ibid, p.187)

The problem of logical form equivalence continues to underlie several current directions

in NLG research, in particular the proposal to agree oncommon inputsto generation systems

(Belz et al., 2010) across the field. This is presented as a practical difficulty for researchers

for evaluating different computational systems, given thelack of gold standard NLG input and

the immense variability in input for different systems, with input forms variously being more or

less specific to a particular grammar and domain of application. Although the common inputs

problem is more of an engineering issue rather than a philosophical one, it is rooted in the same

fundamental question as the logical form equivalence problem: what form should the input to

generation take, and which parts of the generation system should receive it?This is a question

that will be addressed in this thesis, and in particular withregard to the input to NLG in dialogue

systems that include repair generation. I discuss a formalism for inputs to generation which I

believe begins to meet the requirements for such a task in Chapters 6 and 7 to address this issue.

Pipeline approaches

A standard NLG architecture consists of a chain ofdomain planning, microplanningandsurface

realization modules, often called the “NLG pipeline” (Reiter and Dale, 2000). The processes

involved in traditional generation are not generally incremental in most of the senses of incre-

mentality discussed in this thesis, however the three-partmodularization divides up the role of

strategic and tactical decisions to be made and messages of different types constitute the incre-

ments passed through the system. Domain planning uses the static knowledge base of the system

and the requirements of the particular generation task to construct a document plan which can be

sent to the microplanner, which plans the sentence, executing such tasks such aslexicalization

(choice of words) andlinearization(word order), producing a more fine-grained specification to

send to the surface realizer, which then makes final morphological decisions before delivering

the surface form of the text – see Figure 3.4.

The standard practice is to design a system that passes fullyformed messages on to the next

module, so the revision of the original communicative goal will require a new generation cycle to
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Figure 3.4: Standard NLG system architecture (Reiter and Dale, 2000, p.60)

begin afresh. The downstream stages are essentially a refinement process of the original domain

planner’s output. For commercial systems, the process is often driven by the generation of static

texts in static domains, so a notion of real-time self-repair is not required in the architecture.

3.2.2 Incrementality in conceptualization, formulation and articulation

There is a sub-field of Natural Language Generation (NLG) research whose object of study is not

the automatic production of text or synthesized speech fromnon-linguistic data for the benefit

of system users, but computational models of cognitive processes that underlie human language

production (McDonald, 1987), and this sub-field considers incrementality as a key problem in

generation.

As mentioned with Thompson (1977)’s approach of functionaldecomposition of the pro-

duction system, psycholinguistically-motivated NLG tookon the task of implementing emerging

psycholinguistic models of speech production. The task wasformulated as the design of a multi-

modular process that did not require complete input plans for sentences before beginning their

production. To this end, a distinction between the different components of a generation system

became important, as did the passing of incremental units between them. This approach was

largely motivated by (Kempen and Hoenkamp, 1987) and (Levelt, 1989)’s separation of pro-

duction into distinctconceptualization, formulationandarticulation phases (see Figure 3.5), a
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a.

b.

Figure 3.5: Incremental production without and with inversion of order. From (Levelt, 1989, p.

25)

psychological model which still has a bearing on NLG today.

These systems were incremental insofar as transfer of information within the generator was

piecemeal, but they were not always necessarily strictly word-by-word incremental in terms of

their output. The general programme of research was that input from a conceptualization module

to a grammar-based formulator could be partial, as could a formulator’s input to an articulator,

so syntactic processes determining surface form elements like word order and inflection could

begin before the entire input LF for a sentence had been received. This follows Wundt’s Prin-

ciple that each processing component should be triggered into activity by a minimal amount of

its characteristic input (Levelt, 1989, Chapter 1.2). Neumann and Finkler (1990) describe this

kind of incremental generation as “immediate verbalization of the parts of a stepwise computed

conceptual structure – often calledmessage)” (ibid., p. 288).

Kempen and Hoenkamp (1987) made the first detailed attempt atdescribing a generation

implementation, introducing the Incremental Procedural Grammar (IPG) model. Schematically,

IPG was driven by parallel processes whereby a team of syntactic modules worked together on

small parts of a sentence under construction, with the sole communication channel as a stack ob-

ject (with different constituents loaded onto it), rather than the modules being controlled by a cen-

tral constructing agent. The system was designed under a premise consistent with the emerging

psychological models that tree formation was simultaneously conceptuallyand lexically guided

(van Wijk and Kempen, 1987), and that production did not takeplace in a serial manner. IPG was
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implemented inLISP as a Dutch sentence generator, and was shown to be capable of generating

elliptical answers to questions and also some basic self-repairs.

De Smedt (1990) took incrementality a stage further, and developed a fairly comprehensive

computational model of incremental generation in which self-repair is incorporated explicitly.

De Smedt developed parallelism implicit in Kempen and Hoenkamp’s IPG model by implement-

ing parallel processingwithin the formulation stage of generation, with a particular focus on

incremental construction of syntactic structure in sentence generation. De Smedt proposed the

Incremental Parallel Formulator (IPF), a module for grammatical encoding which could operate

with input that underspecified sentences. In this case the input increments were abstract con-

ceptual messages representing semantic conceptual relations, semantic role relations or lexical

feature specifications.

The IPF operated in accordance with Kempen (1987)’s criteria for incremental generation:

input from the conceptualizer should be fragmentary and notguaranteed to be sent in an order

corresponding to a particular sentence’s surface linear left-right word order; as a consequence,

generation should be be able to proceed from the bottom of a syntactic structure upwards as well

as from the top down. The IPF showed how language generation should also exploit variations

in word order as made necessary, but still observe linguistic restrictions.

The formulator constructed syntactic structures by applying unification operations on ‘syn-

tactic segments’, the principal units of the unification-based lexically-driven formalismsegment

grammar(Kempen, 1987; De Smedt and Kempen, 1991). Segments were TAG-like structures

with two nodes (theheadand foot, labeled with grammatical categories such as NP and N and

containing feature structures such asnominative (+)), and an arc representing a grammatical

function e.g. anS-subject-NPsegment represents a subject relation between a sentence and a

noun phrase. Unification operated via the combination of twocompatible segment nodes into a

new segment that shared their syntactic features. In tree construction terms, this is the attachment

of auxiliary trees to the currently derived tree, as in a TAG.The procedure differed from the early

TAG formalisms however by making a sister-node attachment operation (furcation) available,

which allowed for different parts of a structure to be workedon in parallel before unifying them.

The IPF had two internal components: theGrammatical Encoder, which generated f-structures

(TAG-like tree structures representing functional and dominance relationships between con-

stituents) to which segments were attached, which in turn were used to generate c-structures
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(data structures including features representing word order and other grammar specifications like

case); and the downstreamPhonological Encoder, which was responsible for executing the word

ordering and correct inflection in accordance with the c-structure features. The grammatical en-

coding procedure could begin as soon as the first conceptual fragment entered the IPF, beginning

with an empty segmentSIGN. The formulator attempted theunificationoperation of each lexical

entry segment in the lexicon with the existing structure andif successful these unified struc-

tures could be stored in the Unification Space as candidates for sending on to the Phonological

Encoder, allowing multiple structures to be worked on in parallel.

De Smedt (1991) introduced a development to the IPF to allow revisions of syntactic struc-

tures in the generation procedure, providing a computational explanation for overt and covert

syntactic self-repair. This was achieved by making the unification procedure “non-destructive”,

in the sense that the original configuration of two nodes was preserved after a unification oper-

ation, while operations on them with other syntactic constituents were still permitted as if they

were unified as one structure. The accessibility to component parts of unified structures meant

that no undoing of unification had to be executed at any point.The computational overhead of

this extra storage and search space was not discussed.

De Smedt used the connectionist concept ofactivationin assigning real number values to the

bonds of the “virtually” unified segments denoting the probability of them eventually becoming

properly unified, to differentiate between strong and weak candidate structures. The author also

experimented withannealing, whereby node activations would be set to decay over time if not

unified. If a steady equilibrium was reached with a frozen configuration of segments (a state

of conformation) the strongest remaining structure could be passed to the Phonological Encoder.

The simulation of speech errors was achieved through this time-constrained annealing process: if

there was not a clearly strong enough candidate or conformation after a given amount of genera-

tion time, the “incorrect” segment could be passed on. A lexical selection error such as “The next

speakerwill be given by Jonathan Slocum” (ibid.) was characterizedas the presence of equally

viable alternatives in the Unification Space, and possible incorrect concatenations or furcations

of segments. Additionally, annealing allowed a cognitively inspired implementation whereby

experiments that allowed more or less time between inputs gave different surface results, as the

competing segments could optimally reconfigure with more time, simulating speech errors under

time pressure.
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Incremental conceptualization

While De Smedt’s work on the grammatical formulation side ofgeneration was thorough, it did

not address the nature of the conceptualizer that sent the input messages to it, as atomic messages

were passed to the IPF incrementally ‘by hand’. Guhe and colleagues began to address this void

in computational models of language production by developing the Incremental Conceptualizer

(INC, Guhe and Habel, 2001; Guhe, 2007), the principle behind itbeing to incrementally and

automatically create and send pre-verbal messages to the formulator in a cognitively motivated

way. The generation task here began in a top-down manner, beginning with the incremental

production of pre-verbal messages.

Guhe was interested in the idea of conceptual change in the input data and considered self-

repairs from this perspective, distinguishing them from performance errors such as incorrect

lexical access or misconception, which could be attributedto system malfunction. For testing,

Guhe and Schilder (2002); Guhe (2007) chose a dynamic domainof a simple airport scene which

had a variety of live scenarios, in order to evoke change in the input concepts which could cause

both overt and covert self-repairs such as those below:

(3.5) “CK-314. . . uh. . . is delayed” [covert]

(3.6) “CK-314 is on time. . . uh. . . is delayed” [overt, formulator occupied]

(3.7) “CK-314 is on time. . . uh. . . CK-314 is delayed” [overt, concept changed after

formulation]

A simple version of self-monitoring (Levelt, 1989) was employed in INC’s error detection

mechanism, whereby a parse of the output was compared with the planned utterance, a difference

therein automatically stopping the current generation andtriggering a marking of the part of the

utterance to be repaired. A correction term was then generated (i.e. “uh” or “no”) and the content

to be corrected (the information difference) was passed to the formulator. The incremental gen-

eration of concepts in the conceptualizer was triggered by atomic perceived entities (based on a

dynamically changing virtual scene at the airport), simulating real-time processing, and given a

changing environment, the generator would have to be able toadapt its output quickly– this is a

classic use case of incremental generation and self-repair.

A semantic underspecification formalismCLLS (Constraint Language for Lambda Struc-

tures) a framework for the partial description of lambda structures, was used to incrementally
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compose the conceptual messages. The message generation procedure consisted of 4 operations-

construction, selection, linearization, andPVM(pre-verbal message)-generation, which all op-

erated on thecurrent conceptual representation(CCR), a hierarchical semantic network that

represented the internal state of the conceptualizer. The CCR was first built up by the construc-

tion process through a concept matcher linked to a concept store. The construction algorithm

worked recursively with the matcher until no more complex concepts could be constructed from

simpler ones, until a newly perceived entity arrived to be handled. The selection process chose

the concepts to be verbalized from the CCR, which were then linearized into an appropriate order

(logically, not into final word order), and PVM-generation incrementally produced a pre-verbal

message by taking the first element out of a traverse buffer (asub-structure of the CCR), and

passing that part of the PVM onto the formulator, continuingin an incremental fashion.

Repairs could be triggered due to the fact that as soon as an increment was sent to the for-

mulator it became inaccessible to the conceptualizer- generating corrections was the only way

to change information. Upon new information arriving whichsignificantly changed a concept in

the PVM being sent to the formulator, the difference betweenthe planned and actual utterance

content was computed and a correction increment was generated containing information about

which concept to change, which concept to be deleted by the formulator, and which information

to be added by the formulator. The formulator received this correction increment, and then made

decisions about how the correction was to be treated in accordance with the modular division-of-

labour postulated by De Smedt (1990). Guhe and Schilder showed the consistency of theirCLLS

correction algorithm with the parallelism constraint commonly attributed to verb-phrase ellip-

sis. Informally, the lambda structure inCLLS for a correction was structurally the same as for a

coordination, so it could be added to the incremental preverbal message simply as another incre-

ment. This increment could then combine with the alternation by beta-reduction in the parallel

correction structure to yield a message such as CK-314(λx.correction(on time(x),delayed(x))),

a message invoking an overt repair in the formulator such as (3.6) above, andcorrection(CK-

314(λx.on time(x)),CK-314(λx.delayed(x))) which would cause a more lengthy overt repair

(see (3.7) above).

Guhe’s work showed how concepts could be monotonically constructed and trigger repair

strategies in the formulator and also developed a rudimentary semantic representation for repair

concepts. These achievements fell within the larger research programme of casting the generation
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of pre-verbal messages as an incremental procedure, however the work avoids the impenetrable

problem of the initial autonomous generation of a concept, rather starting from the input of live-

events which trigger the input of some predefined conceptualincrements to the system. While it is

possible to compare the verbal output of the system with thatof human beings as shown in Guhe

(2007),INC would be difficult to evaluate in terms of its individual contribution in a quantitative

way, as pre-verbal message LFs (the input for tactical generation), do not have a widely agreed

form (Belz et al., 2010, Section 3.2.1). This is not the case for measuring similarity of string

outputs given a gold standard generation input or LF, as is the case for more common surface

realisation tasks, for which a wide variety of metrics exist. Also, while the system operated

in a dynamic and changing domain it was not interactive with users: if operating in a dialogic

extension of the domain, such as describing the moving sceneto a partner who could query the

descriptions, more interactive requirements would be put on the conceptualizer.

3.2.3 Interleaving parsing and generation

As for more interactive approaches, notable work in interleaving generation with parsing in an

incremental fashion came from Neumann (1994, 1998), who showed how the processes could be

connected using a reversible grammar. The psychological motivation, as with Guhe’s feedback

loop, came mainly from Levelt (1989)’s production model. Reversibility of the representations

for use by the parser and the generator was achieved by utilising HPSG-like attribute-value matrix

objects for each utterance, termeditems(the logical form (LF) of the sentences). In Neumann’s

model, the input of one module operated on output of the other(i.e. parsing: string 7→ LF;

generation:LF 7→ string). The items uniformly contained an underlying LF, along with the cor-

responding string of that sentence, and depending on the component’s required input, the item

would have one of these fields present but not the other (the parser would take items with instan-

tiated string variables but with uninstantiated logical forms, and vice-versa for the generator).

Following Shieber (1988), Neumann developed a processing model that could run in both

the parsing and generation modules when processing items, using the Uniform Tabular Algo-

rithm (UTA), a data-driven selection function which was a generalization of the Earley deduction

scheme. The UTA algorithm had a uniform indexing mechanism for items and an agenda-based

control that allowed item sharing between parsing and generation. This way partial results com-

puted in one direction could be computed in the other, a desideratum of interactive generation

that will be discussed in the initial proposal in Chapter 6. With its uniform underlying deduction
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mechanism and reversible grammar, Neumann’s model was computationally efficient and had

the potential to be adapted for an interactive dialogue setting, but this was not done and it was

only designed to parse its own utterances for ambiguity checks. Another reversible grammar for-

malism that has extended to dialogue modelling, Dynamic Syntax (Kempson et al., 2001), will

be described below for its suitability for dialogue systemsin Section 3.3.3.

3.3 Self-repair and incrementality in dialogue frameworksand systems

This section reviews dialogue approaches to self-repair and also surveys the incremental process-

ing formalisms and tools which will be used in Chapter 6.

3.3.1 Self-repair in the Incremental Unit framework

Incremental dialogue systems enjoyed a notable theoretical and implementational development

in the proposal of an abstract incremental architecture, the Incremental Unit (IU) framework

Schlangen and Skantze (2009, 2011). Several interactive systems using its incremental multi-

modular specification have been since developed, includingthose with NLG and voice synthesis

modules (Skantze and Hjalmarsson, 2010; Baumann, 2013). The generation of mid-utterance

back-channels (Skantze and Schlangen, 2009) and interruptions (Buß et al., 2010), phenomena

that require continual interaction between speech recognition, parsing, generation and voice syn-

thesis have been shown to be more tractable problems within such an architecture.

The IU framework can be described as a network of modules, each comprising aleft buffer

for input incremental units(IUs), a processorand aright buffer for the output IUs. IUs have

a payload which determines what kind of data they carry, whether it is aword, POS tag or

numerical value, or anything else determined by the system designer. It is edit actions consisting

of add, commitandrevokeactions on IUs in a module’s right buffer and the effect of doing so on

its downstream modules’ left buffers that determines system behaviour. Furthermore, the IUs can

havesame level linkrelations between one another if it is desirable that they should be in some

way inter-dependent within a module buffer, or havegrounded inrelations between different

module buffers. The buffers are defined as graphs with nodes that represent IUs, allowing for

multiple hypotheses to be constructed with time-linear input and their subsequent revision. These

desirable incremental properties will be exploited in the proposed formal computational model

in Chapters 6 and 7.
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Speech plan generation in Jindigo

Skantze and Hjalmarsson (2010) implement an incremental canned-speech based vocalizer (gen-

eration and TTS) module in the incremental dialogue framework Jindigo, the Java-implemented

dialogue system based on Schlangen and Skantze’s abstract specification. Their implementa-

tion does not rely on end-of-utterance silence thresholds from the ASR module before beginning

the generation of a response, so the latency of response is greatly reduced compared to a non-

incremental version. The chain of incremental updates occur in its buffers to allow incremental

generation:word hypotheses are made for incoming auditory input, which are sent in real time

to the interpretation module’s input buffer, which in turn processes these different hypothesis to

addconceptsto the dialogue manager’s input buffer, which in turn processes these to generate

a SpeechPlan for the vocalizer. In the face of lack of commitment of complete IUs from its

upstream modules, the vocalizer may start addingSpeechSegment s such as “eh” and “well,

let’s see” to allow immediate response without having to wait for complete input.

The SpeechSegment s, while sometimes spanning several words (e.g. “it is blue”), are

semantically atomic, however word-by-word generation is achieved by further dividing the seg-

ments into word-lengthSpeechUnit s to be processed serially by the vocaliser. This incre-

mental division gives Jindigo its mechanism for self-repair in the face of changing speech plans

during generation: a cross-checking of the speech plan currently being vocalized against the

new candidate speech plan gives the optimal word/unit position from which the repair can be

integrated. Self-repair is therefore possible if input concepts are revised after commencing the

vocalisation of a plan if commitment to it is revoked, both covertly (before synthesis) and overtly

(after synthesis), and on both the segment and unit levels (see fig. 3.6).

While their model is not as clearly psychologically motivated as some of the generation work

mentioned above, for instance not being syntactically oriented like Kempen and Hoenkamp, De

Smedt and Neumann’s frameworks and without the fine-grainedsemantic input of Guhe’s model,

Jindigo’s ability to allow a maximal amount of incremental information flow between all the

modules in the dialogue system allows the possibility of more interactive and responsive NLG. It

not only allows parallelism within the generation process itself, but also allows for incremental

dependency on other decision processes within the dialoguesystem in generation outcomes, and

in terms of a psychological analogue, a better interface with the rest of the cognitive model.

The flexibility in the specification of different module behaviours allows the testing of different
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Figure 3.6: Different types of speech repairs in Jindigo vocalizer module. Shaded areas show

which SpeechUnit s have been realized, at the point of revision. from (Skantzeand Hjalmars-

son, 2010)

theories and implementations for individual components ofspeech production, and hence situates

the dialogue system as atool-for-understanding(see Schlangen, 2009, for an explanation of this

approach).

It is also worth mentioning that in Skantze and Hjalmarsson’s evaluation, using an innovative

Wizard-of-Oz experiment, consistent with evidence in Aistet al. (2007) that incremental dia-

logue systems seem more efficient and pleasant to use than their non-incremental counterparts,

they found users similarly preferred an incremental generation system over a non-incremental

version in terms of ratings ofpoliteness, efficiencyandindication when to speak. They found no

difference in user response times between the two systems, which seems to fail to give support

to Brennan and Schober (2001)’s claim of increased speed in response times upon hearing cor-

rections. However, this measurement was presumably taken from the end of system’s utterances

to ensure comparison across all utterances rather than fromthe onset of particular semantically

salient words as it was in Brennan and Schober’s experiments, so comparison is difficult here.

The presence of self-repair certainly does not hinder response time here, in any case. Their con-
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tribution is valuable in terms of the evaluation challenge for incremental NLG, as the method

isolates a capability of the system that can be controlled for, exhibiting notable interactional

differences.

Incremental dialogue management with self-repair capability

The Jindigo implementation of self-repair was exploratoryin terms of testing interactional ef-

fects, however as it functioned within a Wizard-of-Oz setting rather than an end-to-end dialogue

system, it is difficult to claim it is a generation implementation. Buß and Schlangen (2011) ad-

dress the challenge of generating corrections and representing repair on a discourse level through

their system DIUM, an incremental dialogue management module that functions in an imple-

mented IU framework-based dialogue system.

DIUM addresses the need for a dialogue manager to self-repair in light of needing to produce

output that conflicts with system behaviour that has alreadybeen publicly realised. It simul-

taneously addresses the easier problem of covert repairs, where conflicting information is not

realised, by using the IU network’s edit messagerevoketo remove the information that is in

conflict with the current plan and also can revoke the IUs thataregrounded in(i.e. were trig-

gered by) the revoked IUs in the dialogue manager. It achieves its revision capability through

characterising its internal information state as an IU network that allows the edit messages (add ,

commit , revoke ) to operate on internal information rather than simple string output as in

Skantze and Hjalmarsson (2010)’s system. The revision of internal representations is made pos-

sible by incrementalising concept frames and characterising them as an IU network themselves

as in Figure 3.7. They also introduceSemIU, DiscourseIUandDialogueActIUincremental units

to differentiate the factual content established, the issues (i.e. frames) that are required to be

resolved, and the plan to form a dialogue act, respectively.

The IU state graph in the DM is altered depending on the revision strategy required. For the

more complex revision strategy, the following steps are taken:

1 Handle revoked input by computing a new state of the DM’s IU graph, removingDiscour-

seIUs that weregrounded inthe revoked input.

2 Check the DM’s own output to determine whether projectedDialogueActIUs that are

grounded inrevoked input have been realised into observable output.

3 If step (2) is found true, initiate explicit repair.
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Figure 3.7: The DIUM dialogue management framework as an IU network (Buß and Schlangen,

2011)

In the final step, if it is reached, the fact a repair has been initiated is recorded through use

of a novel type ofDialogueActIUcalledUNDO. By creation of a specific repair IU this can be

interpreted by down-stream realisation modules to effect the appropriate repair behaviour. The

authors only suggest a preliminary strategy, one of generating an apology ‘sorry about that’ whilst

un-highlighting anything in the visual domain that was highlighted in the previous conflicting

state.

While the repair generation is limited, and not psychologically motivated, DIUM was a useful

step towards incremental generation of self-repairs in an interactive system. While it does not

have an NLU component capable of interpreting repairs from the user, it began to address the

issue of how repair acts could be represented in a dialogue information state. A more thorough

attempt at addressing this issue, albeit not one implemented in a working dialogue system, is

described in the next section.

3.3.2 KoS: Dialogue semantics of disfluency in an Information State Update approach

In terms of the dialogue semantics and the interpretation ofself-repair, there has only been a

formal treatment relatively recently in dialogue research. The majority of work on self-repair

processing, of which the above is intended to be representative, is structure-oriented, intended

for practical speech applications that are not required to interpret such events by detecting them
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or generating appropriate output behaviour; however modelling the meaningof self-repair and

disfluency as construed by conversation participants (CPs)engaged in interaction is not only

important for cognitive modelling (see Chapter 2), but also, as I will argue in this thesis, for more

efficient and realistic dialogue systems. What follows is a brief overview of the recent interest

in the dialogue semantics of disfluencies by Ginzburg and colleagues (Ginzburg et al., 2007;

Ginzburg, 2012; Ginzburg et al., 2014) within the KoS dialogue framework (Ginzburg, 2012).

At the time of writing, the most recent KoS account of disfluency (Ginzburg et al., 2014)

models several types of disfluency events mentioned above (particularly in line with the typology

described in Section 2.5, and also attempts to unify self-repair and other-initiated repair in terms

of dialogue state update mechanisms, while not conflating the two phenomena in terms of their

dialogue semantics.

The authors divide disfluencies into two types: (1)forward-lookingdisfluencies, which in-

clude unfilled pauses (hesitations), filled pauses and discourse markers followed by fluent con-

tinuations (termedcovert repairs in Section 3.3.1, orabridged repairselsewhere (Heeman and

Allen, 1999), Section 3.1.1) and also verbatim repeats; and(2) backward-lookingdisfluencies,

which are disfluencies with a repair phase (called the ‘alteration’ in their work) that refers back

to a reparandum, which include ‘repairs’ where the alteration seems to replace the reparandum

such as “[ We were + I was ] lucky too that I only have one brother” (ibid., p. 3) and ‘reformula-

tions’ where the reparandum is elaborated on, such as “at that point, [ it, + the warehouse ] was

over across the road” (ibid., p. 4), the latter example againbeing a good case for preserving the

semantic content of the reparandum. In terms of surface form, these types of backward-looking

disfluencies are described in terms of the self-repair structure described by Levelt (1983, 1989),

Clark (1996) and most precisely by Shriberg (1994) as explained in Chapter 2, however they also

distinguishfresh startsas another category within backward-looking disfluencies (e.g. the repair

phase initiating at “there” from the second interruption point + in the utterance “{ I mean} [ [ I, +

I, ] + ] [ there are a lot, + there are so many ] songs”), which is where the alteration differs strongly

from the reparandum, not exhibiting the structural coherence of repairs or reformulations.

The authors claim the desiderata for a theory of disfluenciesshould include the following:

1. Disfluencies are recognized immediately, for which information about their meaning is

required.

2. Disfluencies have immediate discourse effects.
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3. Disfluencies are related to other dialogue moves.

4. Disfluencies are in the grammar.

To begin addressing these desiderata, they show how a minimal extension to the KoS frame-

work can achieve the incrementality required for the immediate integration of disfluent sub-

utterances into the current dialogue context. I argue that the detailed requirements of a solution

to the final desideratum 4 are not fully met (the authors themselves defer this challenge to future

work), however the other three are addressed. I will now discuss a brief overview of KoS in

order to explain the extensions to its architecture proposed to accommodate disfluency according

to these three requirements.

KoS is a dialogue framework which models conversational participants (CPs) as having ac-

cess to a current context, or information state, at each point in time in a dialogue, affording them

the use of their own personal context and also the shared interactive context of the ongoing con-

versation available to all CPs, in order to make inferences and perform conversational actions. To

achieve this, KoS posits a two-part information state structure for each CP: aprivate information

state, and the public (or what a CP believes is public) information state called theDialogue Game

Board(DGB). It is the latter which is used to deal with disfluenciesand their relationship to other

phenomena, so an exposition of the private component is not necessary here.6

The DGB is represented formally within Type Theory with Records (TTR) (Cooper, 2005),

a richly typed type theory that will be used later in this thesis, albeit to different technical ends.

TTR (Betarte and Tasistro, 1998; Cooper, 2005) is a rich typetheory which has become widely

used in dialogue models, including information state models for a variety of phenomena such as

clarification requests (Ginzburg, 2012; Cooper, 2012) and non-sentential fragments (Fernández,

2006). It has also been shown to be useful for incremental semantic parsing (Purver et al., 2011)

and recently for grammar induction (Eshghi et al., 2013).

While I defer a full technical explanation of TTR to subsequent formal analysis chapters, at

this point it is appropriate to introduce its important elements: most importantly, the fact that the

central judgement in type theorys : T (that a given object labelleds is of typeT) is extended in

TTR so thatscan be a label for a (potentially complex)recordobject andT can be arecord type,

where record types can be inhabited by records in the same wayas simple types can be inhabited

6See Larsson (2002)’s thesis for a thorough treatment of the difference between private and shared
information states, and the interaction between them during task-oriented dialogues.
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by simple witnesses – in the case of KoS, typically,s could be a label for a conversational state

andT could be a conversational state type (Ginzburg, 2012; Cooper, 2012), ors could be an

utterance andT an utterance type. Establishing thats is a witness forT by judging thats : T is

true can be seen as a classification of a situation, which is the central action in natural language

understanding in the view the authors present: type classification is used for judging phonetic,

syntactic, semantic and discourse-level situations (and situations which involve combinations of

these) as pertaining to types of dialogue situation on various levels- e.g. if an utterance event is

correctly classified by a type generated by the dialogue grammar, the utterance can be thought of

as being correctly parsed or interpreted.

Technically, record types can be viewed as partially ordered sets offields, which are indi-

vidual type judgements of the standard forms : T, allowing them to be represented graphically

as attribute-value matrices such as in (3.8) representative of the DGBtype. For the purposes of

discussion here, I take all possible conversational statesto be records of type DGBType:

DGBType≡















spkr : Ind
addr : Ind
utt-time : Time
c-utt : addressing(spkr,addr,utt-time)
Facts : Set(Proposition)
Pending : list(locutionary Proposition)
Moves : list(locutionary Proposition)
QUD : poset(Question)















(3.8)

The role of the relevant fields of the DGBType in terms of theirfunction in dialogue interac-

tion are explained briefly below:7

• spkr,addr: the speaker and addressee for the current turn.

• Facts: set of commonly agreed upon facts, i.e. the shared knowledge conversational par-

ticipants utilize during a conversation- more operationally, this amounts to the information

x∈ X that a CP can use embedded under the presuppositional operators “. . .Given thatx”

and “Since we know thatx”.

• Pending: a list of ungrounded locutionary propositions (abbreviated ‘LocProp’- proposi-

tions encoded as TTR records that individuated by an utterance event and a grammatical

type that classifies that event).

7The utterance timing and turn taking status fields utt-time and c-utt can be understood as implicitly
being present in the DGBTypes I show from here on; see (Ginzburg, 2012) for details
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• Moves: a list of grounded utterances (also encoded as LocProp records).8 To focus on the

most recent move,LatestMove is a field in a DGBType often used to distinguish the final

element ofMoves.

• QUD: (‘questions under discussion’) : a partially ordered set (poset) that specifies the cur-

rently discussed questions. Each question in QUD constitutes a ‘live issue’ rather than

necessarily a question that has been posed verbally, that isto say an issue introduced for

discussion not yet downdated by resolution or abandonment.A queryq updates QUD with

q, whereas an assertionp updates QUD withp? (= whether p?) and a question being max-

imal in QUD (‘MaxQUD’) corresponds to the current topic under discussion. The way

in which the ordering on QUD changes as new questions are added often resembles the

behaviour of a FIFO (first-in-first-out) stack, due to the nature of embedded questions–

questions about/relevant to existing questions are dealt with before or in tandem with the

original questions on which they are dependent– however, QUD is not constrained to be-

have only in this way.

KoS’s division of propositional content between Facts, Pending, Moves and QUD creates

a neat compartmentalisation of the potentially large amount of information available to CPs.

The functional division allowsconversational rulesto be formulated as mappings of the form

DGBType→ DGBTypewhich can be specified to operate on specific components. Likethe

DGB itself, conversational rules can be encoded in TTR as a record type, in this case one with

two fields with embedded record types as their types (values), one representing thepreconditions

which is the type constraint that permits the rule to be applied to the current DGB state (via

a supertyperelation or subsumption check against the current conversational state DGB record)

and theeffectswhich represent the changes to the DGB referenced in the preconditions, stipulated

to hold upon application of the rule. The authors abbreviatethe full form of these two embedded

record types to only represent the elements of the DGB that change, omitting the elements of the

DGB that remain invariant;9 I will follow this convention here. The conversational rulerecord

type can be represented as in (3.9) and an example definition of a specific conversational rule

8Ginzburg (2012) describes how it is empirically important to maintain the structure of the utterances
grounded rather than just store their semantic content. This is is an important point which I will develop
in Chapter 6.

9Technically the ‘carrying over’ of the entire DGB from the state before the application to the one
after it is achieved by a function that returns a merge operation of the current DGBType with the effects
DGBType, however, this is not important here.
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type is given in (3.10) in the abbreviated form mentioned above.

(3.9)

[
pre : PreCondSpec
effects : ChangeCondSpec

]

(3.10) Ask QUD-Incrementation≡



pre :

[
q : Question
LatestMove.sit.content = Ask(spkr,addr,q) : IllocProp

]

effects :
[

QUD = 〈q, pre.QUD〉 : poset(Question)
]





As can be seen in (3.10), the type constraint on LatestMove inthe preconditions ofAsk

QUD-Incrementationis not on the entire LatestMove LocProp but on a specific component of

it, namely the embedded content (‘cont’) field of its situation (‘sit’) field, this is given that the

LocProp objects in the Moves and Pending lists are records ofthe structure in (3.11).

(3.11) LocProp =

[
sit =u : f
sit-type =Tu : f

]

Tu has the form of a record type with fields representing variousfields pertaining to the current

utterance’s context, including the field cont, which classifies the current utterance as being of a

given IllocProp type, such as Ask(spkr,addr,q). Operationally, the ruleAsk QUD-Incrementation

in (3.10), when the type constraints in its pre field are satisfied, namely that the LatestMove

(utterance) has been classified as having Ask(spkr,addr,q)as its illocutionary content, pushes a

questionq onto QUD, making it QUD-Maximal.

Using the KoS framework, to meet the desiderata for disfluency the authors give an account

which is a variation on that which they use for other-repair clarification requests. The princi-

ple behind KoS is that in the aftermath of an utterance a variety of questions can be asked of it

which are available to the addressee of the utterance, whichcan be potential update functions

to context as just shown. The nature of these questions can range from the low-level attention

ones (did the speaker speak?) to phononological recognition (did the speaker say wordw?) to

higher-level semantic inference (what did the speaker meanby utteranceu?). In the incremen-

tal version of KoS they present, these questions can be predictive and posed after each word,

for instance the issue ‘what will the speaker say next afterw?’. These planning questions can

be pushed on to QUD (made QUD maximal) and both dialogue participants are aware of them.

Given this, they define backward-looking disfluency and forward-looking disfluency update rules

from the hearer’s perspective as resolving these questionson a word-by-word basis. The ques-

tion λxMeanNextUtt(pre.spkr,pre.u0,x) wherepre.spkr is the current speaker,pre.u0 is some

utterance or word in context andx the propositional content they wish to contribute next can be
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posed on a word-by-word basis. This gives the bases for the forward looking rule which may fire

on recognition of an edit term or repeat as in (3.12).10

(3.12) Forward Looking Utterance Rule≡












pre :









spkr : Ind
addr : Ind
u0 : LocProp
Pending= 〈u0. . .〉 : list(LocProp)
LatestMove= FLDEdit(spkr,u0) : IllocProp









effects :

[
q : λxMeanNextUtt(pre.spkr,pre.u0,x)
QUD = 〈q, pre.QUD〉 : poset(Question)

]













They show it is possible to model “Show flights arriving in uh Boston” (Shriberg, 1994) by

means of a move being recognized upon the production of ‘uh’ as FLDEdit(A,B,‘in’), i.e. A

is having a forward-looking problem after the word ‘in’. This triggers the Forward Looking

Utterance rule (3.12) such thatλxMeanNextUtt(A,′ in′,x) is pushed on to QUD to become QUD-

maximal. “Boston” can then be interpreted as answering thisquestion.

For backward-looking disfluencies, the key semantic question created by them is not about

what follows, but what the speakermeantby some previous contentu0: this can be encoded as

the questionλxMean(pre.spkr,pre.u0,x). This allows a backward looking appropriateness repair

rule to be formulated as in (3.13) where this question is pushed on to QUD.

(3.13) Backward Looking Appropriateness Repair≡










pre :







spkr : Ind
addr : Ind
u0 : LocProp
Pending= 〈u0. . .〉 : list(LocProp)







effects :

[
q : λxMean(pre.spkr,pre.u0,x)
QUD = 〈q, pre.QUD〉 : poset(Question)

]











This means the example “take that book [ in, +{ I mean} from ] the shelf” can be modelled.

After “take that book in”, the authors claim the Backwards Looking Appropriateness Repair rule

(3.13) can be licensed allowingλxMean(A,′ in′,x) to be pushed on to QUD and “I mean from”

resolves the question.

The authors draw the parallels between self-initiated editing phrases (interregna) and clar-

ification requests (CRs) as cues for repair, extending interregna not just to discourse markers

and edit terms as discussed above, but also to self-posed questions. They do this by making an

adjustment to KoS in allowing CRs and editing signals and their following corrections to occur

mid-utterance, accommodating incrementality by allowingthe DGB word-by-word updates to its

10These rules are slightly simplified here for illustration.
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PENDING component. They also show the potential for fine-grained meaning in dialogue that

TTR can provide on a word-by-word basis, an approach which isexplored in Chapter 6. How-

ever, while this begins to provide a general dialogue model and one which takes the semantic

update functions of self-repairs very seriously, the relationship of these updates to incremental

parsing and generation processes is not made explicit and they “defer to future work the impor-

tant tasks of specifying a grammar that can incorporate incremental parsing and interpretation of

disfluency-containing utterances and the identification ofreparanda.” (ibid., p 15)

3.3.3 Dynamic Syntax (DS), DS-TTR and DyLan: incremental semantic

construction for dialogue processing

The above incremental generation and dialogue frameworks and systems have variously de-

veloped incremental syntactic construction during generation (Kempen and Hoenkamp, 1987;

De Smedt, 1990), incrementally changing inputs to generation (Guhe, 2007; Skantze and Hjal-

marsson, 2010) or else incrementally updating discourse semantics (Ginzburg et al., 2014), how-

ever they do not detailhow semantic content is built up incrementally, or at least how partial

structures in parsing and generation can be converted into maximal semantic content in real time.

To facilitate this capability, an incremental grammar is needed that not only has the quality of

reversibility, but also has the ability to generate semantic states that can be reasoned with by

other modules during generation and interpretation processes. In this section the background

and motivation to the formal tools used in this thesis are given, which are then re-purposed and

extended in Chapters 6 and 7.

Strong incremental interpretation and incremental representation

The psycholinguistic evidence reviewed in Section 2.4.2, particularly the evidence on restart-

ing, retracing and reformulating (Healey et al., 2011), suggests models of human incremental

production and understanding, and indeed self-repair processing within these, would need the

capacity to construct the maximal amount of semantic information one at least a fine-grained a

level as word-by-word. A formal grammar that could be used for such modelling purposes in a

dialogue system, as Neumann (1998) showed, would also need the quality of reversibility in that

representation available in interpretation should be available for generation too.

A theoretical distinction that nicely brings out this kind of incrementality is explained by Mil-

ward (1991), who points out the difference between a linguistic system’s capacity forstrong in-



3.3. Self-repair and incrementality in dialogue frameworks and systems90

cremental interpretationand its ability to access and produceincremental representation. Strong

incremental interpretation is defined as a system’s abilityto extract the maximal amount of infor-

mation possible from an unfinished utterance as it is being produced, particularly the semantic

dependencies of the informational content (e.g. a representation such asλx.like′( john′,x) should

be available after parsing “John likes”). Incremental representation, on the other hand, is defined

as a semantic representation being available for each substring of an utterance, but not necessarily

including all possible information such as semantic dependencies (e.g. having a representation

such asjohn′ attributed to “John” andλy.λx.like′(y,x) attributed to “likes” after processing “John

likes”). While strong incremental interpretation is more obviously required for an adequate ac-

count of the semantics of dialogue and self-repair, the incremental representation requirement

becomes stronger once we look at the time-critical mechanisms of dialogue processes required,

where access to information as tohow the incremental information was constructed becomes

essential.

DS grammar and parsing formalism

A formalism presented here which begins to satisfy the incremental criteria just described is

Dynamic Syntax (DS Kempson et al., 2001; Cann et al., 2005,inter alia), an action-based and

semantically oriented incremental grammar formalism thatdefines grammaticality as parsability.

The DS lexicon compriseslexical actionskeyed to words, and also a set of globally applicable

computational actions(equivalent to syntactic rules), both of which constitute packages of mono-

tonic update operations on semantic trees, and take the formof IF-THEN action-like structures.

In traditional DS notation, the lexical action corresponding to the wordJohnhas the precondi-

tions and update operations in (3.14).

(3.14)

IF ?Ty(e)
THEN put (Ty(e))

put (Fo( john′))
ELSE abort

(3.15) Ty(t),♦
arrive′( john′)

Ty(e),
john′

Ty(e→ t),
λx.arrive′(x)
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(3.16) ?Ty(t)

Ty(e),
john′

?Ty(e→ t),♦

In DS parsing, the semantic trees upon which the actions operate represent terms in the typed

lambda calculus, with mother-daughter node relations corresponding to semantic predicate-argument

structure, with no independent layer of syntax represented- see (3.15) above. For this reason,

from an interpretation point of view, there is no need to augment syntactic structures with se-

mantics due to a representation of semantic dependency being available directly from parsing.

Beginning with an axiom tree with a single node of requirement type ?Ty(t), parsing intersperses

the testing and application of both lexical actions triggered by input words and the execution

of permissible (Kleene* iterated) sequences of computational actions, with their updates mono-

tonically constructing the tree. The pointer object (♦) indicates the node under checking and

development.

Successful parses are sequences of action applications that lead to a tree which is complete

(i.e. has no outstanding type requirements (?Ty(..)) on any node, and has typeTy(t) at its root

node as in (3.15)) with a compiled semantic formula. Incompletepartial structures such as (3.16)

above are also maintained in the parse state as words are scanned in the input, so they are still

available to be updated upon the next input word string: thisis central to the principles at the

heart of DS:underspecificationandupdate. While in the standard DS parsing model there is

no compiled single formula for incomplete trees, an issue addressed in Chapter 6, the semantic

dependencies between formulae indicated by position in thetree allow a maximal amount of

semantic information to become available incrementally inthe parsing process, allowing for

strong incremental interpretation as well as incremental representation.

DS generation as parsing and goal subsumption checking

As Purver and colleagues (Otsuka and Purver, 2003; Purver and Otsuka, 2003; Purver and Kemp-

son, 2004) demonstrate, a model of tactical DS generation can be defined neatly in terms of the

DS parsing process and a subsumption check against agoal tree. The input goal tree is defined

as a complete and fully specified DS tree such as (3.15), and the generation of each word consists

of attempts to parse each word in the lexicon given the trees under construction in the parse state.

For successful lexical action applications, asubsumptioncheck is carried out to make sure there

are no nodes in the trees under construction that contain decorations absent in the goal tree, and
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failed trees and their parse paths are removed from the parsestate- see Figure 3.8 for a com-

parison of parsing and generation in DS. Otsuka and Purver (2003)’s initial context-independent

generation model uses a set of DSparser statesto characterize a generator state, where a parser

state is a pair of the word input consumed so far and a set of associated partial trees.

Parsing "john likes mary" Generating "john likes mary"

?Ty(t)

Fo(John′) ?Ty(e→ t),♦

"john"

?Ty(t)

Fo(John′) ?Ty(e→ t)

♦,?Ty(e) Fo(Like′)

"likes"

Fo(Like′(Mary′)(John′)),♦

Fo(John′) Fo(Like′(Mary′))

Fo(Mary′) Fo(Like′)

"mary"

?Ty(t)

Fo(John′) ?Ty(e→ t),♦

FAIL FAIL

"john"
"likes" "mary"

?Ty(t)

Fo(John′) ?Ty(e→ t)

♦,?Ty(e) Fo(Like′)

FAIL

"likes"
"mary"

Fo(Like′(Mary′)(John′)),♦

Fo(John′) Fo(Like′(Mary′))

Fo(Mary′) Fo(Like′)

"mary"

Figure 3.8: Parsing/generating “john likes mary” from Purver and Kempson (2004)

As DS generation proceeds by a ‘parse and test’ method, whereall words in the lexicon

accepted by each parse state are used to extend that parse state (i.e. they develop the trees under

construction), the subsumption test is carried out to return only those parse paths with trees that

subsume the goal tree. There is formal elegance in the model from an NLG perspective in that

lexicalisation and linearization (or in psycholinguisticterms, formulation and word ordering) are

not separate processes: each word in the lexicon is tested for its applicability at each point of
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possible tree extension, and if accepted by the generator itis both selected and realized in the

output string in one single action.

In terms of overall efficiency, despite the incremental testing of each word in the lexicon,

the DS generation protocol does not need to generate all possible strings before testing, nor does

it require case-by-case specific syntactic versions for lexical items dependent on their position

in the utterance being generated. Otsuka and Purver (2003) point out that given a lexicon size

of L and number of words in the output stringW, the number of possible paths is not in fact

LW, but to closer toN× L. This is because the parse of each candidate word is constrained

by the trees in a generator state that is pruned of all trees incompatible with the goal tree on

a word-by-word basis. However, the problem of computational efficiency for sizeable lexica

still remains and the authors suggest some possible heuristics to overcome this using goal tree

features. Additionally, different search algorithms for generation are suggested, with a depth-first

search returning only the first suitable string found, abandoning other possible parse paths, and

a breadth-first search returning all the possible candidatewords that could follow sub-strings in

the generator state. Work needs to be addressed as to how thiscould be defined more concretely

computationally, allowing different search strategies and also taking psycholinguistic plausibility

into consideration; this is something that will be investigated later in this thesis.

While a functional model of self-repair is not proposed in the DS literature, there is a self-

monitoring facility inherently present in the generation procedure. The strings generated are

selected through parsing, so there is no need for a feed-backloop to the parser as proposed in

Levelt (1989)’s psychological model and featured in (Neumann, 1998)’s reversible system; in

DS,“self monitoring comes built-in, as parsing is the building block for generation” (Otsuka and

Purver, 2003, p. 98). This nice facility in the DS framework will be used for modelling the

self-monitoring in self-repair in later chapters.

Context models in DS for incremental dialogue modelling

As stated above, similarly to Neumann (1998)’s framework, DS can be characterized as a re-

versible grammar, as the input for generating a string is thesemantic tree that would be derived

from parsing that string. However, there is an additional component in DS parsing and generation

that can be obtained from its grammar apart from the LFs and strings, which is the maintenance

of the procedures that are employed to construct trees. Thisis possible due to the fact that ac-

tions are first class citizens of the system. Making use of this feature of the grammar, Purver and
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Kempson (2004) describe how a thorough-going notion of context in generation and parsing can

be explicitly expressed in terms of the incremental development of a set ofparser tuples, each

of which constitute a triple< T,W,A > of a tree (T), a word-sequence (W) and the sequence

of actions (A), both lexical and computational, that are employed to construct the trees. This

characterization of context can be used to account for several speech production and dialogue

phenomena.

For modelling purposes Purver and Kempson (2004) use a simple implementation whereby

context is limited to spanning back to the beginning of the immediately previous utterance (one

which has yielded a complete parse, roughly equivalent to a sentence). At the beginning of the

parse of the second sentence, the parser’s context consistsof both a parser tuple< T0,W0,A0 >

of the previously parsed sentence and another tuple< T,W,A>, whereT is the initialized axiom

andW andA are empty word and action sequences.11 The modification of the parser state to a

generator state is minimal, as it is characterized as a pair of a goal treeG and a setX of partial

string(S)-parser state(P) pairs (whereP is a set of< T,W,A > tuples, initially with only one

member, as per parsing).

The authors use this detailed context apparatus for modelling several production and dialogue

phenomena:

• Anaphora and EllipsisThe generation of strict readings of verb phrase ellipsis (VPE) such

as “John likes his donkey and Bill does too”→ Bill likes John’s donkeyis achieved through

normal generation, but the lexical action for the auxiliary‘does’ allows tree nodes to be

decorated withmetavariables, which are underspecified semantics which recover suitable

tree decorations (in verb phrase ellipsis that is aTy(e→ t) complete node with its for-

mula from context). Anaphors work similarly, but withTy(e) metavariables being used

instead.Wh-questions also project metavariables which can be updatedso a fragment may

be generated to complete a tree in the generator context.

Sloppy VPE readings, where “John likes his donkey and Bill does too”→ Bill likes his

own donkey, the strategy is different, as the semantic formula at the top of the tree drives

the re-running ofcomputationalactions in context as opposed to re-using semantic formu-

lae.12 While this is implementationally perspicuous for parsing ellipsis, the generation of

11This second tuple is the single inhabitant of the parser’s state before any actions are triggered, which,
after multiple triples being formed through the parsing process, will eventually result in returning a single
tuple< T1,W1,A1 >.

12A formal implementational example action of REGENERATION is given in Purver et al. (2006) and
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such structures is not fully detailed– some additional mechanisms would be needed for a

generator to chose an elliptical phrase over a non-elliptical semantically equivalent one.

• Minimizing lexicon searchWhile generation details are not fully detailed, DS authorsclaim

the computationally expensive ‘parse and test’ task at eachstage of generation can be

reduced in complexity by using the immediate context to search for appropriate lexical

actions. In the case of ellipsis and anaphora resolution theaction sequences required to

complete trees are in the immediate context (in the same utterance or the one previous),

and the authors point out the prevalence of these phenomena in dialogue may be due to

this efficiency benefit, andalignmentbenefits for interlocutors as postulated by Pickering

and Garrod (2004).

• Alignment and RoutinizationThe recoverability and re-use of actions allows several psy-

cholinguistic phenomena to be modelled with the storage of actions in context, and this

not only applies to within speaker affects, with ellipsis and anaphora, but also between

speaker re-use of actions, resulting in lexical, semantic and syntactic alignment (Pickering

and Garrod, 2004).

• Shared utterances (compound contributions)In cases where it can be argued that speaker

and hearer add to the same semantic structure despite a speaker switch mid-utterance,

this can be modeled in the DS context model easily due to the close connectivity of the

parsing and generation processes. In terms of the generation model, in generating the

completion of an utterance started by the interlocutor, given a dialogue system capable of

such deduction, in a situation where the goal treeG is deduced and an initiation to vocalize

is signalled by the dialogue manager,13 G can be set as the goal tree, with the parser state

replacing the generator’s parser state (i.e. theP in < G,{S,P}>). The testing of lexical

and computational actions will then commence on the tree under construction from the

parser state and successful applications to the tree will result in the words completing the

utterance and subsuming the goal tree. As can be seen in Figure 3.8, the trees built up are

the same in parsing and generation.

Kempson et al. (forthcoming).
13The generation of the goal tree itself (the conceptualisation stage, most likely completed by a dialogue

manager) is not modelled in DS as the account is tactical rather than strategic. Poesio and Rieser (2010)
show how a formal dialogue model can account for the completion of another dialogue participant’s utter-
ance from mechanisms on the strategic level, in their account through inferring the intended plan of the
speaker.
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• Transition from speaker to hearerModelling speaker change transitions again falls out of

fact that the parse states in generation and in parsing are directly interchangable. So, as a

hearer of a continuation in a shared utterance rather than the speaker, it is the transfer ofP

to the parser that makes the integration of the two parts of the utterance possible through

incremental semantic construction. The possible mismatches between the parse states of

different interlocutors are not addressed in this model, but clearly this needs attention for

a realistic model.

DyLan: DS context as a graph in the IU framework

The procedural context of DS parsing is made more explicit inits integration into the dialogue

system Jindigo (Skantze and Hjalmarsson, 2010, see Section3.3.1 above) within theDyLan14

NLU module (Purver et al., 2011), where internally a parse state is characterized as a Directed

Acyclic Graph (DAG), following Sato (2011), with DSactions for edges andtreesfor nodes.

This move gives the DS framework a more fine-grained incremental representation than was

previously possible with the original model of context. Thecharacterization also allows an ex-

ploitation of Jindigo’s graph-based buffers, particularly the interface with word graphs sent from

a voice recognition (ASR) module:DyLan incrementally attempts to parse word hypothesis

edges as they become available, and parse paths in the DAG aregrounded inthe corresponding

word edges of the ASR graph in Figure 3.9 there is only one wordhypothesis, ‘john’, but in re-

ality there could be several candidates, each spawning their own corresponding part of the parse

DAG.

W0 W1
i n v i s i b l e

‘john’

i n v i s i b l e

i n v i s i b l e

*adjunct

i n v i s i b l e

intro

i n v i s i b l e

i n v i s i b l e
i n v i s i b l e

LEX=‘john’
i n v i s i b l e

LEX=‘arrives’

i n v i s i b l e

LEX=‘john’

i n v i s i b l e

i n v i s i b l e

LEX=’arrives’

i n v i s i b l e

i n v i s i b l e

LEX=‘arrives’

predict
i n v i s i b l e

i n v i s i b l e

complete
anticipthin

thin

i n v i s i b l e

thin

complete

i n v i s i b l e

complete
i n v i s i b l e

anticip
i n v i s i b l e

LEX=‘arrives’

i n v i s i b l e

LEX=‘john’

Figure 3.9: DS context as a DAG, consisting of parse DAG (circular nodes=trees, solid

edges=lexical(bold) and computational actions) with overarching corresponding word graph

(rectangular nodes=tree sets, dotted edges=word hypotheses) with word hypothesis ‘john’ span-

ning tree sets W0 and W1.

14‘DYnamics of LANguage’.
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The other addition to DS inDyLan is the incorporation of TTR, which can be seen in (3.17).

TTR record types decorate the nodes of the tree as opposed to simple atomic formulae, and

following Cooper (2005), each field in the record type contains a variable name, a value (after

the =), which can be null forunmanifestfields, and a type (after the colon) which represents the

node type of the DS tree at which the formula is situated if it is a simple type, or else the node at

which β -reduction will give its result (e.g. typet for a predicate at aTy(e→ t) node).

(3.17)
“John arrived”
7−→

♦,Ty(t),

[
x= john : e
p=arrive(x) : t

]

Ty(e),
[

x= john : e
]

Ty(e→ t),
λ r :

[
x : e

]

[
x=r.x : e
p=arrive(x) : t

]

The DS-TTR adaptation is made to provide representations that can interface with domain

conceptual structures. For type complete trees, through functional application of functor nodes

to argument nodes beginning with the right corner node, rootnodes of complete trees are deco-

rated with a compiled TTR record type, which can be checked against specified TTR formulae

representing system domain concepts. The integration of TTR allows more fine-grained lexical

and pragmatic information to be represented on the tree, as well as providing representations

that can easily interface with domain concepts in information-state motivated dialogue systems.

The theoretical efficacy of the approach for incorporating locutionary and dialogue participant

information into DS processes shown in Purver et al. (2010) in the modelling ofcompound con-

tributions (see Howes et al., 2011, for details of the empirical phenomenon). Various extensions

of DyLan are required for it, as a model and dialogue system, to be ableto deal with self-repair

as will be discussed in Chapter 6.DyLan and the DS-TTR parser are well positioned as a point

of departure and at the time of writing, only the incrementalRMRS (Robust Minimal Recur-

sion Semantics) parser described by Peldszus et al. (2012) has competitive incremental semantic

construction capabilities.

3.4 Evaluation of incremental dialogue processors and

their self-repair capabilities

Baumann et al. (2011) perspicuously formulate the challenge evaluating theincrementalaspects

of a processor, which amounts to more than simply comparing its utterance or input-final results
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with a non-incremental counterpart:

“What needs to be measured iswhat happens when, as simply comparing the final

results of incremental and non-incremental settings is notenough.” (Baumann et al.,

2011, p.115)

While I will not go into full detail here as the metrics will beexplained in the analysis chapters

when needed, they divide their metrics intosimilarity, timing anddiachronicmeasures. It is the

last kind which is the most novel, that is, the evolution of incremental hypothesis over time, for

which measures such as Edit Overhead (see Baumann et al. (2011)) were devised.

In terms of self-repair evaluation, the only incremental metrics described in the literature

are theincremental accuracyandtime-to-detectionscores discussed in Zwarts et al. (2010). All

other approaches only evaluate reparandum word detection,and not the whole structure of the

repair. These limited metrics are currently not sufficient for the purposes of incremental dialogue

systems, and this will be addressed in Chapter 5.

3.5 Summary and directions for research

3.5.1 Detection and classification

While Heeman and Allen (1999)’s approach is left-to-right word-by-word incremental due to its

integration within n-gram language models, its success rate (with a caveat for non-comparability

to other systems) for resolving and correcting speech repairs appears to be considerably lower

than other approaches, possibly due to sparsity of repair template examples. Liu et al. (2003)’s

model shows how explicit rules about repetition forms can help resolve the interruption point and

reparandum onset better than statistical models alone, butthis only extended to simple repeats.

The problem with data-driven machine-learning approachesis the sparsity of data for rarer forms

of self-repair, which suggest a knowledge-rich rule based system should be incorporated.

Johnson and Charniak (2004)’s TAG-based Noisy-Channel model uses explicit rules, and

shows how this can be incorporated as a pre-parsing step thatuses other parsing technology to

filter out reparandum and interregnum words. However, the model may not be seen as psycholog-

ically realistic, given its excising of repaired material.In evaluating their earlier edit-detection

system, the authors state they “do not care where the EDITED nodes appear in the tree struc-

ture produced by the parser” (Charniak and Johnson, 2001, p.6). The internal structure of the
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EDITED sub-trees is not a concern, as the principle task is deletion at the string level. From a di-

alogue point of view, as discussed in the previous chapter, this is not a satisfactory approach. An

interpreter module should have access to the edited syntactic structure, not only for possible fu-

ture reference to it, but for giving the correct procedural context to aid processing the up-coming

sentence (Clark, 1996; Core and Schubert, 1999; Brennan andSchober, 2001). The approach is

not incremental in the sense of limiting re-computation andhaving stable output, as it assigns the

repair structure at the end of parsing the utterance (and then consequently re-ranks it).

In the now popular automatic disfluency detection task, while incremental systems exist, they

use over-prediction, large chart storage and filtering (Zwarts et al., 2010; Heeman and Allen,

1999). A parsing chart used solely for disfluency structurespositing every possible repair path

can grow in the order ofO(n4) in the length of the utterancen, when considering all boundary

points of the three phases of a repair. Also, Zwarts et al. (2010)’s TAG parser has a run-time

complexity ofO(n5). This complexity blow-up seems cognitively implausible, particularly given

the relative sparsity of repairs. In addition, these approaches cannot easily deal with process-

ing embedded repairs realistically, as a stack of charts would be required, further increasing

complexity– consequently these are ignored in training (Johnson and Charniak, 2004). Rather

than positing all possible repair alignments, intuitively, a listener is almost certain an utterance

is a non-repair before the repair onset, so a backwards search mechanism employed upon in-

terruption point detection seems more plausible: the corpus study in the next chapter will tell

us exactly how plausible. A more strictly incremental detection should improve responsiveness

(time-to-detection) too.

For evaluation, this thesis adds the extra stipulation thatsystems should be evaluated for their

incremental(at least word-by-word) performance, and not just for theirperformance on complete

utterances. While Heeman and Allen (1999) take the most strictly incremental approach to build-

ing their system, their evaluation is for top interpretations of entire utterances, not evaluating the

evolution of their output through time. While Rasooli and Tetreault (2014) and Honnibal and

Johnson (2014) achieved state-of-the-art utterance final results and operate left-to-right, again no

evaluation of incremental performance is given.

Most importantly the latter systems only evaluate on the Penn Treebank EDITED words

(reparandum tokens), which by design are annotated to help parsers, making the task rather

circular. Evaluating on detecting the entire repair structure as proposed by Shriberg (1994) is the
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first step to interpreting the meaning of self-repair automatically. New evaluation metrics to deal

with this will be proposed in this thesis.

3.5.2 NLU, NLG and dialogue models

In incremental NLU, there is no established computational model for processing or representing

repairs, as only formal dialogue models have been proposed (i.e. Ginzburg et al., 2014). Given

this, well defined incremental models of how dialogue participants jointly construct meaning on

a word-by-word basis will require an interface to an incremental semantic grammar and semantic

inference system that uses it– Chapters 6 and 7 address this.Particularly, the sub-problem of rep-

resentingparse statesin line with the empirical data, and representing the context of incremental

parsing in such a way as to maximise repair detection is a major concern of this thesis.

Incremental generation has been extensively worked on, andmuch of the work has been

informed by, and indeed informed, cognitive models of production. Several desiderata of in-

cremental generation systems arise from this, include parallelism in formulation, feedback and

partial and underspecified inputs. Several of the systems have modelled self-repair explicitly,

and (De Smedt, 1990)’s IPF account, Guhe’sINC and Skantze and Hjalmarsson’s speech gen-

eration model make it a more central, rather than peripheral, ability. What they lack however

is an incremental semantics that is well defined. Given that speakers can recover words from

the reparandum straightforwardly, repaired elements of a string must be as accessible to a parser

and generation system as to fluent parts of the utterance, yetsimultaneously should receive a

different discourse status. No model of generation and dialogue meets these challenges. Chap-

ter 6 describes a formal model built with the premise that therepresentationof the processing

context in incremental parsing and generation is an important factor for characterising self-repair

formally and meeting these challenges while I return to probabilistic generation in Chapter 7.

The semantics of a repair is clearly one in which order of repair sequences and timing matter.

We need to include in any model of dialogue a record of the processing history that CPs are

utilising in building up representations such that the difficulties in articulation, formulation and

conceptualisation and their resolution are part of this– this is the only way CPs can compute each

other’s conversational state more accurately. Contra to traditional semantics, and to some extent

syntax, order is as important as form. To adhere to Ockham’s razor, this additional apparatus

must of course be incorporated into a dialogue system in the most efficient way possible.
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3.5.3 The desiderata for incrementality in dialogue models

With the different types of incrementality described aboveat hand, I conclude the chapter by

summarizing the different types of incrementality required for models of self-repair and the dia-

logue models and systems they are housed in, which applies both to automatic tasks and formal

models.

One kind of incrementality abounds in NLP (Natural LanguageProcessing, rather than psy-

cholinguistically motivated computational linguistics), which is borne out in parsing and gener-

ation algorithms rather than in the grammars they use. This incrementality is the inspiration for

chart parsing (Kay, 1973): for example the Cocke-Younger-Kasami (CYK) algorithm is a pro-

cess that incrementally hypothesises the syntactic structure of a sentence, where partial results

of the computation can be stored on a word-by-word basis to maximise efficiency in a dynamic

programming chart, and no computation is done more than once. However, the structures exhib-

ited at any point in the parse may not give the full amount of syntactic information available if

the grammar formalism is not inherently incremental, and dynamic programming in general is

non-monotonic due to the final solution not being directly predictable from the solutions to sub-

problems. Hale (2001); Hale et al. (2006)’s approach to parsing is similarly motivated. The kind

of incrementality these algorithms exhibit is still important however, and is what I will term the

minimization of re-computationrequirement. This is illustrated in Sundaresh and Hudak (1991)’s

diagram in Figure 3.10 (rotated here for consistency with other diagrams). The diagram shows

how a functionf (e.g. a parser) works on some input (e.g. a word string) to output some result,

and if only one part of the input from timei changes at timei +1, i.e. d goes tod′, there would

ideally be an avoidance of re-computation off ’s application to the other parts of the inputa,b,c

which have not changed from timei. This desideratum of a dialogue system or model puts re-

quirements on its architecture and algorithms which will bediscussed in the coming chapters,

and evaluation techniques will be presented to capture this.

Another kind of processing incrementality mentioned aboveis Wundt’s Principle, that each

processing component should be triggered into activity by aminimal amount of its characteristic

input. As described for psycholinguistically motivated NLG models, this is inspired in part by

working memory limitation in human language production: processing is less demanding if in-

formation is delivered and received in piecemeal chunks between different modules, particularly

in systems where minimal input can cause processing to beginin different modules of the speech
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Figure 3.10: Mimimization of re-computation in incremental processing (Sundaresh and Hudak,

1991)

system. The incremental multi-modular production model developed by Levelt (1983), Kempen

and Hoenkamp (1987), Neumann (1994) and others has been a powerful one in theautonomous

processingcamp of psycholinguistics. The principle has extended to interactive systems, partic-

ularly the IU framework (Schlangen and Skantze, 2009, Section 3.3.1).

Two other complementary types of incrementality mentionedabove are strong incremental

interpretation and incremental representation (see Section 3.3.3). A system may exhibit one of

these types of incrementality but not the other: this is moreclear in the case of a system pro-

ducing incremental representation but not yielding strictincremental interpretation of left-right

input: in such a system functional application ofλy.λx.like′(y,x) to john′ would not necessarily

be carried out to give the maximal amount of semantic information possibleλx.like′( john′,x)

despite representations corresponding to each word becoming incrementally available– bottom-

up chart parsing may suffer from this. Conversely, in another system the maximal interpretation

for a partial utterance may be available incrementally, butif the incoming words add to a context

via constraints– for example the incremental updating of a Discourse Representation Structure

(DRS, for details see Kamp, 1981)– it may not be possible to determine which word or sequence

of words was responsible for which part of the semantic representation without stipulating extra

machinery, and therefore the procedural or construction elements of the context may be irretriev-

able. This recoverability of the update effects caused by given words becomes important in the

context of repairing previous update effects, and the revocation of word hypotheses in a dialogue
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system situation where the word hypotheses may be unstable as more acoustic information be-

comes available– see (Schlangen and Skantze, 2011). Both ofthese types of incrementality are

important for dialogue models, and for self-repair in particular.

It is possible to distinguish the level and type of incrementality a formal grammar may ex-

hibit. Less incremental grammars are those which only yieldconnectedtree structures at the end

of a parse, rather than these being available continually during word-by-word parsing. However,

these can be modified with extra-mechanisms to get word-by-word semantic interpretation, such

as Milward (1995)’s incremental CCG-driven semantic parser, but extra machinery is needed to

achieve this. Similarly, in chart generation (Shieber, 1988; Kay, 1996), incrementality is ex-

hibited in consuming the generation input (a logical form),as partial results are stored and no

hypothesis is made twice, fulfilling the minimization of re-computation requirement, however

the output is not restricted to being left-right word-by-word incremental in the way the string is

realised.

Some grammar formalisms have made incremental representation a focus, as they yield con-

nected structures (partial syntactic trees) from sub-sentential input, such as psycholinguistically-

motivated tree-adjoining grammar (PLTAG, Demberg and Keller, 2008), (top-down) probabilistic

context-free grammar (PCFG, Roark, 2001), Robust minimal recursion semantices (RMRS) pars-

ing (Peldszus et al., 2012) and Dynamic Syntax (DS, Kempson et al., 2001, see Section 3.3.3).

Given the varying degrees of incrementality in both representation and in linguistic mechanisms,

a major task befalling incremental models of parsing and generation is to devise the optimal

representations for syntax, semantics and dialogue state representation and the best algorithms

for translating between these. For example, in interpreting input word-by-word, the key mecha-

nisms can be seen as functions transforming input from layers closer to perception to the higher

level more abstract representations on a word-by-word basis: in Figure 3.11 see the functions

from syntax→ semantic representation→ dialogue state (transitionsa andb) and also the time-

linear transition functionf between these representations. The trade-off between the expressive

power of the representations and the minimization of complexity of these transition functions is

presumably what motivates the multitude of grammar formalisms, semantic representations, dia-

logue state representations and the parsing, generation and dialogue management algorithms that

have been proposed. The selection of the most natural and efficient choices for representation

languages and functions given the challenge posed by self-repair forms a central concern of the
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Figure 3.11: Syntax-semantics-dialogue state interface for incremental processing. Adapted from

Milward (1995)

formal modelling and computational implementation part ofthis thesis.

The approach outlined in Chapters 6 and 7 makes use of and modifies a grammar which ex-

hibits desirable incremental properties without needing additional mechanisms in parsing such

as those in (Milward, 1995). It achieves this by as far as possible collapsing transitionsa andb in

Figure 3.11 into one transition, where a unitary representation can be used. The key ingredients

to this are the formalism DS-TTR (Purver et al., 2011; Eshghiet al., 2012), Sato (2011)’s discus-

sion of DS parsing algorithms, (Purver and Kempson, 2004)’sleft-right incremental DS surface

realizer and the IU framework (Schlangen and Skantze, 2009), which collectively provide the

point of departure. Extensions to these formal and implementational tools are proposed to allow

the incremental processing of self-repairs within a dialogue model.

In summary, I posit the following incremental desiderata ofour interpretation, generation and

dialogue management modules, all of which also apply to the self-repair processing capacity as

much as to the processing of non-repaired utterances:

• Incremental representation (at least word-by-word): recoverability of update effects to con-

text triggered by words must be total, to allow for revision of input in real-time dialogue

models.

• Strong incremental interpretation (at least word-by-word): the maximal amount of se-

mantic information built-up so far as the model consumes itsinput words must become

available immediately.

• Wundt’s Principle: processors should be able to begin theirwork on a minimal charac-
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teristic amount of input, e.g. input should be words for parsers to allow strict left-right

processing, input should be partial logical forms for generators.

• Efficiency: fast, (if possible synchronous) processing chains between syntax, semantics

and dialogue state updates.

• Minimization of re-computation: no computation should be made twice wherever possible

as new input is consumed.

• Stability of output through time: minimization of change inoutput hypotheses as utter-

ances are consumed.
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Chapter 4

Empirical Corpus Study of Self-Repair in Dialogue

This chapter1 describes a corpus study on the Switchboard corpus (Godfreyet al., 1992). I anal-

yse the distribution of self-repair surface form types in dialogue and, motivated by an incremental

approach, analyse the ways contextual features of an ongoing utterance predict the repair forms.

I present two self-repair ontologies, one based on surface form and the other based on dialogue

function, to address lacunae in previous corpus studies.

4.1 Introduction

The aim of the corpus study is to inform the building of two different computational mecha-

nisms: (1) an incremental self-repair detector and classifier which works strictly word-by-word

incrementally (2) incremental parsing and generation modules that can interpret and generate

self-repair phenomena appropriately.

As described in Section 3.5, the state of the art in these mechanisms falls short in this task

in various ways. Approaches have either used statistical language models which do not provide

the appropriate constraints on self-repair, and lack interpretable results for building generation

systems (e.g. Heeman and Allen, 1999; Qian and Liu, 2013) or else those using more genera-

tive models either suffer from data sparsity (Miller and Schuler, 2008) or do not take a strictly

incremental approach that is required for integration withon-line dialogue processing (Johnson

and Charniak, 2004). The state-of-the-art incremental approach (Zwarts et al., 2010) suffers from

latency in detection and delay in computing the analysis as it is a word-by-word version of the in-

1This is an extension of Hough and Purver (2013).
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herently non-incremental (Johnson and Charniak, 2004) TAG-based noisy channel model: it still

requires access to entire utterances to compute global alignment probabilities, running inO(n5)

time in the length of the utterance, in addition to the language model and re-ranker’s processing

requirements.

As none of the current systems focus on evaluating the structure or interpretive classification

of the repair, a necessary mechanism for dialogue processing as argued for by experimental evi-

dence (see Section 2.4), I address this lacuna here. Also, overlapping (chaining or nested, com-

plex) repairs have not had a thorough treatment in corpus analyses despite the ontology set out

by Shriberg (1994). Also, repairs involving partial words have not been previously addressed in a

comprehensive way syntactically, formally or computationally, although there has been acoustic

modelling work in this area (Liu, 2004). Partial words are standardly removed from training and

testing in the Switchboard disfluency detection task from (Charniak and Johnson, 2001) onwards.

4.1.1 Surface form and incremental context

To address the above, this study examines the relationship between an utterance’s context and

the presence, form and function of self-repairs in dialogue. Under the assumption of incre-

mental time-linear processing outlined in Sections 3.5.3 and 3.5, this work builds towards an

interpretable incremental model that can predict the most likely repair form and its interpretation

from four positions in a repair: (1) the optional editing signal (interregnum), (2) the repair onset,

(3) during the repair, and (4) at the repair end boundary. I assume these tasks all interact with

detecting the reparandum onset, so the interaction betweenthat task and the other tasks will also

be part of the model. The over-prediction of reparandum onsets in the absence of a repair indi-

cation is something I wish to avoid for reasons of computational complexity that current systems

suffer from, resulting in slow-run times, unnecessary memory use, latency and psychological im-

plausibility. The design of the automatic repair detectionand classification system described in

Chapter 5 and the dialogue system models in subsequent chapters will be informed by this study.

4.1.2 Terminology

For the purposes of this corpus study, I use the self-repair annotation scheme first proposed by

Shriberg (1994) and the Switchboard disfluency corpus annotation protocol (Meteer et al., 1995),

reprised from (2.4):
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John [ likes
︸ ︷︷ ︸

reparandum

+ {uh}
︸ ︷︷ ︸

interregnum

loves ]
︸ ︷︷ ︸

repair

Mary (4.1)

In addition to this structural vocabulary, from here on I term the repair onsetto be the

first word after the (possibly null) interregnum, and theinterruption pointas the transition la-

belled ‘+’ after the reparandum-final word. The first study investigates the distribution of the

different forms of repair based on the affordances of this structure, while the others investigate

the interaction between context and these surface forms. The edit terms that constitute most

repair interregna have a characteristic vocabulary, a factHeeman and Allen (1999)’s system ex-

ploited to detect discourse markers, a subset of them, with almost perfect accuracy. Here I also

investigate context in terms of edit term presence to test their predictive ability of upcoming

repair onsets.

4.2 Corpus preparation

4.2.1 Corpora

I use the section of the Switchboard corpus (Godfrey et al., 1992) that has been both dialogue act

tagged (Jurafsky et al., 1997; Shriberg et al., 1998) and annotated for disfluencies (Meteer et al.,

1995). This constitutes 1126 transcripts of different telephone conversations between pairs of

native American English speakers from various regions of the United States between 1990 and

1992. The conversations are loosely task-directed: each pair chose from a variety of topics of

conversation in a set list (e.g., ‘exercise and fitness’, ‘consumer goods’) and were connected to

each other by an automatic switchboard. The conversations are between strangers, ranging from

one-and-a-half up to ten minutes in duration, with an average of six-and-a-half minutes (Calhoun

et al., 2010).

Each repair is marked as described above, withreparandum, interregnumandrepair intervals

(Meteer et al., 1995). The only compulsory interval for a repair is the reparandum, as those

considered deletes do not have repair phases. All repairs have a repair onset however, which is

the word directly after the possibly null interregnum. I will also consider stand alone edit terms

and their relationship to interregna forms here.

Note that below, (4.3) has an embedded repair structure, being counted as 2 repairs in this

case, and (4.4) is the only example below with an interregnum, which is also given a disfluency
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type– here ‘D’ within the curly brackets indicates a discourse marker. The other two types

that appear below will be labelled ‘E’ (editing phrase) and ‘F’ (filled pause); when these three

are considered together I will call themedit terms. I do not consider asides, marked ‘A’ in

Switchboard as edit terms, as these can be considered parenthetical constructions that are not

considered disfluencies by many accounts of the grammar. When they appear at a repair onset

they will be grouped into the repair phase.

(4.2) “. . . but my kids are only elementary [ grades, + levels ]right now”

(Switchboard conversation number sw4325, repeating (2.1)above)

(4.3) “ [ [ I guess + I k-, ] + I think ] it’s got some relevance”

(sw4330)

(4.4) “And I find that for [ a normal, +{D you know,} everyday things. ] It’s really very easy

to work on”

(sw4356)

Penn TreeBank III syntactic tree representations are available for 650 transcripts (Marcus

et al., 1999), which, as I aim to investigate syntactic context, provides a sub-corpus I will use for

various tests below. The treebank files constitute the data used in the standard Switchboard dis-

fluency detection task, divided into training, held-out andtest sets (Charniak and Johnson, 2001,

onwards)– in this chapter I am careful not to use the test set,as this will be used in evaluating an

automatic repair detector in Chapter 5. The principal threecorpora comprise the following:

SW_train : the standard Switchboard training data (all conversationnumbers sw2*,sw3*

in the Penn Treebank III release)

SW_non_PTB: the non-Treebank dialogue act tagged Switchboard files2

SW_heldout : the same as the standard held-out data (PTB III sw4[5-9]*)

The demographics of the speakers, the number of repairs annotated and the size of these

three corpora can be seen in Tables 4.2, 4.1 and 4.3. I also make use of a few files from

SW_PTB_rest , the remaining treebank files not used in the standard training testing or heldout

sections (PTB III sw4154 - sw4483), but not for quantitativepurposes.

2These files are not in the training, held-out or test data of the standard task as described by (Charniak
and Johnson, 2001, inter alia.)
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Transcripts 496
Words ≈ 651,000

Utterances ≈ 100,000
Different topic prompts 64

Speaker gender M=415 (≈ 42%), F=577 (≈ 58%)
Speaker age (mean) (≈ 38yrs)<20: 0% 20-29: 25% / 30-39: 36%

40-49: 22% / 50-59: 15% / 60-69: 2%
Total repairs annotated 22,691

First-position/cross-turn repairs 21,427 (94.4%)/1,264(5.6%)

Table 4.1: Corpus statistics forSWtrain , the Penn Treebank III parsed Switchboard Corpus
(Training files)

Transcripts 476
Words ≈ 631,000

Utterances ≈ 96,600
Different topic prompts 64

Speaker gender M=381 (≈ 40%), F=571 (≈ 60%)
Speaker age (mean) (≈ 39yrs)<20: 0.1% 20-29: 20% / 30-39: 37%

40-49: 18% / 50-59: 22% / 60-69: 3%
Total repairs annotated 20,095

First-position/cross-turn repairs 18,921 (94.2%)/ 1,174 (5.8%)

Table 4.2: Corpus statistics forSWnon PTB the non Penn Treebank III dialogue act tagged
Switchboard Corpus

Transcripts 52
Words ≈ 48,900

Utterances ≈ 6,400
Different topic prompts 27

Speaker gender M=76 (≈ 73%), F=28 (≈ 27%)
Speaker age (mean) (≈ 41yrs)<20: 0% 20-29: 27% / 30-39: 16%

40-49: 13% / 50-59: 43% / 60-69: 0%
Total repairs annotated 2,261

First-position/cross-turn repairs 2,251(95.6%)/ 100 (4.4%)

Table 4.3: Corpus statistics forSWheldout , the Penn Treebank III parsed Switchboard Corpus
(Heldout files)
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In terms of the demographic of speakers there are some differences betweenSW_train

andSW_non_PTB, andSW_heldout , however for the purpose of general analysis of human-

human phone conversations between unfamiliar participants of varying ages and gender, the dif-

ferences should not be critical here (presumably with participants from a normal population

distribution of mental health)– though see (Bortfeld et al., 2001) for comparisons of disfluency

rate against age and gender. The tables show the ratio of cross-turn self-repairs is roughly the

same in each subcorpus– note these are not always third position self-repairs as described by

Schegloff et al. (1977); Schegloff (1992) (see Section 2.2), but are those where the structure of

a repair extends across multiple utterance units where the interlocutor of the participant making

the repair has contributed or overlapped an utterance within the repair.

Here I report different tests on each of these corpora and combinations of them. For the repair

type distribution study I use the standard Switchboard disfluency training corporaSW_train

plus the non-Treebank Switchboard filesSW_non_PTBgiving a total of 972 transcripts,∼196,600

utterances,∼1.28M words– (see Tables 4.1 and 4.2). For the syntactic context study I use

SW_train (see Table 4.3). For the final semantic annotation and qualitative analysis of the

dialogue function of repairs I use sections ofSW_train , SW_heldout andSW_PTB_rest .

4.2.2 Aligning trees with transcriptions

The first data preparation stage overcomes the issue of aligning the different versions of Switch-

board with idiosyncratic tags, corrections and transcription conventions. Although an integration

effort was made through the NXT Switchboard Annotations from the Linguistic Data Consor-

tium (LDC), an XML resource linking different versions (Calhoun et al., 2010), the problem for

repair analysis persists. Despite this recent effort, NXT was not suitable here due to the lack

of repair phases in the disfluency annotations. Instead, considerable pre-processing had to be

carried out on the dialogue-act tagged and disfluency-annotated files as collated by Potts (2011).

The principal pre-processing task consisted of automatically matching the words in the tran-

scripts to their corresponding leaves in the Penn Treebank III parse trees (a task which also

equates to matching them to their POS tags which always form parent nodes to the words).

There are slightly different numbers of trees than there areutterances, and tree-utterance map-

ping can be one-to-many and many-to-one. I developed an algorithm to match tree leaves (and

POS tags) to words to deterministically ensure a mapping wherever possible. Some re-annotation

of the corpora had to be carried out manually to ensure the words aligned. It systematically ig-
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nored punctuation and disfluency markers, and non-linguistic utterance units constituting tran-

scriptions such as<Throat clearing> and<Laughter> . I checked manually that the

tree-mapping algorithm had sufficient precision and recallover the words in all utterances by

checking random samples, and was satisfied with the mappings.3

4.2.3 Manual repair annotation

Considerable re-annotation of self-repairs was carried out manually according to the Switchboard

disfluency annotation manual (Meteer et al., 1995) to resolve the mismatch between the Penn

Treebank III trees and the original disfluency tags. The mismatches that required re-annotation

were those where a treebank EDITED node is a mother of a leaf node but the word correspond-

ing to that leaf node in the transcription is not part of a reparandum. As these amount to inter-

annotator disagreement between the treebank and transcript annotators, in each case I made a

decision to preserve the treebank annotation of an EDITED node (siding with the treebank an-

notator) and annotate the rest of the repair structure, or discard it (siding with the transcript

annotator). A decision was made not to side with the treebankannotation where I judged the

EDITED node annotation has been done for yielding a felicitous ‘clean’ tree (one which con-

forms to standard phrase structure conventions when excised of reparanda and interregna) rather

than annotating a self-repair. This was a rare case however and the majority of the 2500 words

with EDITED mothers not marked as reparanda in the transcripts were retained.

4.2.4 Global corpus repair rates

For each subcorpora I extract all the self-repairs based on the annotations and the number of

self-repairs extracted from each one can be seen in Tables 4.2 – 4.3.

Over all the sub-corpora, the mean base-rate likelihood of agiven word beginning a repair

onset is 0.0393, that is on average once every 25.5 words of speech.4 The overall rate for the

corpora that an utterance (where utterances include those where overlapping from the interlocutor

3The word→tree and word→POS mappings will be made available for public release and can easily
be integrated into the resources of the Python NLTK sourced versions of Switchboard corpus tools Potts
(2011).

4Here I exclude the first word of every utterance that is not a continuation, as you cannot begin a
disfluency repair initiation across these boundaries– in Table 4.4 this is the repair onset:word rate in the
third column. Without this cleaning the overall rate (repair:word rate (raw) in the table) is 0.0338 or 29.6
words. ∼100 repairs’ repair onset occur at the same word as an embedded delete repair, so this simple
division of the number of repairs annotated over the number of words is slightly larger than the probability
of a repair onset occurring, though insignificantly so..
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Corpus repair:word rate (raw) repair onset:word rate repaired utterance rate

SW_non_PTB 0.0318 0.0370 0.167

SW_train 0.0349 0.0406 0.180

SW_heldout 0.0463 0.0529 0.238

Table 4.4: Global repair rates in subcorpora

has taken place) is 0.176. See Table 4.4 for the separate rates for each subcorpus. I do not

distinguish between repairs crossing utterance boundaries and those marked within an utterance

unit, treating them both as first-position within one continual stream, however the difference

between these two types would be interesting to consider in further study.

These figures are comparable to Colman and Healey (2011)’s, lying between the rates re-

ported in free conversation and those in task-specific dialogues, which given Switchboard is

loosely task-directed seems consistent. While I acknowledge this rate could be idiosyncratic

to this domain– see Shriberg (1996), Colman and Healey (2011) and Faust and Artstein (2013)

for discussion of how domain can affect overall rates– I consider this sufficient data to build a

domain general self-repair mechanism for dyadic interaction.

4.3 Hypotheses

From the previous work on repairs in dialogue described in Chapter 2 and after a qualitative

pre-analytic observation of the transcripts, I arrived at several hypotheses about the self-repair

phenomena in Switchboard. Some can be seen as investigatoryconstraints and aims and some as

concrete testable predictions.

Hypothesis (1)- Self-repairs have a systematic surface form.

I assume self-repairs are processable in dialogue (and ableto be annotated consistently in tran-

scripts) due to some structural similarity to one another. The extent of this similarity and differ-

ence to fluent parts of an utterances will be investigated.

Hypothesis (2)- Position of interruption point contributes to predicting the type of

self-repair.
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This hypothesis assumes that distinct repair types have different processing effects. There is a

lack of clarity about what the relationship is between the position of a word in the utterance and

the probability of the different types of repair. If possible the study should use a more fine-grained

than theinitial andmedialutterance distinction which shows some skewing in the distributions

of the different types in (Shriberg, 1994)

Hypothesis (3)- The presence and type of an edit term contributes to predicting the

presence and type of self-repair.

This hypothesis is that the type and surface form of edit terms can be used to predict the presence

and type of repairs more accurately than previously has beenshown. Heeman and Allen (1999)

showed an interaction between discourse markers, a subset of edit terms, and self-repairs, but

their results were not interpretable enough to produce an interregnum vocabulary which could

predict types of repairs. Johnson and Charniak (2004)’s unigram model for generating interregna

does not consider their context, which is unsatisfactory for an incremental processing account:

there should be a relationship between the form of the interregnum and the form of the following

repair if speakers have little trouble processing them. Interaction with trends found in Hypothesis

(1) could also be interesting.

Hypothesis (4)- The syntactic context of an utterance (the partial tree) can contribute

to predicting the form and structure of a self-repair.

A principal empirical aim is to investigate how and to what extent the information in partial

syntactic structures as they are built up incrementally canpredict repair forms. The investigatory

question can be formulated as more technically as: which features of a connected syntactic tree

that spans the utterance string up to (and including) the repair onset can make predictions about

up-coming repairs, or the form of repairs if one is detected?

Hypothesis (5)- Processing context (fluency of ongoing utterance) can help predict

the occurrence and type of a repair.

The effect of overlapping repairs/repair clusters has not been fully explored, while Shriberg

(1994) suggested a ‘synergy’ effect for overlapping repairs, as there is a heightened probability

of repair during a repair or in the same utterance as a repair,this has not been comprehensively
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modelled. A more systematic model may be able to predict moreaccurately the changing prob-

ability in a repair occurring, given a processing context (how fluent the utterance has been so

far).

Hypothesis (6)- Self-repairs can be interpreted by interlocutors and annotators as

having a particular dialogue function.

This final hypothesis is one which addresses the meaning of self-repairs as constructed by dia-

logue participants. An annotation study and qualitative analysis of the data are needed to address

this.

4.4 Methodology

The principal corpus mark-up tasks to test the hypotheses were: (1) categorise repair types within

a consistent taxonomy; (2) define syntactic context appropriately for partial and incomplete utter-

ances using their Penn Treebank parse trees (3) define elements of interest for processing context

(4) define a semantic ontology for repairs. I explain the firstthree parts of the methodology

below, and introduce the last one in Section 4.6.

4.4.1 Repair surface form types

For the repair surface form type study I extracted 42,786 self-repairs fromSW_train and

SW_non_tree , based on the merge of the Treebank and transcript annotations (see Table 4.4),

making this to my knowledge the largest number of self-repairs studied in a corpus.

Repair form taxonomy by alignment

To investigate the distribution of the different types of repair, I follow Johnson and Charniak

(2004) in their use of weighted minimum string edit distancealignment, for an algorithmically

defined surface form taxonomy. The aligner classifies the 42,786 examples. It operates by map-

ping each reparandum word to a repair word, where each word must receive at least one alignment

with the lowest possible cost.

In addition to Johnson and Charniak’s alignment categoriesI introduceREP[complete], which

aligns prefix→complete word relations such as “j- + just” and its inverseREP[partial]which aligns

complete word→prefix such as “just + j-”. I used the costs as in Table 4.5.
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Function Alignment type Cost

delCost DEL 4

insCost INS 4

subCost REP 0

REP[complete] 1

REP[partial] 1

SUB[same POS] 2

SUB[same POS class] 5

SUB[arbitrary] 7

Table 4.5: Costs for reparandum-repair alignments.

The costs were chosen to ensure that ‘weaker’ substitutional relations are replaced by stronger

ones: e.g.REP[complete]andREP[partial]are a close approximation to phonological onset align-

ments they should be selected as stronger alignments overSUB[same POS]. Following Johnson and

Charniak (2004), the weights are also designed so an arbitrary substitution will always be chosen

over an insert and a delete– this reduces spurious ambiguity, reducing the number of possible

alignments.

I implement weighted minimum edit distance alignment with back-trace storage of possible

alignment sequences, using the popular dynamic programming algorithm that runs in polynomial

time (Needleman and Wunsch, 1970; Wagner and Fischer, 1974). I follow Jurafsky and Martin

(2009)’s explanation of this algorithm. For a reparandum oflength m and a repair of length

n, a tabular dynamic programming algorithm computes the lowest cost alignment between the

reparandum and repair inO(m×n) time and inO(m×n) space as it functions by populating a

(m+1) by (n+1) simple edit distance matrix, using a simple recurrence relation algorithm. In

using the matrixD, whereD[i, j] corresponds to the alignment score between the prefixw0−wi

of the reparandum and prefixw0−w j of the repair phase, the algorithm can iterate over all cell

positions, using recurrence relations to populate the cellwith a score and a pointer position. See

Algorithm 1.

The pointer matrix stores a set of< pointer,alignment> tuples in each cell to indicate the
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Algorithm 1 Weighted Minimum Edit Distance Alignment for Self-Repairs

Input: reparandum, repair

m← Length(reparandum)
n← Length(repair)
reparandum←⊘+ reparandum ⊲ Add the empty string as the first word.
repair←⊘+ repair
Initialise distance matrixD[m+1,n+1] and pointer storage matrixptr[m+1,n+1]

D[0,0]← 0 ⊲ Initialise distance between empty string and empty string.
for i from 1 tom do ⊲ Initialise distance of other zero’th row and column cells.

alignment← null
D[i,0]← delCost(reparandumi−1,alignment)
ptr[i,0].append(<↑,alignment>)

for j from 1 ton do
alignment← null
D[0, j]← insCost(repair j−1,alignment)
ptr[0, j].append(<←,alignment>)

for j from 1 ton do ⊲ Main recurrence relation computation.
for i from 1 tomdo

alignment← null ⊲ Best alignment relation variable gets value from choice function.

D[i, j]←Min







D[i−1, j]+delCost(reparandumi−1,alignment) (del)

D[i, j−1]+ insCost(repair j−1,alignment) (ins)

D[i. j]+subCost(reparandumi , repair j ,alignment) (sub)

pointer=







↑ iff (del)

← iff (ins)

տ iff (sub)

⊲ Select corresponding pointer.

ptr[i, j].append(< pointer,alignment>) ⊲ Update the pointer matrix accordingly.

Alignments←{x : Reverse(x) ∈ BackTracePaths(ptr[m,n]→ ptr[0,0])} ⊲ Now get all
possible complete alignments by backtracing over the pointer matrix.

Return < D[m,n],Alignments>

direction from which its score originated and what exact alignment operation was used. In the

first study, the atomic alignment types correspond to those described above: e.g. comparing “j-”

at positioni and “just” at positionj would yield<տ,‘REP[complete]’> at cell ptr[i, j] in the

pointer matrix. Algorithm 1 backtraces depth-first throughthe pointer matrix fromptr[m,n] to

ptr[0,0] to return the set of valid alignment sequences, such those inTable 4.6 as well as the

(weighted) minimum edit distance cost. When faced with multiple alignments, I decide to favour

those with the bestincremental scoreas the alignment is computed left-to-right (best-first), asI
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feel this is more appropriate for testing the efficacy of thisapproach for incremental self-repair

processing.

4.4.2 Context

Syntactic context through tree paths and constituency

The task of characterizing syntactic context is challenging, given the lack of incremental repre-

sentations for the parse trees in Switchboard, and more generally the lack of a standard approach

for incremental tree representation for incomplete structures. It was decided that a measure of

syntactic constituency of the words in the utterance up to the interruption point could be charac-

terized bytree path lengthbetween the leaves, that is the distance from the leaf (terminal node)

mapped to the word in question to the leaf mapped to its preceding word– see Figure 4.1 for an

example.

This annotation was automated with an algorithm using Python methods devised within the

constraints of the Python NLTKtree class, using the tree map created, as described above, to

bottom-up search for the common mother node between the leafnode word and its predecessor.

It overcomes the problem of ‘EDITED’ non-terminal nodes, which under a strict incrementality

assumption would not be available to a hearer when processing on-line, by ignoring the path di-

rectly above the edited node in the tree path total length, and ignoring the path to the node directly

below it if it leads to a node which has the ‘-UNF’ (unfinished)suffix and a stem identical to a

node above the edited node. This is a way of simulating a connected tree at the time of processing

the word, factoring out their EDITED status before the repair onset has been processed. Notice

the repair phase “I don’t” has the same tree path length values as the repeated reparandum phase

in Figure 4.1.

Processing context

I am interested in the incremental processing context of an utterance so far, that is to say, the

level of fluency that has been exhibited by the speaker up to a given point in the utterance. To do

this I measure several factors which are easily calculated from the data:

• The binary feature of whether a repair has been produced in the utterance so far

• The presence of an edit term at the given point in the utterance

• The distance from the utterance start in words
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4.5 Results and analysis

4.5.1 Repair surface form types

The most frequent aligned structures extracted are shown inTable 4.6: I split the structures

between the broad classes of verbatim repeats (all repeat alignments), substitutions (all other

alignment types with a repair phase) and pure deletes (no repair phase annotated), in order to get

the most prototypical deletes as judged by the Switchboard annotators.

1,994 different alignment sequence types were found, with only 31.0% of types occurring at

least twice, a figure similar to Heeman and Allen (1999)’s reported 29.4% of templates within the

TRAINS corpus. As can be seen, the majority of types are within substitutions (1,974), which

have a long tail of types – the 10 example substitutions shownonly cover roughly half of the

tokens all substitution occurrences. Deletes were the rarest, conflicting with Shriberg (1996), but

mainly due to my definition covering pure deletes only.

While building a rule-based repair grammar is not what I advocate in this thesis, it is worth

noting the observed alignment sequences can be compressed into 194 different operation se-

quence pairs such as [SUB(rm−i-Rn− j ) REP (rm-Rn)], in this case representing a substitution

alignment fromi words back from current reparandum indexm to a repair wordj words back

from current repair indexn, followed by a repetition alignment between the current indices. In

terms of coverage, due to the sparsity of most alignment sequences, the strength of Johnson and

Charniak (2004)’s generative S-TAG grammar approach over atemplate based one (Heeman and

Allen, 1999) becomes clear – for example the approach allowsthe most frequent repair type,

repeats, to have high likelihood within a repair ‘grammar’,regardless of their length.

Reparandum and repair lengths

First-turn repairs tend to be very short, with a mean reparandum length of 1.581 words (pop.

st.dev = 1.108).5 As with the distribution of many linguistic phenomena, their length distribution

can be characterized as an inverse power law with a good fit: a functiony= 0.9248x−2.595, where

x is the reparandum length in words andy is the average relative frequency of that length, has a

goodness-of-fitR2 = 0.9697 up to length 6. Reparanda of 1 or 2 words account for 90.8% of re-

pairs and lengths 1-3 account for 96.5%. Repeats (mean=1.217 words) and deletes (mean=1.372

words) are significantly shorter than substitutions (mean=2.068 words), which also exhibit a

5I count partial words as one word tokens in these calculations.
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Most Frequent repair types (% overall repairs, number of types)
Repeats(51.30%, 8)

I

I

rep

42.3%

do you

do

rep

you

rep

7.3%

had a

had

rep

a

similar

rep

similar

rep

1.3 %

can send

can

rep

send

in

rep

in

a

rep

a

rep

0.2%
Substitutions (41.52%, 1974)

I just

I

rep
del

3.7%

this

it

sub_pos_class

3.2%

tha-

that’s

rep_complete

2.9%

office

firm

sub_pos

2.8%

this

it

sub_arb

2.8%

i

when

ins

i

rep

1.4 %

sunday night

sunday

rep

afternoon

sub_pos

0.9%

in his

in

rep

the

sub_arb

0.8 %

in

in

rep

the

insert

0.8%

where

kind

ins

of

ins

where

rep

0.7%
Deletes(7.18%, 12)

and

when

del

5.6%

dont

normal

del

i

del

1.1%

Table 4.6: Distribution of the most frequent repair disfluencies in Switchboard
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Class % of repair tokens number of types +interregnum (% of class)

Repeats 51.29% 8 12.47%

Substitutions 41.52% 1974 18.52%

Deletes 7.17% 12 22.91%

ALL 100.00% 1994 15.77%

Table 4.7: The tokens, types and interregnum presence for the three repair classes

Class mean reparandum length (std.) power curve for length

Repeats 1.217 ( 0.533) y= 1.9873x−4.780, R2 = 0.9273

Substitutions 2.068 (1.428) y= 0.7292x−1.949, R2 = 0.8895

Deletes 1.372 (0.962) y= 0.9143x−2.993,R2 = 0.9891

ALL 1.581 (1.108) y= 0.9248x−2.595,R2 = 0.9697

Table 4.8: Mean reparandum lengths and the power curve fit over all lengths

shallower power-law decay – see Table 4.8 for the figures and Figure 4.2 for the plots.6

With the vast majority of reparanda being 1-3 words long, a very local model of context could

be used to capture them. As mentioned, previous approaches using sequence-based language

models in combination with repair grammars and templates have had some success, but there is

scope for incorporating repair detection more directly into an n-gram model, though not necessar-

ily through Hidden Event Language Models (HELMs) (Liu et al., 2003; Georgila, 2009), which

require bigger values of n and more training data. Furthermore, as Shriberg and Stolcke (1998)

showed, the likelihood of retracing back one more word in retraces decays logarithmically with

the number of words into a fluent word sequence, so the need to store all possible reparandum

sites before having heard an interruption point seems unnecessarily complex: a locally triggered

recovery mechanism does not have far to backtrack. Repeats and deletes are frequently short so

their repair onset and complete reparandum will often fall within a bi- or tri-gram: for example,

presuming perfect interregnum and edit term recognition, atrivial repeat-word featurewi = wi−1

captures 42.3% of all repairs. Use of such local alignments may yield high precision for those

6These figures are slightly different to Hough and Purver (2013) due to the fact these are the raw values
rather than lengths calculated on ‘cleaned-up’ repairs whereby internal embedded repairs are removed. I
thought this was more realistic in terms of modelling the surface forms.
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Figure 4.2: Reparandum length decay for each type and power law for all repairs

types, but we need a more general way of detecting interruption points in a local n-gram context

which can also capture longer repairs, as will be discussed below.

4.5.2 Context

Processing context: position of repair onset and type

To investigate how likely the three types of repair are at each point in the utterance, I simply

normalised the occurrence of each repair onset type by the number of times that utterance position

is present in the corpus. The results of this for utterance positions from 2 to 30 can be seen in

the graph in Figure 4.3 (note a repair never occurs on the firstword as they by definition do

not cross utterance units). The results support Shriberg (1994)’s more coarse-grained analysis

of utterance position in that repeats are more likely utterance-initially, however our distinction

between deletes and substitutions in a well defined algorithmic ontology as described above

shows some interesting differences: the probability of substitutions peaks between 4-6 words

then tails off sharply, while the probability of a delete rises steadily through the utterance.
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Figure 4.3: The effect of utterance position on likelihood of repair onsets of each type

Processing context: embedded repairs and repair contagion

11.9% of all repairs are embedded inside a longer structure –this divides between 9.9% chaining

repairs, embedded within the reparandum phase as in (4.5), and 2.0% nested within the repair

phase of a longer repair.7 While these appear to need more complex resolution mechanisms,

which is presumably why they are ignored in the training phase and evaluation of automatic

disfluency systems, they need not be processed as hierarchically embedded structures by listeners

on-line. They are frequently short, with mean reparandum 1.28 words long (std=0.67), and so

can be resolved very locally, again in a short n-gram context, and may provide an immediate

feature for following repair onsets. Intuitively an interruption point indicates speaker trouble, so

the likelihood of a consequent interruption point in the following word transitions increases.

(4.5) “ [ [ This, + it, ] + they ] are really... ”

Embedded chaining substitution (sw3389)

In terms of the predictivity of these repairs, in the chaining case there is a boost in probability

from the base-line repair probability with p(repair2onset|repair1end)=0.110 whilst in the nesting

case the probability of a repair happening is less likely p(repair2onset|repair1onset)=0.020.

7While Shriberg (1994)’s thesis and Meteer et al. (1995)’s annotation attempted to formalise these, they
remain a problem for consistency of annotation- it is not always clear whether they should be annotated
as nested or chaining.
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There is also an overall effect of contagion if there has beena repair in the current utterance

already. If there is a repair the probability of an up-comingrepair rises from the normal repair

probability discussed in Section 4.2.4. InSW_non_PTBandSW_train this goes up from 0.174

to 0.269.

With these observations of intra-utterance processing context, there is clearly a sensitivity to

a repair already having been made locally.

Processing context: partial words as interruption point indicators

The most reliable lexical indicator of a repair onset is a preceding partial word. According to the

transcripts, the likelihood of a repair onset following a partial word that is not utterance-final is

0.935, boosting the likelihood significantly more than the presence of an interregnum, as will be

discussed below. Furthermore, the remaining 0.065 of probability mass for continuations, upon

inspection, look like mis-transcriptions or approximation to colloquialisms which are in fact

complete words. Reparandum-final partial words are presentin 10.4% of repairs. Furthermore,

the completion of a single partial word is one of the most frequent repair structures (2.9% of all

repairs, see Table 4.6). The probability of the partial wordbeing a deleted reparandum also rises

from the overall average rate 0.072 to 0.171.

This is clearly a very useful feature for detection and classification. Charniak and Johnson

(2001) posit an optional phase between the reparandum and the interregnum called the ‘free-

final’, consisting of a sequence of partial words of any length, which, when used as a training

feature for an edited words classifier, can improve the detection of repairs. Subsequent work

does not use partial words in an attempt to simulate a more realistic testing situation for dialogue

systems. While I cannot make direct predictions here without the acoustic data, I investigate how

a simple word completion predictor could be a fair approximation to an annotator’s incremental

processing in Section 5.6.2.

Processing context: interregna and edit terms

I investigated the rate of interregnum presence, the interregna forms most predictive of repair,

and the effect of interregnum presence on predicting repairsurface form type.

In Switchboard, only 15.77% of repairs have an interregnum,so it is not a strong repair in-

dicator, a surprising result given their important role in formal and empirical models (Ginzburg,

2012; Ginzburg et al., 2014). However, if one is identified correctly, its presence signals in-

formation about the type of upcoming repair: the likelihoodof a substitution rises to 0.489
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form p(repair|form) p(form|repair)
(fluent word) 0.039 0.842

“uh” 0.155 0.071
“you know” 0.100 0.037

“um” 0.061 0.011
“I mean” 0.074 0.005
“well” 0.080 0.005
“or” 0.017 0.003

“like” 0.014 0.003
“yeah” 0.038 0.002
“oh” 0.005 0.002

“actually” 0.025 0.001

Table 4.9: Distribution of interregnum forms in first-position self repairs in Switchboard

(compared to 0.415 in general, see Table 4.7), the likelihood of a delete rises to 0.105 (from

0.072), while the likelihood of a repeat drops to 0.406 (from0.513). There are more substitu-

tions with interregna than repeats in raw frequency and significantly more relative to their class

size (3291/17767 (18.52%), versus 2739/21918 (12.47%)χ2
(1)=278.5,p<0.0001), and signifi-

cantly more deletes have interregna than substitutions (704/3072 (22.91%), versus 3291/17767

(18.52%)χ2
(1)=32.6,p<0.0001).

Interregna share a virtually identical vocabulary to editing signals in the more common

abridged(Heeman and Allen, 1999) orforward-looking(Ginzburg, 2012; Ginzburg et al., 2014)

repairs which comprise an editing signal followed by a fluentcontinuation to their preceding

context, rather than a disfluent one. Focussing here on interregnum vocabulary distributions, I

obtain the probabilities in Table 4.9, showing the predictive power of the vocabulary item and its

relative frequency within all repairs. The filled pause “uh”and discourse marker “you know” are

the most indicative, increasing the probability of a repairfrom the base rate to 0.155 and 0.100

respectively. These two items are also the most frequently occurring within repairs (7.0% and

3.7% of repairs have them, respectively). The surprising fact is the lack of predictive power even

the most frequent interregna forms have to predict repair. This means interregnum presence does

not provide a reliable feature for detection on its own. However as it has significant interaction

with repair type, it is a useful feature for repair classification or interpretation.
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Repair class Mean length with interregnum (std.)Mean length without interregnum (std.)

repeat 1.274 (0.670) 1.209 (0.510)

substitution 2.201 (1.639) 2.041 (1.376)

delete 1.370 (0.787) 1.379 (1.013)

overall 1.738 (1.330) 1.554 (1.061)

Table 4.10: Effect of interregnum presence on mean reparandum length

Processing context: interaction of interregnum presence and reparandum length

There are some interesting interactions between the repairsurface forms and their context. Par-

ticularly, there is an interaction between reparandum length and interregna presence. Overall,

the length of the reparandum of repairs with an interregnum is significantly longer (mean=1.738

words) than those without one (mean=1.554 words). Repeats and substitutions with interregna

are longer than their non-interregna counterparts, while there is little difference for deletes– see

Table 4.10 for the figures.

Syntactic context: reparandum onset prediction

In terms of word-by-word syntactic context of utterances, there are interesting interactions which

are relevant to the hypotheses. The notion of syntactic context used here is a measure of con-

stituency, which was calculated using the tree path length measure explained in Section 4.4.

By way of visualisation, Figure 4.4 shows the results. Thereis a difference between the

distribution of syntactic path lengths for the overall corpus (for all words) and that for reparandum

onset words. Word leaf nodes of tree path length 4 to their predecessor are repaired from less

than their predicted frequency in the overall corpus, wherethis probability mass shifts mainly

to repairing from the beginning of the tree structure (<s>). This interacts with the probability

of repairs being higher utterance-initially as shown in Figure 4.3, but shows one of the reasons

why this might be the case, which is systematic avoidance of repairing from the middle of a

constituent. This is supported by the fact speakers are alsomarginally more likely to repair

from other stronger constituent boundary points, at path lengths 6,7,8 and 9. This suggests that

repairing from the middle of a constituent is dispreferred,a result that seems consistent with

Levelt (1989)’s theory of repair form and Healey et al. (2011)’s experiment.
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Figure 4.4: Comparison between distribution of tree path lengths over entire corpus and those in

reparandum onset positions in Switchboard PTB heldout data

4.6 Qualitative observations of substitutions and deletes

In addition to the surface form and syntactic based analysisabove, I also investigate the meaning

of self-repairs for dialogue, assuming that there are regularities in their dialogue function.

Given the basic ontology of repair forms I describe above, I assume the different surface

forms are related to different classes of dialogue function. I also assume that dialogue participants

are sensitive to the function of a repair for several reasons. One may infer someone is having

forward-looking difficulty during an edit term or repeat, ormay make direct use of semantic

dependencies between reparandum and repair phases in substitutions, while deletes may have a

more cancelling effect on the reparandum and one may draw more pragmatic and turn taking

inferences about utterance-initial deletes (restarts). The ability to recognize these types may help

alignment and aid inference about the speaker’s mental state. Also, recognizing whether your

dialogue partner sits either side of the statistically significant divide between “repeaters” and

“deleters” (Shriberg, 1996) may help alignment.

I analysed substitution and delete surface form repairs from random transcripts fromSW_train ,
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SW_heldout andSW_PTB_rest , ignoring straight repeats as they seem to all be indications

of forward looking problems as per Ginzburg et al. (2014)’s formulation.

4.6.1 Substitution functions

Firstly, within substitutions, I noticed a regular function of paraphrasing, or lexical choice

change, where the semantics of the utterance remains largely unchanged from repair to reparan-

dum while the lexis used does change– see (4.6) and the secondrepair in (4.7).

(4.6) “[ It’s just part + it’s just something ] that turns up inthe other parameters that they test

for”

(sw4330)

(4.7) “And,{F uh,} [ it’s a + it’s a ] legal [ firm + office ]”

(sw4325)

Another regular function observed was that ofadding informationto the reparandum, whereby

it appears the speaker does not intend to revoke the reparandum material, but elaborate on it for

some communicative effect. See (4.8) where the speaker doesnot merely assert that their clients

are big oil companies, but revokes any commitment to the factthat they are not be big. (4.9)

shows the added information that the speaker revokes the assertion that they are discussing an

objectively nice environment. The additional asserted information in repairs here would not have

been explicit in a cleaned up version of the utterance without the reparandum and its contrast to

the repair phase.

(4.8) “So, a lot of our clients are [ oil companies, + big oil companies ]”

[Extra assertion: the companies are not just normal size, they are big.]

(sw4330)

(4.9) “[ It’s + it’s ] a [ nice, +{F uh} relatively nice] environment”

[Extra assertion: it is not neccessarily a nice environmentobjectively, only relatively.]

(sw4619)

Also, in line with the idea of an appropriateness repair (Levelt, 1989), substitutions can indi-

cate achange in register, for example from literal to metaphorical, as in (4.10), or as in (4.11),

from a more colloquial lexical choice (presumably “dump” here) to a more formal register (“land-

fill”).
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(4.10) “There’s [ too many manage, + too many chiefs ] and not enough Indians”

(sw4171)

(4.11) “A guy went to [ a d- + a landfill, ] dug down five feet and dug up a phone book from{D

like } nineteen sixty”

(sw4358)

Commitment to knowledgemay also be communicated via the difference between the repair

and reparandum, by strengthening (4.12) or weakening (4.13) the commitment to propositional

content.

(4.12) “[ [ and + and ] I think that + and I know ] Massachusetts has. . . ”

(sw4358)

(4.13) “{F Uh,} [ I know + {F uh} I believe ] it was last year that they actually collected the

old phone books”(sw4358)

Another example of a commitment to knowledge change which also involves anaphoric ref-

erence to material in the reparandum is in (4.14), where “they” is resolved by “the bottles”.

(4.14) “and [ I think the bottles were +{D like, } I know they were ] at least ten cents apiece”

(sw4329)

There are other functions of substitutions that occur regularly, such as quantification changes,

polarity changes and reference changes– these will be shownbelow.

4.6.2 Delete functions

As for deletes, the construed meaning is often one of a cancelling or abandonmenteffect where

the speaker seems to over-write the reparandum as the repaironset has no parallelism to it - see

(4.15) - (4.18)

(4.15) “and you know it’s{D like} [ you’re, +{E I mean} ] employments are contractual by

nature anyway”

(4330)

(4.16) “I guess [with, +] Israel is a perfect example”

(sw2252)
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(4.17) “[ Yo- +] a microwave, a VCR, a answering machine”

(sw4360)

(4.18) “but I used to work [ and + ] when I had two children”

(sw4325)

Restartsfrom the beginning of an utterance unit such as (4.17) are rare because the Switch-

board manual instructs annotators not to mark them as repairs, but as two separate utterance

units. Recovering all the restarts was beyond the scope of this thesis, and also not part of the

data preparation for the automatic repair detection in the next chapter, however it is worth noting

they are frequent and have the extra information that the speaker has abandoned their current

contribution completely and begun afresh.

4.6.3 Towards a dialogue functional taxonomy of self-repair

Based on these observations, I propose a taxonomy of the meaning of substitution and delete

repairs, excluding restarts.

Out of 216 utterances with repairs marked as substitutions or deletes in Switchboard I and

another annotator marked up each utterance under a coarse-grained binary decision of whether

the repair was driven by correcting the reparandum (substitution) or whether driven by over-

writing the reparandum (delete), rather than re-apply the bracketing structure used in the other

studies. We also applied a more fine-grained taxonomy I devised based on observations such as

those just mentioned.

The fine-grained annotation scheme used was as in Table 4.11 with an example for each

one, which includes some of the examples above and examples not heretofore discussed have the

conversation number.

Annotators were allowed two tags from the more fine-grained scheme and only one from the

more coarse-grained choice of substitution or delete. The agreement scores for any matching

tag was only 57.6% for the fine-grained scheme and while the agreement for the coarse grained

annotation was 83.8%, when factoring out frequency of classusing Cohen’sκ score this was

only 0.517. The low agreement for the coarse-grained annotation is surprising, however this was

in fact higher than each of the annotators’ agreement with the original Switchboard annotations

where non-repeat repairs without a repair phase annotated are taken as deletes, and those with a

repair phase a substitution (both≈ 0.4). After discussion, it appeared most of the disagreement
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Tag Example

SyntacticReformulation “[ Is it + {E I mean} does it ]. . . ”(sw4171)

ArticulationProblem “. . . walk the halls [ and see + [an- + and] see ] all these people. . . ” (sw4619)

Paraphrase “[ It’s just part + it’s just something ] that turns up in the other parameters...”

LexicalChoiceChange “. . . but my kids are only elementary [ grades, + levels ] rightnow”

AddingInfo “So, a lot of our clients are [ oil companies, + big oil companies ]”

Abandonment “I guess [with, +] Israel is a perfect example”

CommitToKnowledgeChange “[ [ and + and ] I think that + and I know ] Massachusetts has. . . ”

RegisterChange “There’s [ too many manage, + too many chiefs ] and not enough Indians”

ReferenceChange “[ We, + {F uh,} she ] goes more often than I”(sw4619)

QuantificationChange “. . . and I do [ the work on, + most of the work on ] that myself”(sw4356)

EventChange “[ We don’t + we haven’t ] been doing lay-offs”(sw4171)

AgencyChange “. . . [when he’s not + when she can’t ] keep control of him”(sw4325)

PolarityChange “And [ they have a + they don’t have any kind of ] pension plan...” (sw4171)

Table
4.11:

T
he

fine-grained
annotation

schem
e

for
repair

fu
nction
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between annotators was caused where one thought a repair made use of the reparandum and the

other did not judge this to be the case, and the fine-grained disagreements subsequently followed

from this. Most of the disagreement between us and the Switchboard annotations was caused by

our judgement that a repair was a delete while Switchboard annotators annotated them as having

a repair phase and therefore as a substitution. I would arguefrom this finding that deletes have

been under-annotated in favour of substitutions.

4.7 Discussion

I now discuss how my initial hypotheses have been confirmed ornot, conclusions arising from

the results, and the limitations of the study and plans for further work.

4.7.1 Confirmation of hypotheses

Hypothesis (1)- Self-repairs have a systematic surface form.

This is the case, however there is a long tail to substitutions which means a string alignment

approach to surface form is not adequate.

Hypothesis (2)- Position of interruption point contributes to predicting the type of

self-repair.

This study shows there is an effect of position, with repeatsbeing more likely to occur

utterance-initially, and substitutions and deletes less so, with the probability of substitutions

peaking at 4-6 words in to the utterance. The probability of adelete gradually rises through

the utterance, while after the initial disparity substitutions and repeats remain roughly equally

probable.

Hypothesis (3)- the presence and type of an edit term contributes to predicting the

presence and type of self-repair.

The presence of edit terms alone is surprisingly under-predictive of repair, with the most predic-

tive form ‘uh’ only raising the probability of an upcoming repair onset to 0.155. However, if an

interregnum is correctly identified as one, it helps predicttype. Deletes are more likely to have

interregna than substitutions, and substitutions are morelikely to have them than repeats.
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Hypothesis (4)- the syntactic context of an utterance (the partial tree) can contribute

to predicting the form and structure of a self-repair.

This is true to a degree– there is still a sparsity problem forscaling this to an automatic detector,

however the results in terms of tree path length are encouraging. Speakers are less likely to repair

material beyond the main constituent boundary in the partial tree they are constructing.

Hypothesis (5)- Processing context (fluency of ongoing utterance) can help predict

the occurrence and type of a repair.

This is very much the case, with repair contagion being foundwithin utterances, and also in

chaining (embedded) repairs.

Hypothesis (6)- Self-repairs can be interpreted by interlocutors and annotators as

having a particular dialogue function.

The annotation of the meaning of self-repairs is problematic, however progress is being made.

The repair phase of the bracketing structure in the Switchboard annotations may not always be

suitable for defining the function of the repair as a replacement of the reparandum by the repair,

and deletes seem to be under-annotated. This may be one of thereasons the task of classification,

or even assigning the bracketing structure as a whole has been avoided in evaluation in automatic

repair detection in the literature. What is clear is that repairs can perform a range of dialogue

functions and annotators can come to some agreement within the taxonomy proposed, however

there is surprising disagreement even at a coarse-grained level.

4.7.2 The interpretation of self-repair and the problem of annotating function

The strikingly negative result from this study on the annotation disagreement over repair types

may be more interesting than it would first seem. The lack of use of the audio data during

annotation may have contributed to the disagreement. As notonly our function annotation, but

the original Switchboard repair annotations were done after transcription (Meteer et al., 1995),

so clearly more work can be done to improve the resources available to repair annotators. On the

other hand, this may be evidence for a moregradienteffect of self-repair interpretation, whereby

it is not clear whether a given repair only functions to cancel commitments to part of the utterance

or whether it uses the reparandum to elaborate further content. The following examples show

possible alternative interpretations (italicized) to theSwitchboard annotations:
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(4.19) “and [ there’s, +?] it’s ] completely generic.”

Substitution or delete? (sw4619)

(4.20) “a matter where priorities are [ at, + ] placed.?]”

Delete or substitution? (sw4360)

The first type of disagreement shown in (4.19) where Switchboard annotation suggests a sub-

stitution where we suggest a delete, is the most common disagreement. The bracketing structure

used may need modification in future work, as its affordancesmean annotators may be tempted

to use the repair phase more than they should. The higher agreement scores based on categoriza-

tion are a useful start in this direction, however introducing gradient categories may help further

here as recent work on grammaticality judgements has shown (Lau et al., 2014).

4.7.3 From string alignment to incremental information processing

Several bits of evidence point to the fact that instead of viewing repair interpretation as a string

alignment problem, it is more fruitful to see it as an incremental information processing one,

where speakers try to minimise the amount of revocation of information possible in ongoing talk.

This is made clear from the distributions of the repair types. Repeats are the most common,

and add the least information (in fact no new information), acting as stalling devices much like

isolated edit terms, and so Ginzburg et al. (2014)’s view of them being forward-looking problem

indicators seems appropriate. Given the inverse power law of reparanda lengths, speakers try to

repair as soon as possible as per Clark’s principle of repair(Clark, 1996, p.284), however I would

add to this imperative of locality that this is donecovertlywhen possible.

While a striking correlation, the fact that mid-utterance partial words predict a repair with

near certainty may be a non-argument, as mid-utterance partial words are in fact reparandum

ends– the signal that the speaker is having trouble is made asclear as possible by not complet-

ing the word and starting the next one. These minimise the information change by revoking

commitment to a potentially problematic bit of information.

Finally, there is clearly sensitivity by the speaker to previous repair, as shown in the contagion

and embedding effects, and also use of edit terms to signal the nature of the upcoming repair.

Preference for interregna in more severe information changing repairs, deletes and substitutions,

shows they can be indicators of up-coming information revision. The interaction of reparandum

length and interregnum presence also supports this, which suggests the more severe the upcoming
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information change, the greater the need to signal this withan edit term, which also allows time

for the re-computation required for the new material in the repair.

4.7.4 Limitations and future work

One of the limitations here is not using the audio data due to time constraints. This will clearly

influence how transcribers and annotators interpret the repairs. More can be done with syntactic

context, and using a parser with connected tree structures partially available, such as a PCFG

parser (Roark et al., 2009) or a Dynamic Syntax parser (Purver et al., 2011) could be a next step.

A more thorough experimental evaluation of annotation using different variables could inves-

tigate how annotators disagree and agree on repair form morecomprehensively. Clearly there is

gradience in the interpretation, but investigating precisely how and why this happens would give

us an understanding of how people interpret repairs in dialogue.

4.8 Conclusion: Consequences for models of self-repair

Given the results of this study, I conclude that only using ‘rough copy’ dependency between

reparandum and repair phases is a restricted view of repair detection and interpretation: an incre-

mental information processing view of these processes is more realistic, and may lead to better

results in automatic repair detection, as the next chapter investigates. While regularity in surface

form exists, for instance with short repeats being the most common, adherence to alignment for

a model of repair is generally inadequate for the long tail ofsubstitutions.

Edit terms prove to be less predictive of a repair onset than hoped, as they are more often

forward-looking disfluencies as stand alone edit terms. This is surprising given their prevalence

in the literature on repair. Edit terms can be seen as conventionalised signals of trouble in com-

munication, but their default meaning appears not to be one to prime for a repair, rather just a

signal that the speaker is uncertain how to proceed. Other features, such as the fluency level and

information content of the utterance so far, must thereforebe relied on to detect repair onsets by

hearers and machines.

Furthermore, the annotation work suggests self-repair classification may have been avoided

for understandable reasons– there is a tendency for inter-annotator disagreement and it is not

clear a purely categorical way of classifying repairs (other than verbatim repeats) is a good way

forward. There are a number of different functions that repairs perform, and any NLU or NLG
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system capable of understanding and generating repairs in arealistic way must account for them.

There is extra meaning computed on-line caused by repairs, both semantic and pragmatic, which

is not available from simply removing the reparandum from the input string and re-parsing or

re-generating the phrase. A context-sensitive approach tobuilding these systems is clearly better

than one which removes parts of the utterance before processing cleaned utterances.
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Chapter 5

Strongly Incremental Self-Repair Detection

This chapter1 presents STIR (STrongly Incremental Repair detection), a system that detects self-

repairs and edit terms on transcripts incrementally with minimal latency, addressing problems

from the previous approaches outlined in Chapter 3 and cognitive processing insights from em-

pirical evidence in Chapters 2 and 4. STIR uses information-theoretic measures from n-gram

models as its principal decision features in a pipeline of classifiers detecting the different stages

of repairs. The measures can be used to model self-repair detection in terms of time-linear incre-

mental information processing. Detection results on the Switchboard disfluency tagged corpus

show utterance-final accuracy which improves on state-of-the-art n-gram model based incremen-

tal repair detection, and has considerably better incremental accuracy, faster time-to-detection

and less computational overhead. STIR’s performance is evaluated using incremental metrics

and novel repair processing evaluation standards are proposed.

5.1 Introduction

To re-introduce the task at hand for automatic systems, I reprise (4.1) below as the structure a

repair detector should be capable of recognizing:

John [ likes
︸ ︷︷ ︸

reparandum

+ {uh}
︸ ︷︷ ︸

interregnum

loves ]
︸ ︷︷ ︸

repair

Mary (5.1)

1Much of the work presented here is included in Hough and Purver (2014c) and Howes et al. (2014).
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As discussed in previous chapters, from a dialogue systems perspective, it is not only the de-

tection of repair presence but also appropriate assignmentof the entire structure that is vital

for robust natural language understanding (NLU). Downgrading the commitment of reparandum

phases and assigning appropriate interregnum and repair phases permits computation of the user’s

intended meaning. As discussed above, for implementation into incremental dialogue systems

(see e.g. Rieser and Schlangen, 2011, Section 3.3), left-to-right operability on its own is not suffi-

cient and repair detection should operate without unnecessary processing overhead, and function

efficiently within an incremental framework, meeting as many of the incremental criteria set out

in Section 3.5.3 as possible.

In line with the principle of strong incremental interpretation (Milward, 1991), a repair de-

tector should givethe best results possible as early as possible. As discussed in 3.5, with one

exception (Zwarts et al., 2010), there has been no focus on evaluating or improving theincre-

mental performanceof repair detection.

In this chapter I present STIR (STrongly Incremental Repairdetection), a system which ad-

dresses the challenges of incremental accuracy, structureassignment, computational complex-

ity and latency in self-repair detection, by making local decisions based on relatively simple

information-theoretic measures of fluency and similarity.Section 5.2 summarizes the challenges

posed and explains the general approach; Section 5.3 explains STIR in detail; Section 5.4 ex-

plains the experimental set-up and introduces evaluation metrics, some of which are novel; Sec-

tion 5.5 presents and discusses STIR’s results on Switchboard; Section 5.6 investigates STIR’s

domain-generality and practical use in psychiatry applications and Section 5.7 concludes.

5.2 Challenges and Approach

In this section I summarize the challenges for incremental repair detection: computational com-

plexity, repair hypothesis stability, latency of detection and repair structure identification. In

5.2.1 I explain how I address these.

Computational complexity Approaches to detecting repair structures often use chart storage

(Zwarts et al., 2010; Johnson and Charniak, 2004; Heeman andAllen, 1999), which introduces

a computational overhead: if considering all possible boundary points for a repair structure’s 3

phases beginning on any word, for prefixes of lengthn the number of hypotheses can grow in

the orderO(n4). Exploring a subset of this space is necessary for assigningrepair structures as
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in (5.1) above, rather than just detecting reparanda: the (Johnson and Charniak, 2004; Zwarts

et al., 2010) noisy-channel detector is the most successfulsystem that applies such structures

(and the only one that does so using a generative model) but the potential run-time complexity

in decoding these with their S-TAG repair parser isO(n5). In their approach, complexity is

mitigated by imposing a maximum repair length (12 words), and also by using beam search with

re-ranking (Lease et al., 2006; Zwarts and Johnson, 2011). In order to include full decoding of

the repair structure, which as argued in the previous chapter is necessary for full interpretation,

whilst also taking a strictly incremental and time-critical perspective, reducing this complexity

by minimizing the size of this search space is crucial.

Stability of repair hypotheses and latencyUsing a beam search of n-best hypotheses on a word-

by-word basis can cause ‘jitter’ in the detector’s output. While utterance-final accuracy is desired,

for a truly incremental system good intermediate results are equally important. Zwarts et al.

(2010)’s time-to-detection results show their system is only certain about a detection after pro-

cessing the entire repair. This may be due to the string alignment inspired S-TAG that matches

repair and reparandum phases: a ‘rough copy’ dependency only becomes likely once the entire

repair has been consumed. The latency of 4.6 words to detection from the repair onset and a

relatively slow rise to utterance-final accuracy of reparandum word detection up to 6 words back

from the current word is undesirable given repairs have a mean reparandum length of≈1.5 words

(Shriberg and Stolcke, 1998, Chapter 4).

Structure identification Classifying repairs has been ignored in repair processing,despite the

presence of distinct categories (e.g. repeats, substitutions, deletes) with different pragmatic ef-

fects.2 This is perhaps due to lack of clarity in definition: even for human annotators, verbatim

repeats withstanding, agreement is often poor (Shriberg, 1994, Chapter 4). Assigning and eval-

uating repair (not just reparandum) structures will allow genuine repair interpretation in future;

however, work to date evaluates only reparandum detection.3

5.2.1 An incremental information-theoretic approach

To address the above challenges, I propose an alternative to(Johnson and Charniak, 2004; Zwarts

et al., 2010)’s noisy channel model. While the model elegantly captures intuitions about paral-

2Though see Germesin et al. (2008) for one approach, albeit using idiosyncratic repair categories.
3The ‘correction’ measures presented by Heeman and Allen (1999) do not provide a comparable result

for assigning the correct reparandum-interregnum-repairpositions- see Section 3.1.1.
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lelism (‘rough copy’ dependency) in repeat and substitution repairs and models fluency, it relies

on string-matching, motivated in a similar way to automaticspelling correction (Brill and Moore,

2000): it assumes a speaker chooses to utter fluent utteranceX according to some prior distri-

bution P(X), but a noisy channel causes them instead to utter a noisyY according to channel

modelP(Y|X). EstimatingP(Y|X) directly from observed data is difficult due to sparsity of re-

pair instances, so a transducer is trained on the rough copy alignments between reparandum and

repair. This approach succeeds overall because repetitionand repeat-containing substitution re-

pairs are very common; but I assume, given the evidence, repair as a psychological process is not

driven by string alignment (see Chapters 2 and 4), and mid-utterance deletes, restarts and rarer

substitution forms will be given low likelihood and are likely to be missed in statistical alignment

approaches– see Chapter 4’s alignment repair type distributions. Furthermore, the noisy channel

model assumes an inherently utterance-global process for generating (and therefore finding) an

underlying ‘clean’ string –much as similar spelling correction models are word-global– instead

a very local perspective is taken here.

In accordance with psycholinguistic evidence (Brennan andSchober, 2001), I assume char-

acteristics of the repair onset allow hearers to detect it very quickly and solve the continuation

problem (Levelt, 1983) of integrating the repair into theirlinguistic context immediately, before

processing or even hearing the end of the repair phase. Whilerepair onsets may be preceded

by interregna, these are not reliable signals, as shown in Chapter 4, occurring in only≈16%

of repairs, a figure supported by Heeman and Allen (1999)’s observation of discourse mark-

ers in repairs. Due to this lack of lexical signal for repair,I formulate repair onset detection

here as driven by recognition of departure from fluency, which I predicted could be achieved by

using information-theoretic features of word sequences derived incrementally from a language

model. This approach is in line with recent psycholinguistic accounts of incremental language

comprehension– see Keller (2004); Jaeger and Tily (2011).

Considering the time-linear way a repair is processed and the fact speakers are exponentially

less likely to trace one word further back in computing the reparandum extent as utterance length

increases (Shriberg and Stolcke, 1998) and the shortness ofrepairs, backwards search seems to

be the most efficient reparandum extent detection method.4 Features determining the detection

4I acknowledge a purely position-based model for reparandumextent detection under-estimates prepo-
sitions, which speakers favour as retrace starts and over-estimates verbs, which speakers tend to avoid as a
restart point (Shriberg and Stolcke, 1998, Chapter 2), preferring to begin the utterance again. Healey et al.
(2011) also demonstrate this experimentally.
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of the reparandum extent in the backwards search can also be information-theoretic: entropy

measures of distributional parallelism can capture not only rough copy dependencies, but dis-

tributionally similar or dissimilar correspondences between sequences. Finally, when detecting

the repair’s end point and its structure, distributional information allows computation of the sim-

ilarity between reparandum and repair. I argue a local-detection-with-backtracking approach is

more cognitively plausible than string-based left-to-right repair labelling one, and using this in-

sight should allow an improvement in incremental accuracy,stability and time-to-detection over

string-alignment driven approaches in repair detection.

5.3 STIR: Strongly Incremental Repair detection

Given this motivation, the prototype system STIR (StronglyIncremental Repair detection) takes

a local incremental approach to detecting repairs and isolated edit terms, assigning words the

structures in (5.2). It includes interregnum recognition in the process of edit word detection, due

to the inclusion of interregnum vocabulary within edit termvocabulary (Ginzburg, 2012, Chapter

4), a useful feature for repair detection (Lease et al., 2006; Qian and Liu, 2013). STIR therefore

assigns the following structures:







...[rmstart...rmend+ {ed} rpstart...rpend]...

...{ed}...

(5.2)

Rather than detecting the repair structure in its left-to-right string order as in (5.2), STIR functions

as in Figure 5.1, where the top graph shows the input stream ofwords on top of the edge, a

processing graph is in the middle, and the output repair and edit term tags are beneath the words

in the top graph: it first detects edit terms (possibly interregna) at step T1; then detects repair

onsetsrpstart at T2; if one is found, backwards searches to findrmstart at T3; then finally finds the

repair endrpend at T4. Step T1 relies mainly on lexical probabilities from anedit term model;

T2 exploits features of divergence from a fluent language model; T3 uses fluency of utterances

without the hypothesised reparanda (as per the noisy-channel intuition) and parallelism between

repair and reparandum phases; and T4 the similarity betweendistributions after reparandum and

repair end points (indicated by the dotted edge between S3 and S4 in Figure 5.1). Each stage

integrates these basic insights via multiple related features in a statistical classifier as will be

explained.
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Figure 5.1: Strongly Incremental Repair Detection
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5.3.1 Enriched incremental language models

STIR derives the basic information-theoretic features required using n-gram language models,

as they have a long history of information theoretic analysis (Shannon, 1948) and provide re-

producible results without forcing commitment to one particular grammar formalism. Following

recent work on modelling grammaticality judgements (Clarket al., 2013), I implement several

modifications to standard language models to develop our basic measures of incremental fluency

and uncertainty.

For our main language models two trigram models with Kneser-Ney smoothing (Kneser and

Ney, 1995) are trained: one on the words and one on the POS tagsof the standard Switchboard

training data (SW_train from the last chapter, all files with conversation numbers beginning

sw2*,sw3* in the Penn Treebank III release).5 I follow Johnson and Charniak (2004) by cleaning

the data of all edit terms and reparanda, to approximate a ‘fluent’ language model, trained on a

total of ≈100K utterances,≈600K tokens. I call these probabilitiesplex
kn and ppos

kn for the two

models below, and if referring to the same calculation beingused for both models I suppress the

superscripts.

After obtaining the probability values one can derivesurprisal as the principal default lexi-

cal uncertainty measurements (equation 5.3); and, following Clark et al. (2013), the (unigram)

Weighted Mean Log trigram probability (WML, eq. 5.4) – the trigram logprob of the sequence

divided by the inverse summed logprob of the component unigrams (apart from the first two

words in the sequence, which serve as the first trigram history). As this thesis adopts a local

approach to repair detection I restrict the WML measures to single trigrams (so only weighted by

the inverse logprob of the final word). This approach was found to be much more effective for

detection as it factors out global utterance-level probability. While use of standard n-gram prob-

ability conflates syntactic with lexical probability, WML gives an approximation toincremental

syntactic probabilityby factoring out lexical frequency.

s(wi−2 . . .wi) =− log2 pkn(wi | wi−2,wi−1) (5.3)

WML(w0 . . .wn) =
∑n

i=2 log2 pkn(wi | wi−2,wi−1)

−∑n
j=2 log2 pkn(wj )

(5.4)

5In pre-processing POS tags which have a many-to-one relation to words are concatenated into one
token. This was for practical purposes but had no significanteffect on results.
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Distributional measures To approximate uncertainty, one can derive the entropyH(w|c) of the

possible word continuationsw given a contextc, from p(wi|c) for all wordswi in the vocabulary

– see (5.5). Calculating distributions over the entire lexicon incrementally is costly, so this is

approximated by constraining the calculation to words which are observed at least once in context

c in the language model training,wc = {w|count(c,w)≥ 1}, assuming a uniform distribution over

the unseen suffixes by using the appropriate smoothing constant, and subtracting the latter from

the former– see eq. (5.6).

Manual inspection showed this approximation to be very close to fully calculated entropy;

the trie structure of the n-gram models as they are stored in the implementation allows efficient

calculation. I also make use of the Zipfian distribution of n-grams in corpora (Manning and

Schütze, 1999) by introducing a pre-processing step afterthe language model has been trained

which computes and stores entropy values for the 20% most common trigram contexts observed

in training, leaving entropy values of rare or unseen contexts to be computed at decoding time

with little search cost due to their small or emptywc sets.

H(w|c) =− ∑
w∈Vocab

pkn(w|c) log2 pkn(w|c) (5.5)

H(w|c)≈

[

− ∑
w∈wc

pkn(w|c) log2 pkn(w|c)

]

− [n×λ log2 λ ]

wheren= |Vocab|− |wc|

andλ =
1−∑w∈wc

pkn(w|c)

n

(5.6)

Given this method of approximating distributions, it is similarly efficient to approximate the

Kullback-Leibler (KL) divergence (relative entropy) between distributions in two different con-

textsc1 andc2, i.e. θ(w|c1) andθ(w|c2), by pair-wise computingp(w|c1) log2(
p(w|c1)
p(w|c2)

) only for

words w ∈ wc1 ∩wc2, then approximating unseen values by assuming uniform distributions in

both distributions. Usingpkn smoothed estimates rather than raw maximum likelihood estima-

tions avoids infinite KL divergence values. Again, I found this approximation sufficiently close

to the real values for STIR’s purposes.
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Incremental processing graphs

I employ incrementally constructed directed acyclic graph(DAG) structures such as those in

Figure 5.1 with lexical word and POS values and tuples of numeric probability and distributional

values stored on the edge labels, akin to word confusion networks in speech recognition. I in-

troduce these structures to satisfy another notion of incrementality set out in Section 3.5.3– the

minimisation of re-computation. Storing the unigram probabilities, cumulativeWML, p values

and the entropies of continuationH(wi |wi−2,wi−1) at each nodei as the graphs are constructed

word-by-word allows STIR to incrementally calculate thesevalues efficiently for the entire pre-

fix without full re-computation due to the Markov property ofn-gram models. This also allows

access to previously processed sub-sequences of arbitrarylengths and positions when faced with

local ordering changes in the DAG as in reparandum identification (step T3 in Figure 5.1).

5.3.2 Individual classifiers

This section details the features used by the 4 individual classifiers in STIR. To investigate the

utility of the features used in each classifier I obtain values on the standard Switchboard heldout

data (PTB III files sw4[5-9]*: 6.4K utterances, 49K words) and report feature ranking results,

in addition to some mean values and distributions for interesting features. While the edit term

(ed) and the repair onset (rpstart) classifiers only have one possible training set of features, due to

the classifier pipeline, as will be explained, the reparandum start (rmstart) and repair end (rpend)

classifiers have several possible training sets depending on the cost function setting of each of

the classifiers. To reflect the manual feature engineering process, I report the measures obtained

for the best overall cost function setting on the heldout data.6

Edit term detection

In the first component, I utilise the observation that edit terms have a distinctive vocabulary, train-

ing a bigram model on a corpus of all edit words annotated in Switchboard’s training data. The

classifier simply uses the word surprisalslex from this edit word model, and the trigram surprisal

s and syntactic fluencyWML from the word and POS standard fluent models of Section 5.3.1.

I hypothesised thatWML would be lower for trigrams with an edit term in them, and coupled

with the higher probability of the edit words within theplex
kn edit term model (and therefore lower

slex measures), this would give sufficient information to the classifier. A good separation was

6The meaning of ‘best overall’ setting is given technically as the one which achieves the highest Total
Score (TS) measure described in Section 5.4.1.
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Figure 5.2:WMLlex fluent model (X axis) and the inverseslex edit model measures (Y axis) for

the heldout data for one-word edit terms atwi and two-word edits atwi−1−wi

indeed found for edit terms in the final positionwi and in the spanwi−1−wi in the local trigram

history– see Figure 5.2 where the clustering of the one-word(red) and two-word (green) edit

terms relative to the values for fluent trigrams (blue) can beseen.

Given the neat separation of values, I restrict the task to classifying at the current positionwi,

one, both or none of wordswi andwi−1 as edit terms. I found this simple approach effective and

stable, detecting edit term words with an F-score of 0.938, performing marginally worse though

detecting a broader range of phenomena than Heeman and Allen(1999)’s discourse marker de-

tector. Some delayed decisions occur in cases whereslex andWMLlex have similar values in both

the edit and fluent language models before the end of the edit,e.g. “I like” → “I {like} want...”.

Words classified ased are removed from the incremental processing graph (indicated by the

dotteded edge in Figure 5.1) and repair hypotheses are removed if their repair onset coincides

with a delayed edit hypothesis atwi−1 –this is an aspect of the system which could cause output

instability or ‘jitter’.

Repair start detection

Repair onset detection is arguably the most crucial component: the greater its accuracy, the

better the input for downstream components and the lesser the overhead of filtering false posi-

tives required. I use Section 5.3.1’s information-theoretic featuress,WML,H for word and POS
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Figure 5.3:WMLlex values for trigrams for a repaired utterance exhibiting thedrop at the repair

onset

models, and introduce 5 additional information-theoreticfeatures:∆WML is the difference be-

tween the WML values atwi−1 andwi; ∆H is the difference in entropy betweenwi−1 andwi ;

InformationGainis the difference between expected entropy atwi−1 and observedsatwn, a mea-

sure that factors out the effect of naturally high entropy contexts;BestEntropyReduceis the best

reduction in entropy possible by an early rough hypothesis of reparandum onsets within 3 words;

andBestWMLboostsimilarly speculates on the best improvement ofWML possible by positing

rmstart positions up to 3 words back. I also include simple alignmentfeatures: binary features

which indicate if the wordwi−x is identical to the current wordwi for x∈ {1,2,3}. With 6 align-

ment features, 16 language model information-theoretic features and a single logical featureedit

which indicates the presence of an edit word at positionwi−1, rpstart detection uses 23 features–

see Table 5.1. It is worth emphasising here that actual lexical or POSvalues(i.e. words and POS

tags) are not used at all in the feature sets, but only these numerical probability derived measures.

I hypothesised repair onsetsrpstart would have significantly highers values (lower lexical-

syntactic probability) and lowerWML (lower syntactic probability) than other fluent trigrams.

This was the case in the Switchboard heldout data for both measures, with the biggest difference

obtained forWMLlex (non-repair-onsets: -0.736 (sd=0.359); repair onsets: -1.457 (sd=0.359)) –

see Figure 5.4 for the density plot for each class. In the POS model, entropy of continuationHpos

was the strongest feature (non-repair-onsets: 3.141 (sd=0.769); repair onsets: 3.444 (sd=0.899)).
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Figure 5.4:WMLlex fluency measure density plots for training data (left) and heldout data (right)

The trigramWMLlex measure for the repaired utterance “I haven’t had any [ good +really very

good ] experience with child care” can be seen in Figure 5.3. The steep drop at the repair onset

shows the usefulness ofWML features for fluency measures.

To compare n-gram measures against other local features, I ranked the features by Infor-

mation Gain using 10-fold cross validation over the Switchboard heldout data– see Table 5.1.

The language model features are far more discriminative than the alignment features, showing

the potential of a general information-theoretic approach. Interestingly, theslex features are not

as useful as some of the other information-theoretic features, with WML in bothplex and ppos

models being the most discriminative.

Reparandum start detection

In detectingrmstart positions given a hypothesisedrpstart, computing all features from each of

the previous six non edit term words, I use the noisy channel intuition that removing the reparan-

dum (fromrmstart to rpstart) increases fluency of the utterance, expressed here asWMLboostas

described above. On the heldout data, this is shown to be the case, with a meanWMLboostlex of

0.223 (sd=0.267) for reparandum onsets and -0.058 (sd=0.224) for other words in the six-word

history. The negative boost for non-reparandum words captures the intuition that backtracking

from those points would make the utterance ungrammatical, and conversely the boost afforded

by the correctrmstart detection helps solve the continuation problem for the listener (and our

detector).

Parallelism in the onsets ofrpstart andrmstart can also help solve the continuation problem,
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average merit average rank attribute
0.139 (+- 0.002) 1 (+- 0.00) Hpos

0.131 (+- 0.001) 2 (+- 0.00) WMLpos

0.126 (+- 0.001) 3.4 (+- 0.66) WMLlex

0.125 (+- 0.003) 4 (+- 1.10) spos

0.122 (+- 0.001) 5.9 (+- 0.94) wi−1 = wi

0.122 (+- 0.001) 5.9 (+- 0.70) BestWMLboostlex

0.122 (+- 0.002) 5.9 (+- 1.22) InformationGainpos

0.119 (+- 0.001) 7.9 (+- 0.30) BestWMLboostpos

0.098 (+- 0.002) 9 (+- 0.00) H lex

0.08 (+- 0.001) 10.4 (+- 0.49) ∆WMLpos

0.08 (+- 0.003) 10.6 (+- 0.49) ∆Hpos

0.072 (+- 0.001) 12 (+- 0.00) POSi−1 = POSi

0.066 (+- 0.003) 13.1 (+- 0.30) slex

0.059 (+- 0.000) 14.2 (+- 0.40) ∆WMLlex

0.058 (+- 0.005) 14.7 (+- 0.64) BestEntropyReducepos

0.049 (+- 0.001) 16.3 (+- 0.46) InformationGainlex

0.047 (+- 0.004) 16.7 (+- 0.46) BestEntropyReducelex

0.035 (+- 0.004) 18 (+- 0.00) ∆H lex

0.024 (+- 0.000) 19 (+- 0.00) wi−2 = wi

0.013 (+- 0.000) 20 (+- 0.00) POSi−2 = POSi

0.01 (+- 0.000) 21 (+- 0.00) wi−3 = wi

0.009 (+- 0.000) 22 (+- 0.00) edit
0.006 (+- 0.000) 23 (+- 0.00) POSi−3 = POSi

Table 5.1: Feature ranker (Information Gain) forrpstart detection- 10-fold x-validation on Switch-

board heldout data.

and in fact the KL divergence betweenθ pos(w | rmstart, rmstart−1) andθ pos(w | rpstart, rpstart−1)

is the third most useful feature with average merit 0.485 (+-0.012) in cross-validation. The

highest ranked feature is∆WMLboostlex (merit=0.516 (+- 0.004)) which here encodes the drop

in theWMLboostfrom one backtracked position to the next, and the second ranked feature is the

equivalent in the POS model∆WMLboostpos (merit=0.505 (+- 0.004). Within the 32 features I

use, again information-theoretic ones are higher ranked than the logical features– see Appendix A

for the full table.

Repair end detection and structure classification

For rpend detection, which also constitutes assigning the final structure of the repair, using the

notion of parallelism, I hypothesise an effect of divergence betweenθ lex at the reparandum-final

word rmend and the repair-final wordrpend: for repetition repairs, KL divergence will trivially

be 0; for substitutions, it will be higher; for deletes, evenhigher. Upon inspection of our feature

ranking this KL measure ranked 5th out of 23 features (merit=0.294 (+- 0.006)).
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Figure 5.5: STIR’s pipeline of classifiers

I introduce another feature encoding parallelismReparandumRepairDifference: the differ-

ence in probability between an utterance cleaned of the reparandum and the utterance with its

repair phase substituting its reparandum. In the running example from Figure 5.1, this would be

as in equation (5.7). In both the POS (merit=0.376 (+- 0.008)) and word (merit=0.364 (+- 0.002))

LMs, this was the most discriminative feature. Again see Appendix A for the full feature ranking

table.

ReparandumRepairDifference(“John [ likes + loves]”) =

WML(“John loves”)−WML(“John likes”) (5.7)

5.3.3 Classifier pipeline

STIR effects a pipeline of classifiers as in Figure 5.5, wherethe ed classifier only permits non

ed words to be passed on torpstart classification and forrpend classification of the active re-

pair hypotheses. The active repair hypotheses are maintained in a stack, each consisting of a

〈rmstart, rpstart, rpend〉 triple of word positions where the position ofrpend may change as more

words are consumed. Therpstart classifier passes positive repair hypotheses to thermstart classi-

fier, which backwards searches up to 7 words back in the utterance. If armstart is classified, the

output is passed on forrpend classification at the end of the pipeline, and the hypothesisis pushed

onto the repair stack, whether anrpend is found or not. Therpend detector may temporarilycan-

cel a hypothesis after two words have been consumed beyond the repair onset, which does not

remove the hypothesis indefinitely but subdues its effect inits output before searching for more

suitablerpend points– this could cause output jitter.



5.3. STIR: Strongly Incremental Repair detection152

Figure 5.6: An individual STIR classifier

Repair hypotheses are are popped off the stack when the string is 7 words beyond itsrpstart

position. Putting limits on the stack’s storage space is a way of controlling for processing over-

head and complexity as will be discussed below. Embedded repairs whosermstart coincide with

another’srpstart are easily dealt with as they are added to the stack as separate hypotheses.7

Classifiers Classifiers are implemented using Random Forests (Breiman,2001) and I use dif-

ferent error functions for each stage using MetaCost (Domingos, 1999), effecting the set-up

schematically shown in Figure 5.6 for each one. In early investigation Random Forests, which

are a set of decision trees trained simultaneously and in testing they ‘vote’ on the classification

with the majority classification winning, gave much better performance than single decision tree

classifiers. The flexibility afforded by implementing adjustable error functions in a pipelined

incremental processor allows control of the trade-off of immediate accuracy, run-time, stability

and final accuracy of the sequence classification.

Processing complexityThe pipeline avoids exhaustively searching all repair hypotheses. If the

search is limited to within the〈rmstart, rpstart〉 possibilities, the number of possible repairs grows

7I constrain the problem not to include embedded deletes which may share theirrpstart word with
another repair – these are in practice very rare – see Chapter4.
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approximately in the triangular number series– i.e.n(n+1)
2 , a nested loop over previous words as

n gets incremented, which in terms of a complexity class is a quadraticO(n2). If more than one

〈rmstart, rpstart〉 hypothesis is permitted per word, the complexity goes up toO(n3), however, as

will be shown in the tests that I describe below, STIR is able to achieve good detection results

without permitting this extra search space. Under the assumption that reparandum onset detection

is only triggered after repair onset detection, and repair extent detection is dependent on positive

reparandum onset detection, a pipeline with accurate components will allow STIR to limit its

processing to a small subset of this search space.

5.4 Experimental set-up

STIR is trained on the Switchboard training data described above, and tested on the standard

Switchboard test data (PTB III files 4[0-1]*) with partial words and punctuation removed from all

files for fair comparison to other systems. In order to avoid over-fitting of classifiers to the basic

language models, I use a cross-fold training approach: the corpus is divided into 10 folds and

language models trained on 9 folds are used to obtain featurevalues for the 10th fold, repeating

for all 10. The Random Forest classifiers are then trained as standard on the resulting feature-

annotated corpus. This cross-fold method resulted in better feature utility for n-grams and better

F-score results for detection in all components in the orderof 5-6%.8

Training the classifiers Each Random Forest classifier was limited to 20 trees of maximum

depth 4 nodes, putting a ceiling on decoding time. In making the classifiers cost-sensitive, Meta-

Cost re-samples the data in accordance with the cost-functions: I found using 10 iterations over

a re-sample of 25% of the training data gave the most effective trade-off between training time

and accuracy. As Domingos (1999) demonstrated, there are only relatively small accuracy gains

when using more than this, but with the cost of training time increasing in the order of the re-

sample size. I only use one cost setting foredas changing this did not have a noticeable effect on

results, however I use 8 different cost-functions inrpstart with differing costs for false negatives

of the form below, whereR is a repair onset andF is a fluent onset:

8A similar approach was taken for Switchboard data in Zwarts and Johnson (2011) for training a re-
ranker of repair analyses.
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Rhyp Fhyp

Rgold 0 2

Fgold 1 0






I adopt a similar technique inrmstart using 5 different cost functions and inrpend using 8 dif-

ferent settings, which when combined gives a total of 320 different cost function configurations.

I hypothesise that higher recall permitted in the pipeline’s first components would result in better

overall accuracy as these hypotheses become refined, thoughat the cost of the stability of the

hypotheses of the sequence and extra downstream processingin pruning false positives.

I also experiment with the number of repair hypotheses that can be added to the stack per

word, experimenting with limits of 1-best, 2- and 3-best hypotheses. I expect that allowing 2 or

more hypotheses to be explored perrpstart should allow greater final accuracy, but at the expense

of greater decoding and training complexity (theoretically this goes up from quadratic to cubic

as described above), and possible incremental instabilityin its output.

In addition to testing accuracy in the standard way, I wish toexplore the incremental perfor-

mance versus final accuracy trade-off that STIR can achieve,so I now describe the evaluation

metrics I employ that measure this.

5.4.1 Incremental evaluation metrics

Following Baumann et al. (2011) I divide the evaluation metrics into similarity metrics(mea-

sures of equality with or similarity to a gold standard),timing metrics(measures of the timing

of relevant phenomena detected from the gold standard) anddiachronic metrics(evolution of

incremental hypotheses over time).

Similarity metrics For direct comparison to previous approaches I use the standard measure of

overall accuracy, the F-score over reparandum words, whichI abbreviateFrm (see 5.8):

precision=
rmcorrect

rmhyp

recall=
rmcorrect

rmgold

Frm = 2×
precision× recall
precision+ recall

(5.8)

I am also interested in repair structural classification given the different functions possible

in repair shown in the last chapter, therefore I also measureF-score overall repair components
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Input and current repair labels edits

John

John likes

rm rp

(⊕rm) (⊕rp)

John likes uh

ed

(⊖rm) (⊖rp) ⊕ed

John likes uh loves

rm ed rp

⊕rm ⊕rp

John likes uh loves Mary

rm ed rp

Figure 5.7: Edit Overhead- 4 unnecessary edits

(rm words,edwords as interregna andrp words), a metric I abbreviateFs. This is not measured

in standard repair detection on Switchboard. To investigate incremental accuracy I evaluate the

delayed accuracy(DA) introduced by Zwarts et al. (2010), as described in Section3.1.3 against

the utterance-final gold standard disfluency annotations ofreparandum words, and use the mean

of the 6 word F-scores.

Timing and resource metricsAgain for comparative purposes I use Zwarts et al’stime-to-

detectionmetrics, that is the two average distances (in numbers of words) consumed before first

detection of gold standard repairs, one fromrmstart, TDrm and one fromrpstart, TDrp . In STIR’s

1-best stack setting, before evaluation I know a priori TDrp will be 1 token, and TDrm will be 1

more than the average length ofrmstart− rpstart repair spans correctly detected. However when I

introduce a beam where multiplermstarts are possible perrpstart with the most likely hypothesis

committed as the current output, the latency may begin to increase: the initially most probable

hypothesis may not be the correct one. In addition to output timing metrics, I account for in-

trinsic processing complexity with the metricprocessing overhead(PO), which is the number of

classifications made by all components per word of input.

Diachronic metrics To measure stability of repair hypotheses over time I use Baumann et al.

(2011)’sedit overhead(EO) metric. EO measures the proportion of edits (add, revoke, substitute)

applied to a processor’s output structure that are unnecessary. STIR’s output is the repair label

sequence shown in Figure 5.1, however rather than evaluating its EO against the current gold
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Figure 5.8: The cost function settings for the MetaCost classifiers for each component, for the
best Frm setting (top row) and best total score (TS) setting (bottom row)

Frm Fs DA EO PO
Best Finalrm F-score (Frm) 0.781 0.736 0.702 4.043 1.733
Best Final repair structure F-score (Fs) 0.772 0.737 0.707 4.535 1.660
Best Delayed Accuracy ofrm (DA) 0.767 0.721 0.718 1.483 1.689
Best (lowest) Edit Overhead (EO) 0.718 0.674 0.6750.864 1.230
Best (lowest) Processing Overhead (PO) 0.716 0.671 0.673 0.875 1.229
Best Total Score (mean % of best scores) (TS)0.754 0.708 0.711 0.931 1.255

Table 5.2: Comparison of the best performing system settings using different measures

standard labels, I use a new mark-up I term theincremental repair gold standard: this does not

penalise lack of detection of a reparandum wordrm as a bad edit until the correspondingrpstart

of that rm has been consumed. While Frm, Fs and DA evaluate against what Baumann et al.

(2011) call thecurrent gold standard, the incremental gold standard reflects the repair processing

approach I set out in 5.2. An example of a repaired utterance with an EO of 44% (49) can be seen

in Figure 5.7: of the 9 edits (7 repair annotations and 2 correct fluent words), 4 are unnecessary

(bracketed). Note the final⊕rm is not counted as a bad edit for the reasons just given. .

5.5 Switchboard Results and Discussion

I evaluate on the Switchboard test data; Table 5.2 shows results of the best performing settings

for each of the metrics described above, together with the setting achieving the highest total score

(TS)– the average % achieved of the best performing system’sresult in each metric.9 The settings

found to achieve the highest Frm (the metric standardly used in disfluency detection), and that

found to achieve the highest TS for each stage in the pipelineare shown in Figure 5.8.

9We do not include time-to-detection scores in TS as it did notvary enough between settings to be
significant, however there was a difference in this measure between the 1-best stack, 2-best and 3-best
stack conditions – see below.
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Figure 5.9: Delayed Accuracy Curves

The experiments showed that different system settings perform better in different metrics,

and no individual setting achieved the best result in all of them. The best utterance-final Frm

reaches 0.781, marginally though not significantly exceeding Zwarts et al. (2010)’s measure and

STIR achieves 0.737 on the previously unevaluated Fs. The setting with the best DA improves on

Zwarts et al. (2010)’s result significantly in terms of mean values (0.718 vs. 0.694), and also in

terms of the steepness of the curves as Figure 5.9 shows. The fastest average time to detection in a

setting is 1 word for TDrp and 2.6 words for TDrm, these scores remaining fairly invariant across

all settings, improving dramatically on the noisy channel model’s 4.6 words and 7.5 words.

Incrementality versus accuracy trade-offI aimed to investigate how well a system could do in

terms of achieving both good final accuracy and incremental performance, and while the best Frm

setting had a large PO and relatively slow DA increase, STIR can find a good trade-off setting:

the highest TS scoring setting achieves an Frm of 0.754 whilst also exhibiting a very good DA

(0.708) – over 98% of the best recorded score – and low PO and EOrates – over 96% of the best

recorded scores. See the bottom row of Table 5.2. As can be seen in Figure 5.8, the cost functions

for these winning settings are different in nature. The bestnon-incremental Frm measure setting

requires high recall for the rest of the pipeline to work on, using the highest cost, 64, for false

negativerpstart words and the highest stack depth of 3 (similar to a wider beam); but the best

overall TS scoring system uses a less permissive setting to increase incremental performance.
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Frm Fs DA EO PO TDrp TDrm

1-bestrmstart 0.745 0.707 0.699 3.780 1.650 1.0 2.6
2-bestrmstart 0.758 0.721 0.701 4.319 1.665 1.1 2.7
3-bestrmstart 0.758 0.721 0.701 4.341 1.666 1.1 2.7

Table 5.3: Comparison of performance of systems with different stack capacities

I make a preliminary investigation into the effect of increasing the stack capacity by compar-

ing stacks with 1-bestrmstart hypotheses perrpstart and 2-best and 3-best stacks. The average

differences between the three conditions for the 3 most permissive rpstart settings is shown in

Table 5.3. I did not test all settings as I assume the stack size increase will not help in the less

permissive settings where the hypotheses will not be able tobe added.

Moving to the 2-best condition results in gain in overall accuracy in Frm and Fs, but at the

cost of EO and also time-to-detection scores TDrm and TDrp. There is no further gain in any

accuracy score when moving to the 3-best condition with marginally more PO and EO. The

highest Frm scoring system was from within the 3-best condition. The extent to which the stack

can be increased and used for useful increase without increasing jitter, latency and complexity

will be investigated in future work.

5.6 Adaptation to out-of-domain data: clinical psychology

While the computational linguistics community focusses onthe Switchboard disfluency chal-

lenge, begun by Charniak and Johnson (2001), the effort to use the models outside of the domain

has been rare. This is possibly because gold-standard disfluency annotation in the format shown

in (5.1) is rare, and in fact, Switchboard provides the only consistently annotated large corpus

available for this purpose. Furthermore, utterance segmentation as carried out by the Switchboard

disfluency scheme (Meteer et al., 1995) is also rare.

To investigate the extent to which STIR performs on out-of-domain data, I apply it to an

a corpus of psychiatric consultations. As described in Section 2.4, repair rate can help with

prediction of schizophrenic patients’ adherence to medical treatment, so any reliable way of

automating the repair detection will be of practical use.
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5.6.1 Clinical Data

The clinical corpus was constructed using a subset of data from a study investigating clinical en-

counters in psychosis (McCabe et al., 2013), collected between March 2006 and January 2008.10

The corpus consists of transcripts from 51 outpatient consultations of patients with schizophrenia

and their psychiatrist. These transcripts relate to 51 different patients, and 17 different psychia-

trists. The consultations varied in length, with the shortest consisting of only 709 words (lasting

approximately 5 minutes), and the longest 8526 (lasting nearly an hour). The mean length of

consultation was 3500 words.

Each transcript was hand-annotated for repair using the protocol described in (Healey et al.,

2005). For the purposes of this study, the data extracted consisted of the transcripts and associ-

ated position 1 self-repairs (annotated with reparandum phrase and corresponding repair phase).

Filled pauses are not explicitly annotated, but are identifiable as interregna as the unannotated

text between the end of the reparanda and its repair. Filled pauses, while consistently transcribed,

were found to be inconsistently spelt between transcribers(aammm, er, eerrrrmm, uhmmmetc).

A find-and-replace operation was therefore applied to the corpus prior to analysis to give these a

standardised spelling, i.e. a consistent ‘er’. Prior to theanalysis, the corpus was also POS-tagged

using the Stanford POS tagger (Toutanova et al., 2003). The Stanford tagger is trained on written

text, and previous work applying it to spoken dialogue has shown the error rates to be in the order

of 10% (Mieskes and Strube, 2006). Here, the concern is not with the POS labels per se, but in

the parallelism between POS label sequences as described above– given that errors are likely to

be fairly consistent (dependent on transcription spellingor spoken dialogue idiosyncracies) this

is sufficient for the purposes of this study.

5.6.2 Adjusting STIR to deal with partial words

I begin by optimizing performance on the Switchboard data with partial words included, which

was not the case for the tests described above. I include a penalising factor forWML to be -

3.0 (below the lowest recorded value) when a partial word is transcribed in the second position

of the trigram, or if it is an unknown word, that it is a prefix ofits following word. This was

because the corpus study in Chapter 4 suggests that a non-utterance-final partial word presence

10This sub-section was largely written by Chris Howes and is from the paper (Howes et al., 2014). It is
included here for coherence. Chris also performed the pre-processing steps on the clinical corpus and the
correlation results.
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predicts a disfluency almost perfectly, that isp(rpstart | partial) = 0.935, for multi-word as well

as single partial-word disfluent cut-offs. For incrementaldetection modelling purposes, I make

the realistic assumption that a wordwi can only be interpreted as an abandoned partial word after

having encountered the following wordwi+1.

A more principled approach to modelling partial words can betaken which I will now explain,

but hedge with the fact this has not been tested and the simpleapproach just described is used in

practice: It is possible to train a simple word completion model pcomplete(w|wi) which operates on

any annotated partial word prefixwi to provide a distribution over possible complete words that

it could have started, and thus also the most likely completion (based on the prefix and unigram

co-occurrence). So, as opposed to leaving the partial word as unknown vocabulary item (or with

a set probability) it is possible to define a probability distribution of the completion probability

of each word in the vocabulary, for which I posit the probability function pf luent that for a partial

word wi, the likelihood ofw being its corresponding complete word at the time of interruption

given its two word context is as in (5.9).

pf luent(w | wi−2,wi−1,wi) =
1
Z
× pkn(w | wi−2,wi−1)

× pcomplete(w | wi)

(5.9)

whereZ is a standard normalisation constant to ensure that∑w∈Vocabpf luent(w | wi−2,wi−1,wi) = 1.

The probability ˆpf luent of most likely completion ofwi is then as in (5.10).

ˆpf luent(w | wi−2,wi−1,wi) = max
w

pf luent(w | wi−2,wi−1,wi) (5.10)

The intuition here is that when they encounter a partial wordhearers attempt to find the

most likely fluent word that both maximises its likelihood tobe its complete form of the par-

tial word and also of being a continuation of the two preceding words. If “yes I remem-” is

encountered, the probability of the completer’s best guesswill not be as low as if it was un-

predictable, such as after an utterance initial “T-”. Furthermore, the information-theoretic in-

formation from these distributions should help predict theinterpretation of the repair. I predict

repairs with reparandum-final partial wordsrmend with high entropy over possible completions

θ f luent(w | rmend−2, rmend−1, rmend) (i.e. the distribution over all words in the vocab of the prob-

ability function (5.9)) will be interpreted as deletes rather than substitutions– in deletes the high

uncertainty over predicted complete words is interpreted as ‘cancelled’. Partial word reparandum

ends interpreted as substitutions should give highpf luent values forw the repair word in cases
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such as “yes I [ remem- + remember ]” and the information gain thatw causes relative to the dis-

tribution θ f luent(w | rmend−2, rmend−1, rmend) will be low, where as in delete partial words such

as “[ T- + ] yesterday was nice” the information gain will be much higher relative to the predicted

distribution.

This method is yet to be implemented but in initial testing seems a promising approach. Now

I will return to STIR’s functioning on the clinical data.

5.6.3 Error functions and edit terms in out-of-domain data

I employed the weighted MetaCost error functions describedabove to balance recall and pre-

cision in the desired way for the task. This allows fine-grained control over the rate of onset

prediction, which proved to be very useful for the clinical data. For the Switchboard test set-

ting, I optimise the cost functions for MetaCost on the standardly used Switchboard heldout data

with partial words included. For the PCC data, while I keep the base classifier the same as for

Switchboard, I optimise the weights to balance precision and recall on a heldout set of doctor-

patient interaction of≈20K words. This step was carried out as the weights used for Switchboard

yielded much higher precision than recall inrpstart detection on a word-by-word level. I then test

on a different set of≈25K words.

For edit term detection on the PCC data, transcribed filled pauses are automatically tagged

as edit terms and then edit term detection is performed usinga model trained on the Switchboard

data– this serves as an approximation to edit term detection; due to the lack of gold standard this

was not evaluated quantitatively, but see below for discussion.

5.6.4 Evaluation

I then tested STIR in terms of its precision, recall and F-score for repair onsetrpstart detection

only (rather than reparandum words as above) to make the comparison fair given the otherwise

differing annotation conventions. Also, for this test I evaluate in two ways: astrict evaluation

at the word level, requiring the exact repair point wordrpstart to be identified; and arelaxed

evaluation at the turn level, with arpstart hypothesis taken as correct if in the same turn as a

gold-standard repair annotation, but with every additional hypothesisedrpstart over the correct

number treated as a false positive (i.e. incrementing the counts ofrpstarts hypothesised but not

rpstarts correct).
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detection precision recall F-score
rpstart position 0.882 0.797 0.837
repairs in turn 0.930 0.793 0.856

Table 5.4: Switchboard test data results

detection precision recall F-score
rpstart position 0.527 0.536 0.532
repairs in turn 0.682 0.679 0.680

Table 5.5: Clinical data test results

5.6.5 Results: Clinical data and partial words Switchboarddata

The best performing setting’s performance forrpstart detection for the Switchboard test data

including partial words is in Table 5.4 and that for the clinical data shown in Table 5.5.11 While

not the focus of this comparison, it is worth mentioning performance on overall repair structure

detection was better with partial word information included compared to performance on partial

words excised-data described in Section 5.5, with a best Frm score of 0.783 and best Fs score of

0.751.

Turn-level data As can be seen in Table 5.4, on the Switchboard data (partial words included,

so not the same as in the previous results in the chapter) the system identifies both that there is

a repair and its exact position in the turn very well (F-scores> 0.8). However, for the PCC data

(see Table 5.5), although the system identifies that there are repairs in the turn reasonably well

(F-score≈ 0.7), there is a large drop in performance when looking at the strict position-based

metric (F-score≈ 0.5).

This is likely to be due to differences in both transcriptionand annotation conventions. In

the PCC data, the emphasis for annotators was on identifyingthe number and type of repairs

in the turn. Although there was good agreement between annotators at this level – with levels

comparable to the relaxed evaluation performance (Cohen’sκ = 0.73, McCabe et al. (2013)), it

is not clear whether the annotators position repair points systematically or agree on positioning.

Examination of the transcripts suggests that annotation differences can abound.

Dialogue level data Given the differences in turn-level data, as outlined above, and the different

ways in which automatically annotated repair data might be used, the number of identified repairs

11The results in Table 5.4 are improvements on Howes et al. (2014) as the full feature set is used here.
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Hand-coded Automatic Correlation
Mean (s.d.) Mean (s.d.) r p

Patient P1 repair 62.51 (44.87) 48.90 (33.29) 0.945< 0.001
Doctor P1 repair 41.57 (23.25) 41.02 (23.23) 0.906< 0.001

Table 5.6: Relationship between hand-coded and automatically generated repair measures

over each dialogue were compared.12

As can be seen from Table 5.6, there is a very high correlation(> 0.9) between the number

of repairs per transcript detected by the automatic incremental classifier and those annotated by

hand. At this coarse-grained level, the system provides a useful overview of self-repair, which

allows us to make comparisons between speakers who typically use a lot of repair and those who

do not, as well as looking for associations with outcomes on aby-patient level as in McCabe et al.

(2013). However, as can also be seen, the automatic repair numbers are lower than those for the

hand-coded data, and this is especially the case where patients are concerned. This indicates that

the system is systematicallynot picking up certain types of repair that the patients are using.

When comparing the hand annotations on the PCC data with STIR’s output, we see differ-

ences due to several factors of annotation protocol and behaviour and not just due to inherently

poor system performance. See examples (5.11)-(5.13) wherethe hand annotation tags (shown in

(a) in each case) differ from STIR’s annotations (shown in (b)).

(5.11) (a) D: ... and if you tell me thatthat[RPSTART] that the depressions kicks in . . .

(b) D: ... and if you tell me thatthat[rpstart] that[rpstart] the depressions kicks in . . .

(5.12) (a) D: and soI [RPSTART] mean otherwise I’m not too concerned about your mental

health...

(b) D: and soI [ed] mean[ed] otherwise I’m not too concerned about your mental health...

(5.13) (a) P: I don’t I’m [RPSTART] not like hearing voices...

(b) P: I don’t I’m not like hearing voices...

In (5.11a) the second repeat of ‘that’ is evaluated as a falsepositive by STIR, reflecting

the embedded repairs often found in Switchboard, while the annotator views this as part of one

12Again I acknowledge Chris Howes for the running of these tests and her writing contribution to this
subsection.
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longer repair. A false negative from STIR can be seen in (5.12b) where an annotator deems this

a repair, while according to Switchboard, and STIR, this would be an editing phrase ‘I mean’.

In (5.13c), another false negative is evaluated as STIR misses the transcribed repair onset from

‘I’m not’. These types of self-repair, ‘restarts’, or utterance-initial deletions, are not marked in

Switchboard, as discussed above, treated as two separate utterance units, and so it suffers from

lack of training data for these.

5.6.6 Discussion

In summary, STIR can detect self-repair reliably across modalities and domains, but only under

a relaxed evaluation metric. However, this is sufficient forthe purposes of examining overall

rates of repair, as used in some clinical studies (McCabe et al., 2013), and automatic self-repair

detection using STIR can therefore be usefully applied to these datasets, removing the need for

time-consuming and costly hand annotations.

Using a more strict word-by-word evaluation, differences in annotation schemes and tran-

scription conventions have a marked effect on the system’s performance. Switchboard annotation

conventions result in a biasing on particular types of repair, namely, mid-utterance repetitions,

deletions and substitutions, whereas it is not marked for restarts, which caused it to perform

poorly on detecting them in the clinical data. On the clinical side, the fact that editing terms are

often marked as the repair onset means a Switchboard-trained detector will not detect these, or

if detecting them as interregna will not get the precise position of the repair onset as marked.

This has implications for the generalisability of all repair detection systems that rely on strict

word-by-word evaluation, such as those used in dialogue systems – the way in which the training

data has been annotated and transcribed will affect what types of repair it reliably detects.

The advantage STIR has over other systems practically speaking is its modularity– different

phases of the detection cycle may be omitted if there is no data to train on. Results can still be

reasonable, and useful for health professionals, even if this is not the same level of mark-up as

the Switchboard data.

5.6.7 Towards domain general repair detection

Despite the differences in the type of disfluency annotationavailable, one can build a system that

is practically useful for detection purposes using the set-up as shown in Figure 5.10. As long as

there is some heldout data available of the same type as the target corpus, even if not considerable
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Figure 5.10: STIR training and heldout sources for a new target domain

in size, STIR’s error functions can be manually adjusted (orautomatically experimented with)

to yield the best accuracy results before testing. This technique is effective in terms of giving

results with good overall correlations as described above.

The element of Figure 5.10 not present in the version of STIR here is the“fluent” corpus

which could form additional training data to the fluent language model in STIR. I hypothesize

that the appropriate data, even if from written, rather thanspoken sources, could boost results

on out-of-domain (non-Switchboard) data. Zwarts and Johnson (2011) show how large text-

based corpora included in a repair hypotheses re-ranker canimprove detection on Switchboard,

however I would like to explore the effect of additional resources in improving performance on

other data, such as the PCC corpus described here. Other dataSTIR does not currently use is

acoustic information, which has been shown to help disfluency recognition by improving partial

word detection (Liu, 2004). Incorporating speech signal information will form part of future

work.
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5.7 Conclusion

The chapter has presented STIR, a state-of-the-art incremental repair detector that can be used to

experiment with incremental performance and accuracy trade-offs. I have shown its efficacy on

the Switchboard test data. Its primary features are information-theoretic ones which are accessed

in a psycholinguistically plausible time-linear process.The word-by-word incrementality and

efficiency for which it was designed allows it to operate withno latency and high incremental

accuracy, which will be a useful feature for interactive dialogue systems.

STIR also shows some promise in becoming a domain-general incremental repair detec-

tor and therefore of practical use, in this case being used inpsychiatric consultation transcripts

though it is also currently being employed for other repair annotation tasks. In future work in

addition to incorporating acoustic data, I plan to include probabilistic and distributional features

from a top-down incremental parser e.g. (Roark et al., 2009), and use STIR’s distributional

features to classify repair type to make it more robust and explore the information-theoretic

paradigm for incremental processing further.
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Chapter 6

An Incremental Semantics Driven Model

of Self-Repair Processing

In this chapter I describe an abstract formal model for incremental self-repair processing as it

functions within Natural Language Understanding (NLU) andNatural Language Generation

(NLG) in a dialogue model. I also describe methods for implementing this model into the di-

alogue systemDyLan (Purver et al., 2011, Section 3.3). I argue that the framework and imple-

mentational methods laid out here address lacunae in previous formal computational models of

self-repair described in Chapter 3.1

6.1 Self-repair requirements for an incremental dialogue model

For a dialogue model or system to have incremental self-repair processing capability, given the

empirical evidence hitherto presented, it should be able toparse and generate repaired utterances

like the following at no greater processing cost, and with the same degree of strong incremental

interpretation and grain of incremental representation asfor fluent utterances, without filtering

the effects on fluency (the edit terms and reparanda) out of the input:

(6.1) “But one of [ the, + the ] two things that I’m really. . .”

Repeat (sw4356)

(6.2) “John goes to Paris,{ uh,} from London”

1The work here is an extension of (Hough, 2011) and (Hough and Purver, 2012).
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Extension (or forward-looking disfluency) as an editing term (constructed example)

(6.3) “. . . but my kids are only elementary [ grades, + levels ]right now” Substitution (sw4325)

(6.4) “. . . the bank was suing them [ for, +{ uh,} ] because they went to get. . .”

Delete (sw4356)

(6.5) “[the interview was,+ {. . .} it was] alright”

Substitution with continued access to the reparandum (Clark, 1996, p.266)

(6.6) “Peter went[ swimming with Susan, +{or rather,} surfing] yesterday”

Substitution requiring ellipsis resolution using the reparandum (constructed example

from anonymous SemDial 2012 reviewer)

6.1.1 NLU requirements

Several desiderata for self-repair processing in NLU can beinferred from these examples, given

the demands of incrementality argued for in the previous chapters.

The first requirement is that self-repair processing shouldbe strongly incremental. Repairs

should be detected and assigned a suitable representation immediately upon the repair onset

with minimal latency, as the STIR system described in the previous chapter was capable of on a

structural level.

Secondly, and perhaps the core claim of this thesis, NLU should be able to incrementally

interpret the type of repair made in terms of its contribution to themeaningof the utterance in

the dialogue situation; this information should be made available with strongly incremental in-

terpretation (maximal semantic information) within an appropriate framework, and not in any

way be filtered out. While it should be capable of dealing withthe surface forms of edit terms,

repetitions, substitutions and deletes, or more complex subtypes of these as described in Chap-

ter 4, these should processed in terms of their meaning and dialogue function, rather than surface

form– this chapter therefore takes a semantics-first approach. For example, NLU must incremen-

tally be able to interpret isolated edit terms as indicatingforward-looking trouble for the speaker,

and other repairs as backward-looking trouble sources for particular parts of the utterance, in

line with Ginzburg et al. (2014)’s proposal for differentiating the interactive meaning of the two

types.

Thirdly, NLU is required to keep track of the semantic increments it has derived in reparanda,
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e.g. in (6.5),“the interview” needs to remain accessible when parsing “it” for anaphora resolu-

tion to function, so it must also keep track of processing context and re-use parts of the semantic

and syntactic context built up by utterances appropriately. This is particularly the case in repairs

containing ellipsis like (6.6), where, given a suitable context, “with Susan” should be incorpo-

rated into the asserted information rather than discarded and can be seen as an element present

implicitly when processing the repair phase “surfing”.

Fourthly, given the possible parsing ambiguity in this lastexample, an NLU model must

tightly interact with dialogue context, which may be available from other sources of discourse

information in the dialogue framework, in order to select the most likely interpretation. So the

repair interpretation process, whilst clearly having a close interaction with syntactic processing,

should function in an interleaved fashion by querying the ‘higher-level’ conceptualisation part

of the framework. In the same vein, for NLU to interact with NLG, it must also be able to stop

parsing at any given point and have an accessible context ready to be used by NLG. While this

interchangeability is more of a general constraint for an interactive framework (see Purver et al.,

2014), its specific role for modelling self-repair will be explained below.

Finally, the NLU repair mechanisms should incur no greater processing costs than fluent

utterances wherever possible. This is not only a practical stipulation for their implementation,

but is also consistent with psycholinguistic evidence (Brennan and Schober, 2001, Section 2.4.3).

6.1.2 NLG requirements

The desiderata for an NLG account share the five just described of NLU (but in a generative ca-

pacity for the mentioned phenomena), with the additional requirement that its interaction with a

conceptualiser may include changing generation inputs at any given point during the interaction,

and must deal with such changes with appropriate processingand output behaviour. In the spirit

of (Guhe and Habel, 2001; Guhe, 2007), communicative goals may be incrementally constructed

by a conceptualiser (or dialogue manager) and passed to the tactical generation processes, so

an efficient mechanism must be in place to generate required repairs to reflect the conceptual

changes in the most natural way possible. As discussed in Section 3.3.1, Skantze and Hjal-

marsson (2010) began to address this, but their system, lacking an incremental semantics and

the requirements listed for NLU above, lacked the facility for representing the discourse effects

caused by generating self-repairs, nor could their system construct representations that could

be worked on by NLU. Buß and Schlangen (2011)’s model represented repair events, though
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R1 :





l1 : T1

l2 : T2

l3 : T3(l1)



 R2 :

[
l1 : T1

l2 : T2′

]

R3 : []

S1 =





l1 = a
l2 = b
l3 = c



 S2 =

[
l1 = a
l2 = b′

]

S3 = []

Figure 6.1: Example TTR record types (top row) and records (bottom)

it did not interface with an incremental grammar that would make interchangeability possible,

nor provide an NLU framework that could represent incremental meaning construction from an

addressee (the user, in practical terms)– both are requiredto represent the discourse effects of

self-repairs.

The purpose of the NLU and NLG models and the implementational methods presented here

is primarily atool-for-understandingcognitive models of dialogue (Schlangen, 2009), and also to

build systems to facilitate more natural interaction with human users. Consequently the technical

tools used are part of the abstract model that I believe givesthe basis for a plausible incremental

semantics for self-repair, but these same tools are used forimplementational purposes within the

algorithms described in Section 6.7 for dialogue systems. One purpose informs the other, and

this chapter can be read from either perspective.

6.2 Background: DS-TTR, the IU framework and DyLan

I now re-introduce the technical tools from Section 3.3.3 inmore detail, by describing Type The-

ory with Records (TTR), its combination with Dynamic Syntaxin DS-TTR, the IU framework

and theDyLan NLU module necessary for the account.

6.2.1 TTR

Firstly, I describe the chosen semantic representation framework for the model, Type Theory

with Records (TTR, Cooper, 2005, 2012) in more detail.2

In TTR, the principal logical form of interest is therecord type(abbreviated ‘RT’ largely

2I only introduce the elements of TTR relevant to the phenomena discussed below. See Cooper (2012)
for a detailed formal description.
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from here), consisting of sets offields of the form [ l : T ] containing a labell and a typeT,

representing the central type-theoretic judgementl : T, that an object labelledl is of typeT. RTs

can be witnessed (i.e. judged as inhabited) byrecordsof that type, where a record is a semantic

object structured isomorphically to a RT, consisting of sets of label-value pairs[ l = v ]. See

Figure 6.1 for examples.

The central type judgement in TTR that a records is of record typeR, i.e. s : R, can be

made from the component type judgements of individual fieldsof R, e.g. the one-field record

[ l = v ] is of record type[ l : T ′ ] just in case typev is of typeT ′. Whether this istrueor falseis

determined by a model for a TTR domain (a type system) that hasa valuation functionA(T) for

each typeT, which maps eachT to a set of objects (type inhabitants) which are disjoint from the

set of types andT is a type on a defined partially ordered set of types (type hierarchy). Therefore,

l : T ′ is true iff the object labelledl in the type system is a member of the setA(T ′); i.e. l : T ′ iff

l ∈ A(T ′). If l : T ′ is true then the judgement in a recordl = v is true iff all objects of typev are

of typeT ′; i.e. givenl : T ′ is true, thenl = v is true iff v : T ′ (wherev : T ′ is true iff A(v)⊆ A(T ′)

is true).

This kind of type theory can be viewed as a set theory with set labels, which includes atomic

objects which are not sets themselves but can be set members (type inhabitants), and where

the sets are labelled by their given type. Given this equivalence, the syntax of the valuation

functionA(T) whereT is a complex type (i.e. meet (conjunctive) type, join (disjunctive) type or

negative type) can be seen as equivalent to and consistent with set-theoretic valuations with the

equivalent set-theoretic operators (i.e. set intersection, set union or complement sets) in the type

system’s semantics. This can be shown for two typesT1 andT2 in (6.7) where the equivalence

of a meet (conjunctive) typeT1∧T2 to set intersectionA(T1)∩A(T2) and the equivalence of the

join (disjunctive) typeT1∨T2 to set unionA(T1)∪A(T2) for a given domain of objects{a,b,c}

is shown.3

3This set-theoretic characterisation of TTR’s semantics ishow I understand it, and seems to be the
case implicitly in Cooper (2012) as a set-theoretic valuation functionA(T) whereT : Typeis defined as
part of any TTR type system. I will not deal with the valuationfunction in more detail here, nor address
the decidability of type judgements in these type systems, though I have found that for the purposes of
dialogue systems and models, an implementation of TTR with asimple type system can give decidable
judgements.
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A(T1) = {a,b} (6.7)

A(T2) = {b,c}

A(T1∧T2) = A(T1)∩A(T2) = {b}

A(T1∨T2) = A(T1)∪A(T2) = {a,b,c}

In addition to judgements that atomic objects are of given types, it is possible to make judge-

ments that a type is of another type inductively from their position in a type order or hierarchy;

a simple type hierarchy including most of the types used in this thesis is shown in Figure 6.2.

This hierarchy is ordered by the subtype relation as will be explained further in the next chapter.

The main types we are concerned with areBasicTypes, that is types with sets as their extension;

PTypes, which are predicate types with arguments ofBasicTypes or otherPTypes and which

are essentially functions from a defined sequence of arguments of the appropriate type (i.e. their

arity) to a type; andRecordTypes, which as exemplified above are sequences of type judgements.

I also make use of list types later on.

The single-field RT check just mentioned is generalisable torecords and RTs with multiple

fields: a records is of RT R if s includes fields with labels matching those in the fields ofR in a

one-to-one relation, such that all fields inR are matched, and all label-matched fields ins have a

value of the same type (which can be a subtype of that type, seebelow) as their corresponding

field in R– this can be defined as in (6.8). Thus it is possible for the record s to have more fields

than RTRand fors : R to still hold, but not vice-versa:s : Rcannot hold ifRhas more fields than

the records.

(6.8) Record type check:

For a recordsand and record typeR, s : R is true iff for every field
[

l : T
]

in R there is

a field [ l = v ] in ssuch thatv : T.

Fields can have values representing predicate type (PType) judgements, such asl3 : T3(l1) in

Figure 6.1, and consequently fields can bedependenton fields preceding them (i.e. represented

graphically higher up) in the RT, e.g. in Figure 6.1,l1 is bound in thePTypejudgement fieldl3,

so l3 depends onl1.
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Subtypes and manifest fields

Given the assumption that the semantic interpretation requirement of incremental NLU and NLG

models is to extract or present the maximal information froman utterance as it is processed, a

strongly incremental account will require checking whether RTs under construction are consis-

tent with the RTs representing domain concept RTs provided by a conceptualiser (or dialogue

manager) incrementally. To do this I make use of the⊑ (‘is a subtype of’) relation, which is

subsumptivein TTR, that is if RTR1 is a subtype of RTR2 (i.e. R1 ⊑ R2) then there are no

objects of typeR1 that are not of typeR2, or in the sense of the phrase from Description Logic,

R1 is subsumed by R2.

Operationally, subtype relation checking can be defined forRTs in terms of fields as simply:

R1 ⊑ R2 iff for all fields [ l : T2 ] in R2, R1 contains[ l : T1 ] whereT1 ⊑ T2. In Figure 6.1, it

will be the case thatR1 ⊑ R3, R2 ⊑ R3 andR1 ⊑ R2 iff T2 ⊑ T2′ . The transitive nature of this

relation (i.e. iff R1 ⊑ R2 andR2 ⊑ R3 thenR1 ⊑ R3) can be used effectively for type-theoretic

inference as will be described in the next chapter. An operational definition for a subtype check,

adapted from (Fernández, 2006, p.96), is given in (6.9). IfR1 hasn fields andR2 hasm fields,

assuming naively a uniform cost for each type check on the type hierarchy, the complexity of

this check can beO(n×m) in the worst case where every field in one RT needs to be compared

against every field in the other.4 Note that the label-matching conventions for type checkingare

extremely useful for computability here, as the complexitywould be far greater if unconstrained

re-labelling was permitted.

(6.9) Subtype relation check:

For record typesR1 andR2, R1⊑ R2 holds just in case for each field
[

l : T2
]

in R2

there is a field
[

l : T1
]

in R1 such thatT1⊑ T2. This relation is reflexive and transitive.

While I do not discuss the full stratified type hierarchy of types for TTR here, I note that for

all types,T1⊑ T2 implies thatT1 : T2, but does not implyT2 : T1 unlessT2⊑ T1, a consistency that

extends to RT judgements – see Cooper (2012). There are many complexities here which this

thesis will not deal with, for instance stratification of different orders of types to avoid Russell’s

paradox– again see Cooper (2012) for details. I do not believe these complexities affect TTR’s

suitability for dialogue modelling and the discussion here.

4The cost of the subtype check for a field may be more costly if itis dependent (i.e. aPType, however
this is not important for the discussion here.
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I use the notion ofmanifest(singleton) types, e.g.Ta, the typeT of which only a is a wit-

ness. Here, I represent manifest RT fields such as[ l : Ta ] whereTa ⊑ T by using the syntactic

sugar[ l=a : T ] following Cooper (2012). The subtype relation effectivelyallows progressive

instantiation of fields in a monotonic fashion, as the addition of fields to an RTR, and the man-

ifestation of fields inR, leads toR′ whereR′ ⊑ R. This is practically useful for an incremental

dialogue system in terms of meeting the strong incremental interpretation and minimization of

re-computation requirements (see Section 3.5.3) and for other reasons of self-repair processing

as I will explain.

Meet types and merge operations

I also make use of themeet typeof two or more RTs and an operation to yield an equivalent RT

to their meet type. As Cooper (2012) explains, the meet of twoRTs results in a type that is no

longer an RT, even if the objects it witnesses are records, however anequivalentRT to the meet

type of two RTsR1 andR2 is the yield of a merge operation (R1 ⋗ R2) (Larsson, 2010). Two

typesT1 andT2 are equivalent iff for any objecta in the domain such that iffa : T1 thena : T2

and vice-versa. In the simplest case merge can be characterized as union of fields of two RTs, for

example forR1 andR2 in (6.10).5

if R1 =

[
l1 : T1

l2 : T2

]

andR2 =

[
l2 : T2

l3 : T3

]

R1∧R2≡ R1 ⋗ R2 =





l1 : T1

l2 : T2

l3 : T3





(6.10)

I also introduceasymmetric merge( ⋗ ) as described by Dobnik et al. (2013). Operationally

this differs from the standard merge in that given two recordtypesR1 andR2, R1 ⋗ R2 will yield

a RT which is the union of all fields with labels not shared byR1 andR2 and the asymmetric

merge of the remaining fields with the same labels, wherebyR2’s type values take priority over

R1’s fields, yielding a resulting RT withR2’s fields only in those cases. A simple example is

given in (6.11).

5This chapter is only concerned with simple examples that avoid label-type clashes between two RTs
(i.e. cases whereR1 containsl1 : T1 andR2 containsl1 : T2); in these cases the operations are more complex
than union of fields.
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if R1 =

[
l1 : T1

l2 : T2

]

andR2 =

[
l2 : T2′

l3 : T3

]

R1 ⋗ R2 =





l1 : T1

l2 : T2′

l3 : T3





(6.11)

RT functions and paths

One of the advantages of TTR over purely feature matrix basedsystems is that it incorporates

elements of theλ -calculus, which enables it to use insights from use of the simply-typedλ -

calculus work in formal semantics since Montague (1974). Inparticular, TTR allows functions

which map from a domain of a given type to a range of a given type. Here we are interested in

functions of typeRecordType→ RecordType, which can be represented as a lambda function

with a domain and range RT:

λ r : RecordType.r1 : RecordType

In cases where the range RT may need to reference fields in the domain RT, this can be done

through the range RT referencing thepath to the relevant field values in the domain RT. For

example, if a function carries the value of al1 labelled field in its domain RT to its range RT,

whilst changing the types of the other fields, this will be represented as in the
[

l1 : r.l1
]

field

in (6.12).

λ r :





l1 : T1

l2 : T2

l3 : T3



 .





l1 : r.l1
l2 : T2′

l3 : T3′



 (6.12)

To avoid re-duplicating identical fields in the range and domain, this can also be represented

through using the asymmetric merge of the domain RT to the RT in the range of the function, so

it is possible to represent the same function in different ways, with asymmetric merge providing

a more concise representation, as in (6.13).

λ r :





l1 : T1

l2 : T2

l3 : T3



 .





l1 : r.l1
l2 : r.12

l3 : T3′



= λ r :





l1 : T1

l2 : T2

l3 : T3



 .r ⋗

[
l3 : T3′

]
(6.13)
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♦,Ty(t),







x= john : e
e=arrive : es

p=sub j(e,x) : t
head=e : es







Ty(e),
[

x= john : e
head=x : e

]

Ty(e→ t),

λ r :
[

head : e
]
.r ⋗







x=r.head : e
e=arrive : es

p=sub j(e,x) : t
head=e : es







Figure 6.3: Final DS-TTR tree for “John arrives”

This equivalence is also ontologically attractive if one thinks of the RT in the domain as being

a type of dialogue situation or context. For cases where the function does not depend on certain

fields in a context, these need not be explicitly present in the domain RT, and will remain un-

changed in the resulting RT, and the function will only override labels which clash with those

in the range RT. Ginzburg (2012)’s KoS framework makes extensive use of this within dialogue

state update rules. It is worth noting here that all the operations described can also apply to

records in addition to RTs.

Given the highly flexible nature of TTR and its range of operations, with a suitable type

hierarchy it is possible to express the fine-grained type judgements which are required for syn-

tax, lexical semantics and dialogue update functions. The next chapter will introduce ways in

which records representing dialogue situations can be usedin an intuitive way to build a seman-

tic model, while in this chapter I will focus on methods to yield appropriate TTR representations

incrementally within a dialogue framework.

6.2.2 DS-TTR

Through TTR records and RTs we have access to fine-grained representations which can be con-

structed in a monotonic fashion, however in order for these to become available on an incremental

basis, a TTR construction mechanism triggered by linguistic input as it is consumed word-by-

word is required. For this purpose TTR is combined with Dynamic Syntax (DS, Kempson et al.,

2001; Cann et al., 2005,inter alia) in the formalism DS-TTR (Purver et al., 2011; Eshghi et al.,

2012, 2013) which integrates TTR representations with the inherently incremental DS.
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As described in Section 3.3.3, DS(-TTR) is an action-drivenformalism. The trees such as

Figure 6.3 are constructed monotonically through sequences of tree-building actions consistent

with Logic of Finite Trees (LOFT, Blackburn and Meyer-Viol,1994). The DS lexicon com-

priseslexical actionskeyed to words, and also a set of globally applicablecomputational actions

(equivalent to general syntactic rules), both of which constitute packages of monotonic update

operations on semantic trees, and take the form of IF-THEN-ELSE action-like structures. DS-

TTR does not change the LOFT backbone of the DS tree building process, nor does it currently

augment the computational actions directly– the computational actions used in the current im-

plementation of DS-TTR used here can be found in Appendix B. However, RT formulae are

introduced into the lexical actions; for example the lexical action for the word “John” has the

preconditions and update operations in (6.14):

(6.14)

IF ?Ty(e)
THEN put (Ty(e))

put (
[

x= john : e
]
)

ELSE abort

As can be seen in Figure 6.3, the DS node types (rather than theRT formulae at the nodes)

are terms in the typed lambda calculus, with mother-daughter node relations corresponding to

semantic predicate-argument structure. The pointer object,♦, indicates the node currently under

development. Parsing begins by an initial prediction step on an axiom of a single node with

requirement ?Ty(t) and then the set of computational actions are Kleene star iterated over to

yield a tree set. The first word is parsed when it is consumed bytriggering all possible parses in

the current tree set, and then the set of computational actions are then again iterated over to yield

a new tree set.

DS parsing yields an incrementally specified, partial semantic tree as words are parsed or

generated, and following Purver et al. (2011) in this thesisDS-TTR tree nodes are decorated not

with simple atomic formulae but with RTs, and correspondinglambda abstracts representing RT

λ -functions of typeRT→ RT. See Figure 6.3. On functor nodes semantic content decorations

are of the formλ r : [ l1 : T1 ].r ⋗ [ l2=r.l1 : T1 ] wherer.l1 is a path expression referring to the

label l1 in r – see the functor node with DS type labelTy(e→ t) of Figure 6.3.

Using TTR’s affordance of manifestness of fields as mentioned above, we have a natural

representation for underspecification of leaf node contentof DS trees, e.g.[ x : e ] is unmanifest

whereas[ x= john : e ]6 is manifest and the latter is a subtype of the former.

6Note again this is syntactic sugar for[ x : ejohn ] and the= sign is not the same semantically as that
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Following Eshghi et al. (2013), DS-TTR tree nodes include a field head in all RTs. Tech-

nically, the range of theλ -functions at functor nodes is the asymmetric merge of theirdomain

RT(s) with the RT in their range. This allows theheadfield of argument node RTs inβ -reduction

operations to be replaced by theheadfield of the function’s range RT at the sister functor node

in their resulting mother node RT or RT function.

The modifications in DS-TTR also include incorporating the asymmetric merge function into

the LINK EVALUATION computational action (see Appendix B) . This action appliesbetween

RTs at the root of DSlinkedtrees and the RTs at nodes they link from, such as in Figure 6.4’s trees

for the utterance “John, who smokes, arrives”. This way the lower linked tree’s semantic content

can become incorporated in the spirit of the original presentation in Kempson et al. (2001),

but with an elegant variable binding technique. In Figure 6.4, the initial LINK ADJUNCTION

computational action copies the RT on the higher matrix tree’s Ty(e) node with its RT copied

onto the lower linked tree’sTy(e) node. When the LINK EVALUATION action fires after “John,

who smokes” has been parsed, the RT compiled at the rootTy(t) node of the lower tree is carried

onto the matrix tree in its totality modulo itsheadfield, via an asymmetric merge with theTy(e)

node it links from. This allows normalβ -reduction functionality (the ELIMINATION action)

when “arrives” is parsed and the asymmetric merge preservesthe information built up on the

linked Ty(e) node. It is worth mentioning these modifications were found to have efficiency

benefits for inducing lexical actions from target RTs in the automatic learning of a DS-TTR

grammar (Eshghi et al., 2013).

One final deviation from original DS representation, and onethat was made in Cann (2011)

in some detail for standard (non-TTR) DS, is the assumption of a neo-Davidsonian representation

of verbs and adjunctive predicates, where fields correspondto an event term (notated as typees)

and to each semantic role projected by the event. This allowsall available semantic information

to be specified incrementally in a strict subtyping relatione.g. providing the
[

p=sub j(es,x) : t
]

field when subject but not object has been parsed, or even predictively after initial computational

actions create the subject node – see Figure 6.3. While eventterms are important, the need

for a separate event node on the tree as originally proposed by Cann (2011) was found lacking

for the purposes here. However, incremental specification of event information, such as the

tense and aspect information contributed by auxiliary verbs in English (Cann, 2011) may still be

achieved through using linked trees from functor nodes or the root node, which copy the event

in a record.
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♦,Ty(t),











x= john : e
e=arrive : es

e1=smoke : es

p1=sub j(e1,x) : t
p=sub j(e,x) : t
head=e : es











Ty(e),






x= john : e
e1=smoke : es

p1=sub j(e1,x) : t
head=x : e







Ty(e→ t),

λ r :
[

head : e
]
.r ⋗







x=r.head : e
e=arrive : es

p=sub j(e,x) : t
head=e : es







〈L−1〉Ty(t),







x= john : e
e1=smoke : es

p1=sub j(e1,x) : t
head=e1 : es







Ty(e),
[

x= john : e
head=x : e

]

Ty(e→ t),

λ r :
[

head : e
]
.r ⋗







x=r.head : e
e1=smoke : es

p1=sub j(e1,x) : t
head=e1 : es







Figure 6.4: Final DS-TTR tree with a linked tree for “John, who smokes, arrives”

term and compile withPTypefields at their root node that bind the copied term, using standard

L INK ADJUNCTION. Temporal adverbs such as ‘yesterday’ and other adjunctiveforms may also

predicate on the event term, and are similarly treated as linked trees. This approach reduces the

size of the matrix tree as sub-trees encoding the structure of epsilon terms to represent events as in

(Cann, 2011) are dispensed with, however progressive construction of the term through allowing

incremental predicate binding does not make the framework any less dynamic, nor reduce its

coverage.

6.2.3 The IU Framework and DyLan

The Incremental Unit (IU) framework (Schlangen and Skantze, 2009, 2011) is an abstract frame-

work for incremental dialogue systems which can be used for the formal specification of a dia-

logue model, or as the basis for software design. I now introduce the key elements used in this

chapter.

The IU framework can be described as a network of modules, each comprising aleft buffer
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of a graph of inputincremental units(IUs), aprocessorand aright buffer consisting of a graph

of output IUs. IUs have apayloadwhich determines what type of data they carry, whether it is a

word, POS tag or numerical value, or anything else determined by the system designer.

It is the edits to IU graphs, which compriseadd, revokeand commitaction of IUs in the

IU graph of a module’s right buffer and the effect of doing so on its downstream modules’ left

buffers that determines system behaviour. These functionsbeing applied to a given IUIUn will

be notatedadd(IUn), revoke(IUn) andcommit(IUn) while the boolean valuation ofIUn being in

these states will be notated byadded(IUn), revoked(IUn) andcommitted(IUn).

Furthermore, IUs can havesame level linkrelations between one another if it is desirable

that two or more IUs be in some dependency relation to each other within a module buffer,

or havegrounded inrelations between IUs in different module buffers. The creation of these

links will be notatedSameLevelLink(IU2, IU1) where the direction of the link is fromIU2 to

IU1 and similarlyGroundedInLink(IU2, IU1) makesIU2 grounded inIU1. The boolean valua-

tions of IUs being in these relations to each other will be notatedSameLevelLinked(IU2, IU1)

and GroundedIn(IU2, IU1). Same level links standardly go back in processing time, forex-

ample word 2 will be same level linked back to word 1, i.e.SameLevelLinked(word2,word1),

and in these cases I will call the path-final IU in the graph theright-most IU which has no

SameLevelLinklinking to it. OtherwiseSameLevelLinks can be indicative of structure or hier-

archy, depending on the module concerned: for example in parsing if a tree is constructed by

sub-trees, the same level link will go from the larger tree tothe subsumed sub-trees that com-

posed it. Grounded in relations on the other hand standardlygo from output to the input they were

triggered by, for example a process downstream of ASR such asPOS-tagging will be grounded in

its triggering word graph input IUs, or dialogue act tags mayhave grounded in links to the parse

trees used for their tagging decision. Motivated by fine-grained incrementality and the depen-

dencies just mentioned, buffers are defined as graphs with nodes that represent IUs, allowing for

multiple hypotheses to be constructed with time-linear input and their subsequent revision. In this

chapter I will use the incremental graph construction process of the IU framework, only slightly

deviating from the original proposal in using edges insteadof nodes for IUs, to model strongly

incremental NLU and NLG, and then show how this can be used in implemented algorithms in

Section 6.7.

TheDyLan NLU module (Purver et al., 2011) combines the grammar and parsing process
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of DS-TTR and RT checking in a module of a Java-based implementation of the IU framework,

Jindigo (Skantze and Hjalmarsson, 2010). It makes use of Sato (2011)’s characterization of DS

parsing as a DAG, and the graphical characterization allowsan overarching super-graph which

ranges over sequences of the more fine-grained DS parse DAG and which characterizes the mod-

ule’s IU graph. This can be seen clearly by repeating the diagram Figure 3.9 from Chapter 3 in

Figure 6.5.

W0 W1
i n v i s i b l e

‘john’

i n v i s i b l e

i n v i s i b l e

*adjunct

i n v i s i b l e

intro

i n v i s i b l e

i n v i s i b l e
i n v i s i b l e

LEX=‘john’
i n v i s i b l e

LEX=‘arrives’

i n v i s i b l e

LEX=‘john’

i n v i s i b l e

i n v i s i b l e

LEX=’arrives’

i n v i s i b l e

i n v i s i b l e

LEX=‘arrives’

predict
i n v i s i b l e

i n v i s i b l e

complete
anticipthin

thin

i n v i s i b l e

thin

complete

i n v i s i b l e

complete
i n v i s i b l e

anticip
i n v i s i b l e

LEX=‘arrives’

i n v i s i b l e

LEX=‘john’

Figure 6.5: DS context as a parse DAG (circular nodes=trees,solid edges=lexical(bold) and

computational actions) with an over-arching word DAG (rectangular nodes=tree sets, dotted

edges=word hypotheses) with word hypothesis ‘john’ spanning tree sets W0 and W1.

Despite this strong incremental representation availablefor each word, before the modifica-

tions described below were made,DyLan was capable of compiling RT formulae for complete

trees only, which mirrored the lack of strong incrementality in formal DS-TTR at the time. The

steps for improving this below are therefore for formal modelling as well as for implementational

benefit.

6.3 Extensions to DS-TTR and the IU framework for strong incrementality

DyLan as originally presented (Purver et al., 2011) begins to meetthe self-repair and incremen-

tality desiderata described in Section 6.1, but it requiressome development. DS’s augmentation

to DS-TTR, when implemented in an NLU module in the IU framework permits incremental

interaction with frame-based dialogue management. However DS-TTR does not meet all of the

above requirements for NLU, particularly of strong incremental interpretation on a word-by-

word basis and incremental representation of repair events. Furthermore, no generation model

was specified originally, nor the potential interaction between NLU, NLG and dialogue manage-

ment. Below I will describe the steps taken to address these issues.
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6.3.1 TTR operations for RT similarity and difference

The first extension to TTR I make is that of similarity and difference functions for two RTs. While

the core of TTR’s motivation is reasoning with the structural similarity between semantic objects

(Cooper, 2012), it lacks functions for directly obtaining ameasure of this or the appropriate RT

representations. For more specific motivation, as was shownin Chapter 5, computing differences

in incremental representations is important for self-repair detection and classification. To address

this, I introduce a new operation that calculates thedifferencebetween two RTs. While difference

is not standardly included in type theory (as it pre-supposes a notion of complementation), its in-

clusion into the version of TTR presented here is not harmfulto the rest of the system. Intuitively

R1−R2 should yield a type representing the maximal amount of information inR1 that is not in

R2. The difference may be additive, subtractive or both. To account for this I describe the differ-

ence as a meet (conjunctive) type of two record types: one comprising the type judgements inR1

but not inR2 and the other anegativeRT representing the type judgements present inR2 but not

in R1 – see (6.15). Either of these conjuncts may not feature in thedifference result depending

on the RT arguments the function applies to: e.g. the subtractive type is not present in example

(6.16). I define the difference operationally in terms of field comparison as in Algorithm 2. Note

that if for any field in a RTR1 of the form
[

l : T
]

there is a corresponding field
[

l : T ′
]

in

RT R2 and it is the case thatT ⊑ T ′, then in the result ofR1−R2, the difference in the subtractive

conjunct should be
[

l : T ∧¬T′
]
, however this algorithm is a simple version of RT difference

which assumes it will never encounter such inter-field subtype differences – see (6.16).

if R1 =





l1 : T1

l2 : T2

l3 : T3



 andR2 =

[
l2 : T2

l3 : T4

]

and notT3⊑ T4 then

R1−R2 =

[
l1 : T1

l3 : T3

]

∧¬
[

l3 : T4
]

(6.15)

if R1 =





l1 : T1

l2 : T2

l3 : T3



 andR2 =

[
l2 : T2

l3 : T4

]

andT3⊑ T4 then

R1−R2 =

[
l1 : T1

l3 : T3

]

(6.16)

In terms of Sundaresh and Hudak (1991)’s work on projection algebras, we could also say

that if R1 andR2 are elements of a commutative distributed domain, the difference betweenR1

andR2 is the least elementR3 such thatR1 ⊑ R2∨R3. However, this terminology presupposes
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Algorithm 2 Record Type difference operationR1−R2

INPUT: R1 andR2

Let add= [] : RecordTypeandsubtract= [] : RecordType ⊲ Initialise difference conjuncts.
Let matched= {} ⊲ A list of field names that have been matched.
for

[
l i : T1

]
∈ R1 do ⊲ Iterate over all fields.

for
[

l j : T2
]
∈ R2 do ⊲ Check each field for differences.

if l i = l j then
matched.append(l i ) ⊲ Matching field labels.
if not T1 : T2 then ⊲ T2 does not subsumeT1.

add= add ⋗

[
l i : T1

]
⊲ Add to the appropriate difference conjuncts.

subtract= subtract ⋗

[
l i : T2

]

if not l i ∈matchedthen ⊲ No match for this label, must be addition.
add= add ⋗

[
l i : T1

]

for
[

l j : T2
]
∈ R2 do ⊲ Another pass to add unmatched fields inR2 to subtract conjunct.

if not l j ∈matchedthen
subtract= subtract ⋗

[
l j : T2

]

OUTPUT: add∧¬subtract ⊲ Return difference conjunction.

a well defined ordering on our domain of RTs and requires a notion of join types (disjunctions)

on it: as I currently do not characterize the subtypes ofRecordTypeas an ordered set for now, I

leave the difference operator in the operational form in Algorithm 2. I will discuss order-theoretic

characterizations of RTs in modelling a dialogue domain in the next chapter.

It is also possible to quantify RT difference numerically aswell as yield an appropriate rep-

resentation. For this I use an asymmetric similarity metricbetween RTs I developed for DS-TTR

grammar induction evaluation in (Eshghi et al., 2013). Thisis done by calculating precision,

recall and F-score of one RT to another using a method similarto the semantic graph evaluation

function proposed by Allen et al. (2008).

This similarity function from RTR1 and RTR2 (i.e. the degree ofR1’s similarity to R2)

is computed in the following way: Each field will get a potential score in the range [0,1]. A

methodmaxMapping(R1,R2) constructs a mapping from fields inR1 to those inR2 to maximise

alignment, with fields that map completely scoring a full 1, and partially mapped fields receiving

less, depending on the proportion of theR1 field’s representation that subsumes its mappedR2

field; e.g. a unary predicate field inR2 such as
[

p=there(e) : t
]

could score a maximum of 3: 1

for correct typet, 1 for correct predicatethereand 1 for the subsumption of its argumente; I use

the total to normalise the final score. The potential maximummaxMapping(R1,R2) is therefore

the number of fields inR2 (including those in embedded record types). It is then possible to
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use the standard F-score (F1) measure to balance the effect of precision and recall for mapping

fields correctly, and use this measure forSimilarity(R1,R2) (the similarity ofR1 to R2). So, for

some RTR and goal RTG, with NR andNG fields respectively,Similarity(R,G) is computed as

in (6.17).

(6.17) precision(R,G) = maxMapping(R,G)/NR

recall(R,G) = maxMapping(R,G)/NG

Similarity(R,G) = 2× precision(R,G)×recall(R,G)
precision(R,G)+recall(R,G)

With these ways of computing similarity and difference at hand, it is possible to allow fine-

grained type-theoretic inference for dialogue processingand allows gradient values of similarity

which, as discussed in the previous chapters, are importantfor self-repair interpretation. Before

these can be used however, we need a way of strengthening DS-TTR’s incrementality, that is to

yield RT representations from utterances as they are produced word-by-word. This will address

the requirements of modelling the semantics of self-repair.

6.3.2 Strongly incremental construction of record types

I describe the principal modification made to the DS-TTR parsing process here. This is that TTR

record types are compiled incrementally on a word-by-word basis after each input word (or a

candidate word in generation) is parsed, giving RT representations forpartial treesin addition to

complete ones, as was the state of DS-TTR in Purver et al. (2011). The incremental compilation

allows the representations to become available immediately to other modules through accessing

the RT compiled at root DS-TTR tree nodes. This modification gives DS-TTR an interface to

representations from other sources of contextual information, most naturally dialogue semantics

in the style of KoS (Ginzburg, 2012), on a word-by-word level. As I will show, adopting the DS

principle that generation is driven by parsing, these alterationsa fortiori extend to generation, as

will be described in Section 6.3.4.

Previously in DS-TTR (Purver et al., 2011), only DS type-complete tree nodes had formulae

and consequently only complete trees with no requirements yielded RTs at their root. I introduce

underspecified RTs into type incomplete nodes that lack semantic formulae, allowing the relation

between these and instantiated RT values to be computed, giving the maximal amount of semantic

information available and satisfying the principle of strong incremental interpretation.
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The DS-TTR compilation is simply achieved by allowing functional application to apply

word-by-word incrementally on partial formulae rather than only permitting it for DS type-

complete sub-trees, allowing a RT at the root node to be compiled for any partial tree, which

is incrementally further specified as parsing proceeds, preserving DS’s monotonicity. It is worth

noting that while underspecified RTs are introduced, the DS requirement types are left as re-

quirements, rather being made complete before they have been satisfied by an appropriate lexical

or computational action. DS-TTR is still therefore driven by DS parsing dynamics and LOFT.

Within a given parse path, each maximal RT of the tree’s root node is a subtype of the parser’s

previous maximal output, making the formula construction monotonic.

More concretely, compilation of a RT for any partial tree is achieved by a simple two-stage

algorithm:

1. Decorate all terminal nodes lacking formulae with RTs containing a field of the appropriate

maximally general type judgement for the DS node type. Argument nodes are given simple

RTs and functor nodes given RT functions with underspecifiedPTypefields in their range

RT with the appropriate corresponding argument fields. Examples of the mapping from

DS node types to TTR formulae are as below:

DS node type Underspecified TTR formulae

?Ty(e)

[
x : e
head=x : e

]

?Ty(e→ t) λ r :
[

head : e
]
.r ⋗







x=r.head : e
e : es

p=sub j(e,x) : t
head=e : es







?Ty(e→ (e→ t)) λ r :
[

head : e
]
.λ r1 : head

[
e :

]
.r1 ⋗ r ⋗











x1=r1.head : e
x=r.head : e
e : es

p=ob j(e,x) : t
p=sub j(e,x1) : t
head=e : es











2. Carry out functional application from the RT functions ofthe functor nodes to the RTs

of their sister argument nodes, compiling aβ -reduced RT at their mother node (function-

ing like the standard DS ELIMINATION action). Continue in a bottom-up fashion until all
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nodes are covered. The ordering of these applications for a given tree is achieved through

an initial depth-first iterative search for functor nodes with incomplete mother nodes, halt-

ing upon compilation of a formula at the root node. This must start in the bottom left-hand

corner of the tree. If present, linked trees must be compiledfirst, from the bottom linked

tree if multiple, and results from LINK EVALUATION must be compiled up to the matrix

tree.Unfixednodes constructed from STAR ADJUNCTION (see Appendix B) must also be

collapsed into a vacant appropriate node first before the matrix tree is compiled.

In terms of advantages for a dialogue system, this compilation process gives us a data struc-

ture representing a parse path’s maximal semantic content made incrementally available. This

is practically and methodologically useful as a RT can be extended with information that may

not correspond directly to DS tree structure (not strictly linguistic information), for example

contextual dialogue information about the speaker of each word in the utterance as described by

Purver et al. (2010), giving the potential for integration of a full context model in the style of KoS

(Ginzburg, 2012), and even perceptual statistical data being made available to a dialogue agent

on-line (Cooper et al., 2014; Dobnik et al., 2013; Larsson, 2011). I will discuss RT inference in

more detail as regards its connection to classifying dialogue situations in the next chapter.

6.3.3 Strongly incremental interpretation in DyLan

Now situating the DS-TTR incremental compilation process in theDyLan dialogue framework

as a whole, it is possible to describe a parse state which combines Purver and Kempson (2004)’s

formulation of DS context as explained in Section 3.3.3, a minimal notion of dialogue context in

the style of KoS (Ginzburg, 2012) and also Sato (2011)’s insight that the context of DS parsing

can be characterized in terms of a DAG with trees for nodes andDS actions for edges. This com-

bination allows a satisfaction of strong incremental interpretation and incremental representation

principles, and a notion of dialogue situation that is extendible beyond purely linguistic content

and context, but can model dialogue or interaction context.

To do this formally, I propose a RT to represent DS-TTR parsing judgements as that in (6.18).

Parsing judgement records contain four fields:

• tree: the path-final DS-TTR tree

• actions: the lexical and computational actions fired with the last word on this path
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• cont: the semantic content, in the form of the maximal RT compiledafter parsing the last

word on this path

• ctxt: a simple notion of dialogue context which represents the currently active dialogue

move(s) in the form of a list of simple dialogue move objects active after processing the

actions. This is not quite the same as the LatestMove field in KoS (Ginzburg, 2012), as

there could be multiple active moves at once. For these dialogue move objects I stipulate a

PTypecalledMoveof which the following are subtypes, and whose arguments arealways

a dialogue participant identifier and semantic content in the form of aRecordType:

Assert〈DialogueParticipant,RecordType〉

Question〈DialogueParticipant,RecordType〉

Revoke〈DialogueParticipant,RecordType〉 (=Revocation of previously asserted content)

FwdProblem〈DialogueParticipant,RecordType〉 (=Forward-looking problem)

In the ctxt field I introduce dialogue move judgements which rely on the direct building of

question fields into the DS-TTR lexicon in the style of Gargett et al. (2009); Cann (2011).

In interpreting fluent utterances, simplistic dialogue actclassification consists of a type judge-

ment on compiled record typeR where the current speaker isSpeakerin ParseIUSn of the

form: IF R⊑
[

q : question
]

THEN Sn.ctxt = [Question(Speaker,cont.q)] ELSE Sn.ctxt =

[Assert(Speaker,cont)]. The way the other twoMove types are used will be discussed later in

discussing their construction during self-repair events.As the ctxt and action fields are list types,

here I define list types as behaving as lists in functional programming languages are often defined

to do, with just four operations:append(list,a) returns the same listlist with a appended the end

of it, prepend(list,a) returns the listlist with elementaadded at the beginning,head(list) returns

the first element oflist andtail(list) returns the rest of the list from the second element onwards.

If a list is given the value[] this means it is set to be empty. If lists are within record types,

the TTR ⋗ operation for a given field of list type operates in the standard way, completely

over-writing the value of the field in its first argument with that of the second argument.

It is simple to cast records of these interpretation judgements as IUs in an IU framework

based dialogue model. I will call the type of these judgements ParseIU types of the RT in (6.18).
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(6.18) ParseIU=







tree : DSTTRTree
actions : list(DSTTRAction)
cont : RecordType
ctxt : list(Move)







An example record of typeParseIU after the speakerUser has said “John” utterance-initially,

given a lexical entry for ‘John’,John′lex has fired after initial INTRODUCTION and PREDICTION

computational actions have run will be characterized as in (6.19).

(6.19)






























tree = ?Ty(t),







x= john : e
e : es

p=sub j(e,x) : t
head=e : es







Ty(e),
[

x= john : e
head=x : e

]

♦,?Ty(e→ t)

λ r :
[

head : e
]
.r ⋗







x=r.head : e
e : es

p=sub j(e,x) : t
head=e : es







actions= [introduction, prediction,John′lex, thinning,completion,anticipation]

cont =





x=John : e
e : es

p=sub j(e,x) : t





ctxt = [Assert(User,cont)]






























As each ParseIU will have asame level linkto a predecessor in the DS-TTR parse graph and

also agrounded inlink to the word input that triggered it, the strong incremental interpretation

and incremental representation required for self-repair processing is available throughout the

parse and generation state ParseIU graph.

Having made this IU formulation of increments of the parse state, it is possible to characterize

DyLan ’s NLU process as three linked IU graphs, where each graph is aDAG whose edges are

IUs with asame level linkto their predecessor, and the links between the graphs aregrounded in

links which go from the output IUs to the input IUs which triggered them, as shown in Figure 6.6.

The three graphs concerned are:

• input: a time-linear word graph posted by the ASR module, consisting of word hypothesis

edge IUsWn

• processing:the internal DS parsing DAG, which adds ParseIUsSn grounded intheir trig-

gering word hypothesis edge IUs
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Figure 6.6: Strongly incremental interpretation inDylan . Grounded inlinks go from bottom to

top. Same level linksfor IUs (edges) are indicated by the predecessor relation intheir IU DAG.

• output: a concept graph consisting of domain concept edge IUs, whichare record types,

Cn, grounded inthe corresponding ParseIUs

The final state of the graphs and their inter-connectedness after parsing “John arrives” can be

seen in Figure 6.6 with the value of ParseIU edge’s cont field RT displayed under it. Grounded

in links go from output to input IUs, which is shown in a bottom-up direction in this diagram.

Same level links are not drawn as they are implicit in the ordering on the DAG, where each

edge is grounded in its predecessor edge, with an (invisible) trivial empty IU being posited as

the source (first) of each graph (Schlangen and Skantze, 2011). An incremental derivation can

be seen in Figure 6.6. Note the grounded in links allow incremental representation (Milward,

1991) to become possible– the precise semantic contribution of each word is derivable from

the graph as the DS-TTR actions are grounded in words, and furthermore the type-theoretic

inference steps in the conceptualiser or dialogue manager (i.e. judgements of the current dialogue

state) are grounded in the DS-TTR action sequences. Not onlywill this allow the operations of
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1 2

3 4

5 6

Figure 6.7: Incremental interpretation: Transitions inDyLan during parsing of ‘John arrives’

adding, revoking and committing IUs in the IU framework to operate with the desired effects

on all processing levels, but this will help meet some of the desiderata for both abstract and

implemented models of self-repair processing set out above, as will be explained.

6.3.4 Strongly incremental semantics driven generation

The NLG model forDyLan described here builds on Purver and Kempson (2004)’s model of DS

generation, with several alterations that will be explained below. The first principal modification

is the use of TTR record types forgoal concepts.
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0

[
e : es

]

♦,?Ty(t)

7→

1

?Ty(t),





x : e
e : es

p=sub j(e,x) : t





?Ty(e),♦
[

x : e
]

?Ty(e→ t)




x : e
e : es

p=sub j(e,x) : t





‘John’
7→

2

?Ty(t),♦





x= john : e
e : es

p=sub j(e,x) : t





Ty(e),
[

x= john : e
]

?Ty(e→ t),




x : e
e : es

p=sub j(e,x) : t





7→

3

?Ty(t),





x= john : e
e : es

p=sub j(e,x) : t





Ty(e),
[

x= john : e
]

?Ty(e→ t),♦




x : e
e : es

p=sub j(e,x) : t





‘arrives’
7→

4

(TYPE MATCH)

♦,Ty(t),





x= john : e
e=arrive(x) : es

p=sub j(e,x) : t





Ty(e),
[

x= john : e
]

Ty(e→ t),




x : e
e=arrive : es

p=sub j(e,x) : t





Goal =




x= john : e
e=arrive(x) : es

p=sub j(e,x) : t





Figure 6.8: Successful generation path in DSTTR

From goal trees to goal concepts

Following the DS-TTR extension of DS parsing explained above, the modification to the original

account of DS generation in Purver and Kempson (2004) is madein that in place of a goal tree,

a goal concept represented by a RT is used to guide the generation process instead. Currently,

fully specified RT goal concepts may look like (6.20) where the dialogue participantSpeaker’s

generation goal is to communicate an assertion that they will go to Paris.

(6.20)













cont :











e=go : es
p2= f uture(e) : t
x1=Paris : e
x=Speaker : e
p1=to(e,x1) : t
p=sub j(e,x) : t











ctxt : [Assert(Speaker,cont)]













I replace the subsumption check for trees under construction with a semantic filterstage,

which is characterized as a series of RT subtype relation checks (see definition (6.9) above)
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between the goal concept and the RT judgement of the cont and ctxt fields of ParseIUs in the

parse state graph– for the subsumption check to be passed by acandidate RTC against the goal

conceptGC, it must be the case thatGC⊑C.

As discussed for NLU, in generatingAssertandQuestionmoves, the ctxt field’s list members

for a ParseIU are calculated by a subtype relation check on its cont field RT built up by parsing.

In generation the subsumption check extends to the ctxt fieldto prevent the generation of an

assertion form where a question is desired by the conceptualiser and vice-versa.

An example of a successful generation path is shown in Figure6.8 where the incremen-

tal generation of “John arrives” succeeds as the appropriate lexical actions for ‘John’ and ‘ar-

rives’, interspersed with sequences of applicable computational actions (e.g.transitions 07→ 1

and 2 7→ 3 ), can be applied sequentially, passing the stage-by-stagesubtype relation check,

until arriving at a tree thattype matchesin 4 .7

Pre-verbal lexicalisation through type checking

Another efficiency advantage made possible by using a goal concept RT is that subtype checking

can reduce the computational complexity of word-by-word lexicalisation used in the original DS

generation model (Purver and Kempson, 2004). This is done through pre-verbal lexical action

selection, removing the need to iterate through the entire lexicon after each word is generated.

For this purpose I introduce the idea of generating a set of lexical actionsSubLex(a sub-lexicon)

which can be populated when a goal conceptGC is input to the generator. This is done by a

simple iterative selection process on the lexicon using subtype checking as in (6.21).

(6.21) SubLexicalise(GC)returnsSubLex

For each lexical actionLi in the lexicon, add toSubLexif GC is a subtype of the TTR

record type (or range of the TTR record type function) added by Li.

Depending on a system designer’s choice of how many fields a DS-TTR lexical action’s TTR

formulae has, the size ofSubLexwill vary. For instance if lexical actions for verbs lack a field for

tense information, several candidates may be selected inSubLexwhich are all valid supertypes of

the goal concept (e.g. “likes”, “like”, “liked”), and less appropriate candidates may be filtered out

7Technically, the functor node TTR formulae in Figure 6.8 should be functions of typeλ r :

RecordType.r ⋗ r1 :RecordType, as can be seen on theTy(e→ t) nodes in Figures 6.3 and 6.4, however
to avoid clutter here I only represent their range record types. Also the ctxt part of the goal is omitted to
avoid clutter: here this is anAssertion.
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at a later stage. In this sense, the more lexicalised the grammar, the smallerSubLexwill be, and

consequently the smaller the search space for the followinggeneration. It is also worth noting that

semantically underspecified lexical entries, such as thosefor ‘do’ auxiliaries used in verb phrase

ellipsis, may be selected here by default, as the values in their fields inherit values from inter- and

intra- utterance context (Kempson et al., 2011), which is beneficial as where possible, anaphoric

and elliptical forms can be used. The CONTEXT SUBSTITUTION and REGENERATION rules

(Kempson et al., 2011) make the search back along the DS parsing DAG for values in ellipsis

possible.

In DyLan , the generation module shares the same ParseIU context DAG as the interpreter,

making it an interleaved dialogue system which meets requirements of inter-changeability. In

the generation module, the architecture is the inverse of interpretation given the input of RT goal

concepts, so we are concerned with three linked graphs:

• input: the goal concept graph has goal concept IU edges (RTs) between verticesGCn

posted by the dialogue manager or conceptualiser

• processing:the DS parsing graph of ParseIUs (shared with the interpreter module’s graph)

is incrementally constructed word-by-word by parsing the lexical actions in the sublexicon

and subtype checking the result against the current goal concept,adding the best (closest

matching) ParseIUSn

• output: the word graph’s edgesWn areadded to the output buffer incrementally during

word-by-word generation,grounded intheir corresponding DS parsing graph ParseIU,

which form part of a valid generation path subsuming the goalconcept (as in Figure 6.8)

6.3.5 Adding repair links and repaired status to IU networks

The final extension I make toDyLan is an augmentation of the set of graphical link relations

by positing repair links, and also the notion of an IU being in arepaired state as opposed to

a committedor revokedstate. Repair links have a different semantics to same levellinks or

grounded in links in that they are directed links from the repair phase to the reparandum phase of

a repair. If an IU is repaired (i.e. is the receiver of a repairlink), then it is givenrepairedstatus;

this function will be notated asRepairLink(IU2,IU1) where the repair link direction is fromIU2

to IU1. Similarly to the other links, the boolean evaluation thatIU2 repair links toIU1 will be

notatedRepairLinked(IU2,IU1). Repairedstatus can be also be given by assignment without

repair linking; this function will be notatedRepair(IUn). Repaired IUs cannot be a direct trigger
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for output, but they are not revoked. This gives the requisite downgrading without removal from

context (Ginzburg, 2012). Furthermore, the effect of repaired IUs within their own graph is

crucial for constructing the meaning of self-repairs as I will now explain.

6.4 Interpreting self-repairs incrementally

With the extensions just described, incremental self-repair modelling falls out quite naturally

from DyLan when viewed as an abstract framework, and also in terms of implementation.

In repair processing, edit terms should be detected immediately, and a reparandum should be

detected as soon as the repair onset is detected, as was the case in the STIR system in the last

chapter. Furthermore the appropriate representation for repairs should be made available in as

unified a way as possible to normal fluent utterance processing just described, here in terms of

the DS-TTR parsing and generation and the effects on the context of a ParseIU graph described

above. I will describe how this is achieved below, and these methods can be seen schematically in

Figure 6.9 which diagrams the incremental construction of the ParseIU graph as triggered by the

input utterance “John likes, uh, loves Mary” spoken by the speakerUser. The word input graph

is the top graph on the left-hand side, and below that is its corresponding ParseIU graph being

constructed as the words are consumed and the appropriate record representing the right-most

ParseIU’s cont and ctxt fields is shown on the right.

Figure 6.9 shows a substitution repair and the desired incremental semantics for each phase

of repair processing. As soon as “uh” is consumed at T1, aFwdProblem(User,cont) dialogue

act is added to the ctxt list of moves in the right-most ParseIU in the graph. This means the

information that the user has a forward looking problem continuing after the semantic content in

the cont field has been constructed will immediately become available for other processes in the

dialogue model. There is no semantic change to the cont field as the edit term is a communicative

act rather than one tied to specific lexical meaning, and the previousAssertiondialogue act is

also preserved as there is no evidence this should be revokedat this point. When the repair

onset “loves” is processed, the lack of ability to parse fromthe right-most ParseIU’s tree causes a

repair to be inferred at T2. At T3 , this step solves the continuation problem (Levelt, 1989) in

repair interpretation– that of finding the extent of the reparandum and how far the parser should

backwards search in order to yield a felicitous parse. The graph structure of the parse state allows

for an easy backward search process over the sequences of DS-TTR actions keyed by each word.
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Figure 6.9: Strongly incremental interpretation of repairin DyLan . RepairedParseIUs are
dashed.
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Once this is found, the speaker’s commitment to the reparandum’s semantic contribution can be

taken back with the addition of theRevokeact in the ctxt field, which revokes the difference

between the cont fields of ParseIU edgesS1→ S2 and S1→ S4. Finally, at T4, the precise

difference between the repair phase and the reparandum phase is computed which updates the

currentdiff argument of theRevoke(User,diff ) dialogue move in the ctxt field.

This was a sketch of the processing steps and incremental semantic construction for a typical

substitution repair, now I detail the mechanisms the model uses to deal with the different types

of repair that have been observed empirically in this thesis.

6.4.1 Edit terms and interregna

I follow Ginzburg et al. (2014)’s intuition that disfluencies with the surface form of repeated

words, filled pauses or discourse markers are time-filling devices signalling communicative trou-

ble. The recognition of an edit term is done by a two-fold process: firstly, recognition of a

parsing disfluency from a lack of parse from the normal lexicon, and secondly, a check that the

word has the phonetic form of an edit term. The last step is made possible by adding toDyLan ’s

resources a sub-lexicon for English edit termsEditTerms, which are those found in the corpus

study in Chapter 4. As for an edit term’s semantic update effects, as Figure 6.9 shows at T1

they result in a forwards-looking problem dialogue actFwdProblembeing appended to the con-

text list of dialogue moves (ctxt field of the right-most ParseIU). The edit term does not change

any semantic or syntactic content outside of this, so a ParseIU is created that is a copy of the

right-most ParseIU but TTR asymmetric merged such that the dialogue act information of the

problem signalFwdProblem(Speaker,cont) is the most recent move, and also with an empty list

for the actions field, due to the fact no new DS actions have been run. No semantic information

built up in the right-most cont field is revoked, however, if arepair onset follows, revocation

of constructed semantic content may be indicated in the following ParseIU as will be explained

below. Edit term IUs simply follow consecutively in the ParseIU graph from the right-most IU,

and aresame level linked to the previously right-most IU. They will be givenrepairedstatus but

without a repair link, as they do not have reparanda.

6.4.2 Repeats

Repeat repairs, the most common type of repair structure, have a similar dialogue context effect

to edit terms– their recognition triggers aFwdProblemmove to be interpreted and they do not
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Figure 6.10: Repeat repair onset using ParseIU copying for “John [ has a + has . . . ”

change the current semantic content built up in the utterance. As with edit terms, the initial cause

of the recognition of their onset is a failure in the DS-TTR parsing process to construct a tree from

the right-most ParseIU’s tree and the consequent processing again makes use of a copying of the

right-most ParseIU (the reparandum end IU), again with the asymmetric merge of the appended

dialogue act information of the problem signalFwdProblem(Speaker,cont) . However their

recognition and subsequent action copying and integrationinto the ParseIU graph uses a differ-

ent process, due to the fact they may last several words and are not treated as syntactically atomic

like edit terms: a string of edit terms triggers concatenated copiedFwdProblem-containing IUs

without requiring comparison to a reparandum as no repair has been processed, while the situa-

tion is different for repeats. The ParseIU triggered by a repeat repair’s onset is integrated as the

successor of the ParseIU preceding the start of the reparandum, effecting the same backwards

search as for the substitution repairs as in Figure 6.9. The difference in processing terms to sub-

stitution or delete repairs is that no parsing needs to take place– a word identity check of the

current word with preceding words in the word graph, if positive, triggers the ParseIU keyed by

the word before the repair onset to be copied (including its actions field) and then same level

linked to the ParseIU before the reparandum onset. See Figure 6.10 for the state of the model

after the partial utterance “John [has a + has . . . ”, with the right-most ParseIU’s cont and ctxt

fields. Note the cont field has not revoked the information caused by parsing “a”, theε binder for

the restricting embedded RTR– it is only if the following word conflicts with this information

that this will be over-written. The default strategy is to assume this is the beginning of a repeat.

Also, repair links are added going from the repair onset word to each of the IUs inthe

repeat’s reparandum. By definition, repair links make the receiving IU repaired. Should the
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repeat be multiple words long, the word matching and IU copying process can continue word-

by-word, and the repair link of the predecessor edge allows for a pre-parsing step to check for

an unfinished repair, and if a repeat, the copying of the ParseIU removes the need to parse the

word afresh. The model predicts the finding people can be faster when processing repeated repair

words than fluent ones (Brennan and Schober, 2001), a finding that should also predict a speaker’s

faster production of them. Lexical retrieval and re-parsing is not required, as the copying process

takes care of this.

6.4.3 Substitutions

Detection and interpretation of substitutions follows theincremental process as shown in Fig-

ure 6.9 as described above. The semantic representation obtained for substitutions is motivated

by the extra information shown to be used by dialogue participants in repair processing (Brennan

and Schober, 2001; Ferreira et al., 2004), making these repairs more informative than simply the

right-most repair’s ‘cleaned’ semantic content equivalent to a fluent utterance. As Ginzburg et al.

(2014) argue, it is clear implicatures are obtained from revoking the reparandum and replacing

it. Example (6.22) repeated from (4.8) in Chapter 4 demonstrates this.

(6.22) “So, a lot of our clients are [ oil companies, + big oil companies ]”

(sw4330)

The extra information derived in addition to the content of the cleaned utterance “So, a lot

of our clients are big oil companies” is that the fact that thespeaker is talking about big oil com-

panies as opposed to those that are not big, i.e. any commitment to the fact they are not big is

revoked overtly. I achieve this type of inference through use of the RT difference operation (see

Algorithm 2 and (6.15) and (6.16)) between the reparandum end’s IU’s cont field and that of the

repair onset’s cont field. If the substitution is longer thanone word then this difference calcula-

tion is recalculated with each new repair word’s constructed ParseIU. Without this comparison

strategy, the extra inferences would not become available.Operationally, the difference between

the right-most ParseIU before the repair onset (i.e. the reparandum end)Sn−1 and the repair onset

ParseIUSn is calculated then integrated as revoked information inSn in two simple steps:

1. diff = (Sn−1.cont ⋗ Sn.cont)−Sn.cont

2. Sn = Sn ⋗ [ ctxt = [Revoke(Speaker,diff )] ]
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The reason for the asymmetric merge in step 1 will become clearer when discussing elliptical

repairs, but the motivation here is to recycle as much of the content built up as possible, con-

sequently not revoking constructed semantic information unless a repair’s content over-writes

it.

Another strength of this repair strategy is that the contextual information available in the

reparandum phase is not removed, just downgraded torepairedstatus. I use this status to stipulate

a modification to DS’s mechanisms for ellipsis and anaphora resolution: the context they use

in this model is not just the linear path back to the root of theDS Parse DAG but one which

includes any repaired ParseIUs. This strategy therefore allows the parsing of example (6.5) “the

interview was.. it was alright”, with the correct anaphora resolution of “it”. The ParseIU edges

with the DS-TTR tree and cont field containing the semantics for “the interview” are accessible

and DS anaphora mechanisms using context may run as normal. In other words, any committed

preceding edge on the word hypothesis graph can be accessed (i.e. any word or partial word

heard in the speaker’s speech stream) as can its corresponding grounded inParseIU.

Another aspect of the model I propose is that the parsing of self-repairs can be triggered not

only by syntactic disfluency but also bypragmatic infelicity. For example, if given a unique ob-

ject selection task where the user is only permitted to pick one object the user were to say “I pick

the yellow square and the blue square”, while this may be parsable in the DS grammar without

repair backtracking, the repair onset mechanism will stillwork in the same way because in this

micro-domain there is no available concept that representsthe user selecting both the yellow and

blue squares simultaneously in one turn. This is done via a step of checking whether the cont

field’s RT subsumes (is a supertype of) any domain conceptsD specified in the conceptualiser.

6.4.4 Deletes and restarts

For deletes and restarts, the model is in fact not any different to that for substitutions, except in

parsing deletes, one would expect different types ofdiff values in theRevoke(Speaker,diff ) repair

moves. This is yet to be tested in detail, but one would expecta difference in the type similarity

between the reparandum and repair phases. One would expect larger RTs in the conjuncts of

the RT difference operation (Algorithm 2) that calculatediff in deletes. Substitutions are likely

to re-use structures built up already in terms of DS tree building, while deletes are likely to

have stronger over-writing effects. TheSimilarity function (6.17) could be also used to give a

real value to the difference between reparandum and repair content, motivated by the fuzziness
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between the interpretation of mid-utterance deletes and substitutions shown in Chapter 4.

6.4.5 Defining self-repair for NLU

To unify the processing for the different types of repair discussed above, it is possible to define

a self-repair onset function for NLU in our model, as in Algorithm 3, here simplified without

including the appropriate repair links, grounded in links and repaired statuses that are assigned

during the process. It takes the state of the current word graphW0 . . .Wn, the state of the current

ParseIU graphS0 . . .Sn−1 and the current speakerSpeakeras its arguments. The function used

in this algorithm for parsing, which is important for the system as a whole, is that ofBestParse,

which selects the best ParseIU to be constructed given the last word input. This gives DyLan

a best-first quality in its parsing operation, and it relies not just on syntactic felicity but also

on semantic and pragmatic felicity. The best parse for a given wordWn is yielded by select-

ing the ParseIU constructed by it which has the combination of the most complete tree, i.e.

that with the largest proportion of nodes which are type complete, a measure notated here as

Completeness(Sj
n.tree), and whose top node (and cont field) has the highest similarity score (see

(6.17)) to an RTRx in the domain conceptsD, notated hereSimilarity(Sj
n.cont,Rx). The definition

is given in (6.23).

(NLU)Select ParseIUSj
n triggered by wordWn according to:

arg max
Sj

n

BestParse(Sj
n |Wn) = arg max

Sj
n,Rx∈D

Completeness(Sj
n.tree)×Similarity(Sj

n.cont,Rx) (6.23)

Note how in Algorithm 3 if an edit term is encountered there isno need to backtrack, other-

wise repeats, substitutions and deletes are processed by the backwards search consistent with a

local model for self-repair backtracking found in corpora (Shriberg and Stolcke, 1998, Chapter

4). This function seems to give us the appropriate repair semantics for processing repair onsets.

More detail of implementation of this function and mid-repair processing within the whole NLU

algorithm is given in Section 6.7.

6.5 Generating self-repairs incrementally

Due to the reversible quality of theDyLan framework, all the types of repair that can be inter-

preted can be generated and the effects on the shared ParseIUcontext graph are very similar,
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Algorithm 3 Self-repair onset function for NLU inDyLan
function SELF-REPAIR ONSETNLU(W0 . . .Wn; S0 . . .Sn−1; Speaker)

if from parsing wordWn an edgeSn cannot be constructed (cannot be parsed)
or there is noSn : Rx for Rx ∈ D (no concept in the domain)then

if Wn ∈ EditTermsthen ⊲ Edit term. Copy edge but with no actions.

add(Sn)whereSn =Sn−1 ⋗

[

actions= []
ctxt = append(Sn−1.ctxt,FwdProblem(Speaker,cont))

]

SameLevelLink(Sn,Sn−1); Return ⊲ Order in normal left-right way.

for backwards searchi = n−1→ 0 do ⊲ Not edit term, then backwards search.
if Wn matchesWi then ⊲ Repeat. Copy edge.

add(Sn) whereSn = Si ⋗ [ ctxt = append(Si.ctxt,FwdProblem(Speaker,cont)) ]
SameLevelLink(Sn,Si−1); Return ⊲ Order appropriately.

else try parseWn from Si−1 ⊲ Not a repeat or edit term.
if successful parsethen ⊲ Substitution or delete.

add(Sn) whereSn = arg maxSj
n
BestParse(Sj

n|Wn) ⊲ See (6.23).

diff = (Sn.cont ⋗ Sn−1.cont)−Sn.cont ⊲ RT diff. to reparandum end IU.

Sn = Sn ⋗ [ ctxt = append(Sn.ctxt,Revoke(Speaker,diff )) ] ⊲ Revoke act.
SameLevelLink(Sn,Si−1); Return ⊲ Order appropriately.

else Continue ⊲ Keep backtracking if no parse.

end function

in keeping with the generators as parsers approach in DS (Purver and Kempson, 2004). What

follows is a tactical NLG account of repair generation, but amore strategic account of why a con-

ceptualiser decides to generate repairs for communicativereasons is given in the next chapter.

In interaction, the generator’s goal concept may be revisedshortly after, or even during, the

generation process, so trouble may be encountered during realisation of an on-going utterance.

A repair onset function should operate if there is no possible DAG extension from the right-most

ParseIU after the semantic filtering stage of generation (i.e. removal of ParseIU paths that do

not subsume the goal concept), but this will happen in different ways depending on the type and

timing of that change.

6.5.1 Edit terms, interregna and covert repairs

The generation of edit terms is practically useful for timing purposes and has user experience

benefit in dialogue systems (Skantze and Hjalmarsson, 2010;Buschmeier et al., 2012). This

is the preferred strategy for stalling due to incomplete formulation or conceptualisation, which

reflects the prevalence of non-repair edit terms over interregna as shown in Chapter 4. Given the

way the model operates in NLG mode by sending goal concept IUsto the DS-TTR generator,
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there may be cases where the integration of the new material may be costly, for instance having to

initialise a full lexical search– i.e. generate a new sub-lexicon as in (6.21). In these cases where a

timing delay to formulation may take place, an edit term is selected randomly from a distribution

in the EditTermsresource and added to the output word graph. Given, in theory, vocalisation

(or synthesis) should be able to happen asynchronously in a separate downstream process as

generation continues (an approach implemented by Buschmeier et al. (2012)), the vocalisation

of the edit term can span the time taken to complete the lexical search and generation of the next

word. Another cause for edit term generation is if the pointer is in a DS-incomplete tree after

exhausting its generation possibilities given the goal concept and no further words can be parsed,

for example “You go to{uh}. . . ”. In these cases the inference from the generator is thatthere

is a more specified goal concept to come, and in these cases, rather than simply pausing, an edit

term can be generated while the rest of the concept is constructed.

Either of these two edit term scenarios can be completed successfully without backtracking

before generating the next word as in (6.2) “I go to Paris{uh} from London”, which I call

an extension, or they can serve the purpose of interregna for repairs. In (6.2) the DS parser

would treat the additional information after the edit term as monotonic growth of the matrix tree

through LINK ADJUNCTION, resulting in subtype extension of the root RT. Thus, a change in

goal concept during generation will not always put demands on the system to backtrack.

The semantic update effect of generating an edit term is identical to parsing, with aFwdProblem

generated in the ParseIU created, so the generator has a record of this even though it was not part

of the original goal concept but emergent from the necessityto generate a problem signal.

In addition to overt problem signalling,covert repairscan be made where the goal concept

has changed, but there is sufficient time to do the appropriate lexicalisation before generating

the next word without the need of an edit term. These will not update the ParseIU graph with a

FwdProblemor Revokeact containing ParseIU, as this change in generation path isnot in the

public information state.

6.5.2 Repeats

Repeats are similarly interpreted as forward-looking difficulty as described above, and in gener-

ation, these may also be used for time-buying strategies. The time-buying strategy using repeats

is consistent with Shriberg and Stolcke (1998)’s empiricalmodel of repeat repairs: a backwards

search mechanism which will favour short repeats. However this is conditioned on different
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parameters than simply length of the backwards search and length of the utterance so far.

To find out where natural retrace points for repeats lie, I generated repeats stochastically

(not using DS, just by string copying) from a corpus of a user interacting via text chat with a

simple chatbot that describes London buildings (Hough, 2009), according to Shriberg and Stolcke

(1998)’s length-based model– see Section 2.3.5. From the resulting utterances, there were more

natural and less natural surface forms that emerged:

More human-like repairs:

(6.24) “The Royal Naval College is situated [ in, + in ] Greenwich”

(6.25) “Shakespeare’s Globe Theatre [ is, + is ] situated [ on, + on ] the south bank”

(6.26) “St Paul’s Cathedral [ was, + was ] designed by Christopher Wren”

Less human-like repairs

(6.27) “Ask me some questions or click on the [ objects, + objects] ”

(6.28) “Yes of course I [ can think because computers have, + can think because computers

have ] intelligence”

(6.29) “If no-one’s [ there, I, + there, I ] may as well talk about the [ buildings, + buildings ]

myself...”

I induced a qualitative regularity from these, which was that the more natural repeats were

those which were either interrupted mid-constituent and traced back from the beginning of the

constituent (6.25), and the less natural ones were either those whose interruption was at a con-

stituent boundary and traced back to a mid-constituent position (6.27) or those which crossed

over a coordination phrase boundary such as (6.28). This seems consistent with the observations

in Chapter 4 and Healey et al. (2011)’s experimental findings.

Due to these observations I define a generation tactic only torepeat when the DS pointer is

in a type-incomplete DS sub-tree and the backtracking only extends to the creation of the highest

incomplete node above the pointer. This way complete sub-tree boundaries cannot be crossed.

This approach is consistent with the principle of least communicative joint effort (Clark, 1996),

as solving the continuation problem for the hearer is also made easier with this approach as it

minimises search. The difference for the NLU task of interpreting the repeat is that it must keep

track of which words have been matched, made possible by repair links, whereas in NLG the
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match can be made before the words are realised because repair links are added from the repair

phase to the reparandum before they are committed to the output word graph.

6.5.3 Substitutions

It is only a semantics or syntax mismatch, where the revised goal concept RT does not subsume

a permissible extension of a DS tree in the right-most ParseIU in the DAG, where revoking

repair action will occur and substitution and delete surface forms will be generated. Given the

reversibility ofDyLan , one could take the time serial process shown in Figure 6.9 tobe one for

generation but taking the right-hand record as the generation goal. However, one could also argue

for asymmetry to the NLU account. ARevokeact is not required to be part of the goal concept

(i.e. the strategic generation or conceptualisation) but it may emerge in the tactical part of the

generation which this chapter focusses on: the generator may find the only way to successfully

construct the goal concept in the cont field and anAssertmove binding the cont field in the ctxt

field is through repair. There is just the side-effect of backwards search causing revocation. Given

this, the subsumption relation check over both cont and ctxtfields of a candidate ParseIU to the

goal concept can be relaxed in that it should not apply toRevokeandFwdProblemacts, and

that in the general case, in order to aim for the minimal amount of repair, the selection of non-

repairs can be stipulated to be preferred by using theSimilarity function (6.17) between the goal

conceptGCand a candidate ParseIU edge for generationC, i.e. Similarity(GC,C) and preferring

candidates with higher similarity scores. This way, in general goal concepts can be assertion

or question content, and the added heuristic during generation is to be as fluent as possible,

however the relaxation of subsumption of the overall goal concept does not mean repaired IUs

are removed, as repair may be the only method for achieving the goal. Of course, the intention

to revoke explicitly can also be part of the goal concept, andin which case appropriateRevoke-

containing IUs will be selected before those that do not contain this, but in general this need

not be the case. It is worth mentioning that downstream vocalisation (synthesis) may require

theRevokeinformation to alter the prosody of its utterance accordingto repair structure: given

the empirical evidence that speakers do alter repair onset prosody compared with fluent words

(Brennan and Schober, 2001), it is clearly important to preserve theRevokestatus on an IU if we

want to achieve natural sounding output from the dialogue system.

Generation of a substitution repair can be shown in Figure 6.11 where the changing goal

concepts on the right-hand side are justAssertmoves, howeverRevokemoves are required for the
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“to”

S0 S1

< to>

T0











cont =









x1=Paris : e
x=User : e
e=go : es

p1=to(e,x1) : t
p=sub j(e,x) : t









ctxt = [Assert(User,cont)]
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< to>
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< Paris>
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“to” “Paris” “uh”

S0 S1

< to>
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< edit>

T2











cont =









x1=London : e
x=User : e
e=go : es

p1=to(e,x1) : t
p=sub j(e,x) : t









ctxt = [Assert(User,cont)]











“to” “Paris” “uh” “London”
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< to>
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< Paris>
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< edit>
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< London>
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“to” “Paris” “uh” “London” “on”
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< to>

S2

< Paris>
S3

< edit>
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< London>
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S5

< on>
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cont =













x2=Monday : e
x1=London : e
x=User : e
e=go : es

p2=on(e,x2) : t
p1=to(e,x1) : t
p=sub j(e,x) : t













ctxt = [Assert(User,cont)]















“to” “Paris” “uh” “London” “on” “Monday”

S0 S1

< to>

S2

< Paris>
S3

< edit>

S4

< London>

repair
S5

< on>
S6

< Monday>

T5

GOAL STATE

Figure 6.11: Strongly incremental generation of repair inDyLan . Goal concept changes cause
substitution repair at T2 and covert repair at T4.RepairedParseIUs are dashed.
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appropriate asserted content to be realised, and these would present in the ParseIUs in the shared

parsing and generation ParseIU graph (not shown here). The utterance “to Paris, uh, London on

Monday” is generated here. The initial goal concept is achieved at T1 and the goal concept

changes at T2such that sub-lexicalisation has to be run again, and given the lack of possible

parse available from the right-most ParseIU, an edit signalis added whilst the backwards search

takes place. When the backwards search and parse is successful at T3 the goal is met (despite

the right-most ParseIU in the ParseIU graph, not shown, now containing aRevokeact). At T4

there is another change in goal concept, but because no backwards search has to take place, the

extension can be covert without having to generate an error signal, finally the generator meets

the new goal at T5.

6.5.4 Deletes and restarts

As was the case for NLU, I define the NLG model not to generate delete and restart surface

forms differently from substitutions. TheRevoke(Speaker,diff ) moves caused in the ParseIU

graph should again have different sorts ofdiff values to substitution repairs, as more semantic

material should have been revoked, however this needs to be tested empirically. One possibility

for further development of this is to define the decision to restart from the beginning of the Par-

seIU tactically, that is to say, the decision is made to restart if certain criteria are met, otherwise

defaulting to the backwards search technique. This tactic to restart may be driven by too drastic a

difference between the current right-most ParseIU’s cont field and the new goal concept to war-

rant an attempt to revoke the constructed semantic content through substitution, again consistent

with a principle of making life easier for both the generatorand the parser. This is yet to be

integrated into the proposed algorithm, but could be promising to explore.

6.5.5 Defining self-repair for NLG

It is now possible to define a function for repair onset initiation (including covert repair initi-

ation) given changing goal concepts for theDyLan generator as follows. Given a new goal

conceptGCn has been added to the concept graph andSubLexis the set of words created by the

sublexicalisation check (6.21) fromGCn−1, the function applies as in Algorithm 4, again here

simplified without the appropriate repair links, grounded in links and repaired status assignment.

As with NLU, we need a notion of best-first search in generation for selecting the best word and

ParseIU possible, and this can be done, given the contigencyof NLG on NLU in DyLan , through



6.6. Ellipsis in repair processing 208

Algorithm 4 Self-repair onset function for NLG inDyLan
function SELF-REPAIR ONSETNLG(GC0 . . .GCn; S0 . . .Sn−1; SubLex; Speaker)

if from parsing all wordsWl ∈ SubLexan edgeSn cannot be constructed (cannot be parsed)
or there is no edgeSn such thatGCn⊑ Sn(no subsumption of goal concept)then

SubLex= SubLexicalise(GCn) ⊲ Repopulate the sublexicon.
try Parse∑l Wl ∈ SubLexfrom Sn−1 ⊲ Check if an extension or covert repair possible.
if Parse ofWl is successfulthen ⊲ Extensible.

if address(♦) in Sn−1.treecontains ?Ty then ⊲ Inside an incomplete tree? Repeat.
add(Sn) whereSn = Sn−1 ⋗ [ ctxt = append(Sn−1.ctxt,FwdProblem(Speaker,cont)) ] ⊲ Copy edge.
add(Wn) whereWn =Wn−1 ⊲ Repeat; one word default.
SameLevelLink(Sn,Sn−2); SameLevelLink(Wn,Wn−1) ⊲ Order appropriately.
n= n+1 ⊲ Increment as added an IU.

WhereSn,Wn = arg maxSj
n,Wk

n
BestGenerate(Sj

n,Wk
n |GCn): ⊲ See (6.30).

add(Sn) to ParseGraph;add(Wn) to WordGraph
SameLevelLink(Sn,Sn−1); SameLevelLink(Wn,Wn−1) ⊲ Order left-right.
Return

for backwards searchi = n−1→ 0 do ⊲ No extension possible, need to backtrack.
if i < n−1 then ⊲ If longer than one word backtrack generate random edit term.

add(Sn) to ParseGraph whereSn = Sn−1 ⊲ Just copy, do not re-parse.
Sn = Sn ⋗

[
actions = []
ctxt = append(Sn.ctxt,FwdProblem(Speaker,cont))

]
⊲ Fwd act. No actions added.

add(Wn) to WordGraph whereWn = random(EditTerms)
SameLevelLink(Sn,Sn−1); SameLevelLink(Wn,Wn−1) ⊲ Order left-right.
n= n+1 ⊲ Increment as added an IU.

try Generate∑l Wl ∈ SubLexfrom Si−1 ⊲ Substitution or delete. Generate.
if successful generation ofWn,Sn from Si−1 then

diff = (Sn−1.cont ⋗ Sn.cont)−Sn.cont ⊲ RT diff. to reparandum end IU.
Sn = Sn ⋗ [ ctxt = append(Sx.ctxt,Revoke(Speaker,diff )) ]; Return ⊲ Revoke act.

else Continue ⊲ Keep backtracking if no word generated.

end function

selecting the word that both maximises itsBestParsescore given the ParseIU context and also its

closeness to the goal conceptGCn. The definition is given in (6.30).

(NLG)Select WordIUWk
n and ParseIUSj

n triggered by goal conceptGCn according to:

arg max
Sj

n,Wk
n

BestGenerate(Sj
n,W

k
n |GCn) = arg max

Sj
n,Wk

n

BestParse(Sj
n |W

k
n )×Similarity(GCn,S

j
n)

(6.30)

6.6 Ellipsis in repair processing

While the model described covers repeats, substitutions, deletes, extensions and covert repairs, it

also has the ability to deal with repairs involving ellipsis, such as the following, from (6.6) above:
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(6.31) “Peter went[ swimming with Susan, +{or rather,} surfing] ...”

I assume that at the end of this part of the utterance the semantics for the right-most ParseIU,

rather than being as in (6.32), will be as in (6.33).

(6.32)











cont =





e=sur f : es

x=Peter : e
p=sub j(e,x) : t





ctxt = [Revoke(Speaker,





e=swim : es

x1=Susan : e
p1=with(e,x1) : t



)]











(6.33)











cont =









e=sur f : es

x1=Susan : e
x=Peter : e
p1=with(e,x1) : t
p=sub j(e,x) : t









ctxt = [Revoke(Speaker,
[

e=swim : es
]
)]











This is to say the information about the event being with Susan is not revoked. This is of

course defeasible if conflicting information were to followin the next word.

This example is different to the previous ones in another respect: it is not clearly syntactically

disfluent. In many grammars, including DS, this could be parsed as a fluent non-repaired coor-

dination with “or rather” as the coordinator: if the coordinator was simply “or” this would not

necessarily be a repair, rather an enrichment to the effect that the speaker did not know whether it

was a swimming or surfing event, and DS would in fact use ellipsis resolution mechanisms as will

be explained below. However the ‘rather’ here lexically makes the ‘or rather’ an editing phrase

instead of a coordinator. The DS ellipsis mechanisms can be used to get the correct semantics

for the repair phase ‘surfing’ as it would for ellipsis in a fluent utterance as will be explained,

however what is actually giving the reparandum its repairedstatus is the lexical content of the

editing phrase, in addition perhaps to prosodic factors indicating contrast, which are beyond the

scope of this thesis.8

Despite this hedge about the cause of the repair backtracking in the linguistic context for

this example, the model set out above still allows (6.33) to be constructed directly at the repair

onset. The difference between reparandum and repair is computed as the difference between the

asymmetric merge of the current right-most (reparandum end) ParseIU’s cont field with the new

information from re-parsing, to the new information– see the two-step process in Section 6.4.3.

8Thanks to Nick Asher for an intensive discussion on this example in my viva.
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Figure 6.12: Incremental interpretation of elliptical self-repair inDyLan using TTRasymmetric

merge

This means only information in the reparandum is over-written if it clashes with the new infor-

mation. This operation is shown schematically in Figure 6.12.

So during the interpretation of the self-repair in Figure 6.12 the asymmetric merge takes place

between the cont field at edges4→ s5, the reparandum end, and that at edges2→ s6, the repair

onset. This way maximal semantic content can be recovered from context where possible, and

the information about the information that the event happens ‘with Susan’ is not lost if that does

not conflict with our main predicate, which it does not in thiscase.

This is consistent with Ferreira et al. (2004)’s observation of recycling of semantic argument

structure from the reparandum phase, even if it is not appropriate with respect to the meaning

of the repair. There may be other more pragmatic factors at work which would favour a com-

plete over-writing effect here, but this must be influenced from a more complex model of the

situation– I discuss how situation-level information might interface with elliptical repairs in the

next chapter.

It is also worth mentioning another way of achieving the sameincremental semantics here

through using DS ellipsis mechanisms. In this case this can be achieved by reusing preceding

action edges in the spirit of the recent DS account of verb phrase ellipsis (VPE) (Kempson et al.,

2011, forthcoming). Schematically, the repair mechanism would work in a similar way to the

resolution of the VPE in “[Peter went] swimming [with Susan]and<Ai−A j> surfing<Ak−Al>”,

where<Ai−A j> is the sequence of action edges used in the construction of the DS-TTR parse DAG

triggered by the words “Peter went” and<Ak−Al> is the sequence for “with Susan”, both of which

are re-used either side of the actions triggered by “surfing”, however in the repair case only the
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Figure 6.13: Incremental interpretation of self-repair inDyLan using DS re-running of actions

latter sequence needs to be run (see Figure 6.13). The REGENERATION (Kempson et al., 2011,

forthcoming) rule operating over DS context makes this possible here, enabling the parser (and

generator) to take a sequence of actions from context and re-run them, provided that they were

triggered by the same type-requirement as is imposed on the node currently under development

in the right-most tree in the parse path.

The difference between the VPE and repair mechanisms is the commitment status of the

edges in the DS parse paths: in VPE the parse edges yielded from both construction paths would

be added to the ParseIU graph context, whilst in repair, although the reparandum’s path remains

accessible to the parsing and generation modules, only the repair phase’s parse path would remain

added, while the reparandum would be haverepairedstatus. A DS driven account is yet to be

fully fledged out for these repairs, however the potential for extending the self-repair model

provided by the DS characterization of context is clear.

The advantage of taking a DS-first approach is the possibility of extending other DS ellipsis

resolution mechanisms to their repair analogues. Here I present some more complex types of

ellipsis from Kempson et al. (forthcoming) and transform them into repair equivalents to illustrate

this:

(6.34) (VPE anaphora)“I asked the woman who had been hand-gliding how long she had been

doing so, and she asked me how long I had.”

(Repair equivalent)“[ I asked the woman who had been hand-gliding how long she had

been doing so, +{ no sorry,} she asked me how long I had. ]”

(6.35) (Gapping)“John is being interviewed for the Linguistics position today, Harry
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tomorrow.”

(Repair equivalent)“[ John is being interviewed for the Linguistics position today, +{ no

sorry,} Harry, tomorrow. ]”

(6.36) (Left-dislocated bare argument ellipsis)“Sue, John upset. Mary too.”

(Repair equivalent)“[ Sue, John upset, +{ I mean}, Mary ]”

DS ellipsis accounts are still developing and using them forellipsis resolution within repairs

seems a natural step. The DS account could give a nice parallel between the mechanisms used in

normal ellipsis and the recoverability from context required in repair quite elegantly. However,

the disadvantage of using a DS driven strategy for repair ellipsis is one of efficiency: the asym-

metric merge difference can be re-computed for each incoming substitution repair word with

uniform cost, whilst if actions are re-run and stored in context, should conflicting information be

parsed in following words, the re-run actions would need to be removed from the parse path and

the previous ParseIU re-computed. For this reason, while the accounts of repair ellipsis are not

fully fledged out for the range of phenomena just illustrated, a simple and efficient solution seems

to use the asymmetric merge approach (as in Figure 6.12), which can be used in all substitution

and delete repair processing.

Generating repairs with ellipsis (and generating elliptical structures in general) in a strictly

incremental way requires slightly more than the interpretation apparatus described here plus a

reversal of the input and output, as normal DS arguments would insist. There needs to be a

strategicreason why an elliptical form would be chosen over a fully pronounced one. One may

use two established pragmatics frameworks to begin to beginto describe such a story, Gricean

pragmatics (Grice, 1975) and Relevance Theory (Sperber andWilson, 1986). A computational

characterization of conversational relevance will be described in the next chapter, in which I

argue probabilistic and information theoretic characterization of dialogue situations play a large

role in repair and ellipsis.

6.7 Implementation: Redefining NLU and NLG algorithms

with self-repair processing

Given the strategies described above, I now redefine incremental interpretation and generation

algorithms to incorporate self-repair processing. Below algorithms are given for the whole NLU
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and NLG processes, not just repair onsets, and the full apparatus of repair links between IUs

and repaired status of IUs can be used for interpreting multi-word repairs. The motivation for

repair links and statuses becomes clearer in the context of adialogue system, particularly in

light of changing ASR word hypotheses. When a word hypothesis is revoked whose grounded

in ParseIUs have repair links stemming from them, these links will also be removed, as will the

effect on the ParseIUs they repair link to as they will lose their repairedstatus.

The full algorithms for NLU and NLG as they incrementally receive input are given in Algo-

rithms 5 and 6 in pseudocode.

6.7.1 Prototype NLG implementation

A prototype generation module has been implemented in Java according to Algorithm 6 as a mod-

ule in the incremental dialogue framework Jindigo (Skantzeand Hjalmarsson, 2010) to demon-

strate its semantically-driven word-by-word generation process and self-repair capacity. This has

been tested on a small corpus of goal concepts as described below. For generating self-repairs,

DyLan is capable of generating substitutions and deletes such as “I go to Paris, uh, London” with

goal concepts being artificially changed during generation. It yields the appropriate RT semantics

as described above.

6.7.2 Computational efficiency

With regards to the computational complexity of the model, there are several factors that are rele-

vant: the size of the lexicon| lex|, the branching factor $b of the number of computational actions

applied from nodes in the parse DAG, the cost of subtype relation checking between two records

$subtype, and the cost of compiling semantic formulae for partial trees $partial. The previous

DS model in the worst case for generating utterancesn words long would have a runtime com-

plexity in the order ofn×$b× | lex| ×$partial×$subtypewhere $partial and $subtypebecome

more expensive as the trees grow, whereas the new model’s runtime is dependent on the initial

pre-lexicalisation cost and the subsequent parsing and testing using a much smaller lexicon- this

is (| lex | ×$subtype(1))+ (n× $b× | SubLex| ×$partial× $subtype) where $subtype(1) is a

small value and constant9 and| SubLex| is significantly smaller than| lex |.

Initial results are encouraging in the implementation for generation– for goals deriving three

word utterances (e.g. ‘I like Paris’) and six word utterances (e.g. ‘I go to Paris from London’), in

9This is due to the small number of fields for checking in lexical actions.
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Algorithm 5 NLU algorithm forDyLan with self-repair ability pseudocode
INPUT: (update from left buffer) WordIUWn ∈ WordGraph
(module internal) All ParseIUsS0 . . .Sn−1 ∈ ParseGraph
OUTPUT: (update to right buffer) All edits∈ ParseGraph

(1) Best-first syntactic parse:
if Wn is utterance initialthen ⊲ Normal initial parse.

From DS axiom apply all possible computational actions CA*
Apply all lexical actionsΣLexkeyed by wordWn

else ifSn−1 ⊑
[

ctxt : [FwdProblem(Speaker,cont)]
]

then ⊲ Check for incomplete Fwd act.
if RepairLinked(Sn−1,Sl . . .Sk)

andWn.matches(Wx ∈Wl . . .Wk) then⊲ Incomplete repeat repair,Wn is a repeat ofWx. CopySx. Do not re-parse.

add(Sj
n) whereSj

n = Sx ⋗ [ ctxt = append(Sx.ctxt,FwdProblem(Speaker,cont)) ]

RepairLink(Sj
n,Sk) ⊲ Repair links to reparandum-final word.

else ifWn ∈ EditTermsthen add(Sj
n) whereSj

n = Sn−1; Repair(Sj
n) ⊲ Incomplete edit term. Copy predecessor.

SameLevelLink(Sj
n,Sn−1); GroundedInLink(Sj

n,Wn); Return ⊲ Order IUs.
elseApply all lexical actionsΣLexkeyed by wordWn to Sn−1.tree ⊲ Normal parse.

if no actionsΣLexcan be parsedthen GoTo (3) ⊲ Syntax driven repair.

(i) Apply all possible computational actions CA* ⊲ Normal DS-TTR parse adjust.
(ii) add(Sj

n) whereSj
n = arg maxSj

n
BestParse(Sj

n|Wn) ⊲ Normal best ParseIU. See (6.23).

SameLevelLink(Sj
n,Sn−1); GroundedInLink(Sj

n,Wn) ⊲ Normal left-right ordering.

(2) Semantic type check:
if Sj

n.cont⊑
[

q : question
]

then ⊲ Add simple dialogue act classification.

Sj
n = Sj

n ⋗ [ ctxt = [Question(Speaker,cont.q)] ]

elseSj
n = Sj

n ⋗ [ ctxt = [Assert(Speaker,cont)] ]

Wheretest=

[

cont : Sj
n.cont

ctxt : Sj
n.ctxt

]

, SelectRx where:

arg maxRx∈D Similarity(test,Rx) andRx : test ⊲ Select maximally matchedRx in domain conceptsD.
if no successful matchRx found then

revoke(Sj
n); j = j +1; GoTo (1) (ii) ⊲ Recurse from here until successful parse or DAG exhausted.

if all edges∑ j Sj
n are revokedthen GoTo (3) ⊲ Semantics driven repair.

if RepairLinked(Sn−1,Sl . . .Sk) then ⊲ Possibly incomplete substitution or delete repair.

diff = (Sk.cont ⋗ Sj
n.cont)−Sj

ncont ⊲ RT difference to reparandum end IUSk.
if not Revoke(Speaker,diff ) ∈ Sn−1.ctxt then ⊲ New revoke information.

Sj
n = Sj

n ⋗ [ ctxt = append(Sj
n.ctxt,Revoke(Speaker,diff )) ] ⊲ Update revoke act.

RepairLink(Sj
n,Sk) ⊲ Add repair link to reparandum end IU.

Return

(3) Repair Onset:
if Wn ∈ EditTermsthen ⊲ Edit term. Copy edge but with no actions. Fwd act.

add(Sn) whereSn = Sn−1 ⋗

[
actions= []
ctxt = append(Sn−1.ctxt,FwdProblem(Speaker,cont))

]

GroundedInLink(Sj
n,Wn); SameLevelLink(Sn,Sn−1); Repair(Sn); Return ⊲ Order in normal left-right way.

for i = n−1→ 0 do ⊲ Not edit term? Backtrack along the ParseIU graph.
if Wn.matches(Wi ) then ⊲ Start of repeat.

add(Sj
n) whereSj

n = Si ⋗ [ ctxt = append(Si .ctxt,FwdProblem(Speaker,cont)) ] ⊲ Just copy, do not re-parse. Fwd act.

GroundedInLink(Sj
n,Wn); SameLevelLink(Sj

n,Si−1) ⊲ Link to previous edge before repeat onset.
RepairLink(Sj

n,Sx) for all edgesSx ∈ Si . . .Sn−1; Return ⊲ Repair link to all reparandum.
else GoTo (1)for Si−1 ⊲ Substitution or delete. Re-parse from this point.

if successful parseSj
n from Si−1 then

diff = (Sn−1.cont ⋗ Sj
n.cont)−Sj

n.cont ⊲ RT diff. to reparandum end IU.

Sj
n = Sj

n ⋗ [ ctxt = append(Sj
n.ctxt,Revoke(Speaker,diff )) ] ⊲ Revoke act.

else Continue ⊲ Keep backtracking if no parse.

GroundedInLink(Sj
n,Wn); SameLevelLink(Sj

n,Si−1) ⊲ Link to previous edge before repair onset.
RepairLink(Sj

n,Sx) for all edgesSx ∈ Si . . .Sn−1; Return ⊲ Repair link to all reparandum.
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Algorithm 6 NLG algorithm forDyLan with self-repair ability pseudocode
INPUT: (update from left buffer) Goal ConceptIUGCn ∈ ConceptGraph
(module internal) All ParseIUsS0 . . .Sn−1 ∈ ParseGraph
OUTPUT: (update to right buffer) All edits∈ ParseGraph; All edits∈ WordGraph

(1) Pre-verbal lexicalisation: if SubLexis emptythen SubLex= SubLexicalise(GCn) ⊲ See definition (6.21)

(2) Best-first syntactic parse:
if Sn is utterance initialthen ⊲ Normal initial parse in generation mode.

From DS axiom apply all possible computational actions CA*
Try to parse all lexical actionsΣLex∈ SubLex

else Try to parse all lexical actionsΣLex∈ SubLexfrom Sn−1.tree ⊲ Normal parse in generation mode.

if no actionsΣLexcan be parsedthen GoTo (5) ⊲ Syntax driven repair.

for path-final nodesd ∈ ParseDAGdo
Apply all possible computational actions CA* ⊲ Normal DS-TTR parse adjust.
add(Sj

n) whereSj
n = arg maxSj

n
BestParse(Sj

n|Wn) ⊲ Normal best ParseIU.

SameLevelLink(Sj
n,Sn−1); GroundedInLink(Sj

n,GCn) ⊲ Normal linking for generation.

(3) Semantic type check and filter:
for path-final ParseIUs∑ j Sj

n ∈ ParseGraphdo

if Sj
n.cont⊑

[
q : question

]
then ⊲ Add simple dialogue act classification.

Sj
n = Sj

n ⋗ [ ctxt = [Question(Speaker,cont.q)] ]

elseSj
n = Sj

n ⋗ [ ctxt = [Assert(Speaker,cont)] ]

Subsumption checkGCn.cont⊑ Sj
n.cont ⊲ Semantic content (cont field) only here.

if Subsumption check failsthen
revoke(Sj

n)
if all edges∑ j Sj

n are revokedthen GoTo (5) ⊲ Semantics driven repair.

(4) Generate best word:
WhereSj

n,W
j

n = arg maxSj
n,Wk

n
BestGenerate(Sj

n,W
k
n |GCn): ⊲ Normal best generation - see (6.30).

if RepairLinked(Sn−1,Sx...Sk) then ⊲ Possibly incomplete substitution or delete repair.

diff = (Sn−1.cont ⋗ Sj
n.cont)−Sj

ncont ⊲ RT difference to reparandum end IU.
if not Revoke(Speaker,diff ) ∈ Sn−1.ctxt then ⊲ New revoke information.

Sj
n = Sj

n ⋗ [ ctxt = append(Sj
n.ctxt,Revoke(Speaker,diff )) ] ⊲ Update revoke act.

RepairLink(Sj
n,Sk) ⊲ Repair link to reparandum-final ParseIU.

add(Wk
n ) to WordGraph;SameLevelLink(Wk

n ,Wn−1); ⊲ Add word for synthesis.
GroundedInLink(W j

n ,Sj
n); Return ⊲ Opposite to NLU, word grounded in ParseIU.

(5) Repair Onset:
SubLex= {}; try do (1)-(2) ⊲ Repopulate the sublexicon. Check if extension or covert repair possible.
if Parse inSubLexis successfulthen ⊲ Extension is possible.

if address(♦) in Sn−1.treecontains ?Ty then ⊲ Inside an incomplete tree? Repeat.
add(Sn) whereSn = Sn−1 ⋗ [ ctxt = append(Sn−1.ctxt,FwdProblem(Speaker,cont)) ] ⊲ Copy edge.
add(Wn) whereWn =Wn−1; GroundedInLink(Wn,Sn−1) ⊲ Repeat; one word default.
SameLevelLink(Sn,Sn−2); SameLevelLink(Wn,Wn−1);RepairLink(Sn,Sn−1) ⊲ Order appropriately.
n= n+1; GoTo (2) for Sn ⊲ Increment as added an IU and return to normal generation.

for i = n−1→ 0 do ⊲ Backtrack along the ParseGraph.
if i < n−1 then ⊲ If longer than one word backtrack generate edit term.

add(Sj
n) to ParseGraph whereSj

n = Sn−1 ⊲ Just copy, do not re-parse.

Sj
n = Sj

n ⋗

[
actions = []

ctxt = append(Sj
n.ctxt,FwdProblem(Speaker,cont))

]

⊲ Fwd act. No actions added.

add(Wn) to WordGraph whereWn = random(EditTerms) ⊲ Generate random edit term.
SameLevelLink(Sj

n,Sn−1); GroundedInLink(Wn,Sj
n); Repair(Sj

n)
n= n+1 ⊲ Added new IUs so increment.

GoTo (1) for Si−1 ⊲ Substitution or delete. Re-generate from this point.
if successful generation ofWn,S

j
n from Si−1 then

diff = (Sn−1.cont ⋗ Sj
n.cont)−Sj

n.cont ⊲ RT diff. to reparandum end IU.

Sj
n = Sj

n ⋗ [ ctxt = append(Sj
n.ctxt,Revoke(Speaker,diff )) ] ⊲ Revoke act.

RepairLink(Sj
n,Sx) for all edgesSx ∈ Si . . .Sn−1; Return ⊲ Repair link to whole reparandum.

else Continue ⊲ Keep backtracking if no word generated.
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both cases the first type matched generation path is found≈14 times faster with a lexicon of 210

words when using the pre-verbal lexicalisation method compared to the traditional DS model

baseline. In terms of scalability, for bigger lexicon sizes| lex |, the increase in runtime for longer

utterances will be a factor ofn× | lex | in the case of traditional DS, whereas the factor will be

much smaller for the new model as| SubLex| is constrained by the grammar not to grow in the

same order of magnitude as the size of the overall lexicon.

In generating repaired utterances, due to the storing of parse states in the ParseIU network, the

extra runtime complexity caused by backwards searching is negligible– one would suspect that

the complexity may not be any worse than for ambiguous fluent parsing with multiple possible

DAG extensions, though this is yet to be fully evaluated. Development of this capability into

NLU and the integration of these into a working dialogue system is on-going.

The more interesting and major complexity factor in DS parsing and generation that should be

considered is the branching factor $b, as constraining this will reduce the blow-up in generation

time for longer utterances. It becomes clear that the DS generation DAG may be constrained by

using a number of different strategies as described by Sato (2011).

Although the best parse in both modes is currently characterized as choosing the sequence

that jointly constructs the most complete tree and also builds the RT structurally closest to a do-

main concept (or the goal concept in generation), using real-valued parsing probabilities induced

over a corpus would make for a more robust system.

6.8 Discussion

The NLU and NLG models proposed here meet the criteria for incrementality set out in Sec-

tion 3.5.3 and give coverage to the types of repairs observedin corpora from Chapter 4 and in

the literature (Chapter 2). They also begin to unify severalexisting dialogue approaches in an

interesting way.

In terms of interaction, as per (Clark, 1996), the mechanisms have been designed such that

the overall cost is minimized for the interaction for speaker and hearer of the self-repair. Further-

more, the information of the repair is available both to the generator and interpreter of the repair,

in line with the idea of a public dialogue record or game board(Ginzburg, 2012). I have shown

how it is possible to get a plausible dialogue semantics for repair in the spirit of Ginzburg et al.

(2014)’s account but through well-defined automatic incremental processes.
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In terms of the processing models described, the backwards search protocol in both modes

is consistent with Shriberg and Stolcke (1998) and Chapter 4’s empirical observations that the

probability of retracing N words back in an utterance is morelikely than retracing from N+1

words back, making the repair as local as possible.

In generation, in contrast to Skantze and Hjalmarsson (2010)’s string-basedSpeechPlan

comparison approach, there is no need to regenerate a fully-formed string from a revised goal

concept and compare it with the string generated thus far to characterize the repair. Instead,

repair here is driven by attempting to extend existing parsepaths to construct the new target

record type, backtracking through the parse state in an attempt to find suitable departure points

for restarting generation,retaining the semantic representation already built up in the generation

process.

6.8.1 Relationship to other work

The models here can be seen as part of a bigger plan to incorporate a notion of dialogue context

(such as in KoS (Ginzburg, 2012)) within strongly incremental parsing and generation as afforded

by DS-TTR and the IU-framework. Here I only incorporate a limited set of dialogue moves which

interact incrementally with the context built up by the incremental semantic construction of DS-

TTR, but this could be extended to a bigger set, possibly using more thorough-going models

of discourse updates such as proposed in Asher and Lascarides (2003) to specify an ontology

of contextual updates for dialogue. Furthermore, the context needs to incorporate the idea of

dialogue grounding (Clark, 1996) which has been modelled extensively in KoS. This may require

enriching the simple context model here with FACTS, Questions Under Discussion (QUD) and

PENDING fields (see Section 3.3.2) to model the information states of dialogue participants

more thoroughly, while adhering to the strict incrementality and interaction with the grammar I

have proposed here.

The closest effort to the integration of incremental semantic construction and incremental di-

alogue state update in the literature is the PTT model (Poesio and Traum, 1997) which was used

to model compound contributions by Poesio and Rieser (2010). PTT takes a grammar-based ap-

proach which incorporates syntactic, semantic and pragmatic information via a lexicalised TAG

grammar paired with the PTT model for incremental dialogue interpretation. A full account

of the incremental interpretation process is provided which incorporates lexical, syntactic and

semantic information, meeting the criteria of incrementalinterpretation and representation de-
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scribed in this thesis. Beyond this, Poesio and Rieser (2010) provide a detailed account of how

a PTT dialogue model might generate a collaborative completion (a completion of a user’s utter-

ance) using inferential processes and the recognition of plans in a micro-domain: by matching

the partial representation at a speaker transition point against a repository of known plans in the

relevant domain, an agent can determine the components of these plans which have not yet been

made explicit, and then use this to complete the plan for the current speaker.

While PTT shares desirable incremental qualities in terms of the recordingwhat information

is built up incrementally, it lacks a model that recordshowthe information was constructed. The

howpart of the dialogue context, which is essential for a model of self-repair, is achieved above

through incremental construction of time-linear graphical models of context and the modelling

of the dependencies between them, where the structure of these graphs is preserved, at least

utterance-internally for the exact increment each word contributes to the context. Treating actions

and contextual updates as first-class citizens of the dialogue model not only allows self-repair

processing to be modelled formally, but also allows it to be incorporated into robust dialogue

systems.

6.8.2 Future work

In terms of future development, once fully implemented, a considerable challenge is the real-time

evaluation of the modules in terms of interaction. Despite the costliness of the approach, there

has been an encouraging move towards using interaction withhuman users to evaluate dialogue

systems, particularly the criteria used by Skantze and Hjalmarsson (2010) ofhuman-likeness,

politeness, efficiency, intelligence, speed of response, quality of feedbackand clarity of turn

taking. To isolate the effects of theDyLan modules, these would have to be interchanged with a

competing module such as the original Jindigo generator (Skantze and Hjalmarsson, 2010) in the

same domain to have any between-systems comparison. To isolate the model’s usefulness along

interactive measures, a carefully controlled experimental set-up would also have to be devised.

In terms of processing, incremental repair works in a unifiedway across parsing and gen-

eration in a best-first manner according to DS tree completeness and similarity of record types

with those in the domain concepts. However this is only a firstapproximation to best-first search

with a reaction to low grammaticality and pragmatic infelicity– different search algorithms using

different heuristics can now be experimented with.

Furthermore, this chapter has presented no model of the world for the conceptualiser as it
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simply matches types to those in its domain concepts, and so this is fairly representational or

syntactic in nature. The next chapter deals with how dialogue agents make use of situational

context in self-repair processing within a probabilistic semantic framework.

While I cannot comment much on TTR’s suitability for addressing thelogical form equiva-

lence problem(Shieber, 1993, Section 3.2), as this is beyond the scope of this thesis, it is worth

mentioning that in the above explanation of DS-TTR generation above I hope it becomes evident

that RT goal concepts are suitable inputs to (tactical) generation, at least in a practical sense for

small domains. Due to the flexibility of TTR and the affordance it gives of designing type sys-

tems for a given domain, it is possible to constrain the concept types that are permitted as inputs,

whilst having the ability to encode varying types of semantic information in the same object

(record or RT). It is still not clear that First Order Logic isas well suited for inputs to generation,

despite its better studied logical properties, as discussed in (Shieber, 1993, Section 3.2). Further

work needs to be done here to investigate other suitable candidates.10

6.9 Conclusion

This chapter has presented an incremental semantics account of self-repair processing within

theDyLan framework using the IU framework and DS-TTR parsing and generation techniques.

Several non-trivial extensions to these tools were required before this was possible, particularly

strong incrementality for DS-TTR parsing. I have describedhow plausible representations can

be interpreted and generated on a word-by-word basis for theself-repair types observed in real

data. The next chapter will introduce a situation-based semantics for dialogue and the position

of self-repair processing within this.

10Thanks to my examiners Nick Asher and Wilfried Meyer-Viol for a lengthy discussion on this.
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Chapter 7

Going Probabilistic: Modelling Conceptual

Inference in Self-Repair Processing

This chapter1 addresses the issue of incorporating probabilistic inference into the incremental

dialogue framework presented in the previous chapter, presenting a method for modelling self-

repair processing in a psycholinguistically plausible way. The model incorporates recent work

on probabilistic TTR (Cooper et al., 2014), probabilistic incremental DS-TTR learning (Eshghi

et al., 2013) and order-theoretic models of probability andinformation theory (Knuth, 2005)

into a formal system that reflects the psycholinguistic results of Brennan and Schober (2001)’s

experiments and deals with elliptical repair examples fromGinzburg et al. (2014), Levelt (1989)

and Chapter 4 in a simple instruction-based reference identification domain.

7.1 Incorporation of probabilistic information

While the STIR system in Chapter 5 provides a reasonably robust statistically-driven automatic

incremental self-repair detector, the dialogue frameworkpresented in the previous chapter, while

capable of the appropriate processing, is unlikely to scaleup to using a large grammar and size-

able domain if limited to boolean parseability and semanticjudgements. The most obvious path-

way to improving robustness is to generalize the boolean values to probability values. This step

should also allow a dialogue model to entertain distributions over judgements of a situation rather

than just allow categorical ones and also allow Bayesian inference, an uncontroversial view for

1Much of the work here is drawn from Hough and Purver (2014a) and Hough and Purver (2014b).
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modern cognitive models (see Chater et al., 2006, for overview).

One conceptually simple solution to integrating probabilistic information would be to incor-

porate STIR as a pre-parsing step that operates onDyLan ’s word hypothesis graph, assigning

a real-valued probability to each repair hypothesis it makes, with the parseability of the word

sequences cleaned of reparanda being used as a further classification step to accept or reject hy-

potheses. This is an integration step that may not be very interesting, as the probability of repair

would be fully contingent on STIR’s output, and therefore probabilistic inference is not used ex-

cept for ranking repair hypotheses based on n-gram languagemodel measures. Furthermore, the

approach does not lend itself to inter-changeability between interpretation and generation, one of

the desiderata of incrementality set out in Section 3.5.3.

In practical terms, to bring the coverage ofDyLan ’s DS-TTR parser and generator up to

that of the n-gram models trained on Switchboard would require large-scale grammar induc-

tion. While this would be more straightforward for parsers trained on PTB-style phrase-structure

tree or dependency graph treebanks for which Switchboard resources are available (Rasooli and

Tetreault, 2014; Honnibal and Johnson, 2014) making this step for a semantically-oriented frame-

work like DS-TTR parsing is beyond the scope of this thesis.2 Furthermore, it is not clear that

the semantic representations for all types of self-repair in Switchboard could be obtained without

large-scale manual annotation, which in itself is problematic– see Chapter 4.

Furthermore, in terms of a cognitive model, a simple pipeline approach fails to provide a

communicative explanation as to how hearers use information from self-repairs in an interac-

tive setting nor one for how and why speakers produce self-repairs. Consequently, instead of

attempting wide coverage, this chapter focuses on modelling a micro-domain where the model

is designed to explain psycholinguistic results. As with the last chapter, the integrated self-repair

mechanisms operate withinDyLan ’s NLU and NLG algorithms, however here they incorpo-

rate probabilistic and information-theoretic information. Furthermore, as Chapter 6 gives no

account of the higher levels of inference in terms of model-theoretic semantics or pragmatic or

discourse-level processing, this is addressed by proposing a rudimentary reasoning system within

a simple dialogue manager that tightly interacts with NLG and NLU. The reasoning system on

the interpretation side is not only capable of making inference incrementally word-by-word from

fluent utterances but is also able to function with the same degree of incremental interpretation in

2Though see Eshghi et al. (2013) for methods for DS-TTR grammar induction.
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self-repaired utterances, making use of the material available in reparanda for fast inference. In

generation, it makes use of an information-theoretic relevance measure hitherto not presented in

computational linguistics, to guide content selection in aword-by-word fashion. I show how the

model can be used to model both roles of instructor and instructee in a reference identification

task similar to those described in Brennan and Schober (2001) and Levelt (1989).

7.2 Background on modelling referential communication

There has been significant work on simple referential communication games in psycholinguistics,

computational and formal modelling. These reference gamesare usually posed as a human-

human situation where an instruction-giver and instructeehave access to the same visual scene

with simple objects, and the instructor produces an utterance to make the instructee select the

object(s) he or she refers to. From the production perspective, Levelt (1989)’s seminal work

modelled speaker strategies for producing referring expressions (REs) in such a simple object

naming game. He showed how speakers use informationally redundant features of the target

object, orover-specification, violating Grice’s Maxim of Quantity that speakers should say no

more than is necessary to convey their communicative intention (Grice, 1975), a result that has

been supported in subsequent accounts.

In the NLG community, referring expression generation (REG) has been widely studied (see

(Krahmer and Van Deemter, 2012) for a comprehensive survey). The incremental algorithm (IA)

(Dale and Reiter, 1995), the most well-known REG algorithm,is an iterative feature selection

procedure that operates on the properties of objects in the domain. The IA computes the distractor

set of referents that each property used in a RE could cause tobe inferred and from this gives

a value to properties based on ability to determine the referent, however it does this in a non-

greedy manner, as it iterates over the properties in order oftheir general discriminatory power

(salience), not just their ability to determine the referent uniquely, and adds them if they have

any discriminatory power, stopping when the RE determines the referent unambiguously. This

was designed to be consistent with overspecification phenomena in that more salient properties

will be selected if they have any discrimination ability, even if the final RE generated is not

optimally brief. More recently Frank and Goodman (2012) investigate salience empirically in

a Bayesian model of REG based on information-theoretic surprisal in terms of how much REs

reduce uncertainty about their intended referent, a measure which they claim correlates strongly
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to human judgements of which RE best describes a given target(carried out in a multiple choice

study rather than allowing open answers).

The element of reference identification tasks discussed here, in line with the motivation of

this thesis, is incremental processing. The work closest tothe model presented here is the in-

cremental REG models described by Guhe (2007) and Fernández (2013) and the model of in-

cremental reference resolution in NLU proposed by Kennington and Schlangen (2014). Guhe

(2007)’s approach to REG is to model a fine-grained incremental conceptualiser which passes in-

crements to an incremental syntactic formulator as discussed in Section 3.2.2. Fernández (2013),

on the other hand, takes a more purely linguistic, syntax-level perspective. Fernández sketches

a novel solution to modelling overspecification, arguing the phenomenon may be caused more

by the affordances of incremental left-right word-by-wordinformation processing in different

languages, rather than salience of properties as proposed by Dale and Reiter (1995)’s IA– it is

worth noting here that the IA deals with incrementality in property selection of the avoidance of

re-computation type, rather than word-by-word surface-level incrementality. She argues prop-

erties seemingly redundant when considering the RE as a whole unit may in fact be important

when considering their incremental word-by-word contribution to reference resolution, that is,

their incremental informativity. The paper gives cross-linguistic evidence from Spanish speakers

based on Rubio-Fernández (2011)’s experimental results,arguing that speakers less frequently

over-generate in languages and situations in which redundant post-nominal adjectives do not add

any incremental information, and where doing so is syntactically felicitous. She exemplifies a

domain where the only red lamp in a scene is the referent, and it is possible to individuate it from

its object type (i.e. the property that it is a lamp) alone, where describing its colour is redun-

dant, however still partially discriminative as there is another red object in the domain. For an

English speaker “the red lamp” would be a typical overspecified description, whereas in Spanish

“la lámpara roja” (‘the red lamp’) would be less common, and“la lámpara” would be a more

common RE. This cross-linguistic difference is due to the fact the post-nominal “roja” does not

add any reference information incrementally after “la lámpara”, which on its own has sufficient

discriminatory power, while the English “red”, although not uniquely determining the referent,

narrows the reference set and so is incrementally informative. Fernández uses this example to

sketch a REG system that uses a variant of Dale and Reiter (1995)’s IA for content selection

interleaved with a TAG-based grammar formulator that is strictly left-right incremental in its
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tree construction. She emphasizes the importance of tightly coupling the REG procedure with a

reference resolution/NLU component but does not give details of how this could be done.

On the interpretation side of reference, reference resolution, Kennington and Schlangen

(2014)’s incremental NLU system models the role of the hearer or instructee. The system con-

tinuously incrementally outputs a distribution of possible referents conditioning on the logical

values of properties of the objects in the scene and the wordsused to refer to those properties

spoken by the instructor. The model forms part ofsituateddialogue processing, as it continuously

updates its referent distributions based on perceptual data, and not necessarily just linguistic data.

The conditional probabilities are calculated using a generative model (of the speaker) and imple-

mented using Markov Logic networks. Kennington et al. (2014)’s development of the model

uses incremental semantic representations built up word-by-word by an incremental rMRS (ro-

bust Minimal Recursion Semantics) parser (Peldszus et al.,2012) as part of the property set it

conditions on, boosting results from using simple n-gram models. No model of generation is

given.

7.3 Towards a dialogue-oriented incremental account

Motivated by incremental approaches such as those just described, this chapter presents an incre-

mental dialogue-motivated account of reference identification which models the speaker in terms

of incremental NLG and dialogue management and the hearer interms of incremental NLU and

dialogue management in reference identification games.

More specifically, the model aims to reflect the evidence fromBrennan and Schober (2001)’s

experiments that people reason at an incredibly time-critical level from linguistic information and

the evidence that self-repair can speed up semantic processing (or at least reference identification)

in such games. An incorrect RE being partly vocalized and then repaired in the instructions

in conjunction with a filled pause interregnum (e.g. “the [ yell-, + { uh, } purple ] square”)

yields quicker response times to select the correct object from the onset of the target (“purple”)

than in the case of the fluent instructions (“the purple square”), with no significant effect on

accuracy – see Section 2.4.3 for details. Furthermore, the account should model non-local repair

processing of instructions such as “From yellow down to brown – no – that’s red.” (Levelt, 1989,

via Ginzburg et al. (2014)) or here using a syntactically simpler but illustrative example “the [

yellow square, +{ no }, purple ]”. An account of this last example will require a dialogue-level
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account of ellipsis, in addition to the apparatus for elliptical repair processing described in the

last chapter. More generally, the model should incorporatethe interaction between incremental

linguistic processing and higher-level inference as Fern´andez (2013)’s paper attempted to do.

Furthermore, the reasoning system should be useful for interpreting and generatingother-

repair, such as clarification requests, with minimal modification, which fulfils one of the desider-

ata of self-repair processing that Ginzburg et al. (2014) propose. This is achieved by modelling

dialogue processing in terms of incremental type judgements of the dialogue state by the partici-

pants, each of which is characterized as an answer to a question about the type-judgement of the

current state– it is therefore possible to clarify anythingthat has been asserted on a word-by-word

basis in terms of the type judgements built up in the discourse. The nature of the set of asser-

tions and the set of questions will be explained below, and computationally tractable methods for

generating these sets for different situations is explained.

Illustrative examples will be addressed in Section 7.6. First I will set out the framework

in which it is possible to model such processing, which extends that of Chapter 6 to include

probability judgements.

7.4 Background on technical tools

7.4.1 Probabilistic TTR

While classical type theory has been the predominant mathematical framework in natural lan-

guage semantics for many years (Montague, 1974, inter alia), it is only recently that probabilistic

type theory has been discussed for this purpose. Similarly,type-theoretic representations have

been used within dialogue models (Ginzburg, 2012); and probabilistic modelling is common in

dialogue systems (Williams and Young, 2007, inter alia), but combinations of the two remain

scarce. In this chapter this connection is made, taking Cooper et al. (2014)’s probabilistic TTR

as the principal point of departure for modelling incremental inference in dialogue as described

above.

At the time of writing there had been no methods for practicalintegration of probabilistic

type-theoretic inference into a dialogue system; here I discuss computationally efficient methods

for implementation. I argue for their efficacy in simple referential communication domains, but

simultaneously suggest the methods could be extended to larger domains and additionally used

for real-time learning in future work.
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Given that TTR, introduced in the previous chapter, has a highly flexible rich type system,

variants have been considered with type judgements corresponding to real-number-valued per-

ceptual data used in conjunction with linguistic context, such as those representing visual infor-

mation (Larsson, 2011; Dobnik et al., 2013), demonstratingits potential for situated, embodied

and multi-modal dialogue systems. The possibility of integration of perceptron learning (Larsson,

2011) and Naive Bayes learning (Cooper et al., 2014) into TTRshow how linguistic processing

and probabilistic conceptual inference can be treated in a uniform way within the same formal

system.

Probabilistic TTR as described by Cooper et al. (2014) replaces the categoricals : T judge-

ment, the judgement that it istrue or false that an objects is of typeT, with the real number

valuedp(s : T) = v wherev∈ [0,1].3 The authors show how standard probability theoretic and

Bayesian equations can be applied to type judgements and howan agent might learn from ex-

perience in a simple classification game. In their example, the agent is presented with instances

of a situation with associated type judgements and it learnswith each round by updating its set

of probabilistic type judgements to best predict the type ofobject in focus – in this case updat-

ing the probability judgement that something is an apple given its observed colour and shape, i.e.

p(s: Tapple | s: TShp,s: TCol) whereShp∈ {shp1,shp2} andCol∈ {col1,col2}. From a cognitive

modelling perspective, these judgements can be viewed as learning concepts from probabilistic

perceptual information, and if framed as a language acquisition scenario these concepts could be

associated with words. I use similar methods in the toy reference domain below, but show how

complex prior type judgements could be constructed efficiently, and how conditional probabilis-

tic judgements can be made incrementally without exhaustive iteration through individual type

classifiers, as was the mechanism implicit in Cooper et al. (2014) and Kennington and Schlangen

(2014)’s models.

Before technically introducing probabilistic TTR, I do notre-iterate the elements of TTR

introduced in the last chapter but prime the reader that the account below will make use of the

definitions for the record type check (6.8), subtype relation check (6.9) and merge operation

(6.10). Here I also define a dual of the merge operation, not found in the TTR literature, which is

3Several people I have discussed this with are not convinced atype judgement can be probabilistic.
I remain agnostic to the plausibility of a non-conditional judgement such as this one being real-valued,
however I do think real-valuedconditionalprobability judgements are realistic. I thank David Schlangen
and Arash Eshghi for discussions on this. The view I set out below can be cashed out purely in terms of
conditional type judgements, however the conditional judgement may at times be notationally suppressed
where appropriate and in a consistent manner– these cases will be noted where they crop up.
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necessary for the analysis below: the common minimal supertype operator ⋖ . While technically

the common minimal supertype ofR1 andR2 is thejoin type R1∨R2, here, for reasons that will

become apparent below in the discussion on type lattices, weare also interested in isolating the

minimally common supertype of two RTsR1 andR2 which is still a (non-disjunctive) RT, which,

when there are no clashing type judgements, amounts to field intersection as below in (7.1). Note

the minimally common supertype RT of multiple RTs is generally not equivalent to their join

type as will be explained.4

if R1 =

[
l1 : T1
l2 : T2

]

andR2 =

[
l2 : T2
l3 : T3

]

(7.1)

R1 ⋖ R2 =
[

l2 : T2
]

For exposition of probabilistic TTR, I repeat some of Cooperet al.’s calculations and show

some equivalences not described by the authors. I demonstrate efficient order-theoretic and

graphical methods for generating and incrementally retrieving probabilities in Section 7.5.

Cooper et al. (2014), under the assumption that type judgements can be real-valued, define

conditional probability of an object being of typeR2 given it is of typeR1 as in (7.2).5 This is

the most important judgement in probabilistic TTR, due to the framework’s motivation: an agent

can judge a situations is of a given situation type, given the evidence that it is of other situation

types. In this way an agent is positioned as a classifier of situations given the evidence available

to it. Here I assumescan be a record, not just a basic type, and soR1 andR2 can be record types.

p(s : R2 | s : R1) =
p(s : R1∧s : R2)

p(s : R1)
(7.2)

Given classical probability theoretic equivalences, theydefine the probability of a situation being

of a meet (conjunctive) and join (disjunctive) types of two basic types or RTs in terms of the

standardproductandsumrules in probability theory:

p(s : R1∧R2) = p(s : R1)p(s : R2 | s : R1)

p(s : R1∨R2) = p(s : R1)+ p(s : R2)− p(s : R1∧R2)

(7.3)

4Here the examples avoid label-type clashes between two RTs (i.e. whereR1 containsl1 : T1 andR2

containsl1 : T2); in these cases the operations are more complex than field intersection, but the precise
definition of how to deal with these cases is not necessary here.

5This equation is not included directly in Cooper et al. (2014) as it is suppressed due to space con-
straints, but was included in the original unpublished manuscript and is consistent with the other equa-
tions.
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It is practically useful, as I will describe below, that the join probability can be computed in

terms of the meet. Given the classical probability theoretic definitions for the meet and the join

type they show it is possible to sustain the below:

p(s : R1∧R2)≤ p(s : R1) p(s : R1∧R2)≤ p(s : R2) (7.4)

p(s : R1)≤ p(s : R1∨R2) p(s : R2)≤ p(s : R1∨R2)

Also, there are equivalences between meets, joins and subtypes in terms of type judgements

as described above, in that assuming ifR1⊑ R2 thenp(s : R2 | s : R1) = 1, we have:

if R1 ⊑ R2

p(s : R1∧R2) = p(s : R1)

p(s : R1∨R2) = p(s : R2)

p(s : R1)≤ p(s : R2)

(7.5)

I return to an explanation for these classical probability equations holding within probabilistic

TTR in Section 7.5. I make a remark here that the meet type probability is the same as the

probability of the merge type’s probability in (7.6), due totheextensionalequivalence of a (non

record type) meet typeR1∧R2 and the resulting record type from the operationR1 ⋗ R2: that is

to say no object can be judged to be of typeR1∧R2 without being of typeR1 ⋗ R2 and vice-versa,

despite them being intensionally distinct types. For now, assume all the∧ conjunctions in the

above equations can be replaced by⋗ and the equations will still hold. The same is not true of

the relationship between the join∨ type and the ⋖ operation as I will explain.

p(s : R1∧s : R2) = p(s : R1∧R2) = p(s : R1 ⋗ R2) (7.6)

7.4.2 Record Type lattices

To support efficient inference inDyLan , I represent dialogue domain concepts as partially or-

dered sets (posets) of RT judgements. This follows insights used in inducing DS-TTR actions

from target RTs (Eshghi et al., 2013), however here this ideais fleshed out in a formal way to

provide an interface to a reasoning system. A poset has several advantages over an unordered list

of un-decomposed record types: the possibility of incremental type checking; increased speed of
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R8 = [] =⊤

R5 =
[

a : b
]

R6 =
[

c : d
]

R7 =
[

e : f
]

R2 =

[
a : b
c : d

]

R3 =

[
a : b
e : f

]

R4 =

[
c : d
e : f

]

R1 =





a : b
c : d
e : f



=⊥

Figure 7.1: Record Type lattice ordered by the subtype relation

type checking, particularly for pairs of or multiple type judgements; immediate use of type judge-

ments to guide system decisions; inference from negation; efficient construction of a question-

under-discussion (QUD) structure that includes real number relevance values; and the inclusion

of learning within a domain. I leave the final challenge for future work, but discuss the others

here.

It is possible to construct a poset of type judgements for anysingle RT by decomposing it

into its constituent supertype judgements in arecord type lattice. As per set-theoretic lattices,

this can be visualised as a Hasse diagram such as Figure 7.1, however here the ordering arrows

show⊑ (‘is a subtype of’) relations from descendant to ancestor nodes, rather than the normal

set inclusion relation.

To characterize a RT latticeL ordered by⊑, I adapt Knuth (2005)’s description of lattices

in line with standard order theory. A RT lattice is a partially ordered set of RTs closed under

the meetand join operations, whereby all pairs of elements have a unique element that is their

meet and a unique one that is their join. This is to say, for a pair of RT elementsRx andRy, their

lower bound is the set of allRz∈ L such thatRz⊑Rx andRz⊑Ry, and in the event that a unique

greatest lower bound exists inL between two elementsRx andRy, this is the meet. The meet

is in fact extensionally equivalent to the meet typeRx∧Ry in TTR, and, given Remark (7.6), is

also extensionally equivalent to the RT resulting fromRx ⋗ Ry. Dually, if the unique least upper

bound exists forRx andRy this is their join inL and in TTR terms is the result ofRx ⋖ Ry but not

necessarily extensionally equivalent to the join typeRx∨Ry– this is due to the fact that the result

of Rx ⋖ Ry may be extensionally equivalent to the minimal common supertype of other pairs of

RTs inL (and consequently may be the type of different objects or records which are not of type

Rx or Ry), soRx ⋖ Ry can be a more general type than the disjunctive typeRx∨Ry. The decision

not to include disjunctive and conjunctive types directly on L, only using RTs and operations that
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yield new RTs, is motivated by limiting the size (and therefore complexity) of the lattice, and

also by keeping consistency in the type hierarchy: the limitation of the lattice to types that are

of record type, rather than of disjunctive or conjunctive (record) type means this is a record type

lattice. So, while the extensionally equivalent RTs for meet types are included inL, elements

representing join types are not, and the join and meet operations under which the lattice is closed

are ⋖ and ⋗ .

I now introduce other relevant terminology. One elementcoversanother if it is a direct

successor to it in the subtype hierarchy.L has a greatest element (⊤) and least element (⊥), with

the atomsbeing the elements that cover⊥; in Figure 7.1 ifR1 is viewed as⊥ , the atoms are

R2, R3 andR4. Join-irreducibleelements are those which cannot be expressed as the join of two

other elements– in the case of Figure 7.1 the only join-irreducibles are the atoms and⊥, but that

need not be the case in other distributed lattices as will be shown.

Given the definitions for the meet and join operations as⋖ and ⋗ , a RT latticeL ordered by

the subtype relation obeys the following rules for any threeelementsx, y andz in L:

x ⋖ x= x; x ⋗ x= x (L1. Idempotency)

x ⋖ y= y ⋖ x; x ⋗ y= y ⋗ x (L2. Commutativity)

x ⋖ (y ⋖ z) = (x ⋖ y) ⋖ z; x ⋗ (y ⋗ z) = (x ⋗ y) ⋗ z (L3. Associativity)

x ⋖ (x ⋗ y) = x ⋗ (x ⋖ y) = x (L4. Absorption)

RT lattices ordered by the subtype relation are distributive lattices as they obey the two distribu-

tivity relations:

x ⋗ (y ⋖ z) = (x ⋗ y) ⋖ (x ⋗ z) (D1. Distributivity of ⋗ over ⋖ )

x ⋖ (y ⋗ z) = (x ⋖ y) ⋗ (x ⋖ z) (D2. Distributivity of ⋖ over ⋗ )

Finally, a RT elementRx has acomplementif there is a unique element¬Rx such thatRx ⋖ ¬Rx =

⊤ andRx ⋗ ¬Rx =⊥. The lattice in Figure 7.1 iscomplementedas this holds for every element,

however as I will discuss RT lattices in general are distributive but not complemented.

Graphically, the join of two elements can be found by following the connecting edges upward

until they first converge on a single RT, e.g.R2 ⋖ R4=R7 in Figure 7.1, and the meet can be found



7.4. Background on technical tools231

by following the lines downward until they connect to give the result of their merge operation,

e.g.R2 ⋗ R4 = R1.

If we considerR1 to be a domain concept in a dialogue system, it is graphicallyeasy to see

how its RT latticeL can be used for incremental inference in terms of a downward search from

the initial underspecified⊤. As incrementally specified RTs become available from the NLU

module they are matched to those inL to determine how far down towards the final domain con-

ceptR1 our current state allows us to be. In terms of linguistic processing, different sequences of

words or utterances lead to different paths. Of course, any practical dialogue system must enter-

tain more than one possible domain concept as an outcome, so the lattice construction methods

of Eshghi et al. (2013) must be extended to deal with this.L must therefore contain multiple pos-

sible final concepts, constituting its atoms, each with several possible dialogue move sequences,

which correspond to possible downward paths. The example domain I use here does indeed have

multiple possible final outcomes, and I explain a general lattice construction method for any

dialogue situation with the possibility of disjoint final states in Section 7.5.

7.4.3 Lattices for probabilistic and information-theoretic inference

To explain the incorporation of probabilities into RT lattices, it is necessary to draw on Knuth

(2005)’s work on generalizing a Boolean algebra to the probability calculus through the use

of real-valued inclusion measures on lattices. Knuth showshow a Boolean algebra of logical

statements can be expressed as adistributed complemented latticeof propositions ordered by

the implication (→) relation, a lattice he calls theassertion lattice(see the left-hand lattice in

Figure 7.2). Given the assertion lattice is distributed as it obeys the distributivity laws (as in D1

and D2, rules above, replacing⋗ with ∧ and ⋖ with ∨) and also complemented, this means the

Boolean operators∧ and∨ and¬ happily coincide with the order-theoretic relations of meet, join

and complement. Furthermore, the implication relation→ which orders the lattice is the inverse

of inclusion.

Dual to the assertion lattice is thequestion lattice(see the right-hand lattice of Figure 7.2), the

lattice ofdown-sets(all the elements beneath a given element and itself) of the assertion lattice’s

elements. The question lattice includes all possible unions of down-sets of the assertion lattice’s

elements and the join-irreducible elements of the questionlattice form a lattice isomorphic to the

assertion lattice. This lattice is ordered by the subset inclusion relation⊆, with its meet being

set intersection∩ and its join set union∪, and is distributive but not generally complemented.
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Figure 7.2: An assertion lattice of propositionsA3 and its dual, the question latticeQ3 formed by

the ordered down-sets of the elements ofA3 with some example down-sets of possible answers

in the grey ovals, from Knuth (2005)

By way of example, a question such asA∪K ∨N (≈ ‘Is it the case thata or thatk∨ n?’), as

illustrated in the grey circle labelledB in Figure 7.2, has as its possible answers the union of the

down-set ofa and the down-set ofk∨n on the assertion lattice.

Knuth assumes the classical semantic view of characterizing questions (semantic objects, not

necessarily equivalent to linguistic interrogatives) as the set of their possible answers (Hamblin,

1973), a view which has been consequently revised in variouspopular accounts of questions,

most notably by Groenendijk and Stokhof (1984). I will not extend Knuth’s characterization

much here, as the focus is more on incorporating probabilityand information-theoretic notions

into semantics rather than providing a detailed account of questions.

Knuth’s Inquiry Calculusextends Boolean algebra to the probability calculus by calculat-

ing probabilities in terms of the inclusion functionZ(x,y) for distributive lattices, here used to

calculate the degree to which statementx includes statementy in the the assertion lattice:

p(x | y) = Z(x,y) =







1 if y≤ x

0 if x∧y=⊥

p otherwise, where 0≤ z≤ 1

(7.7)
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To make the generalization from Boolean algebra to probability theory clear, one can characterize

the ordering relation on the assertion lattice as logical implication, making it possible to calculate

thedegreeto which one assertion implies the other. Here the degree to which y impliesx can be

real valued as well as Boolean:

p(x | y) = Z(x,y) =







1 if y→ x

0 if x∧y=⊥

p otherwise, where 0≤ z≤ 1

(7.8)

If (7.8) is viewed as a lazy evaluation function, if the first two cases do not apply, the third

casep can be calculated by normal probability theoretic rules, that is the sum rule, product

rule and Bayes theorem. All these calculations use the meet probability, which can be found

by finding the meet on the lattice and reading off the numerical value of that element. The

numerical values of meets and joins are all derivable from values initially assigned axiomatically

to the join-irreducible elements (which in the case of Knuth’s Boolean examples are the atoms)

of the assertion lattice– all other probabilities can be calculated in terms of these by the standard

probability equations. More detail on this will follow whenexplaining probability in RT lattices.

The question lattice requires consistency with the assertion lattice from which it was gener-

ated, however Knuth uses the degree of inclusion measureZ on the question lattice for a different

reason other than logical implication, namely an information-theoretic characterization ofrele-

vance. That is the relevance of one questionQ to anotherI , in other words the degree to which

questionI is answered by posing questionQ, characterized analogously to the degree of implica-

tion on the assertion lattice, but with a different orderingrelation (inclusion) and characterzation

of the meet (intersection)– see (7.9).

d(I |Q) = Z(I ,Q) =







c if Q⊆ I (Q answersI )

0 if I ∩Q=⊥ (Q andI are exclusive)

d otherwise, where 0≤ d≤ c

(7.9)

wherec is the maximal relevance

Knuth chooses the abbreviating letters here for illustrative purposes:I stands for ‘issue’
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andQ for ‘query’, as the most important relevance measure is the degree to which the query

Q answers the issueI . In the case of the question lattice in Figure 7.2, thecentral issueis the

questionK ∪A∪N (labelledT) given the situation is posed as finding out which of the three

atomic statements in the assertion lattice is true. The central issue is the leastreal question, that

is the least question which can always be answered by a true statement– as I will show later for

dialogue inference the real questions are the ones to be concerned with here. The most ambiguous

real question (i.e. that with the most answers) is at the top of the question lattice and the most

informative real question (i.e. that with the fewest answers) is the central issueK ∪A∪N at the

bottom of the real sub-lattice of questions.

The first two cases of the relevance measure (7.9) make intuitive sense– if a questionQ

is included inI , as it is lower in the ordering, then it will certainly answerI , as it contains a

subset ofI ’s possible answers, and therefore guaranteed to answer it,or is maximally relevant

to it. For the second case, where the possible answers toI andQ only have the absurdity⊥ in

common, thenQ is completely irrelevant toI . The third case, where the other two conditions do

not apply, calculating relevance as the gradient degree of inclusion becomes more complicated,

however this can be achieved using the same rules of inference as used for the assertion lattice,

those of Knuth’s Inquiry Calculus. Also, as was the case for the assertion lattice, the required

inclusion values can be calculated by using the values of thejoin-irreducible elements, which are

assigned based on the probability-weighted surprisal of the element in the assertion lattice which

generated their answer set. So for any join-irreducible questionX, its prior relevanced(X|⊤) is

the probability-weighted surprisal of the prior probability of the greatest elementx in the set of

answersX on the assertion lattice, as in (7.10).

d(X|⊤) =−p(x|⊤)log2p(x|⊤) (7.10)

So by way of example from Figure 7.2, the prior relevance of questionK, a join-irreducible

element of the question lattice which has the simple answer set {k,⊥} of elements on the as-

sertion lattice is simply−p(k|⊤)log2p(k|⊤). Given this assumption, the prior relevance of a

partition question, which is a join of join-irreducible questions (an example being the central

issueK ∪A∪N in Figure 7.2), by application of the sum rule is in fact the Shannon entropy of

the probability distribution of the top elements of each of the disjunctive answer sets. For other
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complex questions Knuth (2005) shows how the relevance of one complex question to another

can actually be computed in terms of the ratio of degrees to which each question includes the

⊤ question– see (Knuth, 2005, p. 23, calculation (44)). So, for the complex questionsB andT

highlighted in Figure 7.2, the relevance of questionB, which isA∪KN, to the central issueT,

which isK∪A∪N, can be calculated as in (7.11).6

d(T|B) = c
d(B|⊤)
d(T|⊤)

(7.11)

wherec is a chosen arbitrary normalisation constant for relevance, which can simply be 1 or

the maximal relevance (Knuth, 2006). Given the information-theoretic characterization just de-

scribed for partition questions, in this case this is in factsimply a ratio of the two questions’

Shannon entropy values. Intuitively this is to say the relevance ofQ to resolvingI is the ratio

between the amount of information expected to be gained by asking Q and the amount of infor-

mation expected to be gained by askingI , given I is the central issue (least real question) in the

lattice.

7.4.4 Probabilistic DS-TTR parsing judgements

One final technical expansion to Chapter 6 needs to be introduced here– that of assigning proba-

bility values to sequences of DS-TTR actions. This is due to amove towards more robust parsing

and different parsing techniques. As ambiguity is rife in NLU, DS-TTR should not clean its

hands of assigning likelihood to different parses. An example of this for senses of the English

word ‘is’: one example action for the word derived from grammar induction in Eshghi et al.

(2013) is shown in Figure (7.3).

Probabilistic DS-TTR parsing judgements can be incorporated into the ParseIU types pro-

posed in the last chapter, consistent with the idea of probabilistic Austinian propositions pro-

posed by Cooper et al. (2014). To achieve this the ParseIU RTswill have an extra fieldprob

as the sum of the probabilities of the lexical actions run on the path normalised by the number

6While this is the formulation in Knuth (2005), there are conflicting accounts of this bi-valuation for
complex questions, for example in Knuth (2006) equations (22) and (23). The formulation here does not
obey the calculus described for lattices in general, in thiscase not being consistent with the Bayes’ rule
analogue, however entropy ratio is an intuitive way of considering relevance and the results it gives for
natural language inference below seem intuitively correct. Greater questions than the central issue will
be less or equally relevant to it rather than the reverse, so Isuspect a clearer statement of relevance for
complex questions needs to be made to resolve the contradictions in the literature.
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‘is’: 0.07291666

IF ?Ty(e→ t)
THEN make(〈↓0〉);go(〈↓0〉)

put(?Ty(e))
go(〈↑0〉)
make(〈↓1〉);go(〈↓1〉)
put(Ty(e→ (e→ t)))
put(Fo(
λ r1 :

[
head : e

]

λ r2 :
[

head : e
]
.











x1=r1.head : e
x2=r2.head : e
e=eq : es

p1=sub j(e,x2) : t
p2=ob j(e,x1) : t
head=e : t











))

put(〈↓〉⊥)
ELSE ABORT

Figure 7.3: Probabilistic DS-TTR action for ‘is’ in the sense of an NP predicate identity: “thisis
a cat” learned from data from the induction technique in Eshghi et al. (2013)

of lexical actions– not the number of words, as re-run actions in ellipsis still count in terms of

probability mass. This can be seen in the minimal extension of (6.18) to make a probabilistic

ParseIU the type in (7.12).

(7.12) ParseIU=









tree : DSTTRTree
actions : list(DSTTRAction)
cont : RecordType
ctxt : list(Move)
prob : R









Given the new definition, an example record of typeParseIU after parsing “John” utterance-

initially, given the probability of a given lexical entry for ‘John’, John′lex, after initial introduction

and prediction computational actions runs is 0.5, will therefore be the record in (7.13).
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(7.13)
































tree = ?Ty(t),







x= john : e
e : es

p=sub j(e,x) : t
head=e : es







Ty(e),
[

x= john : e
head=x : e

]

♦,?Ty(e→ t)

λ r :
[

head : e
]
.r ⋗







x=r.head : e
e : es

p=sub j(e,x) : t
head=e : es







actions= [introduction, prediction,John′lex, thinning,completion,anticipation]

cont =





x=John : e
e : es

p=sub j(e,x) : t





ctxt = [Assert(User,cont)]
prob = 0.5
































The characterization of the ParseIU graph stays the same as the last chapter, except now there

is access to the probability of the sequences, and by simple calculation the probability contribu-

tion of each word; this brings the IU graphs closer to the DAGsused in STIR in Chapter 5.

The notion of strong incremental representation and incremental interpretation now extends to

probabilistic information.

This extra probabilistic information will be used to guide parsing and generation strategies.

It is possible to characterize a best-first search where the most probable parse path will be the

one whose path-final ParseIU has the highestprob value. In generation, which in DS-TTR is

driven by parsing, a best-first search for a generation path of words will also be contingent on

finding the most probable action sequences given the words chosen to express a goal concept. I

will explain the integration of these intoDyLan ’s NLU and NLG algorithms below.

7.5 Probabilistic incremental inference for dialogue

With these tools at hand it becomes possible to model fine-grained incremental semantic infer-

ence in dialogue probabilistically and describe implementational methods for theDyLan dia-

logue system. I will describe how this is done for a dialogue micro-domain here, before explain-

ing how these methods model Brennan and Schober (2001)’s experimental results within this

domain in Section 7.6.
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7.5.1 A familiar psycholinguistic experiment

This chapter models a simple reference identification task where an instructor produces utter-

ances describing an object which an instructee comprehendsand reacts to by selecting the object

they think best fits the description as quickly as possible. The visual stimulus available to both

parties is as in Figure 7.4.

Figure 7.4: Visual scene for instructor and instructee in the reference identification game

In this game I characterize the referent setre f erentsof a purple square, yellow square and

yellow circle as mutually exclusive referent situation types (record types), which can be labelled

asPSq,YSqandYC respectively. On the interpretation side, the challenge isto predict the final

reference situation type judgements : R, that the situations is of record typeR, given currently

available evidence in the form of current type judgements about the situation (s : E). So, as

instructions are heard word-by-word the hearer tries to predict the maximally likely referent as

in (7.14).

arg max
R∈re f erents

p(s : R|s : E) (7.14)

On the generation side, I model the incremental strategic level or conceptualisation stage

as the selection of the semantic update to the evidenceE which maximises the likelihood of

the relevant goal concept (also a RT) which communicates thetarget referent. This goal may

change incrementally during word-by-word surface realization and trigger repair realisation be-

haviour in the way described in the last chapter. In tandem with the semantic update selection

task (incremental conceptualisation), I simultaneously model the surface realisation of referring

expressions where the task is to select the next word that maximises the probability of that update

being yielded by the parser after consuming that word. I willreturn to this below.
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7.5.2 Probabilistic RT lattices to encode domain knowledge

Here I will explain how the domain of the simple reference game just described can be modelled

in terms of a probabilistic RT lattice and explain the principal inference mechanisms for such

lattices, which show some nice consistencies between Knuth(2005) and Cooper et al. (2014)’s

probability equations.

I assume the hearer and speaker initially entertain three distinct reference situations, and

these can be encoded as three distinct type judgements encoded simply as the atoms of a RT

lattice as in Figure 7.5. The meet of any of these three situations is⊥ and has a probability of 0

due to its impossibility, constituting absurdity. I assumebefore the game has begun the atomic

situations will all have equal probability (1
3), effecting a uniform distribution. With this said,

the overall probability mass of the latticeP(L) is a global denominator used to normalise all

probability calculations in the lattice to ensure proper probability values so the initial assignment

to the atoms need not in fact sum to one (Knuth, 2005).

If the reader has ontological doubt over the possibility of an unconditional type judgement

being probabilistic, this can be avoided by assuming each atom’s prior type judgement probability

is in fact composed of a set of type judgements that the situation is of this type that are non-

probabilistic– they are simply true judgements. Given thisassumption, we only need to use the

cardinality of these type judgement sets, notated as e.g.‖YSq‖ for the number of judgements

that situations are those that include a yellow square. If one assumes a uniform prior distribution,

each atomic prior judgement set can simply be assigned a cardinality of 1, which means in a

lattice with three atoms, given we normalise by the global denominatorP(L) which will be 3, the

prior probability of each one will be13 conditionally ons :⊤. While not the focus of this chapter,

characterizing each atom as a judgement set is useful in a learning game in the spirit of Cooper

et al. (2014): an agent learns from the experience of making and storing type judgements.

While I abbreviate below, technically, probabilistic inference on distributive lattices is always

conditional. From here on, assume the standard probabilistic type judgementp(s : R1) stands for

p(s : R1 | s : ⊤), the meet probability judgementp(s : R1 ⋗ R2) stands forp(s : R1 ⋗ R2 | s : ⊤)

which can be calculated asp(s : R1 | s:⊤)p(s: R2 | s: R1 ⋗ ⊤), the join probabilityp(s: R1 ⋖ R2)

stands forp(s: R1 ⋖ R2 | s:⊤) which can be calculated asp(s: R1 | s:⊤)+ p(s: R2 | s:⊤)− p(s:

R1 ⋗ R2 | s : ⊤), all of which are consistent with (Knuth, 2005)’s calculations for set-theoretic

distributive lattices.
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PSq=





x : e
colp : purple(x)
shpsq : square(x)



‖PSq‖
P(L) YSq=





x : e
coly : yellow(x)
shpsq : square(x)



‖YSq‖
P(L) YC=





x : e
coly : yellow(x)
shpc : circle(x)



‖YC‖
P(L)

R0 =⊥= 0

Figure 7.5: The disjunction of three types of situation encoded as record types

Algorithm 7 Probabilistic TTR record type lattice construction algorithm

INPUT: atoms ⊲ Use the initial prior atomic judgements forL.
OUTPUT: L
L = newLattice(atoms) ⊲ P(L) set to equal sum of the atomic probs.
agenda = atoms ⊲ Initialise agenda.
while not agenda is emptydo

RT = agenda.pop()
for field∈ RT do

if field∈ RT.pathsthen ⊲ Do not remove bound fields.
continue

superRT = RT - field ⊲ Remove field.
if superRT∈ L then ⊲ Not new? Order w.r.t. RT and inherit RT’s atom set by union.

L.order(RT.address,L.getNode(superRT),⊑)
else ⊲ New?

superRTNode =L.newNode(superRT) ⊲ Create new node w. empty atom set.
for node∈ L do ⊲ Order superRTNode w.r.t. other nodes inL.

if superRT.fields⊂ node.fields.then
L.order(node,superRTNode,⊑) ⊲ superRTNode inherits node’s atom set.

agenda.append(superRT) ⊲ Add to agenda for further supertyping.

7.5.3 RT lattice construction

Given the disjunction of type judgements is available with some prior probability assigned to

each atom, it is possible to build a RT lattice from these which includes all possible supertype

judgements with their probability values. I define a simple bottom-up procedure in Algorithm 7

to build a RT latticeL as a graph of all possible simple domain RT supertypes and their prior

probabilistic judgements, initialised by the disjunctionof possible final state judgements (the

atoms), along with the absurdity⊥, stipulated a priori as the least element with probability 0(see

Figure 7.5).7 The algorithm iteratively removes one field from the RT beingprocessed at a time

7I repeat the fact that although the atoms’ disjunctive probability sums to 1 afterL is constructed when
constructed via normalising over the whole probability massP(L), i.e. in Figure 7.6‖PSQ‖+‖YSQ‖+‖YC‖

P(L) =

1, the real values initially assigned to them need not sum to unity (Knuth, 2005).
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ATOMS:

‖PSq‖ = 1

‖YSq‖ = 1

‖YC‖ = 1

p(L) = 1+1+ 1 = 3

⊤ =
[

x :e
]‖PSq‖+‖YSq‖+‖YC‖

p(L) = 1

Sq=

[
x : e
shpsq : square(x)

]

‖PSq‖+‖YSq‖
p(L)P =

[
x : e
colp : purple(x)

]

‖PSq‖
p(L) Y =

[
x : e
coly : yellow(x)

]

‖YSq‖+‖YC‖
p(L) C =

[
x : e
shpc : circle(x)

]

‖YC‖
p(L)

PSq=





x : e
colp : purple(x)
shpsq : square(x)



‖PSq‖
p(L) YSq=





x : e
coly : yellow(x)
shpsq : square(x)



‖YSq‖
p(L) YC=





x : e
coly : yellow(x)
shpc : circle(x)



‖YC‖
p(L)

⊥ = 0

Figure 7.6: Record type latticeL with uniform atomic probabilities

(except bound fields that are referenced in any remainingPTypefields dependent on them), then

orders the new supertype RT inL appropriately.

As a graph, each node inL contains its RTRi and a sum of probability judgements{‖Rk‖+

..+‖Rn‖} corresponding to the probabilities of the atomic type judgement sets it stands in a su-

pertype relation to– as these sums are stipulated to be totals of values of sets rather than bags, any

duplicate values (from the same atom) are removed as the algorithm builds the lattice. These sums

are propagated up from child to parent node as it is constructed. It terminates when all simple

minimal common supertypes have been processed,8 leaving the maximally common supertype

of the whole lattice as⊤ (possibly the empty type [ ]), associated with the entire probability mass

P(L), which constitutes the denominator to all judgements– given this, only the numerator of the

equation for probability needs to be stored at each node.

7.5.4 Inference on RT lattices

The RT latticeL constructed initially upon observation of the game (by instructor or instructee)

is shown in Figure 7.6, as described above using a uniform distribution for the three disjunctive

final situations. Each node shows a RTRi on the left and the derivation of its prior probability

p(s : Ri)
9 that any game situation record will be of typeRi on the right, purely in terms of the

8Note again that it does not generate the join types but minimal common supertypes ⋖ defined by
field intersection– see (7.1).

9This should technically bep(s : Ri |s : ⊤) and is an example of the suppression of the conditional
judgements :⊤ as discussed above. From here these conditioning judgements will be suppressed to avoid
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relevant atoms and the global denominatorP(L).

L is used as a reasoning system to make inferences in light of partial information from an

ongoing utterance. We model inference as predicting the likelihood of relevant type judgements

Ry ∈ L of a situations, given judgements of the forms : Rx we have so far. To do this we use

conditional probability judgements following Knuth’s work on distributive lattices as described

above, but here using the⊑ relation to give (7.15).

p(s : Ry | s : Rx) =







1 if Rx⊑ Ry

0 if Rx ⋗ Ry =⊥

p otherwise, where 0≤ p≤ 1

(7.15)

If treated as a lazy evaluation function, in cases where the first two cases do not apply, the third

case, the real-valued degree of inclusion ofRy in Rx, can be calculated using Cooper et al’s

conditional probability calculation (7.2) in Section 7.4.1, however replacing the∧ with ⋗ to be

in line with the meet operation of the RT lattice, and which isstill equivalent to Cooper et al’s

equation due to Remark (7.6), giving (7.16).

p(s : R2 | s : R1) =
p(s : R1 ⋗ R2)

p(s : R1)
(7.16)

When conditioning on negative RTs, given a lattice generated from Algorithm 7 will be

distributive but not guaranteed to be complemented, we cannot be guaranteed to find a unique

complement element onL as was the case for Knuth’s Boolean lattices, however we can still

calculatep(s : Ry | s: ¬Rx) by obtainingp(s : Ry) in L modulo the probability mass ofRx and that

of its subtypes as in (7.17).

p(s : Ry | s : ¬Rx) =







0 if Ry⊑ Rx

p(s:Ry)−p(s:Rx ⋗ Ry)
p(s:⊤)−p(s:Rx)

otherwise

(7.17)

Efficiency gains through graphical search

The subtype relations and atomic and meet type probabilities required for (7.15) - (7.17) can

be calculated efficiently through graphical search algorithms by characterisingL as a DAG: the

notational clutter and they do not affect the calculations.
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reverse direction of the subtype ordering edges can be viewed as reachability edges, making⊤

the source and⊥ the sink. With this characterisation, ifRx is reachable fromRy thenRx⊑ Ry.

In DAG terms, the probability of the meet of two RTsRx and Ry, Rx ⋗ Ry, can be found

at their highest common descendant node – e.g.p(s : Y ⋗ Sq) in Figure 7.6 can be found as13

directly at nodeYSq. Note if Rx is reachable fromRy, i.e. Rx⊑ Ry, then due to the equivalences

listed in (7.5) and by Remark (7.6),p(s : Rx ⋗ Ry) can be found directly atRx. If the meet of

two nodes is⊥ (e.g. YSqandPSqin Figure 7.6), then their meet probability is 0 asp(⊥)=0.

In addition to this, due to Remark (7.6), the probability of all meet typesof any combination of

elements can also be found in exactly the same way.

As for the probability of the join of two RTsRx andRy, Rx ⋖ Ry, this can be found at their

lowest common ancestor node – e.g.p(s : YSq ⋖ PSqin Figure 7.6 can be found as23 directly at

nodeSq. Note if Rx is reachable fromRy, i.e. if Rx ⊑ Ry, then due to the equivalence available

for this ordering situationRy ⋖ Rx = Ry, thenp(s : Rx ⋖ Ry) can be found directly at nodeRy. It

is worth pointing out here again the fact the lattice does nothave direct access to the extensional

equivalents of all the join types of all its elements, a join type probabilityp(s : Rx∨Ry) can be

calculated in terms ofp(s : Rx ⋗ Ry) by Cooper et al’s join equation in (7.3) and the equivalence

of ⋗ and∧ in extension and therefore probability. This way of calculating the join in terms of

the meet as per probability theory holds for all probabilistic distributive lattices (Knuth, 2005),

and is not restricted to Boolean lattices.

As regards search efficiency, worst case complexity for finding the meet probability at the

common descendant ofRx andRy is a linearO(m+n) wherem andn are the number of edges

in the downward (possibly forked) pathsRx→⊥ andRy→⊥. The search for the probability

of the meet of two elements is generalisable to general meet probability of multiple elements by

searching for the conjuncts’ highest common descendant. The join probability is generalisable

to the generalised join probability of multiple types, used, albeit programatically, in Algorithm 7

for calculating a node’s probability from its child nodes.10

7.5.5 The question lattice and relevance

It is possible to generate a question latticeQ(L) as a lattice ofL’s down-sets ordered by set

inclusion as Knuth (2005, 2006) describes. The question lattice Q(L) generated by starting with

10While I do not give details here, simple graphical search algorithms for general conjunctive and
disjunctive multiple types are linear in the number of conjuncts and disjuncts, saving considerable time in
comparison to the algebraic calculations of the generalised sum and product rules for distributive lattices.
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L as shown in Figure 7.6 is shown as a Hasse diagram in Figure 7.7. The join-irreducible elements

from whichQ(L) is generated are isomorphic toL (black nodes) and the real questions, those we

are concerned with are white nodes.

Given this lattice-theoretic characterization, questions are therefore sets of record type judge-

ments on the situation– to avoid clutter we abbreviate the set namess : Rx∨s : Ry to ‘Rx or Ry’ in

Figure 7.7. The central issue inQ(L) is s : PSq∪s : YSq∪s : YCor in short ‘YSq or PSq or YC’

(≈ “which of the three objects is it?”), which I will labelI and whose content is as in (7.18).

I = s : PSq∪s : YSq∪s : YC= {s : PSq,s : YSq,s : YC,s :⊥} (7.18)

The prior relevance measuresd(Qx|⊤) of questionsQx ∈ Q(L) are calculated from the ini-

tial assignments to the join-irreducible elements ofQ(L) (black nodes), which are simply the

probability-weighted surprise of their top element in the assertion latticeL from which they were

generated. The other relevances are calculated in a bottom up fashion by calculating joins by

using the generalised sum rule (7.19) adapted from Knuth (2005), which follows the inclusion-

exclusion principle for set union: it adds the relevances ofits individual join elements, subtracts

all pair-wise meets of those elements, adds all three-way meets, subtracts all four-way meets and

so on in an alternating fashion until it reaches ann-way meet wheren is the number of elements

in the join. Fortunately in the latticeQ(L) discussed here there is only one four-way join to

calculate.

d(Q1∪Q2∪ ·· ·∪Qn | ⊤) =
n

∑
i=1

d(Qi | ⊤) (7.19)

−∑
i< j

d(Qi ∩Q j | ⊤)

+ ∑
i< j<k

d(Qi ∩Q j ∩Qk | ⊤)

−·· ·

To focus on the real questions we extract the real sub-lattice R(Q(L)) of questions which are

guaranteed a true answer, and this is shown in Figure 7.8. Thebottom of this lattice is the central

issueI and the relevance of each real questionQ to it, i.e. d(I |Q) is calculated using (7.11)

assigningc the maximal relevance constant as the maximal relevance, i.e. d(I | ⊤), which given
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Knuth’s calculation of this being the Shannon entropy of thetop elements of its disjuncts’ top

element on the assertion lattice (given it is a join of ideal questions) to 4 s.f. is:

d(I | ⊤) = d(s : PSq∪s : YSq∪s : YC| ⊥)

=−log2(
1
3
)− log2(

1
3
)− log2(

1
3
)

= 1.585 (7.20)

The relevance to the central issued(I |Qx) is shown in the nodes, with the maximal relevance

being 1.585. Several of the questions share the maximal relevance, and these are unsurprising:

three of the partition questions ‘C or P or YSQ’, ‘C or PSQ or YSQ’ and ‘P or YSQ or YC’ if

resolved are guaranteed to resolve the central issueI , due to the uniqueness of the circle shape

and the purple colour, and so can be thought of as equivalent to I .

7.5.6 Extending NLU and NLG with probability and relevance

In addition to finding out the relevance of a question to the central issueI , motivation from NLU

and NLG suggests we are also interested in how relevant a given type judgement is to it, or the

degree to which it answersI . I assume that the relevance of a given type judgement in thisdomain

is proportional to the most relevant question it answers, assuming for now this proportionality is

in fact identity as in (7.21).

relevance(s : R | I) = arg max
Q∈Q(L)

d(I |Q) wheres : R∈Q (7.21)

For this to become a discourse model, it would need to includea record of which questions

have been answered and which are yet to be answered, and also anotion of what it is for a ques-

tion to beresolvedin the sense of (Ginzburg, 1996). Given the characterization of questions as

sets of answers, one could say a question has been answered when one of its members (type

judgements) has been witnessed as being true. Given the structure of the question lattice, if a

question has been answered then its entire upper bound has also been answered and in the asser-

tion type latticeL if a type judgement has been witnessed, then the judgements of its supertypes

(its upper bound) have also been witnessed. However the question to be resolved, or fully an-

swered, one of its disjunct questions must be true and the others false. InQ(L) interestingly this
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is not possible for all questions. For example if the judgement made on the assertion lattice is

s : YC then the question ‘Y or C’ cannot be resolved as both disjuncts are true, so it can only be

partially answered. The only questions that are resolvableare the partition questions, which in

the real lattice are shown as ovals with an outer-ring in Figure 7.8.

As for the discourse record, the record of the judgements made and the questions answered

at a given point in time can be kept track of by storing the position on L of the most recent

type judgement and the position(s) of the most relevant question(s) resolved by it onQ(L) word-

by-word. Increased relevance therefore amounts to downward movement on both lattices. The

notion of the most relevant question answered so far and the most relevant remaining questions

are important when modelling repair, and for incremental inference more generally.

Redefining NLU and NLG

With the formulation of the relevance of a type judgement at hand (7.21), I make a modification to

the NLU process in the last chapter which simply took Booleanparseability results and structural

similarity to RT judgements in the domain as its measures of communicative felicity. I redefine

the best-first NLU process as: given a wordWn and a DS-TTR parse state created from the current

best ParseIU, select the ParseIUSx such thats : Sx in L leads to the combined maximally relevant

question(s) being resolved inQ(L) and maximal value of its prob field. These two constraints are

combined to define the best parse as in (7.22).

(NLU)Select ParseIUSj
n triggered by wordWn according to:

arg max
Sj

n

BestParse(Sj
n |Wn) = arg max

Sj
n.prob,Sj

n.cont

Sj
n.prob× relevance(s : Sj

n.cont, I) (7.22)

This definition makes the relevance of the current semanticsbuilt up to the central issue and

the syntactic DS parseability both important in choosing the best update to the ParseIU graph.

This simple multiplication means extremes in syntactic fluency or relevance will have a strong

effect on parsing scores– weighting the contributions of these terms could be achieved through

empirical testing.

For generation, which is contingent on the parsing model, itis possible to use theBestParse

values within the decision of selecting the optimal ParseIUincrement and word to generate. I



7.6. Simulating incremental inference and self-repair processing 247

define this decision of solving the joint problem of maximising the probability of the word’s

BestParse(most relevant and most likely syntactically) from the given context and also maximis-

ing the likelihood of the goal conceptGCn given the ParseIU increment the word will trigger.

This is formulated in (7.23).

(NLG)Select WordIUWk
n and ParseIUSj

n triggered by goal conceptGCn according to:

arg max
Sj

n,Wk
n

BestGenerate(Sj
n,W

k
n |GCn) = arg max

Sj
n,Wk

n

BestParse(Sj
n |W

k
n )× p(s : GCn | s : Sj

n) (7.23)

This formulation of NLG balances the maxims of quality, relevance and manner in Gricean

terms. The quality part of the generation goal is the degree of adherence to the goal concept given

the semantic update chosen, the relevance is just the degreeto which the semantic update answers

the central issue onQ(L) and manner is the recoverability of the intended semantic content given

the word, i.e. the parse probability.

7.6 Simulating incremental inference and self-repair processing

For the two test case utterances containing self-repairs, “the yellow, uh, purple square” and “the

purple square, no, yellow”, I show the probability distribution over the referent set generated by

the model just described at each word in Figure 7.10. The second row in each table also shows

the incremental type judgement onL by which these values are calculated conditionally from

equations (7.15)-(7.17). The type judgements are available from the maximal semantics and also

negation of the reparandum type judgement after self-repair detection from theDyLan NLU

model– see the last chapter.

Probabilistic NLU inDyLan which interfaces with the RT latticeL described above follows

evidence that dialogue agents parse self-repairs efficiently and that repaired dialogue content

(reparanda) is given special status but not removed from thediscourse context. To model Brennan

and Schober (2001)’s finding of disfluent spoken instructions speeding up object recognition, I

demonstrate a self-repair parse in Figure 7.9 for “The yell-, uh, purple square” in the simple game

of predicting the final situation from{PSq,YSq,YC} continuously given the type judgements

made so far. I describe the stages T1-T4 in terms of the current word being processed- see

Figure 7.9.
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YC YSQ PSQ

YSQ or YC PSQ or YSQPSQ or YC

I

PSQ or YSQ or YC

C

Y SQ

P

SQ or YC

C or YSQ C or PSQ P or YC

Y or PSQ P or YSQ or YC

P or YSQ

C or PSQ or YSQ

P or Y

P or SQP or C

P or SQ or YCSQ or YSQ or C

Y or C

Y or C or PSQ C or P or YSQ

SQ or Y or C P or Y or SQP or Y or C P or C or SQ

Y or SQ or C or P

Figure 7.7: The Question LatticeQ(L) formed from the ordered down-sets of the assertion lattice

L. Black nodes indicate the join-irreducible elements, isomorphic toL’s elements. White nodes

are the real questions.
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I=1.585

PSQ or YSQ or YC

0.918

Y or PSQ

1.585

P or YSQ or YC

0.918

SQ or YC

1.585

C or PSQ or YSQ

0.918

P or Y

1.447

P or SQ or YC

0.252

SQ or Y

0.918

SQ or C

1.447

Y or C or PSQ

1.585

C or P or YSQ

1.447

P or Y or C

0.780

P or Y or SQ

0.780

SQ or Y or C

1.447

P or C or SQ

1.308

Y or SQ or C or P

0

Figure 7.8: The lattice of real questionsR(Q(L)), the sub-lattice ofQ(L) where answers of the

question elements cover all the possibilities of the central issueI . The partition questions are

ovals with an outer ring. Each questionQ’s relevance toI (d(I | Q)) is given within the node in

its position, with maximal relevance 1.585
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Figure 7.9: Incremental DS-TTR self-repair parsing with probabilistic TTR inference for refer-

ence resolution. Inter-graphgrounded inlinks go bottom to top.

At T1:‘the’ the interpreter will not yield a subtype checkable inL so it is only possible to

condition on⊤, giving a uniformp(s : x | s : ⊤) = 1
3 for x ∈ {PSq,YSq,YC}, equivalent to the

atomic priors. AtT2: ‘yell-’ , the best partial word hypothesis is now “yellow”;11 the interpreter

therefore outputs a RT which matches the type judgements : Y (i.e. that the referent is a yellow

object). Taking this judgement as the conditioning evidence using function (7.15) we getp(s :

PSq| s : Y) = 0 and using (7.2) we getp(s : YSq| s : Y) = 0.5 andp(s : YC| s : Y) = 0.5 (see

the schematic probability distribution at stage T2 in Figure 7.9 for the three objects). The meet

type probabilities required for the conditional probabilities can be found graphically as described

above.

At T3:‘uh purple’ , low probability in the interpreter output causes a self-repair to be recog-

nised, enforcing backtracking on the parse graph which operates as per the last chapter, but with

the definition forBestParse() being replaced with that in (7.22) and a drop below the given

thresholdε for BestParse() will cause the repair onset function to operate.

Upon detection of a self-repair that revokess:Y, the type judgements:¬Y, i.e. that this is not

11This part is not implemented. In practice, ASR modules yielding partial results are less reliable than
their non-incremental counterparts, but progress is beingmade here (Schlangen and Skantze, 2009).
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the yell- uh purple square
conditioning type judgements : ⊤ Y Y ¬Y, P PSq

p(s : PSq) (purple square) 1
3 0 0 1,1 1

p(s : YSq) (yellow square) 1
3

1
2

1
2 0,0 0

p(s : YC) (yellow circle) 1
3

1
2

1
2 0,0 0

the purple square no yellow
conditioning type judgements : ⊤ P PSq ¬PSq Y∧Sq

p(s : PSq) (purple square) 1
3 1 1 0 0

p(s : YSq) (yellow square) 1
3 0 0 1

2 1
p(s : YC) (yellow circle) 1

3 0 0 1
2 0

Figure 7.10: Probability distributions for the objects given maximal incremental semantic infor-
mation

a yellow object, is immediately available as conditioning evidence using theRevokeinformation

added when the continuation problem is solved, even before the full parse has been made– see

Figure 6.9 in the last chapter. Using (7.17) our distribution of RT judgements now shifts:p(s :

PSq| s:¬Y) = 1, p(s: YSq| s:¬Y) = 0 andp(s: YC| s:¬Y) = 0 before “purple” has been parsed –

thus providing a probabilistic explanation for increased subsequent processing speed. The model

does not stipulate when would be realistic for the negative type inference to be made in terms

of phonetic form, but Brennan and Schober (2001)’s results suggest this information becomes

available very quickly upon the onset of the next word and therecognition of the substitution

repair. I illustrate this in Figure 7.10 by including the effect of the negative type judgement in

‘purple’ before the positive judgement’s effect (which is semantically identical)- I suggest this

would be available before the positive judgement. Finally at T4: ‘square’ given p(s : PSq| s :

PSq) = 1 and due to the factR1∧R2 = R1∧R3 = ⊥, the distribution remains unchanged. The

last word could be taken as an instance of over-specificationhere, however, I follow Fernández

(2013)’s idea that rather this being an inherent element of REG as per traditional accounts, this

is just evidence syntactic completeness is preferred to incompleteness.

The system’s processing models how listeners reason about the revocation itself rather than

predicting the outcome through positive evidence alone, inline with Brennan and Schober (2001)’s

results.

To explain the second example as shown in the lower table in Figure 7.10 in terms of NLU

and NLG, I use the notion of relevance of the word ‘no’ in termsof the question lattice. I assume
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it is more likely the“no” here is a negation of the judgement that the object is a purplesquare,

i.e. s : ¬PSq, rather than the judgement it is purple, or that it is a square. In the spirit of optimal

relevance (Sperber and Wilson, 1986), I assume the hearer isinterpreting each word as an answer

to the most relevant question under discussion incrementally. The interregnum “no” is interpreted

as an answer to the most relevant question to the central issue just answered given the context “the

purple square”, which in this case is the central issueI . However this negative answer does not

resolve I, ass : YCands : YSqare still possible. It does however resolve ‘PSq or Y’, whichis a

more relevant question than resolving ‘P or Y’ if the inference wass : ¬P and more relevant than

resolving ‘Sq or C’ if the inference wass : ¬SQ– see Figure 7.8. So, the most likely inference

from “no” is s:¬PSqdue to its high relevance (see (7.21)), and all previously answered questions

remain answered unlesss: ¬PSqchanges them. The answer to the previously answered question

‘Sq or C’, where it has been established thats : Sq is not revoked as it is not inconsistent with

s : ¬PSq.

Next, ‘yellow’ explicitly answers the question ‘Y or PSq’. If the model onlyconditions on

the evidences : ¬PSq, then this adds no information, or isirrelevant. If the previous judgement

that this was a squares : Sq is incorporated however (given there is no evidence in the repair

this has changed tos : ¬Sq) this answers the most relevant questionI . This ellipsis resolution on

this account is driven by interpreting the fragment as an answer to the most relevant outstanding

question for reference resolution. Having said this,DyLan ’s NLU algorithm will also give this

judgement through maximal re-use of the reparandum syntactically through use of asymmetric

merge, as discussed in the last chapter, however here the interpretation is aided by a notion of

relevance given a new notion of interpretation inBestParse(7.22). The judgements : YSqis of

course defeasible if “circle” were to be the following word,however at this point the hearer has

assumed optimal relevance in terms of the speaker answeringthe central issue as efficiently as

possible, that is, assuming Gricean maxims.

In NLG, there is now a strategic reason for generating ‘no’– it is the most efficient way of

negating the answer to the most relevant question that has just been resolved. In the first example,

the combination of the hiatus of the word, the interregnum and the onset of a substitution form

indicate the revocation of the reparandum, whereas here this is done explicitly in terms of an

answer. Conversely on the NLU side, interpreting any yes or no answer involves a question

accommodation search process to find the most relevant question it answers. There is also a
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strategic reason for the elliptical form being generated here, in that it is the increment that resolves

the most relevant question under discussion yet to be resolved, given the parse state’s maximal

re-use of the reparandum.

7.7 Discussion

I have presented a novel way of using Knuth (2005, 2006)’s work on probabilistic lattices for

type theory which has some nice predictions for small reference domains. DS-TTR, whilst cur-

rently not fully implemented probabilistically, has potential for fully probabilistic parsing and

generation in practice. The question-based account has thesame spirit as Ginzburg et al. (2014),

however here I have introduced a real-valued measure of relevance, a measure which I believe

should be present in any theory of dialogue.

One of the potential draw-backs of the approach is complexity blow-up and scalability. There

is exponentiation of the size of the lattices in the size of the disjoint atoms. The other obvious

difficulty when scaling to bigger domains is defining the domain of type judgements, however

the motivation of TTR is a good one: an agent should only reason with the relevant types to a

situation, rather than regarding the whole universe and allthe type judgements therein.

The model does not capture over-specification in REG directly in the way the incremental

algorithm does (Dale and Reiter, 1995), however given the cross-linguistic evidence (Rubio-

Fernández, 2011) this may not be a weakness: as over-specification may be tied to specific

constructions in specific situations for a given language, it may not do to model it in the con-

ceptualisation stage, but rather as a side-effect of incremental informativity, which my model

attempts to capture, like Fernández (2013). However, uniquely, the model accounts for the rea-

soning of both the listener and the producer of the instructions, due to its reversibility. In NLU,

choosing the optimal next parse increment given an input word conditions on the relevance of

candidate increments to the central issue and their syntactic probability (7.22), while in NLG,

choosing the optimal next word conditions both on its likelihood to be parsed appropriately, and

that parse increment’s closeness to the goal concept (7.23). In future work, this could be used to

model the cause of self-repair as a time critical trade-off between relevance and accuracy.

A computational view of relevance in terms of information content and answering questions

incrementally also has scope for extension beyond self-repair to other-repair. If each dialogue

partner is modelled as having their own assertion lattice and question lattice, the potential for
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clarification, and the knowledge of that clarification, becomes clear– this is a clearly vital form of

dialogue act that has had treatments in terms of QUD structures (Purver, 2004; Ginzburg, 2012)

but here this can be cashed out in terms of probabilistic and information-theoretic situational

inference. Beginning with these repair phenomena, along with simple questions and assertions

may open the door to integrating an incrementally constructed QUD into the type of dialogue

context I have set out here more generally, and provide some unification between KoS, DS-TTR

and a thorough-going computational formulation of relevance.

7.7.1 Extensions

I now mention a few other possible future extensions to the model.

Dialogue and self-repair in the wild

To move towards domain-generality, generating the latticeof all possible dialogue situations for

interesting domains is computationally intractable. It would be more sensible instead to consider

incrementally occurringissuesthat can be modelled as questions (Larsson, 2002). Given oneor

more issues manifest in the dialogue at any time, it is plausible to generate small assertion lattices

dynamically to estimate possible answers, and also assign the real-valued relevance measures to

questions generated from the assertion lattices. This is anapproach that can start small and build

up.

Learning in a referential game

The question of how a dialogue system could automatically learn through observation and inter-

action to best predict reference given other type judgements of words and ParseIUs is prescient.

While not the focus here, I briefly explain how this could be done in the framework heretofore

presented.

When dealing with referring expression games, or indeed anylanguage game, we need a way

of storing perceptual experience. In probabilistic TTR this was achieved by positing a judgement

setJ in which an agent stores probabilistic type judgements.12 As decribed above, I extend this

notion of the overall judgement set to the lattice of judgement sets for a given agentJ, which I

will call hereLJ, and the sum of the value of probabilistic judgements that agentJ has judged a

situation be of typeRi within LJ as‖Ri‖J so far, and the sum of all probabilistic judgements in

the lattice simply asP(LJ); thus the prior probability thatJ judges anything is of typeRi under

12Cooper et al. (2014) characterise a type judgement as an Austinian proposition that a situation is of a
given type with a given probability, encoded in a TTR record.
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the set of judgementsJ is ‖Ri‖J
P(LJ)

. The conditional probabilityp(s : R1 | s : R2) underJ can be

reformulated in terms of these sets of judgements:

pJ(s : R1 | s : R2) =







‖R1∧R2‖J

‖R2‖J
iff ‖R2‖J 6= 0

0 otherwise

(7.24)

where the sample spaces‖R1∧R2‖J and‖R2‖J constitute the observations of agentJ so far.

In learning through experience, latticeLJ’s probabilities can be updated through observations

after its initial construction by adding judgements to the relevant judgement sets. If a reference

game is played over several rounds, the choice of referring expression can change based on

mutually salient functions from words to situations- see e.g. DeVault and Stone (2009). A

frequentist approach to learning in this scenario would be:given an observation of an existing

RT Ri is made byJ with probabilityv, then‖Ri‖J, the overall denominatorP(LJ) , and the nodes

in the upward path from‖Ri‖J to ⊤ are incremented byv. The approach could be converted to

Bayesian update learning by using the prior probabilities in LJ for calculatingv before it is added.

Furthermore, observations can be added toLJ that include novel RTs: due to the DAG structure

of LJ, their subtype ordering and probability effects can be integrated efficiently.

The reason for the seemingly trivialJ subscript here is to emphasize an agent and perception-

centric view. The lattice built by agentJ may not be the same lattice as their interlocutor’s lattice,

or the probability values for the type judgements may be different. Consequently coordination is

required to settle on the most effective values for the assertion lattice, and clarification questions

generated from the question lattice dual to this could help guide this. As Knuth (2006) explains,

the central issue is the central issue by virtue of the fact itis the most relevant in the domain–

maximising its relevance is in fact maximising the entropy of the distribution of its possible

answers. In future work I intend to see how this framework could be used for on-line negotiation

of conceptual meaning between two agents.

7.8 Conclusion

I have discussed a dialogue model for incremental probabilistic inference and efficient meth-

ods for constructing probabilistic RT domain concept lattices ordered by the subtype relation,

demonstrating their efficacy for realistic self-repair processing. The model recreates experimen-

tal results (Brennan and Schober, 2001) and develops ideas of ellipsis processing in terms of

real-valued relevance measures to questions under discussion. While I model a simple reference
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domain here, this is intended to be a general NLU and NLG modelfor dialogue, and as such,

a question-based semantics is more suitable than one conditioning on pre-defined properties of

objects as is the tendency for specific reference resolutionand generation algorithms in the liter-

ature. I wish to explore the scalability of RT lattices to other domains and their learning capacity

in future work.
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Chapter 8

Conclusion and Future Directions

This brief concluding chapter summarizes the contributions of the thesis and their consequences.

Future directions for research are also outlined.

8.1 Summary of contributions

From the four principal analysis chapters the following contributions were made:

• Chapter 4: A comprehensive study of the forms of repair showed how a string alignment

approach to repair detection and one reliant on interregnumrecognition has major weak-

nesses, and how an incremental processing account sensitive to local information in the

utterance has the potential to be much stronger. Meaning of self-repair has regularity,

though this may be gradient rather than categorical.

• Chapter 5: The strongly incremental repair detection system STIR is defined. STIR is able

to achieve good performance on the Switchboard disfluency identification task whilst im-

proving the state-of-the-art in incremental performance.Enriched language n-gram models

show some useful information-theoretic features for fluency measurements. STIR is prac-

tically useful for psychiatric purposes.

• Chapter 6: An incremental semantics driven model of self-repair incorporated directly in

both parsing and generation models is proposed and has some pleasing consequences. The

account begins to fulfil the incremental requirements for dialogue systems, such as strong

incremental interpretation and incremental representation.
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• Chapter 7: The model from the previous chapter is extended tohave a situation-based

semantic model using lattice-theoretic measures of probability and relevance in a novel

way for dialogue models, modelling psycholinguistic evidence on self-repair processing in

a reference identification domain. The chapter shows that going probabilistic is the way

towards realistic inference.

8.2 Consequences for theoretical dialogue models

Self-repairs and edit terms have an equal status semantically and pragmatically to

fluent utterances

Through reviewing empirical evidence in Chapter 2 and observing real self-repairs in Chapter 4,

it is clear speakers and hearers make use of the structure andtype of self-repair to compute their

meaning beyond that of filtering out their disfluency effects. Chapters 6 and 7 modelled this

explicitly.

Actions speak louder than words in dialogue context

One theme of this thesis is that the notion of dialogue semantics should not be restricted to

one that is just about propositional content, but one that has a fine-grained processing context

recordinghow the content was produced. Chapter 6 showed how context couldbe characterized

as action-based, which allows it to be modelled time-linearly in the way dialogue occurs in

practice. It is fruitful, in the spirit of the original DS generation account in Purver and Kempson

(2004), hearers and speakers have access to a similar actionsequence structure which allows

them to repair and process elliptical phenomena interactively.

Probability and information theory should be first class citizens of dialogue seman-

tics

To model empirical phenomena, inclusion of probability andinformation theory seems to be,

rather than for the purposes of optimising dialogue system performance, necessarily part of the

semantics. There is now a well defined relationship between logic and probability (Knuth, 2005,

2006) which I hopefully showed in Chapter 7 linguists and dialogue system engineers can profit

from. Real-valued degrees of relevance for questions is something that needs to be explored

further to model realistic inference in dialogue models in general.
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8.3 Consequences for computational linguistics and empirical models

Self-repair needs to be modelled as a mechanism, not a string-alignment process

and its structure needs to be preserved

Chapter 4 and 5 showed how aligning strings is an ineffectivemethod for detecting repairs, and

this will only capture a subset and provide insufficient coverage and poor incremental perfor-

mance. Self-repair needs to be viewed as a mechanism at work,and accurately modelling this

in a strongly incremental way, as shown to be possible in Chapter 5 allows state-of-the-art incre-

mental performance in detecting repair and edit term structures.

Left-to-right operability on its own is not sufficient for good incremental perfor-

mance

Through the desiderata provided at the end of Chapter 3 and the novel evaluation measures pro-

vided in Chapter 5, it is clear incrementality is a multi-faceted capacity, and systems purporting

to be incremental must perform well across these measures. These criteria extend beyond the

phenomena studied in this thesis to dialogue processing generally.

Robustness for repair processing comes from robustness in the grammar

As Johnson (2011) points out, aclosed-world assumptionview of parsing– that is one regarding

any analysis the grammar does not generate as ungrammatical– is not a healthy element of a

parsing system, not only for reasons of robustness, but alsofor psychological plausibility. N-

gram models as described in Chapter 5 are the most robust resource currently available to model

this gradient effect, however as parsers become equally robust for coverage and probability out-

put, incorporating self-repair processing within the parsing process is the most natural step, but

using an approach that is based on detection and interpretation of repair rather than removing

reparanda.

Information-theoretic measures are more useful than lexical values

The work here supports the idea of information density (Keller, 2004; Jaeger and Tily, 2011)

being at the core of incremental dialogue processing. Approaches that put information theory

directly into the representation, rather than being used peripherally for machine learning, are in a
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good position to model interesting phenomena. This was shown in Chapter 5 where information-

theoretic measures were shown to strongly correlated to self-repair structure, and automatic clas-

sifiers can use these measures without requiring big featurespaces encoding every word in the

lexicon to perform well. It is clear investigation into the informational properties of dialogue is a

very fruitful step to take.

8.4 Future directions

This is only the beginning. Integration of the mechanisms presented here with speech recogni-

tion and voice synthesis is a clear next step. This work is well placed for incremental situated

dialogue, so should result in more interactive, likeable systems.

The notion of incremental context for dialogue sketched in this thesis needs extension. Us-

ing the insights of KoS (Ginzburg, 2012) to enrich this with grounding, clarification and other

capabilities, whilst adhering to the principals of incrementality described here, could eventually

result in a unifying theory of dialogue context.

Finally, as the models presented here have actions and time-linear updates to context at their

core, they could generalise to non-linguistic repair. The optimisation of interactive action under

time-pressure causes repair, and this is none more so the case than in pure spoken dialogue,

however there are other domains with this property involving interactive action, for example in

physical motor skill acquisition and teaching, where a multi-modal approach to repair could be a

fruitful direction for embodied agents.

8.5 Final word

This thesis concludes that at least as fine-grained a model ofcontext as word-by-word is required

for realistic models of self-repair, and this context must include linguistic action sequences and

information update effects. The way dialogue participantsprocess self-repairs to make inferences

in real time, rather than filter out their disfluency effects,has been modelled formally and in

practical systems.
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Appendix A

Feature Ranking

RM start detection features:
average merit average rank attribute

0.516 +- 0.004 1 +- 0 WMLboostDrop
0.505 +- 0.004 2 +- 0 POSWMLboostDrop
0.485 +- 0.012 3.3 +- 0.46 POSKL(P(X|rms-1,rms),P(X|rms-1 ,rps))
0.483 +- 0.004 3.7 +- 0.46 DistanceBackToRPStart
0.417 +- 0.004 5 +- 0 rmsW3=rpsW3
0.384 +- 0.005 6.4 +- 0.49 POSrmsW3=POSrpsW3
0.381 +- 0.005 6.6 +- 0.49 rmsW3=<rps>(embed)
0.258 +- 0.009 8.1 +- 0.3 POSEntropy
0.245 +- 0.005 8.9 +- 0.3 WML(rms-2,rms-1,rps)
0.226 +- 0.005 10.3 +- 0.46 LocalSurprisalBoost
0.221 +- 0.004 11.6 +- 1.02 POSWML(rms-2,rms-1,rps)
0.219 +- 0.008 12 +- 1.26 LocalWMLboost
0.213 +- 0.007 13.3 +- 1.79 POSLocalSurprisalBoost
0.211 +- 0.004 13.9 +- 1.14 WMLboost
0.21 +- 0.003 14.4 +- 0.8 POSWMLboost
0.202 +- 0.004 16.4 +- 1.36 POSSurprisal(rms-2,rms-1,rps)
0.201 +- 0.007 17 +- 1.48 POSSurprisalBoost
0.193 +- 0.009 19 +- 1.48 POSRMstartEntropy
0.192 +- 0.007 19.1 +- 1.64 Surprisal(rms-2,rms-1,rps)
0.19 +- 0.009 19.6 +- 1.56 POSLocalWMLboost
0.189 +- 0.004 19.7 +- 0.9 lengthIntoUtt
0.176 +- 0.005 21.7 +- 0.9 POSEntropyReduce
0.159 +- 0.006 23.1 +- 0.3 SurprisalBoost
0.146 +- 0.008 24.4 +- 0.92 WordEntropy
0.142 +- 0.005 24.8 +- 0.6 POSSurprisal(rms-2,rms-1,rms)
0.136 +- 0.005 25.7 +- 0.46 POSWML(rms-2,rms-1,rms)
0.113 +- 0.008 27 +- 0 WordEntropyReduce
0.081 +- 0.007 28.6 +- 0.66 WordRMPEntropy
0.079 +- 0.004 28.6 +- 0.49 Surprisal(rms-2,rms-1,rms)
0.062 +- 0.008 29.8 +- 0.6 WML(rms-2,rms-1,rms)
0.028 +- 0.001 31 +- 0 rmsW2=<rps>(embed)
0.021 +- 0.001 32 +- 0 rp1confidence
0 +- 0 33 +- 0 edit_rps
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RP end detection features:
average merit average rank attribute
0.925 +- 0.001 1 +- 0 repairLength
0.381 +- 0.002 2.2 +- 0.4 embeddedRPS
0.376 +- 0.008 3 +- 0.63 POSReparandumRepairDiff
0.364 +- 0.002 3.8 +- 0.4 ReparandumRepairDiff
0.294 +- 0.006 5 +- 0 POSKL(P(X|RMn-1,RMn),P(X|RPn-1,RPn) )
0.252 +- 0.003 6 +- 0 POSReparandum=Repair
0.247 +- 0.003 7 +- 0 RMend=RPend
0.237 +- 0.003 8 +- 0 Reparandum=Repair
0.207 +- 0.015 9.3 +- 0.46 POSLocalSurprisalBoost
0.203 +- 0.003 9.7 +- 0.46 POS_RMend=RPend
0.167 +- 0.013 11.4 +- 0.8 POSLocalWMLBoost
0.159 +- 0.002 12 +- 0.45 ReparandumLength
0.157 +- 0.003 12.9 +- 0.54 RPsClassifierConfidence
0.136 +- 0.007 14.4 +- 0.66 LocalWMLBoost
0.125 +- 0.008 15 +- 0.45 LocalSurprisalBoost
0.091 +- 0.034 15.3 +- 1.55 POSInfoGainReduce
0.06 +- 0.021 17.5 +- 0.67 InfoGainReduce
0.051 +- 0.008 17.9 +- 0.83 POSKL(P(X|RMs-1,RMs),P(X|RPs- 1,RPs))
0.035 +- 0.002 19 +- 0.63 RMsClassifierConfidence
0.017 +- 0.001 20.4 +- 0.49 RMstart=RPstart
0.025 +- 0.02 20.9 +- 1.7 Entropy(P(X|RMs-1,RMs))
0.012 +- 0 21.5 +- 0.5 POSRMstart=RPstart
0.008 +- 0.003 22.8 +- 0.6 POSEntropy(P(X|RMs-1,RMs))
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Appendix B

Dynamic Syntax computational actions

• All actions are tree construction actions IF..THEN..ELSE... where the IF preconditions
predicate on the current pointer position in the tree and THEN..ELSE.. effects are given
relative to the current pointer position.

• Possible tree types are standard (matrix) trees, Linked trees and unfixed nodes (starred
nodes).

• Tree decorations areTn(x) (node addresses),Ty(X) (node types),Fo(x) (semantic formu-
lae),CLASS(x) andPERSON(x) (subtpyes of semantic formulae with values indicating
gender and plurality values respectively), and+eval (Link evaluated node if a Linked tree
stems from it). All decorations can be prefixed ? to make them requirements (meaning
they require these decorations rather than have them).

• Basic tree building and pointer movement operations:go(node/tree modality), make(node),
put (tree decoration at current node), delete (tree decoration at current node) anddo(action)

• Tree modalities:〈↑〉 (above pointer),〈↓〉 (below pointer),〈Y〉 (some modalityY). All
modalities can be specified as being in the direction of a specific node type 1,0,Link or
∗ where 1 is a functor node (right daughter) and 0 is an argumentnode (left daughter),
Link is a Linked tree and∗ is an unfixed node (star node).

• ContextTreeis the last tree processed before the current tree.

• TriggeredBy(X,A) is whereX is a tree element andA is the action that constructed it.

• Rules with names prefixed with * are non-optional.

• Rules with names prefixed with + are applied repeatedly, exhausting all successful rule
metavariable combinations.

• Node type and tree modality metavariables:X,Y,Z

• Formula (includingCLASSandPERSON) and node metavariables:v,w,x,y,z

• Rule metavariables:A,B,C
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INTRODUCTION PREDICTION

IF ?Ty(t)
¬〈↓ 1〉∃x.x
¬〈↓ 0〉∃x.x

THEN make(↓ 1)
go(↓ 1)
put (?Ty(e→ t))
go(↑ 1)
make(↓ 0)
go(↓ 0)
put (?Ty(e))

ELSE abort

ANTICIPATION ↓0
IF 〈↓ 0〉∃x.?x
THEN go(↓ 0)
ELSE abort

ANTICIPATION ↓1
IF 〈↓ 1〉∃x.?x
THEN go(↓ 1)
ELSE abort

ANTICIPATION L INK

IF Ty(t)∨Ty(e→ t)
〈↓ Link〉∃x.x

THEN go(↓ Link)
ELSE abort

*T HINNING

IF ?X
X

THEN delete (?X)
ELSE abort

COMPLETION

IF Ty(X)
¬?Ty(X)
〈↑〉∃x.x

THEN go(↑)
ELSE abort

*ELIMINATION

IF ¬?Ty(X)
¬∃x.Fo(x)
〈↓ 1〉Ty(Y→ X)
〈↓ 0〉Ty(Y)
〈↓ 1〉Fo(y)
〈↓ 0〉Fo(z)
¬〈↓ 1〉∃x.?x
¬〈↓ 0〉∃x.?x

THEN put ((Fo(y))Fo(z)) (β -reduce)
ELSE abort
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STAR ADJUNCTION

IF Ty(X)
¬?Ty(X)
〈↑〉∃x.x
¬?〈↓ 1〉Ty(e→ t)
¬?〈↓ 0〉Ty(e)
¬〈↓ 1〉∃x.x
¬〈↓ 0〉∃x.x
¬〈↓ ∗〉∃x.x

THEN make(↓ ∗)
go(↓ ∗)
put (?Ty(e))
put (?∃x.Tn(x))

ELSE abort

L INK ADJUNCTION

IF Ty(e)
Fo(x)
¬〈↓ Link〉∃x.x

THEN make(↓ Link)
go(↓ Link)
put (?Ty(t))
put (?〈↓ ∗〉Fo(x))
put (?+eval)

ELSE abort

MERGE

IF Tn(x)
〈Y〉?Tn(y)

THEN Tn(x) = Tn(x)∪Tn(y) (Conjoin nodes)
ELSE abort

*L INK EVALUATION

IF ?+eval
Fo(x)
〈↓ Link〉Fo(y)

THEN put (+eval)

Fo(y) ⋗ Fo(x)
ELSE abort

LOCAL SUBSTITUTION (pronouns only)
IF Ty(X)

?∃x.Fo(x)
CLASS(v)
PERSON(w)
〈Y〉Ty(X)
〈Y〉Fo(z)
〈Y〉CLASS(v)
〈Y〉PERSON(w)
¬〈↑ 0 ↑ ∗ ↓ 0〉Fo(z)

THEN put (Fo(z))
ELSE abort
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CONTEXT SUBSTITUTION PRONOUN

IF Ty(e)
?∃x.Fo(x)
CLASS(y)
PERSON(z)
Ty(e)∧CLASS(y)∧PERSON(z)∧Fo(v)∈ContextTree

THEN put (Fo(v))
ELSE abort

CONTEXT SUBSTITUTION OTHER

IF ¬Ty(e)
Ty(X)
?∃x.Fo(x)
Ty(X)∧Fo(y) ∈ ContextTree

THEN put (Fo(y))
ELSE abort

REGENERATION

IF Ty(X)
?∃x.Fo(x)
TriggeredBy(Ty(X),A)

THEN do(A)
ELSE abort
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