595 research outputs found

    Assessment of the potential of solar thermal small power systems in small utilities

    Get PDF
    The potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities is assessed. Five different solar thermal small power system configurations were considered in three different solar thermal technologies. The configurations included: (1) 1 MW, 2 MW, and 10 MW parabolic dish concentrators with a 15 kW heat engine mounted at the focal point of each dish, these systems utilized advanced battery energy storage; (2) a 10 MW system with variable slat concentrators and central steam Rankine energy conversion, this system utilized sensible thermal energy storage; and (3) a 50 MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system, this system also utilized sensible thermal storage. The results are summarized in terms of break-even capital costs. The break-even capital cost was defined as the solar thermal plant capital cost which would have to be achieved in order for the solar thermal plants to penetrate 10 percent of the reference small utility generation mix by the year 2000. The calculated break-even capital costs are presented

    A methodology for optimisation of solar dish-Stirling systems size, based on the local frequency distribution of direct normal irradiance

    Get PDF
    In geographical areas where direct solar irradiation levels are relatively high, concentrated solar energy systems are one of the most promising green energy technologies. Dish-Stirling systems are those that achieve the highest levels of solar-to-electric conversion efficiency, and yet they are still among the least common commercially available technologies. This paper focuses on a strategy aimed at promoting greater diffusion of dish-Stirling systems, which involves optimizing the size of the collector aperture area based on the hourly frequency distributions of beam irradiance and defining a new incentive scheme with a feed-in tariff that is variable with the installed costs of the technology. To this purpose, a new numerical model was defined and calibrated on the experimental data collected for an existing dish-Stirling plant located in Palermo (Italy). Hourly-based simulations were carried out to assess the energy performance of 6 different system configurations located on 7 sites in the central Mediterranean area using two different solar databases: Meteonorm and PVGIS. A new simplified calculation approach was also developed to simulate the dish-Stirling energy production from the hourly frequency histograms of the beam irradiance. The results reveal that an optimised dish-Stirling system can produce 70–87 MWhe/year in locations with direct irradiation varying between 2000 and 2500 kWh/(m2·year). The proposed incentive scheme would guarantee a payback time for investment in this technology of about ten years and the effect of economies of scale could lead, over the years, to a levelized cost of energy similar to that of other concentrating power systems

    Identifying opportunities for developing CSP and PV-CSP hybrid projects under current tender conditions and market perspectives in MENA – benchmarking with PV-CCGT

    Get PDF
    Concentrating solar power (CSP) is one of the promising renewable energy technologies provided the fact that it is equipped with a cost-efficient storage system, thermal energy storage (TES). This solves the issue of intermittency of other renewable energy technologies and gives the advantage of achieving higher capacity factors and lower levelized costs of electricity (LCOE). This is the main reason why solar tower power plants (STPP) with molten salts and integrated TES are considered one of the most promising CSP technologies in the short term [1]. On the other hand, solar photovoltaic (PV) is a technology whose costs have been decreasing and are expected to continue doing so thus providing competitive LCOE values, but with relatively low capacity factors as electrical storage systems remain not cost-effective. Combining advantages and eliminating drawbacks of both technologies (CSP and PV), Hybridized PV-CSP power plants can be deemed as a competitive economic solution to offer firm output power when CSP is operated smartly so that its load is regulated in response to the PV output. Indeed previous works, have identified that it would allow achieving lower LCOEs than stand-alone CSP plants by means of allowing it to better utilize the solar field for storing energy during the daytime while PV is used [1]. On the fossil-based generation side, the gas turbine combined cycle (CCGT) occupies an outstanding position among power generation technologies. This is due to the fact that it is considered the most efficient fossil fuel-to-electricity converter, in addition to the maturity of such technology, high flexibility, and the generally low LCOE, which is largely dominated by fuel cost and varies depending on the natural gas price at a specific location. Obviously, the main drawback is the generated carbon emissions. In countries rich in natural gas resources and with vast potential for renewable energies implementation, such as the United Arab Emirates (UAE), abandoning a low LCOE technology with competitively low emissions – compared to coal or oil - and heading to costly pure renewable generation, seems like an aggressive plan. Therefore, hybridizing CCGT with renewable generation can be considered an attractive option for reducing emissions at reasonable costs. This is the case of the UAE with vast resources of both natural gas and solar energy. Previous work have shown the advantages of hybrid PV-CCGT and hybrid PV-CSP plants separately [1][2]. In this thesis, CSP and the two hybrid systems are compared on the basis of LCOE and CO2 emissions for a same firm-power capacity factor when considering a location in the UAE. The results are compared against each other to highlight the benefits of each technology from both environmental and economic standpoints and provide recommendations for future work in the field. The techno-economic analysis of CSP (STPP with TES), PV-CSP(STPP with TES) and PV-CCGT power plants have been performed by DYESOPT, an in-house tool developed in KTH, which runs techno-economic performance evaluation of power plants through multi-objective optimization for specific locations[1]. For this thesis, a convenient location in the UAE was chosen for simulating the performance of the plants. The UAE is endowed by the seventh-largest proven natural gas reserves and average to high global horizontal irradiation (GHI) and direct normal irradiation (DNI) values all year round, values considered to be lower than other countries in the MENA region due to its high aerosol concentrations and sand storms. The plants were designed to provide firm power in two cases, first as baseload, and second as intermediate load of 15 hours from 6:00 until 21:00. The hours of production were selected based on a typical average daily load profile. CSP and PV-CSP model previously developed by [3][1] were used. Ideally in the PV-CSP model, during daytime hours the PV generation is used for electricity production, covering the desired load, while CSP is used partly for electricity production and the rest for storing energy in the TES. Energy in the TES system is then used to supply firm power during both periods of low Irradiance and night hours or according to need. A PV-CCGT model has been developed which operates simultaneously, prioritizing the availability of PV while the CCGT fulfils the remaining requirement. There is a minimum loading for the CCGT plant which is determined by the minimum possible partial loading of the gas turbine restricted by the emission constraints. Accordingly, in some cases during operation PV is chosen to be curtailed due to this limitation. The main results of the techno-economic analysis are concluded in the comparative analysis of the 3 proposed power plant configurations, where the PV-CCGT plant is the most economic with minimum LCOE of 86 USD/MWh, yet, the least preferable option in terms of carbon emissions. CSP and PV-CSP provided higher LCOE, while the PV-CSP plant configuration met the same capacity factor with 11% reduction in LCOE, compared to CSP

    Planning a Renewable Power System in Texas as an Introduction to Smart Power Grid

    Get PDF
    Design electrical systems from six renewable energy sources: photovoltaic, wind energy, geothermal, concentrated solar energy, biomass energy, and hydropower in addition to a storage system in the state of Texas, This power system converts the electric system in Texas into a 100 % renewable energy power system. Optimization technique has applied to the results to make the system economical and reduce the wasting resources, this system is considered as decentralized as well which is a great advantage for achieving the smart grid technology compared with the conventional plants where the generation parts are deposed in a small part of the grid, this design makes each part of the grid have two roles as a generator as well as load. The storage system relies on the heat storage of traditional batteries and concentrated solar power plants. Hence this power system could reduce the greenhouse gases by more than 90 %, the annual electricity bill in Texas could be decreased by amount form 10-20 billion dollars yearly, and finally, achieve a higher level of security and reliability of the system by applying the smart grid concept

    Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    Get PDF
    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector

    Potential of a Solar Organic Rankine Cycle with Evacuated-Tube Solar Collectors as Heat Source for Power Generation in Thailand

    Get PDF
    This paper presents a potential of a solar organic Rankine cycle (ORC) with evacuated-tube solar collectors with FR(τα) of 0.81, FRUL of 2.551 W/m2K as heat source for generating electricity under the climate of Thailand. The power output of the ORC power plant was 280 kW and the ORC working fluid was R245fa. The weather conditions of Chiang Mai (18.783 oN, 98.983 oE ), Ubon Ratchathani (15.233 oN, 104.783 oE), Hat Yai (6.91 oN, 100.43 oE) and Bangkok (13.66 oN, 100.56 oE) represented the northern, northeastern, southern and central part of Thailand, respectively were taken as the input data of the calculations. It could be found that at Chiang Mai, the levelized electricity cost was lowest which was 0.37 USD/kWh and the annual solar-to-electricity efficiency was 4.44%. At Bangkok and Ubon Ratchathani, the levelized electricity costs were slightly higher than that of Chiang Mai. At Hat Yai, the levelized electricity cost was found to be highest which was 0.43 USD/kWh. Key words: Solar organic rankine cycle; Solar collector; Electrical power generation; Performance analysis; Levelized electricity cos

    A Review of Parabolic Dish-Stirling Engine System Based on Concentrating Solar Power

    Get PDF
    A solar thermal technology which is also known as concentrating solar power (CSP) uses thermal energy from the sun to generate electricity. The electricity generation from solar thermal can be produced with four technologies of concentrating solar systems which are parabolic trough, linear Fresnel reflector, solar tower, and parabolic dish-Stirling engine system. This paper reviews the parabolic dish-stirling based on CSP technology by taking into account the performance, the global performance, site for parabolic dish and levelized cost of energy (LCOE). Generally, the parabolic dish applications have barriers in terms of the technology and the high capital cost compared to the others CSP technologies.

    Market Potential Analysis of a Solar Hybrid Dish-Brayton System

    Get PDF
    In this study, the market potential of a solar hybrid dish-Brayton system has been analyzed, using a market analysis of four relevant industries and the techno economic analysis of the system, operating in a stand-alone configuration. The industries assessed were desalination, produce drying, Steam Methane Reforming for Hydrogen Production and Compressed air for the mining industry. After taking into consideration, the various factors that affect each industry, the applicability of the technology in industrial processes varies. It was found that the technology would be a good fit in small scale applications in remote locations for both desalination and for supplying compressed air in the mining industry. Produce Drying requires the targeted industries to be well-established, large-scale players wanting to decarbonize their processes. Owing to the prohibitive initial capital of the system, it would not be feasible with small scale market players. In locations where there was high DNI and higher costs of natural gas, the technology can be used in the thermal process in Steam Methane reforming for Hydrogen production. The techno economic analysis was carried out in three different locations, that has high DNI and relevant industries present. It was found that the price of natural gas and the DNI plays the major role in determining the Levelized cost of Energy at a location. The biggest costs factor in the initial capital spent was the expense of the dish. Future developments in cheaper material with similar levels of reflectivity, and the economies of scale, due to increase of production, stemming from increased demand would reduce the cost of the technologyObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminan

    Electrochemical energy storage systems for solar thermal applications

    Get PDF
    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA)

    The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    Get PDF
    The performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States was studied. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs and energy costs. The regional variation in solar plant performance was assessed in relation to the expected rise in the future cost of residential and commercial electricity supplied by conventional utility power systems in the same regions. A discussion of the regional insolation data base is presented along with a description of the solar systems performance and costs. A range for the forecast cost of conventional electricity by region and nationally over the next several decades is given
    • …
    corecore