7,010 research outputs found

    The Bi-Functional Organization of Human Basement Membranes

    Get PDF
    The current basement membrane (BM) model proposes a single-layered extracellular matrix (ECM) sheet that is predominantly composed of laminins, collagen IVs and proteoglycans. The present data show that BM proteins and their domains are asymmetrically organized providing human BMs with side-specific properties: A) isolated human BMs roll up in a side-specific pattern, with the epithelial side facing outward and the stromal side inward. The rolling is independent of the curvature of the tissue from which the BMs were isolated. B) The epithelial side of BMs is twice as stiff as the stromal side, and C) epithelial cells adhere to the epithelial side of BMs only. Side-selective cell adhesion was also confirmed for BMs from mice and from chick embryos. We propose that the bi-functional organization of BMs is an inherent property of BMs and helps build the basic tissue architecture of metazoans with alternating epithelial and connective tissue layers

    Copper coordination polymers from cavitand ligands: hierarchical spaces from cage and capsule motifs, and other topologies

    Get PDF
    The cyclotriveratrylene-type ligands (ยฑ)-tris(iso-nicotinoyl)cyclotriguaiacylene L1 (ยฑ)-tris(4-pyridylmethyl)cyclotriguaiacylene L2 and (ยฑ)-tris{4-(4-pyridyl)benzyl}cyclotriguaiacylene L3 all feature 4-pyridyl donor groups and all form coordination polymers with CuI and/or CuII cations that show a remarkable range of framework topologies and structures. Complex [CuI4CuII1.5(L1)3(CN)6]ยทCNยทn(DMF) 1 features a novel 3,4-connected framework of cyano-linked hexagonal metallo-cages. In complexes [Cu3(L2)4(H2O)3]ยท6(OTf)ยทn(DMSO) 2 and [Cu2(L3)2Br2(H2O)(DMSO)]ยท2Brยทn(DMSO) 3 capsule-like metallo-cryptophane motifs are formed which linked through their metal vertices into a hexagonal 2D network of (43.123)(42.122) topology or a coordination chain. Complex [Cu2(L1)2(OTf)2(NMP)2(H2O)2]ยท2(OTf)ยท2NMP 4 has an interpenetrating 2D 3,4-connected framework of (4.62.8)(62.8)(4.62.82) topology with tubular channels. Complex [Cu(L1)(NCMe)]ยทBF4ยท2(CH3CN)ยทH2O 5 features a 2D network of 63 topology while the CuII analogue [Cu2(L1)2(NMP)(H2O)]ยท4BF4ยท12NMPยท1.5H2O 6 has an interpenetrating (10,3)-b type structure and complex [Cu2(L2)2Br3(DMSO)]ยทBrยทn(DMSO) 7 has a 2D network of 4.82 topology. Strategies for formation of coordination polymers with hierarchical spaces emerge in this work and complex 2 is shown to absorb fullerene-C60 through soaking the crystals in a toluene solution

    Index to NASA Tech Briefs, January - June 1967

    Get PDF
    Technological innovations for January-June 1967, abstracts and subject inde

    Palliative Care: Symptom Management and end of Life Care

    Get PDF

    ์–ผ๊ตด ํ‘œ์ • ์ธ์‹, ๋‚˜์ด ๋ฐ ์„ฑ๋ณ„ ์ถ”์ •์„ ์œ„ํ•œ ๋‹ค์ค‘ ๋ฐ์ดํ„ฐ์…‹ ๋‹ค์ค‘ ๋„๋ฉ”์ธ ๋‹ค์ค‘์ž‘์—… ๋„คํŠธ์›Œํฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2019. 8. Cho, Nam Ik.์ปจ๋ณผ ๋ฃจ์…˜ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ (CNN)๋Š” ์–ผ๊ตด๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ๋ฅผ ํฌํ•จํ•˜์—ฌ ๋งŽ์€ ์ปดํ“จํ„ฐ ๋น„์ „ ์ž‘์—…์—์„œ ๋งค์šฐ ์ž˜ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์—ฐ๋ น ์ถ”์ • ๋ฐ ์–ผ๊ตด ํ‘œ์ • ์ธ์‹ (FER)์˜ ๊ฒฝ์šฐ CNN์ด ์ œ๊ณต ํ•œ ์ •ํ™•๋„๋Š” ์—ฌ์ „ํžˆ ์‹ค์ œ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. CNN์€ ์–ผ๊ตด์˜ ์ฃผ๋ฆ„์˜ ๋‘๊ป˜์™€ ์–‘์˜ ๋ฏธ๋ฌ˜ํ•œ ์ฐจ์ด๋ฅผ ๋ฐœ๊ฒฌํ•˜์ง€ ๋ชปํ–ˆ์ง€๋งŒ, ์ด๊ฒƒ์€ ์—ฐ๋ น ์ถ”์ •๊ณผ FER์— ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ๋˜ํ•œ ์‹ค์ œ ์„ธ๊ณ„์—์„œ์˜ ์–ผ๊ตด ์ด๋ฏธ์ง€๋Š” CNN์ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์—์„œ ๊ฐ€๋Šฅํ•  ๋•Œ ํšŒ์ „ ๋œ ๋ฌผ์ฒด๋ฅผ ์ฐพ๋Š” ๋ฐ ๊ฐ•๊ฑดํ•˜์ง€ ์•Š์€ ํšŒ์ „ ๋ฐ ์กฐ๋ช…์œผ๋กœ ์ธํ•ด ๋งŽ์€ ์ฐจ์ด๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ MTL (Multi Task Learning)์€ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ง€๊ฐ ์ž‘์—…์„ ๋™์‹œ์— ํšจ์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ฒ”์  ์ธ MTL ๋ฐฉ๋ฒ•์—์„œ๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์ž‘์—…์— ๋Œ€ํ•œ ๋ชจ๋“  ๋ ˆ์ด๋ธ”์„ ํ•จ๊ป˜ ํฌํ•จํ•˜๋Š” ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ๊ตฌ์„ฑํ•˜๋Š” ๊ฒƒ์„ ๊ณ ๋ คํ•ด์•ผํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€์ƒ ์ž‘์—…์ด ๋‹ค๊ฐํ™”๋˜๊ณ  ๋ณต์žกํ•ด์ง€๋ฉด ๋” ๊ฐ•๋ ฅํ•œ ๋ ˆ์ด๋ธ”์„ ๊ฐ€์ง„ ๊ณผ๋„ํ•˜๊ฒŒ ํฐ ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ํ•„์š”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์›ํ•˜๋Š” ๋ผ๋ฒจ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋น„์šฉ์€ ์ข…์ข… ์žฅ์• ๋ฌผ์ด๋ฉฐ ํŠนํžˆ ๋‹ค์ค‘ ์ž‘์—… ํ•™์Šต์˜ ๊ฒฝ์šฐ ์žฅ์• ๊ฐ€๋ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” ๊ฐ€๋ฒ„ ํ•„ํ„ฐ์™€ ์บก์Š ๊ธฐ๋ฐ˜ ๋„คํŠธ์›Œํฌ (MTL) ๋ฐ ๋ฐ์ดํ„ฐ ์ฆ๋ฅ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœํ•˜๋Š” ๋‹ค์ค‘ ์ž‘์—… ํ•™์Šต์— ๊ธฐ๋ฐ˜ํ•œ ์ƒˆ๋กœ์šด ๋ฐ˜ ๊ฐ๋… ํ•™์Šต ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค.The convolutional neural network (CNN) works very well in many computer vision tasks including the face-related problems. However, in the case of age estimation and facial expression recognition (FER), the accuracy provided by the CNN is still not good enough to be used for the real-world problems. It seems that the CNN does not well find the subtle differences in thickness and amount of wrinkles on the face, which are the essential features for the age estimation and FER. Also, the face images in the real world have many variations due to the face rotation and illumination, where the CNN is not robust in finding the rotated objects when not every possible variation is in the training data. Moreover, The Multi Task Learning (MTL) Based based methods can be much helpful to achieve the real-time visual understanding of a dynamic scene, as they are able to perform several different perceptual tasks simultaneously and efficiently. In the exemplary MTL methods, we need to consider constructing a dataset that contains all the labels for different tasks together. However, as the target task becomes multi-faceted and more complicated, sometimes unduly large dataset with stronger labels is required. Hence, the cost of generating desired labeled data for complicated learning tasks is often an obstacle, especially for multi-task learning. Therefore, first to alleviate these problems, we first propose few methods in order to improve single task baseline performance using gabor filters and Capsule Based Networks , Then We propose a new semi-supervised learning method on face-related tasks based on Multi-Task Learning (MTL) and data distillation.1 INTRODUCTION 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Age and Gender Estimation . . . . . . . . . . . . . . . . . . 4 1.2.2 Facial Expression Recognition (FER) . . . . . . . . . . . . . 4 1.2.3 Capsule networks (CapsNet) . . . . . . . . . . . . . . . . . . 5 1.2.4 Semi-Supervised Learning. . . . . . . . . . . . . . . . . . . . 5 1.2.5 Multi-Task Learning. . . . . . . . . . . . . . . . . . . . . . . 6 1.2.6 Knowledge and data distillation. . . . . . . . . . . . . . . . . 6 1.2.7 Domain Adaptation. . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. GF-CapsNet: Using Gabor Jet and Capsule Networks for Face-Related Tasks 10 2.1 Feeding CNN with Hand-Crafted Features . . . . . . . . . . . . . . . 10 2.1.1 Preparation of Input . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 Age and Gender Estimation using the Gabor Responses . . . . 13 2.2 GF-CapsNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Modification of CapsNet . . . . . . . . . . . . . . . . . 16 3. Distill-2MD-MTL: Data Distillation based on Multi-Dataset Multi-Domain Multi-Task Frame Work to Solve Face Related Tasks 20 3.1 MTL learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Data Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4. Experiments and Results 25 4.1 Experiments on GF-CNN and GF-CapsNet . . . . . . . . . . . . . . 25 4.2 GF-CNN Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.1 GF-CapsNet Results . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Experiment on Distill-2MD-MTL . . . . . . . . . . . . . . . . . . . 33 4.3.1 Semi-Supervised MTL . . . . . . . . . . . . . . . . . . . . . 34 4.3.2 Cross Datasets Cross-Domain Evaluation . . . . . . . . . . . 36 5. Conclusion 38 Abstract (In Korean) 49Maste

    Adaptation of a visualized loop-mediated isothermal amplification technique for field detection of Plasmodium vivax infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Loop-mediated isothermal amplification (LAMP) is a high performance method for detecting DNA and holds promise for use in the molecular detection of infectious pathogens, including <it>Plasmodium </it>spp. However, in most malaria-endemic areas, which are often resource-limited, current LAMP methods are not feasible for diagnosis due to difficulties in accurately interpreting results with problems of sensitive visualization of amplified products, and the risk of contamination resulting from the high quantity of amplified DNA produced. In this study, we establish a novel visualized LAMP method in a closed-tube system, and validate it for the diagnosis of malaria under simulated field conditions.</p> <p>Methods</p> <p>A visualized LAMP method was established by the addition of a microcrystalline wax-dye capsule containing the highly sensitive DNA fluorescence dye SYBR Green I to a normal LAMP reaction prior to the initiation of the reaction. A total of 89 blood samples were collected on filter paper and processed using a simple boiling method for DNA extraction, and then tested by the visualized LAMP method for <it>Plasmodium vivax </it>infection.</p> <p>Results</p> <p>The wax capsule remained intact during isothermal amplification, and released the DNA dye to the reaction mixture only when the temperature was raised to the melting point following amplification. Soon after cooling down, the solidified wax sealed the reaction mix at the bottom of the tube, thus minimizing the risk of aerosol contamination. Compared to microscopy, the sensitivity and specificity of LAMP were 98.3% (95% confidence interval (CI): 91.1-99.7%) and 100% (95% CI: 88.3-100%), and were in close agreement with a nested polymerase chain reaction method.</p> <p>Conclusions</p> <p>This novel, cheap and quick visualized LAMP method is feasible for malaria diagnosis in resource-limited field settings.</p
    • โ€ฆ
    corecore