256 research outputs found

    An investigation into the prognosis of electromagnetic relays.

    Get PDF
    Electrical contacts provide a well-proven solution to switching various loads in a wide variety of applications, such as power distribution, control applications, automotive and telecommunications. However, electrical contacts are known for limited reliability due to degradation effects upon the switching contacts due to arcing and fretting. Essentially, the life of the device may be determined by the limited life of the contacts. Failure to trip, spurious tripping and contact welding can, in critical applications such as control systems for avionics and nuclear power application, cause significant costs due to downtime, as well as safety implications. Prognostics provides a way to assess the remaining useful life (RUL) of a component based on its current state of health and its anticipated future usage and operating conditions. In this thesis, the effects of contact wear on a set of electromagnetic relays used in an avionic power controller is examined, and how contact resistance combined with a prognostic approach, can be used to ascertain the RUL of the device. Two methodologies are presented, firstly a Physics based Model (PbM) of the degradation using the predicted material loss due to arc damage. Secondly a computationally efficient technique using posterior degradation data to form a state space model in real time via a Sliding Window Recursive Least Squares (SWRLS) algorithm. Health monitoring using the presented techniques can provide knowledge of impending failure in high reliability applications where the risks associated with loss-of-functionality are too high to endure. The future states of the systems has been estimated based on a Particle and Kalman-filter projection of the models via a Bayesian framework. Performance of the prognostication health management algorithm during the contacts life has been quantified using performance evaluation metrics. Model predictions have been correlated with experimental data. Prognostic metrics including Prognostic Horizon (PH), alpha-Lamda (α-λ), and Relative Accuracy have been used to assess the performance of the damage proxies and a comparison of the two models made

    Faster convergence in seismic history matching by dividing and conquering the unknowns

    Get PDF
    The aim in reservoir management is to control field operations to maximize both the short and long term recovery of hydrocarbons. This often comprises continuous optimization based on reservoir simulation models when the significant unknown parameters have been updated by history matching where they are conditioned to all available data. However, history matching of what is usually a high dimensional problem requires expensive computer and commercial software resources. Many models are generated, particularly if there are interactions between the properties that update and their effects on the misfit that measures the difference between model predictions to observed data. In this work, a novel 'divide and conquer' approach is developed to the seismic history matching method which efficiently searches for the best values of uncertain parameters such as barrier transmissibilities, net:gross, and permeability by matching well and 4D seismic predictions to observed data. The ‘divide’ is carried by applying a second order polynomial regression analysis to identify independent sub-volumes of the parameters hyperspace. These are then ‘conquered’ by searching separately but simultaneously with an adapted version of the quasi-global stochastic neighbourhood algorithm. This 'divide and conquer' approach is applied to the seismic history matching of the Schiehallion field, located on the UK continental shelf. The field model, supplied by the operator, contained a large number of barriers that affect flow at different times during production, and their transmissibilities were largely unknown. There was also some uncertainty in the petrophysical parameters that controlled permeability and net:gross. Application of the method was accomplished because it is found that the misfit function could be successfully represented as sub-misfits each dependent on changes in a smaller number of parameters which then could be searched separately but simultaneously. Ultimately, the number of models required to find a good match reduced by an order of magnitude. Experimental design was used to contribute to the efficiency and the ‘divide and conquer’ approach was also able to separate the misfit on a spatial basis by using time-lapse seismic data in the misfit. The method has effectively gained a greater insight into the reservoir behaviour and has been able to predict flow more accurately with a very efficient 'divide and conquer' approach

    Wide-Area Surveillance System using a UAV Helicopter Interceptor and Sensor Placement Planning Techniques

    Get PDF
    This project proposes and describes the implementation of a wide-area surveillance system comprised of a sensor/interceptor placement planning and an interceptor unmanned aerial vehicle (UAV) helicopter. Given the 2-D layout of an area, the planning system optimally places perimeter cameras based on maximum coverage and minimal cost. Part of this planning system includes the MATLAB implementation of Erdem and Sclaroff’s Radial Sweep algorithm for visibility polygon generation. Additionally, 2-D camera modeling is proposed for both fixed and PTZ cases. Finally, the interceptor is also placed to minimize shortest-path flight time to any point on the perimeter during a detection event. Secondly, a basic flight control system for the UAV helicopter is designed and implemented. The flight control system’s primary goal is to hover the helicopter in place when a human operator holds an automatic-flight switch. This system represents the first step in a complete waypoint-navigation flight control system. The flight control system is based on an inertial measurement unit (IMU) and a proportional-integral-derivative (PID) controller. This system is implemented using a general-purpose personal computer (GPPC) running Windows XP and other commercial off-the-shelf (COTS) hardware. This setup differs from other helicopter control systems which typically use custom embedded solutions or micro-controllers. Experiments demonstrate the sensor placement planning achieving \u3e90% coverage at optimized-cost for several typical areas given multiple camera types and parameters. Furthermore, the helicopter flight control system experiments achieve hovering success over short flight periods. However, the final conclusion is that the COTS IMU is insufficient for high-speed, high-frequency applications such as a helicopter control system

    Chemometric tools for automated method-development and data interpretation in liquid chromatography

    Get PDF
    The thesis explores the challenges and advancements in the field of liquid chromatography (LC), particularly focusing on complex sample analysis using high-resolution mass spectrometry (MS) and two-dimensional (2D) LC techniques. The research addresses the need for efficient optimization and data-handling strategies in modern LC practice. The thesis is divided into several chapters, each addressing specific aspects of LC and polymer analysis. Chapter 2 provides an overview of the need for chemometric tools in LC practice, discussing methods for processing and analyzing data from 1D and 2D-LC systems and how chemometrics can be utilized for method development and optimization. Chapter 3 introduces a novel approach for interpreting the molecular-weight distribution and intrinsic viscosity of polymers, allowing quantitative analysis of polymer properties without prior knowledge of their interactions. This method correlates the curvature parameter of the Mark-Houwink plot with the polymer's structural and chemical properties. Chapters 4 and 5 focus on the analysis of cellulose ethers (CEs), essential in various industrial applications. A new method is presented for mapping the substitution degree and composition of CE samples, providing detailed compositional distributions. Another method involves a comprehensive 2D LC-MS/MS approach for analyzing hydroxypropyl methyl cellulose (HPMC) monomers, revealing subtle differences in composition between industrial HPMC samples. Chapter 6 introduces AutoLC, an algorithm for automated and interpretive development of 1D-LC separations. It uses retention modeling and Bayesian optimization to achieve optimal separation within a few iterations, significantly improving the efficiency of gradient LC separations. Chapter 7 focuses on the development of an open-source algorithm for automated method development in 2D-LC-MS systems. This algorithm improves separation performance by refining gradient profiles and accurately predicting peak widths, enhancing the reliability of complex gradient LC separations. Chapter 8 addresses the challenge of gradient deformation in LC instruments. An algorithm based on the stable function corrects instrument-specific gradient deformations, enabling accurate determination of analyte retention parameters and improving data comparability between different sources. Chapter 9 introduces a novel approach using capacitively-coupled-contactless-conductivity detection (C4D) to measure gradient profiles without adding tracer components. This method enhances inter-system transferability of retention models for polymers, overcoming the limitations of UV-absorbance detectable tracer components. Chapter 10 discusses practical choices and challenges faced in the thesis chapters, highlighting the need for well-defined standard samples in industrial polymer analysis and emphasizing the importance of generalized problem-solving approaches. The thesis identifies future research directions, emphasizing the importance of computational-assisted methods for polymer analysis, the utilization of online reaction modulation techniques, and exploring continuous distributions obtained through size-exclusion chromatography (SEC) in conjunction with triple detection. Chemometric tools are recognized as essential for gaining deeper insights into polymer chemistry and improving data interpretation in the field of LC

    Path planning, modelling and simulation for energy optimised mobile robotics

    Get PDF
    This thesis is concerned with an investigation of a solution for mobile robotic platforms to minimize the usage of scarce energy that is available and is not wasted following traditionally planned paths for complex terrain environments. This therefore addresses the need to reduce the total energy cost during a field task or mission. A path planning algorithm is designed by creating a new approach of artificial potential field method that generates a planned path, utilising terrain map. The new approach has the capability of avoiding the local minimum problems which is one of the major problems of traditional potential field method. By solving such problems gives a reliable solution to establish a required path. Therefore the approach results in an energy efficient path of the terrain identified, instead obvious straight line of the terrain. A literature review is conducted which reviews the mainstream path planning algorithms with the applications in mobile robotic platforms was analysed. These path planning algorithms are compared for the purpose of energy optimized planning, which concludes the method of artificial potential field as the path planning algorithm which has the most potential and will be further investigated and improved in this research. The methodology of designing, modelling and simulating a mobile robotic platform is defined and presented for the purpose of energy optimized path planning requirement. The research is to clarify the needs, requirements, and specifications of the design. A complete set of models which include mechanical and electrical modelling, functional concept modelling, modelling of the system are established. Based on these models, an energy optimized path planning algorithm is designed. The modelling of force and the kinematics is established to validate and evaluate the result of the algorithm through simulations. Moreover a simulation environment is established which is constructed for multi perspective simulation. This also enables collaborative simulation using Simulink and ADAMS to for simulating a path generated by the path planning algorithm and assess the energy consumption of the driven and steering mechanism of an exemplar system called AgriRover. This simulation environment allows the capture of simulated result of the total energy consumption, therefore outlines the energy cost behaviour of the AgriRover. A total of two sets of paths was tested in the fields for validation, one being generated by the energy optimized path planning algorithm and the other following a straight path. During the field tests the total cost of energy was captured . Two sets of results are compared with each other and compared with the simulation. The comparison shows a 21.34% of the energy saving by deploying the path generated with the energy optimized path planning algorithm in the field test. This research made the following contribution to knowledge. A comparison and grading of mainstream path planning algorithms from energy optimisation perspective is undertaken using detailed evaluation criteria, including computational power required, extendibility, flexibility and more criteria that is relevant for the energy optimized planning purpose. These algorithms have not been compared from energy optimisation angle before, and the research for energy optimised planning under complex terrain environments have not been investigated. Addressing these knowledge gaps, a methodology of designing, modelling and simulating a mobile platform system is proposed to facilitate an energy optimized path planning. This , leads to a new approach of path planning algorithm that reduces unnecessary energy spend for climbing of the terrain, using the terrain data available. Such a methodology derives several novel methods: Namely, a method for avoiding local minimum problem for artificial potential field path planning using the approach of approximation; A method of achieving high expendability of the path planning algorithm, where this method is capable of generate a path through a large map in a short time; A novel method of multi perspective dynamic simulation, which is capable of simulating the behaviour of internal mechanism and the overall robotic mobile platform with the fully integrated control, The dynamic simulation enables prediction of energy consumption; Finally, a novel method of mathematically modelling and simplifying a steering mechanism for the wheel based mobile vehicle was further investigated.This thesis is concerned with an investigation of a solution for mobile robotic platforms to minimize the usage of scarce energy that is available and is not wasted following traditionally planned paths for complex terrain environments. This therefore addresses the need to reduce the total energy cost during a field task or mission. A path planning algorithm is designed by creating a new approach of artificial potential field method that generates a planned path, utilising terrain map. The new approach has the capability of avoiding the local minimum problems which is one of the major problems of traditional potential field method. By solving such problems gives a reliable solution to establish a required path. Therefore the approach results in an energy efficient path of the terrain identified, instead obvious straight line of the terrain. A literature review is conducted which reviews the mainstream path planning algorithms with the applications in mobile robotic platforms was analysed. These path planning algorithms are compared for the purpose of energy optimized planning, which concludes the method of artificial potential field as the path planning algorithm which has the most potential and will be further investigated and improved in this research. The methodology of designing, modelling and simulating a mobile robotic platform is defined and presented for the purpose of energy optimized path planning requirement. The research is to clarify the needs, requirements, and specifications of the design. A complete set of models which include mechanical and electrical modelling, functional concept modelling, modelling of the system are established. Based on these models, an energy optimized path planning algorithm is designed. The modelling of force and the kinematics is established to validate and evaluate the result of the algorithm through simulations. Moreover a simulation environment is established which is constructed for multi perspective simulation. This also enables collaborative simulation using Simulink and ADAMS to for simulating a path generated by the path planning algorithm and assess the energy consumption of the driven and steering mechanism of an exemplar system called AgriRover. This simulation environment allows the capture of simulated result of the total energy consumption, therefore outlines the energy cost behaviour of the AgriRover. A total of two sets of paths was tested in the fields for validation, one being generated by the energy optimized path planning algorithm and the other following a straight path. During the field tests the total cost of energy was captured . Two sets of results are compared with each other and compared with the simulation. The comparison shows a 21.34% of the energy saving by deploying the path generated with the energy optimized path planning algorithm in the field test. This research made the following contribution to knowledge. A comparison and grading of mainstream path planning algorithms from energy optimisation perspective is undertaken using detailed evaluation criteria, including computational power required, extendibility, flexibility and more criteria that is relevant for the energy optimized planning purpose. These algorithms have not been compared from energy optimisation angle before, and the research for energy optimised planning under complex terrain environments have not been investigated. Addressing these knowledge gaps, a methodology of designing, modelling and simulating a mobile platform system is proposed to facilitate an energy optimized path planning. This , leads to a new approach of path planning algorithm that reduces unnecessary energy spend for climbing of the terrain, using the terrain data available. Such a methodology derives several novel methods: Namely, a method for avoiding local minimum problem for artificial potential field path planning using the approach of approximation; A method of achieving high expendability of the path planning algorithm, where this method is capable of generate a path through a large map in a short time; A novel method of multi perspective dynamic simulation, which is capable of simulating the behaviour of internal mechanism and the overall robotic mobile platform with the fully integrated control, The dynamic simulation enables prediction of energy consumption; Finally, a novel method of mathematically modelling and simplifying a steering mechanism for the wheel based mobile vehicle was further investigated

    A fuzzy logic approach to localisation in wireless local area networks

    Get PDF
    This thesis examines the use and value of fuzzy sets, fuzzy logic and fuzzy inference in wireless positioning systems and solutions. Various fuzzy-related techniques and methodologies are reviewed and investigated, including a comprehensive review of fuzzy-based positioning and localisation systems. The thesis is aimed at the development of a novel positioning technique which enhances well-known multi-nearest-neighbour (kNN) and fingerprinting algorithms with received signal strength (RSS) measurements. A fuzzy inference system is put forward for the generation of weightings for selected nearest-neighbours and the elimination of outliers. In this study, Monte Carlo simulations of a proposed multivariable fuzzy localisation (MVFL) system showed a significant improvement in the root mean square error (RMSE) in position estimation, compared with well-known localisation algorithms. The simulation outcomes were confirmed empirically in laboratory tests under various scenarios. The proposed technique uses available indoor wireless local area network (WLAN) infrastructure and requires no additional hardware or modification to the network, nor any active user participation. The thesis aims to benefit practitioners and academic researchers of system positioning

    Aprendizagem de coordenação em sistemas multi-agente

    Get PDF
    The ability for an agent to coordinate with others within a system is a valuable property in multi-agent systems. Agents either cooperate as a team to accomplish a common goal, or adapt to opponents to complete different goals without being exploited. Research has shown that learning multi-agent coordination is significantly more complex than learning policies in singleagent environments, and requires a variety of techniques to deal with the properties of a system where agents learn concurrently. This thesis aims to determine how can machine learning be used to achieve coordination within a multi-agent system. It asks what techniques can be used to tackle the increased complexity of such systems and their credit assignment challenges, how to achieve coordination, and how to use communication to improve the behavior of a team. Many algorithms for competitive environments are tabular-based, preventing their use with high-dimension or continuous state-spaces, and may be biased against specific equilibrium strategies. This thesis proposes multiple deep learning extensions for competitive environments, allowing algorithms to reach equilibrium strategies in complex and partially-observable environments, relying only on local information. A tabular algorithm is also extended with a new update rule that eliminates its bias against deterministic strategies. Current state-of-the-art approaches for cooperative environments rely on deep learning to handle the environment’s complexity and benefit from a centralized learning phase. Solutions that incorporate communication between agents often prevent agents from being executed in a distributed manner. This thesis proposes a multi-agent algorithm where agents learn communication protocols to compensate for local partial-observability, and remain independently executed. A centralized learning phase can incorporate additional environment information to increase the robustness and speed with which a team converges to successful policies. The algorithm outperforms current state-of-the-art approaches in a wide variety of multi-agent environments. A permutation invariant network architecture is also proposed to increase the scalability of the algorithm to large team sizes. Further research is needed to identify how can the techniques proposed in this thesis, for cooperative and competitive environments, be used in unison for mixed environments, and whether they are adequate for general artificial intelligence.A capacidade de um agente se coordenar com outros num sistema é uma propriedade valiosa em sistemas multi-agente. Agentes cooperam como uma equipa para cumprir um objetivo comum, ou adaptam-se aos oponentes de forma a completar objetivos egoístas sem serem explorados. Investigação demonstra que aprender coordenação multi-agente é significativamente mais complexo que aprender estratégias em ambientes com um único agente, e requer uma variedade de técnicas para lidar com um ambiente onde agentes aprendem simultaneamente. Esta tese procura determinar como aprendizagem automática pode ser usada para encontrar coordenação em sistemas multi-agente. O documento questiona que técnicas podem ser usadas para enfrentar a superior complexidade destes sistemas e o seu desafio de atribuição de crédito, como aprender coordenação, e como usar comunicação para melhorar o comportamento duma equipa. Múltiplos algoritmos para ambientes competitivos são tabulares, o que impede o seu uso com espaços de estado de alta-dimensão ou contínuos, e podem ter tendências contra estratégias de equilíbrio específicas. Esta tese propõe múltiplas extensões de aprendizagem profunda para ambientes competitivos, permitindo a algoritmos atingir estratégias de equilíbrio em ambientes complexos e parcialmente-observáveis, com base em apenas informação local. Um algoritmo tabular é também extendido com um novo critério de atualização que elimina a sua tendência contra estratégias determinísticas. Atuais soluções de estado-da-arte para ambientes cooperativos têm base em aprendizagem profunda para lidar com a complexidade do ambiente, e beneficiam duma fase de aprendizagem centralizada. Soluções que incorporam comunicação entre agentes frequentemente impedem os próprios de ser executados de forma distribuída. Esta tese propõe um algoritmo multi-agente onde os agentes aprendem protocolos de comunicação para compensarem por observabilidade parcial local, e continuam a ser executados de forma distribuída. Uma fase de aprendizagem centralizada pode incorporar informação adicional sobre ambiente para aumentar a robustez e velocidade com que uma equipa converge para estratégias bem-sucedidas. O algoritmo ultrapassa abordagens estado-da-arte atuais numa grande variedade de ambientes multi-agente. Uma arquitetura de rede invariante a permutações é também proposta para aumentar a escalabilidade do algoritmo para grandes equipas. Mais pesquisa é necessária para identificar como as técnicas propostas nesta tese, para ambientes cooperativos e competitivos, podem ser usadas em conjunto para ambientes mistos, e averiguar se são adequadas a inteligência artificial geral.Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de ApoioPrograma Doutoral em Informátic

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Adaptive Kalman based forecasting for electric load and distributed generation

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2017.O fornecimento de eletricidade de forma perene, barata e confiável é de primordial importância econômica. Os sistemas elétricos necessitam de ferramentas robustas de previsão de demanda para implementar planos eficientes e razoáveis de expansão e operação. A inserção de geração distribuída adiciona um novo nível de complexidade a esta tarefa, pois não somente a geração descentralizada diminui a carga de modo aleatório e intermitente, como também inevitavelmente produz alterações nas séries históricas de carga usadas para fazer as previsões. Ambos os efeitos agem no sentido de aumentar os erros de predição no curto e no longo prazo, ameaçando a eficiência operacional e, no pior caso, a estabilidade do sistema. Este trabalho apresenta a previsão de carga e geração como um problema de estimação dinâmica de estado via filtros adaptativos de Kalman. As variáveis a serem estimadas são das demandas de base, média e de pico, assim como a geração fotovoltaica. Como medições e observações, são utilizadas previsões de tempo, datas e eventos de calendário, tarifas de eletricidade, índices e estimativas econômicas e demográficas. Combinações preprocessadas destas medições são usadas como as variáveis de entrada para a previsão.The availability of a source of continuous, cheap and reliable energy is of foremost economic importance. The electric systems need robust load forecasting tools to implement efficient and reasonable expansion and operation plans. The introduction of distributed generation adds a new level of complexity to this task, as not only the decentralized generation reduces load in a random and intermittent way, but also inevitably embeds in the historic loads used to forecast. Both effects act to increase prediction errors in short and long term, jeopardizing operational efficiency and, in worst case, system reliability. This work presents the load and generation forecasting as a dynamic state estimation problem by means of Kalman adaptive filters. The variables to be estimated are daily base, average and peak electric load, as well as PV generation. As measurements and observations, this work uses weather forecasts, calendar dates and events, energy tariffs, economic and demographic indexes. Preprocessed combinations of these measurements are the input variables employed for forecasting
    • …
    corecore