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Abstract 

This thesis is concerned with an investigation of a solution for mobile robotic 

platforms to minimize the usage of scarce energy that is available and is not wasted 

following traditionally planned paths for complex terrain environments. This therefore 

addresses the need to reduce the total energy cost during a field task or mission. A path 

planning algorithm is designed by creating a new approach of artificial potential field 

method that generates a planned path, utilising terrain map. The new approach has the 

capability of avoiding the local minimum problems which is one of the major problems 

of traditional potential field method. By solving such problems gives a reliable solution 

to establish a required path. Therefore the approach results in an energy efficient path 

of the terrain identified, instead obvious straight line of the terrain. 

A literature review is conducted which reviews the mainstream path planning 

algorithms with the applications in mobile robotic platforms was analysed. These path 

planning algorithms are compared for the purpose of energy optimized planning, 

which concludes the method of artificial potential field as the path planning algorithm 

which has the most potential and will be further investigated and improved in this 

research. 

The methodology of designing, modelling and simulating a mobile robotic 

platform is defined and presented for the purpose of energy optimized path planning 

requirement. The research is to clarify the needs, requirements, and specifications of 

the design. A complete set of models which include mechanical and electrical 

modelling, functional concept modelling, modelling of the system are established. 

Based on these models, an energy optimized path planning algorithm is designed. The 

modelling of force and the kinematics is established to validate and evaluate the result 

of the algorithm through simulations. Moreover a simulation environment is 
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established which is constructed for multi-perspective simulation. This also enables 

collaborative simulation using Simulink and ADAMS to for simulating a path 

generated by the path planning algorithm and assess the energy consumption of the 

driven and steering mechanism of an exemplar system called AgriRover. This 

simulation environment allows the capture of simulated result of the total energy 

consumption, therefore outlines the energy cost behaviour of the AgriRover. A total 

of two sets of paths was tested in the fields for validation, one being generated by the 

energy optimized path planning algorithm and the other following a straight path. 

During the field tests the total cost of energy was captured . Two sets of results are 

compared with each other and compared with the simulation. The comparison shows 

a 21.34% of the energy saving by deploying the path generated with the energy 

optimized path planning algorithm in the field test. 

This research made the following contribution to knowledge. 

A comparison and grading of mainstream path planning algorithms from energy 

optimisation perspective is undertaken using detailed evaluation criteria, including 

computational power required, extendibility, flexibility and more criteria that is 

relevant for the energy optimized planning purpose. These algorithms have not been 

compared from energy optimisation angle before, and the research for energy 

optimised planning under complex terrain environments have not been investigated. 

Addressing these knowledge gaps, a methodology of designing, modelling and 

simulating a mobile platform system is proposed to facilitate an energy optimized path 

planning. This , leads to a new approach of path planning algorithm that reduces 

unnecessary energy spend for climbing of the terrain, using the terrain data available. 

Such a methodology derives several novel methods: Namely, a method for avoiding 

local minimum problem for artificial potential field path planning using the approach 

of approximation; A method of achieving high expendability of the path planning 
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algorithm, where this method is capable of generate a path through a large map in a 

short time; A novel method of multi perspective dynamic simulation, which is capable 

of simulating the behaviour of internal mechanism and the overall robotic mobile 

platform with the fully integrated control, The dynamic simulation enables prediction 

of energy consumption; Finally, a novel method of mathematically modelling and 

simplifying a steering mechanism for the wheel based mobile vehicle was further 

investigated. 
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1 Introduction  

In 2018 the world population reached and exceeded 7.6 billion people around the 

world. It took over 200,000 years to reach 1 billion people, but only 200 years to 

exceed 7 billion people, with more than an 80% possibility that the world population 

will be over 9.6 billion in 2050 (Gerland et al., 2014). Figure 1 shows the world 

population growth projection. 

 
Figure 1. (A) UN 2012 (solid red line), with 80% PI (dark shaded area), 95% PI (light 

shaded area), and the traditional UN high and low variants (dashed blue lines). (B) UN 

2012 population projections by continent. In both graphs, the vertical dashed line denotes 

2012. (Gerland et al., 2014) 

According to the FAO (United Nations’ Food and Agriculture Organization), the 

food production must improve by 60% to meet the demand of basic food for the 

population need by 2050 (Jayaraman et al., 2016). A more efficient agricultural 
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process will be beneficial for the world population. It is a tendency that objects and 

processes around us, such as lights, TV, kitchenware, cars, and manufacturing 

processes, are all getting smarter. However, for farming processes in the field, 

improvements still can be made. Two major factors that prevents the autonomously-

operated farming platforms to be widely used is the cost and the effectiveness. These 

two factors are related to each other, the effectiveness of the farming platform and the 

cost are under the same considertions, a better platform should have a lower cost and 

a high effectiveness, but normally a lower cost farming platform will not be as 

effective as the higher cost farming platform. Hence, if the cost is limited, hardware of 

the platform would be hard to improve, but the software on the farming platform can 

be improved with a smaller cost increase.  

The software for a robotic autonomous farming platform requires many different 

algorithms . Firstly, an interface has been developed for the user, the farmer can use 

this to set the mission and tasks for the robot platform. Then the mission planning 

system will set the tasks for the robot. After the mission has been planned, the path 

planning will start finding the path for the robot from point to point. The path planning 

algorithm then can find a path between two points with different planning goals 

whether it is a goal of optimised energy or time. 

Sustainable development is becoming a tendency and is one of the most important 

elements for future development, without the consideration of sustainability the 

environmental problam will become a “contemporary issue” as introduced by Klarin 

(Lakshmanan et al., 2020). Even though the coal consumption for generated electricity 

has decreased since 2003 from 38.4% to 22.4% in 2019, the electricity generated from 

fossil fuels still contributes to 53.8% of all electricity generated, according to the 

International Energy Organization (IEA) in 2020. Subsequently, energy efficient 
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designs and projects are becoming more important to comply with the idea of 

sustainability. 

1.1 Development Needs and Background  

In a development process for a robotic farming platform, compromises have been 

made due to a confined size and budget. For a lower budget, an electric driven wheel-

based rover is more suitable than some of the other options, such as a full-sized robotic-

controlled tractors. The AgriRover has been designed and made with the maximum 

total weight of 25 kg with a load. Figure 2 shows the AgriRover running in a field. 

 
Figure 2. AgriRover, prototype with soil sampling and analysis system in a field 

If a task path point has been decided for the rover, a path planning algorithm will 

find the shortest path in space, which is the projection of a straight line on the terrain 

when no obstacles. But, in the UK, a lot of the farm fields are not flat, so a projection 

of a straight path on the terrain may not the most energy efficient path when the field 

is not flat. Terrain will have lower and higher points when runing in the real word. 
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These lower terrains have a tendency of being inside of a shaded area, which could 

accumulate water, resulting in the surface around these points being softer. This will 

have the potential danger of getting the rover trapped, thus these potentially dangerous 

areas should be avoided. Secondly, as this rover is battery powered, the total amount 

of energy that can be used before the battery is depleted are limited, so a more energy 

efficient and safer path planning algorithm needs to be developed.  

There are many types of battery powered autonomous vehicles know as mobile 

robotic vehicle can benefit from such path planning, modeling and simulation design 

process and methodology. This algorithm is be developed with versatility in mind, 

which make it possible to use on other mobile robotic vehicle and platforms that have 

limited onboard energy source. For example, in a lunar rover with a battery and solar 

cell as the energy source. Furthermore, the energy optimisation path planning 

algorithm should not only be focused on maximising the effectiveness of the mission, 

but also on increasing the reliability of the vehicle by lowering the load on the onboard 

driving actuators. 

Finally, there should be comprehensive and systematic modelling and simulations 

to give a guideline for the effectiveness of the algorithm during field tests. The 

simulation should focus on generating an energy consumption profile with the detailed 

controllable vehicle model and the real-world terain data. 

1.2 Agricultural Intelligence 

During recent years, mechanical, electronic and electrical devices are becoming 

more and more intelligent. But for some of the agriculturial applications, such as soil 

sampling and analysis in the UK and China, it has not been fully automated. Soil 

sampling and analysis is mostly done every two years, this results in only a report with 

100 m resolution (Niu et al., 2018) given to the famer, along with the soil nutrients. 
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Producing a higher resolution of this soil sampling nutrients data is time consuming 

and highly labor intensive work if it is done manually, therefore the analysis fee is 

expensive. However, for precision agriculture this data is important, as not only are 

the correct nutrients levels of the soil essential for the crop growth, but also the 

different levels of the soil nutrients are required for different crops. So, to increase the 

yield of crops the soil nutrients need to be controlled in a suitable range, depending on 

the crops. This measurement process is normally done every two years which is 

infrequent, therefore the precise fertilisation can only be carried out every two years 

according to the measurement data. So, a more frequent soil sampling and nutrients 

analysis will improve the precision of the fertilisation, therefore improving the yield 

of the crops. For organic farming, informatisation of the crops are important for 

tracking and monitoring purposes, as the traceability of the organic farming is 

essential, and the nutrients levels need to be recorded. 

Ecological footprints can be reduced by utilising technics from smart farming. 

Fertilisers and pesticides can be applied with higher precision and in lesser quantities 

depending on the specific farming site. A precision agricultural system can extenuate 

leaching problems, as well as the emissions of greenhouse gasses (Georgakopoulos et 

al., 2016). 

For smart farming applications accessibility, accuracy, and timeliness of the 

fertilisation are important and indispensable informatisation. As such, for a more 

timeliness informatisation, the fertilisation needs to be tested more often than the 

traditional laboratory methods with reduced costs. For a farm that is far away from any 

soil nutrients laboratory this method can allow the test on site, which makes it more 

flexible, less time consuming and allows it to be more real time. This is more useful 

and useable by the farmers. As the space of the arable field is limited, the changes are 

advancing significantly to produce enough crops for human consumption. Positioning 
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and smart farming a solution for a such problem has always been a consideration for 

mankind. By utilising technics from positioning and smart farming, the crops yielded 

per unit area are improved (Prathibha et al., 2017) (Kempenaar et al., 2016) .  

There are many methods of smart farming and agricultural intelligence ranging 

from sensing, data collection, data processing, fertilisation, crop harvesting, pest 

control and soil nutrients analysis. Firstly, for agricultural sensing there are both 

remote sensing and local sensing. For example, in remote sensing in agricultural 

intelligence: multispectral remote sensing has been used for estimation of the green 

leaf area index (Curran, 1983). Vegetation indexing is a transformation of light in two 

or more wavelengths, by measuring these bands of light the contribution of vegetation 

properties can be determined as the vegetation index in order to describe the spatial 

and temporal inter-comparisons of photosynthetic activity of the field and canopy 

structural variations (Huete et al., 2002). This method is used for gaining the 

vegetation index of a given area, such as a forest or agricultural field. By utilising the 

vegetation index, agricultural practitioners have the tools to monitor the growing status 

of the plant from a macro perspective. With remote sensing, a vegetation index map 

over a time period can be generated. Using this map, agricultural practitioners can 

observe overall changes during the months, seasons, and even years. Information like 

this will help them to predict the crop growth status and for future planting. By using 

the soil nutrient data over time combined with the remote sensing data, a higher level 

of precision agriculture can be produced.   

1.2.1 Excessive Fertilisation 

One problem caused by excessive fertilisation is eutrophication (G Fred Lee et al., 

1978) (Jones et al., 1982). The urgency of reducing eutrophication by lowering 

nutrient input into aquatic ecosystems “in order to protect drinking-water supplies and 

to reduce eutrophication, including the proliferation of harmful algal blooms and 
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“dead zones” in coastal marine ecosystems has been widely recognized (Conley et al., 

2009)”. One of the most problematic nutrients causing the eutrophication is the 

organic nitrogen compound where the Planktonic N2-fixing cyanobacteria are 

blooming, causing pollution in fresh water (Conley et al., 2009). However, for 

agricultural purposes fertilisers that are rich in organic nutrient compounds are 

essential, where nitrogen nutrients are the most important nutrients for the growth of 

agricultural crops, and also the hardest to manage (Gaskell et al., 2007). Traditionally, 

farmers use excessive amounta of fertiliser to ensure the nutrient levels in the farmland 

field is sufficient for the growth of crops, causing eutrophication. With the idea of 

sustainability and position farming in mind, this problem can be reduced and finally 

solved by utilising an autonomous unmanned vehicle that is capable of analysing the 

soil in real time and apply the fertilising compound according to the nutrient data. 

1.2.2 Soil Sampling 

The more frequently an accurate soil sampling and analysis is completed is an 

important step forward for balancing the growth of agricultural crops and the 

prevention of over fertilisation. A search system capable of doing this task was 

designed and built in the form of a prototype robotic mobile vehicle as shown in Figure 

2. With the drill on board attached to the rear section of the AgriRover, the soil 

sampling process will be able to be performed autonomously in the field. After the 

sampling of the soil, a process of Laser Induced Breakdown Spectroscopy (LIBS) (Xiu 

T Yan et al., 2018) is performed, which will gave a unique absorption spectrum, depending 

on the composition of elements in the soil. Finally, according to this absorption spectrum 

data, the nutrients in the soil can be calculated. By repeating the sampling and LIBS 

process, the report can be generated with flexibility in the sampling point, defined by the 

user. 
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1.2.3 Agricultural Rover 

The AgriRover was designed as a multipurpose autonomous robotic mobile 

platform, specifically for agricultural applications, such as soil sampling, crop picking 

and mapping. This multipurpose agricultural robotic mobile platform is designed with 

inspiration from the concept and mindset of interplanetary Rovers, while maintaining 

a favourable economical cost. Utilising the rechargeable lithium battery as the energy 

source with full electrical actuators and motors for the mobility system, the AgriRover 

is designed with the focus of an eco-friendly and sustainable development, as it is 

important both environmentally for the wellbeing of ourselves and financially makes 

sense in long term. One of the design perspectives is to make the AgriRover energy 

efficient during its operation, this can be achieved by following an energy efficient 

pathway. The design and validation of the energy optimised path planning algorithm 

will be the focus of this thesis.  

1.3 Path planning applications and challenges 

Path planning applications include mostly two types, one is for mobile robotic 

platforms and the other one is for robotic arms. In this paper the path planning 

algorithm in discussion is focused on the mobile robotic platforms. Such mobile 

robotic platforms path planning applications include the robotic platforms running on 

the ground, such as the AgriRover or Perseverance Rover on mars, and can be 

expanded to UAVs, AUV. When running autonomously a path planning algorithm will 

need to function correctly, which is not always the case. For example, the Opportunity 

Rover had to end it’s mission because of the path taken was on soft sand, lead to the it 

being stucked, this has been further discussed in Chapter 2. Performance of the path 

planning algorithm is evaluated differently depending on the applications, but can 

include aspects such as time losses, energy costs, real time performance and reliability. 
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So, the main changes for the path planning are to increase the performance and 

reliability with the data available, and reduce the requirement of computational power. 

Finally, a simulation for such a plan path is beneficial for evaluation and to reduce the 

cost of experimentation. In this case the path planning algorithm are designed for the 

general mobile robotic platform in this case the AgriRover, which is a battery powered 

autonomous mobile platform designed to work in agriculture applications. The 

challenges faced with this path planning application, like many other battery-powered 

small size mobile robotic platforms, is the total amount of energy that can be carried 

on the platform. To solve this challenge, a path planning algorithm that is focused on 

generating an energy efficient path is required. 

1.4 Research approach and methodology 

This chapter describes imporant research questions in the field of mobile robotics, 

more specifically on their path planning, with an aim for the consideration of 

maximising energy utilisation. In order to answer these questionsa a research 

methodolology is followed. First hyperposthsis is made to prove or disprove it. These 

lead to the formal definition of the research aims and objectives through which the 

research questions are answered.  

1.4.1 Research Methodology 

Research methodology is a scientific and systematic way of solving the research 

problem which is adopted by researchers for the study of the problem with logic behind 

them. Certain procedures and techniques identified as methods are only applicable to 

certain problems, research methodology considers the logic behind the methods. 

(Kothari, 2004) 
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Figure 3 Research process flow chart by (Kothari, 2004) 

Figure 3 shows the research process developed by Kothari, which has more than 

thirty thousand citations and is widely adopted among researchers. From left to right 

in Figure 3 are stages I to VII, which covers the whole research process. Stage I is the 

definition of the research problem, which is proposed and discussed in this chapter 

under sections 1.4.1 and 1.4.2. Stage II covers the review of literature and knowledge 

gap identification which is done in chapter 2. Stage III formulates the hypotheses 

presented in this chapter under section 1.4.3. Stages IV to VI is the main body of the 

research, which includes research design moulding simulation and testing covered in 

Chapters 3 to 9. The final stage VII is covered in Chapter 10 with the discussion and 

conclusion interpreted in the report in Figure 3.  

1.4.2 Research Questions 

In general, the research questions need to be able to define two questions. First is 

to answer what kind of research that the researcher will be looking for and where to 

look for it. The second is to identify the objectives of the research that will be studied 

(Gregar, 1994). For the first question, the kind of research in this thesis is both a 
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qualitative and quantitative matter, this is discussed in Chapter 3. For the second 

question, the aims and objectives of the research is discussed in Section 1.4.4. 

More specifically, research questions are described in single sentences that can 

achieve new insights, with answers to a new field of mobile robotics and its energy 

efficient planning. These questions can specify a study design, predictor, or outcome 

to the needs of knowledge, as Hulley introduced in (Hulley, 2007). Hulley also 

proposed an evaluation method named “FINER criteria”. For the topic of this thesis, 

the following research questions can be asked: 

What consititues a feasible approach to designing an energy optimized path 

planning algorithm for mobile robotic platforms? This would provide new knowledge 

to advance next generation agricultual mobile robotics to address the increasing 

demands for more efficent food production. 

How such a design for this kind of energy optimised path planning algorithm for a 

mobile robot should be dervied? Furthermore, how does this specific design of the 

energy optimised planning algorithm cope with the varying terrains for the mobile 

robotic platforms? Both of these questions are answered with a new approach based 

on the literature review. The literature review first shows the current knowledge of 

past planning algorithms for different platforms within different applications. 

Therefore, the review gives an evaluation to these search algorithms proposed. 

Through the process of identifying the knowledge gaps, the novelty of this research 

can be determined. 

1.4.3 Research Hypothesis 

A hypothesis is a description on the expectancy of research outcomes, not a random 

guess, but a prediction using the knowledge available. The first step for the question 
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of the hypothesis should be specific and researchable (Crick et al., 1994). For this 

thesis, the first part of the hypothesis is: How to extend the mission duration of a wheel-

based mobile robotic platform without spending money or requiring upgrading of the 

hardware. The second step of hypotheses is formed after the preliminary research. For 

this thesis, the second part of hypothesis is: Upgrading the past planning algorithm 

with the goal of extending the mission duration should be achievable. The third step 

of proposing a complete set of hypotheses are to formulate the questions. For this 

thesis, the third part of hypothesis is: There is an algorithm that can be designed to 

solve the problem of unnecessary energy losses, therefore extending the mission 

duration when a mobile robotic platform, such as the AgriRover, is running in an 

undulating terrain environment.  

The fourth step for proposing a complete set of hypotheses is to refine the 

hypothesis, ensuring it to be specific and testable, while also containing the relevant 

variables and predicted outcomes. For this thesis, the fourth part of hypothesis is: By 

utilising design of the energy optimised path planning algorithm, it is more likely to 

lower the total energy cost during the operation of a mobile robotic platform, such as 

the AgriRover, in an undulating terrain environment. Step five of proposing a complete 

set of hypotheses is to make a comparison. For this thesis, the fifth part of hypothesis 

is: The total energy costs of the same planning task when using the energy optimised 

path planning algorithm, utilising the AgriRover in an undulating terrain environment, 

is lower than when the AgriRover is running in a straight-line. The last step of 

proposing a complete set of hypotheses is to set the null hypotheses, which is the 

opposite of the expected result. For this thesis, the final part of the hypothesis is: Even 

with the energy optimised path planning algorithm utilised by the AgriRover, the total 

energy cost is the same or higher than the straight-line planning under the same 

planning task running in an undulating terrain environment. 
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1.4.4 Aims and Objectives 

The aim of this project is to investigate a methodology to design a path planning 

algorithm for mobile robotic platform, such as the AgriRover, that lowers the total 

energy losses when running in a terrain rich environment. This new algorithm designed 

must be expandable, with new needs and functions, as the multifunction mobile robotic 

platform evolves. In addition, the algorithm designed should be adaptable with 

minimum modifications for other mobile robotic platforms. Finally, a complete and 

comprehensive modelling and simulation of the AgriRover as an example needs to be 

implemented as the evaluation guideline for the energy optimised path planning 

algorithm. 

The objectives of the project are identified as follows: the first step of the objective 

definition process is to propose valid and researchable questions as shown in section 

1.4.2, which followed a framework of the “FINER criteria” as Hulley introduced 

(Hulley, 2007). This step will check if the topic that needs to be researched can pass 

the criteria of ‘Feasible’,’ Interesting’,’ Novel’,’ Ethical’ and’ Relevant’, therefore 

becoming a valid research topic that can continue to proceed. Secondly, a set of 

hypotheses needs to be presented, which are shown in Section 1.4.3, and these 

hypotheses set the expected result and unexpected result, therefore it can be used as 

the proof conditions for this project. After this, the following objectives are identified 

to achieve the research aim: 

• Designing the path planning algorithm for a mobile robotic platform, such as 

the AgriRover, that is focused on the energy consumption of the AgriRover 

being the first planning priority, except the safety.  

• Using the terrain data of the test farmland field for the major considerations of 

the path planning, in order to achieve a planned path for a mobile robotic 
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platform that avoids passing through the terrains unnecessarily, and therefore 

saving more energy compared to going in a straight path. 

• Modelling and simulating the energy consumption of a mobile robotic platform 

needs to be done. This is so that when operating in the field during its mission, 

these simulated results can be used as evidence for the performance of the 

energy optimised path planning algorithm. 

• Comparing and evaluating the results of the field test needs to be completed, 

which include the comparison of the results generated by the energy optimised 

path planning against the energy losses when a mobile robotic platform is 

operating in a straight line.  

• Finally, an evaluation and conclusion will be drawn according to the results of 

the comparison, which should give a percentage of the total energy saved and 

the energy saved per unit distance travelled. 

After specifying the design objectives, the literature review can be ensued, with the 

aim to find a novel solution that is suitable and efficient to solve the problem of energy 

optimised planning, which is shown in Chapter 4. The objective of this review is to 

identify the information gap by analysing the current methods and approaches of the 

path planning methods for mobile robotic platforms, and identify suitable approaches 

that can be used to solve the problems of energy optimised path planning. 

Following the literature review, a research methodology is presented in Chapter 3. 

This lays the foundation for generating a new method of the path planning algorithm, 

which can help to model and simulate mobile platforms, such as the AgriRover, to 

generate paths. The field tests of the algorithm can then be carried out and the results 

of the power consumption can be recorded for the analysis and comparison purposes. 

Based on these, it is possile to draw conclusions from the findings and define future 

researh work, according to the results of the simlation and verified field tests, for the 

improvement of the design process and associated methodology. 
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1.5 Thesis Organisation 

Chapter 1 – Introduction 

Introduction and overview of the problems needing to be solved from the perspective 

of path planning, modelling and simulation, as well as the thesis research methodology. 

 

Chapter 2 – Literature Review 

Review and knowledge gap identification in the literature on path planning with energy 

optimisation, modelling and simulation for a mobile robotic platform. 

 

Chapter 3 – Design Methodology for Energy-Optimised Path Planning for Mobile 

Robotics 

Design methodology for a general mobile robotic platform with the goal of energy-

optimised design criteria and considerations. 

 

Chapter 4 – Energy Modelling and Energy-Optimised Path Planning 

Energy modelling frameworks for a general mobile robotic platform – AgriRover and 

the energy-optimised path planning algorithms design and implementation on actual 

farmland. 

 

Chapter 5 – The Mathematical Modelling of the AgriRover Steering Mechanism 

The static modelling of the steering mechanism for a general mobile robotic platform 

– AgriRover. 

 

Chapter 6 – Dynamic Modelling and Analysis of the Rover’s Driving Wheels 

The dynamic modelling and analysis of the driving wheels for a general mobile robotic 

platform – AgriRover. 
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Chapter 7 – Motion Analysis of the Rover 

The motion analysis of a general mobile robotic platform – the AgriRover under 

different surface conditions and mission payload. 

 

Chapter 8 – ADAMS and Simulink Co-Simulation 

A collaborative simulation between ADAMS and Simulink of a general mobile robotic 

platform – the AgriRover with the task of following a specific path on specific terrain. 

 

Chapter 9 – Validation and Evaluation Through Field Tests 

Validation and evaluation of energy-optimised path planning, modelling and 

simulation using a general mobile robotic platform – AgriRover. 

 

Chapter 10 – Discussion and Conclusion 

Discussions, conclusions and future research on energy-optimised path planning, 

modelling and simulation for mobile robotic platforms. 
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2 Literature Review 

This chapter describes a thorough literature review of the state of the art robotic 

systems, focusing on their broad applications and associated challenges. A particular 

research focal area has been identified to address the planning of these systems by 

investigating the existing work, methods and algorithms developed for general robotic 

system planning, with a particular focus on energy consideration. This is to address 

the challenge that many similar mobile robotic systems face when they are deployed 

in its application fields. Modelling and simulation work have also been reviewed to 

gain insight into these system’s behavior. Finally, a map of information gaps have been 

identified to provide a solid foundation for the research questions and the scope of the 

research.    

2.1 Rover and Mobile Robotic Systems  

Mobile robotic systems have been widely used in many industrial applications and 

they can be in the form of legged or platform-based mobile systems, which are also 

referred as rovers. In each of these application fields there exists challenges and 

requirements. This section will review the identified relevant applications and mobile 

robotic systems. Space and agricultural rovers have a more similar working 

environment compared to other robotic platforms, therefore, they will be reviewed in 

more detail in this section. 

 

2.1.1 Space Rovers 

During recent years, the public and the government regained interest in space 

exploration, as several Lunar Rovers and Mars Rovers have been launched 

successfully for scientific missions. One of the most important applications for mobile 
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robotic systems is in interplanetary space exploration missions. These missions aim to 

find potential evidence of life in other planets, as demonstrated by Curiosity, the 

Perseverance missions, Tianwen-1 or Change 5, which returned soil samples from the 

Moon to study the formation of the moon on the dark side. There is a high cost involved 

in space missions; for exploring Mars alone NASA spent $21 billion before 2020 and 

an additional $2.4 billion was budgeted for NASA’s 2020 Perseverance Rover mission 

(Williford et al., 2018), which later proved to be insufficient. One of the most 

important design criterions for such missions is the life span of the vehicle under 

extreme and sometimes unknown conditions. These systems are normally designed to 

be as durable and as effective as possible.  

One of the improved design features on the Mars Perseverance Rover is the wheel 

and mobility system. This is based on knowledge gained from the Perseverance 

Rover’s predecessor, the Curiosity Rover, which only has a designed life expectancy 

of 90 days, according to NASA. However, Curiosity is still in operation after 8 years. 

This is partly attributed to the effort that the engineers were manually rerouting the 

path for the Curiosity Rover to avoid more wear and allow them to extend the mission 

duration longer. Despite this significantly increased life space, it is not without 

problems: the wheel and driving system on the Curiosity Rover are severely worn due 

to the harsh surface and terrain of Mars.  

Both the Perseverance and Curiosity Rovers are powered by a Multi-Mission 

Radioisotope Thermoelectric Generator (MMRTG), being 66.8 centimeters long and 

64.2 centimeters in diameter (Bechtel, 2013). The MMRTG are designed to generate 

heat and electricity, with heat generated by the decaying effect of plutonium 238 using 

the Peltier effect. The electrical energy is then stored into two onboard batteries for 

further use, as “the peak power consumption of the Rover is 900 Watts”, and the 

MMRTG has only “about 110 Watts of output and declining few percent every year”, 
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according to the Jet Propulsion Laboratory in NASA. Although the MMRTG is a very 

good solution for the Rover, with the size similar to an SUV 3 metres long, 2.7 metres 

wide and 2.2 metres tall, it is not a good solution for a smaller craft. This is due to the 

size constraint that the MMRTG cannot be too small or the natural decaying of the 

plutonium-238 will create less heat, therefore being less efficient for the electricity 

generation. In addition, the ionising radiation and heat shielding required also limit 

how small the MMRTG can be in order to maintain a reasonable efficiency (Bechtel, 

2013). Furthermore, the safety of such a device is another major factor, where if not 

utilised carefully a nuclear disaster could occur (Cochran et al., 2020).  

For rovers smaller than the Curiosity and Perseverance ones, such as the Spirit and 

Opportunity rovers, as well as many Lunar rovers, a solar panel is typically used for 

power, which has very limited power available.  It is therefore important that an energy 

optimised planning is generated for a longer exploration path. 

 For example, the Opportunity Mars Rover landed on Mars in 2004 and had been 

in service until the middle of 2018, which has the longest service life for an 

interplanetary exploration rover of 14 years and 136 days, far exceeding the 

expectancy of life for the Opportunity Mars Rover which was designed for 90 Martian 

days (24 hours, 39 minutes). Powering the Opportunity Rover is purely dependent on 

solar cells, which provides 900-Watt hours of energy each day at the start of the 

mission and it recharges the two on-bord lithium batteries. The power generation 

capability of the solar cell dropped to 730 Watt hours after 316 Martian days from the 

landing (Crisp et al., 2003). The limited power requires that the path planned for the 

Opportunity Mars Rover are energy efficient and optimised. Figure 4 shows a path 

taken by the Opportunity Rover on the 3,328th Martian day (NASA, 2013).  
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Figure 4. Opportunity rover traverse map, Western rim of Endeavour, 3,328th Martian day 

(NASA, 2013) 

This figure shows the opportunity Rover is following an unconventional path on 

the terrain instead of going through it, even if it is a longer path. This is due to the 

consideration of energy loses and the safety of the Rover.  

It is therefore clear that energy optimised planning of a rover’s exploration path is 

critically important and required for an expected longer planetary exploration. 

2.1.2 Industrial Mobile Robotic Systems 

Industrial mobile robotic systems are majorly used in warehouses and logistics, as 

demonstrated and utilised by Amazon. They are also used in the component transfer 

processes of production lines, such as the KMR QUANTEC developed by KUKA. 

Mobile robotic systems are widely used for industrial purposes. 

Farnham provided a detailed solution of a collaborative robotic test-bed platform 

as part of a larger, open Industrial Internet of Things test-bed, which has been deployed 

and continues deployment in the UK. This test-bed platform, which can operate in 
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smart city sensing and robot mode, is developed for the testing of algorithms and 

sensors. One of the scenarios is is used for is as a collaborative robotic test-pad, such 

as for the testing of warehouse robots, which move differently shaped pallets during 

operation. This test-pad was also designed to utilise the trial version of the algorithm 

before it can be deployed on a particular robotic system. Such a robotic system can 

include onboard wireless communication actuators and a rich set of sensors. For 

flexibility and an extendable evolution of the system, the Dockers Containers and 

ROS2 DDS middleware was used for the software architecture of the mobile robotic 

test-bed platform. This has the flexibility of supporting future sensor and network 

upgrades as the technology improves. This provides an open test-bed to support further 

research and experimentation for swarm robots and different uses of the Industrial 

Internet of Things (Farnham et al., 2021). 

Kumar (Kumar et al., 2019) developed a mobile robot with manipulators that is for 

picking up and placing objects in a working warehouse environment. The design goal 

of this project was to make a robotic platform with two 4-degree-of-freedom specially 

designed robotic manipulators, that is capable of fulfilling the customer orders by 

picking the goods from a location and placing them in a designated area. Where the 

trajectory planning are done with the inverse kinetic approach, which is controlled by 

Arduino Mega microcontroller. The traverse of the mobile platform is achieved by 

utilizing ROS, which enables it to move from one location to another. Finally, the two 

arm mobile robotic platform is tested to transport goods from the designed locations 

to their targeted places (Kumar et al., 2019). What has been achieved with this is the 

design and prototype of an economic robotic platform that is inspired by cutting edge 

technology. A robotic arm design RA improvement is made for pick-and-place 

activities compared to a platform that has only one arm.  
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For platforms such as presented, the energy optimised path planning method is not 

essential, due to the availability of indoor charging stations, but still energy optimised 

path planning improves the effectiveness of the system, by considering the extended 

period of operation and also makes possible the lowering of the time taken for charging 

the battery. Therefore, an energy and time balanced optimisation path planning 

specifically designed for each case is argued in this research as necessary, and can 

make such platforms more effective. 

2.1.3 Agricultural Rovers 

During recent years the technologies have improved and the cost of them have 

reduced. Increasingly more previously state-of-the-art, cutting-edge technology has 

been explored for use in more conventional, commercial markets, such as industrial 

and agricultural markets, instead of only for military and space use. One of the 

represented technologies is mechatronics with robotic control, where a system has the 

structure of one, or a complex combination, of mechanical, hydraulic, numerical, or 

control systems, which are controlled by electronics. In recent years, it has especially 

gained popularity for use in agricultural cases. Robotic systems have been developed 

for agricultural use and they provide the possibility of precision farming, which can 

create benefits for improving sustainability and productivity, as well as liberating 

workers from hard labor in food production. 

Łukowska presented a robotic platform design for the purpose of soil sampling, 

where the goal is to optimise the usage of fertilisers, in order to lower the possibility 

of over fertilisation and improve the cost effectiveness of the fertilisation process. The 

purpose of the project was to make an autonomous robotic platform that is able to 

perform soil sampling for the agriculture purposes. The sample is analysed to 

determine the compositions of the nutrient levels for the soil, and this is then accessed 

finally by the farmers via a handheld test set, or available for large-scaled farmlands 
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on a platform which samples the soil without direct interaction from the farmer 

(Łukowska et al., 2019). Although there was a prototype built and field tests have been 

conducted, with photos showing the drilling process in Europe and North America 

presented in the article, there is a lack of a quantitative conclusion, as the sample report 

provided only states the test conditions: weather, speed of the Rover, and the GPS 

coordinates, but the report doesn’t provide information on the sampling points’ 

coordinates and results. 

Xaud presents another mobile robotic rover designed for bioenergy agricultural 

applications. The work reported sugarcane farms are heavily covered with vegetation, 

compared to regular non-bioenergy farms, which makes the working environment for 

the robotic Rover different. The project produced and developed an autonomous 

mobile robotic system designed for a number of tasks in sugarcane farms, with many 

use cases. The goal was to design a semi-autonomous waterproof and low-cost vehicle 

capable of working in an environment which is inside of plantation tunnels, with dense 

vegetation coverage. It also allows the capability of collecting samples and mapping 

the areas that are hard to access with the onboard sensing systems. Xaud presented an 

overview of the mechanical design of the onboard embedded electronics, the software 

architecture of the rover, and the construction of the prototype. Finally, the results after 

the field tests have been obtained and analysed, where the proposed conceptual design 

challenges of the robots are addressed. Additionally, the future work of a full 

autonomous navigation concept and a new prototype design is proposed (Xaud et al., 

2019). In conclusion, the design construction and field test results of this robotic rover 

is a low cost solution that gives a good motivation for future approaches. The 

environment, where this type of mobile systems is designed to operate in, is 

challenging, as most of the conventional sensors such as cameras and LIDAR could 

struggle due to the thick vegetation. He authors, however, that used low-cost thermal-



24 

 

imaging cameras as a method for mapping is able to address perception requirements 

for this situation, with a certain level of effectiveness. 

Another agricultural rover called AgriRover was presented and developed by Yan 

and his team (Xiu-Tian Yan et al., 2020). This is a multi-functional mobile platform 

that is novel and is designed for agricultural applications. AgriRover is inspired and 

designed by investigating space robotic technology and transforming these ideas into 

the development of a set of technology suitable to terrestrial applications. The 

prototype of the AgriRover is a testament to innovative space technology utilised in 

precision farming for the first time. The energy optimised planning strategy is 

implemented, and the total cost of transport is proposed and validated with dynamic 

consideration. An autonomous navigation framework has been established, which 

enables the AgriRover to operate safely and unsupervised in a farming environment. 

A novel agricultural object-recognition system designed specifically for agriculture 

was implemented and evaluated. A soil sampling system, with the capability of an 

onboard real-time nutrient measurement system, was design and prototyped, which is 

inspired by interplanetary Rovers. The design process of the system followed a design 

methodology of a mechatronic system model, which reshaped the planetary 

exploration Rover into the AgriRover, a platform specifically for agricultural 

applications. Finally, multiple field trials have been conducted and some of the results 

were reported (Xiu-Tian Yan et al., 2020).  

In conclusion, the AgriRover system opened a possibility of real time soil quality 

sampling and analysis, which is quick and cost effective, combined with the energy 

optimised path planning method, which eliminates the unnecessary work of the Rover. 

The coverage area of the AgriRover when measuring the soil quality can be extended 

further, as well as the longevity of the mobility system can be ensured. Finally, the 
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obstacle detection system utilises onboard sensors to ensure the safe operation of the 

Rover. 

2.1.4 Autonomous Cars 

Autonomous cars are becoming a very popular research topic and transportation 

reality. Companies have invested heaviliy in and achieved different levels of 

autonomous-assisted driving, yet a fully autonomous self-driving vehicle is yet to be 

seen driving on public roads safely, thus still requiring further development. With 

improved technology, such as communication, image recognition, LIDAR sensing, 

GPS navigation and high-performance ASIC (Application-Specific Integrated Circuit) 

being made more affordable and more accessible, a fully autonomous vehicle is 

making progress to becoming a fully functional reality.  

Hussain reported self-driving cars with difficulty and issues that needs to be 

solved. Because of the recent development and achievement of many technologies, 

autonomous cars are becoming a reality, with prototypes created by many 

corporations, with test driving already comprising millions of miles. A staggering 

amount of investment of both money and time are dedicated to the development of 

autonomous vehicles by many leading technology companies and car manufacturers. 

They are believed to make a commercially viable autonomous car a reality in the 

coming years. Such a goal is achievable. There exists many challenges, including 

technical difficulties such as real-time high-speed data analysis, stability of complex 

software system testing, validation for safety, and other greater technical difficulties. 

There are arguably more important nontechnical problems, such as insurance policies, 

as well as ethical and moral concerns, which will require careful and thoughtful 

solutions, so that the government requirements, regulations and policies can be 

fulfilled. This report discusses the issues and possible solutions, and for development 

for the autonomous cars they also highlight the applications that could be beneficial to 
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the customers and sector. Finally, to make cost effective and efficient autonomous cars 

a reality, this report discusses what challenges and difficulties must be addressed, and 

gives a suggestion for implementers, designers, regulatory organisations, political 

makers, and manufacturers (Hussain et al., 2018). In addition, not only does saving of 

the energy during the movement of the electric car extend the range, but it also 

mentions that even though the car is fully electric, the electricity used currently is still 

mostly from non-renewable energy sources, therefore making it is necessary to save 

the energy used. 

In conclusion, although the development progress of fully autonomous cars has 

been fast during recent times, it has still largely remained in the level of automation of 

the NHTSA (initially established as the Society of Automotive Engineers) level 2 

(Zacherl et al., 2020, Rödel et al., 2014), which is limited automation with supervision. 

However, as the available technology develops it will be achieve level 3, which is 

limited automation without supervision, and level 4, which is fully automated, soon in 

the future (Albers et al., 2020). 

2.2 Approaches and Modelling Language for Path 

Planning  

There are a number of approaches and tools which have been developed for mobile 

robots, and this is reviewed in terms of path planning strategies for navigation in Patle 

et al. A method to avoid obstacles in known environments is reported, and uses free 

segments and turning point algorithms in Hassani. Among these approaches, 

Optimising Preferences and Time-Dependent Costs (OPTIC) is highly relevant to this 

work, which is a temporal planner design tool for solving the path planning problem, 

where the cost is determined by the time dependent performance and the cost of goal 

collection. These kinds of path planning problems are applied in a range of 
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applications, such as the delivering of fresh goods to meet a specific delivering 

requirement, or to fulfill orders from customers that require a narrow delivery time 

frame. This is not specifically limited to the delivery of agriculture products, medical 

supplies also need to search optimal plans as deliveries of vaccines and organs must 

meet a strict time frame for a valuable service (Carreno et al., 2020, Benton et al., 

2012).  

Papadimitriou represented a method of adaptive planning that has the ability to 

combat hardware faults during the mission by utilising the concept of Ontologies 

(Papadimitriou et al., 2015). Adaptive mission planning requires a lot of computational 

resources during the operation. The high-level mission priorities also have the 

possibility of changing with adaptive mission planning. Papadimitriou introduced a 

new way of increasing persistent autonomy for Autonomous Underwater Vehicles 

(AUVs) with the ontological approach, which is done when part of the hardware fails 

and threatens the integrity of the current mission, where the mission priority needs to 

be incorporated into the decision making method. This is achieved by utilising a well-

established planning language (Hoffmann et al., 2020) Planning Domain Definition 

Language (Haslum et al., 2019) with the Optimising Preferences and Time-Dependent 

Costs (OPTIC). “The results demonstrate the power of an ontology-based knowledge 

representation and reasoning approach in driving adaptation” (Papadimitriou et al., 

2015). The energy efficiency is also achieved by mission planning, which is done by 

changing the order of execution, with the possibility of readopting the mission during 

operation.  

This method presented an increased energy efficiency of the overall mission, by 

changing the order execution based on distance during the mission, which required the 

real-time computational evaluation and re-planning as Papadimitriou introduced. 
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2.3 Planning Approaches and Algorithms 

There are two major types of path planning for wheel-based autonomous robots, 

and they can be classified as implicit path planning algorithms and explicit path 

planning algorithms. An explicit path planning algorithm generates a parametric curve 

or way points (Montes et al., 2007) and is mostly seen in global path planning: using 

a global map and mission points, a set of way point for the robot is generated. Implicit 

path planning algorithms do not give a clear and complete set of way points or 

parametric curve at once, instead the path is generated based on the robot’s onboard 

sensors. The geometric model of the environment is processed from the information 

that is collected by the sensors (Wong et al., 2020) (Arras et al., 2001). This is mostly 

used in local path planning environments. There are other explanations on implicit 

path planning by other researchers in (Martinez et al., 1998). 

2.3.1 A* Algorithm  

Although the a-star algorithm is a classic algorithm widely used for multiple 

missions and purposes. There is a topic that has gained popularity during recent years 

that is full coverage planning, used in cleaning robots. The work by (Le et al., 2018) 

is a path planning utilising the a-star algorithm that is focused on efficient coverage. 

Le presented methods of navigating a morphological robot, which is reconfigurable 

during its mission, in a complex environment (Le et al., 2018), where the performance 

of coverage planning is significantly degraded. During operation of the coverage 

planning, the morphology of the robot is considered, and the objectives is to maximise 

the coverage area while going through narrow paths. Finally, the test is recorded in an 

environment where robot operates using the robotic operating system (ROS) system. 

More applications for the a-star planning algorithm are aimed for care robots. 

Unlike coverage planning, this planning objective is to go from one point to another. 
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As the a-star algorithm is used to find the shortest path from one point to the other in 

this scenario (Kusuma et al., 2019), the objective is for the path planning continue to 

work even after the robot is moved by the user or misses an objective. Kusuma 

represented a method for division of areas and micro areas in two dimensions as shown 

in Figure 5. Following this, a look-up table with weighted value is calculated. The 

weighted value is calculated based on the distance to the destination point, and the 

weighted values for the obstacles are set for calculation using the heuristic distance 

function h(n). 

 
Figure 5. Division of areas and micro areas into nodes (Kusuma et al., 2019) 

Then the a-star path finding procedure begins, where the next waypoint is decided 

based on the calculation of the heuristic distance function h(n). The total cost is 

calculated using a sum of the heuristic function plus actual distance. After the next 

waypoint is decided, the weighted value look-up table is modified. Once the waypoint 

has been visited, their weighted value changes. After many steps, when the next 

waypoint is the destination point, the algorithm stops. When a plan is modified by 

introducing a possibility for the user to change the position of the robot, the algorithm 

can still find the path. 
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The a-star algorithm is a well-established, classic heuristic search algorithm for 

path planning tasks. The advantage is that the optimal shortest path is guaranteed to be 

found from one point to the other. This is achieved by sequentially expanding the 

nodes with the smallest heuristic function h(n), prioritising the expansion of nodes that 

can make the function value smaller (Chen et al., 2018). The disadvantages of this 

algorithm are the relatively low effectiveness and execution speed of the algorithm, 

which  depends on the calculation of heuristic distance function h(n) which it is defined 

by the designer of the algorithm. 

2.3.2 Rapidly-Exploring Random Tree (RRT) algorithm 

The rapidly-exploring random tree (RRT) pathfinding algorithm is an effective 

method for path planning, which is heavily biased towards unexplored and unvisited 

regions, and has the capability of working with more than two dimensions (Kleinbort 

et al., 2018).  

The problem with the traditional random tree algorithm, when used for exploration, 

is overlapping. Using RRT, the robots can revisit the map area that was previously 

explored, because the branch is grown randomly, which means with the different time 

steps it could overlap. Researchers are addressing this problem with Sensor-based 

Random Tree (SRT) (Keidar et al., 2012), where the SRT algorithm grows the branch 

only one at a time. A robot follows this branch until there is an obstacle that stops the 

extension of the tree branch. However, search methods will not entirely avoid the 

possibility of revisiting, because when the branch cannot extend further, the robot has 

to backtrack in order to continue the exploration. When doing so, the revisiting 

problem is still present. 

Umari introduced a method of utilising the RRT algorithm to achieve path planning 

in a partially unknown environment, and improve the efficiency by reducing the 
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possibility of revisiting. This  method was implemented and tested using ROS (Umari 

et al., 2017). Furthermore, the algorithm has the capability of detecting the 

environment boundaries, or otherwise known as frontier points, which is completed 

by using the local and global tree branches, giving a possibility of robotic exploration. 

The robot does not immediately follow the branch when it is generated, instead the 

random tree branch is generated separately, with the movement distance of the robot 

observed using the robot onboard sensors. After all the branches reach the boundary 

of the detection sensor distance, a filter is applied to classify the obstacle’s frontier and 

space that the robot can move to. Then, one of the possible routes for the robot is sent 

to the driving system to execute the movement. Finally, by running this algorithm 

repeatedly, a complete mapping of the region can be produced and is shown in Figure 

6 as seen in (Umari et al., 2017). 

 
Figure 6. Modified RRT algorithm for exploration by Umari (Umari et al., 2017) 

Although the RRT algorithm is very effective for robotic exploration and mapping 

of a region, it is less suitable for an energy optimised planning, because the branches 

are randomly generated, which does not optimise energy efficiency. 
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2.3.3 Pure Pursuit Path Planning Algorithm 

The Pursuit algorithm is a geometric path and trajectory planning method (Peralta 

et al., 2020) that is commonly used with a good level of effectiveness (Amidi et al., 

1991). According to the current position, a set point is chosen at a set distance looking-

ahead, which is the chord length of the arc L (Samuel et al., 2016) as shown in Figure 

7. This path planning algorithm was first developed in 1985, where the pure-pursuit 

path planning algorithm was used in the field of robotics. This algorithm was used to 

estimate the steering for the robot in order to keep it on the path (Wallace et al., 1985). 

 
Figure 7. Geometric explanation of the Pursuit path (BačÍK et al., 2017) 

The following steps are taken for the pursuit path. Firstly, the current location 

(X,Y) of the robot is found. Then, with a predefined look ahead distance (L), the goal 

point (XLA,YLA) is found and the difference is calculated. Thirdly, Rtrack is calculated 

using (1). (BačÍK et al., 2017).  
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𝑅𝑡𝑟𝑎𝑐𝑘 =
𝐿2

2𝑋𝑙
                 (1) 

Accordingly, Rtrack is an arc radius that the robot needs to follow, and the path can 

be corrected (Scharf et al., 1969, Coulter, 1992). 

According to the work on vector pursuit path tracking for autonomous ground 

vehicles (Wit, 2000), the pure pursuit path planning is used on all-purpose remote 

transport systems, such as that shown in Figure 8. 

 
Figure 8. All-Purpose Remote Transport System (Wit, 2000) 
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Figure 9. Pure pursuit relationships between speed and look-ahead distance (Wit, 2000) 

As Figure 9 shows a characteristic of the pure pursuit algorithm, the look-ahead is 

related to the speed of the vehicle when following the planned path shown in blue. 

Figure 9 (1), (2) and (3) show the trajectories of a vehicle movements at a speed of 2 

meters per second with the look-ahead distance of 2, 3 and 4 meters respectively, 

which show that other than with the look-ahead distance of 4 meters, the vehicle path 

is in oscillation.  



35 

 

For the faster speed of 3 meters per second of the vehicle shown in Figure 9  (4), 

(5) and (6), the oscillation only stops with the look-ahead distance of 6 meters shown 

in Figure 9 (6). In summary the pure pursuit path planning algorithm is curved and 

depends on differing speeds and paths where the vehicle runs. 

Such a method is mostly in use on trajectory planning aimed at generating a smooth 

path for the platform to follow. The way point is connected smoothly with position 

error when implemented in real-world applications. The Pure Pursuit Path Planning is 

very well developed and used in many applications.  

2.3.4 Artificial Potential Field Path Planning Algorithm 

There are many applications of path planning which have used the artificial 

potential field algorithm, also sometimes known as the Virtual Force Field (VFF) 

Method. Mostly this algorithm is used for obstacle avoidance planning. The algorithm 

works on one attractive and one repulsive field to represent the destination point and 

the obstacles. Some early research uses the artificial potential field as the basis of the 

planning (Khatib, 1986) (Warren, 1989), but newer work uses an assembly of many 

methods, such as the Evolutionary algorithm, Simulated Aannealing, or other 

algorithms (Mollazade et al., 2012) (Orozco-Rosas et al., 2019, Qixin et al., 2006, 

Vadakkepat et al., 2000). 

Figure 10 shows the results of a typical artificial potential field path planning 

algorithm (Warren, 1989) . The aim of the work is to “develop an artificial potential 

field technique for planning the path of a robot. The focus of the work is to avoid local 

minima than other potential field Methods by establishing a trial path and modifying 

the entire path under the influence of the potential fields” (Warren, 1989).  This early 

research is a classic piece of work focusing on the artificial potential field for obstacle 

avoidance planning. 
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Figure 10. Safe path selected (Warren, 1989) 

The artificial potential field algorithm is less susceptible to local minima that has 

the capability of finding a path around a hard and insurmountable obstacle. 

Not only are the artificial potential field algorithms used in offline planning, but 

also for online planning. Bounini showed development of a modified potential field 

method for the mobile robot to perform local navigation through obstacles (Bounini et 

al., 2017). The work details a way of eliminating the local minimum by calculating 

additional potential fields with single global minimums, which is additional 

destinations of the robot. This new potential field is a repulsive potential field and it is 

generated according to the local minimum parameters. This is achieved by increasing 

the repulsive values round the obstacles for the local minimum problems to be solved. 

The method has its limitations, namely where if the obstacle is closer together, an 

increased repulsive potential field results in a path through the obstacles which cannot 

be found. This is, however, a good way to use artificial potential field to navigate a 

robot through a narrower and obstacle rich environment. 
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2.3.5 Particle Swarm Optimisation 

Particle Swarm Optimisation is an optimisation algorithm based on study of a 

population of insects, inspired by bionics and was originally proposed by Kennedy and 

Eberhart in 1995 (Kennedy et al., 1995), and has been cited more than sixty thousand 

times. Particle Swarm Optimisation was widely used in a wide range of applications 

that is non-linear not only for path planning, but also in design and optimisation of 

infinite impulse response digital filters (Slowik et al., 2007). The technique improves 

the stability of a single-machine-infinite-bus (Hassan et al., 2005). 

 
Figure 11. Particle Swarm Optimisation with iterations (Bansal, 2019) 

The Particle Swarm Optimisation algorithm was inspired by the foraging behavior 

of a swarm of animals (Bansal, 2019). Each point has a memory of their locations 

where they achieved the best performance xl
i and the best decision vector xg. The 

position is then updated using the ) (Bansal, 2019), where x is the location, v is the 

speed, and ω,η1 and η2 are user defined. 

        (2)  

After a number of iterations, the particles converge around the point which is 

predefined, as shown in Figure 11.  
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In conclusion, Particle Swarm Optimisation is mostly suited for solving and 

optimising problems that are non-linear with multiple input and output preferences. 

For single or a small number of rovers, which is the focus of this research, Particle 

Swarm Optimisation is less relevant.  

2.3.6 Ant Colony Planning Algorithm  

Similar to the Particle Swarm Optimisation planning, the ant colony planning 

algorithm is another path planning method inspired by nature, which is even more 

popular and known as an effective tool to solving path planning problems. The 

difference is that the ant colony planning algorithm is inspired by ants’ behaviour of 

finding a path from A to B with Artificial Pheromone Reinforcement, and the 

behaviour of following the stronger pheromone (Dorigo et al., 2006). Particle Swarm 

Optimisation planning, instead works by positioning and vectors that impersonate the 

foraging behavior of a swarm of animals. 
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Figure 12. Ant colony planning (Blum, 2005) 

Figure 12 shows the principle of the Ant colony planning algorithm. Figure 12 (a) 

shows a set up with two paths, the bent one longer than the top path. The starting 

position is marked as nest and the destination point marked as food. In the first iteration 

the Artificial Ants are moving towards the destination with random distribution shown 

in Figure 12 (b). The artificial ants who have taken the sorter path arrives first and 

when they are going back to the nest they have a higher probability in taking the same 

shorter path as they release pheromones as shown in Figure 12 (c). Finally, as the 

iteration goes on the Artificial Pheromone Reinforcement grows higher and higher and 

after a number of iterations all the artificial ants follow the shorter path as shown in 

(d) (Blum, 2005, Dréo et al., 2002).  
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Figure 13. Ant colony size compared (bars on the curve for every 5 iterations shows the 

standard deviation) (Blum, 2005) 

Figure 13 shows the planning results of the algorithm, including statistical 

information. This clearly shows the converging of all ants using the shorter path after 

about 100 iterations when the size of the colony size is at 10, shown in Figure 13 (1), 

and Figure 13 (2) shows when the colony size is at 100 it takes less iterations with a 

better distribution. 

2.3.7 Genetic Algorithm for Energy Optimised Path 

Planning 

A battery-powered unmanned aerial vehicle is another platform that requires 

energy saving, and a higher energy efficiency means longer mission durations and 

more effective operations. Genetic algorithms are used for energy-cost focused UAV 

path planning, where both the speed and altitude of the vehicle needs to be considered. 

Optimised paths for a UAV normally has less turns and less changes in directions 

during the coverage flight, since changing the direction and speed of the vehicle 

requires more energy compared to flying straight. Shivgan proposed a method for 

UAV coverage flight path planning utilising a genetic algorithm, and compared the 

result between an energy optimised route to a shortest distance route (Shivgan et al., 

2020). During a simulation, two to five times less energy was lost utilising the genetic 

algorithm, reducing the number of turns while still maintaining coverage to all the 
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waypoints. For UAV path planning, most of the research work focuses on only 

obstacle avoidance in flying through buildings and terrains.  With a battery-powered 

UAV the flight time is limited, so deciding how to use the limited energy to cover a 

surveyed area is a problem that needs further research (Hirahara et al., 2018). In 

addition, the waypoints and coverage for different missions can be formatted as a 

classical traveling salesman problem, which is a NP-hardness (non-deterministic 

polynomial-time hardness), where only the correct answer of the problem can be 

verified by a polynomial, and not vice versa (Hirahara et al., 2018). 

The genetic algorithms follows the following procedure. First, the number of 

people that is the possible solution of the problem was selected and defined, where the 

size of the population is determined by testing and trials, after generating the 

population randomly. There is a fitness value based on an optimised solution, the better 

fitted chromosome, which consumes less power is kept, then more chromosomes are 

randomly generated. The next step is the crossover where the next generation is 

produced. The fourth step is mutations, where random sections of the chromosomes 

are swapped before finally, the optimised result is generated. 

In comparison, the genetic algorithm normally requires more computational power 

compared to traditional methods, such as potential field and A*algorithm. This 

increases the on-board power consumption and probably increases the cost of the on-

board computer system. Although this paper represents a method that is suitable for a 

UAV, it would not be suitable for a ground-based vehicle with energy consumption 

and cost constraints, such as an agricultural Rover, where cost is an important factor. 

In addition, the complexity of representing spatial and agricultural related information 

in such an algorithm increases the challenge of implementation. 



42 

 

2.3.8 Neural Network (Multi-layer perceptron) for 

Energy Optimised Path Planning 

Neural network approaches are gaining popularity in research fields and are usually 

used to solve a problem that is difficult to precisely define with mathematical 

equations, or a problem lacking a good understanding. Combined with machine 

learning, a neural network can be trained to solve problems that is random in nature 

and complex, such as the classification and recognition of images, texts and sound. 

The neural network has thus become a very popular topic during recent years. In this 

section the possibility of using neural networks for path planning is discussed.  

Introduced by Das is a path planning strategy for robots using six layered neural 

networks (Das et al., 2018). The work analyses and discusses a six-layer neural 

network methodology for path planning in a high-density environment. The input for 

the network consists of the front, left, and right distances from the obstacle, as well as 

the target angle. The output is a steering angle, and this is an output parameter for the 

neural network. The results generated from experimentation and numerical analysis 

had a difference of only 6% (Das et al., 2018). In conclusion, although the problem-

solving ability of the neural networks is very good, in most cases the neural networks 

are trained with mostly trial and error. This is due to the neural network system being 

mostly a black box with parameters trained for this specific case.  Such a setup needs 

to be changed when the platform that it is calculating for changes. Therefore, this 

makes the flexibility of the overall system relatively low, which means new training 

needs to be undertaken again when the mobile robotic platform receives an upgrade, 

or receives any modifications to the total weight or it’s mobility system, requiring 

additional time. In addition, the dataset for training may not always be available for 

agricultural applications, where conditions such as terrains, weather, etc. can change 

constantly, making the trained algorithm potentially unsuitable for a new scenario. 
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Where other researchers, such as Sun (Sun et al., 2018), used the approach of the 

Neural Network Algorithm for the coverage planning, the energy consumption was 

mentioned, but no research was done on energy optimised path planning. 

2.3.9 Reinforcement Learning for Path Planning 

Reinforcement learning  is one of the two most important research areas in artificial 

intelligence and it is a very popular topic, with multiple fields of applications, such as 

image and sound recognition and processing, statistics and forecasts, behaviour 

analysis and many more. Presented by Lakshmanan is a method of reinforcement 

learning for full coverage path planning, designed for the Tetromino robot 

(Lakshmanan et al., 2020). This algorithm provides a complete coverage planning 

algorithm for a tiling robot used for surface painting, floor cleaning, building 

maintenance, and building inspection. One of the elements of the tiling robots is a 

reconfigurable polyomino-based platform, which has the capability of overcoming the 

limitation of fixed form robots, therefore providing a better coverage area. Intelligent 

decisions can be made during operation by reconfiguring the shape of the robot in real-

time for optimal strategies in order to maximise the coverage area and minimise the 

energy consumption. The proposed algorithm for path planning is a method using 

trained deep black reinforcement learning, applied on a robotic platform named 

hTetro. The use of this method results in an optimal set of shapes depending on the 

environment and generates a trajectory planning result with overall less power 

consumption. With the use of Long Short Term Memory (LSTM) layers a 

Convolutional Neural Network (CNN) was trained with the method reinforcement 

learning algorithm, called Actor Critic Experience Replay (ACER). The final result 

was compared with the existing method based on traditional theory of the tiling model, 

which includes spiral, zigzag and greedy search schemes. It is also compared with the 

Travelling Salesman Problem (TSP) with a GA approach and Ant Colony 
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Optimisation (ACO). The results show the proposed algorithm has an overall lower 

energy consumption and requires less time to generate the solution in the simulated 

environments in comparison with the traditional tiling model and TSP (Lakshmanan 

et al., 2020). The results of the reported method of reinforcement learning for the 

application of coverage planning, with a reconfigurable robot platform, proves to be 

effective. This is further supported by examples of reinforcement learning being used 

in many applications, such as the AlphaGo. Although the method of reinforcement 

learning is a very effective way of solving complex problems compared to 

unsupervised machine learning, as it has a lower requirement of data samples, it still 

needs accurate sample data at the training input of the system.  

2.3.10 Kalman Filtering  

Kalman filtering is an algorithm that is used with the assumption of unknown 

variables and inputs of previous measurements gathered over time. The common 

filterring algorithms are widely used in different applications and only requires a 

limited amount of computational power. Applications using the Kalman filter include  

global navigation satellite systems, tracking spotting of the radar system and linear 

navigations with an expanded Kalman filter (Govaers, 2019). Not only are they 

common filters used for navigation and path planning, but also for Speculate, the state-

of-charge for lithium-ion batteries as reported by Shrivastava presented in (Shrivastava 

et al., 2019).  

Khamseh presented a use of the Kalman filter with the state estimation for 

manipulating unmanned aerial vehicles, which is a type of robot equipped with the 

manipulative mechanism that enables and gives them the capabilities of interaction 

with the environment. The state estimation of this type of robot is especially 

challenging, due to the inherent couplings, nonlinear and uncertain behavior of the 

proposed system, creating a complex dynamic problem, which typically means the 
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extended Kalman filter may not be a possible solution. However, Khamseh introduced 

two Kalman filters using general and spherical unscented transformers to resolve this 

dynamic problem. These open the possibility of examining the quality of the overall 

control performance. The experimental vehicle is a quadcopter with a robotic 

manipulator attached, which has the linear–quadratic–Gaussian (LQG) control 

designed with the goal to simultaneously control the quadcopter and the manipulator. 

The performance of the filter algorithm is compared, which includes overall control 

performance, estimation accuracy and execution time. Finally, more parameters, such 

as total loss of sensory data, were examined with the case of an increased noise level. 

Kalman filtering is a filtering method that is effective for onboard sensor data 

processing, which requires previous states of the data as the input. For the task of 

online trajectory planning, Kalman filtering is effective. 

2.3.11  Model Predictive Control Algorithm 

Unlike some of the existing path planning methods, which use a high-level rule 

based on the decision-making approach, the Model Predictive Control (MPC) 

algorithm uses a unified path planning method without explicit rules. The MPC 

algorithm operates by deciding the maneuvers automatically.  

Liu introduced a method of the MPC algorithm for full size vehicles with constraints 

for safety, where collision is avoided between the controlled vehicle with other 

vehicles and the surroundings. Furthermore, a lane-associated potential field is 

introduced to ensure the movement of the vehicle is smooth. Finally, the simulation of 

the path planning method was tested for different man-made scenarios to evaluate the 

effectiveness and safety of this algorithm (Chang Liu et al., 2017). 

Williams introduced a method of the MPC algorithm with predictive path integral 

control, which is based on an importance sampling scheme utilising a generalised 
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algorithm with parallel optimisation developed on a GPU (graphic processing unit) 

(Williams et al., 2017). Generalised importance sampling schemes possess the 

capability of allowing changes, such as diffusion and drift terms of random diffusion 

processes, which is important in the performance of the MPC algorithm. This new 

algorithm proposed is compared in simulation to an algorithm useing MPC with 

nonlinear dynamic differential programming. Finally, the proposed algorithm was 

utilised by multiple vehicles with navigation tasks inside an obstacle dance 

environment. (Williams et al., 2017) 

This paper describes a resulting performance profile of the MPC algorithm, which 

shows the suitability of such an algorithm for an environment such as a highly 

clustered area. The shortcoming of such a method is that one of the key parameters’ 

variance of the sampling distribution impacts the performance of the algorithm 

directly. More frequent sampling generates smoother and more precise manoeuvres, 

but with a higher cost of more computational power required, or less frequent sampling 

generates trajectories that are less optimal and more aggressive. 

2.4 Simulation and Modelling  

Having reviewed all relevant applications and algorithms for path planning, 

modelling in particularly complex systems is an important consideration, as the robotic 

systems, including mobile rover systems, are complex and typically require a 

systematic approach to designing and modelling these systems in order to produce a 

robust and intellectual design solution. With adequate modelling consideration, 

simulation techniques and environments are also crucial to this research in order to 

generate accurate and reliable results in this virtually developed environment. This 

section provides an overview of the reviews results on these topics. These reviews 

focus on energy related modelling and simulation. (Hou et al., 2019a) 
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2.4.1 Multi-Perspective Approach  

Depending on the application of the robotic mobile platforms, there is a multi-

perspective approach to the set goals of the path planning, where the goals can be set 

differently. For a cleaning robot, floor coverage planning is required to consider the 

environment it operates in, e.g. a full coverage of the given space. These include 

consideration of mechanical elements, so that the system is able to reach all locations 

of the target environment, enabled by actuation and perception. Similarly, this is true 

for robots that transfer time sensitive goods, where time taken is the most important 

aspect of the planning. Finally, for Rovers that have limited energy available, energy 

optimised planning needs to be implemented.  

Proposed by Yan (Xiu-Tian Yan et al., 2010) is a design process model for 

mechatronic system designs. As a methodology framework for systematic mechatronic 

design, it defines the key steps and a set of guidelines for considering multiple 

perspectives of designing a mechatronic system. Conventionally, the engineering 

design of a mechatronic system is a process that is sequential, where the problem is 

generated during the process of the design, and then explored and evaluated as the 

design process evolves. These relatively prescriptive design approaches are found in 

traditional design models, which are used in many classic design textbooks, including 

French’s Conceptual Design (Michael J French et al., 1985), systematic design (Pahl 

et al., 2007), which has a wider mechatronic context by (Bradley et al., 2000), and 

Schemebuilder (Sharpe, 2012). Proposed is a new design process model for 

mechatronics systems, where it is intended with a holistic view in mind, and the 

lifecycle issue during the designing phase is considered. Then, the design process 

methodology proposed is implemented with an application of a mechatronic system 

that has a low flow rate, high position mechatronic oil dispensing system. Finally, the 

life cycle issues is set to be carried out in (Borg et al., 2000) . This paper details a new 
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approach to the design methodology for mechatronics system design. This approved 

an implementation of a well thought-out methodology to improve the effectiveness of 

mechatronics system design. Design processes for low volume high position oil 

dispensing systems originally took seven years, and has had its design duration 

decreased to only one year. This shows a design methodology for a multi-perspective 

design approach.  

2.4.2 Energy Modelling and Dynamic Simulation 

As mentioned in the last section, the battery-powered robotic platforms have a 

limited amount of energy at their disposal. As an example, the space rovers are 

powered by solar cells, and agricultural and industrial robotic platforms are powered 

by batteries, where the energy is a limiting factor for the duration of the mission. 

Energy modelling of the robotic system is not only important for the purpose of 

predicting the search duration of the mission, but also for a energy efficient route, as 

mentioned in Section 2.1.1. A less energy optimised route taken by the mobile robotic 

platform places more stress on their mobility system, which decreases their operational 

life and increases the possibility of the platform being out of service due to mechanical 

failure. Therefore, energy modelling and simulation of the battery-powered mobile 

robotic platform is important. (Hou et al., 2019b) 

Presented by Datouof is an energy-efficient trajectory planning method for mobile 

robots, where a modification has been made for the a-star algorithm. The energy model 

of the three-wheeled Omnidirectional mobile robots was created. Then the A* 

algorithm is modified according to the result from the modelling, where the calculation 

of the heuristic function is modified, specifically. The heuristic function has been 

discussed in Section 2.3.1. With the modified heuristic function, the modified a-star 

algorism can find an energy efficient path. The optimum velocity is calculated by 

solving the Sequential Quadratic Problem. Finally, the path generated by the algorithm 
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is simulated using a three-wheeled mobile robotic platform named the Omnidirectional 

Mobile Robot. This platform uses the different speeds and directions of the three 

wheels to control the trajectory of the robot, without a steering mechanism. The 

simulation environment is set up with 3 artificially-placed, high-friction zones of the 

same height (Datouo et al., 2017). The energy modelling of three-wheeled robot is 

validated by the results of the simulation. The energy cost of a smooth and unsmooth 

path, with two different approaches, are compared. However, the energy cost of the 

shortest distance path against the path generated by the proposed algorithm has not 

being compared, which does not give a solid conclusion of the effectiveness of the 

energy efficient path planning. Nevertheless, the algorithm presented with the 

modified heuristic function has a potential for further investigation. The a-star path 

planning algorithm in Section 2.3.1 with its advantages and disadvantages is analysed. 

The second article presented by Canfield is a validation of a power consumption 

model for a skate steer mobile robot (SSMR), which has two tracks instead of wheels. 

SSMRs have advantages compared to wheel-based robots, it is more robust with a 

simpler driving and steering mechanism. However, it also has disadvantages, such as 

when steering unnecessary friction is generated and the driving system has a lower 

efficiency in terms of electrical energy transferred to kinetic energy. The SSMRs have 

a larger power consumption when the robot is turning due to the corresponding 

slipping friction while inducing a larger load on the driving system. The behavior of 

the slipping motion is generally characterised through Instantaneous Centers of 

Rotation (ICR), where the friction model is established dynamically. However, the 

existing power models for the SSMRs generally constructed at a kinematic level 

assumes the slipping motion has a motion equation extracted from empirical data, 

which may not be accurate. The paper presented introduced a method of modelling the 

power consumption of the SSMR based on slip parameters, which is calculated with 
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differential equations extracted from motion equations. The dynamic power model is 

then validated by the implementation of 2 practical applications of manufacturing. The 

first application is where the mobile robot is set to climb a steel surface with the 

primary power consumption for overcoming gravity and turning. The second 

application is set to show the dynamic ICR model can predict the power consumption 

with good accuracy. Finally, the results of the experiment validate the energy model, 

which could be used for optimal trajectory planning to minimise the energy 

consumption during the mission (Canfield et al., 2019). In conclusion, this report has 

achieved most of the work claimed, with energy modelling of the SSMR in great detail, 

however, there is a lack of dynamic simulation and the real-world tests do not show 

the energy consumption data. 

2.4.3 Battery Simulation and Modelling 

The rover modelled and simulated in this review uses lithium-polymer batteries for 

their operation. A review of battery modelling and simulation is given. 

As Reiter introduced, the thermal and electrical behaviour of a system during its 

operation using lithium-ion batteries is a complex and systematic problem. To ensure 

the wellbeing off the vehicle and safety of the surroundings this must be understood 

(Reiter et al., 2019). A modular simulation framework was proposed, which allows 

the simulation to perform on different types of batteries, with different electrical and 

thermal properties. He proposed a framework that contains 3 layers: the cell level, the 

system level and the monitoring level, as shown in Figure 14. 
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Figure 14. Basic structure of the battery simulation framework by Reiter (Reiter et al., 

2019) 

Reiter used Simulink to establish the simulation framework for the modelling and 

simulation of the batteries. Reiter achieved an average accuracy of voltage within 60 

mV and an accuracy of current within 40 mA during the simulation. There is, however, 

no report on the overall power consumption.  

2.5 Algorithm Comparison for Energy Optimised Path 

Planning  

Having reviewed all relevant path planning methods, it is necessary to compare 

their suitability and ability to generate an energy optimised path for a wheel based 

robotic platform within a given terrain. For the purpose of this comparison, it is 

essential for the algorithms to be able to cope with several factors. These include: the 

suitability for modelling and representing energy, computational efficiency, suitability 

to optimise energy dynamically, ability of expanding the modelling for additional 

requirements in the future, flexibility of the algorithms in dealing with different 

application scenarios, and how robust the algorithm is. With the possibility of running 

in real-time onboard the robotic platform, these are important factors for consideration. 
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Table 1 shows the results of a comparison for path planning methods and algorithms 

reviewed in Section 2.3, with the characteristics and performances of them specifically 

compared for the application of energy optimised path planning. The number of stars 

awarded to each algorithm is based on an assessment of the papers relating to the 

algorithm by the author, and is based on information from papers in the literature.  

Table 1 shows all the mainstream path planning algorithms for mobile robotic 

platforms with the all their differences. Different path planning algorithms have 

different characteristics on the applicability of their applications and the objectives of 

the path planning. Some path planning algorithms are more suitable for specific 

applications, such as for coverage, point-to-point, exploration or trajectory planning. 

The path planning algorithms are graded in stars on the different aspects shown in the 

Table 1. 

 First is the terrain and ground roughness modelling suitability, and this is 

evaluated based on the path planning principles of the algorithms. For example, RRT 

or A* plan the path according to a dynamic matrix, which changes every step as the 

waypoint is generated. The fixed terrain and ground roughness will therefore need to 

be made to matching the dynamic characteristic of the evaluation matrix, which require 

extra complexity and computation power, being less suitable for terrain and ground 

roughness modelling. Noreen has compared the Computational power needed / 

Execution time in his research for a performance comparison of path planning 

algorithm (Noreen et al., 2019). Liu has stated the achievement of robust and 

extensibility while designing a path planning algorithm (Gengqian Liu et al., 2005). 

Boroujeni demonstrated the flexibility of the path planning algorithm preforming the 

task for the autonomous vehicles (Boroujeni et al., 2017). In addition of all above, for 

the purpose of evaluate the suitability of energy optimised path planning algorithm on 
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terrain, the terrain roughness modelling suitability has been added as a evaluation 

target. 

Table 1. Suitability for energy optimised path planning 

Name 

Terrain 

and 

Ground 

Roughnes

s 

Modelling 

Suitability 

Computationa

l power 

needed 

Extensibilit

y 

Flexibilit

y 

Robustnes

s 

A*, D* 

algorithm 
Low High High Medium High 

RRT Low High Extra high High High 

Pure Pursuit Low Low Medium Low Extra high 

Artificial 

Potential Field 
High Low High High Medium 

Particle 

Swarm 
Medium Extra high Medium Low Medium 

Ant colony High Extra high Medium Medium Medium 

Genetic 

Algorithm 
High Extra high Low Low Low 

Neural 

Network 

(Multi-layer 

perceptron) 

Low Extra high Low Low Low 

Reinforcemen

t Learning 
Low High Low Medium Medium 

Model 

Predictive 
Low High Medium Low High 

The second evaluation is the computational power needed. This is based on the 

computational resources required when the path planning algorithm is running, and 

those required when the map is being expanded. Some path planning algorithms, such 

as Reinforcement learning  or Neural Networks, will require new training when the 

map is changed, which requires high computational resources. Furthermore, when the 
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map size is expanded, the computational resources for the training will increase 

nonlinearly and by greater. Less stars means the computational power requirement and 

the map size scaling has a better relationship of linearity and a smaller slope. 

The extendibility is the third evaluation of the possibility of extending the 

capability of the algorithm as needed. For example, when more environmental 

elements needs to be considered, such as the hardness of the surface that a larger 

robotic vehicles will need to consider such as crop planting robotic vehicles, irrigation 

or pesticide-applying robotic vehicles. Adding more environmental elements for some 

planning algorithms such as the Genetic Algorithm will require a complete redesign 

and reconfiguration of the algorithm. This would require similar amounts of manpower 

as compared to designing a completely new algorithm, which will waste time and 

money and should be avoided. Thus, more stars indicate a better suitability for 

extending the functions of the algorithm. 

Flexibility is an evaluation based on the possibility of implementing existing fully-

developed algorithms from the platform that it is designed to work in to a new 

platform. For example, the fully developed energy optimised path planning algorithm 

for the AgriRover has the requirement of being reused in a UAV. How much the 

original code needs to be altered and modified is the level of flexibility, where more 

start means better flexibility. The possibility of changing the accuracy and 

performance of the algorithm in exchange for the required computational power is also 

considered. For example, varying the size and the frequency of updating the 

pathfinding matrix, some of the algorithms have the capability of changing its 

performance by lowering the updated frequency or size of the pathfinding matrix in 

exchange for quicker and better real-time response of the system. 

Finally, the robustness is evaluated based on the stability of the algorithm when it 

is used during real-world applications. This is whether or not they have been reported 
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unreliable in the source papers referenced in this chapter, as some of the algorithms 

that are more complex will have a tendency of being less stable during 

experimentation. 

In conclusion, for the application of designing an energy optimised path planning 

algorithm for application in the prototype of the agricultural autonomists mobile 

robotic platform, the AgriRover, considering the above five aspects a balanced choice 

is made. The Artificial Potential Field is the most suitable for this application. Firstly, 

as the potential field can be superimposed and combined with the seated rules, the 

extensibility and suitability of using the terrain as a part of the planning is achievable. 

Secondly, the pathfinding process in the Artifical Potential Field Method is based on 

the attraction and repulsion of the artificial field. The size of the search field is 

changeable, making it more flexible in accuracy, which makes it suitable for online 

and onboard real-time path planning if needed. Finally, the problem of the artificial 

potential field algorithm being less reliable, due to the problems of local minimum, is 

one of the focuses of this thesis.  

2.6 Summary and Identification of Knowledge Gaps 

As electric powered devices and vehicles are being used more often for the purpose 

of sustainability, both from an energy and environmental perspective, the path 

planning algorithm that takes a mobile robotic platform from one point to another, with 

only the consideration of obstacle avoidance, will need to be improved and expanded. 

As the design purpose of electrical vehicles and mobile robotic platforms is for 

sustainability, the path planning algorithm itself needs to have the method of reducing 

the energy consumption as an important design criteria. Khan has given a explanation 

of the necessity for energy efficient planning (Khan et al., 2018). 
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Table 2 shows that other researchers have developed and presented methods and 

algorithms for path planning tasks, designed for mobile robotic platforms, from small-

scale platforms, such as trajectory robots (Lakshmanan et al., 2020) and drones to the 

large scale All-Purpose Remote Transport System (Wit, 2000). Most of the methods 

and algorithms have presented solutions only for obstacle avoidance, but they have not 

given a systematic solution for other challenging problems faced by path planning 

tasks, such as the energy costs of the path generated for ground vehicles based on 

information such as terrians and roughness of the ground. There was path planning 

algorithms for UAVs that focused on minimising the energy consumption using the 

model of minimising the change of speed and travel directions of the UAV. However, 

for a slow moving robotic platform that is focused on precision, such as interplanetary 

exploration and agricultural rovers, minimising the change of speed and travel 

directions has a limited result of minimising the energy consumption due to the already 

slower speed of the platform. In such cases, the terrains that the robotic platform 

operates on have to be considered when generating paths. Considering terrain data 

when selecting a path for the robot is not only important for minimising the energy 

consumption, but can also, more importantly, be used to ensure the safety of the robotic 

platform by avoiding extreme inclines and declines, therefore minimising the risk of 

tipping and rolling the mobile robotic vehicle. This can also avoid overloading the 

actuators onboard. An energy optimised path planning utilising terrain conditions has 

versatility and expandability that can be used for agricultural and interplanetary rovers, 

and even low fly UAVs. By utilising energy-optimisation focused algorithms will not 

only save energy consumption, but also reduce and eliminate high torque output 

situations, therefore producing less electrical, thermal and mechanical long-term wear 

of the mobile robotic platform. This will extend the longevity of the platform, 

increasing reliability and reducing costs. 



57 

 

In addition, most of the research done on path planning do not have complete 

dynamic energy modelling and simulations regarding the vehicles they were 

researched with. A complete dynamic energy-focused model that has interaction 

between each mechanism of the actual vehicles, that is also capable of being 

controlled, and representing dynamic behavior in a simulation environment has never 

been done. With such completed processes of dynamic energy modelling and 

simulations, with the complete representation of the mechanisms, a relatively precise 

likelihood of the energy consumption behaviour can be proposed. This would be a 

judging criterion for the performance of the further energy optimised path planning 

algorithm. 

Furthermore, the design process and methodologies of such energy-focused 

modelling and simulation has a consultation value that can be used as a reference for 

any related future research that wants an energy consultation behaviour estimate of a 

robotic mobile platform. The methodologies and design process of the energy 

optimised path planning algorithm based on terrain will also provide a guideline for 

any future needs of developing path planning algorithms that is focused on 

minimalising the energy consumption which has not been done before. 

In conclusion, even with this need, there is still a lack of a published energy-

focused path planning algorithm based on the terrain for autonomous mobile 

platforms, such as the AgriRover. Additionally, there is a lack of a complete energy 

model and simulation that has the capability of dynamic control implementation, 

where the result of this simulation can be used as evaluation and validation tools for 

an energy optimised path planning algorithm.  
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Table 2. Work on path planning completed by others  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type of 

Algorithm 

Type of 

Application 
Researchers 

Optimisation of 

Energy Cost 

Obstacle 

Avoidance 

Consideration 

of Terrain 
Experimentation 

Robot 

Lifespan 

Extension 

Dynamic Energy Modelling 

and Simulation 

A* algorithm 

Ground robot 

Coverage 

planning 

Le No Yes No Yes No No 

Ground robot 

Point-to-point 
Kusuma No Yes No No No No 

RRT 

Ground robot 

Exploration 
Kim No Yes No No No No 

Ground robot 

Exploration 
Umari Yes Yes No Yes No No 

Pure Pursuit 

Ground 

trajectory robot 

planning 

BAČÍK No Yes No Yes No No 

Tracked 

vehicle 

trajectory 

planning 

Wit No Yes Yes Yes No No 

Particle Swarm 

UAV 

Trajectory 

planning 

Roberge No Yes Yes No No No 

Ant colony 

Ground robot 

point-to-point 
Blum No Yes No No No No 

Ground multi 

robot planning 
Wong No No No No No No 
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Type of 

Algorithm 

Type of 

Application 
Researchers 

Optimisation of 

Energy Cost 

Obstacle 

Avoidance 

Consideration 

of Terrain 
Experimentation 

Robot 

Lifespan 

Extension 

Dynamic Energy Modelling 

and Simulation 

Genetic 

Algorithm 

UAV 

Coverage 

planning 

Shivgan Yes Yes No No No Partial, only static modeling 

Neural 

Network 

(Multi-layer 

perceptron) 

Ground robot 

point-to-point 
Das No Yes No Yes No No 

Reinforcement 

Learning 

Ground 

Tetromino 

robot point-to-

point 

Lakshmanan Yes Yes No Yes No No 

Model 

Predictive 

UAV 

trajectory 

planning 

Williams No Yes No No No No 
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3 Design Methodology for Energy Optimised Path 

Planning of Mobile Robotics (EO- PPMR) 

3.1  Introduction  

Based on the literature review, it is clear that mobile robotic systems require energy 

efficient path planning in navigating fields. This is especially the case when the mobile 

robots are deployed in an unknown environment, as demonstrated in the literature 

review of Section 2.1.1.  

Before generating an algorithm for energy efficient path planning, it is necessary 

to investigate common methodology considering all the important aspects of the 

system and environmental factors, in order for the proposed work to be generic and 

applicable in additional applications. In this chapter, a purpose-generated design 

methodology is presented for path planning of mobile robotics. An energy 

optimisation algorithm can then be derived for detailed modelling and path 

optimisation to improve energy efficiency and long-distance operations. The algorithm 

design is modelled and developed based on Figure 15. 

The proposed design process model consists of three pillars, namely the 

information repository pillar, design process pillar and energy pillar. The information 

repository pillar is concerned with the representation of the design information 

expansion process, as more design decisions are made, more design parameters values 

are committed, hence more information is decided. The design process pillar 

represents the conventional process of designing mechatronic systems, such as a 

mobile rover. These processes flow from top to bottom and help a designer to progress 

to a satisfactory design. Building on this established work, this work proposes to have 

a new pillar and focuses on the consideration of energy conservation and external 

impact factors onto a field robot. This is further considered to include the dynamic 
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changing environment and its impact on the energy consumption of a mobile robotic 

system. These factors include the elevation of the terrain, the surface unevenness of 

the terrain, and the hardness of the surfaces that a mobile rover will travel on. With 

this considered in the design process model, detailed in this chapter, it is believed that 

a full and comprehensive consideration can be made to ensure a mobile robot is 

designed to be energy efficient. 

In the information repository pillar in Figure 15, from top to bottom, it shows the 

information of the mechatronic system design process expands as the system develops, 

and the relationships between each part interconnects, which is shown on the left using 

the evolving information flow arrow. This information can be categorised into four 

blocks of information from top to bottom. These include information on design 

initialisation and task clarification, which can be further divided into the parts that 

describe the system level needs of the customers, and specifications through analysis, 

as well as market intelligence for commercialising a mobile robot in a researched 

market. The information becomes richer, as shown in Figure 15, by the darkening 

colour of the product design specification. This is an evolving information flow for the 

existing information, which are the statements of the customers’ needs and marked 

research results.  

In the second pillar in Figure 15, from the top to the bottom, it shows the 

mechatronic system design process and activities for generating a final design solution. 

It involves both concepts of generation and qualitative modelling. In this step concepts 

are generated and evaluated according to specific working principles using the existing 

information of design specifications produced in step one. After that, a fully developed 

concept model is created for further evaluation. 

The information from the concept which was generated and evaluated is passed to 

the third step, which is the embodiment design and quantitative modelling for 

evaluation. Embodiment and detail design are first undertaken so that all components 
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are specified, then the evolving information is passed for the embodiment models, and 

then also the fully developed solution models. These models can then be simulated and 

quantitatively evaluated.  

Finally, the last part of the mechatronic system design process in the middle pillar 

is about multi-perspective modelling and simulation, in which a mobile robot solution 

is fully modelled and simulated from several perspectives, as illustrated in the last part 

of the information repository pillar. All these multi-perspective models provide a full 

representation of a mobile system for exhaustive evaluation. There are more 

intertwined relationships and trade-offs required and considered at this stage for an 

optimal solution, as shown in the Figure 15. In this step, many models are designed, 

as shown in the bottom part of Figure 15. Building on the library of simulation models, 

as well as simulation and visualisation, a mechatronic system can be fully generated, 

evaluated and validated in this virtual modelling world. This forms the basis of Yan’s 

mechatronic system design process model, as shown in Figure 15. 
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Figure 15. Yan’s mechatronic system design concept (Xiu-Tian Yan et al., 2010) 

Reviewing the model represented in Figure 15, it is clear that energy was not a 

focal viewpoint for consideration, and this was left for further investigation. This work 

builds on this aspect and proposes an enhanced specific design process by considering 
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energy of the mechatronic system. In aiming to enhance the design process, a newly 

created pillar can be found in Figure 16.  

 
Figure 16. A generic design process model for energy optimised mechatronic rover system  

From the energy optimised path planning modouling and simulation , the design 

process model, as shown in Figure 16, considers the following aspects: environment, 

path planning and terrain.  

Surface modelling shows the difference between between ideal uniform surface 

and the real world complex ground surface if used. On the top left it is seen that the 

planning first needs to be formulated, such as considering how the planning algorithm 

will be focused on the ratio between the shortest path and lowest energy cost. Moving 

down to the second part, the platform characteristic needs to be considered, depending 
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on the difference between each platform’s characteristic for each type, a different path 

planning method will need to be utilised. After the first part, moving down to the 

second and third parts of Figure 15, it remains the same for both the concept and 

qualitative design step, and the embodiment and quantitative design step.  

In the last part, as this is a energy optimised planning design concept, the models 

required are less when compared to the universal design concept shown in Figure 15.  

Finally, shown on the right is the design of the path planning algorithm. It is seen 

at the top that data is collected using various methods, such as data collected by the 

onboard and offboard sensors, weather station, and satellite, will be modelled 

according to the requirement of the application, which could include air-, ground- or 

water-based scenarios. After the modelling of the environment, there is a processing 

algorithm for each of the environmental models that gives different priorities 

according to the objectives of the specific platform, which could include maximum 

distance travelled, full coverage, exploration and more. According to these objectives, 

each of the environmental models will be processed and selected. With these selected 

inputs, the designed energy optimised algorithm will generate a path for the specific 

platform independently, making it flexible and expandable. The result of the path 

generated is then simulated again, the parameters of the planning algorithm can be 

tweaked and the performance off the energy optimised path planning algorithm can be 

improved. The performance is determined as satisfied when the algorithm can be 

implemented to the individual platform and the field test can then be preceded with. 

3.2 Energy Optimised Planning Design Methodology 

For an energy efficient mobile rover design, a list of considerations have been 

compiled based on the literature review and fields studies. Table 3 shows the detailed 

design tasks that is requires investigation on the left and the specific outcomes that 

needs to be generated on the right. These can then be used to help build a 
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comprehensive representation of the energy models of a mobile rover design. This 

tabel is inspired by the Li’s haptic design process (Li, 2019). 

Table 3. Energy optimised planning algorithm design process needs and tasks  

Tasks required for energy perspective 

design and modelling  
Outputs 

Task clarification through analysis of needs. 
Inspiration and research review 

Requirements and specifications 

Mechanical/Electrical modelling to enable 

detailed energy conversion representation. 

Functional concepts modelling. 

Limitations and capabilities analysis of the 

platform 

Key power component energy models for 

simulation 

Key functional models for behaviours 

representations and simulation 

Detailed functional modelling. Software 

development modelling. Algorithms 

development for control, e.g. PID control 

Control methods and software analysis for 

the implementation of the algorithm 

Specific energy efficient control algorithms 

Force modelling 

Kinematics modelling 

Analysis for the platform on force and 

kinematics models for validation and 

simulation 

Simulation 
 

Performance evaluation on simulation 

results 

Field test 
System performance data captures 

Field data analysis for validation 

 

3.2.1 Task Clarification 

Firstly, the path planning tasks will need to be identified and clarified. This is 

mostly dependent on the type of platform the energy optimised planning algorithm is 

required to be implemented on and the objectives that the algorithm needs to achieve. 

It is important to have a clear understanding and specification for the path planning, as 

there are many kinds of vehicles and each kind is different in their path planning. These 
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different kinds of vehicles include the Lunar rover, Mars rover, Agricultural rover, or 

any other type of vehicle like the Autonomous Underwater Vehicle, Unmanned Aerial 

Vehicle, or Unmanned Surface Vehicle. They all have a limited stored power supply, 

or a power output limited by electricity and mechanical structure. This is the case not 

only for those mentioned, but also for similar types of vehicles. Moreover, the path 

planning objectives can also be different. For example, a Lunar rover could be used 

for exploration, mapping, sampling, retrieving or transportation. For different 

missions, different yet comparable energy optimised planning algorithms are required 

for the same principles, but they are different in their execution. For example, in a 

mapping mission the global map of the environment could be largely unknown, but 

the surrounding terrains and structures can be captured by the onboard sensors, in 

which case a dynamic energy optimised planning algorithm needs to be utilised. For 

each different mobile robotic platform, there are different characteristics, requirements 

and specifications, which are considered and needed for the development of an energy 

optimised planning algorithm. 

3.2.2 Conceptual Design  

Conceptual design is an early stage of the design process for the high-level, overall 

function of a project, or in this case an algorithm, that can work in different specified 

cases. 

More specifically, conceptual design is the phase where engineering, science, 

practical knowledge and commercial aspects are brought together, and where the most 

important decisions are made (Michael J French et al., 1985).  

Shown in Figure 17, the conceptual design stage can be divided into 3 parts and 

they have an interconnected relationship as shown. First, the needs and ideas will be 

transf error d into a functional definition. Following this, a concept is generated 

according to the functional definition. Finally, the concept will need to be validated 
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and evaluated, with the results feed back to the beginning and the functional definitions 

can thus be changed with new functional definitions presented. 

 
Figure 17. Conceptual design stages (Christophe et al., 2014)  

For this particular algorithm’s conceptual design, the integrability and 

compatibility, between the energy optimised planning algorithm and the platform that 

the algorithm will be deployed on, are very important. For example, a lightweight and 

low power consumption platform, such as a small lunar rover, have less processing 

power compared to a heavier and higher power consumption platform, such as an 

autonomous underwater vehicle. This high-power consumption platform requires a 

lower processing planning algorithm that is more suitable for such an application. In 

addition, the environment also needs consideration, which has different impacts for 

different types of platforms. The algorithm needs to be designed specifically for the 

platforms within a particular environment they will work in so that they achieve true 

energy optimisation.  

The conceptual design for the energy optimised path planning algorithm therefore 

needs to define and describe a full picture of understanding of the mobile platforms 

and the environment for the algorithm’s conceptual design. Following this process, the 

type of planning algorithm then can be selected, validated and evaluated as described 

in the next section of embodiment design. 
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3.2.3 Embodiment Design 

Embodiment design is a more specific design process compared to the conceptual 

design. Embodiment design is the part of the design process which starts from the 

principle solution or concept of a technical product (Pahl et al., 1996).  

First, the key requirements and constraints of the embodiment design for the energy 

optimised planning algorithm need to be determined. The limitations and constraint 

requirements are laid in and associated with the hardware structure. A planning 

algorithm, therefore, needs to be designed with the consideration of such limitations 

and requirements. The principle that makes the energy optimised planning algorithm 

work needs to be created and generalised. It is particularly important to ensure it is 

compatible with all the systems onboard the platform, which can include, but is not 

limited to, mechanical, electronic, sensor, hydraulic, and pneumatic sub-systems. 

Therefore, it is important to produce and reference an information base so that these 

concepts can be supported, depending on the selection of working principles. Finally, 

the working principle of the energy optimised path planning algorithm design process 

can be confirmed, followed by the embodiment and conceptual design model being 

generated and assessed. 

3.2.4 Function Design Process 

Unlike a product design, the Function Design Process for energy optimisation is 

mostly a software and algorithm design. The function of the energy optimised path 

planning algorithm needs to find a path for the platform which is both safe and the 

most energy efficient, where the least amount of processing power is utilised.  

This step of the design will be break down into functions, sub functions and 

modules. As the process develops, changes and improvements need to be made on the 

functional modules, but the framework remains the same during development. 
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Finally, the energy optimised path planning algorithm can be coded and tested. 

This design process is shown in Figure 18.  

 
Figure 18. Design process of the energy optimised path planning algorithm. 

In Figure 18, green shows the definition of the application, blue shows the process 

of design, red shows the process of implementation and yellow shows the process of 

evaluation. First, the design needs are decided and the tasks of design is identified. 

Then, the design process begins with the conceptual, embodiment and function 

designs, which will give a detailed design of the algorithm. The next step of the design 

process is to programme the algorithm, which aims to make it implementable on the 

platform that is designed for. The final steps shown in yellow is the process of 
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evaluation, where the results of planned path will first be simulated and then this will 

be evaluated. If the result is satisfactory, the process will proceed to the next step of 

field test. If not, the process will go back as the arrows show and according to the 

aspect of the dissatisfied areas. If the field test is preceded with, the results of the field 

test is captured and evaluated. If the result is satisfactory, the design can be 

implemented on the platform, and if the result is unsatisfactory, the design process will 

go back to the design and coding process, as shown in Figure 18. 

3.3 Evaluation 

Evaluations should be conducted constantly during the entire design process, as 

mentioned in French’s design model (Richard H French, 1985). After finishing each 

step of the design process, an evaluation should take place. Both the performance and 

compatibility should be considered. If any performance is deemed unsatisfactory, or a 

solution is incompatible, the current design process should be backtracked and 

improvement on the solution shall be made, or an alternative solution should be 

generated. A methodology of evaluation methods need to be developed. From the 

literature review represented by Davidson (2005), as well as Howe and Eisenhart 

(1990), while considering the mobile platform design, the following evaluation 

approach is proposed for this study. As the book (Davidson, 2005) mentions, 4 key 

points need to be addressed. The solutions are followed. 

1. The identification of the right criteria for the energy-focused design evaluation. 

The criteria that is important is what defines the functionality and robustness of the 

energy optimised path planning algorithm. This includes but is not limited to, all the 

necessary factors for the design of the algorithms, the type of path planning algorithms 

selected, the efficiency of the code, the number of bugs in the code, the testing and 

debugging procedure, and the modifications done according to the testing results. For 

this study, it is considered that the energy costs of transportation is a key criterion in 
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addition to other mechatronic system design criteria, such as power rating, 

functionality, cost, weight, etc. The focus will be on the total cost of energy of 

transportation.  

2. The level of importance for each criterion and the balance between them. 

The factors for evaluating an energy optimised path planning algorithm are as 

follows: safety of the surroundings, safety of the platform, energy cost, time cost and 

process power needed. The level of importance of these considerations vary between 

different platforms and different missions. It is therefore proposed in this study to leave 

this decision to determine the level of importance to a mechatronics system designer.  

3. The qualitative and quantitative standards of the designs. 

As is mentioned in (Howe et al., 1990), quantitative is statistic or metric, and it is 

a quantifiable and measurable in numbers with units. In this case: how much energy is 

saved, how much time it takes to finish the path, and what is the maximum peak drive 

current in the energy optimised path planning algorithm design process.  

In contrast, the qualitative is unmeasurable in numbers, which includes the 

usability of the energy optimised path planning algorithm, the quality of the model 

used in each step, and the human-computer interaction, if applicable.  

In this study, a combination of these two evaluation approaches is adopted to enable a 

balanced evaluation. When it is possible, as much as possible, a quantitative evaluation 

of an energy-focused design solution is made and results are reported. If this is not 

possible, in cases of field studies on the performance of a system, a qualitative 

approach is adopted for evaluation.  

• 4. Weaknesses of the design 

The weaknesses of the algorithm design is a measurement of the robustness under 

working conditions, and with simulations it can be improved to a better level. 

Furthermore, with appropriate field tests the working platform can be improved even 
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more. This is an important measurement for improving a design. Given the challenge 

in an unstructured environment, while being intended for multiple mobile platforms 

using a generic approach, this study promotes this aspect of the methodology for 

evaluation in order to identify the weaknesses and improve the solution. 

3.4 Summary 

A new methodology of designing an energy optimised path planning algorithm is 

presented in this chapter. First, Yan’s mechatronic system design concept (Xiu-Tian 

Yan et al., 2010) is exhibited and explained in detailed steps, as shown in Figure 15 in 

page 63. A new pillar focusing on the energy consideration is introduced for 

consideration, as well as supporting design concept exploration for the energy 

optimised path planning algorithm, as shown in page 64 Figure 16.  

Then energy optimised planning design methodology is introduced with 4 parts 

which define the design process methodology. This includes task clarification, 

conceptual design, embodiment design and function design. Finally, the evaluation of 

the design solution, for energy consideration of mechatronic systems and its processes, 

is introduced. 

Building on this investigation and proposal, an energy optimised planning design 

methodology is used for the design of this energy optimised path planning algorithm 

for the AgriRover, with evaluation and simulation described in Chapter 8. Further field 

tests and results are described Chapter 9.  
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4 Energy Modelling and Energy Optimised Path 

Planning  

4.1 Introduction  

This chapter describes the work of energy modelling of a mobile rover system and 

its application in the AgriRover. The main concept of modelling the key performance 

parameter of energy is called the Total Cost of Transport (TCoT), and is defined as the 

total energy used per unit weight, per unit distance travelled. This is a further 

development of the work by (Bhounsule et al., 2012), which considers only the 

movment of the vehicle on flat ground. 

After the introduction on the establishment of a generic energy model for a rover 

platform, the energy optimised path planning algorithm for the rover is introduced. 

And energy cost when using the energy optimized path planning algorithm and not 

using the algorithm are calculated compared and evaluated on the targeted test 

platform AgriRover which has been mentioned in introduction. 

From the system integration point of view a field mobile robotic platform, such as 

an agricultural or space rover, normally contains a local and global planner where the 

local planner is used for local tasks, such as dynamic obstacle avoidance, sometimes 

with dynamic motion planning, and the global planner is tasked with global 

applications, which includes the global path planning based on static elements obtained 

before the deployment of the mobile robotic platform. 

The energy-optimised path planning in this thesis is focused on offline planning, 

with the available data on terrain size being 385m by 330m. This energy-optimised 

path planning algorithm is a global planner utilising the available terrain data. 

According to the reviewed literature, online local planning for mobile robotic 

platforms is mostly focused on obstacle avoidance and motion optimisation. In the 
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field of obstacle avoidance, a significant amount of research has been published. 

Therefore, this research will not be focused on such a subject. 

For online planning research is done for dynamic obstacle avoidance and motion 

planning on mobile robotic platforms and autonomous automobile platforms, which 

was reviewed in 2.1.2 and 2.1.4. Research was reviewed on the energy-optimised local 

motion planning for UAV’s, which will not be beneficial for the use of mobile robotic 

platforms with reasons mentioned in section 2.6.  

The goal of research for path planning in this case is to find an energy-optimised 

path in rich terrain with static data. In conclusion, offline global path planning is 

selected to ensure the novelty and the performance of the energy-optimised path 

planning in a rich terrain environment for mobile robotic platforms. 

4.2 Energy Modelling of the AgriRover 

Given the unstructured and known or unknown environments which typically 

mobile platform faces, e.g. a rover, will operate in, it is important to model the power 

consumption to ensure the system meets the affordability and operational time 

requirements. Affordability in this work is defined as the delivery of the minimal 

energy cost for a given rover operation, while also considering that the rover needs to 

be able to return to its base for charging safely and avoiding unnecessary costs of 

fetching or searching for it due to a total energy loss of the rover. Operational time and 

understanding of the energy consumption, in order to predict energy consumption 

during an operation in an unstructured environment, is also an important feature for 

the modelling of a rover. To address these crucial needs, a new method for measuring 

the energy efficiency of a mobile platform is proposed in order to provide an accurate 

and timely measurement of the power consumption during its operation. The model is 

also intended and can be applied to any mobile technology using legs or wheels. The 

model consists of two aspects: static and dynamic modelling.  
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Due to the changing nature of power consumption of rovers in unstructured 

environments, the dynamic energy consumption and its efficiency of any rover is 

derived, in order to establish the key energy performance characteristics of the mobile 

platform. This will allow for the evaluation of the instantaneous and peak performance 

characteristics of the mobile platform in typical soil sensing operations. In these 

applications, it is insufficient to measure only the static energy efficiency, and as such 

the new approach includes both time and overall performance analysis which will 

provide new intellectual features to the rover modelling.  

The instantaneous power of dynamic modelling for a rover is derived from first 

principles. This approach takes a systematic approach and captures the total power of 

the rover system so that it has a holistic view of the power that has been used, is being 

used and will likely be used. This approach is therefore capable of potentially covering 

all energy used and enabling a predictive energy management of the onboard energy 

system. Referring to Equation 3, the instantaneous power P in any sub-system is given 

by the average power, Pavg, as the time interval, ∆𝑡, approaches zero of that particular 

system.  

           (3) 

Power PT is the total power required at any instantaneous moment. Power Pm is the 

power used for the displacement of the rover. This is a value which will be different 

with differing acceleration and is calculated as shown in Equation 4. 𝑃𝑠 is the power 

used for the steering of the rover. To overcome the friction between the rover and 

contact surface, Pf is introduced. During operation, there will be heat generated due to 

mechanical friction and the electrical energy to mechanical rotation conversion. The 

power due to the heat loss by the propulsion system can be defined by Ph. This portion 

of the power is proportional with the power that is passed through the rover and can 
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be further integrated by sub-systems. Finally, Pe is the power required for the on-board 

electronic equipment.  

𝑃𝑇 = 𝑃𝑚 + 𝑃𝑠 + 𝑃𝑓 + 𝑃ℎ + 𝑃𝑒              (4) 

𝑃𝑚 is the summation of the power on each wheel and at any given time, calculated 

as  𝑃𝑚 = 𝐹 ∙ 𝑉𝑙 . Furthermore, 𝑃𝑠  is the summation of the power consumed by the 

steering system, calculated using 𝑃𝑠 = 𝜏 ∙ 𝜔. 

For the driving motors, heat loss Phd is considered and at any given time. Phd is a 

function of Pm. The heat loss Phd is calculated as demonstrated in Equation 5, where  𝜂 

is the product of the efficiences of the rover motor and the motor driver.   

𝑃ℎ𝑑 = 𝑃𝑚 ∙ (1 − 𝜂)              (5) 

For steering motors, the heat loss Phs can be calculated as shown in Equation 6. 

𝑃ℎ𝑠 = 𝑃𝑠 ∙ (1 − 𝜂)               (6)  

Consequently, the total heat loss, Ph, will be the summation of 𝑃ℎ𝑠 and 𝑃ℎ𝑑. 

At an instantaneous moment the power P(t) can be defined as in Equation 7. 

𝑃(𝑡) =
𝑑𝑊

𝑑𝑡
                 (7) 

According to the total power required at any instantaneous moment, the energy 

cost of the rover 𝐸𝑇 can be defined as in 8. 

𝐸𝑇 = ∫ 𝑃 ∙ 𝑑𝑡                 (8) 

By merging Equation 4 and Equation 8, in any one given time interval from 

 𝑡1 𝑡𝑜 𝑡2 ,the AgriRover’s energy consumption 𝐸𝑇 is given by the integral as shown in 

Equation 9. 
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𝐸𝑇 = ∫ (𝑃𝑚 + 𝑃𝑠 + 𝑃𝑓 + 𝑃ℎ + 𝑃𝑒)  ∙ 𝑑𝑡
𝑡2

𝑡1
          (9) 

Applying Equation 9, it is proposed to define the total cost of transport as the ratio 

of the power consumption to the product of weight and velocity in real time, enhancing 

the static measurement, as shown in 10. 

𝑇𝐶𝑜𝑇 =  
𝐸𝑇(𝑡)

𝑊(𝑡) ∙ 𝑉(𝑡)
                  (10) 

Where W and V are the weight of the AgriRover and the velocity it travels at, 

respectively. Applying 10, it is possible to estimate the dynamic total cost of transport 

of any rover. One example of such dynamic behavior over a period of time is shown 

in Figure 19. This is an estimated modelling result and the detailed calculation is show 

below.  

 
Figure 19. A the dynamic total cost of transport plot example. Running for 18.3 m with an 

average speed of 0.3 m/s. 

 

4.3 Energy Optimised Planning 

4.3.1 Introduction of the Algorithm for Energy 

Optimisation Planning 

In this part of the thesis a path planning algorithm, with energy optimisation as the 

goal, is explained and demonstrated. This energy optimised path planning algorithm 
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is developed based on an Artificial Potential Field algorithm with modifications, and 

an extension of the Artificial Potential Field algorithm. The modifications and 

extension of the factors of the Artificial Potential Field corresponding with the criteria 

of an energy optimised path planning is explained. The energy optimised path planning 

algorithm’s code is then shown and explained. Lastly, the result of the total cost of 

energy is calculated and compared for the optimised path and a straight point-to-point 

path. 

4.3.2 The Advantages of the Artificial Potential Field 

The Artificial Potential Field algorithms have been investigated widely and have 

several advantages as follows. Firstly, the Artificial Potential Field algorithms, with 

many modifications or adaptations, are well tested and used (Bing et al., 2011, Hwang 

et al., 1992, Pamosoaji et al., 2013, Qi et al., 2008, Qixin et al., 2006, Raja et al., 

2015). Despite these research works reported, for most cases such algorithms are used 

for avoiding obstacles, path finding in predefined indoor spaces, and locally to avoid 

rough terrains. This research will extend this algorithm into a new application in an 

unstructured and open environment. The work will also extend its potential for path 

planning and optimisation. Thus, the main features and potential advantages of the 

Artificial Potential Field path planning are summarised as follows: 

• Lower cost of the computing performance compared to more intelligent and 

bionic path planning algorithms, such as genetic algorithms, neural networks, 

ant colonies, which makes it more suitable for an onboard computer with 

limited power and available space.  

• The required computing power will not increase to the power of 2, or 

sometimes to the power of 3, as the size of the map increases, such as seen in 

the Fractal Tree path planning algorithm (Pinzi et al., 2019) or A* algorithm 

(Tseng et al., 2014). Instead, the required computing power will increase 

linearly as the size of the map increases. This is particularly suitable for 

unstructured environments, as the map could be significantly extended.  
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• Lastly, the Potential Field has the feature of being a modifiable algorithm. This 

will enable the operation of a new Potential Field algorithm, which could be 

modified on demand during operation without requiring completion, which 

makes the algorithm much more flexible. 

Overall, the Potential Field algorithm is more suitable for a generic rover to use for 

the energy optimised path planning which are possible for Online Planning in the 

future with limited onboard Computing performance. 

4.3.3 Description of the Energy Optimisation in Path 

Planning 

Normally the moving path of the rover is a straight line, as this will minimise the 

steering effort. It is a good strategy to travel in a straight line, as it is normally the 

shortest distance for the rover to travel, but sometimes a straight path is not the most 

energy efficient path when the terrain is not flat. Instead, going around hills in an 

optimised fashion may be more energy efficient. By applying the proposed path 

planning algorithm, as shown in page 95 Figure 31, a new path can be found. This 

generated path would save more energy than a straight-line path. When moving the 

rover at a fixed speed, the energy spent on going up and down a hill will be wasted as 

typical heat loss. Even with a very highly-efficient energy recovery braking system, 

over 50 percent of the energy will be wasted. However, by going around the hill the 

energy could be saved (Niu et al., 2018). 

Firstly, presume when the rover climbs, additional energy is needed and the kinetic 

energy cannot be converted back to electrical energy, as the design of the rover driven 

by electrical motors are typically not reversible, due to the high gear ratio in the system. 

Furthermore, potential energy gained from a higher position of the rover can’t be easily 

recovered during a downhill descent.  
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As Equation 4 and Equation 9 in Chapter 4.2 shows, Pm is the power used for the 

displacement of the rover, and the multiplication of Pm by the unit time, ET can be 

subdivided into Equation 11 (Ooi et al., 2009). In Equation 11, Em is the total kinetic 

energy when moving. Ec is the energy needed when changing the state of movement, 

such as speeding up, slowing down, or steering. Wr is the work needed to overcome 

the resistance.  

∫ 𝐸𝑇 = ∫ 𝐸𝑚 + ∫ 𝐸𝑐 + ∫ 𝑊𝑟              (11)  

Em and Ec are mainly dispensed on the mass of the rover. Wr is composed of two 

parts, the work needed to overcome resistance when moving, and the work needed 

when ascending. The descending stage could be counteracted by the gravity 

component in the direction of the movement (Shuang Liu et al., 2013). 

4.4 Potential Field Representation and Generation  

4.4.1 Accessing and Processing the Map 

Before the algorithm can be proceeded with, the terrain map of the field is accessed 

on Digimap EDINA, which is a web mapping and online data delivery service 

developed by the EDINA national data center for UK academia (Morris et al., 2000) 

(Millea, 2003).  

The terrain data used in this algorithm are all accessed and obtained from this 

platform. Figure 20 shows the two farmland fields indicated by the red boxes, which 

are located on the Rushyhill farm close to Auchinairn Rd, Glasgow, G64 1UR. These 

farmland fields are two of the main testing fields for the AgriRover around the 

Glasgow area. This energy optimised path planning algorithm maps out the waypoints 

for the rover on the field located in the bottom left, shown by an arrow in Figure 20.  
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Figure 20. Geology terrain map 

The farmland field terrain is then downloaded from the EDINA Digimap, known 

as the OS Terrain™ 5 DTM data, which has one height data point every 5 meters. For 

this specified farmland field, Ordnance Survey tiles NS66NW and NS67SW are 

downloaded and merged. This is because the specified farmland field is on the edge of 

two tiles. Each OS Terrain™ 5 DTM tile has a size of 5 by 5 kilometers, thus after the 

merge there are 2000 by 1000 data points, as shown in Figure 21.  
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Figure 21. OS Terrain™ 5 DTM tiles 

4.4.2 Potential Field Representation  

The farmland field terrain is cut from the merged map with the top of the map 

facing south opposite the common map, shown in Figure 23. The map has a size of 66 

by 76 data points, specifying 330 by 380 meters with a height difference of 20.37 

meters. This covers the farmland field process shown in Figure 22.  
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Figure 22. Map process flowchart 

 

 
Figure 23. Farmland field terrain 

4.4.3 A Generic Artificial Potential Field Generation 

Algorithm 

The algorithm is based on the artificial potential field with modifications and 

improvements. Every environmental variable has a corresponding artificial potential 

field calculated by an independent equation. Variables that can be calculated include 

a topographic map and obstacle map. The first two potential fields considered are the 
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distance and height difference potential fields. The distance potential field is calculated 

based on the coordinates of the points on the map.  

Firstly, the start point and destination point is set on the map, as shown in Figure 

23 by the green circle for the start point and magenta parallelogram for the destination 

point. 

The distance potential field Ep is calculated as Equation 12. The X and Y are 

horizontal and vertical coordinates for any given point. Xd and Yd are horizontal and 

vertical coordinates for the destination point, and G is the gravity.  

                   (12) 

Equation 12 is inspired by the gravity potential,which can be expanded in a series 

of Legendre polynomials. The denominator in the integral is expressed as shown in 

Equation (13) in order to achive the gravitational potential V at a distance x (Tikhonov 

et al., 2013). The x and r points are represented as position vectors relative to the center 

of mass. Figure 24 shows this is a gravitational potential. 
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Figure 24. Plot of a two-dimensional slice of the gravitational potential in and around a 

uniform spherical body. The inflection points of the cross-section are at the surface of the 

body. (Tikhonov et al., 2013) 

 

        

  (13) 

By applying Equation 13 to each point using the pseudocode shown below. A sharp 

function with a single extremum is created as shown in Figure 25.  

 

start a loop with x from 1 to 66 

    give a reset value y=1  

    start a loop with y from 1 to 76 

Distance potential field =1/(9.8/ Square root of(Absolute 

value of(x- x coordinate of destination point)^2+ Absolute 

value of (y - y coordinate of destination 

point)^2))*distance_p; 

    end the loop 

end the loop 
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4.5 Generating the Generic Field for the Farming Fields 

From Maps 

This is a variable distance_p, which is a unique modification to solve the 

problem of the local minimum, which will be discussed later. The closer the distance, 

the higher the potential, as shown in both Equation (13) and Figure 24. This is the 

reciprocal of the distance potential field. 

 
Figure 25. Distance potential field of a farm land 

This is the first artificial potential field which is used for attraction of the 

waypoints, as shown in Figure 25. The destination point has the lowest potential by 

searching. Setting a round ball with mass, but no inertia, from any point on the map 

other than the destination point, under gravity the round ball will start rolling and end 

up at the destination point with no other forces applied. This is the artificial potential 

field created due to the attraction of an artificial potential field. When increasing the 

distance_p, the weight due to the attraction of the artificial potential field in the total 

potential field will increase to ensure that the destination point is reached. The merging 

process of the fields will be discussed in Section 4.6, when several artificial potential 

fields are applied. 
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Equation 14 is inspired by the potential energy for a linear spring (Tipler et al., 

2007), and is defined as shown in the equation (Tipler et al., 2007). 

 (14)  

For convenience, consider contact with the spring occurs at t = 0, then the integral of 

the product of the distance x and the x-velocity, xvx, is x2/2 (Tipler et al., 2007). 

A simplified expression is shown in Equation 15 (Tipler et al., 2007). So by setting 

the k equal to 1 and according to the condition that the height change, no matter an 

increase or decrease, will all be a potential energy increase, as a height decrease does 

not result in power generation or charging of the AgriRover battery. 

                        (15)  

The height difference potential field is calculated. The height difference potential 

is based on topographic maps and elastic potential energy formulas. The height 

difference potential field Ep is calculated as shown in 16, where HP is the height for a 

given point p, and HD is the height of the destination point. 

                 (16)  

By applying Equation 16 to each point using the pseudocode shown below. The 

height difference potential field is created in Figure 26. 
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Figure 26. Height difference potential field 

4.6 Multi-Artificial Potential Field Representation and 

Merging  

The next step is merging all the potential fields, and the pseudo code used is shown 

below. 

give a value x=1 

give a value y=1  

start a loop with x from 1 to 66 

   give a reset value y=1 

    start a loop with y from 1 to 76 

height difference potential field =1/2*[(Absolute value of 

(each map point on coordinates(x,y)- height of the way point 

1))]^2;  

    end loop 

end loop 
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The potential_mesh_all is the merged potential field of all the potential fields 

which is multiplied by a weight factor and then added. Figure 27 is thus generated. 

 
Figure 27. Merged potential field 

Visually Figure 26 and Figure 27 are difficult to distinguish between, because 

Figure 25 only has an interval from 0 to 7, which is a smaller weight when compared 

to the height difference potential field. However, as mentioned, increasing the 

distance_p will increase the interval of the distance potential field, therefore making 

the merged field more distinguishable and smoother, as seen in Figure 28.  

potential_mesh_all= coefficient of height * height difference  

   potential field + coefficient of distance *   

   Distance potential field; 

   Distance potential field; 
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Figure 28. Merged potential field when the interval of both fields is matched 

The distance_p is decided by the path finding algorithm, which will be discussed 

in the next part of this chapter. 

4.6.1 Path Finding with the Merged Potential Field 

The path finding algorithm is designed to find a path between the start point and 

the destination point, according to the merged potential field, which is explained in 

Section 4.4.3. From the green circle as the start point to the magenta parallelogram as 

the destination, shown in Figure 28, a path is found by applying a series of algorithms 

shown below. 

First, the maximum number of waypoints are set using Equation 17), and the code 

shown in the first line. This is calculated using the distance between the green circle 

start point and the magenta parallelogram destination point. The Round to positive 

infinity before multiplied by square root of 2 [ sqrt(2)], which is set as the maximum 

number of waypoints in this path finding algorithm. The reason for the multiplication 

of the square root of 2, is to ensure the number of waypoints are more than the distance 

of the square root of 2, which allows the path finding algorithm a greater number of 

waypoints. In other words, when point1 is (1,1) and point2 is (2,2), the maximum 
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number of waypoints is the square root of 2 multiplied by square root of 2, which 

results in 2 waypoints. Thus, the path finding can take 2 steps to get to the destination.  

𝑠𝑡𝑒𝑝𝑠 = |√2 × √(𝑃1𝑥 − 𝑃2𝑥)2 + (𝑃1𝑦 − 𝑃2𝑦)2|             (17) 

 

Ideally, using the 8 points around the start point, a 3-by-3 matrix is formed. A 

bubble sort of the matrix elements is applied, and the lowest value is selected. By 

finding the coordinates of the lowest value points, and if the coordinates are inside the 

map, it is then saved into a number array called local_1. This algorithm is then applied 

by the maximum number of waypoints discussed before. The number array will thus 

contain all the waypoints from the start point to the destination. 

In most cases, due to complex navigation in an unstructured environment, the 

number of waypoints will exceed the maximum number of waypoints defined initially 

in the system, which is intended to minimise the computational burden. This limitation 

is addressed, and a flag for the algorithm is set to allow the algorithms to break in the 

next loop. The weight modifier, distance_p, will be increased and Figure 25 will thus 

increase.  

steps=ceil(sqrt(2)*(sqrt((point1(1)-point2(1))^2+(point1(2)-

point2(2))^2)));%%max number of steps which will be needed to find 

all waypoints. 
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Figure 29. distance_p decision code 

distance_p is decided with the above code in Figure 29, which is the beginning 

of the code loop. As the code shows in line 128, the average value of the height 

difference potential field is calculated with the absolute value. Then, the distances 

between the start point and the destination point is calculated as shown in line 130. 

Following this, the step of distance_p is set with the resolution of 1/100, as shown in 

line 132. The resolution is interchangeable, where a finer resolution may increase the 

effectiveness of the algorithm and decrease the energy cost. But then as the test that 

has been done showed, any resolutions finer then 1/100 will be mostly ineffective and 

cause unnecessary calculation loads. Finally, distance_p will increase as the step is 

set when the loop starts.  

Also, when the path is close to the map boundary the 8 points around the current 

waypoint will have a 0 in the 3-by-3 matrix, and this will cause the bubble sort of the 

matrix elements to find the 0 as outside the map boundaries. To prevent this from ever 

happening, a judge code is added as shown below. This line of code will prevent the 

path from being outside the map boundaries and then skip the rest of the steps when 

the destination point is reached.  
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Figure 30. Waypoints on the map 

The last step is to plot the waypoints on the map as shown in Figure 30. Followed 

by this is a simplified flowchart of the algorithm shown in Figure 31. 

if flag1==0 && next_way_point(1)-1>0 && next_way_point(2)-1>0 && 

next_way_point(1)+1 <=66 && next_way_point(2)+1<=76 % Prevent the 

matrix from exceeding boundary 
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Figure 31. Simplified flow chart of the algorithm 

In Figure 31 the color green shows the inertial data, with solid green showing the 

matrix and green which is outlined shows individual points. Furthermore, outlined 
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black shows intermediate values, solid blue shows the process, yellow shows the 

evaluation, solid black shows the evaluation result, and outlined blue shows the end 

process. 

4.6.2 Difficulty and Solutions using the Artificial 

Potential Field Method  

The local minimum is one of the major difficulties of any Artificial Potential Field 

path planning method (Min Cheol Lee et al., 2003), and to solve such difficulties, 3 

methods are designed and used. 

First, the maximum number of steps are set to stop the trapping and oscillation of 

the path finding algorithm. This is introduced in the last part of this chapter. By setting 

a limiting factor so that when exceeding the maximum number of steps the algorithm 

will break the loop, the oscillations and infinite loop problem during execution will 

therefore stop. 

The second method, as mentioned in the previous chapter, is a weight modifier of 

the distance potential field. In combination with the max number of set steps, if the 

max number of steps is reached after the breaking of the loop, the modifier will 

increase to the step set, as introduced in the last part of this chapter. 

Lastly, there is a sharpening process of the merged potential field so that the 

destination point has the lowest point of the 8 surrounding points, ensuring the last 

step of the pathfinding is always the destination point, instead of a local oscillation 

near the destination point. If the height around the destination point is similar to the 

starting point, the oscillation often happens near the destination point when the path 

came close to the area around the destination due to the lower value of the height 

potential field. Sharping the destination point of the potential field increases the 

effectiveness of the path planning and lowers the overall energy cost. 
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4.7 Energy Cost Estimation Implemented in MATLAB 

After a path is found the energy cost is estimated. This is done by using the code 

shown in Figure 32. This estimation is under ideal circumstances, where the only cost 

of energy is a high increase. A detailed modelling and simulation is done and 

introduced in Chapter 8.  

 
Figure 32. Energy cost estimation code 

First, the height difference between each point is calculated and plotted. Then, if 

the height is increased the energy cost to overcome gravity is calculated and saved in 

an array. Lastly, each number of the array is summed, and the energy cost estimation 

to overcome gravity is calculated.  

4.8 Case Demonstrations and Algorithm Validation  

The energy cost comparison between a straight-line path and energy optimised path 

is discussed in this part of the thesis. The green circle is the start point and magenta 

parallelogram is the destination point. The energy cost is only calculated to overcome 

gravity, as in the code of Figure 32. 
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The first case is an uphill condition. As shown by the pathline in Figure 33, the 

map indicates the height has increased from 79 meters to 83 meters at the first peak, 

and then increased to more than 84 meters to reach the maximum height, after reducìng 

to 82 meters with further travel on decent. This trajectory has resulted in a total cost 

of energy of 1379.4 joules. 

 
Figure 33. Straight-line path and height change graph  

An energy optimisation has been performed based on the algorithms proposed. 

This is shown in the pathline in Figure 34, and as one can see, the height has increased 

from 79 meters to 82.2 meters then the height changes remain between 81.43 and 82.25 

metres. The total cost of energy of 972.65 joules can be observed in this case.  

5 meters between each point 

Height in meters 
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Figure 34. Energy optimised path and height change graph 

In this case, the energy reduction to overcome gravity is 406.75 joules when 

comparing between the straight-line path and the energy optimised path, implying that 

the energy saved is over 30% with the height change. 

The second case is a downhill condition, with the start and destination points 

exchanged, as shown in Figure 35.  

In this case the final energy reduction is 242.55 joules when compared to the 

straight-line path and energy optimised path, the energy saved is over 37% on the 

height change. Finally, shown in Table 4 is the time required to complete the planning, 

which is 0.638 s. 

Height in meters 

5 meters between each point 
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Figure 35. Downhill condition compared. 

 

5 meters between each point 

Height in meters 

Height in meters 
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Table 4. Time needed to complete the planning  
 

 Function Name  Calls  Total  

Time  

 

planning 1  0.586 s  

unix  1  0.184 s  

mesh  3  0.124 s  

newplot  52  0.051 s  

newplot>ObserveAxesNextPlot  52  0.022 s  

grid  3  0.021 s  

cla  4  0.017 s  

Surface.Surface>Surface.Surface  3  0.012 s  

configureAxes  3  0.012 s  

configureAxes>checkChildren  3  0.010 s  

graphics\private\clo  4  0.009 s  

 

4.9 Expanding the Artificial Potential Field 

With more information or additional needs, the artificial potential field is 

expandable by adding an element to the sum of the total artificial potential fields, such 

as a potential field of the surface roughness grading and a potential field for 

uncrossable obstacles. The surface roughness grading is mentioned in Section 6.2. If 

the data is available or collectable, an artificial potential field can be generated, such 

as shown in Figure 36. 
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Figure 36. Randomly generated surface roughness map 

Also, as a benefit of the modified Artificial Potential Field, the map size is 

expandable with a lower requirement of computational power. Shown in Figure 37 is 

the energy optimised path planning used on a map that is 5-by-5 km, where a 1000-

by-1000 data point is in compulation, with a time cost of only 2.081s, as shown in 

Table 5. Furthermore, the energy to overcome gravity is only 970.2 joules, compared 

to 1646.4 joules if the rover went in a straight line. 
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Figure 37. Large map planning result  

 

Table 5 Time needed to complete the planning for a large map 
 

 Function Name  Calls  Total  

Time  

 

largemap_ planning 1  2.116s 

newplot  349  0.193 s 

mesh  4  0.181 s   

newplotwrapper  345  0.098 s  

CanvasPlugin.createCanvas  5  0.084 s  

CanvasSetup.createScribeLayers  5  0.049 s  

ScribeStackManager.getLayr  20  0.044 s  

ScribeStackManager.createLayer  15  0.038 s  

newplot>ObserveAxesNextPlot  349  0.029 s  

gobjects  710  0.024 s  

4.10  Summary  

This chapter described a novel energy modelling and energy optimised path 

planning approach for an autonomous mobile robotic platform, the AgriRover. This 

approach uses a dynamic and adaptive Artificial Potential Field that has given a 
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solution on the problem of local minimum while finding a energy optimised path with 

limited time. The energy optimised path has the energy reduction for overcome the 

terrain reduced from 972.65 joules to 730.1 joules, a total decrease of 242.55 joules is 

observed. This comparison between a straight-line path and the energy optimised path 

sees an energy saving of over 37% with the height change. This reduction ratio is only 

applicable to the change of the altitude (Z Axis), without the consideration of the XY 

Axis. However, the full simulation has been designed and proceeded with in Chapter 

8. Furthermore, the expandability of the designed energy optimised path planning 

algorithm is demonstrated with a map that is 5-by-5 km in size. 

Although from a control perspective, every mobile robotic platform is different. 

But from the point of view of energy consumption models and patents, all wheel-based 

mobile robotic platforms are inter-related. Therefore, the global energy consumption 

behaviour across all mobile robotic platforms is similar, so the developed energy-

optimised path planning method is a generalised approach to solve mobile robotic 

platform problems. Also the research proceeded and was validated using AgriRover 

as the research platform because it was the only mobile robotic platform available at a 

reasonable cost of time and money.  
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5 The Mathematical Modelling of the AgriRover 

Steering Mechanism 

First, the voltage of the motor of the steering system at a given time t, also known 

as the balanced voltage equation, can be described as Equation 18 (Sharma et al., 

2017).  

𝑉𝑎(𝑡) = 𝑙𝑎
𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝑅𝑎𝑖𝑎(𝑡) + 𝐸𝑎                (18)  

where  

𝑉𝑎(𝑡) is the total voltage of the motor at the time t, 

𝑙𝑎 is the inductance of the motor,  

𝑖𝑎 is current of the motor,  

𝑅𝑎 is the internal resistance of the motor, 

𝐸𝑎 is the back electromotive force (EMF) given by Equation 19). 

 

𝐸𝑎 = 𝐶𝑒𝜔𝑚(𝑡)                    (19) 

where 

𝐶𝑒 is the coefficient of the back EMF,  

𝜔𝑚 is the angular speed of the motor. 

Then the torque fn the motor at the given time t is described as 𝑀𝑚(𝑡), and is 

calculated as shown in Equation 20. 

𝑀𝑚(𝑡) = 𝐶𝑚𝑖𝑎                    (20) 

where 
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𝐶𝑚 is the torque constant.  

 

Finally, the balanced equation of torque at a given time t can be written as shown 

in Equation 21.  

𝐽𝑚
𝑑𝜔𝑚(𝑡)

𝑑𝑡
+ 𝑓𝑚𝜔𝑚(𝑡) = 𝑀𝑚(𝑡) − 𝑀𝑐(𝑡) − 𝑀𝑑(𝑡)            (21) 

where 

𝐽𝑚 is the total rotary inertia of the motor shaft, 

𝑓𝑚 is the coefficient of friction of the system,  

𝑀𝑐(𝑡) is the interference output from the outside of the system, and  

𝑀𝑑(𝑡) is the force on the motor shaft generated when the ground.  

The equation of torque on a planetary gearbox when contacting the ground is 

shown in 22 

𝑀𝑔(𝑡) = 𝑅𝑔𝐾𝑔𝑥𝑔(𝑡)                   (22) 

where  

𝑅𝑔  is the equivalent radius with the torque on the gearbox generated from 

contacting the ground,  

𝐾𝑔 is the coefficient of elasticity of the tire when contacting the ground, 

𝑥𝑔  is the displacement generated when the tire contacts the ground due to the 

elasticity of the tire, and 

𝑀𝑔 is the force generated on gearbox shaft when contacting the ground. 

The force generated on the motor shaft when contacting the ground is calculated 

as shown with Equation 23. 
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𝑀𝑑(𝑡) =  
𝑀𝑔(𝑡)

𝑗0
                    (23) 

where 

𝑗0 is the reduction rate of the gearbox.  

The displacement generated when the tire contacts the ground, due to the elasticity 

of the tire, is calculated as shown in Equation 24. 

𝑥𝑔(𝑡) = 𝑅𝑔 ∫
𝜔𝑚(𝑡)

𝑗0

𝑡

0
𝑑𝑡                  (24) 

Finally, the output angle of the motor is calculated as shown in Equation 25. 

𝜃𝑚(𝑡) = ∫ 𝜔𝑚(𝑡)𝑑𝑡
𝑡

0
                   (25) 

The next step is to transform these equations and generate the steering mechanism 

system block diagram. From Equation 18 and 19, Equation 26 can be formed. 

𝑉𝑎(𝑡) = 𝑙𝑎
𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝑅𝑎𝑖𝑎(𝑡) + 𝐶𝑒𝜔𝑚(𝑡)              (26) 

Applying a Laplace transform to Equation  26, Equation 27 is generated. 

𝑉𝑎(𝑠) =  𝑙𝑎𝑠𝑖𝑎(𝑠) + 𝑅𝑎𝑖𝑎(𝑠) + 𝐶𝑒𝜔𝑚(𝑠)              (27) 

After this, a Laplace transformation is applied to calculate 𝑖𝑎(𝑠), as shown in 

Equation 28.  

𝑖𝑎(𝑠) =
1

𝑙𝑎𝑠+𝑅𝑎
𝑉𝑎(𝑠) −

𝐶𝑒

𝑙𝑎𝑠+𝑅𝑎
𝜔𝑚(𝑠)               (28) 

Equation 2829 is then adjusted to find the value for 𝑖𝑎(𝑠) as shown in Equation 29. 

𝑖𝑎(𝑠) =
1

𝑙𝑎𝑠+𝑅𝑎
[𝑉𝑎(𝑠) − 𝐶𝑒𝜔𝑚(𝑠)]                (29) 

Equation 29 can be transformed into the block diagram shown in Figure 38. 
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Figure 38. Block diagram of Equation 29 

Applying a Laplace transform to Equation 20, Equation 30 can be generated. 

Equation 30 can then be used to create Figure 39. 

𝑀𝑚(𝑠) = 𝐶𝑚𝑖𝑎(𝑠)                   (30) 

 
Figure 39. Block diagram of Equations 29 and 30 

Equation 31 can be generated by applying the Laplace transform to Equation 21, 

where 𝑀𝑐 is the interference input and is set to 0. 

𝑗𝑚𝑠𝜔𝑚(𝑠) + 𝑓𝑚𝜔𝑚(𝑠) = 𝑀𝑚(𝑠) − 𝑀𝑑(𝑠) − 0            (31) 

Equation 31 is thus arranged to find 𝜔𝑚(𝑠) as shown in Equation 32. 

𝜔𝑚(𝑠) =
1

𝐽𝑚𝑠+𝑓𝑚 
[𝑀𝑚(𝑠) − 𝑀𝑑(𝑠)]               (32) 

The block diagram of Equation 32 can thus be created, and is shown in Figure 40. 
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Figure 40. Block diagram of Equation 32 

Merging the two block diagrams in Figure 39 and Figure 40 is shown in Figure 41. 

 
Figure 41. Merged diagrams of Figure 39 and Figure 40  

Applying the Laplace transform to Equation 24 results in Equation 33. 

𝑥𝑔(𝑠) =
𝑅𝑔

𝑗0𝑠
𝜔𝑚(𝑠)                   (33) 

Following from this, merging Equation 33 and Figure 41 results in Figure 42. 

 
Figure 42. Merged diagram of Equation 33 and Figure 41  

Applying the Laplace transform to Equations 22 and 23 results in Equations 34 and 

35, respectively. 

𝑀𝑔(𝑠) = 𝑅𝑔𝐾𝑔𝑥𝑔(𝑠)                   (34) 
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𝑀𝑑(𝑠) =  
𝑀𝑔(𝑠)

𝑗0
                    (35) 

Merging Equations 34 and 35 together results in Equation 36. 

𝑀𝑑(𝑠) =  
𝑅𝑔𝐾𝑔

𝑗0
𝑥𝑔(𝑠)                   (36) 

Combining Equation 36 and Figure 42 results in Figure 43. 

 
Figure 43. Merged diagram of Equation 36 and Figure 42  

Because 𝑙𝑎  and 𝑓𝑚  are low values, they can be set to 0 in this case, with the 

resulting System Block diagram in Figure 44. 

 

 
Figure 44. System Block diagram  

Transforming Figure 44 in order to simplify the system block diagram results in 

Figure 45. Simplifying Figure 45 yet again then results in Figure 46. 
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Figure 45. Transformation of Figure 44 

 

 
Figure 46. Transformation of Figure 45 

To get the output angle of the steering mechanism the following steps are thus 

taken. First, apply the Laplace transform to Equation 25 to achieve Equation 37. 

𝜃𝑚(𝑠) =
𝜔𝑚(𝑠)

𝑠
                    (37) 

Merging Equations 37 and 33 results in Equation 38. 

𝑥𝑔(𝑠) =
𝑅𝑔

𝑗0
𝜃𝑚(𝑠)                   (38) 

The block diagram can then be generated by merging Equation 38 into Figure 46 

to result in the diagram that has the steering angle as an output, as seen in Figure 47. 
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Figure 47. System block diagram with output of 𝜃𝑚 

Finally, adding the mass m of the rover into the system block diagram of Figure 47 

generates the diagram seen in Figure 48. 

 
Figure 48. System block diagram including mass 

The steering mechanism is simplified and then modelled as a Mass-Spring-Damper 

in Simulink, as shown in Figure 49, with the parameters of the coefficient of elasticity, 

K, calculated with Equation 39 and the coefficient of damping calculated using 

Equation 42.  
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Figure 49. Steering mechanism modelled in Simulink  

Consequently, the equivalent coefficient of elasticity is shown in Equation 39 

which is used in the top loop of Figure 48 and Figure 49. 

𝐾 =
𝑚𝑅𝑔

2𝐾𝑔

𝐽𝑚𝑗0
2                      (39) 

Where 𝑅𝑔 is the equivalent radius from the shaft of the gearbox to the steering 

torque generated from contacting the ground. This is 80mm, or 0.08m. 𝑗0 is gearbox 

reduction rate, which is 113 according to the data sheet for the Maxon 203126 gearbox 

(Maxongroup, 2021). 𝐾𝑔 is the stiffness of the tire, which is calculated according to 

Equation  40 (Lines, 1991). 

𝐾𝑔 = 172 − 1.77𝑅 + 5.6𝐴 + 0.34𝑊𝑅𝑃             (40) 

Where R is the radius of the tire, which is 80 millimetres for the rover, and A is the 

age, which is 1 year as a base line value mentioned in the article. W is the radius of the 

wheel, which is 80 millimetres, and P is pressure, which is 5 bar. So, the stiffness of 

the tire is calculated as 177.4652 KN/M. 

𝐽𝑚 is the total rotary inertia of the motor shaft and is calculated with Equation 41 

(Galvagno et al., 2011). 
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𝐽𝑚 = 𝐽𝑧 + 𝐽0 + 𝐽1(
𝑛1

𝑛2
)2                 (41) 

Where 𝐽𝑧 is the rotary inertia of the motor, 135 g cm^2, 𝐽0 is the rotary inertia of 

the gearbox, 9.4 g cm^2, and 𝐽1 is the rotary inertia of the wheel, which has a weight 

total of 500g and the inertia is then calculated as a pendulum (mr^2) (Serway, 1986) 

with an arm length of 80mm. 𝑛1is the input’s number of teeth, which is 3, and 𝑛2 is 

the number of teeth of the output, which is 338 according to the the data sheet of the 

Maxon 203126 gearbox. 

So 𝐽𝑚 (Equation 41) is calculated as: 

𝐽𝑚 =  135 + 9.4 + (500 × 82) (
3

338
)

2

= 146.92 g cm2 =  1.4692 × 10−5  kg m2  

Thus, K (Equation 39) is calculated as: 

 K= 
20 × 0.082 × 177.4652 × 1000

1.4692 × 10−5 × 1132 = 121083.61   

The equivalent coefficient of damping is shown in Equation 42, which is the bottom 

loop of Figure 48. 

𝐷 =
𝑚𝐶𝑒𝐶𝑚

𝑅𝑎𝐽𝑚
                   (42) 

where 𝐶𝑒 is the back EMF constant, which is calculated by the speed constant 600 

rmp/v which is equal to 62.832 rad/s/v. So, the back EMF constant is: 1/62.8=0.0159 

v/rad/s. 𝐶𝑚 is the orque constant and is calculated by the nominal torque divided by 

nominal current: 59.4 mNm/1000/2.06A= 0.0262Nm/A. 𝑅𝑎 is the internal resistance 

of the motor and will be set at 1 ohm, which is a common value of internal resistance 

of motors with similar size and power.   

𝐷 =  
20×62.832×0.0262

1.4692 × 10−5   = 2240945.28 

Finally, k1 in Figure 49 is calculated according to Figure 48:   



115 

 

𝑘1 =  (𝐶𝑚𝑚)/(𝑅𝑎𝐽𝑚) = 35665.67. 

Thus, the final steering system block diagram is shown in Figure 50. 

 
Figure 50. Steering system block diagram. 

The transform of Control System Block Diagram shown is based on (Golnaraghi 

et al., 2017) chapter 3, (Gajic et al., 1996) chapter2 ando (Kani, 1998) chapter1. 

In summary this is a complete process on the simplification of the steering 

mechanism of a mobile robotic platform. This provide a complete method of modelling 

and simplification for such platform which is used as a guideline for further simulation 

and investigation. 
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6 Dynamic Modelling and Analysis of the Rover 

Driving Wheels 

6.1 Introduction 

This chapter introduces the work done on the dynamic modelling of the AgriRover 

driving wheels, which was the other part of the AgriRover mobility system designed 

to meet the needs of soil sampling and harvesting in a farming filed. This chapter 

provides a detailed analysis of the movements of the AgriRover, in order to 

demonstrate the technical feasibility of the design. First, a classification of the road 

surfaces are introduced. Then, a simulation is preceded with under the different 

conditions in the road surface classification. Finally, there is a profile of the AgriRover, 

under different surface roughness conditions during operation, provided.  

 

6.2 Definition and Classification of the Field Surface 

Irregularities 

 According ISO 8608 (ISO, 1995) (Dodds et al., 1973) “Mechanical vibration -- 

Road surface profiles -- Reporting of measured data” random road surface 

irregularities is defined. Road irregularities is defined as 𝑮𝒒(𝒏), which can be shown 

in Equation 43 (Agostinacchio et al., 2014) (Tudón-Martínez et al., 2015). 

𝑮𝒒(𝒏) = 𝑮𝒒(𝒏𝟎) (
𝒏

𝒏𝟎
)

−𝟐

                  

(43)  

 Where n is the spatial frequency measured in cycles/meter, and 𝑮𝒒(𝒏𝟎) is the 

power spectral density of the road surface irregularities, and this has been classed as 

levels A to H, shown in Table 6 below. 
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Table 6. Road Classification (Andren, 2006) (Nguyen et al., 2019) 

Road Class 

Power Spectral Density 

Gq(n0)/(10-6m3) 

（n0=0.1m-1） 

A 16 

B 64 

C 256 

D 1024 

E 4096 

F 16384 

G 65536 

H 262144 

6.3 Relationship between Current and Torque of the 

Rover Motors 

First generation rovers use 4 of the 940D1001 Planetary Geared Motors for the 

output of the driving wheels as shown in Figure 52. The output torque of the motor is 

converted into the torque for the wheel through a planetary reduction transmission, 

with a reduction value from 100 to 1. The performance parameters of the 940D1001 

motor is shown in Figure 51 below. 
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Figure 51. Performance parameters of the 940D1001 motor 

 Setting the force conversion factor of the motor as Kem in Equation       (44)..  

 𝐾𝑒𝑚 =
78.4 𝑔∙𝑐𝑚

0.99 𝐴
= 79.2 𝑔 ∙ 𝑐𝑚/𝐴 × 0.0000980665 = 0.007767 𝑁 ∙ 𝑚/𝐴      (44) 

Thus, the relationships between the turning torque of each wheel and the 

corresponding drive current is as follows in Equation 45. 

𝑇𝑤ℎ𝑒𝑒𝑙 = 𝐾𝑤ℎ𝑒𝑒𝑙  × 𝐾𝑒𝑚  × 𝐼𝑤ℎ𝑒𝑒𝑙  ×  𝑛1 ×  𝑛2  × ƞ
1

 ×  ƞ
2
          (45) 

Twheel  is the torque of each wheel, 𝐾𝑤ℎ𝑒𝑒𝑙 is the correction parameter, Iwheel is the 

driving current of the motor, n1 is the transmission ratio of the motor (which is 100 for 

the 94D1001 motor), and n2 is the transmission ratio of the wheel hub transmission 

(which is 1.1). Finally, ƞ1 is the total efficiency of the motor and its transmission, 

which is 0.55, and ƞ2 is the efficiency of the wheel hub transmission, which is close to 

0.9. So, after substitiuting these into Equation 45, Equation 46 below is found. 

 𝑇𝑤ℎ𝑒𝑒𝑙  =  0.4229 𝐾𝑒𝑥𝑝 𝐼𝑤ℎ𝑒𝑒𝑙                (46) 

After test driving the wheels on the ground, each wheel is observed to require 

0.05A of current in order to overcome internal friction. Therefore, Equation 46 has 

been corrected to Equation 47, as shown below. 

𝑇𝑤ℎ𝑒𝑒𝑙  =  0.4229 𝐾𝑒𝑥𝑝 (𝐼𝑤ℎ𝑒𝑒𝑙 − 0.05)             (47) 
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Figure 52. Wheel hub transmission of the first-generation rover 

Kexp is determined by numerical simulation results and experimentally measured 

driving currents. The parameters shown in  

Table 7. Simulation Parameters 

Parameter Name Parameter Value 

Rover mass  

(i.e., chassis + load mass in kg) 

20 

Coefficient of rolling resistance 

between the tire and field 
0.2*  (Study, 2006) 

Coefficient of sliding friction between 

the tire and field 
0.7*   (Study, 2006) 

 

, is used for the simulation. 

The driving wheels’ simulation is carried out, using the setup as shown in Figure 

53, with simplified models of the rover driving system and suspension. 
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Figure 53. Driving wheel simulation setup 

The first case of the simulations is done on a random, uneven class D road surface. 

The rotational torque of a 20kg agricultural rover (including both the trolley and top-

loading equipment) travelling at a speed of 0.3m/s in the field has been simulated. The 

simulation time was 30 seconds. The wheels on the road surface are independently 

shown in Figure 53, with fl and fr as the front left and right wheels, and rl and rr as the 

rear left and right wheels. Shown below in Table 8 is the calculation results, followed 

by the resulting graph of the torque in Figure 54. 

Table 7. Simulation Parameters 

Parameter Name Parameter Value 

Rover mass  

(i.e., chassis + load mass in kg) 

20 

Coefficient of rolling resistance 

between the tire and field 
0.2*  (Study, 2006) 

Coefficient of sliding friction between 

the tire and field 
0.7*   (Study, 2006) 
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Figure 54. Road surface Class D simulation of the rotating torque on each wheel 

 

Table 8. Road surface class D simulation and calculation results 

class 

fl 

Maximum 

torque
（N.mm） 

fl 

average 

torque
（N.mm） 

fr 

Maximum 

torque
（N.mm） 

fr average 

torque
（N.mm） 

rl 

Maximum 

torque
（N.mm） 

rl average 

torque
（N.mm） 

rr 

Maximum 

torque
（N.mm） 

rr average 

torque
（N.mm） 

Four-

wheel 

average 

torque 

sum

（N.mm） 

D 420.6698 79.71624 379.1472 86.22094 433.3723 73.51059 352.2251 78.13444 317.5822 

 

Figure 55 below shows the total driving current measured in the experiment under 

the working conditions, which equals an average of 2.021A.  
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Figure 55. Total driving current 

By substituting Twheel = 0.3175822 N.m and Iwheel  = 2.021 A into Equation 48, the 

correction parameter Kexp is calculated to equal 0.381. So, the relationship between 

the rotating torque of each wheel and the drive current is detertimed as Equation 49. 

𝑇𝑤ℎ𝑒𝑒𝑙  =  0.1611 ×  (𝐼𝑤ℎ𝑒𝑒𝑙 − 0.05)              (49) 

For the second version of the rover, the Kexp，Kem ，n1，ƞ1 and ƞ2 values are the 

same. However, it uses a different wheel hub transmission, thus n2 = 55/12 = 4.58. For 

the second version of rover, the relationship between the rotating torque of each wheel 

and the drive current is shown in Equation 50 below. 

𝑇𝑤ℎ𝑒𝑒𝑙  =  0.6713 ×  (𝐼𝑤ℎ𝑒𝑒𝑙 − 0.05)              (50) 

6.4 Kinetic Response of the Rover on Different Surfaces 

According to the farmland field studied, the road classes D, E and F was 

established. These surfaces have been modelled for the first generation rover that 

weighs 20 kg. On each surface, the rover will be operating at 0.3 m/s and the torque 

on each wheel is simulated under duration of 30s. The results are shown in Figure 56, 

Figure 57, and Figure 58 below. 
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Figure 56. Simulation results of the torque on each wheel on a Class D field surface 
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Figure 57. Simulation results of the torque on each wheel on a Class E field surface 
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Figure 58. Simulation results of the torque on each wheel on a Class F field surface 

 

The wheels on the road surface are independently shown above on different 

surfaces, where fl and fr are the front left and right wheels, and rl and rr are the rear 

left and right wheels. Shown below in Table 9 is the calculation results. 

Table 9. Calculation results of different surfaces 

class 

fl 

Maximum 

torque

（N.mm） 

fl average 

torque

（N.mm） 

fr 

Maximum 

torque

（N.mm） 

fr 

average 

torque

（N.mm) 

rl 

Maximum 

torque

（N.mm） 

rl average 

torque

（N.mm

） 

rr 

Maximu

m torque

（N.mm

） 

rr 

average 

torque

（N.mm

） 

Four-

wheel 

average 

torque 

sum

（N.mm

） 

D 420.6698 79.71624 379.1472 86.22094 433.3723 73.51059 352.2251 78.13444 317.5822 

E 679.7207 115.9798 663.8044 122.79 483.9662 105.4658 761.8855 112.3931 456.6287 

F 805.171 192.6974 1262.464 190.6752 870.7737 175.7024 1419.463 184.6702 743.7452 

 

According to the equations above, the driving current of the rover on different 

surfaces can be calculated. For class D surfaces, the average driving current of the 

rover is 2.021A. Furthermore, for class E surfaces the average driving current of the 
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rover is 2.884A, and for class F surfaces, the average driving current of the rover is 

4.667A. 

The surface roughness has thus a positive correlation to the driving wheel torque 

required, in order to achieve the same speed in a unit time. The driving current 

increases as the level of roughness increases. More specifically, when the surface 

roughness increased from D to E to F, the driving current also increased from 2.021A 

to 2.884A to 4.667A. These are 30% and 38% increases, respectively. Subsequently, 

the path planning tasks will need to avoid the higher roughness surface classes, and 

select the surfaces that has a lower level of roughness, when energy optimisation is a 

planning requirement. 

6.5 Analysis of the Relationship between Torque and the 

Capacity of the Rover  

The simulation is now set where the rover has different masses, which is 30kg, 

45kg and 60kg. With each mass the rover is simulated on both of the surface classes E 

and F, with a speed of 0.3m/s. The results from this are shown in Table 10 below. 
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Table 10. Relationship between torque and capacity for the rover 

Mass/ 

Class 

fl Maximum 

torque 

fr Maximum 

torque 

rl Maximum 

torque 

rr Maximum 

torque 

Maximum 

torque on 

wheel 

30_E 679.7207 663.8044 483.9662 761.8855 761.8855 

45_E 798.8926 1091.517 612.0694 669.3103 1091.517 

60_E 1650.696 1099.001 1458.202 1207.825 1650.696 

30_F 805.171 1262.464 870.7737 1419.463 1419.463 

45_F 1626.988 2188.954 1134.27 1446.209 2188.954 

60_F 2718.722 2172.303 2372.859 2608.057 2718.722 

As the table shows, when the mass increases, the maximum torque needed to drive 

the rover will increase. Setting the maximum torque on the wheel as a function of the 

mass when the rover is operating on a class E surface, Equation 51 can be found for 

the maximum torque on wheel TEmax as shown below. 

TEmax =  A1m2 + B1m + C1                 (51) 

Where m is the mass, and A1, B1 and C1 are the fitting coefficient numbers. Using 

the 3 sets of data in the table on Class E and Equation 52 above, the following is found: 

A1=0.5101； 

B1=-16.2825； 

C1=791.265； 

Equation 51 can be simplified to Equation 52 below. 

TEmax =  0.5101m2 −  16.2825m + 791.265             (52)  
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Using this simplified equation, a graph of the relationship between maximum 

torque and mass can be generated as shown in Figure 59 below. 
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Figure 59. Relationship between maximum torque and mass on a Class E surface  

6.6 Summary 

In this chapter the rover driving energy is analysed with the established ISO 8608 

field surface classes. Secondly, the kinetic model of the rover has been simulated on 

different field surface classes and the driving current has been calculated. Thirdly, the 

relationship between the driving current and the torque has been simulated and 

analysed for different surface roughness classes. Lastly, with different masses of the 

rover, a relationship between maximum torque and mass has been created. This all 

gives a detailed discussion of the Rover driving wheel power consumption under 

different conditions, and therefore provides a guideline for the design of the path 

planning algorithm. 
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7 Motion Analysis of the Rover 

In this chapter, the motion analysis of the rover is completed, where the movement 

is simulated under different loading and speed conditions. The motion analysis is 

carried out for obstacles in different shapes and under different speeds, where the 

impact of the speed is plotted. 

7.1 Mechanism Motion Modelling Aim and Objectives  

In this section, the motion of the mechanism on the rover has been modeled in 

detail, such as the steering mechanism and suspension system. Compared to the 

previous chapter, this chapter gives a more detailed and isolated simulation of the rover 

mechanism, where the specific forces on each mechanism are analysed. 

Establishing a full rover model, according to the functions, mainly includes the 

front cabin, rear cabin, suspension bow assemblies (a total set of 8), shock absorber 

dampers (a total set of 8), wheels (a total set of 4), and steering actuators (4 sets in 

total). No fasteners have been modelled. In the prototype, all connections with 

fasteners are replaced by "fixed pairs" in the modeling process. A total of 195 part 

models, with specific functions and dimensions, were created and these parts are 

assembled as the Rover. 

When combined, all the parts have the same material and without relative 

movement, the final number of parts is 68. The material properties, geometric 

dimensions, physical characteristics, etc. of these parts are created in SolidWorks 

according to the prototype, as shown in Figure 60 below. 
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Figure 60. Left: the rover, Right: the model 

The weight is added to the rover model, so that the weight of the Rover after the weight 

increases is the same as the actual prototype’s maximum weight. In addition, some 
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parameters used in the mechanism motion modelling simulation is shown in Table 11.  

Table 11. Parameters used in the Mechanism motion modelling 

Parameter name Parameter value 

Rover full load mass (robot mass, kg) 20 

Actuator spring rate（N/mm） 129.8 

Actuator damping coefficient

（N.s/mm） 
6000 

Shock absorber stiffness（N/mm） 129.8 

Damping coefficient of shock absorber

（N.s/mm） 
6000 

Coefficient of rolling resistance 

between tire and cement 
0.012* 

Coefficient of sliding friction between 

tire and cement 
1* 

Coefficient of rolling resistance 

between tire and field 
0.2* 

Coefficient of sliding friction between 

tire and field 
0.7* 

Coefficient of rolling resistance 

between tire and sand 
0.3* 

Coefficient of sliding friction between 

tire and sand 
0.35* 

Wheel radius (mm) 80 

* is referenced from (Iwashita et al., 1998) (Rabinowicz, 1951) (Domenech et al., 1987) 
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7.2 AgriRover Kinematic Motion Model  

The model of the AgriRover in ADAMS is imported from the CAD model, which 

is shown is the front cabin of the AgriRover in Figure 61. Where all the parts was 

imported into the ADAMS software and the relationship of the assembly is defined, 

and this is introduced in Chapter 8. 

 
Figure 61. AgriRover front cabin CAD model 

7.3 Mechanism and Motion Simulation and Analysis  

7.3.1 Linear Motion on Solid Flat Surface 

First, simulate the linear motion of a fully loaded rover on a flat road in the field 

(without an inclination angle). At the initial moment, the rover will start from the 

stationary position, and the movement speed of the rover is 0.3m/s, with a simulation 

time of 10s. The wheels of the rover have been set to a constant speed. 
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Figure 62. Rover travel displacement versus time curve 

As shown above in Figure 62, the curve shows the displacement of the rover in the 

direction of travel (referred to as the Y direction) versus the time. It can be seen from 

the graph that the displacement of the car during the startup process (before 2s) is a 

non-linear increase, due to the sliding motion between the ground and the wheels. 

After the speed is stablised (i.e. after 2s), the travel displacement is linearly related to 

the travel time. 
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Figure 63. Car speed versus time curve 

Figure 63 shows that the speed increases from 0 to 0.3 m/s in 2s time. Figure 64 

shows the support force on the steerring mechanism, which increased from 0N to more 

than 6N, with oscillation, within the first 1s, and then decreased to 0 at 2s as the speed 

of the rover stabilised. Figure 65 shows the torque on the wheels during the simulation, 

which has a similar tendency as support force on the steerring mechanism, as in Figure 
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64. This is because the support force on the steerring mechanism is directly generated 

by the corresponding driving torque on the wheels. 
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Figure 64. Actuator support force versus time curve 
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Figure 65. Driving torque versus time curve 

7.3.2 Linear Motion on a Soft Flat Surface 

The linear motion, without inclination, of the fully-loaded rover is simulated on 

cement, sand, and farm field surfaces. The rover is static at the start of the simulation, 

after it accelerates to reach a steady speed of 0.3m/s, and the simulation time is 10s. 

Figure 66 shows the speed curves of the rover on each surface. It can be seen from the 

figure that the speed curves of the rover during acceleration are different, due to the 
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different friction coefficients between the tires and the different road surfaces. The 

acceleration on the farm field is better than that on sand.  
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Figure 66. Rover traveling speed vs time curve 
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Figure 67. Supporting force of the actuator provided by the steering mechanism 
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Figure 68. (1) Driving torque on the wheel, (2) Driving torque after stabilisation 

Figure 67 demonstrates the supporting force provided by steering mechanism, 

Figure 68 (1) shows the driving torque on wheel, and Figure 68 (2) shows a magnified 

view of the driving torque after stabilisation under different surface conditions.  

Figure 67 shows the supporting force provided by each steering actuator, in order 

to maintain straight driving during the travel of the rover on different surfaces. Figure 

68 (1) shows that the supporting force provided by the steering actuators, which have 

a relationship of cement > farmland > sand. After the speed is stabilised shown in 

Figure 68 (2), the supporting force on the steering actuators for cement and farmland 

are stabilised, while the force required by the steering actuators on sand oscillates and 

increases with time. From Figure 68 (1) the realtionship of the driving torque during 

the starting of the car is: farmland > cement > sand, and after the speed is stabilised, 

the driving torque has this relationships sand > farmland > cement. Finally, the driving 

torque oscillates at different levels after the speed is stabilised. 

7.3.3 Linear Motion with Different Speeds 

This part is designed for the simulation of a fully loaded rover with different speeds 

on a solid flat farmland field. The speeds simulated are 0.1m/s, 0.3m/s, 0.5m/s and 

1m/s. The rover is static at the start of the simulation, after acceleration its steady speed 

is reached will be at 0.1m/s, 0.3m/s, 0.5m/s and 1m/s, and the simulation time for this 

is 10s.  
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Figure 70. Relationship between time and speed 

 below shows the curve portraying the relationships between time and rover 

displacement.  
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Figure 71. Supporting force provided by steering actuator under different speeds 

 then shows the curve of the relationships between time and speed. The final figure, 

Figure 71, shows the supporting force provided by each steering actuator under 

different speeds.  
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Figure 69. Relationship between time and rover displacement 
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Figure 70. Relationship between time and speed 
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Figure 71. Supporting force provided by steering actuator under different speeds 

As shown in the last figure (Figure 71) above, the supporting force provided by the 

steering actuator under different speeds is different for the linear motion. From the 

start, the supporting force required for keeping the wheel facing forward has a 

relationship with different speeds. As the last figure above shows, the forces are bigger 

when the acceleration is faster at the start of the rover. With the speed below 0.5m/s, 

the forces stabilise after a similar time, but when the speed is 1m/s the forces are 

oscillating.   
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7.3.4 Linear Motion with Slopes in the Farmland Field  

For this part of simulation, the rover as been set on the farmland field with different 

slope angles. The angles are 0° (flat), 15° (uphill), 30° (uphill), 45° (uphill), -15° 

(downhill), -30° (downhill), and -45° (downhill). The rover is static at the start of the 

simulation, after the acceleration its steady, the speed is 0.3m/s with a simulation 

duration of 10 seconds. 

Figure 72 below shows the rover speed versus time curve. It can be seen from the 

figure that no matter the slope angle, the speed of the rover will decrease in the initial 

stage of climbing uphill. The steeper the slope, the greater the speed drop, and the 

longer it takes for the speed to return to a steady speed.  

When the rover is going downhill, the speed will rise in the initial stage. The steeper 

the slope, the greater the speed rise. Regardless of it being uphill or downhill, the speed 

will oscillate from entering the slope section to gaining steady speed again.  
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Figure 72. Rover speed versus time graph 

7.3.5 Linear Motion with Obstacles 

For this part of simulation, the rover has linear movement when crossing obstacles 

on the farmland field at different speeds. The speeds simulated are 0.1m/s, 0.3m/s, 

0.5m/s and 1m/s. The rover is static at the start of the simulation. 
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Figure 73. Geometry of the Obstacle 

The geometry of the obstacle is shown in Figure 73, it has a HEIGHT of 20mm, 

LENGTH of 200mm and BEVEL_ENGE_LENGTH of 5mm, obstacle and the rover 

travel direction is set to an angle of 45°. 

Figure 74 below shows the speed of the rover for the duration of the simulation. 

As the curves in the figure shows, when the rover passes the obstacle, it causes a speed 

oscillation, and the duration of the oscillation is less than the speed increase from 

0.1m/s to 1m/s. 
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Figure 74. Rover speed versus time graph when passing an obstacle 

7.3.6 Linear Motion with a Trench 

For this part of simulation, the rover does linear movement crossing a trench on a 

farmland field. The rover is static at the start of the simulation and the speed is 0.3m/s. 
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Figure 75. Geometry of the trench 

Geometry of the trench is shown in Figure 75. It has been set with a Depth of 20mm 

and Length of 200mm. The rover is set to go in a straight line directly facing the trench, 

and the speed change is logged. 

Figure 76 demonstrations the rover speed versus time curve when passing through 

the trench. As the curves in the figure shows, when the rover passes the trench the 

speed is reduced to 0m/s at point A and then increases sharply after. 

 
Figure 76. Rover speed versus time curve when passing over the trench 

7.3.7 Linear Motion with Sinusoidal Surface 

For this part of simulation, the rover does linear motion crossing a sinusoidal 

farmland field. The rover is static at the start of the simulation and the speed is set to 

0.3m/s. The Sinusoidal road surface has a wavelength of 3000mm and amplitude of 

50mm. 
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Figure 77 below shows the rover speed versus time curve. As the figure shows, the 

rover is skidding at first then followed by an oscillation, and finally the rover has a 

sinusoidal speed curve after 10s. 
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Figure 77. Speed versus time curve on sinusoidal field 

7.4 Summary 

In this chapter the rover is analysed and simulated when driving in ADAMS 

without trajectory control, and trajectory control has been made in both ADAMS and 

Simulink Co-Simulation. In this chapter, the dynamic model of the rover is established. 

The linear motion of the rover on a flat field under full load is simulated. The linear 

motion of the flat field for different working surfaces, the linear motion at different 

speeds, the linear motion of different slopes in the field, the linear motion of crossing 

obstacles in the field, and the linear motion of a sinusoidal surface in the field are all 

simulated. The response curves of these simulations for the displacement, speed, 

actuator support forces, and driving torques are obtained, demonstrated and analysed. 

All the simulations in this chapter give a break-down and detailed representation of 

the characteristics of the AgriRover when passing certain types of obstacles. The 

impact of certain types of obstacles are simulated, which shows the trench obstacles 

have a higher impact to the speed of the AgriRover compared to protruding obstacles 

with the same dimensions.  
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8 ADAMS and Simulink Co-Simulation 

In this chapter the collaborative simulation between ADAMS and Simulink is 

presented for the purpose of energy consumption prediction, where the control module 

of following a specific path is established by Simulink and the physical simulation is 

done in ADAMS. 

8.1 Aim of the Co-Simulation 

8.1.1 Aim and Objectives 

The objectives include: controlling the speed of wheels as the input, in order to 

make the robot have a constant speed, and following the specified path between the 

start and end points in a 3-dimensional space. Furthermore, the torque and speed of 

each wheel will be outputted when the robot is moving through the entire path. The 

collaborative simulation method between MATLAB Simulink and ADAMS is used. 

The MATLAB Simulink will be used as a control module that provides the required 

output of the rover, and ADAMS will provide a 3-dimensional space with detailed 

modelling of both the terrain and the rover, that will be used for the dynamic 

simulation. The two systems work collaboratively together to give a solution according 

to the needs of the systematic detailed dynamic modelling. 

8.1.2 Variables of the Simulation 

Firstly, the robot model has been exported as compressed binary 3D files and has 

been imported into ADAMS as shown in Figure 78, which is the physical model of the 

AgriRover. 
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Figure 78. The model of the AgriRover  

Secondly, the starting and destination points have been generated by the path 

planning algorithm, and this can be imported to the simulation, as shown in the 

example in Figure 79.  

 
Figure 79. Waypoints generated by the path planning algorithm. 

Lastly, the terrain map has been imported into ADAMS as shown in Figure 80. 
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Figure 80. Terrain imported for the co-simulation 

8.1.3 Control 

8.1.3.1 Control Objectives 

The objectives for control are as follows: 

1. Control the speed of each wheel to maintain the robot speed at 0.5m/s 

2. The upper limit of acceleration for each wheel is 0.5m/s2. 

3. The steering angle of each wheel is set between -30° to +30°. The rotational 

acceleration upper limit is set to 15°/s2. 

4. The robot needs to follow each waypoint generated by the path planning algorithm. 

5. A control method to ensure the robot achieves the above objectives is chosen. The 

PID (Proportional Integral Derivative) method was chosen.  

8.1.3.2 Control Objectives Analysis 

According to the control objectives, the physical characteristics of the robot, the 

effectiveness, and the running speeds of the co-simulation, the following 

simplification has been made to accommodate that mentioned above. 
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The rover has been simplified to front wheel steering only, instead of all the wheels 

steering, in order to lower the resources needed for running the co-simulation. Front 

wheel drive has been adopted due to the conflict that was caused when running both 

front and rear wheel drive, because the wheel speed control of the co-simulation is not 

synchronous,. Then, to further reduce lag and instability, the two front wheels are 

synchronised and they move with the same control inputs for the robot, which include 

only two forces, the torque on the ground and the torque for steering. Lastly, the 

friction coefficient is set as a constant value, instead of the randomly generated matrix, 

because ADAMS dose not have such a function. 

8.2 ADAMS and MATLAB Co-Simulation Overview 

8.2.1 Co-Simulation Overview 

For complex electromechanical systems, if the traditional design method is 

followed, such as repeatedly testing and improving the prototypes, it is not only 

difficult to effectively make improvements of the product performance, but also 

require a lot of materials, which cost money and time to manufacture. Thus, it is 

necessary to use the computer simulation by building a 3D model as a virtual prototype 

first, before manufacturing many physical prototypes.  

By testing the virtual prototype first, the deficiencies of the system can be identified 

and improved, which can effectively shorten the development cycle of the algorithm 

and improve algorithm performance.  

The kinematics and dynamics simulations of multi-rigid-body systems can be 

achieved by using ADAMS. ADAMS is a mechanical systems and dynamics 

simulation software. The model established by ADAMS can reflect the actual physical 

model precisely, and ADAMS simulation results can also have a high level of accuracy 

when compared to actual physical models (Gao et al., 2012). 
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However, ADAMS lack more complex control functions. For a complex 

application which have control needs, the simulation will require software that is 

capable of implementing the function of control, such as in MALAB, MATRIX, or 

EASY 5 (Gao et al., 2012). MATLAB has many powerful and convenient control 

functions, which makes the construction of the control systems possible. The Simulink 

module in MATLAB can be used to model, analyse and simulate the interactive 

environment of various dynamic systems, which include continuous, discrete and 

hybrid systems. Simulink can also be used to integrate the state-flow of the model and 

simulate complex event-driven logical states of the system (Agrawal et al., 2004). 

By using these two softwares together works as the junction of co-simulations, not 

only can a joint system of the robotic arm be simulated and analysed for the kinematics 

and dynamics of the model, but the control system of the model can also be established. 

This will provide a technical basis for the development of the physical prototype 

(Cheraghpour et al., 2011). This application search method is used to simulate the 

system of the autonomous mobile robotic platform, the AgriRover. 
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8.2.2 Co-Simulation Principle  

 
Figure 81. Co-Simulation Principle 

In the junction of the co-simulation between ADAMS and MATLAB, ADAMS is 

mainly responsible for the execution of the control instructions and the measurement 

of the parameters that are concerned with. MATLAB is mainly responsible for the 

generation of the control instructions. 

After the mechanical system of the vehicle model is established in ADAMS, the 

position, speed, steering angle, and other motion state parameters of the vehicle are set 

as the output in ADAMS, with the driving torque of the wheels and the steering torque 

as the input of ADAMS for the control of the vehicle. 

Correspondingly, for MATLAB, after receiving the motion state parameters of the 

vehicle from ADAMS, the driving torque of the wheels and the steering torque of the 

steering motion pair are calculated by the tracking control system in Simulink, with 

other control variables also fed back to ADAMS (Gao et al., 2012). Co-Simulation 

Principle is shown in Figure 81. 
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8.2.3 Co-Simulation Setup Process 

The simulation environment is setup in the ADAMS-view properties window: the 

start position and the startup parametric was set. Then in MATLAB, the start position 

was set in the software properties window, which is set as the same as the ADAMS-

view start position. The simulation setup is based on the ADAMS-MATLAB Co-

simulation for Industrial Robot Analysis, provided by the Mscsoftware official website 

and the ADAMS/Controls under Third-Party Products & Services on Mathworks 

official website (Ángel et al., 2012).  

First, the file was copied to the "co_simulink_example1" folder, which is in the 

workspace of the project. Then in MATLAB the working directory is changed to the 

same workspace, as it is mandatory to be set as the same as the existing files. Then, by 

entering the file name "controlspid" in the MATLAB command window and pressing 

enter, the command window will display the input and output characteristics of 

ADAMS, and this is important for the setup in ADAMS. Then by entering adams_sys 

in the command window, a .mdl file will be generated in subfolders, which will be 

named as tcontrol_model.mdl. By running this file, the ADAMS software and 

simulation will start, with a warning window which it can be ignored. 

After the simulation process is complete, the ADAMS window will close. By 

opening the .bin file in the ADAMS-view, the postprocessor then opens in the 

ADAMS-view, thus the simulation data will be loaded. Following this, animation can 

be loaded in the canvas window. Lastly, the plot is loaded, where the curves for various 

parameters can be plotted. 



149 

 

8.3 Mechanical System Setup for the AgriRover 

8.3.1 3D Model  

The 3-dimensional model created by software, such as Solidworks, can be 

converted into sn x_t format and then imported into ADAMS. During the process of 

modelling, the origin of the axis name and the direction of the axis of the model will 

be different between the modelling software and ADAMS. Therefore, a conversion of 

the axis was done to align the direction and the name of the axes. The axis of the model 

is changed in the 3D modelling software, because the axes are not easily changeable 

in ADAMS. 

The model of the rover is simplified, and unnecessary parts are deleted. The parts 

without relative movement are merged, reducing the number of parts that can facilitate 

the calculations in ADAMS. This improves the efficiency and reduces the time taken 

for the simulation operations. The simplified vehicle is shown in Figure 82. The body, 

terrain, and steering angle measurement (shown in next section) has been simplified 

into 11 parts, as shown in the figure. 
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Figure 82. Simplified AgriRover model 

8.3.2 Kinematic Pairs 

The four wheels of the AgriRover have a total of 4 driving rotating pairs and 4 

steering rotating pairs. Figure 83 (1) shows the steering pair and Figure 83 (2) shows 

driving pair.  

 
Figure 83. Joint in ADAMS after simplification 

In order to simplify the control, a parallel pair is added between the steering wheels 

of the two front wheels to keep the steering completely aligned.  
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The direction of the rotary joint was incorrect when first setting up, and this is 

changed in the settings of the working grid to solve this problem. A few attempts were 

taken to set the position and direction correctly. Furthermore, a fixed joint is added 

between the terrain module and the ground in ADAMS. 

8.3.3 Definition of the Contact Force 

The module of the contact force between the four wheels of the rover and the terrain 

is established, which was done by using the Special Forces category. The contact force 

between the four wheels of the vehicle and the terrain module, as well as the settings 

of the parameters are shown in the Figure 84. The normal force needs to be set as 

Impact, otherwise the penetration problem will happen during the simulation process. 

Then, the gravity force and direction were set. 

 
Figure 84. Rover and the terrain contact force parameters 

After completing the above, the simulatation is started as shown in Figure 85. 

Observation of the rover state will be needed, when the contact setting is correct the 

vehicle will stay on top of the terrain without the problem of penetration or singularity; 
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if an anomaly occurs. The problem could be as follows: the initial distance of the tire 

from the ground is too close, there is a problem with the force setting, or the steering 

and driving was moving uncontrolled due to no added control. 

 
Figure 85. ADAMS simulation 

8.3.4 Navigation Angle Measurement Module  

In order to accurately feed back the steering angle of the vehicle during the 

movement, a part is added on the frame of the Rover model as the navigation angle 

measurement module. This is shown in Figure 86 as highlighted red cylinder. 
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Figure 86. Navigation angle measurement module 

8.3.5 Setup ‘Measures’ with Rover Orientation and 

Motion Status Measurement 

The two variables of the front wheel steering angle and acceleration of the  steering 

angle was measured by using the measure function in ADAMS, which was set as 

shown in Figure 87 for a joint named joint_52. Then measure is selected with the 

characteristics of the relative angular velocity. 

 
Figure 87. ADAMS measure settings 

The front right wheel angular velocity measurement and front right wheel angle 

measurement were completed using the same method. The orientation needs to be 

changed, as due to the fact that the wheels are facing each other, the coordinate system 

is the opposite of each other. 
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8.4 ADAMS Model Parameter Settings 

When running the co-simulation, data exchange between ADAMS and MATLAB 

is required. This section explains the establishment of the input and output variables 

between the ADAMS and MATLAB softwares. 

8.4.1 Variable Definitions 

The rover model in this case has a total of 9 set input variables and 7 output 

variables. The communication link block diagram in Figure 88 was automatically 

generated by Simulink. Each of the input and output variables are then shown in Table 

12. 

 
Figure 88. Input and output variables set 
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Table 12. Input and output variables 

Input Variables Output Variables 

№ name Functions № name Functions 

1 angle_vl1 

Front left wheel 

steering angular 

acceleration 

1 vacc 
Rover 

acceleration 

2 angle_vl2 

Left rear wheel 

steering angular 

acceleration 

2 vangle 
Rover steering 

angle 

3 angle_vr1 

Right front wheel 

steering angular 

acceleration 

3 vposx 
Rover x-direction 

coordinates 

4 angle_vr2 

Right rear wheel 

steering angular 

acceleration 

4 vspeed Rover speed 

5 torque_vr1 
Right front wheel 

torque 
5 Angle_tyre 

Front wheel 

steering angle 

6 torque_vl1 
Left front wheel 

torque 
6 Angular_speed 

Front wheel 

steering angular 

speed 

7 torque_vl2 
Left rear wheel 

torque 
7 vposy 

Vehicle y-

direction 

coordinates 

8 torque_vr2 
Right rear wheel 

torque 

—

— 
—— —— 

9 torque_pos 
Absolute value of 

input torque 

—

— 
—— —— 

 

In order to simplify the control model and improve the simulation efficiency, as 

mentioned before, the steering only controls the right front wheel angular acceleration, 

and the remaining three wheels angular accelerations are set to 0, of which the left 
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front wheel has set constraints to ensure the two steering wheels are synchronised at 

any time. The wheel speed control only drives the torque of the two wheels in the front, 

and the torque of the two rear wheels is set to 0. 

The input variable torque_pos is the value of the front wheel driving torque, which 

is not involved in the control module, it is only used for the energy consumption 

calculation. Furthermore, The x- and y-directions in the vposx and vposy variables 

refer to the x- and y- coordinatew on the ground in ADAMS, which is the opposite of 

the x and y in the terrain. Finally, the rest of the output variables are set as shown in 

Table 13.  
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Table 13. Output variable 

Variables Functions F（time）settings Description 

vacc 
Rover 

acceleration 

ACCM(CONNECTING_PLATE_FR

ONT.cm,MARKER_342) 

Output the total acceleration between 

the two coordinate systems 

vangle 
Rover steering 

angle 
AZ(MARKER_340,MARKER_339) 

Output the rotation angle between the 

two coordinate systems around the Z 

axis. 

vposx 

Rover x-

direction 

coordinates 

DX(CONNECTING_PLATE_FRONT

.cm,MARKER_342) 

Output the distance of the two 

coordinate systems along the X axis. 

vspeed Rover speed 
VM(CONNECTING_PLATE_FRON

T.cm,MARKER_342) 

Output the total speed between the two 

coordinate systems 

Angle_tyre 
Front wheel 

steering angle 

.model_car.ORIENT_MARKER_310_

MARKER_311_MEA_1 
Output the measure variable 

Angular_speed 

Front wheel 

steering angular 

speed 

.model_car.JOINT_52_MEA_3 Output the measure variable 

vposy 

Vehicle y-

direction 

coordinates 

DY(MARKER_342,CONNECTING_

PLATE_FRONT.cm) 

Output the distance of the two 

coordinate systems along the y-axis 

direction. 

8.5 MATLAB Simulink Block Diagram  

8.5.1 Control Model Setup 

First, the working directory of MATLAB is set to the same working directory of 

ADAMS. In the MATLAB command window, Controls_Plant_1.m has been entered. 

Then ADAMS_sys has been entered, which is the interface command between 

ADAMS and MATLAB. After entering the ADAMS_sys command, the selection 

window of MATLAB/Simulink for the S-Function box represents the nonlinear model 

of ADAMS, which is the model used for dynamic simulations. This shows the State-

Space, and represents the linearised model in ADAMS, and ADAMS_sub contains 

nonlinear equations with all the selected variables. 
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 Figure 89 shows the system block diagram of the inputs and outputs set in 

ADAMS and the control block diagram in Simulink, which will be explained after this 

section. 
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8.5.2 Control Scheme Setup in Simulink 

 

Figure 89. The complete construction of the control syste
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8.5.3 Simulink Function Block and Path Tracking 

The control block diagram contains many scopes and numerical display modules, 

which are used for debugging the display of various variables during the simulation 

process. 

8.5.3.1 Speed Control Module  

The control block diagram for the speed control is shown in Figure 90, with the 

control blocks divided.  

The lower left corner of Figure 90 is the speed controller. In this case, it is set to 

0.5m/s. On top in this model is the proportional integral control that is used, and the 

appropriate proportional coefficient is adjusted through experiments, the next section 

will show parameter adjustments. The unit used is millimeters due to the unit used for 

the modelling of the Rover also being millimeters, therefore the units are correctly 

corresponding to each other. 
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Figure 90. Speed control block diagram 

At the top of the speed controller is the torque controller, which is used to set the 

upper and lower limits of the output values by comparing the largest and smallest 

numbers in each module. At the same time, the output signal is divided into other 

channels through filtering, so only the number of the torque that is greater than 0 is 

outputted. The default torque number which is less than 0 will be filtered and therefore 

no energy is lost when it is used for calculations of the energy consumption. Then, all 

the variables are outputted into ADAMS. 

8.5.3.2 Trajectory Tracking and Steering Control Module 

The control block diagram of the trajectory tracking and steering control module is 

shown in Figure 91, which will be introduced in detail in the next section. This module 

includes trajectory data entry, distance judgment, expected steering angle calculations, 

cycle counting, and judgment of the loop breaking module.
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Figure 91. Control block diagram of the trajectory tracking
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8.5.3.3 Trajectory Data Entry Module 

The block diagram of the trajectory data entry module is in Figure 92. 

 
Figure 92. Trajectory data entry module 

The function of the ‘from workspace1’ module is set for reading the array named 

local_1, which was generated in Chapter 4, and contains the sets of the waypoints for 

the planned path in MATLAB. This module is used for importing the x- and y-

coordinates data into the control module. 

The Function Block Parameters ‘Selector’ and ‘Selector1’ modules are used to 

select which number of the waypoint coordinates are selected, and it functions 

according to the number generated by the cycle counting module shown in Figure 95.  

The parameter of the ‘Selector’ module is set as shown in the Figure 93. The index 

mode is set to ‘Zero-based’ and the index is set to ‘index vector (port)’, it indicates 

which external signal is responsible for selecting which number in the output array. 

The number for the ‘Input port size’ is set to the number of tracking points minus one, 

for this case the set of waypoints is 23, thus 23-1 is 22, which will be entered as shown 

in Figure 93.  
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Figure 93. Function Block Parameters ‘Selector’ module 

8.5.3.4 Front Wheel Steering Control Module 

The control block diagram for the expected steering angle is shown in Figure 94, 

outside of the red box. 

 
Figure 94. Expected steering angle block diagram 

After the x- and y-coordinates acquired target points are transferred into this 

module, and they are compared with the x- and y-coordinates of the current positions 

of the Rover in ADAMS. As mentioned before, because of the coordinate direction of 

the 3D Rover model, the x-coordinate output by ADAMS is the y-coordinate of the 

terrain model, and the output of the y-coordinate is the x-coordinate of the terrain 

model. This comparison is done on the left of Figure 94. 
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After the difference has been calculated between the target coordinates and the 

current coordinate, the "arctan (u (1) / u (2))" trigonometric function in the ‘Fcn1’ 

module is used to obtain the rover’s steering angle.  

The two switch modules are used to judge the relationship between the target point 

and the current position point, because when the calculated steering angle is in the 

third or fourth quadrants of the coordinate system it is the same as if the steering angle 

is in the first or second quadrants. Thus, the switch needs to be used to determine which 

quadrant the calculated steering angle is in, and the expected steering angle is 

converted to polar coordinates by two constant modules, ‘constant1’ and ‘constant7’. 

8.5.3.5 Distance Judgment Module 

‘Fcn2’ is the function for calculating the distance between the current point and the 

next waypoint by using ‘u(1)2 + u(2)2’, without the extraction of a root, as shown in 

the red box in Figure 94. Following this, this calculated value is compared with the 

number 50,000, which is roughly the square of 224mm, and 224 mm is the distance 

between the center of mass to the front of the modelled rover. The judgment for the 

distance of the next waypoint is done by the block function of ‘relational operation’. 

If the distance between the current point to the next waypoint is smaller than 224 mm, 

the judgment block will give an output of true, otherwise the output will be false. If 

the output of this module is true, it means the next waypoint is reached and the cycle 

counting module will be triggered. 

8.5.3.6 Cycle Counting Module 

The block diagram of the cycle counting module is shown in Figure 95. 
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Figure 95. Cycle counting module 

 

The ‘Triggered Subsystem’ module is a response module that can be triggered 

when the top input is on a racing edge, and the input ‘In1’ is 1, and only when the 

counter will be counting to plus 1. This counter is used to track the waypoint number, 

so that the simulation can proceed to the next waypoint, and is also used for judgement 

and breaking the loop when the counter is more than 22. 

8.5.3.7 Judgment of Loop Breaking Module 

 
Figure 96. Judgment of loop breaking module 

The judgment of loop breaking module is shown in Figure 96. The current 

waypoint number will be used as the input, and the logic comparison module is used 

to determine if the last waypoint has been reached. If so, the simulation will stop as 

the destination point is reached, and therefore the program will stop. 
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8.5.4 Front Wheel Steering Angle Control Module 

 
Figure 97. Front wheel steering angle control module 

The control block diagram of the front wheel steering angle is shown in Figure 97. 

The control method used is a Proportional–Integral–Derivative (PID) control method. 

The output is the angular acceleration of the steering angle for the front wheels. The 

upper and lower limits of the output value is set to 15°/s2, where 1°=0.01745rad. 

8.6 PID Parameters Tuning 

PID control has been used for the front wheel steering angle in this system, and the 

P, I and D parameters are tuned, with the results as shown in Figure 98. The test started 

with a given expected steering angle of -0.1, as the goal step. PID parameters have 

been tested, as shown below in Figure 98. In summary, the best result is when P=3, 

i=0, and d=3, as it is has the lowest steady-state error.  
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Figure 98. PID control parameters tuning 

8.7 Simulation Verification and Debugging 

The rover mass is 9.2kg. The simulation uses millimeters for length, newton for 

force, kilograms for mass, seconds for time, and rad for angles. 

P=5,i=0,d=3 P=5,i=0,d=3 

P=3,i=0.1,d=2 P=3,i=0.1,d=3 

P=3,i=0.2,d=3 P=3,i=0,d=3 
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Figure 99. Second co-simulation Second Co-simulation results of an optimal path in 

comparison with a standard path: (1) the optimised path, (2) intermediate energy for the 

path in (1), (3)hight changes for the path(1), (4) straight or normal path, (5) intermediate 

energy for the path in (4), (6) hight changes for the path (4) 

In this co-simulation the path generated with the path planning algorithm has the 

goal set to the lowest power consumption. The start point is indicated as a green circle. 

For a given terrain, it is necessary to optimise a path and a result is shown in Figure 

99 (1), From the co-simulation, the total power consumption of the planned path shown 

in Figure 99 (2) which is lower than the straight-line path one shown in Figure 99 (5) 

And the height change of planed path has a lower slop shown in Figure 99 (2) 

compared to Figure 99 (6) straight-line path. 

As shown in (1),(2) and (3) of the Figure 99 is the energy optimised path, the total run 

time is 305 seconds and the total intermediate energy cost is  6.268139 × 107  by each 

wheel  this variable is an integral of time with τ × v where the speed unit is in mm/s. 
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To calculate the final total energy consumption into joules, the following conversion 

54 is used which is a derive of the 53(Kleppner et al., 2014). 

 

                   (53) 

𝑊𝑜𝑟𝑘 = ∫ τω
𝑡1

𝑡2
= ∫ τ ×

v

𝑟

𝑡1

𝑡2
                                 (54) 

Where is the radius of the Rover wheel has a radius of 80 millimeter, as the Rover 

have two driving wheels when simulated, the final energy cost will be in result of 

1568.54 joules(
 6.268139×107

80
/1000 × 2).  

As shown on the right of the Figure 99 (4-6) for the straight path, the total run time 

is 223s, which is shorter than the planned path’s 305s shown in Figure 99(1-3). The 

total length of the path is less using the straight path. However, the total power cost 

shown is 1.012932 × 108  N ∙ mm ∙ s, which is higher due to the work done by the 

rover against gravity is higher. So, by using the same 54 with the same procedure as 

before, the power cost is calculated to be 2532.33 joules, which indicates a saving of 

38.12% . 

Appendix A has additional guide notes for co-simulation in setting up, data processing 

and problems and solutions. 
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9  Validation and Evaluation Through Field Tests 

There are a number of field tests undertaken to validate the theoretical work done 

during the modelling and simulating of the AgriRover behaviour reported in Chapter 

9. This chapter details the setup of these tests and the results from them. Conclusions 

are also drawn in terms of the validation of the theoretical work. 

9.1  Field Test Task Descriptions 

The first field test was conducted at a farmland field called Rushyhill Farm, near 

Glasgow in the UK. The test has been split into two groups of tests. The first group’s 

tests are focused on the energy optimised planning. The second set of field tests took 

place in Beijing, which focused on multi-point planning from an energy perspective. 

Due to technical problems of the AgriRover, the full results based on the original plan 

were not obtained.   

The first set of tests are designed to perform the following tasks: 

1. The test is to demonstrate the capability of the planning algorithm by identifying 

an optimal path for any given points, e.g. from point A to point B.  

2. By utilising the energy optimised path planning, another path from point A to 

point B can be found.  

3. Obtaining sufficient data of two tests for comparison:  

a). the first test is to capture the data set of the energy consumption between a 

direct, straight or shortest path between the set points,  

b) the second test is to obtain the data set of energy consumption on a path that has 

been generated with the designed energy optimised planning algorithm.  

4. The results of the two paths are compared and conclusions are drawn.  
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The second set of field tests is to investigate the scenarios where there are needs 

for multiple waypoints, and the terrain is also relatively flat. In this case, a path is 

generated where the task is to transverse multiple points during a field soil sampling 

operation, which is one of the key functions of the AgriRover.  

Similar to the first set of tests, the second set also aims to undertake a comparison 

study between different ways of multi-point planning. First, the algorithm will find a 

path for the AgriRover with a straight line, then turning 90 degrees at the edge of the 

waypoint, forming a rectangular shape. Secondly, the designed algorithm finds a path 

for the AgriRover with a triangular shape, with the waypoint connected forming an 

angle of 60 degrees at the edge of the field. The results of these two strategies of 

planning are compared and conclusions are drawn. 

9.2  Field Test Setup Description 

9.2.1 Power Consumption Test in UK from Point A to B  

Before the field tests, there are functions required to ensure the accuracy and 

consistency of the tests results of the energy consumption measurements. A voltage 

and current monitoring module has been designed and implemented onboard the 

AgriRover for an earlier version of the rover, and this was made available. For the new 

version of the AgriRover, the voltage and current monitoring PCB are unnecessary, as 

the new version of the rover has the voltage and current monitoring built into the Pololu 

jrk 21v3 motor driver. As the motor driver’s current and voltage measurement have 

not been tested before, a validation step has thus been conducted. Figure 100 shows 

two multimeters attached to the AgriRover, and the total current and voltage data of 

the of the AgriRover is collected and logged. After the collection of the current and 

voltage, a multiplication of them is performed to calculate the power consumed.  
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Figure 100. Field test of current and voltage data validation  

Figure 101 (1) shows the total power output in each second that is collected by the 

multimeters, and Figure 101 (2) shows the power output from the four wheels that is 

collected by the motor drivers, which shows the calibration field test run. The result 

has characteristic matches shown by thes red circles. As the figure shows, the total 

power consumption of the rover in Figure 101 (1) is different from that in Figure 101 

(2), which is due to the driver output power of the rover as the onboard electronics also 

have a contribution to the power consumption, such as the search GPS module, IMU 

module communication module, and onboard computer. Furthermore, the top figure 

has more power consumption, even during the idling of the rover, because the rover 

has an onboard computer running, regardless of the speed of the wheels, even during 

idling and without communication or driver output. However, for this test the goal is 

to compare the power consumption of the path planning algorithms, therefore only the 
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motor power consumption will be compared, without the comparison of the rest of the 

onboard electronics. This is because the onboard electronics, such as the 

communication module and onboard computer, will have unpredictable power 

consumption during the field test, due to the communication distance and the 

calculation loads.  

 
Figure 101. Test power data validation characteristic comparison  

The first part of the test that took in place in Rushyhill farm utilises the AgriRover, 

with added weight to bring the total weight of the AgriRover to 20 kilogram. It traveled 

at a speed of 0.3 m/s. Before running, with each set of waypoints generated by the 

algorithm, the voltage of the battery is logged to ensure the power consumption 

calculations after the test is accurate and valid. 

9.2.2 Power Consumption Test in Multi-Point Planning  

As part of the SmartFarm construction plan, the UK team have demonstrated its 

latest robotic technology in autonomous soil sampling. 

This demonstration is therefore arranged as part of a visit. The key purpose is to 

show the feasibility of the AgriRover-Sense in autonomous soil sampling at the 
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National Demonstration Base for Precision Agriculture Research at Xiatoangshan, 

Beijing. 

9.3  Path Planning Before the Test  

9.3.1 Path Planning in UK Field Tests 

As mentioned in Chapter 4, the energy optimised path planning algorithm 

generates a path from any point A to point B. Then, the waypoints are converted from 

the National Grid (British National Grid System) to GPS coordinates, which can be 

used by the AgriRover. The conversion has been done by utilising a MATLAB 

function named ‘OS2LL’. All the waypoints are converted as shown in Table 14, and 

then they are plotted on the satellite map, as shown in Figure 102. This is the path for 

the Rover to follow. 
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Table 14. Energy optimised waypoints set in GPS coordinates 

Points Latitude Longitude Points Latitude Longitude 

1 55.90361 -4.1826 12 55.90395 -4.1835 

2 55.90365 -4.18268 13 55.9039 -4.18358 

3 55.90369 -4.18277 14 55.90386 -4.18365 

4 55.90374 -4.18285 15 55.90381 -4.18373 

5 55.90378 -4.18293 16 55.90376 -4.18381 

6 55.90382 -4.18301 17 55.90372 -4.18389 

7 55.90387 -4.1831 18 55.90367 -4.18396 

8 55.90391 -4.18318 19 55.90362 -4.18404 

9 55.90395 -4.18326 20 55.90358 -4.18412 

10 55.904 -4.18334 21 55.90353 -4.1842 

11 55.904 -4.18342 22 55.90353 -4.18428 
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Figure 102. Energy optimised waypoints plotted on satellite map 

Figure 103 shows the 3D view of the energy optimised path starting from the green 

circle to the destination shown in a magenta diamond, which is generated by the 

algorithm and focused on energy optimisation. The elevation change data is plotted 

with a lower interval of height change. It requires the rover to overcome a total of 

4.01m, from the lowest point at 78.85m to the highest point at 82.86m, shown in Figure 

103 (b).  

Figure 104 shows when a straight path is followed by the Rover. The height change 

data plotted has a higher interval that the rover needs to overcome of 5.63m, from the 

lowest point at 78.85 m to 84.48m. 



178 

 

 
Figure 103. Energy optimised path and height change 

As the shown, the height change that the rover needs to overcome with the energy 

optimised path is 4.01m, compared to the straight path which is 5.63m. This is over 

28% of the height change wasted, which is unnecessary and can be avoided. 

Furthermore, the energy that is required to overcome such a height change 

difference will be more than 28%, due to the internal friction of the driving system 

having a positive correlation with the load. Thus, with a higher torque output required 



179 

 

to climb a steeper slope, the efficiency of the driving system will decrease. The 

possibility of skating will also increase. That is why dynamic modelling and simulation 

of the system is required to determine a more accurate result, which has been 

completed in chapter 8. 

 
Figure 104. Straight path and height change 

Lastly Table 15 shows the coordinates generated by the straight path, and Figure 

105 shows the straight path with the coordinates plotted on a satellite map. 
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Table 15. Straight path waypoint set 

Points Latitude Longitude Points Latitude Longitude 

1 55.90356 -4.182678 12 55.90354 -4.183557 

2 55.90356 -4.182758 13 55.90354 -4.183637 

3 55.90356 -4.182838 14 55.90354 -4.183717 

4 55.90355 -4.182918 15 55.90354 -4.183797 

5 55.90355 -4.182998 16 55.90354 -4.183877 

6 55.90355 -4.183078 17 55.90354 -4.183957 

7 55.90355 -4.183158 18 55.90354 -4.184037 

8 55.90355 -4.183238 19 55.90353 -4.184117 

9 55.90355 -4.183318 20 55.90353 -4.184197 

10 55.90355 -4.183398 21 55.90353 -4.184277 

11 55.90355 -4.183477    
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Figure 105. Straight path with waypoints plotted on satellite map 

9.3.2 Multiple Target Point Path Planning  

The Centre for Information Technology in Agriculture (NERCITA) has an 

experimental base called National Demonstration Base for Precision Agriculture 

Research at Xiatoangshan in Beijing.  

Plans for soil sampling have been prepared based on the initial information given 

by NERCITA, which roughly defines the field to be tested and the selected fields 

advised by NERCITA. In this case, all 32 blocks of 3-by-3 meter areas have been 

applied with different amount of fertilisers, hence it is important that a path passing all 

the centre points of these 32 blocks is generated, so that soil can be collected and the 

quality measured, in the form of nitrogen. Several plans have been created based on 

the farms’ location, in order to optimise the efficiency of the soil sampling.  
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The process of planning is described below. Using Google maps, a plan can be 

created and the location coordinates of each sampling point can be obtained. Following 

this, several plans have been created using the Google maps. Complying with the best 

practice in the UK, the soil sampling route is planned in a W-shape, with the distance 

between each soil sample drilling point being about 20 meters. The exact coordinates 

of each drilling point can be obtained using a Google map function. The coordinates 

of each position shown in Figure 106 for a target sampling point can be defined based 

on its distance from the previous point or the user’s choice. Once selected, its 

coordinates are obtained and recorded. 

 
Figure 106. An example plan for soil sampling generated for a target farm at NERCITA 

Figure 107 shows an example of a W shape robotic path plan for sampling the 

targeted farm fields at NERCITA’s National Demonstration Base, where as Figure 108 

shows an alternative plan for sampling the same targeted fields.  



183 

 

 
Figure 107. Plan for soling sampling at NERCITA’s National Demonstration Base 

 

 
Figure 108. An alternative AgriRover robotic path plan 

After initial planning, an optimal solution was obtained based on the least effort 

required by the AgriRover to go over all the waypoints within the defined field, as 

shown in Figure 109.  
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Figure 109. A complete robotic soil sampling plan for the NERCITA selected farms 

All target points are defined using measurement tools and compiled in a table 

which could then be used by the AgriRover’s soil sampling planner to control the soil 

sampling and drilling process in the field.  Table 16 shows most of the coordinates of 

the planned sampling points.   
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  Table 16. A potential plan for soil sampling, consists of GPS coordinates and 

distance information between points. 

Sampling Point No. 
Distance from Start Point 

(M) 
Position 

Start Point 0 40.179406 116.443879 

Point 1 20 40.179376 116.443681 

Point 2 40 40.179319 116.443436 

Point 3 60 40.179297 116.443210 

Point 4 80 40.179252 116.442950 

Point 5 100 40.179207 116.442961 

Point 6 120 40.179168 116.443215 

Point 7 140 40.179153 116.443435 

Point 8 160 40.179124 116.443667 

Point 9 180 40.179095 116.443915 

Point 10 200 40.179066 116.443682 

Point 11 220 40.179053 116.443441 

Point 12 240 40.179000 116.443208 

Point 13 260 40.178971 116.442981 

Point 14 280 40.178924 116.442971 

Point 15 300 40.178895 116.443205 

Point 16 320 40.178859 116.443438 

Point 17 340 40.178810 116.443672 

Point 18 360 40.177771 116.443892 

Point 19 380 40.178634 116.443915 

Point 20 400 40.178591 116.443684 

Point 21 420 40.178530 116.443460 

Point 22 440 40.178475 116.443236 

Point 23 460 40.178436 116.443004 

Point 24 480 40.178385 116.443012 

Point 25 500 40.178350 116.443243 

Point 26 520 40.178313 116.443462 

Point 27 540 40.178271 116.443711 

Point 28 560 40.178237 116.443934 

Point 29 580 40.178181 116.443700 

Point 30 600 40.178150 116.443470 

Point 31 620 40.178106 116.443240 

Finish Point 640 40.178053 116.443003 
 

Through further discussion with NERCITA, it became clear that the initial selected 

field has been divided into 32 small blocks, and each of these blocks have had different 

fertilisers applied for experimental purposes over several years. It is therefore desirable 
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to sample each of these blocks, so that a comparison and link to the yield could be 

made. A new set of plans has thus been developed.  

Plan 1, shown in Figure 110, is designed to cover all 32 points in the centre of each 

block in a sequential manner, following a vertical path. This plan requires the rover to 

turn 14 times and it never passes any sampling points twice. The total distance the 

rover travels is 530 meters. The advantage with this plan is that it will travel the least 

distance.   

 
Figure 110. A complete robotic soil sampling plan for the NERCITA selected farms 

Plan 2, shown in Figure 111, is also designed to cover all 32 points in the centre of 

each block in a slightly more complicated pattern along the diagonal direction of each 

of the blocks. This plan requires the rover to turn 11 times, and it passes twice two 

sampling points at the bottom left corner. The total distance travelled is 576.9 meters, 

and this is 46.7 meter or 8.8% more than Plan 1. Based on this, it was decided the Plan 

1 was chosen for the field trials. 
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Figure 111. A complete robotic soil sampling plan for the NERCITA selected farms 

9.4 Overview of the Rushyhill Farm Field Test 

The field tests took place in Rushyhill farm, during a sunny winter day without 

cloud coverage, wind speeds are less than 5 mph, which is considered to be 

insignificant for the purpose of the tests. The setting of the tests, including the field 

terrain surface of the remaining stumps of the crops, are shown in Figure 112. 
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Figure 112. Rushyhill farm field test setting 

Temperature on this day was cold at - 2°C, with ice and water on some parts of the 

test field, as shown Figure 113. This may cause some slippage issues.  
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Figure 113. Rushyhill farm field test with water and ice. 

9.5  Result and Data Analysis 

9.5.1 Rushyhill Farm field Test 

The data from the field tests are collected by deploying an onboard data capture 

system, and the data related to the energy consumption are stored mostly in the 

computer onboard for offline processing. This is to save the bandwidth required to 

transfer more important data, such as the measured nitrogen values of the sampled 

points and their locations, in real-time. The energy related data is processed with a 

code written to do both the filtering and calculations. First, the data is imported from 

the ‘.bag’ file, which is extracted from the ROS (Robot Operating System). This 

contains all the telemetry data of the rover and the contents is customisable. However, 

with more types of data selected to be captured, the ROS system will have the tendency 

to lag, which makes the whole system unresponsive and therefore degrades the 

controllability of the Rover. The telemetry data collected in the .bag file only includes 

all the motor driving and steering currents, duty cycles and time. This imported data 
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contains random numbers, which could be caused by the problem of the cross-talking 

of these numbers outside of the driver communication protocol. For the current, the 

range is from 0 to 255 in Decimal, which is 0 to 0xFF in Hexadecimal. The current 

value from 0 to 255 corresponds to 0 to 3 Ampheres, according to the datasheet of the 

motor driver. Duty cycles range from -600 to +600. For the duty cycle the + and – 

dictates the direction, and the number 0 to 600 corresponds to 0 to 100%. The duty 

cycle is correlated to the voltage of the battery, which is averaged to 25V during the 

whole test.  

Secondly, all the data is filtered and the number that is not inside of the range is 

removed. The negative numbers are recovered because of the data overflow, when the 

number is -1, then the data is 65535, which is 0xffff in hexadecimal, 0b1111 1111 

1111 1111 in binary, or 0d65535 in decimal. The real number is the number shown, 

minus 65534. After all the data is corrected, they are rescaled according to the data 

sheet from the driver manufacturer.  

Then all the data is processed and the power is calculated in Watt, by multiplying the 

voltage by the duty cycle and current. An example of the power is shown in Figure 

114. Figure 114 (1) shows the power needed for the steering motion of the AgriRover, 

whereas Figure 114 (2) indicates the power needed for the driving motion of the rover 

from 4 wheels. Both Figure 114 (1) and (2) are for when the rover is following the 

planned path. Figure 114 (3) and (4) are the result of the power needed for the steering 

and driving motion of the rover going in a straight line, respectively.  
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Figure 114. Field test power output from each driving and steering module, planned path 

compared to the straight path 

From these test results, the following analyses are undertaken. First the standard 

deviation of Figure 114 (2) is lower than that of Figure 114 (4), which suggests the 

driving system of the AgriRover experiences less change in the power consumption 

than that of the straight line path. Figure 114 (2) also demonstrates a lower overall 

peak power required. Observation shows that when driving uphill with a higher incline 

angle, sometimes only three or four of the wheels have contact with ground, resulting 

in certain increases of power required on a single wheel. However, for Figure 114 (2) 

with the energy optimised path, due to the lower incline needed for rover to overcome, 
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there is less likely a moment where only three out of four wheels are in contact with 

the ground. Furthermore, the time required to complete is more in Figure 114 (2) for 

the energy optimised planning when compared to Figure 114 (4) for the straight path. 

This is due to the total length of the path having a relationship close to  1/√2.  

 
Figure 115. Field test power at a given time for the planned and straight paths 

The total power consumed by all the wheels for an optimised path shown in Figure 

102, is plotted in Figure 115 (1), which has the output power at a given time. Figure 

115 (1) is the planned path, which has the maximum of less than 30 Watts at any given 

moment, with a standard deviation of 6.53. 

Figure 115 (2) is the output power at a given time of the straight path. The figure 

shows that with the straight path, the maximum power at a given time has been over 

50 Watts in multiple instances. A standard deviation of 8.2180 is observed, and this 

suggests the set of output powers at a given time have a higher randomness.  

Finally, the power consumption of the rover is calculated with trapezoidal 

numerical integration. Shown in Figure 116 is the segments at a given time that are 
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ready to be processed. Zooming in shows the segmentation of the planned power. As 

Figure 116 shows, they are all segmented into trapezoidal shapes and can be calculated 

with integration in the last step of calculation. 

 
Figure 116. Trapezoidal numerical integration zoomed in 

The last step of the calculation is applied to the integral to the power, which will 

give a final value of total power consumption in joules. For the planned path this is 

3.6405e+03, which is 3640.5 joules. The total distance travelled on map is 144.33 m, 

which is 25.223 joules/meter. 

 For the straight path, despite it takeing less time with a shorter distance travelled, 

the total power consumption is 4.6283e+03, which is 4628.3 joules. The total distance 

travelled on the map is 100 m, which is 46.283 joules/meter.  

In conclusion, a 21.34% total energy consumption reduction is demonstrated by 

comparing the total energy consumed on a travelled straight-line path with an energy 

optimised planned path.  

Considering the energy consumed, based on comparing the energy consumption 

between the energy optimised path of 25.223 joules/meter with the 46.283 joules/meter 
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for a straight line, it can be concluded that a reduction of 45.50% power per unit 

distance travelled is shown through these tests. This demonstrated that the proposed 

modelling and simulation approach is effective in producing an optimised path, as 

demonstrated in the field tests.    

9.5.2 Field Test in China 

The field test in China was conducted with more difficulties, as the AgriRover was 

broken during transit and testing, and therefore unfortunately the field test in China is 

not fully completed, hence there were no test data and results that can be processed. 

Simulation results are however presented in Section 9.3.2, which suggests a generated 

energy efficient path plan.  

9.6  Summary 

As mentioned previously in section 8.7, the simulation shows a 38.12% total 

energy saving with 1,568.54 joules for the planned path and 2,532.33 joules for the 

straight path. Compared to the field test of 3640.5 joules for the planned path and 

4628.3 joules for the straight path, the result of 21.34% of the energy is saved, which 

is due to a few reasons. The energy consumption reduction rate with unit distance 

travelled is 45.5%.   

First, all the fields have remaining bits of harvest plants, shown previously in 

Figure 112, which result in different resistance on different parts of the field, and this 

is denser on some parts of the field. Furthermore, the farmland field in the real world 

condition has variable rolling resistance, due to the condition of the soil moisture 

content and the temperature, some parts of the field is muddy and some has ice 

coverage, which all introduce more randomness to the whole system.  

Secondly, as the simulation of the system is based on a static rolling resistance 

factor, the total power consumption will be different to the real world, as the rolling 
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resistance is set in the simulation to lower overall values in comparison with the real 

world. Thus, the overall power consumption in the simulation compared to the field 

test will be lower. Due to the calculation resource requirement of the ADAMS and 

MATLAB collaborative simulation, the randomly generated rolling resistant 

coefficient matrix was not implemented. The full run with the simplified model 

mentioned in chapter 8, required three days to complete with a computer that is 

equipped with a 4 core, 8 thread processor and 32GBs of ram. By adding more 

complexity, the simulation will have a higher rate of crashing, which makes it very 

difficult to complete in a reasonable time frame. 

In addition, there was 2 days of raining before testing, so the farmland around that 

area, with lower elevation, was muddy and some parts were frozen solid due to the low 

temperature during the test. This makes it more difficult time for the rover to transverse 

in the field, due to the increased friction and slippage from the terrain.  
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10  Discussion and Conclusion 

In this chapter a discusssion is provided to refelect on the undertaken work and 

review the work critically. Contribution to knowledge is first presented and further 

analysed to show the outcome of the research, with detailed description of the  

contribution presented. In the next section, the discussion of the research outcomes 

and results are presented.  Based on these, conclusions of this research is summarised 

to provide an outline of the findings of the research. Future research work, which was 

not completed in this study, is then presented to provide some pointers to advance the 

energy optimised path planning and mobile robotic modelling in the future. 

10.1  Contribution to Knowledge 

This research made the following contribution to knowledge: 

A comparison and grading of mainstream path planning algorithms from an 

energy optimisation perspective is undertaken, using detailed evaluation criteria, 

including required computational power, extendibility, flexibility and more criteria 

that is relevant for the energy optimised planning purpose. These algorithms have not 

been compared from an energy optimisation angle before, and research for energy 

optimised planning under complex terrain environments had not been investigated. 

Addressing these knowledge gaps, a methodology of designing, modelling, and 

simulating a mobile platform system is proposed to facilitate an energy optimised path 

planning. This leads to a new approach of a path planning algorithm that uses the 

terrain data available, and that reduces unnecessary energy spent in climbing the 

terrain. Such a methodology derives several novel methods:  

A method for avoiding the local minimum problem for artificial potential field path 

planning, using the approach of approximation;  
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A method of achieving high expandability of the path planning algorithm, where 

this method is capable of generating a path through a large map in a short time period; 

 A novel method of multi-perspective dynamic simulation, which is capable of 

simulating the behaviour of internal mechanisms and the overall robotic mobile 

platform, with the fully integrated control, and the dynamic simulation enables 

prediction of energy consumption;  

A novel method of modelling and analysing the kinematics and motions of a mobile 

robotic platform; A novel method of mathematically modelling and simplifying a 

steering mechanism for the wheel-based mobile vehicle was further investigated.  

All the above is summarised in Figure 117, and shows the relationships between 

each contribution, where the blue boxes show the category, and the inner green boxes 

show the simplified points of contribution to knowledge. The yellow arrows 

demonstrate the relationships 
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Figure 117. Relationships between each contribution 

Detailed explanation for contribution to knowledge is show as follows: 
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A novel approach for the path planning algorithm that 

reduces unnecessary over crossing of the terrain, using the 

terrain data available for the public. 

The new approach of the path planning metheod for energy optimised planning 

tasks, for a wheel-based haven, have not been proposed before, which is concluded as 

discussed in Chapter 2. The function of utilising the terrain data for the wheel-based 

rover to avoid unnecessary over crossing is also enabled, which is adaptable for any 

terrain, with minimum modifications required. No such method and solution was 

previously proposed.  

A novel comparison and grading of mainstream path planning 

algorithms for the purpose of energy optimised planning. 

A complete and comprehensive comparison and review was done in Chapter 2 for 

all the mainstream path planning methods and algorithms, where the suitability for the 

task of energy optimisation of the path planning was evaluated and levelled in multiple 

perspectives. These included ‘Terrain and ground roughness modelling suitability’, 

‘Extendibility’, ‘Flexibility’ and ‘Robustness’. This has not been done before for the 

purpose energy optimised path planning. 

A novel method of mathematically modelling and simplifying 

a steering mechanism for the wheel-based mobile vehicle. 

A mathematical model of the steering mechanism for the AgriRover was 

established according to the characteristics of the wheel-based rover, where the 

electrical and mechanical balance equations was joined, and a system transfer equation 

was concluded. Then, the system transfer equation was presented in block diagrams, 

with the simplification of the steering mechanism expressed as a mass spring damper 
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model. A complete step of modelling and simplification of a physical steering 

mechanism for the wheel-based rovers is shown in Chapter 5.  

A novel methodology of designing an energy optimised path 

planning algorithm. 

A new methodology for designing an energy optimised path planning algorithm is 

proposed in Chapter 3, which gives a guideline and reference for any researchers that 

will need to develop an energy optimised path planning algorithm for further 

improvement. The methodology presented is not only suitable for designing the energy 

optimised path planning algorithm for the AgriRover, but also will work for the 

purpose of designing an energy optimised path planning algorithm for any mobile 

robotic platform. 

A novel method for avoiding the local minimum problem for 

the artificial potential field path planning algorithm. 

The modified artificial potential field path planning method introduces a novel 

approach to tackling the problem of the local minimum by utilisation of an 

approximation algorithm. When every step is taken, the intermediate matrix that has 

the problem of the local minimum will become more and more uni-polarised, and the 

step size is decided according to the length between the start and destination points. 

This method solves the problem of the local minimum, which will guarantee a path 

that can be found with minimum loss of performance. This method of solving the 

problem of the local minimum for the artificial potential field path planning algorithm 

has never been presented before. 

A novel method of achieving high expandability of the energy 

optimised path planning algorithm, that can be extended to 
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include the variables of distance, terrain, uncrossable obstacles 

and surface materials, which is the characteristics of the practical 

mobile robotic platform’s application environment.  

This is shown in Figure 16 and proposed in Chapter 4. By utilising a global 

artificial potential field calculation equation, where each of the required inputs is 

merged into a single artificial potential field, that was done by converting each physical 

matrix and then applying a weight factor. Therefore, the expandability of the algorithm 

is achieved. This high expandability for the energy optimised path planning algorithm 

has not been presented before. 

A novel method of simulating the behavior of the robotic 

mobile platform, with full integration of the control algorithm, 

and which gives the energy consumption. 

A novel method of simulating the control algorithms running in parallel, and 

utilising the collaborative simulation platform of ADAMS and Simulink for a robotic 

mobile platform has been introduced in Chapter 8. The simulation has been run using 

the real world terrain, and has the capability of following a generated path by the 

energy optimised path planning algorithm, which has not been achieved before. 

A novel method of modelling and analysing the kinematics and 

motions of the AgriRover, under different levels of ISO 8608 

surface conditions, obstacles, loads, and speed and torque 

changes on the farmland field, sand and cement. 

Modelling and simulation of the AgriRover gives a resulting change of speed when 

running on different surface levels and shaped obstacles, which is discussed in Chapter 
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6. Furthermore, speed and torque changes are logged when the AgriRover is operating 

in a farmland field, sand and cement, as discussed in Chapter 7. 

A novel approach to path planning that reduces unnecessary 

energy spent in a rich terrain environment. 

The path planning approach that can reduce the unnecessary energy used running 

in a rich terrain environment was designed, implemented, tested, validated, and 

evaluated under the guidance of systematic methods and methodologies. This is a 

unique and generic approach to such a problem with very low computational demand 

that gives a good result. 

All the approaches and methods presented give a detailed process and 

methodologies, which can be used as reference for tresearchers who will be working 

on solutions that is related to all the problems that have been solved in this thesis. 

10.2  Discussion  

10.2.1 Hypothesis Discussion 

First, the hypothesis that is introduced in Section 1.4.3 is discussed. The last stage 

of the hypothesis was set as: 

The total energy costs of the same planning task when using the energy optimised 

path planning algorithm, utilising the AgriRover in an undulating terrain environment, 

is lower than when the AgriRover is running in a straight-line. 

This hypothesis is proved by running the simulations and field experiments with 

the AgriRover, using the path generated by the energy optimised planning algorithm 

in the farming field.  
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As mentioned previously in Section 8.7, the collaboratively dynamic simulation 

shows a 38.12% total energy saving, with 1568.54 joules for the cooperative planned 

path and 2532.33 joules for the straight-line path. Compared to the field tests in 

Chapter 9, 3640.5 joules for the planned path and 4628.3 joules for the straight-line 

path, resulting in 21.34% of the energy being saved, which is different due to a few 

reasons. The energy consumption reduction rate, with unit distance travelled, is a 

45.5% reduction, which proves the energy optimised path has successfully reduced the 

energy consumption by avoiding unnecessary terrain overcrossing.  

Comparing the energy consumption saved for the simulation results of 38.12% and 

field test results of 21.34%, a difference of 16.78% is observed. The difference is 

mainly caused by the following: the collaborative simulation’s coefficient of rolling 

friction is set to 0.2, which was discussed in Section 7.1. However, on the day of the 

field test,s the ground surface condition was wet and muddy, as shown in Figure 113, 

and therefore the coefficient of the rolling friction was actually higher. Subsequently, 

the base energy cost is higher than in the simulation when the rover is running in the 

farm field. This is the major reason for the difference in energy savings between the 

simulation and field test. Also, it is the reason of the energy cost difference between 

the 1568.54 joules for the simulation and 3640.5 joules for the field test of the energy 

optimised path, and the 2532.33 joules for the simulation and 4628.3 joules for the 

field test of the straight-line path. More detailed discussion is in Section 9.6. So, overall 

the hypothesis is proved as the result showed. 

The null hypothesis was set as:  

Even with the energy optimised path planning algorithm utilised by the AgriRover, 

the total energy cost is the same or higher than the straight-line planning under the 

same planning task running in an undulating terrain environment. 

This is not true as the simulation and field test result proved, as mentioned above. 
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10.2.2 Aims Discussion 

For the aims proposed in section 1.4.4, the first aim is completed by a new proposed 

energy optimised path planning method, which is capable of generating a path for the 

AgriRover, while simultaneously avoiding the problem of unnecessary terrain 

overcrossing when running in terrain rich environment.  

The second aim is that the expandability of the algorithm is insured by a 

comprehensive review of all the major path planning methods for the purpose of an 

energy optimised path planning, which was completed in Chapter 2. This was where 

the expandability of each type of mainstream algorithm is rated according to the 

literature reviewed. Furthermore, the design of the algorithm used a modified and 

improved artificial potential field, where the expandability is a part of the 

consideration introduced in Chapter 3. The additional input matrix, such as obstacles 

or windspeeds, can be used to construct the potential field according to the physical 

properties and task requirements if necessary, which is discussed in Chapter 4.  

The third aim is about the adaptability of the algorithm if the new platform is a 

wheel-based rover. The designed algorithm is adaptable with minimal modifications 

required, due to the design of the algorithm where only the size, weight and power 

need to be modified. Also enabled is the function of utilising the terrain data and thus 

is adaptable for any terrain.  

The last aim was to make complete and comprehensive modelling and simulations 

of the AgriRover, which is achieved and discussed in Chapters 5, 6, 7 and 8, each 

focused on a different aspect. The modelling and simulation of the AgriRover gives an 

understanding of the mathematical and physical characteristics of the AgriRover, 

therefore providing a guideline for the design and evaluation of the path planning 

algorithm. 
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The objectives of the project are proposed in Section 1.4.4. The objectives of the 

energy optimised designing focus are achieved, as mentioned before. Secondly, the 

terrain data for the farmland field test is used as the major consideration when 

designing the energy optimised path planning algorithm. Thirdly, the modelling and 

simulating of the energy consumption is done with the results for both compared in 

this Chapter and Chapter 9, as well as the result of the field test that has been compared 

and evaluated. Finally, the evaluation and conclusions are proposed on the total energy 

saved and energy saved per unit during the field test. 

10.2.3 Overall Discussion 

This thesis shows a complete process of developing an energy optimised path 

planning algorithm that covers a definition of needs, complete and comprehensive 

modelling of the rover, designing of the algorithm, collaborative simulation that is both 

capable of representing a detailed model of the AgriRover and capable of 

implementing a control algorithm for trajectory, and a field test that was carried out 

with data that has been analysed and concluded. 

As discussed before, the field test shows a result of 21.34% total energy saved, 

which is a significant amount of energy saved. As shown in Figure 114, the peak power 

of the planned path is less then 16 Watt, but the straight path is close to 50 Watt, during 

the field test. This is the other benefit of utilising an energy optimised path that 

minimises the unnecessary overcrossing of the terrain. A lower peak output needed for 

the motor means less required torque to complete the path, which means a less steep 

terrain, and therefore less possibilities for the AgriRover to get stuck on the terrain. 

Furthermore, lower and less frequent torque peaks will extend the lifespan of the 

mobility systems, which include the motors, gearbox, steering mechanism, suspension, 

wheel and tires. This results in a lower cost of maintenance and thus lowers the 
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operational costs and overall total cost, which will give new technology, such as the 

AgriRover, an even better feasibility for mass production and adoption. 

10.3  Future Work and Improvement  

10.3.1 An Energy Optimised Path Planning Method for 

Multiple Robots 

As mentioned previously, the path learning algorithm utilises an artificial potential 

field as the evidence for pathfinding, therefore it is practical to introduce an additional 

matrix field containing the real-time positioning of multiple rovers. As evaluated 

before, the path planning algorithm that utilises the artificial potential field, uses less 

computational requirement compared to other path planning algorithms, such as 

reinforcement learning  and genetic algorithms. This makes it possible to be implanted 

in the onboard computer of the rover, and running the path planning algorithm in real 

time.  

Such architectures can be made as a centralised or decentralised cluster, depending 

on the application. For a centralised cluster architecture, there will be structure master 

and slaves. The master can be a ground-station or a particular rover where all the other 

rover report to. Then a current position matrix can be generated and broadcasted to all 

the rovers. For a decentralised cluster architecture, each rover will have their own 

position sent via a data link, where only the neighbouring rovers, or rovers within a 

certain radius, will have the position data around them, which is enough to avoid 

collision.  

Both of the architectures have their benefits and limitations. For the centralised 

cluster architecture, the planning algorithm will have a real-time position of each rover, 

and therefore is more controllable for planning a task. The limitations include the 

communication distance of the radio equipment being limited, therefore the 
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performance of the task solving capability of the cluster will degrade when the size of 

the cluster or the distance between them increases. For the decentralized cluster 

architecture, this problem is avoided because each member of the cluster only needs 

to communicate within a certain radius, but the capability of the centralised planning 

will be hard to achieve.  

To solve this problem, the architecture of the rovers can be working in hybrid 

mode, where the control centre sends the tasks to the rovers that is within the 

communication radius, then the task is passed to all the rovers via a data-link, and the 

position of the rovers are sent back. Although this will increase the load on each of the 

rover due to the additional data that needs to be repeated, which may require a 

hardware upgrade, this is a solution for a collaborative multi-rover architecture that 

can be researched in the future. 

10.3.2 AgriRover Hardware Update 

Although the design of the AgriRover is not part of the research, there is 

involvement of fabrication improvement parts for the AgriRover during the research. 

However due to the reason of being a prototype there was undesirable electronic and 

mechanical anomalies which include backlashes of the wheels and steering 

mechanisms. The electronic anomalies is mostly costed by the interconnection of the 

AgriRover where a control and communication signal is communicated over wire via 

USB and the USB port on the motherboard of the AgriRover is directly connected to 

the central processing chip with a logic level transformer without additional protection, 

therefore the charge is from outside generated by friction have a direct unprotected 

path to the CPU chip and all the other unprotected USB devices. This problem was 

solved by introducing a USB anti-static protection board. For the anomalies generated 

with the mechanical system there is a few cost first it's the motor gearbox in 

combination selected has a backlash of +-2 deg therefore the steering motion of the 
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vehicle has a hard time of keeping straight, second the encoder that that been used has 

a limited resolution which further increased the possibility of a anomaly during the 

operation. This is solved with a new version of AgriRover using better positioned 

motors gearboxes combination and encoders that has better resolution. 

10.3.3 GPS Accuracy 

The GPS accuracy of the Rover is sometimes unstable, which was improved by 

adding a stationary GPS receiver and by sending the data back to the rover. Also, a 

differential algorithm has been implemented to improve the accuracy, but the result of 

the GPS accuracy is still sometimes unstable. The other problem of the GPS is drifting, 

which happens sometimes during the normal running off the rover. An attempt to fix 

this was made with an additional onboard inertia measurement unit, or other sensors, 

such as cameras for terrain feature matching could be used. However, by introducing 

more complexity, the overall system has a reduction in the communication speed, as 

the Robot Operating System used is not a real-time system and has a reduction of 

reliability, thus a balance must be found. 

10.4  Conclusion 

This thesis has demonstrated a complete methology and process of designing, 

modelling, simulating and testing an energy optimised path planning method for 

mobile robotic platforms. Not only does this thesis give a systematic approach to 

solving the problem of energy optimised path planning in a terrain rich environment, 

but also a model of corresponding methodology is proposed, followed and evaluated 

through a design on an established mobile robotic platform, named the AgriRover. The 

modelling and simulation is established, which shows a result of 38.12% total energy 

saved compared to a straight path. This energy saving is particularly high, because 

sliping occurred when following the straight-line path. Due to the soil and weather 

condition of the experimentation, a lower result of 21.34% total energy saved, in 
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comparison to a straight path, is saved. This 21.34% total energy saving demonstrates 

the effectiveness of the new approach of the energy optimised path planning method.  

The time consumption between the map size of 5,000 points, which cost 0.638s, 

and with 1,000,000 points, which cost 2.08s, presented in Section 4.9, shows the 

expandability of the energy optimised path planning algorithm. This result difference 

of 16.78% energy saved between the simulation and experimentation proves the 

viability and practicality of the modelling, simulation and experimentation processes. 

Furthermore, with all the satisfactory results, the methodology for designing an energy 

optimised path planning method is proved and demonstrated to be able to bring much 

benefits of saving energy in other energy-crucial applications.  

Several future research directions have also been identified and it is believed that 

further investigation in these areas will provide further knowledge to advancing the 

mobile platform energy optimised design and control. This complies and meets the 

current energy efficiency drive worldwide, as exemplified by the push for net-zero in 

2050. The proposed work has the potential to be exploited in applications where there 

is rich terrain features and there is a demand for energy optimisation.  
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Appendix A: Co-Simulation 

 Notes for the Co-Simulation Setup for Future Reference  

Variable Setup 

Only one variable for each type is selected for explanation in this section, as all 

variables of the same type will be setup in the same way.  

Input variable: torque_vr1 

The driving torque variable, torque_vr1, is the variable for the right front wheel’s 

torque, as shown in Figure 118. Variable torque_vr1 is an input variable which is set 

as shown in the window in Figure 119. 

 
Figure 118. Variable torque_vr1 setup  

 

 
Figure 119. Set input variables 

The last step is to connect the torque_vr1 variable to the rover model. The input 

variable created in Figure 119 is used as the value of the control model torque as shown 
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in Figure 120. This completes the settings for the driving torque. The torque settings 

for the other wheels are completed in the same way. 

 
Figure 120. Set the torque 

 

Input variable: angle_vl2 

The establishment of the angle variables and setting of the input variables is the 

same as the steps shown in the last section. The difference for this variable type is the 

relationship with the rover model, because the control method before was for torque 

control, and the steering uses acceleration control. The simplest control method, due 

to the limited computational power, is to directly control the steering angles, but it had 

problems after several attempts.  

A movement is created, as shown in Figure 121Figure 95. Then the rotation pair 

for the right front wheel created earlier was selected in the joint motion setting box, as 

shown in Figure 121. The parameters was set and the type is set to acceleration. 
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Figure 121. Acceleration settings  

The two front wheels have been set with parallel constraints before, so no 

movement is defined for the left front wheel. Then, as the front wheel steering and 

driving is adopted in this example, the rear wheels will follow passively, so the rear 

wheels will not have any moving motion defined.  

Input variable: torque_pos 

This variable is only used for data processing after the simulation, and it is not part 

of the input of the physical model of the rover, this can be set using the same method 

above.  

Output variable: vposex 
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This variable was setup using the same method as before, with the difference in the 

F(time) section that DX(CONNECTING_PLATE_FRONT.cm,MARKER_342)  has 

to be selected, which links the markers and motions as shown in Figure 122 

 

Links between MATLAB Simulink and ADAMS  

In Controls_Plant_model.mdl, the window of the function block parameters in 

Simulink is opened and the ADAMS model and output prefix is set to ADAMS_prefix, 

as shown in Figure 123. 

 
Figure 122. Link the model with the variable 
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Figure 123. Function Block Parameter: ADAMS Plant window 

The following settings is refined by proceeding with the simulation experiment 

debugging. The Interprocess is set to PIPE(DDE). If the two software are not running 

on the same computer, the Interprocess is set to TCP/IP, and a communication link 

will need to be setup. Adams/Solver is set to Fortran. The Communication Interval is 

set to 0.005, which means the data communication between ADAMS and MATLAB 

will happen every 0.005s. The Simulation Mode is set to discreate, if not the Rover 

will go through the terrain. The Animation mode is set to interactive, which enables 

interactive calculations between ADAMS and MATLAB, and while the co-simulation 

is running the ADAMS/View will show the simulation as the Rover moves through 

the path. If batch is selected, instead of interactive, the simulation will be in batch 

processing and no simulation animation will show. Finally, the simulation time is set 

to 800 in the Controls_Plant_model.mdl, so that there is enough time for all the rover’s 

simulation to move through the path is completed. 



224 

 

 

Co-Simulation Result Data Processing  

1. After the co-simulation is finished, the ADAMS interface will automatically be 

closed and a .res file will be automatically generated. 

2. Use the shortcut key F8 to enter the post/processor interface, select 

file>import>result file, select the newly generated controls_plant_1.res file under 

the file name, and select model_car under the model’s name. Finally Click OK.  

3. Right-click anywhere on the result processing area, then select load animation, 

select the corresponding res file, and then the animation will start play. Note that 

when playing the animation, the frame increments have to be a larger value, such 

as 100, otherwise due to the amount of data being too large, it could result in 

insufficient computer memory. 

4. Right-click the simulation window in the data window shown below in Figure 124, 

and select as shown. The vehicle speed curve is then drawn.  
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Figure 124. Simulation window 

5. In the same window, add the torque value and change the content of the Result Set 

box to torque_pos, as shown in Figure 125 below. 

 
Figure 125. The Result Set box selecting torque_pos 

6. Then click the multiply button, set by the tool above, and select two curves torques 

and speeds to multiply. A new curve will appear, and this is the power curve 

(E=FV), as shown in Figure 126. 
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Figure 126. Power curve generation 

7. By integral the third curve, the corresponding energy consumption can be obtained. 

There is a conversion relationship between the energy consumption calculated here 

and the real energy consumption. Because the above is a single-wheel’s torque, it 

is multiplied by the speed of the car. In the real word it should be the torque 

multiplied by the speed and by two wheels, so it is double of the one shown. 

Problems and Solutions of Co-Simulation 

Path is Too Long 

If the planned path is too long, the amount of simulation data will be too large, 

resulting in the inability to post-process the data. Increasing the control cycle can 

reduce the amount of data, but the effect of the control result will be worse. To solve 

this, a long path can be broken down to shorter paths, and thus the co-simulations can 

be done with shorter paths. 

 Animation Playback Needing More RAM 

During animation playback, increase the frame increment, otherwise it is easy to 

run out of memory, even with 64GB computers. This can be accounted for by 

increasing the system memory. 
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Co-Simulation Contact Force Invalid 

The four wheels of the vehicle define the contact force on the road surface entity, 

which can be simulated normally when using ADAMS alone. However, when using 

MATLAB for joint co-simulation, it is found that the contact force fails and the model 

directly passes the terrain and falls through. To solve this, the user can set the 

Simulation Mode to discreate in ADAMS in the export control parameters set.  

 Robot Wheel Skidding 

If the contact set between the wheel and the terrain is not set correctly, slipping is likely 

to occur. Changing the contact method from friction to impact will solve this problem. 


