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i 

ABSTRACT 

This thesis examines the use and value of fuzzy sets, fuzzy logic and fuzzy inference in 

wireless positioning systems and solutions. Various fuzzy-related techniques and 

methodologies are reviewed and investigated, including a comprehensive review of fuzzy-

based positioning and localisation systems.  The thesis is aimed at the development of a 

novel positioning technique which enhances well-known multi-nearest-neighbour (kNN) 

and fingerprinting algorithms with received signal strength (RSS) measurements. A fuzzy 

inference system is put forward for the generation of weightings for selected nearest-

neighbours and the elimination of outliers. In this study, Monte Carlo simulations of a 

proposed multivariable fuzzy localisation (MVFL) system showed a significant 

improvement in the root mean square error (RMSE) in position estimation, compared with 

well-known localisation algorithms. The simulation outcomes were confirmed empirically 

in laboratory tests under various scenarios. The proposed technique uses available indoor 

wireless local area network (WLAN) infrastructure and requires no additional hardware or 

modification to the network, nor any active user participation. The thesis aims to benefit 

practitioners and academic researchers of system positioning. 

 

Keywords: wireless positioning, localisation algorithms, fuzzy inference, RSS, kNN, 

WLAN. 
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1 INTRODUCTION 

1.1 Overview 

A positioning or localisation algorithm can be defined as a set of processes to determine an 

unknown location of a target in a predefined space. For centuries, people relied on maps to 

pinpoint the location of objects in a predefined area. But with the astonishing development 

of global digital mapping, the technology used to determine the position of objects has 

changed dramatically. 

In particular, the emergence of telecommunications, especially wireless 

telecommunications, in the last century, and its widespread incorporation into portable, 

handheld devices, has revolutionised the use of positioning algorithms and positioning 

systems. The origin of this revolution in technology may be traced to the requirements 

imposed by communication authorities on telecommunication service providers—primarily, 

the E911 rules first mandated in 1996 by the US Federal Communication Commission 

(FCC). The E911 required cellular network operators to incorporate techniques to determine 

the location of an emergency caller. In emergencies, a more accurate estimation of a caller's 

position aids faster response times, and improves the ability of first responders to better 

allocate their resources when busy with multiple or major emergencies. The E911 required 

two levels of implementation. The first is to identify the phone tower that conducted the call, 

using the so-called cell identification technique  [1]. The second imposed a strict accuracy 

requirement of 50 metres, a requirement which has yet to be fully achieved. Since the 

majority of calls are made from mobile devices and from indoors, the commission amended 

its mandate in 2015 to add an accuracy requirement for the vertical position of the caller in 

addition to the horizontal in order to pinpoint, for example, the floor in a high-rise building 



 

 

 

2 

from which the emergency call is made. Unfortunately, current positioning technologies 

implemented for outdoor environments do not work nearly so well indoors. 

The E122 standards implemented in Europe in 2001 are similar to the E911. Both sets of 

standards stipulate the required accuracy of location estimation. In doing so, both have 

driven the development of location-based services (LBSs) in which the quality of service is 

correlated with achieved position accuracy. In addition to the impact of E911 and E122, LBS 

applications received a significant boost following the development of new handheld devices 

such as the smartphone and tablet PC [2].  

The arrival of smart handheld devices brought new location-related challenges to the fore. 

First, the richness of the sensory information typical in these devices creates a high demand 

for battery power; this demand in turn limits the use of self-localisation techniques which 

require large processing capabilities, and therefore more power. Second, the increasing use 

of these devices indoors complicates the localisation task due to their dependency on the 

Global Positioning System (GPS) and the Global System for Mobile Communications 

(GSM). The GPS signal is not designed to penetrate walls and the GSM is unable to access 

indoor environments because it lacks prior information about the indoor network 

infrastructure. In addition, smartphones may be connected by another means—for example, 

through the wireless local area network (WLAN) infrastructure in an indoor environment.  

It is evident that positioning systems are heavily dependent on many factors, including the 

environment, adopted technology, type of sensory information, communication protocols, 

available resources, time constraints, computational cost, accuracy and precision 

requirements, and the availability of local and global maps and grids. All these factors 

influence the choice of an appropriate positioning algorithm. 
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1.2 Research Scope and Aim 

The present research project began with an investigation of WLAN environments and efforts 

to model these environments with the techniques collectively known as soft computing. At 

the outset, the main goal was to develop a model for a WLAN environment using a fuzzy 

inference-based system to handle the uncertainties pervading the environment. Later, the 

research scope was narrowed to focus on localisation and positioning in WLANs with 

service orientation. The localisation process for indoor WLAN environments addresses 

many detailed issues in the design of WLAN hardware, software and applications. 

Uncertainties in WLAN operation—including systematic errors from measurement devices, 

random noise from the inherent properties of the signal, and biased, uncontrolled errors due 

to non-line-of-sight (NLOS) obstacles—increase the need for robust models of WLAN 

environments. This need has been heightened by increasing demands on WLAN services in 

recent years. As many of these services are location-dependent, accurate location estimation 

has become paramount. Moreover, many services require a guaranteed level of quality of 

service (QoS) which, in turn, puts a greater burden on location estimation when LBSs are 

involved. Since service providers often suffer from limited resources within their systems, 

an efficient resource utilisation/allocation algorithm is necessary to guarantee a desired level 

of QoS. This raises several challenges for researchers: (i) eliciting the environment 

parameters; (ii) designing an appropriate fuzzy logic based model system using a proper 

rule-based approach; and (iii) accounting for the dynamic interaction of various parameters 

(QoS, LBS, rule-base system and WLAN) in the context of evolving wireless environments 

(presence of obstacles, diminishing signal strength, moving targets and partially known or 

unknown environments).  
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This research was focused on dynamic environments to enhance our understanding of 

inherent parameters and their interactions in WLAN environments. The research aimed to 

model the localisation technique(s) for indoor environments with any WLAN 

communication topology by using soft-computing capabilities, specifically, fuzzy logic. The 

novel aspect of the research lies in creating a generalised localisation model for indoor 

WLAN environments or enhancing already existing models with respect to QoS and 

resource use measures. This may be achieved through the reasoning power of fuzzy 

inference to reduce the burden of uncertainty associated with most available localisation 

systems. The proposed methodology, which is based on a fingerprinting technique, focused 

not only on designing, implementing and testing a fuzzy approach for the location 

estimation, but also on novel enhancements to the existing multi-nearest neighbour (kNN) 

algorithm. Specifically, a fuzzy inference system (FIS) was proposed with two input 

variables: the distance, which is interpolated from received signal strength; and the variation 

in the received signal strength (RSS). Those two inputs are used to generate weights for 

every selected nearest neighbour, Then, later, before calculating the estimated location, an 

'outliering' step takes place to eliminate wrongly-selected nearest neighbour fingerprints. 

1.3 Contribution 

This thesis offers an innovative analytical and methodological approach in estimating object 

location in indoor wireless environments. It combines a proximity-based approach, 

specifically, the kNN, with analysis of the RSS fingerprint. This approach offers advantages 

for overcoming the inherent uncertainties of available algorithms and ill-defined cases. It 

also provides a setting for fuzzy set theory to tackle the uncertainties pervading the RSS due 

to random signal variations in indoor environments, the multipath of received signals, 

reflection, diffraction and other sources of noise on Wi-Fi public band frequencies. 
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The proposed RSS fingerprinting algorithm depends on combining the kNN algorithm with 

a Takagi-Sugeno (TKS) fuzzy inference system—that is, a Takagi-Sugeno FIS or TKS-FIS. 

In practice, this entails infusing the TKS with the distance 𝐷𝑗 , the Euclidean or 'straight-line' 

distance between a target point 𝑗  and the corresponding nearest-neighbour fingerprint 

selected by the kNN algorithm. 𝐷𝑗  is calculated from the RSS in the collected signal space. 

The process allows the TKS to produce a weighting or degree of participation for every 

single nearest fingerprint in the determination of the target's location, rather than the 

averaging technique common employed in the kNN algorithm. The weighting approach 

guarantees at least partial participation for the nearest neighbour considered to be spatially 

distant from the target, based on blind RSS measurements.  The use of TKS allows the 

algorithm to 'smooth' the value of the produced weighting in the presence of approximately 

±8 dB uncertainty in the propagation model, a value determined by empirical measurements. 

Further, as the Euclidean distance is not sufficient to distinguish between various scenarios, 

an additional means for discriminating the quality of RSS was included in the proposed 

system. Specifically, the TKS-FIS was infused with an extra input—the variation in signal—

to construct what is known as a multivariable fuzzy localisation (MVFL) system. The 

infusion of the extra data allows us to assess the level of agreement between fingerprints and 

targets, which indicates the summation of changes caused by a particular access point (AP). 

This means that a better sense of the level of association between target fingerprint and 

selected nearest fingerprints  may be obtained when the weighting produced by the TKS is 

high [3]. 

The thesis encourages the use of statistical studies in examining localisation in particular 

environments. Statistical analysis of the MVFL results, using the kNN algorithm, showed a 

non-negligible failure average in determining the actual nearest neighbours in a signal space 
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based on the RSS measurements. This limitation was addressed with an outliering 

mechanism to exclude some of the neighbours selected by the kNN algorithm. The 

mechanism depends on a distance function in the Euclidean space, where every kNN tuple 

is assumed to establish a complete triangle. Where the fingerprints under investigation form 

the corners of the triangle, only the triangle enclosing the smallest area is selected [4].  

Additionally, this thesis offers a classification of fuzzy-based localisation principles and 

evaluate the performance of other approaches according to the performance criteria proposed 

for this research.  

1.4 Thesis overview 

Chapter 2 provides a comparative review of different positioning techniques for WLAN, 

including their historical background and terminology, the challenges faced by positioning 

systems, the uncertainty which pervades wireless positioning, the inherent characteristics of 

fuzzy systems to deal with uncertainty, and fuzzy-based methodologies linked to wireless 

positioning systems. 

Chapter 3 introduces WLAN modelling and localisation methods, location estimation 

systems with their various classification for the deployed techniques, LBSs and their 

applications, the propagation models and, finally, the RSS-based fingerprinting method. 

Chapter 4 introduces fuzzy sets and fuzzy systems by presenting fuzzy set theory and its 

properties for linguistic information representation, fuzzy reasoning, FISs, the construction 

of fuzzy rules and fuzzy arithmetic. 

Chapter 5 outlines the hybridising of the fuzzy system for WLAN and indoor position 

estimation, the methodology employed, the kNN algorithm, the fuzzy inference combined 

with the kNN algorithm, the enhancement to the fuzzy inference via the multivariable 

approach, and the enhancement via robust statistics and the outliering algorithm. 
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Chapter 6 provides the experimental evaluation of the fuzzy-based positioning systems with 

the kNN discussed in Chapter 5. Finally, this section presents concluding remarks and 

possible improvements to the proposal and guidelines for future research directions. 
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2 BACKGROUND 

2.1 Introduction 

The first considerable work on wireless positioning and localisation could be traced back to 

the pioneering work of the Johns Hopkins University Applied Physics Laboratory (APL) in 

monitoring the radio transmission of Sputnik (first human-made satellite by the former 

Soviet Union 1957) [5]. As a consequence of this work, the satellite was approximately 

located along its orbit using the microwave signals emanating from the satellite and its 

Doppler shift effect. This work led to the appearance of the Transit system in 1961 [6] as the 

first satellite positioning system. Gradually, Transit was made obsolete by the emergence of 

the Global Positioning System (GPS) in 1996 [6], which became the most popular and 

widely-used positioning system [7]. Since then, with the astonishing developments in 

wireless technologies, several device-enabled positioning systems have emerged.  

The development of (wireless) positioning technology made a giant step forward after the 

US Federal Communication Commission (FCC) introduced the requirements for safety 

services such as E911 [8], which forces cellular network operators to provide the position of 

wireless terminals at a defined level of accuracy. The E911 has been a significant driving 

force behind research into localisation technologies for almost two decades. In turn, 

localisation research has been central to other critical activities, such as location-sensitive 

billing information, fraud detection, intelligent transportation systems and enhanced network 

performance [1], [8], [9]. 

The importance of localisation in wireless sensor networks (WSNs) arises from several 

factors, including inter alia the identification and correlation of gathered data, node 

addressing, query management of nodes localised in a determined region, evaluation of 

nodes density and coverage, energy map generation, geographic routing, and object tracking. 
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These factors make localisation systems a key technology for the development and operation 

of WSNs. This chapter addresses the localisation problem, with a particular focus on fuzzy-

based reasoning [10]. Although wireless positioning systems originated in the early 1950s, 

and matured with the emergence of several GPS and GSM-type positioning technologies, 

several issues motivate further developments in the field.  

First, after the successful applications of satellite-LBS for outdoor environments, attention 

turned to indoor environments where LBS presents business opportunities to increase 

customer satisfaction by providing targeted information in line with customers' preferences. 

Second, indoor positioning techniques continue to face technical challenges that restrict the 

level of accuracy, including multipath due to NLOS conditions and a higher density of 

obstacles, which worsens signal attenuation. Third, boosted by industrial applications, a 

demand for millimetre and nanometre positioning has emerged. Fourth, with the 

development of 5G networks, it has become possible to establish multiple mobile relays. For 

instance, device-to-device communication (D2D), which currently exceeds 30.6 exabytes 

per month [11], is expected to grow strongly, prompting new collaborative architectures in 

positioning schemes. With exponential increases in data rates and the diversity of mobile 

applications, big data analytics are expected to play a vital role in future LBSs. This 

ultimately opens the door for new positioning algorithms to address fresh challenges not 

seen in previous wireless systems. For instance, technology related to massive multiple-input 

multiple-output (massive MIMO), with data rates in the order of gigabits per second, has 

begun to appear in Samsung and Huawei mobile products [12]. Sixth, the emergence of 

Internet-of-things (IoT) technology enforces the need for new system designs and 

architectures which support reliability, mobility and spectrum management [13]. 
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Numerous review articles have examined wireless sensor positioning technology and 

techniques. For example, Liu et al [14] have closely surveyed the localisation techniques for 

the WLAN environments available in 2005. They proposed a metric to compare 20 available 

localisation systems, depending on the accuracy and the precision of the outcomes, in 

addition to the complexity and robustness of the systems. 

Seco et al [15] have surveyed the available localisation techniques for indoor WLANs, based 

on the mathematical models. They proposed to group these techniques into four categories: 

(i) geometry-based techniques; (ii) techniques based on optimisation principles; (iii) scene-

analysis-based versions; and (iv) Bayesian-based models. Their discussion focused on 

feasibilities and robustness under NLOS constraints and noise removal. 

Mautz [16] has surveyed 13 available solutions for indoor localisation which work at 

centimetre and millimetre wavelengths. He imposed a geodesic point of view on all methods. 

With the survey focusing on optical indoor positioning systems, his proposed metric for 

comparison included the accuracy of localisation, signal frequency parameters, and market 

demand (with some financial analysis based on the cost of imaging devices). 

Bensky [17] provided a comprehensive review of radio‐navigation techniques with specific 

methods for radio distance estimation. Tahat et al. [18] covered more modern developments 

in the field of wireless positioning, with a focus on algorithms for moving receivers.  
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2.2 Uncertainty pervading wireless positioning systems 

Uncertainty is often seen as an inherent operational aspect of any wireless system, regardless 

of the technology employed. However, where the types of uncertainty in sensor networks 

are identified and quantified, more effective and efficient data management strategies may 

be developed. These strategies would straightforwardly enhance the quality of the 

positioning systems. In this respect, several types of uncertainty are distinguishable [18]–

[21]: 

 Communication uncertainty, where a mobile sensor network exhibits intermittent 

connection patterns. Hence, quantifying communication uncertainty of 

communication links would contribute to better routing decisions. 

 Sensing uncertainty, where sensor range and coverage are predominately affected 

by environmental interferences, noise and other systematic physical limitations of 

the sensor hardware. Accounting for such uncertainty through statistical, soft 

computing or other models which capture sensor behaviour would facilitate 

effective sensor deployment strategies. 

 Data uncertainty due to inherent imprecision affecting sensor readings. Assigning 

confidence values or distributions to sensor readings would ultimately improve 

quality and decision-making in networked sensor systems. 

In outdoor urban environments using the cellular network to estimate the position of a 

receiver (mobile client), the signal attenuation radio propagation model offers a means of 

analysis of the receiver's location. However, such a model is jeopardised by NLOS and 

multipath issues, which, in turn, negatively affect the positioning accuracy. Therefore, both 

sensing uncertainty and data uncertainty should be accounted for through appropriate 

uncertainty modelling. Sensing uncertainty can account for signal propagation affected by 
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environmental constraints, as well as factors such as update rate limitation and correlated 

errors from the receiver’s clock offset lag. Data uncertainty can account for fluctuations in 

sensor readings over time. Similarly, the use of odometer-like sensors such as a wheel 

encoder, which provides incremental position measurements, has an unbounded 

accumulation of estimation errors over long travelling distances; this may trigger non-

negligible sensory and data uncertainties.  

Accounting for such uncertainties is of paramount importance. To improve the accuracy of 

location estimates in network-based systems, the choice of a proper tool to deal or 

compensate for uncertainties is crucial to improving the accuracy of the positioning system. 

In this regard, one should acknowledge the capability of fuzzy logic to deal with 

uncertainties. Fuzzy analysis has been extensively used and successfully applied in various 

disciplines and at various levels. By providing a notational platform for the representation 

of knowledge and inductive reasoning in imprecise and uncertain circumstances, fuzzy 

systems are a vital field for the application of fuzzy set theory. Fuzzy sets can incorporate 

human knowledge, granular computing, deterministic and 'crisp' (i.e., not fuzzy) information 

to describe complex system behaviours without recourse to precise mathematical models, 

notably for the positioning problem discussed above. 

2.3 Characteristics of fuzzy systems in dealing with uncertainty 

Fuzzy logic (FL) introduced by Zadeh in the 1960s [22] is a form of multi-valued logic that 

formalises approximate reasoning. The base of FL is the fuzzy set, which is a generalisation 

of the classical set. FL aims to model human reasoning, which is approximate by nature, 

rather than precise, and permit the inference of a possible, imprecise conclusion from a 

collection of imprecise premises. For instance, knowing that: 

IF Node A is CLOSE to Node B, THEN mobile accuracy is HIGH 
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AND, IF Node A is FAR from Node B THEN mobile accuracy is MEDIUM, 

We want to infer the state of mobile accuracy IF Node A is VERY FAR from Node B. 

The meaning of an imprecise proposition is represented as an elastic constraint on (linguistic) 

variables, while the inference is derived through propagation of these elastic constraints. 

This extends the domain of inference systems of propositional, predicate and multivalued 

logics. FL provides a systematic framework for dealing with fuzzy quantifiers (e.g., very, 

high, most) and enables the underlying theory to subsume both predicate logic and 

probability theory. In turn, this characteristic of fuzzy logic makes it possible to deal with 

various types of uncertainty within a single conceptual framework.  

In addition to its value as a conceptual framework for approximate reasoning—using 

linguistic variables, fuzzy quantifiers, fuzzy rules, canonical forms and connectives—the 

mathematical foundation of the fuzzy logic offers an attractive platform for applying fuzzy 

logic in real-life applications. [23], [24]. 

Fuzzy set theory is a broad discipline with many sub-divisions. FL is just one topic within 

the discipline; many related topics are discussed in the literature, including fuzzy arithmetic, 

fuzzy mathematical programming and fuzzy topology [25], [26]. The development of fuzzy 

set theory has given rise to fuzzy estimation, fuzzy optimisation, fuzzy pattern matching and 

fuzzy classification. These techniques have found numerous applications in wireless 

positioning systems. 

From a mathematical representation point of view, any linguistic variable takes values from 

the linguistic domain rather than from the domain of real numbers [22], [27], [28]. For 

example, 'distance' is a linguistic variable with values close and far. These values are used 

as labels for fuzzy sets, where each fuzzy set is expressed by a membership function, e.g. 

μdistance(u), with a degree of association within the real number interval [0, 1].  
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For instance, μdistance(u)is expressed by the following membership function: 

𝜇𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢) = {  

1     𝑖𝑓 𝑢 ≤ 20            
1

𝑢
    𝑖𝑓 20 ≤ 𝑢 ≤ 50

0    𝑖𝑓 𝑢 > 50           

   (2.1) 

An example of a rule where this can be applied is:  

IF distance is “close” AND elapsed time is “short” THEN weight is “high”. 

According to Alcalá-Fdez and Alonso [29], its ability to handle uncertain information in a 

methodical order, makes FL a wise choice for modelling the non-linear and complex systems 

or drawing inferences from expert-like rules. Developing fuzzy logic components, including 

connectives, optimal numbers of fuzzy rules, and the parameters for underlying fuzzy sets, 

is widely debated and several contributions in the field are available. Examples of fuzzy 

software available can be found at [29], and [30].  

Although most applications of FL since the early 1970s are in software, several hardware 

related applications are noteworthy. For instance, Toga and Watanabe at Bell Laboratories 

developed the first fuzzy chip in 1985 [31], which served as the basis for many commercial 

applications in intelligent systems and expert system-related applications. Yamakawa’s 

fuzzy computer [32] is often seen as an important milestone in the development of sixth-

generation computers, which are capable of handling data intelligently and similar to human 

reasoning. The development of fuzzy logic has also benefited from the development of 

standards, namely, the IEEE 1855–2016 standard for the fuzzy markup language FML, 

which has the ability to model fuzzy logic systems in a human-readable language and is 

executable on any hardware platform [33]. 

Another advantage of fuzzy systems is their ability to function as standalone applications, or 

fully or partially combined with other systems and techniques. Fuzzy systems may augment 

or hybridise other systems (e.g., neural networks, genetic algorithms (GAs), stochastic and 
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statistical systems) yielding hybrid modes of, inter alia, estimation theory and control. 

Moreover, they are extendable to handle data representation and manipulation (e.g., 

arithmetic of fuzzy numbers and operations), reasoning (fuzzy implication and inferencing), 

statistics, classification, clustering and estimation (fuzzy Bayesian, fuzzy Kalman) [29]. 

2.4 Terminology and background of positioning systems 

We refer to an object with an unknown position as the target object or, simply, the target. 

The position or location of the target object may be determined with respect to a predefined 

frame of reference. The frame may be defined on an absolute scale (such as the spatial 

Galilean frame) or on an relative scale (e.g., with respect to nearby objects). A positioning 

algorithm refers to the set of processes, steps or mathematical model(s) which establish 

spatial relationships between the target and measurements leading to an approximation of 

the target's location. Location-based systems include any system that delivers services 

according to the quality of location estimate required for an industrial, medical, safety or 

other commercial application. Typically, the positioning technology is ultimately linked to 

the context, sensory information and perceived environment, and the positioning algorithm 

employed. 

Figure 2.1 (from [16]) summarises some of these technologies in terms of level of accuracy.  



 

 

 

16 

 
Figure 2.1 Accuracy of various positioning technologies[16]. 

 

As shown in Figure 2.2, the positioning algorithm is heavily dependent on the available 

resources, time constraints, computational cost, accuracy and precision requirements. 

Several factors contribute to the choice of the appropriate positioning algorithm (see Chapter 

3). 

Figure 2.2 Positioning system architecture. 
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2.5 Challenges of positioning systems 

Services based on the proliferation of mobile phones and similar devices are an everyday 

and increasingly important feature of contemporary lifestyle. Many of these services are 

location-dependent—in other words, the quality of received service relies on the quality of 

the acquired location. LBSs necessarily need accurate estimates of location, which in turn 

has fuelled close analysis of the localisation problem and its requirements. 

In commerce and trade, LBSs offer strong potential for business innovation in customer 

services, transportation and navigation. At the same time, we have witnessed a tremendous 

leap in hardware industries associated with handheld devices, along with the development 

in software application, software engineering and cloud computing. ABI Research [34] and 

the FCC [2] have surveyed the business opportunities of location-dependent services, and 

identified a huge potential for various industries. In 2016, IBM [35] estimated that the value 

of indoor location-based business opportunities would reach US$ 10 billion by 2020. A 

recent market report predicted the global indoor location market to reach US$17 billion by 

2025 [36]. 

Standards such as E911 [8] and E122 [37] were adopted depending on the technology 

involved in the services. Later, these standards tended to impose accuracy requirements on 

the services and the service providers. These requirements were possible to meet in many 

instances where the service operated in an outdoor environment. However, when the same 

services shift indoors, these accuracy requirements are hardly ever met. 

From a technical perspective, the LBS industry has faced many challenges, which can be 

categorised into logistical/regulatory and physical challenges. 
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2.5.1 Logistical/regulatory challenges 

The main concern here is the lack of clear and transparent legislation in national 

jurisdictions, but perhaps also in trade and technology agreements to organise the 

relationships between various sectors of the industry. That may include the service providers, 

hardware manufacturers, software developers, clients, operators and any third party involved 

in this enterprise, for example, governments, especially when safety and privacy concerns 

are detected. 

Some of these concerns were addressed in the E911 and E122 rules, but they still are not 

mature enough to be universally accepted. 

2.5.2 Physical challenges 

The main physical challenges (some of which have already been mentioned above) include 

the following: 

 The deployment environment, if mostly indoors, has different requirements to that 

for the outdoors. The size and characteristics of the environment, including its 

geographical area, internal layout and density of devices, is an issue that needs to be 

specifically addressed. Related issues include the network topology in the 

environment, homogeneity in hardware, the mobility and dynamic nature of the 

network component and its users, and the adaptability of the system to potential 

change. An important industry issue is whether the users of the provided services 

are willing to participate in the development cycle by sharing their resources with 

other users and with the system itself. And, finally, is the question of whether data 

processing is centralised or decentralised.  
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 The challenge of utilising available technologies such as GPS or GSM, where the 

proposed solution may be assisted by such technologies or operate standalone. 

 Methodology constraints, which may include the nature of available sensory 

information, the means used to acquire measurements, the type of measurements, 

and the level of ambiguity in the measurements, particularly those mentioned in 

Sections 2.2 and 2.5 above. We may add to those constraints, the computational 

constraints, and time and labour constraints related to costs and accuracy trade-offs. 

An example is the fingerprinting-based technologies. These involve multi-stage 

processing and measurements analysis, but they lack for universal applicability to 

any target environment. 

 Post-deployment constraints, such as quality assessment, resources access 

limitations, privacy issues and the ability to update and maintain sensing platforms. 

2.6 Fuzzy-based methodologies linked to wireless positioning systems 

A key finding of the survey analysis performed for this research relates to the level of 

involvement of the fuzzy-based methodology in the positioning system. From this 

perspective, one may distinguish two main learnings about fuzzy methodologies. First, the 

fuzzy methodology can be part of the core of the estimation process of the target positioning. 

Second, the methodology may play a secondary role in the overall positioning system where 

a non-fuzzy-based algorithm is employed for the estimation process and fuzzy reasoning is 

used as a support the decision maker. 

We shall refer to the first class as incorporated fuzzy positioning (IFP), as shown in Figure 

2.3, and the second class, as assisted fuzzy positioning (AFP), as shown in Figure 2.4 and 

Figure 2.5. 
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In IFP, the fuzzy system is incorporated within the positioning algorithm itself. In this class, 

various directions are possible, depending on how and at what level the fuzzy system has 

been employed. 

In AFP, the fuzzy system assists the positioning algorithm to enhance the result of position 

estimation. For example, the pre-AFP, as shown in Figure 2.4, is used to fine-tune the 

measurements acquired from the environment, detect uncertainty in the readings of sensors 

and receivers, and eliminate noise in the signal. This class is, in particular, considered when 

data fusion techniques are included, and when there are more than one source in the system 

for a measurement . 

Post-AFP is used to calculate errors or uncertainties in the location estimation and provide 

feedback to the position algorithm or to the user to carry out fine positioning tasks or 

maintain the positioning consistency, particularly when the system is combined with another 

estimator such as a Kalman filter.  

Alternatively, it is possible to hybridise the IFP and AFP to increase the uncertainty handling 

features of the positioning system, for example, see [38]–[40]. 

Table 2.1 summarises the literature on the use of fuzzy systems for addressing localisation, 

based on the aforementioned classification. The literature indicates a dominance of IFP-like 

usage in localisation systems. 

Table 2.1 System methodologies. 

IFP [21], [41]–[64] 

Pre-AFP  [67]–[76] 

Post-AFP [65], [66], [77]–[81] 

Hybrid [38]–[40] 
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Figure 2.3 Incorporated fuzzy positioning (IFP). 

 

 

Figure 2.4 Pre-assisted fuzzy positioning (pre-AFP). 

 

Figure 2.5 Post-assisted fuzzy positioning (post-AFP). 
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2.7 Historical background 

Pérez-Neira et al. [82], [83] claim to be the first to introduce fuzzy logic into the object 

tracking problem. The researchers applied fuzzy logic to enhance the performance of the 

classical tracking system. In particular, the model-free function approximation capability of 

fuzzy logic was used to obtain high-resolution angle estimates from the spatial–spectral 

density. Their primary operation was to track the angular positions from sources' snapshot 

vectors. For the proposed system to obtain the distance of two close sources, the system is 

fed with two inputs: the first is the maximum spatial power density (periodogram); the 

second is the main beam normalised bandwidth. It was realised that, in comparison with their 

earlier work, fewer snapshots would be necessary to make a successful angle estimation. 

Moreover, the proposed system was able to produce an estimate for the direction of arrival 

(DoA) with constraints such as the angle separating two nodes less than the predefined 

threshold value in the data vector. The result was a robust tracking system as accurate as the 

minimum variance or Capon DoA estimator techniques, and with less computational 

requirements. 

At first glance, this research may not seem directly related to the positioning problem, at 

least as the problem was introduced. However, insofar as it deals with angle position 

estimation, the research opened a promising door for the use of fuzzy logic in solving other 

positioning problems. 

Contrary to the authors’ claims, earlier studies reveal the use of fuzzy systems to address 

object tracking and positioning. For example, the so-called sketching method was assessed 

experimentally in the early 1980s by Haar [55]as a system to solve the 'Layout Problem'—

that is for deriving symbolic position estimates for objects from a relational scene 

(environment) description. To achieve this, Haar used a fuzzy relational database and 
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inference system. In the algorithm, he employed fuzzy logic at two levels. First, a FIS was 

used to build a relational database among various independent objects in the environment, 

which, in turn, was used to construct a coarse-resolution sketch based on symbolic spatial 

descriptives, i.e., left, right, above, below, distance and bearing. This aimed to produce a 

two-dimensional estimate for the object's position in the environment. Second, the truth 

values were applied as a confidence interval to be associated with each symbolic descriptive 

rule, and utilised for error analysis at a later stage. The technique has several drawbacks, 

including the use of a single interval fuzzy variable and the assumption that the position of 

at least one fixed object must be known. In the case of an unknown object position, not fixing 

the position well initially may lead to poor performance because of the sequential nature of 

this technique. Despite such limitations, the symbolic power of fuzzy logic enhanced the 

sketching results and effectively leveraged a trade-off between spatial relations and 

coordinate positions. More interestingly, this method performed well without much prior 

information concerning the environment, provided a relatively good initial position was 

fixed. 

The use of fuzzy tools in the domain of positioning and localisation has gained momentum 

because these tools may be easily designed and utilised.  

2.8 Parametric measures and evaluations 

To assess the topic rigorously, an evaluation was conducted of the performance of different 

positioning systems obtained from various perspectives in the literature. At the outset, it was 

considered whether the classification presented in Section 2.6 was sufficient. In this regard, 

it was difficult to allocate every proposed system to a single classification. This is because 

any given proposal often attempts to accommodate numerous identified deficiencies in the 

classical positioning system at different levels, thereby overlapping with more than one 
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class. The evaluation of research papers undertaken for the present thesis was conducted 

initially from a purely statistical perspective based on the occurrence of fuzzy-related 

terminology in the title, keywords or abstracts of the selected papers. The evaluation was 

primarily conducted using two well-known scientific databases, IEEE Xplore® and 

ScienceDirect, both databases in which research into positioning technology is widely 

reported and discussed. The two databases also host many scientific journals in relevant 

fields. The evaluation continued to distinguish proposals where a fuzzy tool was employed 

only as an aid to the positioning objectives from those in which fuzzy tools were used to 

represent knowledge and manipulate it at the deepest level. Similarly, the evaluation 

distinguished among the various hybrid schemes between those where the fuzzy-based 

approach was employed with a classical approach or with an approach based on soft 

computing. In each instance particular interest was given to the fuzzy-based methodology 

employed in the underlying (fuzzy) positioning system. The results presented in Figure 2.6 

and Figure 2.7 summarise the relative proportions of the main fuzzy tools employed by the 

identified fuzzy-based approach to tackle the positioning problem, as observed in 

ScienceDirect and IEEE Xplore®, respectively. Surprisingly, while some studies in this field 

[84]–[86] report the use of type-2 fuzzy sets and systems to address the problem of 

localisation, neither database recorded instances of type-2 fuzzy solutions. The results shown 

in the histograms in Figure 2.6 and Figure 2.7 represent only the dominant methods; any 

technique below 1% was ignored. It should be noted further that type-2 fuzzy methods 

sometimes depend on the clustering method class as well, hiding a fine-grained distinction 

among the various clustering methods employed. 

The results in both databases were similar—that is, optimisation-based approaches are 

dominant in fuzzy literature related to positioning systems, followed by clustering-based 
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approaches, then the classification and rulebase approaches, and finally fuzzy arithmetic 

tools. 

 
Figure 2.6 ScienceDirect fuzzy tool histogram. 

 

 
Figure 2.7 IEEE Xplore fuzzy tool histogram. 
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Another interest was to see if fuzzy systems or tools were used as the only means of location 

estimation, or if they were ever combined with other soft computing tools, for example, 

neural networks or classical estimators such as Kalman filters. The results of this 

investigation in ScienceDirect and IEEE Xplore® are summarised in the pie-charts in Figure 

2.8 and Figure 2.9, respectively.  

 
Figure 2.8 ScienceDirect pie-chart. 

 

 
Figure 2.9 IEEE Xplore pie-chart. 

 

The results from the two databases were substantial similar. This includes the dominance of 

fuzzy-alone-based approaches, followed by hybrid fuzzy logic and neural-network-based 

approaches (although these ranked equally in ScienceDirect). Next in frequency were the 

hybrid schemes of fuzzy tools and so-called 'swarm' optimisation, followed by fuzzy tools 
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Fuzzy + 
Neural 

Networks
21%
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with Kalman filter. Finally, a small proportion of surveyed papers (fewer than 5% 

investigated systems based on adaptive neuro-fuzzy inference systems (ANFIS), as applied 

to positioning problems. 

The next level of the evaluation was to introduce performance criteria to compare the 

proposed methodologies. These criteria and parametric measures have been broadly divided 

into four parts: (i) system metrics (Table 2.2); (ii) environment metrics (Table 2.3); (iii) 

fuzzy metrics (Table 2.4); and, (iv) positioning metrics (Table 2.5). 

The comparison discriminated between the fuzzy tools employed as an augmentation to 

other classical positioning approaches and those instances where a fuzzy system-like 

approach lies at the core of the positioning technique. The performance criteria and 

parametric measures are very important in the evaluation to enhance system performance or 

overcome deficiencies observed during the implementation of the position estimation.  

Unfortunately, many of these criteria were not mentioned, even implicitly, in a number of 

the review papers encountered. The performance metrics are summarised as follows.  

2.8.1 System metrics 

The system metrics explained here are summarised in Table 2.2. 

Accuracy and precision 

Accuracy and precision are two important performance metrics in a positioning system. 

Position accuracy is defined as the numerical distance (in metres or centimetres) between 

the actual target position and that of the estimated position. Moreover, precision tests the 

extent to which an estimation varies when it is repeated under the same circumstances. 

Scalability  

In general, positioning systems need to be scalable with respect to geographical space and 

the density of client users or terminal devices. A system is deemed scalable if it is able to be 



 

 

 

28 

deployed in a larger geographical space or serve a larger client population with the same 

quality of service. 

Robustness and adaptiveness  

Robustness and adaptiveness are a measure of how much a positioning system is capable of 

handling unforeseen circumstances or accidental changes in the environment. These include, 

inter alia, malfunctioning of sensory nodes and APs, and the inclusion or exclusion of new 

obstacles which might increase noise and uncertainty levels on the test bed. 

Cost (computation, labour, implementation) 

Computationally fast and plausible algorithms to serve more localisation queries is desirable. 

Efficiency in energy and processing resources is also desirable, especially when the client 

wants to estimate a position using devices with limited capabilities. A need for professional 

labour for the system implementation is not considered cost-effective. 

Complexity (measuring devices, mobile devices & other network components) 

By complexity, we include the type of measuring instruments and required network 

infrastructure necessary for generating measurements or inputs to the positioning system, as 

well as the complexity associated with the estimation process itself.  

Latency 

Latency is often used to quantify the speed of response of a system for positioning queries.  
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Table 2.2 System metrics. 
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[55] low Not tested 

Works with little prior 

knowledge about the 

environment 

low computation cost complex NaN 

[77]  good (1-5 m) Yes 
Able to detect changes in 

the local environment 
low computation cost easy Low 

[69] 0-1 m Yes Not reported low cost easy Low 

[65]  Not reported No 

Able to detect changes in 

the local map if a global 

map is available 

high computation medium low 1-10 s 

[79] 

good  

0.5-20 m  

on each 

dimension 

Yes Yes low computation cost complex very low 

[87] 2.5  

0-5 m 
Yes Yes Low computation time complex medium 

[44] 0-10 m Yes Yes low easy low 1 sec 

[70]  5-15 m No Yes 
high computation and 

time 
complex high 

[71] 0.1 - 0.8 m No No low computation power complex low 

[53] 2 - 5 cm No No low computation power complex low 

[72] 1-3 m No Yes low computation power simple 

very low 

5-15 ms 

 

[38] 5-65 cm Yes Yes high computation medium 
low  

1-3 s 

[52]  Yes Yes very low simple  

[51] 0.5 - 2 m No No low computation power complex  

[50] 0.5 - 5 m Yes Yes 
average computation 

power 
medium 0.5 s 

[59] Not reported Yes Yes   1-4 s 

[63] 90% accuracy Yes Yes very high medium  

[61] 1-3 m No Yes low computation power easy  

[49] 0-200 m Yes Yes high computation complex 1 s 

[67] 0-200 m Yes No low computation power simple 1-2 s 

[62] 0.10-80 cm No Yes low computation power simple very low 
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[64] 0-0.5 m No Yes low simple low 

[56] 0.5-2 m No Yes low computation power medium low 

[42] 3-8 m Yes Yes high computation power complex 
high  

40-60 s 

[43] 2 m with 60% No No very high complex 5-10 s 

[88] 0-4 cm 98% No No very high complex 1-3 s 

[89] 35-80 m Yes Yes 
high computational 

power 
complex 60-70 s 

[73] 40 cm 86% Yes No medium cost simple 50-60 s 

[21] Not reported Yes No medium cost medium 1 s 

[45] 95% Yes No low cost simple 3 s 

[90] 2 m with 66% No No low cost simple NaN 

[74] 1 m with 75% No No medium medium 1 s 

[46] 0.35-1.70 m Yes Yes low low 2 s 

[47] Not reported No Yes high medium 2 s 

[3] 0-0.5 m Yes Yes low low 50 ms 

 

Examination of the surveyed studies in Table 2.2 indicates that those in which fuzzy 

localisation techniques were employed are primarily related to mobile robotics, 

manufacturing, cellular systems, and indoor positioning using Wi-Fi, Bluetooth, RFID and 

laser scanning and vision systems. Irrespective of the applied methodology, various 

disciplines, expectations and technologies used commonly induce distinct accuracy and 

performance levels. 

When compared with studies in positioning systems generally, the identified studies reveal 

a relatively low citation score. This suggests a lack of involvement of the fuzzy community 

in influencing the current ISO standards and known IEEE research groups on positioning 

systems. Therefore, further research should be conducted in this field to establish a 

benchmark.  

When considering the accuracy achieved by the studies reviewed in Table 2.2, one notes an 

accuracy of around one centimetre. However, we should also consider the sensory range of 
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the applied sensors. From this perspective, the range of the utilised sensors is also limited to 

around one centimetre to a few metres since ultrasound, Wi-Fi, and laser scanner-like sensors 

have an inherently limited range. 

In respect of complexity, although most of the fuzzy-based positioning papers focused on 

low-cost sensory architectures, Table 2.2 demonstrates that they yield reasonably low to 

medium computational cost, with very few studies reporting high computational costs. These 

few studies were mainly related to methods where extra network infrastructure would be 

required to trigger the associated measurement method to ensure synchronisation between 

the emitter and receiver, e.g., in the case of time difference of arrival (TDOA).  

Regarding scalability, it turns out that most of the surveyed studies in Table 2.2 did not 

consider such factors, especially when the approach applied only low-cost sensors and did 

not require infrastructural change. Otherwise, if additional hardware were required to run 

the positioning system, the scalability of the approach was trivially questioned. Similarly, 

approaches that subsume full or even partial knowledge of the environment to run the 

positioning system have limited scalability as well.  

We distinguish some papers, e.g., [70], based only on simulation studies, from those based 

on real-time implementation. Notably, a simulation-based analysis does not necessarily 

justify all the constraints that can be satisfied in a real-time implementation-related work. 

Therefore, their outcomes should be viewed with caution. 

Concerning latency, a quasi-majority of the surveyed studies in Table 2.2 reported a low 

latency, and only three papers reported a latency value higher than 10 seconds. In fact, the 

papers that revealed a high latency have been mainly linked to approaches in which an 

additional step for environment mapping is required. Therefore, on the basis of the 
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complexity of the environment and frequency of activation of sensors, the mapping time can 

thereby substantially increase, which, in turn, increases the latency of the overall system. 

2.8.2 Environment metrics 

The environment metrics explained here are summarised in Table 2.3. 

Map requirements 

A typical localisation scheme requires prior information about the environment. This can be 

done through a site survey. For instance, in fingerprint-based schemes, the collected patterns 

are annotated with their physical or symbolic fixes manually before the positioning 

algorithm is initialised. Other schemas may require a geographical map to obtain absolute or 

relative estimates of the position. 

Acquiring location fix 

Some positioning systems may require the location fix from user devices, which could be 

obtained via GPS or other means in order to offer reasonable accuracy. Other positioning 

systems do not require this. Positioning systems able to maintain the same level of accuracy 

without the need for a location fix are more attractive. 

Usage of indoor/outdoor landmarks 

A feature of an ideal positioning system is its ability to process the target estimation 

anywhere without prior knowledge concerning the layout of the deployment environment. 

Numerous positioning systems, for example, the fingerprint-like approaches, require 

knowledge about the APs' locations to approximate a distance to the target. Similarly, 

navigation-based approaches require predefined locations to trace the trajectory to the 

destination. Therefore, from a system autonomy perspective, positioning systems without 

landmark requirements are considerably preferred over others. 
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Needs additional sensor (or hardware) 

Although numerous sensors are embedded in the handheld devices such as smartphones and 

tablets, some advanced positioning systems, such as in some robotics and manufacturing 

applications, require advanced bandwidth, throughput and special sensory capabilities. 

Therefore, if the target receiver is not designed with such functionality, then the positioning 

systems may not operate properly or, at least, would not be able to deliver the expected 

performance in accuracy and precision. 

Addressing device heterogeneity 

On the basis of the same network conditions, it has been found that the accuracy of some 

positioning systems is significantly affected by the type of measurement device, especially 

those that depend on RSS or time of arrival (TOA). Consequently, device heterogeneity is 

addressed as another metric parameter for evaluating the positioning system.  

User participation  

The idea behind calibration-free positioning systems is to involve users to participate 

implicitly in order to construct a training database. Any user carrying a wireless device may 

be expected to contribute to the radio-map construction. This participation is more attractive 

compared to the scenario where the professional deployment personnel explicitly inputs 

location fingerprint data as feedback to the system. The user approach allows building a 

more comprehensive and denser database, as well as a scalable system, provided the 

minimum accuracy requirement is still achievable without this participation. 

Scale  

The size of the deployment environment is a fundamental issue when evaluating a 

positioning system. It can be addressed from two points of view. First, some large-scale 

networks would require massive data analysis prior to deployment of a positioning system. 
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On the other hand, some small-scale environments might lack the infrastructure to support 

the required positioning system. Second, from a business perspective, as the cost of 

deployment in a small environment is often much less than in a large one, this may give 

small-scale systems an advantage when it comes to commercialising the products.  

Table 2.3 Environment metrics. 
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[82] outdoor No No No Yes No No large scale 

[55] indoor Not necessary Few No No No No small scale 

[68] outdoor Yes Few No No No No small scale 

[77] indoor Yes Yes No No Yes No medium scale 

[69] outdoor No Yes No No No No large scale 

[65] indoor Yes Yes Yes Sonar  No medium scale 

[79] outdoor No No No No Yes No large scale 

[87] outdoor No Yes  

Yes, yaw-rate 

sensor, 

speedometer, 

DGPS 

No Yes medium scale 

[44] outdoor No  No No   large scale 

[70] outdoor No Yes No No Yes No large scale 

[71] indoor Yes Yes Yes Yes Yes No small scale 

[53] indoor No No No Yes No No very small scale 

[72] indoor Yes Yes No No Yes No medium scale 

[38] indoor No No Yes Yes No No small scale 

[52] indoor No Yes No No Yes No medium scale 
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[51] outdoor No Yes No Yes No No medium scale 

[50] indoor No No No No Yes No medium scale 

[59] indoor Yes No No No No No small scale 

[63] indoor, outdoor No No No No Yes No medium scale 

[61] indoor No No No No No No small scale 

[49] outdoor No Yes No No Yes No very large scale 

[91] outdoor No Yes No No No No very large scale 

[62] indoor Yes No Yes Yes Yes Yes medium scale 

[64] indoor No Yes No Yes No No small scale 

[56] outdoor NO Yes No Yes No No medium scale 

[42] outdoor No Yes No Yes Yes No very large scale 

[43] indoor Yes No No No No No small scale 

[88] indoor Yes Yes Yes Yes No Yes very small scale 

[89] outdoor Yes No No Yes No No large scale 

[73] outdoor Yes Yes No Yes No No large scale 

[21] indoor No Yes Yes Yes No No small scale 

[45] indoor No No No No No No medium scale 

[90] outdoor No Yes No No No No small scale 

[74] indoor No Yes Yes No No Yes small scale 

[46] indoor No No Yes No No No small scale 

[47] indoor No Yes Yes No No No small scale 

[3] indoor No Yes No No Yes No medium scale 

 

Consideration of the results presented in Table 2.3 reveals that the application of fuzzy-based 

positioning systems is equally focused on indoor and outdoor positioning. 

In respect of the requirement of environmental knowledge, the application of fuzzy systems 

follows roughly the development of the navigation systems, where clear differences between 

fully known, partially known, and fully unknown environments are evident. This shows that 
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the proposed fuzzy-based approaches are mainly associated with mapping and modelling of 

the surroundings or perceived environment. Also includes the grid-based approach, 

polygonal approximation (such as ultrasound beam or cellular grid network modelling), 

integration over a travelled distance path as in odometer-like sensing, and a straight line from 

known beacons. Accordingly, they derive a position estimation.  

Examination of the environmental knowledge constraint in the identified studies 

demonstrated that most such studies may be separated by subject into: (i) GPS positioning 

systems or differential GPS; (ii) local-based sensory strategies for proprioceptive-sensor in 

mobile robotics; or (iii) sensor node positioning in a large-scale WSN.  

Moreover, the classification in Table 2.3 is rather subjective. For instance, one may expect 

all the fingerprint-based approaches, e.g., construction of a radio map using APs and RSS 

information, to have a 'map requirement.' However, the authors of such papers, e.g., [46], 

claim that the approach does not require any map-related knowledge. Therefore, reproducing 

authors’ claims based on the environment knowledge requirements should be handled with 

caution.  

The choices of location fix and users participation are primarily associated with the 

employed map-building approach. Most map-building approaches would typically require 

some prior knowledge of the environment, modelling structures (e.g., grid, straight line, 

polygonal cells, cubic cells), and the technologies employed. An example is the case of a 

cellular network that utilises the RSS intensity to calculate mobile positioning. In this case 

one requires information about the location and heights of the base stations, power, and the 

type of environment (e.g., rural, urban, height of buildings, wideness of streets), to tune the 

parameters of the radio propagation models that interpret the RSS intensity as a mobile base 

station distance. Similarly, to turn RSS intensity into distance or use any estimation-based 
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technique, the use of triangulation with the Wi-Fi signal in the indoor environment would 

require at least the location of the AP. To apply vision-based techniques, for example, 

determining the target position with respect to identified beacons, a beacon approach 

requires knowledge of the beacon locations, type and shape. In a WSN array, the location of 

the target node would require knowledge of the reference nodes that may be applied to obtain 

the target’s physical location. 

We distinguish at least two types of users participation in the surveyed papers. The first 

follows the crowdsourcing approach, where users report their locations together with the 

observations (images, RSS). This information is then used to build mappings of the 

environment. The second type is employed as a training phase to generate a model for 

position estimation. It uses a user interface as a part of the estimation process, where the user 

may intervene to validate or prioritise some typical choices.  

The observation of the scale result shows a quasi-majority of the indoor fuzzy-based 

positioning systems, which act in medium and small-scale environments, whereas the 

outdoor positioning systems act in medium and large-scale environments. The system 

described in [69], which examined a small-scale array of a WSN, is an exception; it is related 

to the outdoor environment but is considered small-scale.  
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2.8.3 Fuzzy evaluations 

The fuzzy metrics explained here are summarised in Table 2.4. 

Fuzzy hybridisation 

This measure indicates whether the fuzzy-based approach was used alone or with (or assisted 

by) another approach (e.g., Kalman filter or other soft computing such as neural network, 

GA or ANFIS). This can be useful for researchers who are interested in the relevance of 

specific hybrid schemes. 

Level of the implementation process 

This examines how the fuzzy tool is actually implemented within the overall localisation 

algorithm. For example, the fuzzy-based approach was used in many cases to assign relative 

weights to some parameters which were employed in subsequent reasoning. Some proposals 

explored the universal approximation ability of fuzzy reasoning to tackle system 

nonlinearities, and some used fuzzy reasoning to enhance user–system interaction. 

Type of inference 

Fuzzy inference is a fundamental application of fuzzy set theory and fuzzy logic. The 

literature contains two common types of inference systems: (i) Mamdani; and (ii) Takagi–

Sugeno (TKS). The Mamdani system primarily has output membership functions, whereas 

the TKS inference system has a crisp output. The former applies the defuzzification 

technique to a fuzzy output, whereas the latter applies a weighted average to compute the 

crisp output. The former is suitable for capturing expert knowledge, but it requires a 

substantial computational burden because of the defuzzification step. The latter works well 

with optimisation and adaptive techniques which customise dynamic nonlinear systems to 

the best data model. In addition, it is computationally more efficient [92].  
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Type of membership functions 

The membership function (MF) is a very delicate point in the design of a fuzzy-based 

positioning system. The choice of MFs should be done after studying the effects of MF 

characteristics such as cardinality, normalisation, completeness and overlapping, which 

together give a certain robustness to the system, and where, for instance, the level of 

robustness may be tracked to modify the model.  

Number of rules, variables, sets 

Concern about the number of MFs employed in any system is heightened due to their direct 

impact on the whole system performance, since any fuzzy set can be expressed as a group 

of MFs. The task requires balancing two countervailing factors. First, the uniqueness of 

representation and rule firing can affect flexibility within the system, as suggested in [92]. 

Second, the existence of unnecessary or redundant rules and input variables decreases error 

rates, which emphasises the impact of input selection and rule firing on computational time 

[93]. 

Type of defuzzification 

Defuzzification is a critical factor when implementing a fuzzy inference engine and 

variations such as execution time and instruction count, due to the high computational 

demands of defuzzification algorithms. Van Broekhoven and de Baets [94] have offered 

some guidance to the designer by choosing the most proper defuzzification method based on 

the application context. This approach might represent the different trade-off points in cost 

and accuracy. Knowing the trade-offs helps the designer to choose the defuzzification that 

best fits the precision requirements with minimum computational power demand, resulting 

in better coverage, delay and power consumption in hardware or less execution time in 

software implementations. Comparisons of new defuzzification techniques were reported by 
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Mahdiani et al.[95], namely, trapezoid median average (TMA), weighted trapezoid median 

average (WTMA), and trapezoidal weighted trapezoid median average (TWTMA). It would 

be beneficial to have these new techniques coded and tested.  

Rule base construction and rule simplification 

Often the applied rule generation technique suggests employing a rule simplification as a 

parallel action. This is justified by a reliance on the data-driven techniques in forming the 

rulebase, which often results in an excessive number of interpretations of the same rules. As 

a consequence, the system tends to be more complex and less transparent. 

Data-driven techniques are founded on two alternative principles: (i) the balance between 

simplicity and accuracy; and (ii) the balance between linguistic interpretability and accuracy. 

Either principle results in the so-called 'curse of dimensionality,' which necessitates 

employing rulebase simplification. Some of the simplification techniques contain similarity 

analysis, set-theoretic similarity measures and orthogonal transformation-based methods 

[96].   

Table 2.4 Fuzzy metrics. 
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[82], 

[83] 
Fuzzy LMS Angle estimation Mamdani triangle 

2 variables  

9 rules 
Centroid  

[55] Fuzzy only 

Position estimation 

and error 

measurement 

Mamdani triangle 6 variables Centroid  

[68] Fuzzy only 
Error measurement 

propose solution 
not used NaN NaN NaN NaN 

[77] Fuzzy 
Uncertainty and 

confidence interval 
not used trapezoidal 3 variables NaN not used 
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[69] Fuzzy 
Enhance positioning 

accuracy 

Mamdani 

approximate 

reasoning 

singleton 
3-4 variables  

with 12 rules 

Centre or 

area 
 

[65] Fuzzy Location estimation Mamdani triangle 3 Maximum  

[79] Fuzzy & GA & 

Kalman 
Location estimation Mamdani triangle 

3 variables  

with 30 rules 

Mean of 

max 
GA 

[97] Fuzzy & 

Kalman 

Fine tuning Kalman 

filter parameters 

mixed 

Mamdani-

Sugeno 

triangle  
Centre of 

gravity 
 

[44] Fuzzy 
Location estimation  

(FIS) 
Mamdani triangle 

9 variables 

 with 
  

[70] Fuzzy 
Pre-AFS uncertainty 

with input data 
Mamdani triangle 2 variables Maximum No 

[71] Fuzzy 
Obtain confidence 

interval 
Mamdani Gaussian 3 vars., 9 rules Centroid  

[53] Fuzzy + EIF 
Improve localisation 

accuracy 
Mamdani triangle 

3 inputs 

 45 rules 
Max-min GA 

[72] Fuzzy Map building Mamdani Gaussian 16 input   

[38] Fuzzy 
Map building and 

position estimation 
Mamdani trapezoidal 6 inputs 

Centre of 

gravity 

Product 

norm 

[52] Fuzzy Position estimation Mamdani triangle 

5 inputs 

-3 variables  

15 rules 

Centroid NAN 

[51] Fuzzy + GA + 

neural net 
Weighting anchors Mamdani trapezoidal 

5 variables  

15 rules 
Centroid  

[50] Fuzzy 
Weighting near 

neighbours 
Mamdani trapezoidal 

4 variables  

15 rules 
Centroid  

[59] Fuzzy Position classification Mamdani trapezoidal 
4 variables 

 28 rules 
Centroid 

Yes / tree 

reduction 

[60] Fuzzy + neural 

net 

Position estimation 

and movement 

tracking 

TKS triangle 
4 variables  

19 rules 
 ANFIS 

[63] 
Fuzzy + 

machine 

learning 

Location estimation 

and  

enhance estimation by 

compensating the 

small-scale variations 

Max-min 

Winner rule 
triangle 

6 & 12 inputs  

with 3 to 9  

linguistic 

terms  

& 2 variables  

266 rules 

Max 
Similarit

y analysis 

[61] Fuzzy Distance estimation TKS triangle 2 variables   

[49] Fuzzy 
Degree of satisfaction 

estimation 
Mamdani trapezoidal 4 variables Max  

[91] Fuzzy 
Enhance positioning 

accuracy 
Mamdani trapezoidal 1 variable Max No 
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[62] Fuzzy Position estimation Mamdani triangle 3 variables   

[64] Fuzzy Coordinate estimation Mamdani triangle 1 variable Height  

[56] Fuzzy Weighting anchor Mamdani trapezoidal 4 variable Centroid  

[42] Fuzzy + Kalman 
Estimate the state 

prediction of filter 
TKS Gaussian 6 variables   

[43] FCM 

Determine position at 

multi-stage clustering 

system 

  k-inputs Centroid  

[88] Fuzzy sets 

Represent uncertainty 

in sensor 

measurements 

 trapezoidal 2 inputs Max  

[89] Fuzzy + Kalman 
Tune the covariance 

matrix of KF 
Mamdani 

trapezoidal-

triangle 

1 input  

9 rules 

Weighted 

average 
 

[73] Fuzzy 
Score weight for 

neighbour hop 
Mamdani trapezoidal 

5 inputs 

 15 rules 
Max  

[21] Fuzzy 

More than one level, 

including position 

estimation 

Mamdani triangle 
2 inputs  

18 rules 

Weighted 

average 
 

[45] Fuzzy + neural 

net 

Symbolic estimation 

after training phase 
TKS Gaussian 

3 inputs 

 3 rules 
 FCM 

[90] Fuzzy Location estimation Mamdani + TKS trapezoidal 5 rules 
Weighted 

average 
 

[74] Fuzzy 

Radio propagation 

model noise 

compensation 

Mamdani trapezoidal 
3 inputs 

 24 rules 

Weighted 

average 
 

[46] Fuzzy 
Weighting nearest 

neighbour edges 
  5 inputs   

[47] FCM 
Carry out fuzzy 

partition 
  5 inputs   

[3] Fuzzy 
Position estimation 

and weighting kNN 
TKS trapezoidal 

2 inputs  

32 rules 
  

 

Consideration of the results presented in Table 2.4 raises several issues. 

The demarcation of fuzzy alone from the hybrid approaches is subjective. Even though the 

classification is primarily guided by the authors’ claims and scrutiny of the underlined work, 

it turns out that numerous fuzzy-alone papers also apply some standard methods of 

regression analysis, statistical means and/or standard deviations, which tends the content 

towards that of a hybrid approach. 
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A large majority of the fuzzy-alone methods unsurprisingly apply FISs as part of their core 

methodology. However, one can distinguish among various classes of application of fuzzy 

inference within the fuzzy-based positioning systems. First, on the basis of the input–output 

perspective, one may distinguish cases where the FIS is applied at the input level to handle 

the uncertainty pervading the inputs. For instance, the FIS may refine the distance 

measurement/estimation so the output of the fuzzy system is a refined distance measure. This 

measure can then be employed as an input to the core positioning estimation algorithm which 

uses triangulation, regression or another estimation-based strategy. From this perspective, 

the contribution of the FIS may be compared to the role of a filter which enhances the quality 

of the input of the positioning algorithm. Second is the use of a FIS to obtain a confidence 

estimate associated with the input parameters, e.g., confidence interval and reliability (either 

single-valued or functional). To be utilised in the position estimation algorithm through a 

weighted regression or probabilistic estimation process, the confidence estimate may be 

applied as complementary data to the inputs. Third are the cases where the FIS is used to 

estimate an entity directly related to the positioning system, e.g., the angular position of the 

target and x–y position of the target. In this regard, the fuzzy rules are elicited so the 

consequent part of the rule contains variables related to the components of the target. The 

latter two approaches seem to be the most dominant trends in the fuzzy optimisation systems 

surveyed here. In addition, a fourth approach involves cases in which the FIS or fuzzy entity 

is jointly employed with another estimator (Kalman filter, neural network or ANFIS). In 

respect of the Kalman filter, one distinguishes the cases where the FIS is applied to generate 

(after a defuzzification step) one (crisp) input of the standard Kalman filter. In fuzzy 

literature, proposals based on what is known as the 'fuzzy Kalman filter' have also been 

considered, in which a variance estimator under fuzzy constraints was investigated. Thus, to 
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optimise the parameters of the FISs (e.g., number of fuzzy rules, fuzzy variables, modal 

values and spread of MFs, and connectives), hybridisation with a neural network or ANFIS 

is mainly employed. A fifth approach corresponds to cases where the localisation involves 

map-building, either concurrently with the estimation process or as a prior step in the 

localisation process. It is important to mention the emergence of fuzzy clustering-based 

approaches employed to identify appropriate landmarks or perform suitable pattern 

matching. In general, fuzzy similarity measures and case-based reasoning techniques are 

employed to identify the most plausible patterns and associative hypotheses.  

Another result arising from Table 2.4 is that all FISs reviewed in the evaluation use 

reasonably few input variables and rules (less than nine variables). This is common in fuzzy 

literature to ensure the interpretability of the results and the computational efficiency of the 

implemented algorithm. Moreover, to model fuzzy input variables considering their 

popularity in the Mamdani-like FIS, the review shows the dominance of a trapezoidal or 

triangular-like MF. 

Surprisingly, for position estimation, there are no reviewed studies that discuss the use of 

fuzzy arithmetic or a fuzzy number-based approach. This may be an area of interest in the 

future. We also note the inherent properties of fuzzy arithmetic where the multiplicity of its 

operations may result in some bias or drift that would require an automatic update. 
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2.8.4 Positioning evaluation  

The final evaluation criterion is not considered as a measure. As shown in Table 2.5, it 

enumerates the positioning system properties based on the classification performed earlier—

that is, the type of location information required, the nature of the localisation system 

(whether absolute or relative), the topology, communication technology/protocol, employed 

calculating algorithm, signal measurement techniques and type of environment.  

Numerous positioning systems and algorithms have been proposed in the literature. 

However, owing to discrepancies of the employed technologies, environmental constraints 

and robustness of theoretical frameworks, it is still difficult to compare the performances of 

these systems and algorithms. Thus, we evaluate their performances categorically, in the 

hope this may provide some basis for future studies or guidelines for further evaluations. 

Table 2.5 Positioning metrics. 
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"Physical "  

or "symbolic"  
 

Self or remote 

direct or indirect 

Wired or wireless  

Wi-Fi infrared 

Geometric 

calculations 

proximity scene 

 

[82] Physical relative remote - direct  Proximity NN DoA 

[77] Physical absolute self-direct ultrasonic Proximity TOF 

[69] Physical absolute remote-direct GPS 
Geometric-

trilateration 
TDoF 

[65] Physical and 

 symbolic 
relative self-direct Sonar Dead reckoning TOF 

[79] Physical absolute self-direct GPS 
Geometric 

trilateration 
TOA 

[87] Physical relative remote-indirect GPS 
Geometric 

trilateration 
TOA 

[44] Physical relative remote - direct GSM-Radio KNN RSS 
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[70] Physical relative remote-direct GSM Radio 
Geometric 

trilateration 
TOA , TDOA 

[71] Physical absolute self-direct infrared Triangulation TOF 

[53] Physical absolute self-direct ultrasonic-infrared Triangulation TOF 

[72] Symbolic relative self-direct WiFi Proximity RSS 

[38] Physical 
relative & 

absolute 
remote-direct Sonar & laser 

Proximity – 

dead reckoning 
TOF, AOD 

[52] Symbolic relative remote-indirect WiFi Fingerprint RSS 

[51] Physical relative remote-direct ZigBee Weighted COO RSS 

[50] Physical relative remote-direct WiFi 

Proximity 

weighted 

average 

SNR 

[59] Physical relative self-direct WiFi 
Proximity 

average 
RSS 

[60] Symbolic relative self-direct WiFi 
Proximity 

average 
RSS 

[63] Physical absolute  WiFi Fingerprint RSS 

[61] Physical relative remote-direct ZigBee 

Proximity 

weighted 

average 

RSS 

[49] Physical absolute remote-indirect GSM-Radio 
Generalised 

mean value 

RSS, TOA, 

AOA 

[91] Physical absolute self-direct GSM-Radio Cell of origin RSS 

[62]  relative self-direct WiFi  RSS 

[64] Physical relative remote-direct ZigBee 
Fingerprint + 

kNN 
RSS 

[56] Physical absolute remote-direct ZigBee 

Fingerprint + 

weighted 

average 

RSS 

[42] Physical absolute remote-direct GSM-Radio 
Weighted 

average 
RSS + TOA 

[43] Physical relative self-direct WiFi Fingerprint RSS 

[88] Physical relative self-direct Sonar Triangulation AOA 

[75] Physical absolute remote-direct GSM-Radio Triangulation RSS 

[73] Physical relative remote-direct infrared Hop-count RSS 

[21] Physical relative self-direct Radio Multilateration RSS 

[45] Symbolic relative self-direct WiFi Fingerprint RSS 

[90] Physical relative remote-direct WiFi Weighted kNN RSS 

[74] Physical relative remote WiFi Weighted kNN RSS 
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[46] Physical relative remote-direct WiFi 
Weighted kNN 

+ fingerprint 
RSS 

[47] Physical relative self-direct WiFi Fingerprint RSS 

[3] Physical relative Remote-direct WiFi 
Fingerprint + 

weighted kNN 
RSS 

 
 

Consideration of the results in Table 2.5 reveals that fuzzy-based approaches have been 

applied to various technology platforms, including mobile robotics with dead reckoning, 

sonar, infrared, laser, ultrasound-like sensors, cellular network using GSM, cell-ID, radio, 

differential GPS, and indoor environments using Wi-Fi, Bluetooth and ZigBee 

communication technologies. Timing-based measurements (time of flight (TOF), time 

difference of flight (TDOF) and TOA) and non-timing measurements (angle of arrival 

(AOA) and RSS) have been investigated by researchers. 

The calculating algorithms range from a simple count and proximity-based calculus to 

complex hybridisation schemes passing through standard triangulation, multilateration, 

weighted average and geometric-based reasoning. Moreover, numerous map-building-

related positioning systems employ a fingerprint-like strategy, as well as a nearest neighbour 

or kNN-like decision rule. 

Concerning the location description, it is noteworthy that both symbolic and physical 

locations have been considered in the literature. Fuzzy reasoning often allows us to infer a 

symbolic description from a physical one. However, if physical and exact locations are not 

required, one expects higher accuracy of the fuzzy positioning system to only infer a 

symbolic description of the target location. Similarly, except when GPS or GSM 

measurements are involved, it is often sufficient to provide relative positioning of the target 

instead of absolutely.  
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2.9 Conclusion 

This chapter provided a brief introduction to the localisation problem from historical and 

technical viewpoints. Special attention was given to the uncertainty challenges pervading 

the position estimation in the indoor WLAN environments, and some of the research work 

to overcome those uncertainties. We sought to provide a rational classification of the use of 

fuzzy sets in the localisation problem, as it is a proven tool for handling uncertainties. The 

chapter encompasses a literature review with some metric comparisons and evaluation where 

possible. In the evaluation purposes, four main classes were distinguished: system metrics, 

environment metrics, fuzzy metrics and positioning metrics. Each class was discussed in 

detail. but the main findings were as follows:  

 Irrespective of the scale of the implemented environment in the system metrics, the 

accuracy of the proposed systems was enhanced in terms of the costs of complexity 

and computation.  

 By utilising the power of reasoning and data extraction of fuzzy logic and fuzzy 

inference, the fuzzy-based solutions outperformed those of alternatives.  

 When more variables were incorporated into the fuzzy inference, the precision level 

increased substantially.  

 Very few studies reported or considered the rulebase simplification problem, which 

needs to be thoroughly investigated. 

 In most positioning systems, specificity, consistency, redundancy and completeness 

of the rulebase was not been extensively discussed. Therefore, it is important to 

mention the numerous advantages of fuzzy logic in the context of mobile positioning, 

including its intuitive conceptual model, flexibility, ease of computation, multiple 

https://www.powerthesaurus.org/thoroughly/synonyms
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combination modes, accommodation of logic-based reasoning, and hybridisation 

with other non-conventional techniques or soft computing tools. 

 Generally, fuzzy logic is not universally accepted among practitioners. This is partly 

because of lack of awareness of its potential benefits. Concerning performance, FL 

requires further testing and evaluation, especially using benchmark data sets to create 

awareness. Another reason is its poor performance in some cases when compared 

with conventional positioning methods. Awareness of the context and metrics 

underpinning the design and application of fuzzy reasoning-based tools would 

provide encouragement to consider the proposal and seek further enhancements, 

especially when the approach requires manual tuning of critical parameters. 

The next chapter focuses on the evolution of WLAN modelling and localisation techniques 

employed in the literature.  
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3 WLAN MODELLING AND LOCALISATION 

TECHNIQUES 

3.1 WLAN Structures  

WLANs became the main dominant network infrastructure after the US FCC decision in 

1985 to open several bands of the radio spectrum for use without a government licence. 

These free and shared bands were allocated to wireless equipment such as portable laptops, 

microwave transmitters, mobile phones and tablet computers. To operate in these bands the 

equipment was required to use radio signals spread over a wide range of frequencies. This 

aspect makes the signal very susceptible to interference generated by the surrounding 

environment, and vulnerable to interception. These issues and others led the IEEE to 

standardise the operation of such bands with IEEE 802.11x. The IEEE 802.11x standards 

define the operational characteristics and the interface between the main two WLAN 

components, a client and a base station (or AP), where both are equipped with IEEE 802.11x 

transceivers.  

3.2 Localisation 

Terms such as geolocation, location sensing, radiolocation and localisation are applied 

interchangeably to describe any system embedded with an algorithm which uses wireless 

technologies to determine location. In general, all location estimation systems tend to have 

the same main components, as illustrated in Figure 3.1 [4]. 
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Usually, the class of localisation system under consideration is determined by the various 

classifications of localisation followed by Alakhras et al. [3], [98]; Oussalah et al.  [4]; and 

Hightower and Borriello [7]. The type of data required by each localisation system plays a 

key role in identifying its localisation class. In particular, the localisation algorithm is 

considered a physical localisation when the location is interpreted as a 2D or 3D coordinate 

position, as with GPS. If the location is interpreted linguistically (e.g., room, corridor, 

lobby), then the term symbolic localisation is commonly used. When the localisation system 

relies on a set of common reference points for all located targets, then this is referred to as 

an absolute localisation. if it relies on its own set of references, it is then considered a relative 

localisation. 

When the localisation system is being implemented in an indoor environment, the 

localisation system is deemed an indoor localisation, whereas if it is implemented in outdoor 

areas, then it is considered an outdoor localisation. Some localisation systems require the 

clients to be able to position themselves, a feature which is termed self-localisation. If the 

node is unable to locate itself in the environment, such as in the case of sensor networks, this 

is referred to as remote localisation.   

The communication medium between various localisation system components gives rise to 

different classes of localisation systems, for example, the environment may be fully wired, 

Figure 3.1 Main components of a localisation system [4]. 
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a combination of wired and wireless components, or fully wireless, as in WLANs. Moreover, 

the communication protocol used is another factor in determining the class of the localisation 

system, such as Wi-Fi, Bluetooth and GSM. The variations in the localisation system present 

force the need for various types of calculating algorithms and measurement techniques. The 

next section presents the most common localisation techniques suitable for the intended 

application, particularly, the Wi-Fi WLANs for indoor environments. 

3.3 Location Estimation Systems 

As highlighted in Chapter 2, positioning algorithms are typically dependent on the available 

resources, time constraints, computational cost, accuracy and precision requirements. There 

is no agreed favourite positioning system or algorithm across the spectrum as yet [21]. 

Several aspects contribute to the choice of the appropriate positioning algorithm—these will 

be discussed in the following sub-sections. 

Physical and symbolic localisation systems are distinguished by the type of data required 

and the interpretation of the target location. As mentioned, symbolic localisation interprets 

a location using linguistic terms. However, a physical localisation system, with some 

additional data or infrastructure change, or both, may be enhanced to provide symbolic 

localisation. The resolution of physical positioning systems has implications for the 

definitiveness of the symbolic information that may be derived. “Purely symbolic location 

systems typically provide only very coarse-grained physical positions. Using them often 

requires multiple readings or sensors to increase accuracy—such as using multiple 

overlapping proximity sensors to detect someone’s position within a room” [7]. However, 

the coarse-grained or relative positions require a vague description of position information, 

which provide a rational ground for applying fuzzy-like reasoning in modelling linguistic 
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descriptions of the symbolic position information, or defining coarse-grained position 

information.   

3.3.1 Infrastructure-based systems 

Positioning techniques may be classified depending on whether they rely on the existing 

network infrastructure or not. The quasi-majority of positioning techniques rely on existing 

network infrastructure regardless of whether it is GPS, cellular or a wireless sensory array 

network, or any personalised network infrastructure (e.g., in case of military mobile 

infrastructure) [57]. Many robotics applications use an odometer-like sensor to track the 

position of the terminal from the initial starting location while external sensors help to build 

a local map of the environment [68], [70], [99], [100]. Often, handset-based positioning 

requires an increased processing and storage capabilities due to the highly centralised 

architecture at the handset, where all sensory information is gathered, processed and 

integrated [101]. According to Liu et al [14]., handset-based methods are associated with an 

increased cost for developing a suitable low-power, economically-integrated technology on 

wireless communications systems, especially when used within WSNs. Placing the burden 

on the infrastructure decreases the computational and power demands on the objects being 

located [14], which makes many more applications possible [66], [102]–[104]. 

3.3.2 Reference-dependent systems 

Absolute and relative localisation systems rely on a set of reference points for all targets 

under investigation, the main difference is that absolute localisation depends on predefined 

reference points in geographical coordinates (longitude and latitude), sometimes known as 

global localisation. In contrast, relative localisation provides an estimation of the location 

about particular landmarks (street, university, bank, room)—sometimes known as local 
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localisation. The calculating algorithms may be used to infer the absolute estimation for the 

target location, given many relative measurements, provided the reference landmark 

locations are given and fixed. Often, the reference landmarks (points) are not fixed at a 

precise location and usually are in a moving state, for example, in the case of mobile devices 

used as reference points in a WLAN environment. Such points provide inaccurate 

measurements, which then require uncertainty analysis to correlate the local and global 

views accurately.  

3.3.3 Environment type 

Appropriate positioning methodology depends on whether we are considering an indoor or 

outdoor environment. For instance, GPS is a well-recognised system for outdoor 

environments, but indoors the GPS signal may be unable to penetrate walls and buildings 

[105], which, in turn, creates a need for other positioning technology (e.g., Wi-Fi, Bluetooth, 

beacons, fingerprints). While the accuracy of GPS of up to about two metres is acceptable 

for outdoor open environments, this lack of precision may mean that the target object is 

actually located in another room or building when the same system is used for indoor 

environments. Moving objects and removing furniture can also significantly impact the level 

of accuracy. Indeed, in indoor environments, the radio propagation model is characterised 

as site-specific, non-deterministic signal fading, with severe multipath effects and diffraction 

and very low probability of line-of-sight (LOS) availability. Nevertheless, due to the 

relatively reduced scale of the indoor environment compared with the outdoor environment, 

the indoor environment makes it possible to conduct comprehensive site surveys to collect 

measurements from available anchor nodes, e.g., Wi-Fi APs, in a large set of scenarios, and 

construct robust maps accordingly [3], [4], [47], [106].  
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3.3.4 Measurement methodology 

Many measurement techniques are discussed in the literature (detailed in Section 3.5), for 

example, AOA, TOA, phase of arrival, RSS or radiofrequency propagation model. But the 

selection of any technique is heavily dependent on the infrastructure and available devices. 

Despite the reasonable accuracy achieved by localisation systems that depend on 

radiofrequency propagation models in the outdoor environments, such as the GSM [6], we 

cannot recognise this accuracy level as reasonable if the environment type switches to the 

indoors. The cause of this shortfall in accuracy may be the size of the environment, or it may 

be because the communication protocols used in the indoor environments impose many 

uncertainties on the propagation model. NLOS is an important concern as a source of error, 

as are a number of devices and services in the environment, primarily when public band 

frequencies are used in WLAN environments. Further, the specifications of site parameters 

are not identical for all sites, a factor which makes it more challenging for a universal 

radiofrequency propagation model.   

3.3.5 Communication protocol 

The protocol used to establish communication between client nodes (targets) and servers 

(localisation processors) is another factor in selecting the localisation class. This may be 

characterised by the communication medium for the environment in question as wired or 

wireless. Hence, it is necessary to provide the server with accurate measurement data which 

include NLOS factors, signal diffraction, signal attenuation, and multipath effects—all have 

a direct impact on accuracy [76], [107]–[111]. 
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3.3.6 Information processing architectures 

Positioning systems may be classified depending on the amount of processing carried out at 

a single node. In a centralised architecture, all processing is carried out at a single node which 

forms the data fusion centre. This might be the mobile terminal or a base station. In contrast, 

in a decentralised architecture, the position of the target is carried by local anchors, providing 

an opportunity for various collaboration schemes. Such architectures are acknowledged for 

increased fault tolerance, scalability and cost efficiency, but they are also sometimes sub-

optimal when data propagation results in a biased or overconfident position estimation [21], 

[51], [112].  

3.3.7 Cooperative and non-cooperative architectures 

In the context of WSN and the constant communication between the various components of 

the network, one distinguishes cooperative and non-cooperative architectures. In the former, 

the mobile may exchange information with other mobile units in order to enhance 

positioning accuracy. In a non-cooperative architecture, the mobiles can only exchange 

information with anchors or base stations [108], [113]. The cooperative architecture helps to 

substantially lower costs and enhance positioning accuracy, especially in the case of a mobile 

far from a fixed reference node when other mobiles of known locations are present in its 

vicinity. Nevertheless, issues may arise due to privacy concerns while exchanging 

information among various network units. 

3.3.8 Calculating algorithm 

The variations in sensory and measurement technology indicate another defining 

characteristic to classify the localisation systems, i.e., the selection of calculating algorithms 

for position estimation. The calculation algorithm may include geometric approaches 
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(lateration, multilateration, triangulation and area calculations), proximity approaches (NN, 

kNN, ID-CODE), and scene analysis, which is often fingerprint-based. Those position 

estimating techniques each have their strengths and weaknesses. Hence, using a hybrid 

algorithm that does not rely on a single form of the calculating algorithm has shown better 

performance as a localisation system [80], [81]. This is especially so when inherent 

uncertainty cannot be estimated or ill-defined; in these circumstances, according to the fuzzy 

community, a fuzzy set-based approach has an edge in localisation [92]. 

3.3.9 Range-based and range-free schemes 

Whether the system is range-based or range-free is also a way to distinguish between various 

localisation schemes, and most commonly used with WSNs. The range-based system needs 

to have any means for range measurement between successive nodes interpreted by distance, 

time or angle acquired via the aforementioned measurements (AOA, TOA, RSS). Section 

3.5 provides details on those measurements, which are often used in combination [4], [42], 

[114], [115]. Range-free localisation includes fingerprinting where an initially constructed 

map or grid to actual measurement is set, and the hop count determined from each anchor 

using a dedicated routing protocol [116], [117]. The accuracy of range-based localisation is 

traditionally better than that for range-free localisation. This is so provided the mobile nodes 

are equipped with necessary means to obtain the required measurement (for example, 

directional antenna) [101], and the network dense enough with anchor nodes to obtain the 

location anywhere in the network at the required accuracy level without changing 

environments at the physical level. 
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3.3.10  Deterministic and non-deterministic methods 

In deterministic methods, the location information is represented as a solution to an 

analytical or approximating problem. In this, deterministic mapping occurs without explicit 

accounting of any uncertainty, as opposed to probabilistic, fuzzy or statistics-based methods. 

Notably, among deterministic methods one encounters k-means-like matching in fingerprint 

association and the range intersection method [118]. Non-deterministic methods include 

Bayesian-like reasoning for fingerprint matching, Kalman filtering, belief propagation 

approaches [97], [119]–[123], joint probability distribution of a network using factorisation 

on a graphical model [56], [106], [124], and a variety of soft computing-related techniques 

[78], [125], [126]. In general, if knowledge about the distribution is available, probabilistic 

techniques perform better than deterministic ones and are to be preferred.  

3.4 Location-Based Services (LBSs) and Applications 

With the development of LBSs [6], positioning technology has actively entered the realms 

of almost every application, including industrial, medical, safety, transport and many 

commercial applications. The positioning task offers an answer to the question “Where am 

I?" By answering this basic question, it contributes to answering subsequent questions such 

as “What is nearby?”, “How can I reach that location?” and “How do I optimise my resources 

while achieving my task?” 
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Figure 3.2 LBS system architecture [3]. 

 

As indicated in Figure 3.2, the positioning problem is ultimately linked to the context, 

sensory information and perceived environment, which, in turn, substantially constrain the 

position estimation process and the level of accuracy. For instance, some mobile location 

services attempt only to find out whether predefined attractions or facilities (e.g., hotels, 

shops, fuel stations) are in the vicinity of the user. Such services do not require the exact 

location of the facility as it is enough to indicate the presence or absence of a given facility 

within the vicinity. In network-based localisation, one seeks, for example, to identify the 

node responsible for the deterioration of network service or subject to an initial attack. This 

objective may require an exhaustive review of the activity history of all candidate nodes. In 

geo-data positioning, one often requires the latitude-longitude estimation of the target object, 

which may involve advanced state estimation techniques. Industrial robotics applications 

often demand very high precision in the realm of nanotechnology in order to achieve 

complex rendezvous tasks. Central to any positioning technology are the environmental 

constraints and the quality of the available prior knowledge, which also reflect the level of 
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autonomy possessed by the device(s) to be positioned. From this perspective, one may 

distinguish an environment which is fully-known, partially known or entirely unknown. For 

instance, in WSNs, an emitter/receiver continuously senses its surrounding environment and 

searches for event occurrences. The latter may include changes in RSS, as well as other 

sensory information (e.g., temperature, pressure, lighting, humidity); this ultimately requires 

full knowledge of the nodes from which each piece of information is captured. On the other 

hand, autonomous systems equipped with advanced camera and wireless sensory modalities 

have the ability to fully map a completely unknown environment and execute complex 

navigation tasks. The estimation process in such a case includes both the target positioning 

and environment map estimation. SLAM (short for simultaneous localisation and mapping) 

techniques fall into this category [127], [128]. 

3.5 Measurement technology 

The inability of propagation models to accurately describe the multipath parameters brings 

our efforts to localise a target in any indoor environment to the conventional localisation 

methods of triangulation, proximity measure and scene analysis. These methods each have 

their strengths and weaknesses, which motivates hybridisation among them in an attempt to 

achieve better accuracy and performance. Briefly, below, we consider the most popular 

algorithms; as mentioned in [14] and [129]; in the next section this discussion will be 

extended with RSS and fingerprinting techniques. 

3.5.1 Triangulation 

Typically, according to Liu et al., “triangulation uses the geometric properties of the triangle 

to estimate the target location” [14]. It can be done via lateration or angulation; the selection 

depends on the environment, e.g. range, indoor/outdoor, antenna properties. Thereby, 
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“lateration estimates the position of an object by measuring its distance from multiple known 

reference points,” while angulation calculates “the position via measuring the angle of 

bearing relative to two points with known separation” [3]. The triangulation measurements 

can include: 

 TOA (time of arrival): The distance from the target to the measuring unit is directly 

proportional to the propagation time. A TOA measurement must be made with respect 

to signals from three different references. Using TOA is more suitable for the LOS 

environment, with the constraint that all transmitting and receiving units must be 

precisely synchronised. 

 TDOA (time difference of arrival): The relative position can be estimated by 

examining the difference in time at which the signal arrives at multiple measuring units 

with constant distance, rather than one absolute arrival time. A correlation technique is 

used to estimate the TDOA at the measuring units. This technique imposes 

synchronisation between the measuring units but not on the target. Moreover, it results 

in a heavier mathematical derivation compared to the TOA technique. 

 TOF (time of flight from transmitter to receiver and back): Although more moderate 

clock synchronisation than for TOA is required, it is considered to work as conventional 

radar, where a target responds to radar signal, and the complete round trip propagation 

time is calculated. However, it is still difficult for the measuring unit to know the exact 

delay/processing time caused by the target; for medium– and long-range systems this 

delay can be ignored, but not so for indoor applications. Also, it is difficult for the indoor 

environment to find the LOS channel between transmitter and receiver. 

 Received signal phase or phase of arrival (POA): This assumes all transmission units 

emit pure sinusoidal signals with the same frequencies and zero offsets. In order to be 
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able to estimate the phases of signals received at a specified location, the transmitters 

are placed at particular locations within an imaginary cubic building. This constraint 

imposes extra ambiguity on indoor positioning due to the absence of LOS. 

 RSS-based (received signal strength or signal attenuation-based): The transmitted 

signal power decreases with respect to travelled distance. This technique estimates the 

distance by measuring the RSS at a target location, and then compares it with the 

transmitted signal power from a particular transmitter. RSS-based methods attempt to 

calculate the signal path loss due to propagation. However, the path loss propagation 

model does not hold at all times, especially in indoor environments due to the multipath 

effect of signal reflection and refraction. Further, the parameters employed in these 

models are site-specific. The TOA and AOA signal would be affected by the multipath 

effect, which reduces the accuracy of the estimated location. 

 AOA (angle of arrival): The location estimation is done via intersecting pairs of angle 

directions formed by the circular radius from a base station or beacon to the target. The 

position can be estimated with few measuring units, but it requires special directional 

antennas, LOS channels and synchronisation between transmission units.  

3.5.2  Scene analysis 

Scene analysis relies on collecting features first (fingerprints) of a scene then estimating the 

location of an object by matching online measurements with the closest a priori location 

fingerprints. This algorithm consists of two stages:  

 Offline: The site survey is conducted to collect relative fingerprint information  

 Online: Location positioning techniques are applied using current observations.  
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The calculating algorithms for estimating a target location in the fingerprinting technique 

may use: 

 Probabilistic method: This estimates the probabilities that a target node is at a 

particular position, given a vector of its RSS observations and Bayesian posterior 

probability. The positioning is then carried out using Kalman filter or Bayesian 

formulas. 

 kNN (multi-nearest neighbours): Using the RMS error or the Euclidean distance, the 

online measurements determine the best k correlations of fingerprints from the offline 

map. Then the position is estimated by averaging the positions of those k fingerprints. 

To achieve better accuracy, the positions of those fingerprints are associated with 

weights according to pre-defined weighting criteria.  

 Neural Network: The online observations are used to localise the target as the output 

of the neural network weights matrix after the training and weights optimisation of the 

neural network is done using the offline observations. 

 Proximity: Many current cellular networks are currently supporting this technique for 

all mobile handset devices with cell of origin (COO) or cell identification (CID). 

Traditionally, the system consists of a set of antennas with predefined locations. When 

an antenna detects a target object, the algorithm assumes that this object is at the same 

position as that antenna. The density of the network plays a significant factor in 

satisfying the accuracy requirements of the system. 

3.6 GPS System and Outdoor Positioning 

The GPS is recognised globally as a standard navigation and positioning system for outdoor 

environments with a metre-like accuracy where satellite coverage is good. However, in the 
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presence of obstacles or in an indoor environment, electromagnetic waves are attenuated, 

reducing the efficiency of the GPS signal drastically [43]. For instance, the Global 

Navigation Satellite System (GNSS) signals attenuate by 20–30 dB in indoor environments. 

Infrared radiation (IR) technology is nowadays incorporated in most smartphones, PDAs, 

and TVs as a wireless positioning technology that depends on LOS between the emitting and 

receiving antennae, which is conditioned by the absence of interference from other sources 

[114]. Radiofrequency technology [130] has the advantage of penetrating obstacles and 

human bodies, which results in broader coverage and (relatively) reduced hardware 

infrastructure requirements. RF technology encompasses a wide range of sub-technologies 

in narrow bands (RFID, Bluetooth, WLAN-Wi-Fi and FM) and wide bands, all of which can 

achieve centimetre-level accuracy. ZigBee is a promising WLAN standard which supports 

solutions for communications in the 20 to 30-metre range, and is suitable for applications 

that require low power consumption and low data throughput. Ultrasound is another non-

expensive technology which can work at lower frequencies. The ultrasound signals are used 

to estimate the position of the emitter tags from the receivers. Ultrasound signals have 

relatively low accuracy compared with many IR technologies and suffer from interference 

from reflected sources like walls, metals and obstacles [54]. 

The availability of cheap accelerometer and odometer sensors enabled the development of 

internal-mode positioning technology where the location is determined by integration over 

the travelled path from the initial position of the target. Obviously, over long distances, the 

accumulation of errors constitutes a serious handicap to such technology. However, 

whenever there is a possibility to update a target position using external sensors (to reduce 

the effect of error accumulation), the method shows promise [99]. With the availability of 
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compass sensors in many mobile handheld devices, the use of magnetic function and map 

has emerged as a promising positioning technology [131].  

Finally, several hybrid models that use more than one technology have emerged; in these a 

variety of sensor technologies are used on the same platform. For instance, many current 

smartphones are already embedded with an odometer sensor (internal positioning), 

proximity sensors, Wi-Fi and Bluetooth sensors. The variety of available sensors and 

measurement modalities (e.g., RSS, AOA, TOF, TDOF, CID) have led to various 

localisation schemes such as triangulation, trilateration, hyperbolic localisation, data 

matching, and many more [16]. Various commercial hybrid positioning systems are 

currently used in services from Combain Mobile, Navizon, Xtify, PlaceEngine, Skyhook, 

Devicescape, Google Maps for Mobile, and SopenBmap for application in smartphones [19]. 

3.7 Indoor Positioning 

As mentioned in Chapter 2, the indoor location market includes indoor positioning-based 

services (and thus positioning systems) and solutions designed to support use cases around 

(indoor) location-based analytics. Generally, the location estimation system for the indoor 

environment is highly dependent on the available environment infrastructure. In many cases 

the algorithms and measurements are not readily applicable to every problem. In this section, 

we present the most common WLAN indoor localisation techniques and algorithms.  

3.7.1 Radio frequency identification (RFID) 

Lately, RFID has become the dominant algorithm in LBS and management. Typically, 

RFID–based techniques comprise the following components: 

 Transponder: Usually it is placed on the target and represents the actual data-

carrying device of an RFID system, more commonly referred to as a tag 
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 Interrogator or reader: Usually this contains an radiofrequency functional block 

(transceiver), a processing unit and a means of association to the tag (coupling). 

Many readers are equipped with a supplementary communication protocol mediator 

to allow them to communicate with the tags and forward the data received to another 

system 

 Application software or algorithm: Plays the role of filtering collected data from 

the tags through the reader.  

RFID is limited to the frequency range 135 kHz to 5.8 GHz, with attainable distance up to 

100 m for an active RFID and 15 m for a passive RFID. It functions whenever a tag enters 

the interrogator range or is placed on a surface equipped with the necessary data acquisition 

means, which can be an electrical or magnetic field. When this range is as small as one 

centimetre, the RFID system is said to be in closed-coupling mode, which may increase 

power consumption. For a range of one metre the RFID system is said to be remote coupling, 

and for 1–15 m, long coupling. The coupling mode will affect the utilised frequency and the 

other hardware elements. 

A limitation on localisation with RFID systems is the need for a considerable amount of 

infrastructure, including readers and tags to facilitate the localisation with acceptable 

accuracy. Also, the RFIDs are not equipped with RSS functions, which play a significant 

role in enhancing accuracy levels [132]. 

RFID tags are classified broadly into passive and active tags; the former is not equipped with 

a power source, the latter has some sort of power supply. Passive tags need to be in the 

reader's range to be activated; otherwise, the tags will not have enough power to send the 

signal back to the interrogator. Active tags do not need the power emitted by the reader, an 

advantage for the interrogator, which may use the saved power to increase the range of the 
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device. However, the ability of tags to use saved power in transmitting the signal back to the 

reader is doubtful, as the tags are not equipped with the means to create the necessary high-

frequency signals, merely to modulate the reader field. The feature to use saved power is 

linked to physically limiting the tag's ability from reaching the interrogator's range, which is 

optimised on the basis of frequency and the transmitting power of the interrogator [132]. In 

brief, RFIDs present several obstacles for solving the localisation problem. 

3.7.2 Propagation models  

Although the radio propagation model is the dominant method in use for outdoor 

localisation, radio propagation modelling for indoor environments faces many challenges 

arising from the signal properties inherent in the model. Intuitively, numerous signal 

properties cause the received signal to differ from the sent signal. The LOS is the most 

crucial property, as described in [133]. Among the factors involved in signal variation are: 

(i) free-space LOS; (ii) signal attenuation; (iii) signal absorption; (iv) noise; (v) multipath 

gain caused by signal reflection; (vi) signal diffraction; and (vii) scattering. Factors (v)–(vii) 

may be either useful or harmful to the RSS). These factors can generate a tremendous amount 

of ambiguity for WLAN positioning, which contributes considerably to the location 

estimation errors for all current localisation systems [134], [135]. The variations are known 

as temporal, large-scale and small-scale variations. 

Temporal variation becomes evident as the measured RSS varies over a period of time while 

the receiver is steady at the same location. The reasons for this variation may be sudden 

changes in the WLAN infrastructure, moving objects in the environment, or operations of 

other devices on the same frequency band [134]. The issue may be managed by capturing 

the histogram of the RSS during the fingerprint map building in the offline stage, rather than 

capturing instantaneous RSS—this allows the best possible estimation of location. 
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Large-scale variation results from signal properties when the signal travels over long 

distances. This variation generates a new fingerprint signature, which is influential in 

determining new positions. 

Small-scale variation becomes apparent when the target object moves on a wavelength scale, 

i.e., movements of centimetres or millimetres, depending on the communication protocol in 

the test environment. This variation may be managed by simply cancelling the variation and 

compensating for it in the calculations of the positioning algorithm. The main difficulty is 

how to accurately determine the compensation parameters in the online fingerprinting stage, 

especially in dynamic environments. 

In respect of the defects listed above, the indoor radio propagation model is highly dependent 

on the environment and the received signal parameters considered in the model. Building a 

universal propagation model is a complicated and time-consuming process. instead, it may 

be more fruitful to formulate a model via approximation techniques and consider the most 

critical parameters of the signal in the environment to describe the path length from the 

emitter node to the target objects.  

In indoor environments, the main parameter describing the path length between the emitter 

node and the target objects is path loss, which represents the ratio of emitted and received 

signal power. In this regard, the Friis transmission model can be proposed [136]: 

𝐿 =
𝑃𝑟

𝑃𝑡
= 𝑔𝑡 . 𝑔𝑟 . (

𝜆

4𝜋𝑑
)2    (3.1) 

where Pr and Pt are the received and transmitted power, respectively; 𝑔𝑟 and 𝑔𝑡, the gain for 

receiving and transmitting antenna, respectively; 𝜆, the wavelength and 𝑑, the physical path 

length between emitter and receiver. Signal power falls as the inverse square of the path 

length. Equation (3.1) can be transferred to a more familiar logarithmic scale, where the 

propagation loss (path loss) unit is the decibel (dB), thus: 
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𝑃𝐿𝑑𝐵 = 𝐺𝑡 + 𝐺𝑟 + 22 + 20log (
𝑑

𝜆
)  (3.2) 

where 𝐺𝑟 and 𝐺𝑡  are the gain for the receiving and transmitting antennas in dB, respectively. 

Applying a 12.3-cm wavelength (frequency 2.44 GHz) to (3.2) yields (3.3), assuming 0 dB 

antenna and 𝐺𝑟 = 𝐺𝑡 = 0: 

𝑃𝐿𝑑𝐵−2.44 𝑓𝑟𝑒𝑒𝑠𝑝𝑎𝑐𝑒 = 40.2 + 20log (𝑑)  (3.3) 

It can be seen from Figure 3.3 that a decay of about 40 dB of the signal power occurs during 

the first metre of the journey. According to (3.3) and Figure 3.3, the best distance for the 

2.44 GHz protocol with a scale of 80 dB and zero gain antenna is 50 metres.  

 

Figure 3.3 Path loss for 2.44 GHz in free space. 

 

For indoor environments, mathematical simulation is only capable of simulating specific 

scenarios. Therefore, an alternative general modelling method is required. For this, the most 

common practice is to predict the path loss using the empirical models based on real 

measurements made on the target environment to collect the power loss at specific points 

and then perform numerical curve-fitting over the sampled data. In [136], we can find that 
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the following equation describes the model constructed for the indoor environment using the 

same frequency band: 

𝑃𝐿𝑑𝐵−2.4 𝑖𝑛𝑑𝑜𝑜𝑟 = 40 + 31 log(𝑑) ± 8  (3.4) 

This experiment took place at an office with gypsum board inner walls. From (3.4) and 

Figure 3.4 the signal power decayed by 70 dB during the first metre; the best distance that a 

2.4 GHz protocol achieved with a scale of 80 dB and zero gain antenna was about 20 metres. 

 

Figure 3.4 Path loss for 2.4 GHz in an indoor environment. 

 

An interesting result from modelling WLAN indoor signal propagation using the 2.4 GHz 

frequency band is presented by Sadiki and Paimblanc [137], who studied the influence of 

the environment on the propagation model. As the environment components were altered, 

the experiments resulted in three different propagation models . This concept was employed 

in the localisation process investigated by Wu et al. [138]. The suggested design used ANFIS 

to represent the signal propagation model inside a test environment based on assembled 

0 5 10 15 20 25 30 35 40 45 50
-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40
indoor propagation loss at 2.4GHz

P
ro

pa
ga

tio
n 

Lo
ss

 [
dB

]

Distance [meter]



 

 

 

71 

fingerprints. The design was then tested against a curve-fitting routine prior to deployment 

in the localisation algorithm. Their design conferred more reliable performance than with 

curve fitting alone. However, the fingerprints generated were based on the simulation, not 

authentic environment situations, and where the testbed was a free space of 11.4 by 9.6 

metres, which may not represent well signal behaviour in a larger environments. Moreover, 

the design was not tested empirically against unforeseen environment changes. The ANFIS 

tool was also used in [139] to model the path loss for a GSM-900 band system for outdoor 

environments. 

The main limitation on soft computing tools such as ANFIS follows from not using the 

power of fuzzy inference functions such as various norms and defuzzification methods, and 

relying on standard functions only. This does not always guarantee to produce the optimal 

membership degree for output variables. 

3.7.3 RSS and fingerprinting 

The RSS-based fingerprinting technique has become the most exploited technique for indoor 

localisation. The technique appears easy to deploy, is more receptive to noise and can deliver 

very acceptable accuracy to several applications [140]. Nevertheless, the performance of the 

method suffers from several shortcomings which raises questions over its status as the 

principal choice for localisation applications on WLANs in the indoor environment. The 

efficiency of any fingerprinting technique is massively dependent on the density of the 

fingerprint map, which has to be continuously updated to meet changes in the deployment 

environment, such as replacement of APs or changes in environmental features. Moreover, 

due to the dynamic nature of indoor WLANs, obstacles can sharply reduce the RSS by 

blocking the LOS between APs and target objects. In addition, indoor WLANs are deployed 

on public band frequencies. For example, the frequencies used for Wi-Fi and infrared are 
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commonly shared by many home devices such microwave ovens and mobile devices, or 

even used by service provider. This overlap produces irregular samples of the RSS during 

both the offline and online phases of the technique. 

Fundamentally, two separate phases are carried out in building any fingerprint-based system. 

The goal of the first phase is to construct a fingerprint map or radio map. In essence, this is 

a database of the referential node tuples from the RSS vector 𝐹𝑃𝑖(𝑅𝑆𝑆𝑖1, 𝑅𝑆𝑆𝑖2, . . . , 𝑅𝑆𝑆𝑖𝑛)., 

and its correlated physical FPi (x,y), or symbolic location. The goal of the second phase is 

to match the measured RSS 𝑇𝑗(𝑅𝑆𝑆𝑖1, 𝑅𝑆𝑆𝑖2, . . . , 𝑅𝑆𝑆𝑖𝑛) vector with the database and 

forward the results to the calculating algorithm, which will produce the target’s estimated 

position Tj (x,y). These are referred to as the offline and online phases, respectively. Figure 

3.5 shows a schematic of the methodology. 

 

 Figure 3.5 Diagram of fingerprinting localisation methodology [4]. 
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Constructing the fingerprint map is commonly done by one of two methods: empirical 

observations; or via a radio propagation model.  

For the empirical approach, the relative or absolute position coordinates are recorded 

according to manual observations of the RSS measurements after the physical network 

deployment on the test environment. The main limitation of this approach is the need to re-

collect the observations to match the simplest changes in the test environment to meet the 

localisation accuracy requirements. Another limitation, highlighted in [135], is the 

uncertainty associated with variations in RSS values among various built-in wireless reader 

tags. These variations compel a need for old-fashioned and error-prone scaling for each 

target object and environment. Motivated by those limitations, Kjærgaard and Munk [141] 

proposed assembly of the fingerprint database by collecting RSS values as ratios among 

various combinations of APs rather than as absolute RSS values—this technique is known 

as hyperbolic location fingerprinting. 

The propagation model approach computes the reference RSS for each reference fingerprint 

in the observation area. A deficiency of this approach is its reduced accuracy in comparison 

to the empirical approach, due to the complexity of the wireless radio propagation model in 

the indoor environment, as discussed in the next section. 

Various algorithms are proposed in the literature to calculate the best matching fingerprint 

location to the target location [142]. Commonly, the Euclidean distance can be used to 

calculate the physical path length between the fingerprints and the objects to be positioned. 

The basic Euclidean distance operations can be done by the following equation: 

𝑑 = √∑ (𝑅𝑆𝑆𝐹𝑃𝑖 − 𝑅𝑆𝑆𝑇)
2𝑛

𝑖=1   (3.5) 

where the 𝑅𝑆𝑆𝐹𝑃𝑖 is the value of fingerprint RSS assembled in the offline phase and RSST is 

the measured RSS for the target T during the online phase, where a small 𝑑 indicates high 
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similarity. Similarly, in the same paper, Gansemer et al [142]. presented a new enhanced 

Euclidean distance formula. This was adopted to normalise the distance d to the fingerprints 

only involved during the measuring phase. It is especially so in dynamic environments that 

not all fingerprints (base stations) are available to the target (mobile station) during the 

measuring phase in the corresponding test bed. The enhanced formula is:  

𝑑 = √
1

𝑚
∑ (𝑅𝑆𝑆𝐹𝑃𝑖 − 𝑅𝑆𝑆𝑇)2
𝑛
𝑖=1   (3.6) 

where m is the number of matching (available) fingerprints during the measurement phase. 

Bayes rule determination (Bayesian inference) is another probabilistic approach to estimate 

the possible location for a target. As presented in [143] and [144] the possible location T(x,y), 

from the reference locations set FP(x,y), given the observation RSS vector that maximises 

the conditional probability p(li/RSS), can be calculated as follows: 

𝑝(𝑙𝑖 𝑅𝑆𝑆⁄ ) =
𝑝(𝑅𝑆𝑆 𝑙𝑖⁄ ) 𝑝(𝑙𝑖)

𝑝(𝑅𝑆𝑆)
   (3.7) 

where p(li/RSS) is the conditional probability of measuring the RSS at the li location, which 

may be approximated from the number of occurrences of vector (𝑅𝑆𝑆𝑖1, 𝑅𝑆𝑆𝑖2, . . . , 𝑅𝑆𝑆𝑖𝑛) 

at the location li, according to the database available in the offline phase. 

The kNN search mechanism, mentioned earlier, is another approach used to estimate the 

location of a target. It was first used by Bahl and Padmanabhan [115] in their RADAR 

system, in which they propose multiple neighbour points (k) at roughly the same distance 

from the target point in the signal space, with the distance calculated using the same 

Euclidean distance rule given in (3.5). The density of the fingerprint database and the 

symmetrical pattern of fingerprints in the test area are arguably the main issues with this 

approach. Furthermore, any modification in the test environment may result in removal of 

some reference fingerprints from the database. As a result, the algorithm will pick a reference 
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fingerprint that is spatially far from the target object, which decreases the accuracy of the 

final position estimation. In this regard, we claim that the RSS does not have to be the sole 

indication for the physical path length. 

3.8 Conclusion 

In this chapter, the background and definitions of localisation systems were discussed, with 

a well-defined classification of the various localisation systems. The main focus was on the 

environment type (e.g. the indoor environment), the networking technology (e.g. WLAN), 

the measurement techniques (e.g., RSS), and location estimation techniques such as the 

fingerprinting and kNN algorithms, including the propagation model, its inherited 

uncertainties and how these affect accuracy. The next chapter explains how to build a FIS to 

handle these uncertainties, including the fundamental idea of TKS-FIS, the inferencing 

principle, membership function manipulation, defuzzification processes and the rationale of 

using more input variables in the reasoning principle to reduce uncertainty.  
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4 FUZZY SETS AND FUZZY SYSTEMS 

4.1 Overview 

The principal idea behind the fuzzy set as it was proposed by Zadeh [22] in 1965 is a 

mathematical concept to represent vagueness, imprecision or incompleteness in data. The 

concept is beneficial in practice when the reference knowledge is constructed using verbal 

expressions and is based on expert knowledge or data which are naturally imprecise. 

Furthermore, fuzzy logic provides a means to associate system dependencies—in other 

words, the inputs and outputs of any model via what is referred to as fuzzy rules—while 

fuzzy-inferencing offers a tool to derive implications given a group of fuzzy rules, in what 

is referred to as fuzzy reasoning. 

Fuzzy sets differ significantly from conventional ('crisp') sets. For example, the application 

of fuzzy sets in a control strategy, where the controller is incorporated in the process 

according to a pre-constructed mathematical model of the controlled object that requires 

quantitative and numeric analysis. 

The execution steps of any task involve manoeuvring procedures based on oral descriptions, 

which is a globally recognised practice. Developing a purely mathematical representation to 

model all the details of the verbally executed task would produce results that deviate from 

the execution of verbal descriptions. Yet, in automatic control strategies, the linguistic model 

looks very attractive because it resembles human verbal communication [145].  

Generally, so-called fuzzy systems rely on expert data, which is often expressed by the 

construction of fuzzy rules in which input and output variables are characterised by linguistic 

values and membership functions to describe these values. 

This chapter presents the main constituents of fuzzy rule-based systems, their structure, main 

blocks and operation principles. 
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4.2 Fuzzy Set 

Explaining the fuzzy set first requires introducing the crisp set, where, for any element, the 

degree of belongingness is characterised by the expression: 

𝑚𝐴(𝑥) = {
1,   𝑥 ∈ 𝐴
0,   𝑥 ∉ 𝐴

 ⟹  𝑚𝐴(𝑥) ∈ {0,1}  (4.1) 

A pictorial description of (4.1) is shown in Figure 4.1. Crisp set models answer the trivial 

question, "Does it belong to the set? (Y/N)", which characterises the binary nature of a 

classical set. 

 

In contrast, with the fuzzy set, we might rephrase the above question thus: "What is the 

degree of belongingness?" Intuitively the answer could be any value in the range 0–100%.  

In special cases, the answer 0% resembles "Does not belong at all," while 100% resembles 

"Fully belongs to." In these cases the fuzzy set is reduced to the classical. In other words, 

the classical set is a special case of the fuzzy set. 

Where the answer takes a value within the range of the closed interval [0 – 100%], we may 

formally model this scenario according to the fuzzy literature and define the degree of 

belongingness on the real-number interval [0 – 1] as: 

𝜇𝐴(𝑥) ∈ [0,1]    , 𝑥 ∈ 𝑋  (4.2) 

where µA represents the membership function of the fuzzy set A, which is a degree of 

membership to x in the universe of discourse, X, as shown in Figure 4.2. 

Figure 4.1 Representation of the crisp set. 
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Elements between a and b belong strongly to the fuzzy set A with a degree of 1; formally 

this is expressed as µA(a) = 1 and µA(b) = 1. Elements less than a or greater than b belong to 

the same set with a gradually and linearly decaying value (smaller than 1) depending on its 

occurrence in the set [146], for example, µA(m) = 0.3 for some c < m < a. 

Figure 4.3 shows some common types of membership functions used in the literature, i.e., 

the trapezoid, triangular, Gaussian and singleton types of membership function. These are 

defined through the associated parameter values, e.g., a, b, c and d for the trapezoid 

membership function. 

 

Figure 4.3 Some common parameterised membership functions. 

Figure 4.2 Fuzzy set A. 
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Membership functions have many shapes. A common example of a function which produces 

a bell curve is based on the exponential function [147]: 

𝜇(𝑥) = [
−(𝑥−𝑥0)

2

2𝜎2
]    (4.3) 

The model in (4.3) represents a standard Gaussian curve with a maximum value of 1, where 

x is the independent variable on the universe of discourse, x0 is the position of the peak 

relative to the universe of discourse, and 𝜎 is the standard deviation [148]. An alternative 

model is: 

𝜇(𝑥) = [1 +
−(𝑥−𝑥0)

2

2𝜎2
]
−1

   (4.4) 

The triangular membership function is described by: 

μ(x) = {
1 −

x̅−x

x̅−xl
   , xl < x < x̅

1 −
x−x̅

xr−x̅
   , x̅ < x < xr

  (4.5) 

Several definitions of fuzzy membership functions useful for evaluating a fuzzy set are 

shown in Figure 4.4. These are: 

- Support: Elements of the universe  {𝑥, ∀ 𝑥 ∈ 𝑋,𝑤ℎ𝑒𝑟𝑒 𝜇(𝑥) ≠ 0 } 

- Core: The set of elements of the universe  {𝑥, ∀ 𝑥 ∈ 𝑋,𝑤ℎ𝑒𝑟𝑒 𝜇(𝑥) = 1 } 

- ⍺–cut: The set of elements of the universe {𝑥, ∀ 𝑥 ∈ 𝑋,𝑤ℎ𝑒𝑟𝑒 𝜇(𝑥) ≥ 𝛼 } 

- Height: The maximum degree of membership for a particular fuzzy set. This is 

usually equal to 1 for a normal fuzzy set. Sub-normal fuzzy sets indicate the 

occurrence of some conflict when inferred from normal fuzzy sets. It is not necessary 

for height to be 1, any fuzzy set with height 1 said to be normal, otherwise, a 

normalization process will be necessary at times.  
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Figure 4.4 Schematic of support, core, α-cut and height of fuzzy set A. 

4.2.1 Linguistic values and linguistic variables 

The result of associate meanings (semantics) with a fuzzy set are [149]: 

 Linguistic variable: The labelled domain of the fuzzy set, for example, age, 

temperature and speed 

 Linguistic value: The labelled fuzzy-sets of the domain, for example: young, old 

for age; slow, rapid, fast for speed; and short, medium, and tall for height (see Figure 

4.5).  

 Linguistic modifier: Linguistic descriptions that modify the linguistic variable. 

Includes the following classes: 

- Expansive (more or less, approximately, rather): correspond to a loss of precision 

or to a weakening of the original label. 

- Restrictive (very, strongly, really): correspond to an increased precision or represent 

a reinforcement of the original label. 

 

Figure 4.5 Example of fuzzy linguistic variables. 

165 170 175 180 185 

short 

x 

1 

μA(x) 

medium tall 

220 



 

 

 

81 

Figure 4.5 raises a question, "Is this model of human height valid for basketball players? Or 

jockeys? The answer is definitely no, since linguistic values are inherently context-

dependent. 

4.2.2 Fuzzy set representations 

The above-mentioned representations, using the membership degree are referred to vertical 

representations [146]. Corresponding to classical set theory, a fuzzy set can be viewed as a 

union of its subsets, where every subset is a level-cut of the main fuzzy set, e.g.:  

The ⍺–level cut 𝜇𝛼(𝐹) =  {𝑢 ∈ 𝑈: 𝜇(𝑢) ≥ 𝛼}, 𝑓𝑜𝑟 1 ≥ 𝛼 >  0. 

The generated family of crisp sets {𝜇𝛼 ∶ ∀ 1 ≥ 𝛼 >  0} constitutes the main fuzzy set and is 

referred to as the horizontal representation, as shown in Figure 4.6 with ⍺–cut and 

membership grades ⍺1 > ⍺2 > . . . >⍺n.  

Level-cut representation is very necessary to understand the extension principle of fuzzy 

operators. It is reliable to retrieve μ(x) using its⍺–cuts as in (4.6): 

𝜇(𝑥) = sup
𝛼∈[0,1]

min {𝛼, 𝜇(𝑥)}   (4.6) 

Alternatively, a hypercubic representation as proposed by Kosko [147] may be used. In this 

scheme, a fuzzy set is generated from the power set of a crisp set. Specifically, the power set 

of X defines a hypercube of dimension |X|, with each dimension represents the characteristic-

Figure 4.6 Horizontal representation of a fuzzy set. 



 

 

 

82 

function of one element and can take the values 0 or 1. Then only vertices of this hypercube 

are valid sets. In crisp set theory, it is possible to represent a subset of X describing only the 

coordinates of a vertex as n-tuple composed of 0s and 1s. Accordingly, any point inside the 

hypercube represents a valid subset of X. Then, the vertices of the hypercube are the crisp 

sets, where fuzziness is 0. The centre of the cube, where every coordinate is 0.5 is the set 

with maximum fuzziness [147].  

As shown in the example in Figure 4.7, if 𝑈 = {𝐴, 𝐵}  ⇒ |𝑈| = 2, then the crisp set is 

represented by the vertices, while the inner point represents the fuzzy set = {0.5/X + 0.4/Y}.  

 

Efficient use of fuzzy sets requires a wise selection of their representation. The 

aforementioned representations all belong to type-1 fuzzy sets. Type-2 fuzzy sets, proposed 

by Zadeh in [150], gain some attention from various researchers but relatively fewer 

applications were reported, and none in the WLAN localisation domain.  

However, Mendel [148] elaborated on the type-2 fuzzy set and the extension principle, where 

a type-2 fuzzy-set is viewed as a type-1 fuzzy-set with grades of membership that are 

themselves fuzzy; in this case it is said to have a 3D representation, as shown in Figure 4.8. 

Every value in the universe of discourse is represented by a set of grades to the same main 

linguistic term. In other words, the parent membership-function will be the domain of the 

Figure 4.7 Hypercube representation of a fuzzy set. 
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child membership-function. This representation has added value especially when the degree 

of membership itself is ambiguous [148]. 

 

4.2.3 Connectives and basic operations of fuzzy sets 

It is important to know how to handle fuzzy sets; For example, if a fuzzy set describes a 

group of older people, and another fuzzy set describes a group of tall people, and we wish to 

consider an element which has a membership-degree with the older people set as µold(x) = 

0.5, and a membership-degree with the tall people set as µtall(x) = 0.7. What then is the degree 

of membership for the same element to the older and tall people sets µold∧tall (x) = ? To 

find a solution, we will use conjunctions and disjunctions on fuzzy sets, as is done with crisp 

set operators). 

Inclusion  

Two principal methods may be used to determine the inclusion of F into G:  

 Simple inclusion, proposed by Zadeh (as cited in [146]) 

𝐹 ⊆ 𝐺 ⟺ ∀𝑢 ∈ 𝑈 , 𝐹(𝑢) ≤ 𝐺(𝑢)  

Figure 4.8 Type-2 fuzzy set representation. 
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 Strong inclusion, proposed by Dubois and Prade [151], support of F included 

in the core of 𝐺 𝐹 ⊆s 𝐺 ⟺ s(F) ⊆ °𝐺  

Intersection and union (t-norms) 

The intersection and union operators are generalised formulas for the conjunction and 

disjunction operators in multi-valued logic; known as t-norm (triangular norm) and S-norm 

(t-conorm). Briefly, the t-norm is a 2-space function, [0,1] x [0.1] to [0,1], that satisfies the 

following five basic axioms [152]: 

- 𝑇(0,0)  =  0 

- 𝑇(𝑥, 1)  =  𝑥 

- 𝑇(𝑥, 𝑦)  =  𝑇(𝑦, 𝑥) 

- 𝑇(𝑎, 𝑏) <= 𝑇(𝑥, 𝑦) 𝑖𝑓 𝑎 <= 𝑥 𝑎𝑛𝑑 𝑏 <= 𝑦 

- 𝑇(𝑇(𝑥, 𝑦), 𝑧) =  𝑇(𝑥, 𝑇(𝑦, 𝑧)) 

The S-norm is a 2-space function, [0,1] x [0,1] to [0,1], that satisfies the following five basic 

axioms [152]: 

- 𝑆(1,1)  =  1 

- 𝑆(𝑥, 0)  =  𝑥 

- 𝑆(𝑥, 𝑦)  =  𝑆(𝑦, 𝑥) 

- 𝑆(𝑎, 𝑏) <= 𝑆(𝑥, 𝑦) 𝑖𝑓 𝑎 <= 𝑥 𝑎𝑛𝑑 𝑏 <= 𝑦 

- 𝑆 (𝑆(𝑥, 𝑦), 𝑧)  =  𝑆(𝑥, 𝑆(𝑦, 𝑧)) 

Complementation 

Negation (NOT) or complementation in its simplest form can be calculated as in (4.7). 

𝜇−𝐴(𝑥) = 1 − 𝜇𝐴(𝑥)   (4.7) 
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The following table briefly list (some) t-norm and t-conorm fuzzy connectives, as proposed 

by different researchers [153]. 

Table 4.1 Some well-known t-norm and t-conorm operators [153] 

 T-norm 

Drastic 
𝜇𝐴∧𝐵(𝑥) = {

𝜇𝐴(𝑥)   𝑖𝑓 𝜇𝐵(𝑥) = 1

𝜇𝐵(𝑥)   𝑖𝑓 𝜇𝐴(𝑥) = 1
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Bounded-Gill 
𝜇𝐴∨𝐵(𝑥) = max {0, 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − 1 } 

Product 
𝜇𝐴∧𝐵(𝑥) = 𝜇𝐴(𝑥) ⋅ 𝜇𝐵(𝑥) 

Yager, p≥1 
𝜇𝐴∧𝐵(𝑥) = 1 −min {1, (𝑃 ((1 − 𝜇𝐴(𝑥))

𝑃
+ (1 − 𝜇𝐵(𝑥))

𝑃
))1/𝑃} 

Dubois 
𝜇𝐴∧𝐵(𝑥) =

𝜇𝐴(𝑥)𝜇𝐵(𝑥)

max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥), 𝑟)
 

Zadeh 
𝜇𝐴∧𝐵(𝑥) = min {𝜇𝐴(𝑥), 𝜇𝐵(𝑥)} 

 
T-conorm 

Drastic 
𝜇𝐴∨𝐵(𝑥) = {

𝜇𝐴(𝑥)   𝑖𝑓 𝜇𝐵(𝑥) = 0

𝜇𝐵(𝑥)   𝑖𝑓 𝜇𝐴(𝑥) = 0
1       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Bounded-Gill 
𝜇𝐴∧𝐵(𝑥) = min {1, 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) } 

Product 
𝜇𝐴∨𝐵(𝑥) = 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥) ⋅ 𝜇𝐵(𝑥) 

Yager, p≥1 
𝜇𝐴∨𝐵(𝑥) = min {1, (𝜇𝐴(𝑥)

𝑃 + 𝜇𝐵(𝑥)
𝑃)1/𝑃} 

Dubois 
𝜇𝐴∧𝐵(𝑥) =

𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − (𝜇𝐴(𝑥)𝜇𝐵(𝑥)) − min{1 − 𝑟, 𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}

max (1 − 𝜇𝐴(𝑥), 1 − 𝜇𝐵(𝑥), 𝑟)
 

Zadeh 
𝜇𝐴∨𝐵(𝑥) = max {𝜇𝐴(𝑥), 𝜇𝐵(𝑥)} 

 

Other sets of t-norms are available in the literature. There are many different ways to define 

the norms in fuzzy set theory; it depends on the way we want to use them, especially as we 
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manipulate fuzzy rules, because defining norms differently will directly affect the 

interpretation of specific rules. A comparative study of the various types of t-norms by Wang 

[153], although the comparison was limited by six criteria, proves that in particular cases the 

minimum is the greatest t-norm, and the drastic intersection the smallest t-norm. Similarly, 

the maximum operation yields the smallest t-conorm acting as a fuzzy union operation, and 

the drastic union is the most encompassing. 

4.3 Fuzzy Inference Systems 

The term fuzzy inference system (FIS) broadly describes a system that uses fuzzy sets and 

fuzzy logic to infer conclusions (outputs) from imprecise, uncertain or vague information 

(inputs). Various terms are used by scholars and other in disciplines, but FIS is preferable 

since it highlights the operational structure and knowledge foundation [154]. Fundamentally, 

any FIS comprises the following functional segments and definitions (see Figure 4.9) [154]: 

 Rulebase—holds conditional statements, referred to as fuzzy rules 

 Database—holds linguistic descriptions for the fuzzy rules in the form of fuzzy sets 

together with descriptions of fuzziness referred to as membership functions 

 Decision-making unit—this is the core reasoning segment which describes the operations 

on fuzzy-rules. Includes operations such as min, max and multiplication 

 Fuzzification inference—transforms the crisp data into fuzzy data 

 Defuzzification inference—transforms the fuzzy data into crisp data. 
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4.3.1 Fuzzy reasoning  

The primary task of FIS and fuzzy norms is to help us, using combinations of certain rules, 

to draw conclusions based on the fuzzy knowledge given in the rulebase.  

If we have a fuzzy set with certain degree of membership μA(x), and given that A → B, we 

need to achieve a membership degree μB(y) of output variable y to fuzzy set B.  

Example:  If “temperature is low” then “heater is ON” 

If we know the degree of membership for medium temperature, we can draw a weak 

conclusion based on the available overlap between 'low' and 'medium' fuzzy sets (Figure 

4.10). 

Using different fuzzy norms, and different ways to evaluate the fuzzy sets, may give quite 

different results. Another way of evaluating fuzzy sets can be done via their structural 

properties based on Boolean algebraic relations, i.e., associativity, commutativity, identity, 

absorption, idempotence, De Morgan's laws, and distributivity [151]. 

Figure 4.9 Fuzzy inference system with five functional blocks [154]. 
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Figure 4.10 Basic fuzzy reasoning concept. 

A comprehensive platform for extending standardised or non-standardised arithmetic, 

logical or relational operators has been created since the early appearance of fuzzy set theory 

by many scholars [22], [151], [155]–[158]. This solid topological foundation renders the 

theory and its inferencing operations capable of being embedded in any application. 

4.3.2 Fuzzy implication 

Broadly speaking, there are two major categories of fuzzy implications: (i) explicit-

representation-based; and (ii) implicit-representation-based. Regardless of their 

representation style, most well-known fuzzy implication families, as introduced in [159], 

are: 

R- and S-Implications 

 S-implications: 𝐼𝑆(𝑎, 𝑏)  =  𝑆(𝑛(𝑎), 𝑏)    (4.8) 

where S is t-conorm, and n is strong negation. 

 R-implications: 𝐼𝑅(𝑎, 𝑏)  =  𝑠𝑢𝑝{𝑧 ∈  [0, 1]: 𝑇(𝑎, 𝑧) ≤  𝑏}  (4.9) 

where T is t-norm.  

 Reciprocal R-implications 𝐼𝐶(𝑎, 𝑏)  =  𝐼𝑅(𝑛(𝑏), 𝑛(𝑎))     (4.10) 

μB(y) A x 

B 

μA(x) x 

y 
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Non-commutative conjunctions 

𝑇∗(𝑎, 𝑏) = {
𝑏, 𝑖𝑓 𝑎 + 𝑏 > 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

    (4.11) 

Exotic implications (QL-Implication) 

𝐼(𝑎, 𝑏)  =  𝑆(𝑛(𝑎), 𝑇(𝑎, 𝑏))   (4.12) 

where 𝑆 is t-conorm, n is a strong negation, and 𝑇 is the n-dual t-norm of 𝑆. 

Interval-based implications 

Proposed by Bilgiç and Türkşen [160], and not dependent on implicit or explicit 

representations: 

𝐶𝑁𝐹(𝑝 ⟶ 𝑞)  =  ¬𝑝 ∨ 𝑞     (4.13) 

𝐷𝑁𝐹(𝑝 ⟶ 𝑞)  =  (𝑝 ∧ 𝑞)  ∨ (¬𝑝 ∧ 𝑞)  ∨ (¬𝑝 ∧ ¬𝑞) (4.14) 

where CNF and DNF are the normal conjunctive and normal disjunctive forms, respectively. 

4.4 Fuzzy Rules 

As mentioned, the fuzzy rule is a conditional statement written in the form of an if-then 

clause and used to capture human knowledge about a particular phenomenon or describe the 

behaviour of a system, regardless of the provided information, its completeness, vagueness 

or precision. 

Fundamentally, the conditional has two parts corresponding to facts given (input), referred 

to as the premise or antecedent part, and the resulting experience (output), referred to as the 

consequent part. The premise and consequent parts are described in linguistic terms, which 

are quantified in fuzzy terms according to the description embedded in the definition of the 

membership-function. The number of terms in each part decides the fuzzy If-Then rule, as 

detailed below [159].  
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Its simplest class is single-input single-output (SISO), which is described as: 

𝐼𝑓 𝑥 𝑖𝑠 𝐴 𝑇ℎ𝑒𝑛 𝑦 𝑖𝑠 𝐵 

When many inputs are included in the expression, this is referred to as multiple-input single-

output (MISO) [159]: 

𝐼𝑓  𝑥1  𝑖𝑠 𝐴1
𝑗
  𝑎𝑛𝑑  𝑥2 𝑖𝑠 𝐴2

𝑘  𝑎𝑛𝑑 , … , 𝑎𝑛𝑑 𝑥𝑛  𝑖𝑠  𝐴𝑛
𝑙   𝑇ℎ𝑒𝑛 𝑦𝑞  𝑖𝑠 𝐵𝑞

𝑝
 

The third class is multiple-input multiple-output (MIMO), which takes the form: 

𝐼𝑓  𝑥1  𝑖𝑠 𝐴1
𝑗
   𝑎𝑛𝑑  𝑥2  𝑖𝑠 𝐴2

𝑘  𝑎𝑛𝑑 , … , 𝑎𝑛𝑑 𝑥𝑛  𝑖𝑠  𝐴𝑛
𝑙   𝑇ℎ𝑒𝑛 𝑦1  𝑖𝑠 𝐵1

𝑟  𝑎𝑛𝑑 𝑦2  𝑖𝑠 𝐵2
𝑠 

The MIMO structure can be interchangeably written in the form of a MISO structure. The 

above if-then rule can be written as two separate rules: 

𝐼𝑓  𝑥1  𝑖𝑠 𝐴1
𝑗
  𝑎𝑛𝑑  𝑥2  𝑖𝑠 𝐴2

𝑘   𝑎𝑛𝑑 , … , 𝑎𝑛𝑑 𝑥𝑛  𝑖𝑠  𝐴𝑛
𝑙   𝑇ℎ𝑒𝑛 𝑦1  𝑖𝑠 𝐵1

𝑟 

𝐼𝑓  𝑥1  𝑖𝑠 𝐴1
𝑗
  𝑎𝑛𝑑  𝑥2  𝑖𝑠 𝐴2

𝑘  𝑎𝑛𝑑 , … , 𝑎𝑛𝑑 𝑥𝑛  𝑖𝑠  𝐴𝑛
𝑙   𝑇ℎ𝑒𝑛 𝑦2  𝑖𝑠 𝐵2

𝑠 

The fourth class, single-input multiple-output (SIMO), is not used since it can be constructed 

from a group of SISO statements. 

An alternative way to model the fuzzy rulebase system depends on the type of parameters in 

the antecedent part and the consequent part [161]. That is: 

 Mamdani rules: Where the antecedent is a conjunction of fuzzy memberships and 

the consequent part is a fuzzy set [3]. For example: 

𝐼𝑓 “𝑎𝑔𝑒 𝑖𝑠 𝑦𝑜𝑢𝑛𝑔” 𝑎𝑛𝑑 “𝑐𝑎𝑟 𝑖𝑠 ℎ𝑖𝑔ℎ 𝑝𝑜𝑤𝑒𝑟” 𝑡ℎ𝑒𝑛 “𝑟𝑖𝑠𝑘 𝑖𝑠 ℎ𝑖𝑔ℎ” 

 Sugeno rules: Where the antecedent is a conjunction of fuzzy memberships, and the 

consequent part is a (crisp) real-valued function of the input variables [3]. For 

example: 

𝐼𝑓 “𝑎𝑔𝑒 𝑖𝑠 𝑦𝑜𝑢𝑛𝑔” 𝑎𝑛𝑑 “𝑐𝑎𝑟 𝑝𝑜𝑤𝑒𝑟 𝑖𝑠 ℎ𝑖𝑔ℎ” 𝑇ℎ𝑒𝑛 “𝑟𝑖𝑠𝑘 

=  𝑤0 + 𝑤1 ∗ 𝑎𝑔𝑒 + 𝑤2 ∗ 𝑝𝑜𝑤𝑒𝑟” 

where w0, w1 and w2 are real values. 
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Although Mamdani’s rules are easier to interpret, many modelling systems use a Sugeno 

rule system since it is easier to adjust and adapt to the data. Both systems have been used 

extensively in modelling and control. Through the use of linguistic labels and membership 

functions, a fuzzy if-then rule can capture the spirit of a ‘rule of thumb’ used in human 

decision-making. From another point of view, due to the qualifiers on the premise parts, each 

fuzzy if-then rule can be viewed as a local description of the system under consideration [3]. 

4.5 Fuzzy Rules Inferencing  

The inferences from fuzzy rules are typically achieved through the following sequential 

steps, as shown in Figure 4.11: 

1. Fuzzification of crisp inputs to fuzzy values via assigning them a degree of fulfilment 

to corresponding fuzzy sets according to the underlying membership functions 

2. Inference decision drawn from the rulebase using fuzzy implications, i.e., fuzzy-set-

based operators. 

3. Defuzzification of the output to real crisp values, using approaches such as centre of 

gravity (COG) and mean of maxima (MOM). 

 
Figure 4.11 Fuzzy inference and its three main components. 
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4.6 Defuzzification methods 

Many defuzzification methods are used in the literature. We shall mention here the best 

known, as described in [162]. 

Centre of Gravity (COG) 

A very popular principle, despite its high computational cost, alternatively referred to as 

centroid of the area [163]. Generally it is expressed by the following two models, for the 

discrete and continuous versions, respectively: 

𝑢 =
∑ 𝜇(𝑥)𝑥𝑖𝑖

∑ 𝜇(𝑥𝑖)𝑖
    (4.15) 

𝑢 =
∫𝑥𝑖𝜇(𝑥)𝑑𝑥

∫𝜇(𝑥)𝑑𝑥
    (4.16) 

When the membership-function is a singleton, this model can be interpolated to: 

𝑢 =
∑ 𝜇(𝑠𝑖)𝑆𝑖𝑖

∑ 𝜇(𝑠𝑖)𝑖
     (4.17) 

where Si represents the location of i in U, while µ(si) represents the firing strength ⍺i of rule 

i. 

Bisector of Area (BOA)  

As its name suggests, the BOA chooses the x coordinate of the perpendicular line, which 

divides the region into two equal regions: 

{  𝑥  |  ∫ 𝜇(𝑥)𝑑𝑥 =
𝑥

𝑀𝑎𝑥
∫ 𝜇(𝑥)𝑑𝑥  
𝑀𝑖𝑛

𝑥
}   (4.18) 

where Min and Max represent the leftmost and the rightmost boundaries of U. The 

performance of such a method is not guaranteed in the case of a singleton membership-

function. 

Centre of Average (COA) 

This method returns the crisp value, which belongs to the average of maximums of the 

individual centres of areas for each output membership-function: 
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𝑦𝑞
𝐶𝑟𝑖𝑠𝑝 =

∑ 𝑏𝑖
𝑞
𝑠𝑢𝑝
𝑦𝑞

 {𝜇𝐵𝑞
𝑖 (𝑦𝑞) }

𝑅
𝑖=1

∑ 𝑠𝑢𝑝 
𝑦𝑞

{𝜇𝐵𝑞
𝑖 (𝑦𝑞) }

𝑅
𝑖=1

  (4.19) 

where   𝑠𝑢𝑝 { 𝜇(𝑥) } = ℎ𝑖𝑔ℎ𝑡{ 𝜇(𝑥) } 

Max Criterion 

This method returns the crisp value, which represents the maximum among all centres of 

areas in the output function: 

𝑦𝑞
𝐶𝑟𝑖𝑠𝑝 ∈ {𝑎𝑟𝑔 𝑠𝑢𝑝

𝑦𝑞

{𝜇𝐵𝑞(𝑦𝑞)}}  (4.20) 

where   𝑎𝑟𝑔 𝑠𝑢𝑝
𝑥
{𝜇(𝑥)} = max { 𝑠𝑢𝑝

𝑥
{𝜇(𝑥)} 

Mean of Maxima (MOM) 

This method returns the average of all objects when their membership degrees reach the 

maximum. The method disregards the shape of the fuzzy set, but the computational 

complexity is relatively good. 

𝑦 =
∑ 𝜇𝑖(𝑥)
𝑘
𝑖=1

𝑘
    (4.21) 

Leftmost Maximum (LM), and Rightmost Maximum (RM)  

This method does nothing more than choose one of the maximum left or right limits of the 

output membership-function. Hence, it requires little computational power. The method 

resembles the hard-limiting functions, which is a necessary action in applications that use 

obstacle avoidance algorithms. Formally they are represented by the following models. 

𝑦𝑅𝑀 =
sup(𝑥′)

𝜇(𝑥′)
= sup

x∈[Min,Max]
𝜇(𝑥)  (4.22) 

𝑦𝐿𝑀 =
inf(𝑥′)

𝜇(𝑥′)
= sup

x∈[Min,Max]
𝜇(𝑥)  (4.23) 
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4.7 Semantics and Measurement of Fuzzy Sets 

The firm mathematical foundations of the fuzzy set theory have enabled it to enter the realm 

of almost every engineering discipline and application [146], as shown in Figure 4.12.  

 

It seems necessary to question the semantics (interpretations) of fuzzy sets in order to 

properly understand the fuzzy set tools, especially reasoning and inferencing. These are 

carried out via the implication and norm operators, where each implication and norm results 

in a different meaning, depending on how it was defined (see fuzzy implications, t-norm, 

and t-conorm). 

Figure 4.12 Mathematical environment of fuzzy set theory [146]. 
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4.7.1 Meaning of membership grade 

A membership grade reflects, inter alia, the following measures [160]: 

 Degree of Similarity: Describes the degree of closeness of an element to some 

ideal element 

 Degree of Preference: Quantifies the decision of selecting an object with respect 

to a certain object 

 Degree of Uncertainty: Interprets the degree of plausibility for a certain object to 

obtain a certain grade. 

4.7.2 Measuring membership grades 

Many approaches can be used for evaluating membership-degrees [160]:  

Ordinal approach 

The membership-degree is outlined on an ordered-relations, such as ordering relation ≥ F 

[158]. For example, a statement like : 𝑎 > 𝐹(𝑏) 𝑜𝑟 𝑎 >𝐹  𝑏 ⇔ 𝜇(𝑎)𝐹 > 𝜇(𝑏)𝐹, describes 

that “𝑎 is more compatible with 𝐹 than 𝑏”. In such case the fuzzy set F is represented by the 

pair { (𝑠𝑢𝑝𝑝(𝑥), >𝐹)  ∀ 𝑥 ∈ 𝑋,𝑤ℎ𝑒𝑟𝑒 𝜇(𝑥) ≠ 0 } 

Cardinal approach 

The membership grade is a number, which is defined by operations on this number. 

These operations are commonly one of the following alternatives [160]: 

 Distance: When a membership function is interpreted in terms of similarity to 

referential set U is equipped with a distance 𝑑, then F(u) can be computed by 

means of a decreasing function of the distance d(u,u*) of u to the prototype element 

u* of F [160]. 
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 Frequency: The degree of membership F(u) can be computed as the proportion of 

observations that do not rule out the situation u. Then the membership function can 

be interpreted as a plausibility function, F(u) =1 meaning that u is ruled out by no 

observation [160]. 

 Cost: F(u) may reflect the toll u would prefer for u being a prototype of F. Then, 

the set of membership grades is no longer the unit-interval but the non-negative 

reals, where 0 corresponds to full membership and non-membership is described 

by +∞ [160]. 

4.8 Constructing Fuzzy Rules (Fuzzy Rule Learning) 

Fuzzy models may be built from human expertise and knowledge of the system under 

investigation. As systems have grown more complex it has become increasingly difficult to 

construct models directly from the domain knowledge of the system. This is due not only to 

the complexity of interactions within the system, but perhaps also an incomplete knowledge 

of the system operations. A fuzzy model can be used to provide a functional approximation 

of the relationships of the underlying system. Recently, many learning algorithms have been 

investigated to construct fuzzy models by developing fuzzy rules through analysis of training 

data. Generally, they may be classified to four major classes, as defined by Berthold and 

Hand [149]: 

4.8.1 Constructive method  

Followers of this method generally try to finding fuzzy rules by 'growing' them from 

singletons and then seeking to add more patterns to the same class, or 'shrink' from a general 

partition to a more specific space by avoiding conflicts. For example, the group of techniques 
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used jointly in forming rules from samples, also known as Free Rules Formation algorithms, 

used in [96], [164]–[172].  

4.8.2 Grid method 

This method is based on global partitioning via predefining membership functions of the 

space, followed by an attempt to adapt the boundaries between different grid cells, even 

merging the grid cells to smaller partitions if no points are covered in the predicted cell. 

Fuzzy associative memory (FAM) [147] and the Higgins & Goodman Algorithm [173] are 

examples. 

4.8.3 Adaptive method  

Here, the rules are randomly initialised (or via partial expert knowledge), then one tries to 

optimise the rule parameters (e.g., location of a membership function over universe of 

discourse, number of membership functions) iteratively, using (many) well-known 

algorithms such as gradient descent [96] and the heuristic hill climbing algorithm [174]. 

4.8.4 Neuro-fuzzy method  

This method injects fuzzy rules into a neural network that has a structure to hold and 

resemble the settings of the fuzzy rules system. Then the method employs training 

algorithms to fine-tune the fuzzy rule parameters. Attention needs to be given to the 'curse 

of dimensionality' problem.[175]. 
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4.9 Rulebase Simplification 

There are many existing simplification approaches, which are categorised in [175]: 

 Features reduction, where the simplification is achieved via pre-processing the 

original training data, by reducing the number of variables and infusing them into 

machine learning tools 

 Similarity merging and inconsistency reduction, which merges similar fuzzy-rules, 

excludes redundancy and unstimulated fuzzy-rules 

 Orthogonal transformation reduction, which uses the matrix computation to 

minimise the fuzzy rules. Usually, this process uses the orthogonal least square (OLS) 

or singular value decomposition (SVD) principles 

 Interpolative reasoning reduction simplifies the fuzzy rules via rejecting the rules, 

which are approximatable by their neighbours; also provides smart inferencing to the 

scattered fuzzy rules 

 Hierarchical reasoning reduction modifies the structure of the conventional fuzzy 

rules models and reduces the 'curse of dimensionality'. 

Choosing the proper rulebase simplification method for the problem in hand requires 

consideration of the following issues [175]:  

 When to apply rule simplification? These methods can take place before, within or 

after the rule-inferencing process. Choosing 'before' will require pre-processing of the 

data, via feature selection or feature transformation; 'within' will require the 

simplification to be integrated into the training schemes; and 'after' will require the 

simplification to compact the fuzzy rules 
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 Preservation of the semantic meaning of the fuzzy rules. In keeping fuzzy linguistic 

definitions for the fuzzy rules, it is crucial not to destroy the understandability and 

completeness of the fuzzy rules 

 Finally, to avoid generating a sparse rulebase. The reduction methods may result in 

no overlapping between rule antecedents for certain observations, and this will 

sometimes cause the fuzzy inference to have no rule to fire. 

4.10 Fuzzy Arithmetic 

Fuzzy arithmetic is yet another powerful set of tools which can help in modelling and solving 

engineering problems with uncertain parameters. To do so, the uncertainties in the model are 

expressed by fuzzy numbers, i.e. a fuzzy set defined on the real universe R, and the problem 

is solved by fuzzy arithmetic, which is a generalisation to fuzzy numbers of mathematical 

operators such as addition and multiplication. 

4.10.1 Fuzzy numbers 

The concept of fuzzy number splays a major role in formulating quantitative fuzzy sets, i.e., 

concepts which contain terms such as about, probably, more or less and around. For any 

fuzzy set to be considered a fuzzy number, the following conditions must be satisfied [176]: 

 Fuzzy set is defined on the real numbers R, as universe of discourse. 

 Normalised: hgt = 1 

 ∃𝑥 ∈ 𝑅 | 𝜇(𝑥)  =  1; there exists at least one value x where the membership grade 

μ(x) = 1, if only core = 1 (one peak point), then it is said to be the modal value. 

 Monotonic: convex and continuous. 
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Figure 4.13 below gives two examples of fuzzy numbers: (a) the triangular fuzzy number, 

About x̄; and (b) the Gaussian fuzzy number, About x̄. Fuzzy arithmetic is based on two 

properties of fuzzy numbers: 

 Each fuzzy number can fully be represented by its ⍺–cuts. 

 ⍺–cuts of each fuzzy number are closed intervals of real numbers ∀𝛼 ∈ [0,1]. 

 

4.10.2 Fuzzy arithmetic operations 

The abovementioned two properties of fuzzy numbers enabled us to define arithmetic 

operations in terms of arithmetic operations on fuzzy number α-cuts. There are two methods 

for implementation of fuzzy arithmetic operations, these methods differ in the way fuzzy 

numbers are represented. 

 The first is known as L-R fuzzy number representation. The number is characterised 

by an ascending left and descending right, based on 𝑋 = (𝑚,, 𝛽)𝐿𝑅. Where m is 

the mean value of X, ⍺ and β are left and right spreads, respectively, when m = 0, 

the number is the crisp value, the larger m the more fuzzy is X. This concept was 

proposed and studied by Dubois and Prade [151]. 

Figure 4.13 Examples of fuzzy numbers. 



 

 

 

101 

 The second is based on subdividing the membership degree axis into a number of 

equally spaced segments (discretising) [176], as shown in Figure 4.14. 

 

A fuzzy number considered as being approximated by a discrete fuzzy number established 

the basis of Zadeh’s extension principle to the fuzzy arithmetic. This approach has been 

investigated by many researchers [150], [153], [159], [176]–[181]. It may be considered as 

a decomposition into intervals given by the ⍺–cuts at the ⍺–levels µ⍺; where it can also be 

reduced to interval arithmetic to produce fuzzy arithmetic operations. The later concept was 

studied by Kaufman and Gupta [24]. 

For simplicity, only the general formula based on the extension principle of fuzzy set is 

mentioned here. This version is adapted from Hanss [176], who contributed heavily to fuzzy 

arithmetic applications. The arithmetic operation 𝐸 on any two fuzzy sets A and B yields a 

fuzzy set C, which is defined thus: 

𝜇𝑐(𝑧) = sup
𝑧=𝐸(𝑥1,𝑥2)

𝑚𝑖𝑛{𝜇𝐴(𝑥1), 𝜇𝐵(𝑥2)}       ∀𝑥1, 𝑥2 ∈ ℛ  (4.24) 

where A and B are fuzzy numbers, with arbitrary membership functions µA(x1) and µB(x2), 

respectively. E is any of the elementary arithmetic operations (+, –, *, /). 

Figure 4.14 Concept of discretising a fuzzy number. 
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4.11 Fuzzy Graphs 

Fuzzy graphs are a promising field where fuzzy modelling theory has merged with classical 

graph data structure. Zadeh [172] described the primary function of a fuzzy graph is to serve 

as a representation of an imprecisely defined dependency. A graph G is defined as follows: 

𝐺 =  (𝑉, 𝐸)    (4.25) 

where V represents the set of vertices and E represents the set of edges, such that the edge E 

is a pair (x, y) of vertices in V.  

A fuzzy graph is a data structure expressing the relation 𝑅 ⊆ 𝑉 × 𝑉. Where the ordered pair 

(x, y) is defined with direction, it is called a directed graph. Alternatively, if order is not 

allowed, then it is said to be undirected-graph [166]. A path from x to y consists of the set of 

edges 𝑎1, 𝑎2, …, and the edges are continuous, that is, (𝑥, 𝑎1), (𝑎1, 𝑎2), (𝑎2, 𝑎3), . . . , (𝑎𝑛, 𝑦).  

Then length of path represents the number of edges along this path. Nodes 𝑎 and 𝑏 in 𝐺 are 

said to be connected when there is a path between 𝑎 and 𝑏 in 𝐺. If there is a connection 

∀ 𝑎, 𝑏 ∈ 𝑉 in 𝐺, then this graph is said to be a connected graph. Generally, any directed, 

connected fuzzy graph is referred to as a network [166]. 

We can think of set 𝑉 as a fuzzy set. In this case, we say this graph represents a fuzzy relation 

of fuzzy nodes, where a membership-function of (𝑥, 𝑦) is associated to each edge element 

𝐸, and/or vertex 𝑉 [162]. The fuzzy graph is an expression of fuzzy relations and frequently 

expressed as a fuzzy matrix [182]. See Figure 4.15. 
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The fuzzy matrix in Figure 4.15 can lead to the following new fuzzy sets in set 𝐵 by set 𝐴. 

 𝜇(𝑎1)  =  {(𝑏1,0.5), (𝑏2,1.0)} 

 𝜇(𝑎2)  =  {(𝑏3,0.5)} 

 𝜇(𝑎3)  =  {(𝑏1,1.0), (𝑏2,1.0)} 

 𝜇(𝑎1, 𝑎2)  =  {(𝑏1,0.5), (𝑏2,1.0), (𝑏3,0.5)}  

This fuzzy graph can be adapted in accordance with the results obtained using some fuzzy 

operations. For example, new edges (connections) may be found. This concept was 

investigated by McAllister [182] using the conjunction operation and projection processes. 

Berthold and Huber [166] pointed out an important application of fuzzy graphs, i.e., the 

automatic construction of fuzzy graphs from examples. “Through the concept of fuzzy 

graphs approximate representations of functions, contours, and sets can be derived" 

automatically, relaying on alpha-cuts, conjunction and disjunction operations extended to 

fuzzy graphs [166]. Karunambigai et al. [183] used fuzzy graphs in network applications, 

particularly to find the 'shortest path,' by representing a model based on dynamic 

programming. 

Figure 4.15 Fuzzy matrix to express the fuzzy graph. 
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4.12 Conclusion 

This chapter provides an in-depth discussion of fuzzy set theory and how it has been used to 

build the FIS and its main components, and indeed leverage its advantages in positioning 

and position estimation problems. These advantages which are:  

 Its parallel or distributed nature, which allows expression of a model of complex and 

nonlinear systems via a group of fuzzy rules 

 Its linguistic capabilities, which allow expression of model of complex and nonlinear 

systems via a group of linguistic terms, interpreted as MFs. This feature capture 

human knowledge more easily than classical representation. The MF can also be 

modified using 'hedges,' which may add more precision and feasibility to the model. 

In general, fuzzy set theory provides a robust model since it contains a group of rules in 

which a failure of one rule is not harmful to the whole system.  

In the next chapter, these features are utilised to build a hybrid localisation tool for indoor 

WLAN environments. 
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5 HYBRID WLAN AND INDOOR POSITION ESTIMATION 

5.1  Methodology Overview 

Localisation and positioning systems have expanded quickly in response to the diverse 

demands of wireless networks and their location-dependent applications, as mentioned in 

Chapter 3. Indeed, the approach taken in location-based application development may differ 

in several respects, depending on: (i) the required type of location; (ii) the type of 

environment; (iii) type of network topology; and (iv) type of communication technology 

employed, cost constraints and the accepted level of uncertainty. In addition to the factors 

listed in (i) to (iv), the principles of estimation have also affected the development of 

location-dependent applications. 

From the perspective of system vendors and application developers, choosing an appropriate 

localisation algorithm is subject to both the accuracy requirements and the costs associated 

with deploying an algorithm. Very often, accuracy requirements may be sacrificed for the 

sake of lower costs. In this regard, when the requirement for additional hardware is 

eliminated, the most desirable option among the many available localisation algorithms may 

be the fingerprinting technique. 

The fingerprinting approach has two phases: (i) an offline phase, widely known as the 

training phase; and (ii) an online phase. The offline phase concentrates on building a 

localisation (fingerprints) map from the test environment. The online phase aims to produce 

an acceptable position for any unknown object by matching its observed RSS with surveyed 

references in the environment offline map. The accuracy of this technique remains under 

investigation. It is conditioned by the quality of the fingerprints map and the matching 

principle, both of which are subject to the uncertainties diffusing into the RSS during both 
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phases. Many soft computing and machine-learning solutions have been introduced to 

overcome these uncertainties. 

This chapter presents a fuzzy set theory-based algorithm in conjunction with the 

fingerprinting localisation algorithm. In particular, the Takagi-Sugeno multivariable FIS 

(TKS-FIS) is proposed to produce weighting factors for the fingerprints using a multi-

nearest-neighbours (kNN) algorithm. This weighting mitigates the effect of uncertainties in 

the location estimation. In addition to the conventional multi-nearest neighbour algorithm, 

based on robust statistics, this chapter presents a novel outliering stage to cope with the 

failures of the kNN algorithm when fake neighbours are considered as genuine neighbour 

fingerprints.  

5.2 Propagation model-based positioning 

The wireless propagation model [184] explains signal behaviour over a particular path. 

Several factors affect wireless signal attenuation. These include fading and scattering 

characterised by spectrum properties, and factors characterised by the test environment, such 

as multipath effects from reflection, refraction and absorption due to physical characteristics 

of materials and random noise. These factors, in addition to unbiased errors arising from the 

measurement procedures, are broadly classified into three groups of signal variations 

(mentioned in Section 3.7): small-scale, large-scale and temporal. As a consequence, a 

universal propagation model that suits every environment and holds all parameters and 

factors to meet the required accuracy seems impossible. 

Alternatives are restricted to formulations of the propagation model based on the 

experimental observations. Several models have been suggested in the literature. Our present 

focus is to pick a model that fits the intended experimental testbed. The settled model was 

one introduced in [136], as it was verified in a test environment very similar to the test 
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environment proposed for this research. In this model, the signal power path loss (PL) 

indicator between emitted and received signal is interpreted as a function of the travelled 

direct path:   

𝑃𝐿 = −40 − 31𝑙𝑜𝑔10(𝑑) ± 8           (5.1) 

where PL is the path loss for the indoor environment in the 2.4 GHz frequency band, and is 

measured in dB; and 𝑑 is the distance between emitter and receiver measured in metres (in 

this case the distance between AP and fingerprint). In the same vein as (5.1), [185] proposed 

an alternative model for indoor environments: 

𝑃𝐿𝑖𝑛𝑑𝑜𝑜𝑟 = 𝑅0 − 10𝛼𝑙𝑜𝑔10(𝑑) ± 𝛽  (5.2) 

where the values of R0, ⍺ and β vary according to LOS and NLOS scenarios.  

Considering both models, β in (5.2) and ±8 in (5.1) represent the uncertainty level which 

will take place in the test environment. The benefit of this uncertainty will clearly emerge 

when we extract the membership functions of the fuzzy system. 

Figure 5.1 shows the plot of (5.2) with the addition of the maximum and minimum levels of 

8 dB uncertainty (green and blue lines, respectively), and 0 dB uncertainty (red line). Based 

on empirical results by Oussalah et al. [4], ⍺ is set to be 2.1, which is appropriate for the 

tested indoor environment. The results of the plot (confirmed in experiments conducted at 

local offices with inner walls of gypsum board) show that about 70 dB of power is lost in 

the first metre, and that the maximum distance a 2.4 GHz system (with range of 80 dB and 

zero gain antennas) is able to achieve is about 20 metres [4]. 
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Figure 5.1 Radio propagation model [4]. 

 

5.3  RSS and Fingerprint-based Positioning 

The fingerprint and RSS-based localisation approaches rely on estimating the target location 

from samples of the fingerprint database. The database construction takes place offline, 

where the measured RSS may be correlated to true ground locations prior to the deployment 

of the localisation algorithm. Alternatively, the true ground locations may be correlated to 

the RSS depending on the pre-described propagation model. This step is formally known as 

the offline stage, which results in tuples of RSS and their true ground correlated locations 

(coordinates). The coordinates are measured using available hardware devices within the 

network; the location estimation functions when at least three non-collinear fixed reference 

fingerprint points are detected.  
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RSS-based APs are propagation-loss equations which measure RSS values to build a signal 

strength map in a local area. The map may be generated using any method to measure the 

distance between RSS devices. A radio propagation model with positioning algorithm is 

always used to determine the target object position according to the RSS map [186]. 

Typically, the RSS values are within the interval [-40 dB, -95 dB] [3]. The industry standard 

defines RSS values within 256 intervals [64]. 

5.4 Multi-Nearest-Neighbour (kNN) algorithm 

A basic nearest-neighbour algorithm is a distance-based classification algorithm first 

proposed by Cover and Hart [187] in 1967. They used a rulebase to classify any unknown 

observation to the nearest set of previously classified observations. Such rules are usually 

independent of the distribution of the collected sample points; thus, the error of such 

classification can be at least as significant as the Bayes probability. Later, this algorithm 

went through many enhancements, particularly with the inclusion of multiple nearest points 

in the distribution space and the selection of various distance functions.  

The focus here is to illustrate the essential operation of the multi-nearest-neighbour (kNN) 

algorithm with its primary Euclidian distance function, regardless of the availability of 

distance functions such as the Hamming and Minkowski distance [188]. The Euclidian 

distance function is defined as: 

𝐷(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1   

where x is the input vector from the known data, y is the measured observation from the 

target to be classified, and n is the number of samples in the application. In our case, given 

a set of m fingerprints 𝐹𝑃𝑖  (𝑖 = 1 𝑡𝑜 𝑚) whose data comprise the n-dimensional RSS vectors 

(𝑅𝑆𝑆𝑖1  𝑅𝑆𝑆𝑖2 . . . 𝑅𝑆𝑆𝑖𝑛) (𝑖 = 1 𝑡𝑜 𝑚). So, given an anonymous target T whose observed 
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RSS vector is (𝑅𝑆𝑆𝑇1  𝑅𝑆𝑆𝑇2 . . . 𝑅𝑆𝑆𝑇𝑛), then the agreement between the ith fingerprint and 

T can be calculated using the Euclidean distance function:   

𝑑𝑖𝑇 = √∑ (𝑅𝑆𝑆𝑖𝑗 − 𝑅𝑆𝑆𝑇𝑗)
2𝑛

𝑗=1    (5.3) 

Eq. 5.3 seems logical and has been favourably implemented in various indoor localisation 

methods, including the RADAR system [115]. However, in the event of dropping AP, which 

frequently happens in real applications when the signal from an AP is sharply attenuated or 

blocked due to a change in testbed environment, then (5.3) will produce an unpredictable 

result. Another choice for (5.3) can be useful if the average of the distances is calculated, 

thus: 

𝑑𝑖𝑇 = √
1

𝑛′
∑ (𝑅𝑆𝑆𝑖𝑗 − 𝑅𝑆𝑆𝑇𝑗)2
𝑛′
𝑗=1     (5.4) 

where n' is the entire number of APs detected by both the unknown target and the ith 

fingerprint (n' = n when complete coverage of all APs is detected). 

Accordingly, various options may be distinguished to estimate the location of the T. They 

include: 

 Correlating T to the jth fingerprint that returns the shortest distance:  

𝑇(𝑥, 𝑦) = 𝐴𝑃𝑘(𝑥, 𝑦) such that 𝑑𝑘𝑇 = min
𝑗
𝑑𝑗𝑇  (5.5) 

This option agrees with the proximity approach, where each target is associated with 

the base station it is interacting with, and they are said to have the same location [14]. 

The option produces a piece of symbolic relative location information; mostly, RFID 

applies this localisation principle. The CID and COO employed by GSM networks are 

currently applying this principle too. 

 Applying the triangulation and lateration principles to calculate the location of T, after 

turning the RSS from the signal space to a Euclidean (physical) distance, which is 
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commonly done in some radio propagation models [143]. Briefly, considering the 

presence of observations from n emitters (in this case, APs), then (5.4) can be 

converted to this system of equations:  

{
 
 

 
 (𝑥𝐴𝑃1 − 𝑥𝑇)

2
+ (𝑦𝐴𝑃1 − 𝑦𝑇)

2
= 𝑅1𝑇

2

(𝑥𝐴𝑃2 − 𝑥𝑇)
2
+ (𝑦𝐴𝑃2 − 𝑦𝑇)

2
= 𝑅2𝑇

2

.

(𝑥𝐴𝑃𝑛 − 𝑥𝑇)
2
+ (𝑦𝐴𝑃𝑛 − 𝑦𝑇)

2
= 𝑅𝑛𝑇

2

  (5.6) 

where 𝑅1𝑇 , 𝑅2𝑇 , … , 𝑅𝑛𝑇  represents the Euclidean distances from 𝑇  to 

𝐴𝑃1, 𝐴𝑃2, … , 𝐴𝑃𝑛, respectively. The propagation model is used to infer RiT for each 

RSS. (𝑥𝐴𝑃𝑖 − 𝑥𝑇) represents the x,y coordinates of each APi. Several techniques can 

be proposed to find a solution to (5.6), such as nonlinear least square analysis. This 

procedure does not use the fingerprint database clearly; however, some scholars 

recommend using such knowledge in the wireless propagation when transforming the 

RSS to Euclidean distances, as in [7] and [129].  

 Applying the kNN algorithm. In this regard, in correlating T with the fingerprint that 

produces the shortest distance in the fingerprint map, this condition may be loosened 

to consider the k-shortest distances. In such cases, the location is the mean of all 

candidate k-nearest fingerprints: 

𝑥𝑇 =
1

𝑘
∑ 𝑥𝐹𝑃𝜎(𝑖)
𝑘
𝑖=1     ,   𝑦𝑇 =

1

𝑘
∑ 𝑦𝐹𝑃𝜎(𝑖)
𝑘
𝑖=1    (5.7) 

where xT and yT represent the estimated x,y coordinates of T, k is number of nearest- 

fingerprints, and (𝑥𝐹𝑃𝜎(𝑖) , 𝑦𝐹𝑃𝜎(𝑖)) corresponds to the x,y coordinates of each candidate 

nearest-fingerprints, extracted from the fingerprints map. The RADAR system uses 

this strategy [115]. Such a principle triggers the aforementioned signal variations 

inherited in the RSS of the WLAN-indoor environments. As highlighted in [115], “the 

error vector (in physical space) corresponding to each neighbour is oriented in a 
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different direction.” Averaging the coordinates of neighbours may enhance the 

accuracy of the target positioning.  

Furthermore, to cope with another accumulation of signal variations, a weighted-

average technique may be used to enhance system accuracy [7]: 

𝑥𝑇 =
1

𝑘
∑ 𝑤𝑖𝑥𝐹𝑃𝜎(𝑖)
𝑘
𝑖=1     ,   𝑦𝑇 =

1

𝑘
∑ 𝑤𝑖𝑦𝐹𝑃𝜎(𝑖)
𝑘
𝑖=1   (5. 8) 

The weights wi are such that ∑ 𝑤𝑖 = 1𝑘
𝑖=1 . The modest form of the weighted-kNN is 

composed by determining the weights relative to the nearest fingerprint, although 

alternative and more advanced weighting principles, such as those that rely on fuzzy 

set theory, may be introduced [4]. 

 Applying soft computing methodologies [51], which include neural network learning 

principles, support vector machines and FISs [42], [64], [189], [190]. These learning 

and reasoning algorithms rely on the generalisation capabilities of the underlying 

processes. For instance, the fingerprints from the database obtained throughout in 

offline phase may be utilised to train the neural network and obtain an optimal weights 

matrix. Then the targets' RSS vectors are applied to the neural network inputs to 

estimate the location by discovering the optimal output from the neural network [185].  

The extensive usage of fingerprinting localisation technique does not avoid remarkable 

dependability problems, which deserve further study. They include the: 

 Frequency dependency. This arises from the uncertainties imposed on the RSS 

observations during the offline and online stages, due to the dependence on public 

band frequencies in the deployment of most indoor WLANs. 

 Application dependency. The deployment of localisation algorithms usually takes 

place in response to LBS requests in occupied premises of dynamic indoor WLANs. 

The moving objects in the test environment alter the RSS due to the resultant 
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reflections, refractions and absorptions. This alteration may impact the RSS positively 

because of the created multipath, or negatively due to the occurrence of NLOS cases 

or increased attenuation. 

 Algorithm dependency. The localisation algorithm comprises many sub-processes 

such as database construction, measurement principle, nearest fingerprints selection, 

and the calculating and weighting principles. Failure in any of the associated sub-

processes may lead to poor performance for the final location estimation process and, 

therefore, failure of the whole algorithm. 

5.5 Fuzzy Inference Combined kNN algorithm 

To estimate the target position, either mobile or at a fixed location, in any indoor wireless 

environment, typically the process begins by observing the RSS powers for the target object. 

In our example, the APs or the fingerprints are set as references and the mobile node as a 

target. However, the RSS provide a coarse view of the target position in the test environment; 

they cannot be converted to exact and error-free distance due to the characteristics of the 

signal in the indoor environment, which directly affects the accuracy of a locating operation. 

Consequently, an algorithm which accurately estimates locations under unreliable or 

constrained RSS is beneficial for constructing a robust indoor positioning system. Initially, 

the proposed system implements the same technique adopted earlier, with the addition of a 

weighting principle. The weights of the corresponding k-nearest fingerprints are inferred 

from a TKS-FIS. Then, the final coordinates are computed by (5.8) as a weighted aggregate 

of most related fingerprints. The k-related fingerprints are extracted from the offline-

generated fingerprints map, where the relation is defined as the shortest path to the target, as 

expressed in (5.4). Consequently, all distances among the target and all fingerprints in the 



 

 

 

114 

database are computed; then, the k-closest fingerprint tuples are extracted. Each tuple 

consists of the ordered set 𝐹𝑃𝑎 , as expressed below: 

𝐹𝑃𝑖 = {(𝑅𝑆𝑆𝑖1, 𝑅𝑆𝑆𝑖2, … , 𝑅𝑆𝑆𝑖𝑗) , (𝑥𝑖, 𝑦𝑖)} |  𝑖 ∈ {1,2, … , 𝑘}, 𝑗 ∈ {1,2, … , 𝑛} 

where k and n specify the number of nearest neighbours and the number of APs, respectively.  

Then RSSij denotes the RSS from the ith fingerprint to the jth to AP. (xi,yi) represents the x 

and y coordinates for the ith fingerprint  

This step aims to get vector 𝐷 =< 𝐷1, 𝐷2, … , 𝐷𝑖 > ∀ 𝑖 ∈ {1,2, … , 𝑘}, where D denotes the 

corresponding distance in the RSS space, and is computed as: 

𝐷𝑖 = √
1

𝑛
∑ (𝑅𝑆𝑆𝑖𝑗 − 𝑅𝑆𝑆𝑇𝑗)

2𝑛
𝑗=1    (5.9) 

Among the two central fuzzy inference systems; mentioned in Chapter 4, the adopted version 

for this work will be the TKS-FIS. The main feature of TKS fuzzy models is that they 

characterise the local dynamics of each fuzzy rule with a linear model. Moreover, TKS has 

a proven computational capability and continuous coverage to the output surface [191].  

Figure 5.2 illustrates the main blocks of single-input TKS-FIS for location estimation. 

This D vector is infused into the TKS-FIS to obtain appropriate weighting factors. The higher 

the weight, the higher the association and closer the range. The lower the weight, the weaker 

the association and further the range. These statements are interpreted in the TKS-FIS by a 

group of fuzzy if-then rules: 

𝐼𝑓 𝐷𝑖  𝑖𝑠 𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙 𝑇𝐻𝐸𝑁 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖
𝑡ℎ 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 𝑖𝑠 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ 

𝐼𝑓 𝐷𝑖  𝑖𝑠 𝐻𝑖𝑔ℎ  𝑇𝐻𝐸𝑁 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖
𝑡ℎ 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 𝑖𝑠 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤. 

Figure 5.2 Single input TKS-FIS block diagram. 
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The above linguistic qualifications are generated via a fuzzification process where the (crisp) 

inputs are converted into fuzzy sets. The fuzzy sets are characterised by their membership 

functions, which describe the shapes. Typically, simple parameterised models (e.g., 

Gaussian, triangular, trapezoidal, S-shape) are used in the literature. In our model, trapezoid 

membership functions are employed. The assignment of a specific (fuzzy) linguistic 

quantifier to the distance (in signal space) output depends on its numerical value [4], as 

shown in Figure 5.3. 

 

The following rules should hold during the qualification of the fuzzy variables:   

𝐼𝑓 𝑑  𝑑2, 𝑡ℎ𝑒𝑛 𝑑 (𝑖𝑛 𝑑𝐵)𝑖𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙 (𝑉𝑆) 

𝐼𝑓 𝑑1  𝑑 𝑑4, 𝑡ℎ𝑒𝑛 𝑑 𝑖𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑆𝑚𝑎𝑙𝑙 (𝑆) 

𝐼𝑓 𝑑3  𝑑 𝑑6, 𝑡ℎ𝑒𝑛 𝑑 𝑖𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝐻𝑖𝑔ℎ  (𝐻) 

𝐼𝑓  𝑑  𝑑5, 𝑡ℎ𝑒𝑛 𝑑 𝑖𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ (𝑉𝐻) 

The decision of the limits of the membership functions di in Figure 5.3 follows several 

logical principles [4]: 

1. The purity of the calculation 

2. Consideration of natural and analytical features of the RSS 

3. That the definitions of the membership function should hold 

4. Confirming that a sufficient number of fuzzy rules are stimulated. 

Figure 5.3 Fuzzification of input variable D. 
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Indeed, the core and support of the membership function may be interpreted as the extent of 

the interval where the exact boundary of distance in signal space will possibly and certainly 

lie, respectively. This assumption matches the random-set view, where the membership 

function is viewed as a nested family of level α-cuts [4]. In the same direction, affirming for 

membership function μS, that μS(d) = 0.7 is equivalent to claiming that in 70% of observed 

cases, the distance d is associated to the label S (small). Bilgiç and Türkşen [160] provide a 

more comprehensive perspective on membership function extraction, outlining five possible 

interpretations of the membership function and critically discussing each interpretation, as 

well as the constraints and elicitation principles of membership functions. As a part of the 

present research project, the candidate undertook a detailed study of the choice of 

membership functions, the defuzzification process, and the selection of appropriate t-

norms[192].  

From this perspective, use of our knowledge of statistics on RSS data allows us to build a 

bridge to the random-set interpretation of the fuzzy set. Indeed, both the uncertainty factor 

in radio propagation model expression (5.1) and the standard deviation of RSS values 

reported in other studies, (e.g., [160]) suggest that the support of any membership function 

defining the linguistic quantifiers cannot be smaller than such uncertainty.  

This guarantees the fulfilment of claims 1–3 (above). On the other hand, the desire to provide 

a decent chance to enable multiple stimulations of fuzzy rules simulates a balanced allocation 

of the membership functions. By 'balanced allocation,' we mean guaranteeing fair coverage 

of membership functions to the universe of discourse, and not necessarily a uniform 

distribution. In our case, we refer to the distribution of the distance in the signal space, 

measured in dB, with respect to the membership-degree. 
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Claims 2 and 4 also force some restrictions on the simulation and testbed settings at a later 

time. Certainly, given that the RSS observations decline distinctly in the first metre or so 

(approximately 70 dB), compared with a smooth transition in the 1–50 m range, then, 

accordingly, we intentionally arranged the APs and fingerprints/target to be at least one 

metre apart in order to secure smooth coverage of the entire RSS pattern. 

The distances in RSS space of 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5 and 𝑑6 are chosen as 2, 5, 10, 15, 20 and 25 

dB, respectively. The weight variable in the conclusion part of the fuzzy rules is designed as 

a numerical constant. Strictly speaking, the TKS-FIS forces the conclusion part of the fuzzy 

rule to be a non-fuzzy linear function, or constant as in the case of the zero-order Sugeno 

model [191]. In other words, the linguistic terms Very Small, Small, and so on, if employed 

in the conclusion part of the rule should have a crisp interpretation. 

Table 5.1 shows the overall set of fuzzy rules employed in our fuzzy system. 

Table 5.1 Fuzzy rules of single variable TKS-FIS [4]. 

Linguistic value V.H H S V.S 

Crisp output .05 .3 .7 1.0 

For instance, some fuzzy rules can be interpreted as [4]: 

𝐼𝑓 𝐷 𝑖𝑠 𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙  𝑡ℎ𝑒𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1  

𝐼𝑓 𝐷 𝑖𝑠 𝑆𝑚𝑎𝑙𝑙 𝑡ℎ𝑒𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0.7 

𝐼𝑓 𝐷 𝑖𝑠 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ  𝑡ℎ𝑒𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 𝑖𝑠 0.05 

The operation of the TKS-FIS can be split into the following steps [162]:  

1. Fuzzification step, which converts each crisp input into a fuzzy set.  

2. Inferencing the antecedents for all fuzzy rules.  

3. Aggregation, which aggregates the antecedents of all fuzzy rules. 

4. Defuzzification step, which converts the aggregated antecedents into a crisp value. 

Lastly, the final coordinates are obtained using (5.8). 
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5.6 Enhancement to the Fuzzy Inference via Dual-input Approach 

The new enhanced version suggests infusing the TKS-FIS with two inputs. The first input is 

the same as the previous section. In addition, a second input V, represents the variations of 

RSSs between the test-point and the nearest-neighbour associated with each emitter in the 

test environment. This should reflect another means for correlation between the selected 

nearest fingerprints—the less variation, the more spatially correlation between selected 

fingerprints—and thus reduce the chances for wrongly selecting a fingerprint far from the 

target location. Figure 5.4 shows the enhanced version of the TKS-FIS with dual inputs. 

 

More formally, the input variables 𝐷𝑗  and 𝑉𝑖 are expressed respectively as: 

𝐷𝑖 = √
1

𝑛
∑ (𝑅𝑆𝑆𝑖𝑗 − 𝑅𝑆𝑆𝑇𝑗)2
𝑛
𝑗=1                                            (5.10) 

𝑉𝑖 = |(𝑚𝑎𝑥
𝑗
𝑅𝑆𝑆𝑖𝑗 −𝑚𝑖𝑛

𝑗
𝑅𝑆𝑆𝑖𝑗) − (𝑚𝑎𝑥

𝑗
𝑅𝑆𝑆𝑇𝑗 −𝑚𝑖𝑛

𝑗
𝑅𝑆𝑆𝑇𝑗)|   (5.11) 

𝑖 ∈ {σ(1), σ(2),… , σ(k)} 

The motivation for attaching the other indicator (Vi) arose from the assumption that the signal 

space path length is not necessarily presenting enough knowledge to identify various 

topologies. For example, a set of sparse points on the surface of a sphere have the measures 

Figure 5.4 Block diagram of TKS-FIS with dual inputs [4]. 
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the same distance to the centre as the grouped set of points. Rationally, attaching the 

variations indicator can provide information about the internal structure of the environment, 

which can be very fruitful, especially when the relative localisation principle is applied. 

Traditionally, the kNN algorithm makes a blind selection for fingerprints, regardless of their 

topology.  

Again, quantifying the logical relation between the {D,V} set and their weight association 

is achieved via a group of fuzzy rules, for example: 

     𝐼𝑓 𝐷𝑖  𝑖𝑠 𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙 𝐴𝑁𝐷 𝑉𝑖 𝑖𝑠 𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙  𝑇𝐻𝐸𝑁 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖
𝑡ℎ 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 𝑖𝑠 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ 

𝐼𝑓 𝐷𝑖  𝑖𝑠 𝐻𝑖𝑔ℎ 𝐴𝑁𝐷 𝑉𝑖 𝑖𝑠 𝐻𝑖𝑔ℎ 𝑇𝐻𝐸𝑁 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖
𝑡ℎ  𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 𝑖𝑠 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤. 

𝐼𝑓 𝐷𝑖  𝑖𝑠 𝐻𝑖𝑔ℎ 𝐴𝑁𝐷 𝑉𝑖 𝑖𝑠 𝑆𝑚𝑎𝑙𝑙 𝑇𝐻𝐸𝑁 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖
𝑡ℎ  𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 𝑖𝑠 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤. 

As in Section 5.5, a fuzzification step using trapezoidal member functions is initiated to 

obtain the fuzzy set for each of the above linguistic terms, as shown in Figure 5.3, but in this 

time for the dual-input case. We refer to this system as multi-variable fuzzy localisation. 

Table 5.2 briefs the overall set of fuzzy rules employed in our system. 

Table 5.2 Fuzzy rules of dual-input TKS [4]. 

      D 

V 
V.H H S V.S 

V.H 0 0 .3 .7 

H 0 0 .4 .8 

S .05 .1 .5 .9 

V.S .05 .3 .7 1 

Since each fuzzy input (D, V) is denoted by the following linguistic fuzzy terms {Very High, 

High, Small, Very Small}, then a 4×4 rules matrix is generated.  
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Some examples of the fuzzy rules can be interpreted as [4]: 

𝐼𝑓 𝐷 𝑖𝑠 𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙 𝑎𝑛𝑑 𝑉 𝑖𝑠 𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙 𝑡ℎ𝑒𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1.  

𝐼𝑓 𝐷 𝑖𝑠 𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙 𝑎𝑛𝑑 𝑉 𝑖𝑠 𝑆𝑚𝑎𝑙𝑙 𝑡ℎ𝑒𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0.9.  

𝐼𝑓 𝐷 𝑖𝑠 𝑆𝑚𝑎𝑙𝑙 𝑎𝑛𝑑 𝑉 𝑖𝑠 𝑉𝑒𝑟𝑦 𝑆𝑚𝑎𝑙𝑙 𝑡ℎ𝑒𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙   𝑡𝑜 0.7.  

𝐼𝑓 𝐷 𝑖𝑠 𝐻𝑖𝑔ℎ 𝑎𝑛𝑑 𝑉 𝑖𝑠 𝐻𝑖𝑔ℎ 𝑡ℎ𝑒𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 𝑖𝑠 𝑧𝑒𝑟𝑜. 

The continuous coverage property associated with the choice of membership functions in 

Figure 5.3 for TKS-FIS ensures that at least one rule is stimulated for every set of the inputs, 

and multiple stimulations for the fuzzy rules. This reveals the possibility of obtaining more 

than one answer from the same set of input data. 

As in Section 5.5, the operation of the TKS-FIS is typically split into four functional 

operations, for example, given the observations of variables 𝐷 and 𝑉, then two rules are 

possibly activated: 

𝑅𝑢𝑙𝑒1: 𝐼𝑓 𝐷 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑉 𝑖𝑠 𝐵1 𝑇ℎ𝑒𝑛 𝑊 𝑖𝑠 𝐶1. 

𝑅𝑢𝑙𝑒2: 𝐼𝑓 𝐷 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑉 𝑖𝑠 𝐵2 𝑇ℎ𝑒𝑛 𝑊 𝑖𝑠 𝐶2.  

where A1, B1, A2, B2 stand for any of VS, S, H, VH fuzzy sets and C1, C2 represent any two 

weights in {0.01, 0.1, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1}.  

The two crisp constants d and v of the inputs D and V are fuzzified as fuzzy singletons. Using 

the intersection operation of membership functions with fuzzy singletons, the firing strengths 

are calculated: 

𝜇𝑓𝑖𝑟𝑖𝑛𝑔,1 = ℎ1 = 𝜇𝐴1(𝑥) ∧ 𝜇𝐵1(𝑦)    

𝜇𝑓𝑖𝑟𝑖𝑛𝑔,2 = ℎ2 = 𝜇𝐴2(𝑥) ∧ 𝜇𝐵2(𝑦)   (5.12) 

where the operator ∧ (AND) can be achieved using the min-norm or any alternative T-norm 

[162]. The rule firing strength is commonly referred to as premise membership grade or 

validity index at the obtained crisp constants. 
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Assuming E1 as the consequence of rule1 (C1) and E2 as the consequence of rule2 (C2) for 

particular observations, x and y of D and V, the final validity index of rule1 and rule2 is 

computed as: 

𝐸 =
𝐸1ℎ1+𝐸2ℎ2

ℎ1+ℎ2
   (5.13) 

Regarding defuzzification, numerous defuzzification tools are available in the fuzzy logic 

literature [193]. Two widely-used tools are mentioned here: the centre of area (CoA) and the 

centre average (CA). In the case of TKS-FIS, the defuzzification is performed by the 

weighted average as in (5.13). Figure 5.5 shows a diagram of this tool. 

 

Considering (5.7) and (5.8), the final coordinates are therefore calculated based on the 

coordinates of the nearest fingerprints as: 

xT = {

∑ wixFPσ(i)
k
i=1

∑ wi
k
i=1

 , if ∑ wi ≠ 0k
i=1

1

k
∑ xFPσ(i)
k
i=1 , otherwise

   (5.14) 

Figure 5.5 Schematic of TKF-FIS defuzzification [4]. 
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yT = {

∑ wiyFPσ(i)
k
i=1

∑ wi
k
i=1

 , if ∑ wi ≠ 0k
i=1

1

k
∑ yFPσ(i)
k
i=1 , otherwise

   (5.15) 

By analysing the performance of TKS with dual inputs V and D, we can extract the following 

assumptions, which are discussed in detail in [3] and [4]: 

 Assumption 1: The result of the TKS-FIS with dual inputs can be the same as the ith 

nearest-fingerprint when 𝑚𝑎𝑥(𝐷𝑖, 𝑉𝑖) ≤ 𝑑1 and 𝑚𝑖𝑛(𝐷𝑗 , 𝑉𝑗) ≥ 𝑑6, ∀𝑗 = 1…𝑘, 𝑗 ≠ 𝑖. 

The discussion of this assumption is based on the two following items of evidence:  

- The constraint max(Di,Vi) ≤ d1 requires that both Di, and Vi are evaluated as 

Very Small, therefore stimulation of a unique fuzzy rule has occurred, which 

results in the highest weight=1 to the ith nearest-fingerprint as shown in Table 

5.2 

- The constraint 𝑚𝑖𝑛(𝐷𝑗 , 𝑉𝑗) ≥ 𝑑6, ∀𝑗 = 1…𝑘, 𝑗 ≠ 𝑖 requires that all remaining 

k-fingerprints are interpreted as Very High for D and V; in this case, the 

uniqueness of fuzzy rule stimulation results in weight=0 for all nearest 

fingerprints as shown in Table 5.2.  

Therefore, when (5.14) and (5.15) are implemented, the outcomes will agree with this 

assumption. 

 Assumption 2: The result of the TKS-FIS with dual inputs can be the same as the 

conventional kNN when 𝑚𝑖𝑛(𝐷𝑗 , 𝑉𝑗) ≥ 𝑑6, ∀𝑗 = 1…𝑘. 

The discussion of this assumption is based on the same logic as the first assumption, 

where constraint 𝑚𝑖𝑛(𝐷𝑗 , 𝑉𝑗) ≥ 𝑑6, ∀𝑗 = 1…𝑘  requires that all k-fingerprints are 

interpreted as High for D and V; in this case, the uniqueness of fuzzy rule stimulation 

results in weight=0 for all nearest fingerprints, as shown in Table 5.2. 
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Therefore, when (5.14) and (5.15) are implemented the outcomes will agree with (5.7). 

 Assumption 3: The result of the TKS-FIS with dual inputs will be the same as the 

conventional 𝑘𝑁𝑁 when 𝑚𝑎𝑥(𝐷𝑖 , 𝑉𝑖) ≤ 𝑑1 for all k-nearest fingerprints (i = 1 ... k). 

The discussion of this assumption is based on the same logic as the earlier two 

assumptions, except that constraint 𝑚𝑎𝑥(𝐷𝑖, 𝑉𝑖) ≤ 𝑑1 ∀𝑖 = 1…𝑘 requires that all k-

fingerprints are interpreted as Very Small for D and V; in this case, the weight=1 for 

all nearest fingerprints, as shown in Table 5.2.  

 

5.7 Enhancement via Robust Statistics and Outliering Algorithm 

As mentioned in Sections 5.4, 5.5 and 5.6, the localisation applications for indoor 

environments lack a generalised efficiency. Accordingly, the analysis for each localisation 

principle should take place for each individual application. Then, by analysing the outcomes 

of the aforementioned positioning strategies that rely on the kNN algorithm, it was noted 

that the accuracy of kNN-based strategies is highly dependent on the quality of the picked 

nearest fingerprints. This is especially so when the selection methodology of the nearest 

fingerprints is done blindly with respect to the test environment. This means that, relying on 

the RSS as a lone indicator for the position is not sufficient to infer the target location, even 

after the addition of the signal-variation principle, as in Section 5.6. The main conclusion 

we have drawn after the verification of estimated locations, and the selected nearest 

fingerprints against the targets’ actual locations, which was based on a statistical analysis, 

was that the kNN-based algorithms fail to pick a high-quality neighbour fingerprint with a 

non-negligible range of 16–19%. This equates to approximately one wrong selection for 

every five or six nearest fingerprints, so the likelihood of achieving a good location is 

reduced by almost 20%. 
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Therefore, an augmentation process was proposed to overcome this limitation. The proposed 

outliering principle is based on a sound improvisational precept from a robust statistics 

background [194]. The intention was to eliminate some of the wrongly-selected nearest 

neighbours using a distance-based triangulation mode. "The fingerprints selected by the kNN 

algorithm are considered only if the nearest fingerprints tend to establish a triangle of the 

smallest area" [4]. 

The area can be calculated by using either of the following techniques [195]: 

 The vertices of the desired triangle, where the vertices are fetched from the 

fingerprints-map, thus: 

𝑨𝒓𝒆𝒂 = |
𝑷𝟏𝒙(𝑷𝟐𝒚−𝑷𝟑𝒚)+𝑷𝟐𝒙(𝑷𝟏𝒚−𝑷𝟑𝒚)+𝑷𝟑𝒙(𝑷𝟏𝒚−𝑷𝟐𝒚)

𝟐
| (5.16) 

where P1, P2, P3 represent the vertices of the proposed nearest neighbours in terms 

of x and y coordinates. 

 The sides of the desired triangle, as in Heron's formula [195], where the sides can be 

calculated depending on the side lengths, which can be obtained from the physical 

space or signal space; the advantage of the second method is its applicability for 

relative or absolute positionings. 

𝐴𝑟𝑒𝑎 = √𝜔(𝜔 − 𝑙1)(𝜔 − 𝑙2)(𝜔 − 𝑙3)   (5.17) 

where 𝜔 can be obtained using: 𝜔 =
𝑙1+𝑙2+𝑙3

2
  (5.18) 

where l1, l2, l3  represent the side-lengths in physical-space or signal-space. 

This process is repeated for every combination of k-nearest fingerprints. Formally, let r = 3, 

represent the number of vertices, and k is the number of available nearest fingerprints. Then 

the n combinations can be calculated as: 

𝑛 = (𝑘
𝑟
) =

𝑘!

𝑟!(𝑘−𝑟)!
   (5.19) 
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After calculating all areas for every r triple in the n-combinations space, the following claims 

are evaluated to consider the triple r valid nearest fingerprint, and ensure the optimal 

accuracy: 

 𝐴𝑟𝑒𝑎{𝑟𝑖} ≠  0 ∀𝑖 = 1…𝑘; this assumption ensures that all fingerprints in r are not 

collinear. 

 𝐴𝑟𝑒𝑎{𝑟𝑖} < 𝜃 ∀𝑖 = 1…𝑘, this assumption ensures that all nearest fingerprints in r 

are spatially related where the threshold θ can be set depending on the environment 

setup plan. 

 𝐴𝑟𝑒𝑎{𝑟𝑖} ≥ 𝛼 ∀𝑖 = 1…𝑘, this assumption ensures that all nearest fingerprints in r 

satisfy specific accuracy requirements where the threshold α can be set depending 

on application accuracy requirements. 

At this point, the algorithm may be enhanced further by setting upper and lower thresholds 

for the area, which can be selected by analysing the database for the created fingerprints 

map. This enhancement step among other properties of the fingerprint map construction was 

detailed and discussed in some other works, for instance, Location Fixing and Fingerprint 

Matching (LFFM) for fingerprint map construction for indoor spaces [196]. 
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6 EXPERIMENT AND SIMULATION 

6.1 Introduction 

This chapter describes the main scenarios and working platforms used to evaluate the 

proposed algorithms. The evaluation was based on simulations and experiments. The 

simulation scenarios based on the algorithm considered in Chapter 5 are: 

 Localisation using fuzzy inference with single input, particularly the Euclidean 

distances between target nodes and fingerprints to achieve a weighted kNN. 

 Localisation using fuzzy inference with two inputs, namely, the Euclidean distances 

between target nodes and fingerprints, and the signal variations between the 

fingerprints and the Aps. 

 With augmentation to the multi-nearest-neighbour algorithm, to outlier the wrongly-

selected nearest fingerprints due to the uncertainties pervading the RSS in the indoor 

environment. 

The experimental section was limited to two experiments. The first focused on validation of 

the proposed multivariable fuzzy inference localisation (MVFL), by comparing the accuracy 

of the MVFL with alternative approaches such the traditional kNN, weighted kNN and 

lateration. The second experiment aimed to validate the accuracy on a different testbed and 

using another vendor's tools available in the market of wireless sensor networks and IoTs. 
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6.2 Dual Input v. Single Variable TKF-FIS and kNN Localisation 

6.2.1 Simulation 

To evaluate the localisation algorithm a simulation testbed was constructed to form a square 

region of approximately 400 m2, where the vertices of the square represent the emitter 

sources; as is common in indoor WLAN environments, the emitters were stationary APs. 

Then the fingerprints map was formed using the model outlined in (5.1). The following 

constraints were imposed on the testbed environment: (i) securing a minimum distance 

between reference fingerprints not to be less than two metres; and (ii) constraining the 

testbed to produce symmetrical distribution for all reference fingerprints. These constraints 

were imposed to imitate the experimental test environment. To finalise the offline phase of 

the fingerprinting technique, a signature RSS vector was created for 64 reference 

fingerprints, given their x and y coordinates.  

More formally, each fingerprint signature is represented by the following tuple: 

{𝑅𝑆𝑆𝑗  ∀ 𝑗 = 1…𝑎}
𝑖
 , {𝑥, 𝑦}𝑖  ∀ 𝑖 = 1…𝑛 

where a and n represent the number of APs and the number of reference fingerprints, 

respectively. Then {RSSj}i is the RSS for the ith reference fingerprint, from the jth AP. {x,y}i 

denotes the x and y coordinates of the ith reference fingerprint . According to database design, 

a matrix of n × (a + 2) representation was used to store all fingerprint signatures. The constant 

2 was used to hold the x and y coordinates for each reference fingerprint. 
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Figure 6.1 Simulation scenario for TKS-FIS using single-input and dual-input. 

The same propagation model was re-used to produce a group of 16 test fingerprints. The 

same constraints imposed over reference fingerprints were valid here; except that the 

distance constraint was modified to approximately twice that of the reference fingerprints' 

internal distance. Moreover, some test fingerprints were forced to be concentric with some 

reference fingerprints, specifically, the four closest to the APs (the ones pointed by arrows 

in Figure 6.1). This constraint was carefully enforced to judge the behaviour of the 

algorithm under imperfect circumstances. The x and y coordinates of the test fingerprints 

were available only during the RSS production and the method verification steps while 

remaining protected during the other steps. Figure 6.1 shows the organisation of the 

reference fingerprints and APs in the simulation environment.  

The following propagation formula was used during all steps of this simulation, which 

emulates the signal distribution pattern in the WLAN indoor space: 

𝑅𝑆𝑆𝑖𝑗 = −40 − 31𝑙𝑜𝑔10(𝑑𝑖𝑗) ± ω  (6.1) 
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where the symbols are as described in (5.1) and (5.2). The irregular uncertainty offset 𝜔 is 

proposed to estimate the 8 dB limited uncertainty factor, as in (5.1) [4]. 

Throughout the online phase, the k-nearest-fingerprints were extracted from the fingerprints 

map for every test fingerprint. Then, using the TKS-FIS described in Section 5.6, the {𝐷, 𝑉} 

tuple was infused into the proposed TKS-FIS to obtain the optimal weights, which were then 

used in the location estimation step with formulas (5.14) and (5.15). Figure 6.2 compiles the 

principal actions for the algorithm.    

Figure 6.2 Fingerprinting with dual-input TKS-FIS algorithm.  
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Given knowledge of the actual position of the target from the user’s perspective, the 

performance of the developed fuzzy positioning system can be evaluated using a standard 

root mean square error (RMSE) metric; namely: 

𝐸𝑟𝑟𝑜𝑟 = √(𝑋E − 𝑋𝑇𝑎𝑐𝑡)
2 + (𝑌E − 𝑌𝑇𝑎𝑐𝑡)

2              (6.2) 

where 𝑿𝑻𝑨𝒄𝒕  and 𝒀𝑻𝑨𝒄𝒕  are the actual coordinates of target T.  

Given the actual x and y coordinates for the test fingerprints 𝑋𝑇𝑎𝑐𝑡 and 𝑌𝑇𝑎𝑐𝑡 , this algorithm 

was evaluated against the estimated coordinates, XE and YE, using the RMSE metric [197]. 

The outcomes were examined in several other localisation approaches: kNN infused with 

single-input TKS-FIS (Section 5.5) and [189]; conventional kNN; weighted kNN; and 

lateration. The comparisons are discussed briefly in the following sub-section. 

6.2.2 Simulation results 

To obtain a pictorial representation of the estimated locations for the test targets, we initially 

plotted (Figure 6.3) the estimated locations for all 16 test fingerprints using the dual-input 

TKS-FIS (MVFL) on the testbed against the estimated locations using the actual locations 

and the estimated locations of an alternative positioning algorithm, specifically the 

conventional kNN algorithm. The plot demonstrates the higher success of the generated 

dual-input TKS-FIS (MVFL) algorithm, as demonstrated by the closeness of the estimated 

locations to the actual test fingerprints.  
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Figure 6.3 MVFL (X), test fingerprints: actual location (□); kNN estimation (𝑂).  

 

Considering the randomness factor ω in (6.1) and the calculation of various ω values in the 

range of 1–15 dB, the mean of 100 Monte Carlo simulations was calculated. This process 

was reproduced for the online phase, with respect to the same fingerprints map. 

Figure 6.4 shows the accuracy of the dual-input TKS-FIS (MVFL) according to the RMSE 

along the y-axis, for each test fingerprint along the x-axis, versus well-known localisation 

algorithms (kNN, weighted kNN, single-input TKS-FIS and lateration). 
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Figure 6.4 RMSE of MVFL versus other algorithms. 

Despite the superior behaviour of the dual-input TKS-FIS in most circumstances over the 

other mentioned localisation algorithms, the performance of the dual-input TKS-FIS drops 

to match the single-input TKS-FIS and kNN in particular circumstances. For example, 

consider the 1st, 4th, 13th and 16th test fingerprints in Figure 6.4; these are the four test 

fingerprints collocated with the reference fingerprints (designated with arrows in Figure 6.1). 

This approach can be justified in light of the following discussion: 

 The existence of any test fingerprint at the exact same location as the reference 

fingerprint does not require the exact same fingerprint signature in terms of acquired 

RSS due to the direct effect of the random noise implied in 𝜔  term of (6.1). 

However, if both points acquire the exact same RSS signature and the constraints of 

Assumption 1 in Section 5.6 are fully satisfied, then we may expect the algorithm 

to return the exact location as stored in the fingerprints map. 

 Considering the fuzzification of {D,V} variables, and the possibility of interpreting 

them as Very Small resulting in a weight=1, then the constraints in Assumption 3 in 

Section 5.6 will hold, which returns the same result as the kNN version. 
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 The count of nearest fingerprints employed has a critical effect in determining the 

performance factor. In our simulation k was set to three neighbours, which was 

rational and showed acceptable performance in many scenarios. A decision might 

be made to drop this count to the minimum possible value, which is one nearest 

fingerprint. Of course, this requires that a minimum value of signal variations 

between the reference fingerprint and the test fingerprint should be detected. In this 

case, we expect the algorithm to pick the reference fingerprint that the test 

fingerprint is collocated with, as the nearest fingerprint. This course comes at a 

price—that of failures with the bulk of the other test fingerprints. 

Later, we sought to confirm the effectiveness and robustness of the realised algorithm against 

sudden changes in the test environment, which can be reflected by the imposed noise 

intensity. To achieve this goal, the utilised propagation model (6.1) was reproduced to 

accommodate the change. For this purpose, the RSS value corresponding to the target 

fingerprint was modified to account for the noise intensity. This involved rewriting (6.1) as: 

𝑅𝑆𝑆𝑖𝑇 = −40 − 31𝑙𝑜𝑔10(𝑑𝑖𝑇) + 𝜔𝜎  (6.3) 

where 𝜔𝜎 represents a zero-mean Gaussian noise with variable standard deviation  [4], and 

diT represents the physical path-length between the ith AP and the test fingerprint. 

In other words, this model was applied only to the test fingerprints and keeping the reference 

fingerprints to be generated using the model described in (6.1). Table 6.1 presents the mean 

RMSE for 16 test fingerprints. 
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Table 6.1 Dual-input TKK-FIS against other localisation algorithms' mean RMSE. 

Noise 

level 
Mean RMSE for 16 test points 

S dB 
Dual-input 

TKS-FIS 

Single-input 

TKS-FIS 
W-kNN LAT kNN 

1 0.64 0.88 0.86 0.51 1.32 

2 0.89 1.41 1.47 1.60 1.69 

3 0.89 1.42 1.48 1.65 1.94 

4 0.93 1.43 1.53 1.71 1.98 

5 0.94 1.44 1.56 1.88 2.11 

6 0.95 1.47 1.61 1.93 2.14 

7 0.97 1.48 1.62 1.90 2.16 

8 0.98 1.48 1.66 1.91 2.21 

9 0.98 1.51 1.68 2.13 2.22 

10 0.99 1.52 1.71 2.42 2.27 

11 1.02 1.53 1.73 2.53 2.30 

12 1.03 1.57 1.74 2.52 2.37 

13 1.04 1.58 1.75 2.71 2.41 

14 1.04 1.62 1.78 2.77 2.44 

15 1.06 1.63 1.82 2.69 2.51 

 

The outcomes shown in Table 6.1 demonstrate the superiority of the MVFL solution over 

other well-known localisation algorithms. The outcomes follow a decreasing pattern in 

performance, which is acknowledged, against the increased noise intensity. But, 

interestingly, the results of MVFL based on TKS proposals have the least scattering pattern 

among all methods. To better understand this, Figure 6.5 presents the results of MVFL 

against the conventional kNN. The results reflect the confidence in solutions based on the 
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fuzzy logic principles to exhibit more reliable behaviour than classical techniques, especially 

within the uncertainty constraints. 

 
Figure 6.5 Mean RMSE plot for dual-input TKS-FIS v. kNN to express robustness. 
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6.3 Simulation of Dual-input TKS-FIS Localisation with Outliering Phase 

In respect of the high proportion of wrongly-selected nearest fingerprints, noted in Section 

5.7, we consider here the rationale behind the recommended resolution, which is the 

insertion of an outliering sub-process to reduce the chances for wrongly-selected fingerprints 

to participate largely in the location estimation. This section presents a simulation scenario 

to confirm the effectiveness of such a sub-process and examine its influence on the overall 

system behaviour. The augmented sub-process has been assessed by using the same 

simulation platform designed for the previous section. 

According to the sequential steps listed in Figure 6.2, the insertion of the sub-process should 

take place during the online phase of the technique, exactly after the kNN selection step, 

while keeping the offline phase unchanged. This feature is of a tremendous advantage 

because, upon successful verification of the sub-process, it can be employed to any existing 

fingerprint-based localisation algorithm without the need for repeating the site survey to 

generate a new fingerprints database. The proposed pseudo-code for the augmented sub-

process is detailed in Figure 6.6. 

 

Figure 6.6 Pseudo-code of outliering sub-process. 
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Against an average failure rate of 16% during implementation of the conventional nearest-

fingerprinting technique, the proposed sub-process was strong enough to reduce the range 

of wrong estimates to approximately 5%, as shown in Figure 6.7, which gives the mean 

returns of 25 Monte Carlo simulations.   

 
Figure 6.7 Conventional kNN v. Augmented kNN. 

 

The application of nearest-fingerprint localisation based on area optimisation (according to 

the claims made in Section 5.7 with an outliering sub-process) furnishes an imperfect 

indication of the quality of the recently-captured nearest fingerprints. We note from Figure 

6.7 that the enhanced nearest fingerprinting version may designate some true fingerprints as 

outlier fingerprints. This indicates the potentiality of the conventional kNN to outperform 

the enhanced version in some instances. 

The effectiveness and robustness of the realised algorithm against sudden changes in the test 

environment is reflected in the imposed noise intensity or uncertainty to the RSS. Various 

levels of noise intensity in the range of [0 dB–15 dB] were applied to the system, and mean 

accuracy errors gathered (Table 6.2). 
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Table 6.2 Average error against noise intensities. 

Noise 

S dB 

Average Accuracy Error (in metres) 

Dual-input TKS-FIS 

Conventional kNN 

Dual-input TKS-FIS 

Augmented kNN 

1 0.43 0.53 

2 0.43 0.58 

3 0.56 0.58 

4 0.56 0.61 

5 0.74 0.62 

6 0.90 0.65 

7 1.14 0.69 

8 1.26 0.71 

9 1.57 0.98 

10 1.86 1.18 

11 2.25 1.41 

12 2.95 1.60 

13 3.05 1.69 

14 3.14 1.60 

15 3.26 1.90 

 

Considering the first four entries in Table 6.2, the conventional kNN responds to smaller 

noise intensities better than the augmented kNN. This shows that, in ideal cases, a smaller 

level of ambiguity embedded in the RSS is not very hazardous, where the RSS can still 

provide a sensible association with the locations. The TKS-FIS copes excellently. However, 

at higher noise intensities, the algorithm increases the chances of an ambiguous selection of 

nearest fingerprints—hence less precision is achieved in location estimation. This clarifies 
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the more responsible behaviour of the augmented kNN, reflected in the better average 

accuracies in the remaining entries in Table 6.2. 

While the results shown in the first four rows of Table 6.2 may be considered a flaw, they 

can be used to create an opportunity for prospective ideas to improve the representation of 

the augmented kNN, which can be done by examining the locations individually. A 

fundamental study on the presence of target fingerprints outside the fingerprint space is 

indicated. A core idea is to implement alternative measurements in area and distance. 

Another approach is to practise an alternative outliering algorithm for instance, to apply 

orientation-based outliering, especially if the supporting devices are equipped with a means 

of orienting such as a directional antenna.   
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6.4 Experiments 

After the verification of the proposals using the simulation principles, two experiments were 

conducted to empirically verify some of the proposals. 

6.4.1 Experiment 1 

This experiment was arranged and set according to the floorplan shown in Figure 6.8. The 

experimental devices were: 

 The four Transmitters were SparkLAN Multimode APs (WX-1590), as shown in 

Figure 6.9, and compatible with Wi-Fi standards. The transmitters were fitted to 

the inner part of the room ceiling, denoted by empty circles (o) in Figure 6.8. 

 The receiver was a Compaq Pocket PC (iPAC-3970), as shown in Figure 6.10, 

equipped with a Wi-Fi LAN card (Lucenet Orinoco), which was used in the offline 

phase to capture the RSS of the fingerprints, and build the fingerprint map; the 

same receiver was used during the online phase to capture the RSS of the target 

fingerprints. 

The testbed was an almost-square room of total area about 400 m2, with some inner partitions 

to simulate the NLOS effect on some fingerprints. 
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A total of 44 points spaced no less 1.5 m apart were set as reference fingerprints and placed 

at the points denoted by the solid triangle in Figure 6.8.  

To achieve more reliable fingerprint signatures, the RSS values were captured from each 

transmitter for a period of 5 seconds at every single reference fingerprint. The standard 

deviations for these obtained readings was computed and associated with the averaged RSS, 

along with the boundary conditions related to this mean RSS and the standard deviation. The 

boundary conditions considered in this case were limited to the number of people moving 

Figure 6.8 Testbed for Experiment 1. 

Figure 6.9 SparkLAN (WX 1590) 

Figure 6.10 Compaq iPAC 3970. 
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within the test environment at the moment of the RSS-capturing process, which can be 

expressed mathematically as:  

𝑅𝑆𝑆𝑖𝑗 = 
∑ 𝑅𝑆𝑆𝑖𝑗

𝑥
.𝜎𝑥

𝐵
𝑥=1

∑ 𝑥𝐵
𝑥=1

    (6.3) 

where j represents the transmitter (AP), i represents the fingerprint, B represents the number 

of people present during this time span, 𝑅𝑆𝑆𝑖𝑗
𝑥
 represents the average RSS during the time 

span, and 𝜎 represents standard deviation during the time span.  

The boundary condition assumption creates a more robust RSS and produces a more error-

tolerant fingerprints map. As noted in earlier chapters, human bodies within the test 

environment affect the behaviour of signal propagation, regardless of the time and effort 

consumed to create the fingerprints-map database. 

To finalise the offline phase; the accumulated RSS value is correlated with the physical x, y 

and z coordinates of the fingerprint to create the fingerprint map. The presence of a third 

dimension is due to the fixing of transmitters to the ceiling, whereas the fingerprints were on 

the floor. 

To evaluate the various localisation techniques, a group of 10 test fingerprints were 

deployed, denoted by the solid squares in Figure 6.8. The average accuracies corresponding 

to each test fingerprint and each localisation technique are presented in Table 6.3. 

Generally speaking, the comparisons in Table 6.3 and Table 6.4 clearly affirm the strong 

performance of dual-input TKS-FIS localisation. Nevertheless, some negative inferences 

may be drawn from the presented values. An average accuracy of 43 cm, reflected in a ratio 

of 1:3 against the inter-fingerprint spaces, is a respectable achievement. However, fully self-

controlled robots or unmanned vehicles applying such a localisation technique would require 

the assistance of other sensing devices. 
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Table 6.3 Experiment 1 results. 

Target 

Mean Accuracy (in metres) 

Dual-input 

TKS-FIS 

Single-input 

TKS-FIS 
W-kNN LAT kNN 

1 0.43 0.72 0.83 0.62 1.21 

2 0.46 0.61 0.71 1.52 0.74 

3 0.21 0.42 0.34 1.44 0.88 

4 0.46 0.53 0.77 0.39 1.43 

5 0.34 0.61 0.71 0.94 1.41 

6 0.28 0.54 0.63 1.33 0.94 

7 0.82 1.12 1.23 1.10 2.36 

8 0.17 0.48 0.46 1.08 0.91 

9 0.23 0.51 0.38 0.93 0.84 

10 0.93 1.55 1.31 1.02 2.74 

 

Table 6.4 Experiment 1 relational results. 

Localisation 

Technique 

Dual-input 

TKS-FIS 

Single-input 

TKS-FIS 
W-kNN LAT kNN 

Mean accuracy 

(m) 
0.433 0.709 0.737 1.037 1.346 

Relation to 

inter-fingerprint space 

(1.5 m) 

29% 47% 49% 69% 90% 

Relation to 

testbed space 

(20 m) 

2% 4% 4% 5% 7% 
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6.4.2 Experiment 2 

For the second experiment, Figure 6.11 shows the layout of the testbed, with a total of 22 

fingerprints and 13 test points. Six Libelium Waspmote Wi-Fi modules (SMA5dBi 2.4 

GHz Worldwide 802.11b/g) served as APs (Figure 6.12); these were installed at 

approximately 0.9 m above the floor level, at locations denoted by the red squares shown 

in Figure 6.11. We utilised a Meshlium scanner 802.15.4-PRO-AP (Figure 6.13) to capture 

𝑅𝑆𝑆 data from the Waspmotes. The testbed environment was a room about 12 m × 20 m, 

with inner storage area. It also contained some laboratory furniture and equipment. The 

average inter-fingerprints space was about 2 m. 

Figure 6.11 Testbed for Experiment 2. 
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Some constraints were added to the RSS by placing reference fingerprints in NLOS 

situations and blocking the RSS with walls and furniture. In addition, RSS values were 

captured during the daytime, with 2–4 people working in the laboratory. 

As in the first experiment, the reference fingerprints were placed on the floor, at locations 

denoted by the blue x in Figure 6.11. In practice, this is to demonstrate that the algorithm 

works in a 3-dimensional space, with the APs and fingerprints at different elevations. 

However, unlike the first experiment, the RSS values here were only averaged over a time 

span of 3 seconds—this was to reduce the time and effort required for fingerprint 

collection (but at the cost of the quality of the collected RSS values and the quality of the 

fingerprint map). 

 

 

To evaluate the various localisation techniques, we deployed a group of 13 test fingerprints, 

denoted by the empty blue circles (o) in Figure 6.14. The localisation techniques in this 

experiment were limited to the kNN and the weighted-kNN against the dual-input TKS-FIS 

or MVFL. 

The accuracies corresponding to each test fingerprint and localisation technique are 

presented in Figure 6.15. And Figure 6.14 displays the plotting of the kNN estimates against 

the MVFL estimates on the testbed. 

 

Figure 6.12 Waspmote Wi-Fi SMA5 

Figure 6.13 Meshlium scanner 
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A test fingerprint was intentionally located inside the storage room, as shown in Figure 6.11, 

which has LOS to a single AP. The other test fingerprints were located on the floor to create 

Figure 6.14 Actual locations versus estimated locations. 

Figure 6.15 Error plot for (MVFL) dual-input TKS-FIS v. w-kNN and kNN 
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another NLOS factor due to the presence of benches at various locations. This arrangement 

was expected to affect the behaviour of any RSS-based localisation algorithm.  

According to Figure 6.15 and Table 6.5, the average achieved accuracy for the dual-input 

TKS-FIS algorithm was approximately 204 cm, despite the fact that one test fingerprint had 

less than a 71-cm accuracy and the majority of the others achieved accuracy around the inter-

fingerprint distance. Again, these results proved that the dual-input TKS-FIS algorithm 

produces the best acceptable performance, confirming the feasibility of the developed 

localisation proposal. 

Table 6.5 RMSE error in estimation for Experiment 2. 

Test fingerprint 
RMSE (in cm) 

w-kNN kNN Dual-input TKS-FIS 

T1 843 754 523 

T2 537 475 190 

T3 287 208 136 

T4 105 54 72 

T5 591 558 209 

T6 316 232 152 

T7 330 355 200 

T8 170 315 160 

T9 543 583 202 

T10 401 476 290 

T11 537 657 203 

T12 477 533 124 

T13 260 353 203 

Avg. 415 427 204 
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6.5 Conclusion 

This chapter covered an investigation of the proposed approach for indoor wireless 

localisation using dual-input TKS-FIS reasoning mechanisms referred to as MVFL. The 

suggestions included an enhanced version of the kNN fingerprinting algorithm via an 

extension with an outliering sub-process.  

The primary role for the TKS-FIS was to generate weights for the two offered inputs and 

append these weights to the respective nearest fingerprint. The two inputs resemble the 

distance in signal space for each test fingerprint with respect to the transmitters, and the 

variation of RSSs between the target fingerprint and the nearest fingerprint. The evaluation 

was based on both empirical and simulation results. The outcomes were assessed against 

other well-known localisation approaches to confirm that the performance outcomes were 

within reasonable limits. 
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7 CONCLUDING REMARKS AND PROSPECTIVE WORK 

The proposed localisation method—namely, a dual-input TKS-FIS based on fingerprinting 

and nearest-fingerprint algorithm—was evaluated in terms of empirical outcomes and 

simulation parameters, and compared with some well-known localisation methods. From 

this research one may reasonably confirm that the target objectives have been met, and infer 

the applicability of the proposed method in the localisation domain. However, these 

achievements do not preclude further observations and plans for refinement. Some of these 

were noted in the discussions in each section of this work. Among them are the dependency 

issues for localisation algorithms discussed in Section 5.4, viz. the frequency, application 

and algorithm dependencies. 

It is acknowledged that RSS is irregularly spread in the 'domain of discourse,' where it is 

evident some power ranges in the signal spectrum are more widely used in the WLAN 

environments. This is particularly so in the [-65 dB, -80 dB] range, and arguably it opens the 

door for examining alternative means for signal power sensing. The nearest-fingerprint 

selection also can be re-assessed to incorporate adaptive principles to conquer the 

uncertainties pervading the RSS signatures.  Furthermore, it is noted that the current TKS-

FIS deems independence among all gathered observations. This is despite the fact that all 

observations attribute to the same target fingerprint, so choosing conditional independence 

would add more credibility to the nearest-fingerprint selection [192]. 

Building the fingerprint map for indoor localisation problems is labour-intensive and time-

consuming. However, due to its direct influence on the accuracy of location estimation, 

finding a proper mechanism to construct the fingerprint map is essential if we are to improve 

accuracy. Therefore, a proposal has been put forward to present a fingerprint map 

construction technique based on the determination of location fixes and fingerprint 
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matching. The proposal is motivated by the availability of advanced sensing capabilities in 

smartphones which have the potential to reduce the time and labour required for the site 

survey. The proposal introduces a location fixing and finger matching (LFFM) method 

which uses a landmark graph-based localisation approach to automatically estimate location 

fixes for the reference points and match them with the collected fingerprints, without 

requiring active user participation. The initial empirical results reveal that the LFFM is more 

agile than the manual fingerprint map construction method and can remarkably improve 

positioning accuracy [196]. 

We have looked at the localisation problem from both historical and  technical points of 

view, and in accordance with the classification outlined in Chapter 2 for the application of 

fuzzy sets in solving localisation problems. In this respect, innovative concepts were found 

to be attractive for further consideration under the realm of localisation applications. 

Initially, other types of fuzzy systems might be explored in applications to localisation, for 

example, type-2 fuzzy sets, which has never been seriously examined in this field. Moreover, 

the reported literature on fuzzy arithmetic has shown the least representation among all 

features of fuzzy sets. Finally, the use of 'hedges' for modifying fuzzy membership functions 

is another field worth looking into, and one which would add more precision and feasibility 

to the fuzzy models. 
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[103] D. Herrero-Pérez, H. Martínez-Barberá, K. LeBlanc, and A. Saffiotti, “Fuzzy uncertainty 

modeling for grid based localization of mobile robots,” Int. J. Approx. Reason., vol. 51, 

no. 8, pp. 912–932, Oct. 2010, doi: 10.1016/j.ijar.2010.06.001. 

[104] X. Zhou and P. Angelov, “An Approach to Autonomous Self-localization of a Mobile 

Robot in Completely Unknown Environment using Evolving Fuzzy Rule-based 

Classifier,” in IEEE Symposium on Computational Intelligence in Security and Defense 

Applications, 2007, no. Cisda, pp. 131–138, doi: 10.1109/CISDA.2007.368145. 

[105] C. J. Hegarty and E. Chatre, “Evolution of the Global Navigation SatelliteSystem 

(GNSS),” Proc. IEEE, vol. 96, no. 12, pp. 1902–1917, Dec. 2008, doi: 

10.1109/JPROC.2008.2006090. 

[106] S. Chen and C. Chen, “Probabilistic Fuzzy System for Uncertain Localization and Map 

Building of Mobile Robots,” IEEE Trans. Instrum. Meas., vol. 61, no. 6, pp. 1546–1560, 

Jun. 2012, doi: 10.1109/TIM.2012.2186652. 

[107] G. Kul, T. Özyer, and B. Tavli, “IEEE 802.11 WLAN based Real Time Indoor 

Positioning: Literature Survey and Experimental Investigations,” Procedia Comput. Sci., 

vol. 34, pp. 157–164, 2014, doi: 10.1016/j.procs.2014.07.078. 

[108] R. Araujo and A. T. de Almeida, “Learning sensor-based navigation of a real mobile 

robot in unknown worlds,” IEEE Trans. Syst. Man Cybern. Part B, vol. 29, no. 2, pp. 

164–178, Apr. 1999, doi: 10.1109/3477.752791. 

[109] J. Jia, G. Xu, X. Pei, R. Cao, L. Hu, and Y. Wu, “Accuracy and efficiency of an infrared 

based positioning and tracking system for patient set-up and monitoring in image guided 

radiotherapy,” Infrared Phys. Technol., vol. 69, pp. 26–31, Mar. 2015, doi: 

10.1016/j.infrared.2015.01.001. 

[110] K. Pahlavan et al., “Taking Positioning Indoors: Wi-Fi Localization and GNSS,” 

InsideGNSS, vol. 5, no. 3, pp. 40–47, 2010. 

[111] Y. Qi, “Wireless Geolocation in a Non-Line-Of-Sight Environment,” Ph.D. Thesis 

Department of Electrical Engineering, Princeton University, 2003. 



 

 

 

160 

[112] C.-H. Ou and W.-L. He, “Path Planning Algorithm for Mobile Anchor-Based 

Localization in Wireless Sensor Networks,” IEEE Sens. J., vol. 13, no. 2, pp. 466–475, 

Feb. 2013, doi: 10.1109/JSEN.2012.2218100. 

[113] A. Kumar, N. Chand, V. Kumar, and V. Kumar, “Range Free Localization Schemes for 

Wireless Sensor Networks,” Int. J. Comput. Networks Commun., vol. 3, no. 6, pp. 115–

129, 2011, doi: 10.5121/ijcnc.2011.3607. 

[114] E. M. Gorostiza, J. L. L. Galilea, F. J. M. Meca, D. S. Monzú, F. E. Zapata, and L. P. 

Puerto, “Infrared sensor system for mobile-robot positioning in intelligent spaces,” 

Sensors, vol. 11, no. 5, pp. 5416–5438, 2011, doi: 10.3390/s110505416. 

[115] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based user location and 

tracking system,” in Proceedings IEEE INFOCOM 2000. Conference on Computer 

Communications. Nineteenth Annual Joint Conference of the IEEE Computer and 

Communications Societies (Cat. No.00CH37064), Mar. 2000, vol. 2, no. c, pp. 775–784, 

doi: 10.1109/INFCOM.2000.832252. 

[116] R. Alsaqour et al., “Dynamic packet beaconing for GPSR mobile ad hoc position-based 

routing protocol using fuzzy logic,” J. Netw. Comput. Appl., vol. 47, pp. 32–46, Jan. 

2015, doi: 10.1016/j.jnca.2014.08.008. 

[117] P. Wang, J. Lan, Y. Hu, and S. Chen, “Towards locality-aware DHT for fast mapping 

service in future Internet,” Comput. Commun., vol. 66, pp. 14–24, Jul. 2015, doi: 

10.1016/j.comcom.2015.04.003. 

[118] M. Bazmara, “A Novel Fuzzy Approach for Determining Best Position of Soccer 

Players,” Int. J. Intell. Syst. Appl., vol. 6, no. 9, pp. 62–67, Aug. 2014, doi: 

10.5815/ijisa.2014.09.08. 

[119] H. W. H. Wang and C. T. G. C. T. Goh, “Fuzzy logic Kalman filter estimation for 2-

wheel steerable vehicles,” in Proceedings 1999 IEEE/RSJ International Conference on 

Intelligent Robots and Systems. Human and Environment Friendly Robots with High 

Intelligence and Emotional Quotients (Cat. No.99CH36289), 1999, vol. 1, pp. 88–93, 

doi: 10.1109/IROS.1999.812986. 

[120] T. J. Ho, “Robust urban wireless localization: Synergy between data fusion, modeling 

and intelligent estimation,” IEEE Trans. Wirel. Commun., vol. 14, no. 2, pp. 685–697, 

2015, doi: 10.1109/TWC.2014.2357807. 

[121] I. Guyon, “Pattern classification,” Pattern Anal. Appl., vol. 1, no. 2, pp. 142–143, Jun. 

1998, doi: 10.1007/BF01237942. 

[122] N. Bouzera, M. Oussalah, N. Mezhoud, and A. Khireddine, “Fuzzy extended Kalman 

filter for dynamic mobile localization in urban area using wireless network,” Appl. Soft 

Comput., vol. 57, pp. 452–467, Aug. 2017, doi: 10.1016/j.asoc.2017.04.007. 

[123] S. B. Chen, C. Y. Yang, F. K. Liao, and J. F. Liao, “Mobile location estimator in a rough 

wireless environment using extended Kalman-based IMM and data fusion,” IEEE Trans. 

Veh. Technol., vol. 58, no. 3, pp. 1157–1169, 2009, doi: 10.1109/TVT.2008.928649. 



 

 

 

161 

[124] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo Localization: Efficient 

Position Estimation for Mobile Robots,” in AAAI ’99/IAAI ’99 Proceedings of the 

sixteenth national conference on Artificial intelligence and the eleventh Innovative 

applications of artificial intelligence conference innovative applications of artificial 

intelligence, 1999, pp. 343–349, doi: 10.1.1.2.342. 

[125] L. Gogolak, S. Pletl, and D. Kukolj, “Neural network-based indoor localization in WSN 

environments,” Acta Cybern. Acta Polytech. Hungarica, vol. 10, no. 6, pp. 221–235, 

2013. 

[126] J. M. Alonso and L. Magdalena, “HILK++: an interpretability-guided fuzzy modeling 

methodology for learning readable and comprehensible fuzzy rule-based classifiers,” 

Soft Comput., vol. 15, no. 10, pp. 1959–1980, Oct. 2011, doi: 10.1007/s00500-010-0628-

5. 

[127] G. Q. Huang, A. B. Rad, and Y. K. Wong, “Online SLAM in dynamic environments,” 

in 12th International Conference on Advanced Robotics, ICAR ’05, Proceedings, Jul. 

2005, pp. 262–267, doi: 10.1109/ICAR.2005.1507422. 

[128] N. Zikos and V. Petridis, “6-DoF Low Dimensionality SLAM (L-SLAM),” J. Intell. 

Robot. Syst., vol. 79, no. 1, pp. 55–72, Jul. 2015, doi: 10.1007/s10846-014-0029-6. 

[129] Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless 

personal networks,” IEEE Commun. Surv. Tutorials, vol. 11, no. 1, pp. 13–32, 2009, doi: 

10.1109/SURV.2009.090103. 

[130] M. Bouet and A. L. Dos Santos, “RFID tags: Positioning principles and localization 

techniques,” 2008 1st IFIP Wireless Days, WD 2008. 2008, doi: 

10.1109/WD.2008.4812905. 

[131] D. Navarro and G. Benet, “Magnetic map building for mobile robot localization 

purpose,” in 2009 IEEE Conference on Emerging Technologies & Factory Automation, 

Sep. 2009, pp. 1–4, doi: 10.1109/ETFA.2009.5347181. 

[132] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart 

Cards, Radio Frequency Identification and Near-Field Communication, Third Edition. 

WILEY. 

[133] R. Akl, D. Tummala, and L. Xinrong, “Indoor propagation modeling at 2.4 GHZ for 

IEEE 802.11 networks,” in Proceedings of the IASTED International Conference on 

WIRELESS SENSOR NETWORKS, Part of the Sixth IASTED International Multi-

Conference on WIRELESS AND OPTICAL COMMUNICATIONS, 2006, vol. 2006, 

Accessed: Feb. 24, 2019. [Online]. Available: 

https://www.semanticscholar.org/paper/Indoor-Propagation-Modeling-at-2.4-GHz-for-

IEEE-Akl-Tummala/7e706ef15d60b2e00377fa07b84dd62b5a74c705. 

 

 



 

 

 

162 

[134] M. A. Youssef, A. Agrawala, and A. Udaya Shankar, “WLAN location determination 

via clustering and probability distributions,” in Proceedings of the First IEEE 

International Conference on Pervasive Computing and Communications, 2003. 

(PerCom 2003), pp. 143–150, doi: 10.1109/PERCOM.2003.1192736. 

[135] M. Youssef and A. Agrawala, “Small-scale compensation for WLAN location 

determination systems,” in 2003 IEEE Wireless Communications and Networking, 2003. 

WCNC 2003., vol. 3, no. Figure 1, pp. 1974–1978, doi: 10.1109/WCNC.2003.1200690. 

[136] A. Shamir, “An introduction to radio waves propagation: generic terms, indoor 

propagation and practical approaches to path loss calculations, including examples,” 

2002. Accessed: Feb. 24, 2019. [Online]. Available: 

https://www.semanticscholar.org/paper/An-Introduction-to-Radio-Waves-Propagation-

%3A-Terms-Shamir/53959f49bf0b3bcd44a9d598953153605eff6f9d. 

[137] T. Sadiki and P. Paimblanc, “Modelling New Indoor Propagation Models for WLAN 

Based on Empirical Results,” in 2009 11th International Conference on Computer 

Modelling and Simulation, 2009, pp. 585–588, doi: 10.1109/UKSIM.2009.112. 

[138] Bing-Fei Wu, Cheng-Lung Jen, and Kuei-Chung Chang, “Neural fuzzy based indoor 

localization by Kalman filtering with propagation channel modeling,” in 2007 IEEE 

International Conference on Systems, Man and Cybernetics, 2007, pp. 812–817, doi: 

10.1109/ICSMC.2007.4413976. 

[139] T. Erbay Dalkiliç, B. Y. Hanci, and A. Apaydin, “Fuzzy adaptive neural network 

approach to path loss prediction in urban areas at GSM-900 band,” Turkish J. Electr. 

Eng. Comput. Sci., vol. 18, no. 6, pp. 1077–1094, 2010, doi: 10.3906/elk-0904-18. 

[140] X. Tian, R. Shen, D. Liu, Y. Wen, and X. Wang, “Performance Analysis of RSS 

Fingerprinting Based Indoor Localization,” IEEE Trans. Mob. Comput., vol. 16, no. 10, 

pp. 2847–2861, Oct. 2017, doi: 10.1109/TMC.2016.2645221. 

[141] M. B. Kjærgaard and C. V. Munk, “Hyperbolic location fingerprinting: A calibration-

free solution for handling differences in signal strength,” in 6th Annual IEEE 

International Conference on Pervasive Computing and Communications, PerCom 2008, 

2008, pp. 110–116, doi: 10.1109/PERCOM.2008.75. 

[142] S. Gansemer, U. Großmann, and S. Hakobyan, “RSSI-based Euclidean distance 

algorithm for Indoor Positioning adapted for the use in dynamically changing WLAN 

environments and multi-level buildings,” in 2010 International Conference on Indoor 

Positioning and Indoor Navigation, IPIN 2010 - Conference Proceedings, Sep. 2010, 

pp. 1–6, doi: 10.1109/IPIN.2010.5648247. 

[143] M. Bshara, U. Orguner, F. Gustafsson, and L. Van Biesen, “Fingerprinting Localization 

in Wireless Networks Based on Received-Signal-Strength Measurements: A Case Study 

on WiMAX Networks,” IEEE Trans. Veh. Technol., vol. 59, no. 1, pp. 283–294, Jan. 

2010, doi: 10.1109/TVT.2009.2030504. 

 



 

 

 

163 

[144] L. Jiang, “A WLAN Fingerprinting Based Indoor Localization Technique,” MSc. Thesis, 

Computer Science and Engineering, University of Nebraska - Lincoln, 2012. 

[145] Leonid Reznik, Fuzzy Controllers Handbook, 1st ed. Elsevier, 1997. 

[146] H. P. Didier Dubois, Walenty Ostasiewicz, D. Dubois, W. Ostasiewicz, and H. Prade, 

“Fuzzy Sets: History and Basic Notions,” Fundam. Fuzzy Sets Handbooks Fuzzy Sets 

Ser., vol. 7, pp. 21–124, 1980, doi: 10.1007/978-1-4615-4429-6_2. 

[147] B. Kosko, Neural networks and fuzzy systems: a dynamical systems approach to machine 

intelligence. Prentice Hall, 1991. 

[148] J. M. Mendel and R. I. B. John, “Type-2 fuzzy sets made simple,” IEEE Trans. Fuzzy 

Syst., vol. 10, no. 2, pp. 117–127, Apr. 2002, doi: 10.1109/91.995115. 

[149] M. (Michael) Berthold and D. J. (David J. . Hand, “Intelligent Data Analysis: An 

Introduction,” Technometrics, vol. 47, no. 1, pp. 104–104, Feb. 2005, doi: 

10.1198/tech.2005.s839. 

[150] L. A. A. Zadeh, “The concept of a linguistic variable and its application to approximate 

reasoning-I,” Inf. Sci. (Ny)., vol. 8, no. 3, pp. 199–249, Jan. 1975, doi: 10.1016/0020-

0255(75)90036-5. 

[151] D. Dubois and H. Prade, Possibility Theory. Boston, MA: Springer US, 1988. 

[152] K. HIROTA, “Special issue on globalization. Fuzzy engineering.,” J. Japan Soc. Precis. 

Eng., vol. 57, no. 1, pp. 32–35, 1991, doi: 10.2493/jjspe.57.32. 

[153] H.-F. Wang, “Comparative Studies on Fuzzy T-Norm Operators,” in Bulletin For Studies 

and Exchanges on Fuzziness and Applications (BUSEFAL), 1992, no. 50, pp. 16–24. 

[154] E. H. Mamdani, “Application of fuzzy algorithms for control of simple dynamic plant,” 

Proc. Inst. Electr. Eng., vol. 121, no. 12, p. 1585, 1974, doi: 10.1049/piee.1974.0328. 

[155] M. Mizumoto and K. Tanaka, “Fuzzy sets and their operations,” Inf. Control, vol. 48, 

no. 1, pp. 30–48, Jan. 1981, doi: 10.1016/S0019-9958(81)90578-7. 

[156] M. Mizumoto and K. Tanaka, “Some properties of fuzzy numbers.,” vol. Advances i, p. 

Gupta\MM\Ragade\RK\Yager\RR-Ed, 1979. 

[157] H. Tanaka and K. Asai, “Fuzzy Linear Programming Based on Fuzzy Functions,” Bull. 

Univ. Osaka Prefect. Ser. A, Eng. nat Ural Sci., vol. 29, no. 2, pp. 113–125, 1981. 

[158] H. Takagi and I. Hayashi, “NN-driven fuzzy reasoning,” Int. J. Approx. Reason., vol. 5, 

no. 3, pp. 191–212, May 1991, doi: 10.1016/0888-613X(91)90008-A. 

[159] B. Bouchon-Meunier, D. Dubois, L. Godo, and H. Prade, “Fuzzy Sets and Possibility 

Theory in Approximate and Plausible Reasoning,” Springer, Boston, MA, 1999, pp. 15–

190. 



 

 

 

164 

[160] T. Bilgiç and I. B. Türkşen, “Measurement of Membership Functions: Theoretical and 

Empirical Work,” Springer, Boston, MA, 2000, pp. 195–227. 

[161] H. Mamdani, Fuzzy Reasoning and its Applications. Academic Press, 2001. 

[162] K. H. (Kwang H. Lee and K. H., “First course on fuzzy theory and applications,” Choice 

Rev. Online, vol. 42, no. 10, pp. 42-5917-42–5917, 2005, doi: 10.5860/choice.42-5917. 

[163] C. Kahraman, “Fuzzy set applications in industrial engineering,” Information Sciences, 

vol. 177, no. 7. Springer-Verlag, pp. 1531–1532, Apr. 2007, doi: 

10.1016/j.ins.2006.09.010. 

[164] L. X. Wang and J. M. Mendel, “Generating Fuzzy Rules by Learning from Examples,” 

IEEE Trans. Syst. Man Cybern., vol. 22, no. 6, pp. 1414–1427, 1992, doi: 

10.1109/21.199466. 

[165] S. Abe and Ming-Shong Lan, “A method for fuzzy rules extraction directly from 

numerical data and its application to pattern classification,” IEEE Trans. Fuzzy Syst., vol. 

3, no. 1, pp. 18–28, 1995, doi: 10.1109/91.366565. 

[166] M. R. Berthold and K.-P. Huber, “Constructing fuzzy graphs from examples,” Intell. 

Data Anal., vol. 3, no. 1, pp. 37–53, Jan. 1999, doi: 10.3233/IDA-1999-3104. 

[167] R. J. H. Ii and T. Sudkamp, “LEARNING FUZZY RULES FROM DATA,” in The 

Application of Information Technologies (Computer Science) to mission Systems, 1998, 

pp. 20--22 April. 

[168] C. W. Tao, “A reduction approach for fuzzy rule bases of fuzzy controllers,” IEEE Trans. 

Syst. Man Cybern. Part B, vol. 32, no. 5, pp. 668–675, Oct. 2002, doi: 

10.1109/TSMCB.2002.1033186. 

[169] G. Edwards, A. Kandel, and R. Sankar, “Fuzzy handoff algorithms for wireless 

communication,” Fuzzy Sets Syst., vol. 110, no. 3, pp. 379–388, Mar. 2000, doi: 

10.1016/S0165-0114(98)00094-3. 

[170] L. Xia, L. -g. Jiang, and C. He, “A Novel Fuzzy Logic Vertical Handoff Algorithm with 

Aid of Differential Prediction and Pre-Decision Method,” in 2007 IEEE International 

Conference on Communications, Jun. 2007, pp. 5665–5670, doi: 10.1109/ICC.2007.939. 

[171] W. Arnold, H. Hellendoorn, R. Seising, C. Thomas, and A. Weitzel, “Fuzzy routing,” 

Fuzzy Sets Syst., vol. 85, no. 2, pp. 131–153, Jan. 1997, doi: 10.1016/0165-

0114(95)00357-6. 

[172] L. A. Zadeh, “Fuzzy logic and the calculi of fuzzy rules, fuzzy graphs, and fuzzy 

probabilities,” Comput. Math. with Appl., vol. 37, no. 11–12, p. 35, Jun. 1999, doi: 

10.1016/S0898-1221(99)00140-6. 

[173] C. M. Higgins and R. M. Goodman, “Learning fuzzy rule-based neural networks for 

function approximation,” in [Proceedings 1992] IJCNN International Joint Conference 

on Neural Networks, 2003, vol. 1, pp. 251–256, doi: 10.1109/IJCNN.1992.287127. 



 

 

 

165 

[174] S. E. Papadakis and J. B. Theocharis, “A GA-based fuzzy modeling approach for 

generating TSK models,” Fuzzy Sets Syst., vol. 131, no. 2, pp. 121–152, Oct. 2002, doi: 

10.1016/S0165-0114(01)00227-5. 

[175] Z. Huang and Zhiheng, “Rule model simplification,” Ph.D. desertation, College of 

Science and Engineering.  School of Informatics., University of Edinburgh, 2006. 

[176] M. Hanss, Applied Fuzzy Arithmetic An Introduction with Engineering Applications. 

Springer, 2005. 

[177] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems, 

vol. 1, no. 1. pp. 3–28, 1978, doi: 10.1016/0165-0114(78)90029-5. 

[178] D. Dubois and H. Prade, “An introduction to fuzzy systems,” Clin. Chim. Acta, vol. 270, 

no. 1, pp. 3–29, Feb. 1998, doi: 10.1016/S0009-8981(97)00232-5. 

[179] D. Dubois and H. Prade, “What are fuzzy rules and how to use them,” Fuzzy Sets Syst., 

vol. 84, no. 2, pp. 169–185, Dec. 1996, doi: 10.1016/0165-0114(96)00066-8. 

[180] V. Novák and S. Lehmke, “Logical structure of fuzzy IF-THEN rules,” Fuzzy Sets Syst., 

vol. 157, no. 15, pp. 2003–2029, Aug. 2006, doi: 10.1016/J.FSS.2006.02.011. 

[181] S. S. Rivera and J. H. Baron, “Using fuzzy arithmetic in containment event trees,” Int. 

Conf. Probabilistic Saf. Assess. - PSA, pp. 371–378, 1999. 

[182] M. L. N. McAllister, “Fuzzy intersection graphs,” Comput. Math. with Appl., vol. 15, no. 

10, pp. 871–886, 1988, doi: 10.1016/0898-1221(88)90123-X. 

[183] M. G. Karunambigai, P. Rangasamy, K. Atanassov, and N. Palaniappan, “An 

Intuitionistic Fuzzy Graph Method for Finding the Shortest Paths in Networks,” in 

Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, vol. 42, 

Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 3–10. 

[184] J. A. Castellanos and J. D. Tardós, Mobile Robot Localization and Map Building. Boston, 

MA: Springer US, 1999. 

[185] A. K. M. Mahtab Hossain, Yunye Jin, Wee-Seng Soh, and Hien Nguyen Van, “SSD: A 

Robust RF Location Fingerprint Addressing Mobile Devices’ Heterogeneity,” IEEE 

Trans. Mob. Comput., vol. 12, no. 1, pp. 65–77, Jan. 2013, doi: 10.1109/TMC.2011.243. 

[186] B. Li, Y. Wang, H. K. Lee, A. Dempster, and C. Rizos, “Method for yielding a database 

of location fingerprints in WLAN,” IEE Proc. - Commun., vol. 152, no. 5, p. 580, 2005, 

doi: 10.1049/ip-com:20050078. 

[187] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. Theory, 

vol. 13, no. 1, pp. 21–27, Jan. 1967, doi: 10.1109/TIT.1967.1053964. 

[188] Y. Bao, N. Ishii, and X. Du, “Combining Multiple k-Nearest Neighbor Classifiers Using 

Different Distance Functions,” Springer, Berlin, Heidelberg, 2004, pp. 634–641. 



 

 

 

166 

[189] R. Azat, H. Halab, and F. Subhan, “Combined K-Nearest Neighbors and Fuzzy Logic 

Indoor Localization Technique for Wireless Sensor Network,” Res. J. Inf. Technol., 

2012. 

[190] N. Abramson, D. Braverman, and G. Sebestyen, “Pattern recognition and machine 

learning,” IEEE Trans. Inf. Theory, vol. 9, no. 4, pp. 257–261, Oct. 1963, doi: 

10.1109/TIT.1963.1057854. 

[191] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to 

modeling and control,” IEEE Trans. Syst. Man. Cybern., vol. SMC-15, no. 1, pp. 116–

132, Jan. 1985, doi: 10.1109/TSMC.1985.6313399. 

[192] M. Alakhras, M. Oussalah, and M. Hussein, “Fuzzy inference with parameter 

identification for indoor WLAN positioning,” in World Congress on Engineering, The 

2015 International Conference of Wireless Networks, 2015, vol. 2217, pp. 641–648, doi: 

2-s2.0-84991203883. 

[193] E. Cox, The Fuzzy Systems Handbook: A Practitioner’s Guide to Building, Using, and 

Maintaining Fuzzy Systems, 1st ed. Boston, MA: AP Professional, 1994. 

[194] P. J. Huber and E. M. Ronchetti, Robust Statistics, vol. 20, no. PART A. Hoboken, NJ, 

USA: John Wiley & Sons, Inc., 2009. 

[195] E. W. Weisstein, “Triangle Area.” http://mathworld.wolfram.com/TriangleArea.html 

(accessed Jan. 20, 2019). 

[196] M. Alakhras, M. Hussein, and M. Oussalah, “Location fixing and fingerprint matching 

fingerprint map construction for indoor localization,” J. Sensors, vol. 2020, 2020, doi: 

10.1155/2020/7801752. 

[197] A. G. Barnston, “Correspondence among the Correlation, RMSE, and Heidke Forecast 

Verification Measures; Refinement of the Heidke Score,” Weather Forecast., vol. 7,     

no. 4, pp. 699–709, Dec. 1992, doi: 10.1175/1520-

0434(1992)007<0699:CATCRA>2.0.CO;2. 

 


