
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

Universidade do Porto Faculdade de Ciências

Universidade do Minho Departamento de Informática
2020

David João
Apolinário Simões

Aprendizagem de Coordenação em Sistemas
Multi-Agente

Learning Coordination in Multi-Agent Systems

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

Universidade do Porto Faculdade de Ciências

Universidade do Minho Departamento de Informática
2020

David João
Apolinário Simões

Aprendizagem de Coordenação em Sistemas
Multi-Agente

Learning Coordination in Multi-Agent Systems

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Informática, realizada sob a
orientação científica de José Nuno Panelas Nunes Lau, Professor Auxiliar do
Departamento de Eletrónica, Telecomunicações e Informática da Universi-
dade de Aveiro, e Luís Paulo Gonçalves dos Reis, Professor Associado do
Departamento de Engenharia Informática da Faculdade de Engenharia da
Universidade do Porto.

Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de
Apoio.

o júri / the jury

presidente / president Armando Domingos Batista Machado
Professor Catedrático da Universidade de Aveiro (por delegação do Reitor da Uni-
versidade de Aveiro).

vogais / examiners committee Luís Miguel Parreira e Correia
Professor Associado da Universidade de Lisboa

Gabriel de Sousa Torcato David
Professor Associado da Universidade do Porto

Luís Filipe de Seabra Lopes
Professor Associado da Universidade de Aveiro

João Alberto Fabro
Professor Associado da Universidade Tecnológica Federal do Paraná

José Nuno Panelas Nunes Lau
Professor Auxiliar da Universidade de Aveiro (orientador)

Luís Paulo Gonçalves dos Reis
Professor Associado da Universidade do Porto (co-orientador)

agradecimentos /
acknowledgements

É com muito gosto que aproveito esta oportunidade para agradecer a todos
os que me ajudaram ao longo da escrita desta tese. Em primeiro lugar, aos
orientadores Nuno Lau e Luís Paulo Reis, por disponibilizarem o seu tempo
sempre que necessário e me guiaram neste percurso. Agradeço também à
minha família e à Daniela Sousa por todo o apoio dado ao longo dos anos.

Finalmente, quero agradecer aos amigos e colegas de laboratório, que através
de conversas, ideias, e debates, tornaram possível a escrita deste documento.

palavras-chave sistemas multi-agente, aprendizagem máquina, coordenação, comunicação

resumo A capacidade de um agente se coordenar com outros num sistema é uma
propriedade valiosa em sistemas multi-agente. Agentes cooperam como
uma equipa para cumprir um objetivo comum, ou adaptam-se aos opo-
nentes de forma a completar objetivos egoístas sem serem explorados. In-
vestigação demonstra que aprender coordenação multi-agente é significa-
tivamente mais complexo que aprender estratégias em ambientes com um
único agente, e requer uma variedade de técnicas para lidar com um ambi-
ente onde agentes aprendem simultaneamente. Esta tese procura determinar
como aprendizagem automática pode ser usada para encontrar coordenação
em sistemas multi-agente. O documento questiona que técnicas podem ser
usadas para enfrentar a superior complexidade destes sistemas e o seu de-
safio de atribuição de crédito, como aprender coordenação, e como usar
comunicação para melhorar o comportamento duma equipa.
Múltiplos algoritmos para ambientes competitivos são tabulares, o que im-
pede o seu uso com espaços de estado de alta-dimensão ou contínuos, e
podem ter tendências contra estratégias de equilíbrio específicas. Esta tese
propõe múltiplas extensões de aprendizagem profunda para ambientes com-
petitivos, permitindo a algoritmos atingir estratégias de equilíbrio em ambi-
entes complexos e parcialmente-observáveis, com base em apenas informação
local. Um algoritmo tabular é também extendido com um novo critério de
atualização que elimina a sua tendência contra estratégias determinísticas.
Atuais soluções de estado-da-arte para ambientes cooperativos têm base em
aprendizagem profunda para lidar com a complexidade do ambiente, e ben-
eficiam duma fase de aprendizagem centralizada. Soluções que incorporam
comunicação entre agentes frequentemente impedem os próprios de ser ex-
ecutados de forma distribuída. Esta tese propõe um algoritmo multi-agente
onde os agentes aprendem protocolos de comunicação para compensarem
por observabilidade parcial local, e continuam a ser executados de forma
distribuída. Uma fase de aprendizagem centralizada pode incorporar in-
formação adicional sobre ambiente para aumentar a robustez e velocidade
com que uma equipa converge para estratégias bem-sucedidas. O algoritmo
ultrapassa abordagens estado-da-arte atuais numa grande variedade de am-
bientes multi-agente. Uma arquitetura de rede invariante a permutações é
também proposta para aumentar a escalabilidade do algoritmo para grandes
equipas. Mais pesquisa é necessária para identificar como as técnicas pro-
postas nesta tese, para ambientes cooperativos e competitivos, podem ser
usadas em conjunto para ambientes mistos, e averiguar se são adequadas a
inteligência artificial geral.

keywords multi-agent systems, machine learning, coordination, communication

abstract The ability for an agent to coordinate with others within a system is a
valuable property in multi-agent systems. Agents either cooperate as a team
to accomplish a common goal, or adapt to opponents to complete different
goals without being exploited. Research has shown that learning multi-agent
coordination is significantly more complex than learning policies in single-
agent environments, and requires a variety of techniques to deal with the
properties of a system where agents learn concurrently. This thesis aims to
determine how can machine learning be used to achieve coordination within
a multi-agent system. It asks what techniques can be used to tackle the
increased complexity of such systems and their credit assignment challenges,
how to achieve coordination, and how to use communication to improve the
behavior of a team.
Many algorithms for competitive environments are tabular-based, prevent-
ing their use with high-dimension or continuous state-spaces, and may be
biased against specific equilibrium strategies. This thesis proposes multiple
deep learning extensions for competitive environments, allowing algorithms
to reach equilibrium strategies in complex and partially-observable environ-
ments, relying only on local information. A tabular algorithm is also extended
with a new update rule that eliminates its bias against deterministic strate-
gies. Current state-of-the-art approaches for cooperative environments rely
on deep learning to handle the environment’s complexity and benefit from a
centralized learning phase. Solutions that incorporate communication be-
tween agents often prevent agents from being executed in a distributed
manner. This thesis proposes a multi-agent algorithm where agents learn
communication protocols to compensate for local partial-observability, and
remain independently executed. A centralized learning phase can incorporate
additional environment information to increase the robustness and speed with
which a team converges to successful policies. The algorithm outperforms
current state-of-the-art approaches in a wide variety of multi-agent envi-
ronments. A permutation invariant network architecture is also proposed
to increase the scalability of the algorithm to large team sizes. Further re-
search is needed to identify how can the techniques proposed in this thesis,
for cooperative and competitive environments, be used in unison for mixed
environments, and whether they are adequate for general artificial intelli-
gence.

Contents

Contents i

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Contributions . 4
1.4 Thesis Structure . 6

2 Multi-Agent Reward-Based Learning 9
2.1 Reward-Based Learning . 10
2.2 Single-Agent Systems . 10

2.2.1 Markov Decision Process . 11
2.2.2 Partially-Observable Markov Decision Process 12
2.2.3 Q-Learning and SARSA . 12

2.3 Deep Learning . 13
2.4 Multi-Agent Systems . 16

2.4.1 Taxonomy . 16
2.4.2 Multi-agent Markov Decision Process . 22
2.4.3 Decentralized Partially-Observable Markov Decision Process 22
2.4.4 Concepts and Definitions . 23
2.4.5 Challenges . 25

2.5 Learning in Multi-Agent Systems . 28
2.5.1 Mixed-Policy Learning . 29
2.5.2 Single-Agent Deep Reward-based Learning 32
2.5.3 Multi-Agent Deep Reward-based Learning 37
2.5.4 Communication Learning . 39

2.6 Conclusion . 41

3 Applications and Test Beds 43
3.1 Applications . 43

3.1.1 Cooperative Navigation and Tracking 43
3.1.2 Traffic, Vehicle Monitoring, and Transportation 44
3.1.3 Electricity Grid . 44
3.1.4 Supply Chains . 44
3.1.5 Games . 44
3.1.6 Autonomous Robotics . 45

i

3.1.7 Others . 45
3.2 GeoFriends 2 . 45
3.3 Game-Theoretic Environments . 49
3.4 Fully-Observable Environments . 50

3.4.1 Competitive Grid Games . 50
3.4.2 Cooperative Grid Games . 51
3.4.3 KiloBots Environment . 52

3.5 Partially-Observable Environments . 52
3.5.1 POC Suite . 52
3.5.2 Multi-Agent Particle Environment . 55
3.5.3 3D Soccer Simulation League . 56
3.5.4 Simple Pokémon Environment . 59

3.6 Conclusion . 62

4 Multi-Agent Double Deep-Q-Networks 65
4.1 Problem Statement . 65
4.2 Proposal . 66
4.3 Evaluation . 67

4.3.1 Joint-Action Learners and Independent Learners 68
4.3.2 Generalization - Harder Tasks . 69
4.3.3 Generalization - Larger Teams . 71

4.4 Conclusion . 72

5 Mixed-Policy Asynchronous Q-Learning 75
5.1 Problem Statement . 75
5.2 Proposal . 76

5.2.1 Update Rules . 77
5.3 Evaluation . 81

5.3.1 Tabular Rationality and Convergence . 81
5.3.2 Deep Asynchronous Rationality and Convergence 82
5.3.3 Multi-State Environments . 93

5.4 Conclusion . 98

6 Adjusted Bounded Weighted Policy Learner 101
6.1 Problem Statement . 101
6.2 Proposal . 104

6.2.1 Bounded WPL . 105
6.2.2 High WPL . 106
6.2.3 Adjusted Bounded WPL . 107

6.3 Evaluation . 109
6.3.1 Comparing ABWPL and WPL . 109
6.3.2 Comparing Mixed-Policy Algorithms . 111

6.4 Conclusion . 113

ii

7 Asynchronous Advantage Actor Centralized-Critic with Communication 115
7.1 Problem Statement . 116
7.2 Proposal . 117

7.2.1 Actor Network . 120
7.2.2 Centralized Critic Network . 121
7.2.3 Communication Network . 122
7.2.4 Permutation Invariant Networks . 124

7.3 Evaluation . 126
7.3.1 State of the Art Comparison . 127
7.3.2 Effects of Communication . 131
7.3.3 Communication Protocols . 133
7.3.4 Communication Noise . 136
7.3.5 Swarms and Permutation Invariance . 137
7.3.6 High-Level Strategy Learning . 138
7.3.7 Augmenting Centralized-Critic Inputs 139
7.3.8 Architecture Variance . 140

7.4 Conclusion . 140

8 Conclusion 143

Bibliography 145

iii

iv

Chapter 1

Introduction

Multi-agent systems (MAS) are composed of multiple entities interacting with each other
and the environment. A team of distributed agents can solve problems that would otherwise
be difficult or even impossible for monolithic systems. A large number of MAS examples can
be found, such as robotic or swarm navigation [1, 2, 3], distributed target tracking [4, 5, 6, 7],
traffic monitoring [8, 9], spacecraft and satellite formation [10, 11], economics and competitive
negotiation environments [12, 13], distributed sensor networks [14, 15], autonomous robots
[16, 17], or games [18, 19, 20, 21, 22, 23]. MAS form the basis of most complex systems
around us, and while MAS research typically focuses on software agents, it also encompasses
robots or even humans.

The goal of MAS research is to emulate the solutions already found in biology and psy-
chology and create autonomous agents that can interact with complex systems. Agents, like
humans and other life forms, act with limited capabilities upon local knowledge, and are ca-
pable of cooperating to reach a desirable global outcome in cooperative environments. MAS
research is focused on finding the optimal individual agent’s policy to reach the global ob-
jective of the system [24]. It uses tools from the fields of game theory, biology, and artificial
intelligence, namely planning, reasoning methods, search methods, and machine learning, in
order to achieve coordination.

Coordination is considered a key characteristic of MAS, and an agent’s capability of coor-
dinating with others constitutes one of its major qualities [25]. In cooperative environments,
coordination consists on harmonizing the interactions of multiple agents, such that a global
plan can be carried out. The global plan, possibly composed of the sum of each agent’s in-
dividual actions, will ideally fulfill the agent’ individual goals or the global objective of the
MAS, as efficiently as possible. In competitive environments, coordination consists on finding
the best strategies that complete an agent’s own goals, while also avoiding being exploited
by adversaries. Eventually, agents may converge to an equilibrium state where changing their
policies will allow others to take advantage of them and eventually worsen their performance.

1.1 Motivation

Recent advancements in deep reinforcement learning have achieved great results in highly
complex single-agent environments [26, 27]. These improvements have stemmed from a recent
increase in hardware capabilities, the re-emergence of artificial neural networks as universal
function approximators, and the development of general reinforcement learning algorithms.

1

Neural networks can generalize to new unseen states, and thus can handle complex environ-
ments without needing to explore the environment’s complete state-space [26]. They may
also be viable for transfer learning, through the use of appropriate generalization techniques
[28, 29, 30]. However, most deep learning algorithms are computationally expensive and
sample-inefficient, requiring millions of interactions with the environment to converge to ade-
quate policies. The problem becomes more evident when only commodity hardware is avail-
able, on which some algorithms would take years to achieve state-of-the-art performance, or
when training environments are not performance-oriented and become performance bottle-
necks.

Despite the success of single-agent approaches, various research efforts [31, 32, 33] have
shown that achieving coordination in MAS remains a complex challenge with open questions.
A popular technique for learning in MAS is to apply single-agent reward-based learning al-
gorithms to each independent agent and demonstrate that successful policies can be learned
with implicit coordination [34]. However, theoretical convergence guarantees offered by single-
agent algorithms are lost, as the vast majority of reward-based learning algorithms assumes
a stationary environment [35]. In a MAS, since agents must take into account the remaining
agents’ policies, which can also adapt their behavior, and agents face a moving target problem
in a non-stationary environment. Another solution to this consists on the use of a central
entity that controls all agents simultaneously, effectively making the environment single-agent
[36]. Despite this, many environments require agents to be executed in a decentralized man-
ner, independently with only their own local observation of the environment. Not only that,
but the complexity of the joint-action-space grows exponentially with the amount of agents
in the environment, so this solution is not scalable.

Therefore, when independent learning agents form the basis of the MAS, each agent must
handle all the complexity that exists in a single-agent environment, as well as the additional
issues that arise in the multi-agent paradigm. This includes the underlying environment’s
complexity, its partial-observability, its high-dimensional action-spaces, its non-stationarity,
the possibility of exchanging information with other agents, the structural credit assignment
problem (where each agent must estimate how well it contributed to the task’s completion),
and the convergence to an equilibrium of rational policies.

In cooperative environments, communication is a flexible and general method to achieve
coordination, dependent on inherent communication constraints of the MAS, which allows
agents to share low- and high-level information [37, 38, 39, 40, 41]. This helps compensate for
the partial observability of the environment, reducing the complexity of the task, regardless of
whether the communication protocol was hard-coded [42, 43] or learned by the agents [44, 45].
However, there is no consensus on how best to determine the communication protocol for
any given environment. Another solution for cooperative coordination is for a central referee
to evaluate the entire team’s performance and contribution to the task, stimulating implicit
coordination and lessening the structural credit assignment problem. Because this does not
allow agents to explicitly share information, they may be unable to handle partially-observable
environments.

In competitive environments, agents commonly try to reach the equilibrium that maxi-
mizes their own pay-off without being exploited by their opponents. These policies are often
stochastic and require a probability distribution over the action-space for each state, whereas
many single-agent reward-based learning algorithms can simply exploit a greedy determin-
istic policy. Many competitive multi-agent algorithms [46, 47, 48, 49, 50] have unrealistic
assumptions and require more information than the agent’s own local observations and re-

2

wards. Among those that have been shown to converge to the equilibrium policies with only
local information, they are often not general enough [51, 52, 53], have no formal proof of
convergence [53, 54], or are biased against deterministic strategies [54]. Algorithms can also
focus on opponent modeling to adapt accordingly, but it may lead to a recursive loop where
agents sequentially try to adapt to each other’s expected response [55]. Most contributions
in this area focus on single-state games or environments, rely on reinforcement learning, and
are tabular-based, thus becoming unable to handle continuous state-spaces or adapt to new
unseen states in complex games.

Our research question is then twofold. Firstly, is it possible to learn high-level coordinated
strategies with large numbers of communicating agents in complex partially-observable coop-
erative environments, using deep reinforcement learning? Secondly, is it possible to learn con-
vergent policies with equilibrium properties in competitive environments that can be learned
using deep reinforcement learning in complex environments with continuous state-spaces?

1.2 Objectives

This thesis has multiple goals related to learning coordination in multi-agent systems.
Research is conducted on the use of deep learning algorithms to approximate value and

policy functions for complex multi-agent environments, both cooperative and competitive.
While using artificial neural networks as non-linear function approximators discards theoretical
convergence guarantees, we hope to demonstrate that their benefits outweigh their setbacks.
In practical terms, they reduce the complexity of the environment’s state-space found in both
single-agent and multi-agent systems, by generalizing across similar states. New network
architectures that can improve the scalability of deep learning solutions in MAS with large
amounts of agents are also evaluated. The adaptation of existing multi-agent algorithms to
the deep learning paradigm is also considered.

Methods for achieving coordination in both competitive and cooperative scenarios are
researched. In competitive environments, agents are expected to converge to equilibrium
strategies based solely on local observations and rewards. Cooperative environments are not
so restrictive, and a centralized entity can aggregate information from all agents in the learning
phase such that agents converge to coordinated policies. The extension of single-agent deep-
learning algorithms with multi-agent coordination techniques is also evaluated.

Inter-agent communication is a flexible and general way of sharing information. Research
is conducted on how to include it as part of the learning task. The benefits of hard-coded or
self-learned protocols are considered. Agents can then exchange information to improve their
coordination, compensate for local observations in partially-observable environments, and take
advantage of the distributed environment.

The research topics of this thesis can be summarized as follows:

• Deep learning algorithms for complex environments;

• Deep learning architectures for scalability;

• Adapting tabular multi-agent algorithms to deep learning paradigm;

• Equilibrium methods for competitive environments;

• Centralized coordination methods for cooperative environments;

3

• Adapting single-agent deep learning algorithms to multi-agent paradigm;

• Learning communication to share relevant information.

Proposals that support, to some extent, the above mentioned properties should prove to
be a valuable contribution of knowledge to the scientific community, namely to the MAS
and machine learning fields. Tests are conducted in multiple and varied environments, and
proposals are evaluated based on their performance, robustness and reliability. Algorithms’
source-code, tests, and parameters are published on-line, such that our results can be easily
corroborated by others.

1.3 Contributions

The research on multi-agent systems for this thesis led to the publication of multiple
scientific papers. These were based on multi-agent extensions of deep learning algorithms,
reinforcement learning environments, and improvements to mixed-policy algorithms.

Following reproducibility guidelines, new algorithms described in these publications have
had their source-code published in on-line repositories. This allows other researchers to have
access to each algorithm’s implementation as well as the tests and environments used to
evaluate it.

[56] D. Simões, N. Lau, and L. P. Reis, Multi-agent Double Deep Q-Networks. In: Progress
in Artificial Intelligence - 18th EPIA Conference on Artificial Intelligence, EPIA 2017,
Oporto, Portugal, September 5-8, 2017. E. Oliveira, J. Gama, Z. Vale, H. Lopes Cardoso
(eds), Lecture Notes in Computer Science, volume 10423. Springer.

This paper focused on the adaptation of a deep learning algorithm to the multi-agent
paradigm, through two opposite approaches. Their performance were evaluated, as well as
their generality to harder tasks and larger teams. The algorithm’s source-code and tests can be
found at https://github.com/david-simoes-93/Multi-agent-Double-Deep-Q-Networks.

[57] D. Simões, N. Lau, and L. P. Reis, Mixed-Policy Asynchronous Deep Q-Learning. In:
Third Iberian Robotics Conference, ROBOT 2017, Seville, Spain, November 22-24, 2017.
A. Ollero, A. Sanfeliu, L. Montano, N. Lau, and C. Cardeira (eds), Advances in Intelli-
gent Systems and Computing, volume 694. Springer.

This paper focused on the adaptation of several multi-agent tabular algorithms to the deep
learning paradigm. The extensions were compared and tested in complex partially-observable
environments, which the original algorithms did not support. The algorithms’ source-code and
tests can be found at https://github.com/david-simoes-93/Mixed-Policy-Asynchronous-
Deep-Q-Learning.

[58] D. Simões, N. Lau, and L. P. Reis, Adjusted Bounded Weighted Policy Learner. In:
Robot World Cup XXII, Robocup 2018, Montreal, Canada, June 18-22, 2018. D. Holz,
K. Genter, M. Saad, O. von Stryk (eds), Lecture Notes in Computer Science, volume
11374, Springer.

4

https://github.com/david-simoes-93/Multi-agent-Double-Deep-Q-Networks
https://github.com/david-simoes-93/Mixed-Policy-Asynchronous-Deep-Q-Learning
https://github.com/david-simoes-93/Mixed-Policy-Asynchronous-Deep-Q-Learning

This paper focused on improving a tabular equilibrium algorithm, to address one of its
setbacks. It is compared with the original algorithm in different scenarios, matching or out-
performing it. The algorithm’s source-code and tests can be found at https://github.com/
david-simoes-93/ABWPL.

[59] D. Simões, N. Lau, and L. P. Reis, Guided Deep Reinforcement Learning in the Ge-
oFriends2 Environment. In: 2018 International Joint Conference on Neural Networks,
IJCNN 2018, Rio de Janeiro, Brazil, July 8-13, 2018. IEEE.

This paper presented a complex reward-based learning environment, both single- and
multi-agent. It also described a set of techniques that can be used to speed up deep learning
methods, such as intra-agent parameter sharing, or the use of small incremental rewards to
guide training. The environment’s source-code can be found at https://github.com/david-
simoes-93/GeoFriends2-v2.

[60] D. Simões, S. Reis, N. Lau, and L. P. Reis, Competitive Deep Reinforcement Learning
over a Pokémon Battling Simulator. In: 2020 International Conference on Autonomous
Robot Systems and Competitions, ICARSC 2020, Azores, Portugal, April 15-17, 2020.

This paper presented a competitive Pokémon battling environment, both 1v1 battles be-
tween two agents. It also described the application of a set of mixed-policy algorithms and
how applicable would they be to a complex scenario like this. The environment’s source-code
can be found at https://gitlab.com/DracoStriker/simplified-pokemon-environment.

[61] D. Simões, N. Lau, and L. P. Reis, Multi-agent Neural Reinforcement-Learning System
with Communication. In: New Knowledge in Information Systems and Technologies,
WorldCIST 2019, Galicia, Spain, April 16-19, 2019. Á. Rocha, H. Adeli, L. P. Reis,
and S. Costanzo (eds), Advances in Intelligent Systems and Computing, volume 931,
Springer.

[62] D. Simões, N. Lau, and L. P. Reis, Multi-Agent Deep Reinforcement Learning with
Emergent Communication. In: 2019 International Joint Conference on Neural Networks,
IJCNN 2019, Budapest, Hungary, July 14-19, 2019. IEEE.

[63] D. Simões, P. Amaro, T. Silva, N. Lau, and L. P. Reis, Learning Low-Level Behaviors
and High-Level Strategies in Humanoid Soccer. In: Fourth Iberian Robotics Conference,
ROBOT 2019, Oporto, Portugal, November 20-22, 2019. M. Silva, J. Lima, L. P. Reis,
A. Sanfeliu, D. Tardioli (eds), Advances in Intelligent Systems and Computing. Springer.

[64] D. Simões, N. Lau, and L. P. Reis, Multi-agent actor centralized-critic with communica-
tion, in "Neurocomputing", 2020.

[65] D. Simões, N. Lau, and L. P. Reis, Multi Agent Deep Learning with Cooperative Com-
munication, in "Journal of Artificial Intelligence and Soft Computing Research", 2020.
Sciendo.

[66] D. Simões, N. Lau, and L. P. Reis, Exploring Communication Protocols and Centralized
Critics in Multi-Agent Deep Learning, in "Integrated Computer-Aided Engineering",
2020. IOS Press.

5

https://github.com/david-simoes-93/ABWPL
https://github.com/david-simoes-93/ABWPL
https://github.com/david-simoes-93/GeoFriends2-v2
https://github.com/david-simoes-93/GeoFriends2-v2
https://gitlab.com/DracoStriker/simplified-pokemon-environment

These papers focused on the adaptation of a deep learning algorithm to the multi-agent
paradigm through the use of learned communication and a centralized evaluator. Its perfor-
mance was evaluated in complex environments, which require communication and coordination
to be completed, despite said communication channels being noisy. The algorithm’s source-
code and tests can be found at https://github.com/david-simoes-93/A3C3.

[67] A. Abdolmaleki, D. Simões, N. Lau, L. P. Reis, and G. Neumann, Contextual Relative
Entropy Policy Search with Covariance Matrix Adaptation. In: 2016 International Con-
ference on Autonomous Robot Systems and Competitions, ICARSC 2016, Bragança,
Portugal, May 4-6, 2016. IEEE.

[68] A. Abdolmaleki, D. Simões, N. Lau, L. P. Reis, and G. Neumann, Learning a Humanoid
Kick with Controlled Distance. In: Robot World Cup XX, RoboCup 2016, Leipzig,
Germany, June 30 to July 3, 2016. S. Behnke, R. Sheh, S. Sarıel, D. D. Lee (eds),
Lecture Notes in Computer Science, volume 9776, Springer.

[69] S. M. Kasaei, D. Simões, N. Lau, and A. Pereira, A Hybrid ZMP-CPG Based Walk
Engine for Biped Robots. In: Third Iberian Robotics Conference, ROBOT 2017, Seville,
Spain, November 22-24, 2017. A. Ollero, A. Sanfeliu, L. Montano, N. Lau, and C.
Cardeira (eds), Advances in Intelligent Systems and Computing, volume 694. Springer.

[70] A. Abdolmaleki, D. Simões, N. Lau, L. P. Reis, and G. Neumann, Contextual Direct
Policy Search with Regularized Covariance Matrix Estimation, in "Journal of Intelligent
& Robotic Systems", November, 2019. Springer.

The research on optimization techniques performed within the FCPortugal3D team led to
the publication of additional scientific papers. These were based on developing an optimization
algorithm that matches the performance of other state-of-the-art black-box optimizers, within
a contextual setting, and using it to optimize kick and walking behaviors for agents in the
team.

The work performed for the FCPortugal3D team in RoboCup’s 3D Simulated Soccer
League has also led to prizes in multiple competitions. In 2016, FCPortugal3D ranked first
in the Portuguese Roboticos Open 2016 and third in the 20th RoboCup International Com-
petition. In 2017, FCPortugal3D ranked second in the Portuguese Roboticos Open 2017 and
seventh in the 21st RoboCup International Competition. In 2018, FCPortugal3D ranked sec-
ond in the Portuguese Roboticos Open 2018 and third in the 22nd RoboCup International
Competition. In 2019, FCPortugal3D ranked third in the Portuguese Roboticos Open 2019
and sixth in the 23rd RoboCup International Competition.

1.4 Thesis Structure

The remainder of this thesis is structured as follows.
Chapter 2 reviews important concepts and background information regarding multi-agent

reward-based learning, including single-agent reward-based learning, deep learning, Markov
decision processes, and multi-agent learning. It also conducts a thorough analysis of the cur-
rent state-of-the-art in mixed-policy learning, reward-based deep learning, and multi-agent
reward-based learning. Chapter 3 lists adequate test-beds for multi-agent algorithms, includ-
ing single-state game-theoretic games, complex single-agent environments, and multi-agent
environment suits with various differing properties.

6

https://github.com/david-simoes-93/A3C3

Chapter 4 proposes MADDQN, an adaptation of the Deep Q-Networks algorithm (a single-
agent deep-learning method) to the multi-agent paradigm, using independent and joint-action
approaches. The adaptation is evaluated on its performance and generality to harder tasks
and larger teams, on fully-observable environments.

Chapter 5 extends several mixed-policy tabular algorithms for competitive environments
to the deep learning paradigm. The original algorithms allow agents to converge to equi-
librium strategies with only local information. Their extended versions are evaluated and
compared in game-theoretic environments and in a multi-state game with noisy observations,
evaluating whether they maintain their convergence properties and how robust they are to
hyper-parameter changes. Chapter 6 proposes ABWPL, an extension to the WPL algorithm
with a new update rule that avoids asymptotic convergence in specific cases, and maintains
WPL’s behavior in the remainder of scenarios. The extension is compared against the algo-
rithms described in the previous chapter in a wide set of game-theoretic environments.

Chapter 7 proposes A3C3, a multi-agent deep-learning actor-critic algorithm, where a
centralized learning phase allows agents to robustly converge to coordinated policies while
simultaneously learning communication protocols. The chapter also describes a permutation
invariant network architecture for deep learning algorithms. A3C3 supports distributed execu-
tion, partially-observable environments, large teams, and noisy communication, and is robust
to hyper-parameter changes. It is evaluated in a large set of multi-agent environments with
different properties, outperforming other state-of-the-art options.

Finally, Chapter 8 draws our conclusions and lists future work directions.

7

8

Chapter 2

Multi-Agent Reward-Based Learning

There are many successful applications of MAS in the real world. Such systems include
a set of autonomous agents with a common environment, independently perceived by each
agent, which acts according to its goals. In most situations, agents are required to interact
with other agents (e.g., robots interacting with humans or other robots) in order to solve a
given problem. MAS research focuses on building a system with multiple independent agents,
and how to coordinate them [71]. Agents can have a common goal, and work as team, or
conflicting agendas, and work against each other to achieve their own goal.

Multi-Agent Reward-Based Learning (MARL) is the discipline that focuses on models
where agents dynamically learn policies through interaction with the environment. Some
literature uses the term reinforcement learning instead of reward-based learning, but Panait et
al. [72] have noted that the former term is used in two different contexts: the learning class
(comparable to supervised and unsupervised learning); and a family of dynamic programming
learning algorithms (such as Q-Learning or Sarsa). To avoid confusion, this thesis uses reward-
based learning when addressing the learning class.

Common approaches to MARL are based on the concept of rational agents [73]. Russell
et al. [74] define an agent as anything that can perceive and act upon the environment, which
includes human beings, animals, robots or even software. An agent that optimizes its behavior
based on a measure of performance is called rational. The goal of MARL research is to find
methods to build autonomous rational agents who operate on local knowledge with limited
abilities, but are able to learn and solve complex problems in a system composed of multiple
agents [24].

MARL has several advantages over the single-agent counterpart. Parallel computation
leads to speedups in the learning phase, as well as scalable and robust execution when agents
can exploit the decentralized structure of the task [34]. Agents can also use experience sharing
for similar agents to learn faster and better, through communication [75], teaching [76, 77], or
imitation [78, 79]. Finally, some MAS tasks require decentralized and independent execution,
and cannot be completed from a single-agent perspective.

However, there are many open issues and challenges to MARL [80, 81]. In multi-agent
or non-static environments, the theoretical guarantees common in most single-agent RL al-
gorithms are lost. Since multi-agent learning consists on learning a policy in the presence
of other agents, which are out of our control, and these other agents may also adapt, then
the optimal policy may change as learning is performed. This is known as a moving target
problem [82]. The definition of an adequate learning goal is challenging due to the trade-off

9

between having a convergent and stable algorithm against one that can adapt to other agents’
behavior. The matter of communication helps decreasing the locality of information for each
agent, but there is no consensus about what, how, when and why to communicate. Finally, the
fundamental issue of MARL is the coordination problem or, in other words, how can multiple
agents coordinate to form an optimal joint behavior.

This chapter now describes the Reward-Based Learning class, compares single- and multi-
agent systems, and presents the Markovian properties that formally describe MARL environ-
ments. It then shows examples of MAS, their taxonomy, some concepts and definitions, and
currently open challenges. Finally, it lists related work and state-of-the-art in the field of
MARL.

2.1 Reward-Based Learning

Reward-based Learning (RL) is a sub-field of machine learning, whose goal is to control a
system that maximizes a numerical-representation of a long-term objective [83]. There is at
least one agent, which behaves as the learner, and the environment with which they interact.
Agents select and perform actions on the environment, which then reaches a new state, from
which agents take an observation, and possibly a reward associated with that transition. This
can be seen in Figures 2.1 and 2.2, for both single- and multi-agent systems, respectively.

Action at

Agent

Environment

Reward rtObservation Ot

Ot+1

rt+1

Figure 2.1: The RL cycle for single-agent systems [84]. At time-step t, the agent
executes action at upon the environment, and obtains reward rt+1 and observation
Ot+1. This process is repeated until the environment reaches a terminal state.

This paradigm has received immense interest in late years, with super-human results on
classical games, like Chess, Shogi, and Go [21], and on modern videogames, like Atari 2600
games [26], Dota2 [20], and StarCraft II [19]. This chapter now describes both single- and
multi-agent perspectives on the Reward-Based Learning field.

2.2 Single-Agent Systems

In a single-agent system, there is a single learner trying to find the optimal policy that
maximizes the obtained rewards. Two classical approaches have been used in these problems,
Value Iteration, and Policy Iteration. Policy iteration relies on evaluating and improving a
policy, two processes which are repeated until convergence has been achieved. This is shown
in Algorithm 1.

10

Action at
1

Agent1

Environment

Reward rt
1

Observation Ot
1

Ot+1
1 rt+1

1

Agent2

AgentJ

...

at
2

at
J

Joint-Action At

Ot+1
2 rt+1

2 Ot+1
J rt+1

J...

Ot
2

rt
2

Ot
J

rt
J

Figure 2.2: The RL cycle for MAS [84], with J agents. At time-step t, each
agent j executes action ajt upon the environment, composing the joint-action At.
After this, each agent j obtains reward rjt+1 and observation Ojt+1. This process
is repeated until the environment reaches a terminal state.

Value Iteration relies on finding the optimal value function, and extracting a policy from
there, as shown in Algorithm 2.

It can be seen that both algorithms require exhaustive sweeps over the complete state-
space, which is unfeasible for any complex environment. The environment’s state-space is
often unknown to agents, who must repeatedly interact with the environment in order to
extract an adequate policy.

2.2.1 Markov Decision Process

In single-agent RL, the environment of an agent is commonly described by a Markov
Decision Process (MDP). A MDP is a tuple (S,A,P,R), where S is a finite set of possible
states, A is a set of possible actions, P : S × A × S → [0, 1] is a state transition probability
function and R : S ×A× S → R is the associated reward function.

The state st ∈ S describes the environment at time-step t, and can be changed by the
agent through action at ∈ A to state st+1 ∈ S. The transition is based on the state transition
probability P, where P(st, at, st+1) describes the probability of ending in state st+1 when
action at is executed on state st. Agents receive scalar rewards rt according to reward function
R, where rt+1 = R(st, at, st+1) measures the immediate effect of an action, and none of its
long-term effects. Deterministic models are a specialization of this model, where P → {0, 1}.

Agents behave according to a stationary policy π which describes which action to choose
based on a state, π : S × A → [0, 1]. Stationary policies do not evolve over time. The
goal of an agent is to maximize, at each time-step t, the expected discounted return Rt =
E{
∑∞

j=0 γ
jrt+j+1}, where γ ∈ [0, 1] acts as a future reward discount factor, to decrease the

importance of rewards across time, and the expectation E is taken over the probabilities of
the state transitions. The discount factor also bounds the sum to a finite value when γ < 1.

11

Input: Set of states S, set of actions A, future reward discount factor γ, state transition probability function
P(s, a, s′), reward function R(s, a, s′), randomly initialized value function V (s), and randomly initialized policy
π(s).

1: repeat
2: {Policy Evaluation}
3: repeat
4: for all s ∈ S do
5: V (s)←

∑
s′∈S P(s, π(s), s′)(R(s, π(s), s′) + γV (s′))

6: end for
7: until V (s) converges
8:

9: {Policy Improvement}
10: for all s ∈ S do
11: π(s)← argmaxa

∑
s′∈S P(s, a, s′)(R(s, a, s′) + γV (s′))

12: end for
13: until π(s) converges
Output: An accurate value function V (s), and an optimal policy π(s).

Algorithm 1: Pseudo-code for the Policy Iteration algorithm [84].

Input: Set of states S, set of actions A, future reward discount factor γ, state transition probability function
P(s, a, s′), reward function R(s, a, s′), and randomly initialized value function V (s).

1: repeat
2: for all s ∈ S do
3: V (s)← maxa

∑
s′∈S P(s, a, s′)(R(s, a, s′) + γV (s′))

4: end for
5: until V (s) converges

Output: An accurate value function V (s), and a deterministic policy π(s) such that
π(s) = argmaxa

∑
s′∈S P(s, a, s′)(R(s, a, s′) + γV (s′).

Algorithm 2: Pseudo-code for the Value Iteration algorithm [84].

2.2.2 Partially-Observable Markov Decision Process

A Partially-Observable Markov Decision Process (POMDP) is a generalization of the above
described MDP, where the agent cannot directly observe the underlying MDP state. Agents
maintain a probability distribution over the possible underlying states, which is based on the
underlying MDP and on the agents’ observations and corresponding probabilities. A POMDP
is a tuple (S,A,P,R, ω,O), where S, A, P, and R have the same definition of the MDP, ω is
the set of observations, and O : ω ×A× S → [0, 1] is a set of observation probabilities.

Like in a MDP, the state st ∈ S describes the environment at time-step t, and can be
changed by the agent through action at ∈ A to state st+1 ∈ S. Agents then observe ot+1 ∈
ω with probability O(ot+1, at, st+1). Based on these, agents try to maximize the expected
discounted return Rt.

2.2.3 Q-Learning and SARSA

Depending on whether the algorithms learn or use information about the underlying envi-
ronment model, they can be divided into model-free and model-based algorithms. Model-based
algorithm try to model the environment and plan a policy based on that model, while model-
free algorithms learn a policy without explicitly modeling the environment, usually being more
sample-inefficient.

Q-Learning is a classical example of a model-free algorithm, which learns an action-value
policy by exploring the underlying MDP, learning a value-function, and provably converging
to an optimal policy. It is shown in Algorithm 3.

12

Input: Future reward discount factor γ, learning rate η, randomly initialized Q-function Q(s, a), maximum time-step
value Tmax, exploration policy π.

1: repeat
2: Reset the environment and sample initial state s0
3: Time-step t← 0
4: repeat
5: Sample action at according to exploration policy π
6: Take action at
7: Sample reward rt and new state st+1

8: Q(st, at)← (1− η)Q(st, at) + η(rt +

{
0 for terminal state st+1

γmaxaQ(st+1, a) otherwise
)

9: st ← st+1

10: t← t+ 1
11: until t > Tmax or terminal st.
12: until Q converged.
Output: An accurate Q-function Q(s, a).

Algorithm 3: Pseudo-code for the Q-Learning algorithm [84].

Algorithms can be further divided by being on- or off-policy, depending on whether the
value function being estimated depends on the policy generating the data or not. While
Q-learning is off-policy, algorithms like SARSA, shown in Algorithm 4, are on-policy.

Input: Future reward discount factor γ, learning rate η, randomly initialized Q-function Q(s, a), maximum time-step
value Tmax, exploration policy π.

1: repeat
2: Reset the environment and sample initial state s0
3: Sample action a0 according to exploration policy π
4: Time-step t← 0
5: repeat
6: Take action at
7: Sample reward rt and new state st+1

8: Sample action at+1 according to exploration policy π

9: Q(st, at)← (1− η)Q(st, at) + η(rt +

{
0 for terminal state st+1

γQ(st+1, at+1) otherwise
)

10: st ← st+1

11: t← t+ 1
12: until t > Tmax or terminal st.
13: until Q converged.
Output: An accurate Q-function Q(s, a).

Algorithm 4: Pseudo-code for the SARSA algorithm [84].

When the state- or action-space grows very large, function approximation techniques are
required to converge to solutions within reasonable time. Models like Artificial Neural Net-
works can handle high-dimensional state-spaces, and also generalize to new unseen states [26],
while Monte-Carlo search methods help explore high-dimensional search-spaces.

2.3 Deep Learning

Deep Neural Networks are powerful non-linear function approximators and have recently
become a popular approach to visual domains, such as image classification [85, 86]. In reward-
based learning, a network V (st, θ) with weights θ approximates the optimal value function
V (st, θ) ≈ V ∗(st) for any state st, thus reducing the complexity of the learning problem and
generalizing to possibly unseen states. The networks are used as an end-to-end differentiable
algorithm, and approximate the value function solely based on the environment’s state and the

13

expected rewards. The universal approximation theorem [87] states that deep neural networks
with at least one hidden layer and a non-linear activation function can provably approximate
any function with arbitrary precision.

At its core, a neural network is a directed graph where nodes represent neurons and are
divided into an input layer, an output layer, and one or more hidden layers [88], as can be seen
in Figure 2.3. How many hidden layers are necessary to distinguish between deep and shallow
neural networks is not clearly defined. Each edge of the graph between nodes i and j has a
weight wij and each node j outputs value xj = σ(x−j), where σ is a predetermined activation
function, and x−j =

∑I
i=1wij×xi is the weighted sum of the node j’s I input synapses. These

input synapses, in a fully connected layer for example, consist on all the nodes of the previous
layer, and possibly an additional node with value 1 called the bias, all multiplied by their
corresponding weight.

...

Hidden
Layer 1

Hidden
Layer NInput

Layer
Output
Layer

Figure 2.3: An example of a deep neural network with a fully-connected architec-
ture and N hidden layers. Each node is connected to all the nodes in the next
layer.

Neural networks are trained through backpropagation, where the weights θ of the network
are optimized based on the partial derivatives ∂L

∂θ of a loss function L with respect to the
weights. They require several hyper-parameters to be defined. These include an amount N of
hidden layers, nodes I in each layer, and activation function σ of each layer; a type for each
layer, which defines how it is connected to other layers; an initializer, which defines how the
initial weights are randomly generated; an optimizer, which calculates the gradients applied
to each weight; a loss function, which defines the network’s error; a learning rate η, used by
the optimizer to define the size of the gradient updates; and a batch size n, which defines the
size of batches of samples, thus taking advantage of hardware to speed-up the training. Many
of these depend on the problem and are often defined based on intuition.

For layer types, the most common are fully-connected, where all nodes from a layer N
connect to all nodes of layer N +1; convolutional [85], mostly used in image processing, where
a kernel (a small set of weights) processes many smaller portions of the layer in order to
capture spacial dependencies; recurrent, mostly used when the network input has temporal
dependencies, where the output of a layer N connect to the input of a previous layer N−i, i ≥
0; and Long Short-Term Memory (LSTM) [89], a type of recurrent layer, where a state is saved
at time-step t and used in time-step t + 1, and where the formula to save the state is also

14

Table 2.1: Common neural network activation functions.

Name Function

ReLU [90] σ(x) =

{
0 if x < 0

x otherwise

ELU [91] σ(x, α) =

{
α(ex − 1) if x < 0

x otherwise
Logistic σ(x) = ex

ex+1

Hyperbolic Tangent σ(x) = ex−e−x
ex+e+x

Linear σ(x,m) = mx

Table 2.2: Common neural network loss functions.

Name Function
Mean Absolute Error 1

n

∑n
i=1 |yi − y∗i |

Mean Squared Error 1
n

∑n
i=1(yi − y∗i)2

Negative Log Likelihood − 1
n

∑n
i=1 log(yi) for all correct classes

Cross Entropy − 1
n

∑n
i=1[y

∗
i log(yi) + (1− y∗i) log(1− yi)]

optimized through backpropagation. It is possible to extract temporal dependencies with only
fully-connected layers by aggregating multiple time-steps as the network input [26].

Non-linear activation functions allow the network to approximate non-linear functions.
The most common are described in Table 2.1. Depending on the used functions, different
issues may arise, like vanishing or exploding gradients, where gradients in initial layers tend
to 0 or to infinity, respectively, or the dying ReLU problem, where negative weights have no
gradient and cannot be optimized further.

An initializer describes how weights are initially generated for the network. While they are
often based on a normal or uniform distribution, the Glorot initializer [92] takes into account
the amount of input and output units between layers such that the variance of each layer’s
weights remains the same. This helps with the vanishing or exploding gradients problems,
and allows networks with many hidden layers to be optimized within a reasonable amount of
time.

An optimizer is used to define how the network’s weights are updated at each step. The
most common is Stochastic Gradient Descent [93], where random samples are selected and
gradients are computed based on them. Those gradients are then multiplied by a learning
rate η and applied to the network’s weights θ. The learning rate is a hyper-parameter that
depends on the network architecture and problem, and many optimizers [94, 95, 96] use an
adaptive learning rate technique.

A loss function L measures the error between a target y∗ and the network output y, and
is minimized with respect to the network’s weights θ. Common loss function are showed in
Table 2.2. For continuous unconstrained values (like a Q-function), the mean squared error
is a common loss function, while cross-entropy is often used when optimizing probability
distributions.

Deep neural networks, however, are prone to over-fitting, and require specific techniques to
avoid it, such as dropouts [97], or random experience replay [26]. Their results are also often

15

difficult to interpret [98], and when the network is not able to approximate a given function,
pinpointing the cause of the problem is often not trivial.

2.4 Multi-Agent Systems

The field of Multi-Agent Systems focuses on finding methods for building complex systems
with independent and autonomous agents, capable of carrying a desirable global task, despite
operating on local knowledge and having limited capabilities [24]. In other words, MAS
research takes a description of what a system of agents should do, and transforms it into
individual agent behaviors.

MAS approaches the problem with tools and ideas from Game Theory (GT) research
(logical decision making, and mixed-strategy equilibria) and Artificial Intelligence research
(planning, reasoning methods, search methods, and machine learning). MAS, in comparison
with single-agent systems, have the following advantages [71, 73]:

• Parallelization, speedup, and efficiency, particularly in tasks that can be decomposed
into several subtasks, which are then handled asynchronously by the agents;

• Fault tolerance and robustness, since the system suffers a gradual degradation as agents
fail, instead of completely stopping;

• Scalability, since more agents can be added to the MAS, in order to increase the paral-
lelization of the system;

• Geographical spread-out, when agents are at different locations;

• Better performance over cost ratio, since it is usually cheaper to scale horizontally than
scale vertically;

• Simplicity and re-usability, since developing and maintaining modular systems is often
easier than monolithic ones.

The inherent complexity of problems in MAS makes hand-tuned solutions overly difficult,
as opposed to automated machine learning solutions [72]. These focus on allowing agents
to learn on their own how to solve a problem, and have become a popular solution to MAS
problems.

2.4.1 Taxonomy

MAS can be classified across several dimensions, and authors have provided different tax-
onomies [72], including dimensions such as communication topology, range and throughput,
team composition and reconfigurability, processing ability of individual agents, agent homo-
geneity (also known as agent invariance [99]), control architectures, input and output capaci-
ties, among others. For a well-organized and flexible taxonomy, this chapter use Vlassis et al.’s
[73] categories, Design, Environment, Perception, Control, Knowledge, and Communication,
and a final Learning category.

16

Design

The design category is based on the characteristics of each individual agent. It is related
with and encompasses the other categories to some extent. From a design perspective, agents
can be either homogeneous or heterogeneous, across several areas: goals, costs of failure and
acting, time constraints, and model and action architectures.

Agents can have the same exact goals (cooperative task), completely opposite objectives
(competitive task) or simply different rewards (mixed task). Based on the goals, the task can
be cooperative, competitive or mixed. Agents can also have static or dynamic goals, which
evolve over time, usually based on some condition. Adversarial algorithms can describe their
agents as being in a single-agent adversarial environment (because the agent is against all
others). However, we follow their most intuitive description, and instead describe agents as
being in stationary environments against learning opponents, and governed by multi-agent
competitive algorithms.

The cost of failure and acting of agents is a characteristic related with the sampling effi-
ciency of algorithms. While simulated or software-based systems usually have no associated
acting cost (aside from time), real-life robotic agents have both maintenance, time and resource
costs, which in turn leads to a smaller degree of freedom when learning optimal strategies.

The cost of failure is usually associated with the reward function, in the sense that failing
the task will decrease the overall reward. However, real-time or safety-critical systems have
failure consequences whose effect extends beyond the reward-function, usually in terms of
human lives. This failure cost may not always be modeled in terms of a reward function
penalty.

Agents can also have time constraints in their tasks, after which the task’s value is de-
creased or even void. Like the failure cost, time constraints are usually associated with the
agent’s reward function, but they may not always be modeled in such a way.

The model of the agent comprises both its hardware and software. Regarding hardware,
agents can have different robotic shapes, parts, or mechanisms, ranging from small humanoid
Nao robots to large tracked robots. This impacts not only their possible set of actions,
but also their perception modules. Regarding software, agents may have different decision
logic, behavior policies or even structures, such as reactive or deliberative architectures. This
impacts their behavior and their knowledge regarding themselves, other agents, or the world.

The action architecture of the agents is related to their physical model and describes the
set of actions of the agent. The same hardware model usually implies the same action model.
The opposite, however, is not true, since different hardware models (such has having 4 and
5 wheels) may have identical action models (walking forward and backwards). The action
architecture may also be discrete (common in reward-based learning) or continuous (common
in physical control tasks).

Environment

The environment category is based on the characteristics of the world and the team of
agents.

The agent team has a specific number of agents, which can be static (always the same
number of agents) or varying (agents can enter and leave the world at any time). Agents
in the team also have specific starting location definitions, such as randomized, identical, or
agent-based.

17

There are two environment types, static and dynamic. A static environment, which is only
changed through agent interaction, is assumed in the vast majority of the literature, since it
allows single-agent RL algorithms to provably converge. Dynamic environments, on the other
hand, can behave against the agents in a competitive manner during the learning phase, which
causes no optimal strategy to be found by the agents. In MAS, since other agents’ actions
(which may not be known) are interacting with the environment, a static environment for the
team is not static for each individual agent.

Environments can also be classified based on their observability. Agents can either perceive
the full environment state (usually only in simulated or abstract environments), or a partial
environment observation. The observation is usually incomplete when compared with the
environment state.

Perception

The perception category is based in the input modules of the robot and encompasses the
aspects of any observation the agent can make about its surroundings. This includes any input
regarding environment state, the other agents’ states and its own state.

As discussed in the previous section, agents can perceive complete environment states
or their corresponding partial observations. With partially-observable environments, agents
may have to rely on others’ knowledge. In a POMDP, agents need to maintain a probability
distribution about the possible states, based on their observations and their probabilities [34].
This raises issues related with sensor fusion (how to optimally combine the agent’s perceptions)
and decision making under partial observability (which can be an intractable problem).

Regardless of whether agents observe the environment’s state or a partial observation, they
can also perceive local perspectives with spatial (at different locations), temporal (arriving at
different times) and semantic (with different interpretations) differences. In order to obtain a
global perspective, an additional logic step is necessary to merge information with spatial and
time differences from other agents.

Examples on the combinations of global/local perspectives and fully/partially observable
environments are shown in Table 2.3.

Table 2.3: Examples of environments with different observation and perspective
properties.

Local Perspective Global Perspective
Fully Observ-
able

Multiagent Particle Envs [23]:
agents perceive the game state in
relation to themselves

Chess: agents perceive the game
state from a global perspective

Partially Ob-
servable

Ciber-Mouse [18]: agents sense a
small area around themselves

StarCraft II [100]: agents ob-
serve revealed parts of the map
from a global bird’s-eye view

The observed states may also differ to each agent, in the sense that each perceptor usually
has an associated noise. Coordination between agents with noisy beliefs can be improved by
using communication to increase the consistency of information [101].

18

Control

The control category relates to how the agents are controlled in the MAS. Agents can
be fully autonomous and distributed (each agent controls itself), or, on the other extreme,
human-assisted through a central entity. We are interested in the former, where distributed
agents are fully autonomous and must learn how to coordinate. Control methods depend
particularly on the task type (cooperative, competitive, or mixed), and they tackle the coor-
dination problem as a means to complete a task. Coordination problems commonly include
resource management, where actions are interdependent due to limited resources, and sched-
ule coordination, where time and agents are themselves resources, and require a coordinated
effort from a MAS.

Coordination can be explicit or implicit [102, 103]. Explicit coordination relies on informa-
tion sharing through communication of beliefs [39], objectives [40], or intentions [41], to other
agents. Beliefs are world state information, objectives (or goals) are high level task objectives,
intentions are low level objectives to achieve a goal (they may change while the goal usually
remains the same).

In the implicit form of information sharing, agents interact with the environment, and
use knowledge about the capabilities of other agents [104] to achieve the desired collective
performance. Information is shared through intelligent perception (observing the other agents
to interpret their intentions), active interaction (being sensed, pushing agents, or changing
their state), or stygmergy (environment interaction). Stygmergy falls under the active category
(changing the environment so its sensing is different for other agents), and passive stygmergy
(changing the environment so that it behaves differently for other agents).

Though explicit and implicit coordination each have their own benefits and weaknesses, the
less an agent depends on shared information, and the more flexible it is when faced with on-line
problem-solving and coordination knowledge, the better it can adapt to changing environments
[102]. In fact, the combination of implicit coordination with beliefs exchange has been reported
to yield better performance than explicit coordination with intentions communication alone
[105], on scenarios with communication loss.

Both these coordination methods can rely on social conventions (or roles) to simplify the
problem. Roles can either be static, if they are maintained throughout the task, or dynamic,
if they can change according to the situation. If all roles are equal and static, the agents are
homogeneous; otherwise, if there is some ordering of agents, the agent structure is hierarchical.
A particular case of the hierarchical structure is when there is a single leader, which can act
as a central decision unit. Roles may also be very specific or general, depending on the agent
capabilities, and may be used to assign an order of importance to agents to break ties.

Knowledge

The knowledge category is related to how aware are agents of the task, themselves, and
the remaining agents. It includes the definitions of common knowledge, domain knowledge,
and agent knowledge.

Just like with perception, knowledge can be specialized or redundant, based on whether
there is common knowledge between the agents or not. The fact p is common knowledge
(also known as shared knowledge) if everybody knows p, and everybody knows that everybody
knows p, and everybody knows that everybody knows that everybody knows p, infinitely [41].

Domain knowledge is a priori knowledge about the task or the environment. It can

19

be represented as initial solutions or predefined Q-functions to solve a task in model-free
approaches [67], and is the basis for model-based approaches, common in the game theoretic
perspective [41]. Informative reward functions can also reward promising behaviors rather
than only the achievement of the goal [34].

The agents of the system can also be modeled in terms of states, goals, possible actions and
knowledge. This knowledge about the remaining agents can be model-based, where agents can
learn the allied and opponent’s strategy and devise a best response, or be model-free, where
agents learn a strategy of their own that does well with team members against opponents,
without explicitly learning the allied or opponent’s strategy.

With homogeneous agents, modeling is trivial; all agents behave and know exactly the
same about each other. With heterogeneous agents, modeling can be done with communica-
tion (if agents are honest and understand each other), but it is not a feasible approach, since
enemies are not expected to communicate their strategy in common scenarios. Without com-
munication, modeling can only be done through observation. One of the earliest examples of
this is Fictitious Play [106], from the Evolutionary Game Theory environment, where different
opponent strategies are counted and the opponent is assumed to choose any of the strategies
with a given probability (a mixed strategy). The probabilities are estimated based on the
frequency of each strategy, and a corresponding counter-strategy is chosen. When agents are
non-cooperative, these knowledge sharing techniques and deductions might not be accurate,
or even possible. Agents must also consider the other agent’s knowledge in their decision
making (which may become a recursive problem, where every agent knows a fact, every agent
knows that every other agent knows this fact, and so on).

Finally, knowledge can also be extracted and incorporated off-line. After each game, some
systems allow agents to extract global information, and enemy agents’ actions and strategies,
through game replays. Other systems allow agents to fully communicate in off-line situations
while acting autonomously with little to no communication during the task. These are known
as Periodic Team Synchronization (PTS) systems [40], and allow shared knowledge to be
defined.

Communication

The communication category encompasses all communication related characteristics. At
one end of the spectrum, agents cannot share information in any way. At the other, agents
can communicate all information instantly to all agents (similar to a hive-mind). However,
communication usually has a size and spatial limit, as well as delays and reliability issues.
When self-interested agents interact, information may be purposely fake. With cooperative
agents, communication of beliefs [39], objectives [40], or intentions [41] is a strong coordination
mechanism, based on information sharing.

Communication is usually blackboard- [107] or message-based [108]. Blackboard commu-
nication uses a common information space (the blackboard) to make information available to
all agents without the need for direct communication between them. It is a low-overhead and
simple architecture, with central and distributed models. The central blackboard is a unique
information space for all agents, which may become a performance bottleneck. The distributed
blackboard has several sub-blackboards, each handling a group of agents. Agents are organized
according to some algorithm and communicate with members of the same category through
their respective sub-blackboard.

Message-based communication, on the other hand, relies on direct communication, by

20

sending messages from agent to agent. If specific targets can be chosen as the recipients of
the message, communication is targeted. If messages are sent to all other agents within range,
communication is broadcast. Lau et al. [38] identify four main communication areas, through
which to model message-based broadcast algorithms:

• What to communicate?

• When to communicate?

• Who should be heard at each time?

• How will received messages affect player’s behavior?

The communication protocol, or language, is another part of the communication taxonomy.
Some systems have no defined protocol, which means an optimal one can be directly learned
by the MAS, while others have a rigid protocol defined [42, 43], which may lead to inefficient
message exchanges but decreases the complexity of the learning task. Even when the protocol
is learned, proposals range from learning tabula rasa [44, 45] to deriving languages from symbol
alphabets [109, 110], which may be simpler and still offer enough flexibility for agents to learn
efficient communication.

The category also includes the cost of communication (both in terms of resources and time),
the range (agents may not be able to communicate at long distances), the reliability (messages
can be lost or corrupted), security (messages can be tampered with), conflicts (agents may
not be able to talk at the same time), the size of the message, its delay, among others.

Learning

The learning category encompasses details regarding the optimization algorithms used to
learn optimal strategies and behaviors of the MAS. The used algorithm is one of the main
features of the category, and falls under one of the previously described types (direct policy
search techniques, reinforcement learning algorithm, or a game theoretic algorithm). The
homogeneity of the learning algorithm can also be considered (e.g., all agents learn with the
same algorithm), although there seems to be no obvious advantages in heterogeneous learning
algorithms.

Experience sharing has been a popular approach to allow speed-ups and take advantage of
the distributed setting of MARL. Agents can exchange information through communication
[75], skilled agents may serve as teachers for the learner [76], or learning agents may imitate
skilled agents [78]. The latter two options are only appropriate if there is already an agent
with a (near) optimal policy whose knowledge cannot be shared off-line.

The learning model also determines the generality of the learned policy. If agents from
a large population are randomly matched and learn in response to the expected play within
the population, then a good general policy may be learned. On the other hand, if a fixed
set of agents repeatedly interact with one another, then an over-fitted policy may be learned,
which will likely behave better against that specific set of agents, but worse against the overall
population.

Algorithms can be classified based on how they cope with the non-stationarity of the
environment. Hernandez et al. [31] consider five categories.

21

• Ignore - Algorithms that ignore the non-stationary behavior of the environment. If
other agents change their behavior, learned policies with these algorithms are no longer
optimal.

• Forget - Algorithms with the convergence property that adapt to the changing (non-
stationary) behavior of other agents. They continuously learn (and forget), adjusting
their policies to cope with other agents’ behaviors.

• Respond to Target - Algorithms that know (or assume) behaviors from other agents,
and adapt accordingly. However, if assumptions do not hold, these algorithms provide
restricted adaptability suboptimal policies.

• Learn - Algorithms that model other agents and use that model to derive optimal
policies. These algorithms do not consider strategic behaviors of other agents, which
may reason about them.

• Theory of Mind - Algorithms that assume that other agents are performing strategic
reasoning about them, and react accordingly. This reasoning can become recursive ad
infinitum, and computing optimal policies can be impossible.

Finally, the goals of the learning algorithm is taken into account. If agents are learning
against each other, they may not reach a stable policy, but instead adapt and evolve ad eter-
num. Stability and adaptation (or no-regret) are commonly used as algorithm criteria, where
stability essentially means the convergence to a stationary policy, and adaptation ensures that
performance is optimal against stationary opponents [82, 111, 112]. A different set of criteria is
targeted optimality, compatibility, and safety, where targeted optimality is adaptation against
a specific class of opponents (stationary, for example), safety implies the algorithm achieves at
least a minimum reward value, and compatibility means that the algorithm reaches an optimal
Nash equilibrium in self-play [113].

2.4.2 Multi-agent Markov Decision Process

The generalization of a MDP to the multi-agent case is commonly known as a Multi-agent
Markov Decision Process (MMDP), or, in game theoretic literature, as a Stochastic Game
[34].

A MMDP is a tuple (S,A1, . . . , AJ ,P,R1, . . . ,RJ), where S and P hold the same meaning
as before, J is the number of agents, Aj , j = 1, . . . , J is a set of possible actions for agent j,
A is the joint action set A = A1 × . . . × Aj , and Rj : S × A × S → R, j = 1, . . . , J is the
associated reward function of agent j.

The state transitions are the result of the joint-action at ∈ A at time-step t. The joint
policy πt is gathered from the policies πjt : S × Aj → [0, 1], j = 1, . . . , J . If R1 = . . . = Rj ,
all the agents have the exact same goal and the MMDP is fully cooperative. If ∃j 6= i : Rj =
−Ri, i = 1, . . . , J (for all transitions, either agents tie or a single agent wins), the agents have
opposite goals and the MMDP is fully competitive.

2.4.3 Decentralized Partially-Observable Markov Decision Process

The generalization of a POMDP to the multi-agent case is known as a Decentralized
Partially Observable Markov Decision Process (Dec-POMDP). A Dec-POMDP is a tuple

22

(S,A1, . . . , Aj ,P,R1, . . . ,Rj , ω1, . . . , ωj , O), where J , A1, . . . , Aj , P, R1, . . . ,Rj , and O hold
the same meaning as before, and ωj , j = 1, . . . , J is the set of observations for agent j.

The state transitions are the result of the joint-action at ∈ A at time-step t. The joint
policy πt is gathered from the policies πjt : ωj×Aj → [0, 1], j = 1, . . . , J . Agents observe ojt+1 ∈
ωj , j = 1, . . . , J with probability O(ojt+1, at, st+1). It has been shown that optimal planning
in Dec-POMDP is provably intractable [114], and in practical terms, requires approximation
methods [115] as a trade-off between accuracy and speed.

2.4.4 Concepts and Definitions

After defining the taxonomy of MARL environments, this chapter introduces some com-
mon definitions and concepts of multi-agent learning literature. These include the stability,
adaptation, no-regret, targeted optimality, compatibility and safety criteria for learning al-
gorithms, Nash Equilibria and Pareto Optimality concepts from GT, and the definitions of
pay-off matrix and mixed strategy.

Nash Equilibria and Pareto Optimality

An important solution in static games, which is often used as a goal for multi-agent algo-
rithms to achieve [34], is the Nash equilibrium [116]. Assume σi∗ to be the best response
of agent i to a vector of opponent strategies. A Nash equilibrium is the joint strategy
{σ1∗, . . . , σn∗} such that each individual strategy is the best response to the others. This
describes a balance where no agent can change its strategy as long as the remaining agents
maintain theirs. Any static game has at least one Nash equilibrium.

The Nash equilibrium is often associated with the Pareto optimality principle. A joint
strategy {σ1∗, . . . , σn∗} is Pareto optimal if there is no other joint strategy {σ′1∗, . . . , σ′n∗}
such that the reward R(σ′i) ≥ R(σi) for all agents i and R(σj) > R(σ′j) for one agent j.
In other words, the strategy is Pareto optimal if there is no other strategy that increases
the reward of at least one agent j without damaging the rewards of any other agent i. In
many strategic games, a Nash equilibrium is not Pareto optimal, and vice-versa (such as the
Prisoner’s Dilemma). However, in identical pay-off games (fully cooperative games whose
rewards are identical for all agents), all Pareto optimal solutions are Nash equilibria [117].
When optimizing multiple objectives, the Pareto Optimality is usually used as a convergence
criterion [118].

Stability, Rationality, and No-Regret

Bowling et al. [82, 111, 112] define three criteria for algorithms to achieve: stability and
either adaptation or no-regret.

Stability, also known as convergence to equilibrium or equilibrium learning, is the require-
ment that algorithms converge to an equilibrium [48, 119]. In other words, the agents’ strate-
gies should eventually stabilize in a coordinated strategy. Algorithms focused on stability are
typically unaware and independent of the other learning agents. Reaching Nash equilibria is
commonly used as a stability goal. Opponent-independent learning is related with stability,
since algorithms converge to a strategy that is part of an equilibrium solution regardless of
what the other agents are doing [34].

Rationality, also known as adaptation or best response learning, is the requirement that
agents converge to a best response when other agents remain stationary. Algorithms that focus

23

on adaptation are aware to some extent of the other agents’ behavior and usually model it in
some manner to keep track of their policies [120, 121]. In extreme cases, if stability concerns
are disregarded, algorithms are only tracking and adapting to the behavior of the other agents.
Opponent-aware learning is related with adaptation, since algorithms learn models of the other
agents and react to them using some form of best response [34]. If all agents in a system are
stable and adaptable, they naturally converge on a Nash equilibrium.

An alternative to rationality is the no-regret concept, present in the GIGA-WoLF algorithm
[112], where the agent’s expected average reward is at least as large as the expected average
reward any static strategy could have achieved, for any set of strategies of the other agents.
In other words, the algorithm is performing at least as well as any static strategy.

Stochastic Games

Stochastic Games are dynamic games with stochastic transitions played by one or more
players, and can be modeled through MDP. Stochastic games can be specialized into stage
and repeated games, whose definitions derive from GT [34].

A stage game, also known as a single shot game or static game, is a stateless game, which
can be described through a pay-off matrix if it has only 2 players. Fully competitive stage
games are known as zero-sum games, since the sum of their agents’ reward matrices is a zero
matrix.

A repeated game is a stage game that is played repeatedly by the same agents. Agents
can use the previous game iterations to gather information about the other agents.

Mixed Strategy

A Nash equilibrium is often not a deterministic strategy, but a stochastic one, also known
as a mixed strategy. It maps states to probability distributions over the agents’ actions, as
opposed to greedy policies, where the maximum reward action is always chosen, and prevents
opponents from exploiting a deterministic strategy.

Stochastic strategies are commonly found in non-cooperative stochastic games, and are
more relevant in the MAS environment than in the single-agent one, due to the need for
some solutions to be expressed in terms of stochastic strategies, in order to maintain balance
conditions, such as Nash equilibria. They arise since deterministic strategies can often be
exploited by other agents [82].

Pay-off Matrix

A pay-off matrix represents a game between 2 players where the columns represent n
strategies of one agent, and the rows represent the m strategies of the other agent, as shown
in Table 2.4. In zero-sum games, the rewards for the enemy player are symmetrical to the
friendly player’s, such that the sum of both pay-off matrix would yield a zero matrix, and
hence the name zero-sum game.

A deterministic strategy simply plays action j ∈ {1, . . . ,m} with probability p(j) = 1,
while a mixed strategy (also known as non-deterministic or stochastic strategy) randomly
samples an action according to a probability distribution where at least 2 actions have non-
zero probability.

24

Table 2.4: A pay-off matrix for a 2-player game, where one agent has m actions,
and another has n actions. The value a, b represents the points earned by agents
when the corresponding actions are taken. Agents keep a probability distribution
over actions, represented by {α1, . . . , αm} and {β1, . . . , βn}, where

∑m
j=1 αj = 1

and
∑n

j=1 βj = 1.

β1 β2 . . . βn
α1 1,0 0,-1 . . . -1,0
α2 -1,0 0,1 . . . -1,0
.
αm 1,0 0,-1 . . . 1,0

2.4.5 Challenges

The MARL field has multiple open problems and challenges, some of which inherited from
single-agent learning [34]. These include the trade-off between exploration and exploitation,
the integration of domain knowledge, problem decomposition, credit assignment and the curse
of dimensionality. The MAS perspective also creates challenges, such as an adequate learning
goal, non-stationary environments, communication, and coordination.

• The exploration and exploitation trade-off consists on the choice to either try out new
actions to measure their effectiveness or exploit actions that are already known to yield
a high reward. If the focus on either one is too strong, learning will yield poor results.

• Integration of domain knowledge is usually in the form of problem modeling or adequate
initial solutions, which have been shown to increase the learning speed of agents.

• Credit assignment, from a single-agent perspective, is based on how to properly reward
agents for their actions when rewards are not immediate, and from a multi-agent per-
spective, is based on how to properly reward agents who did not contribute equally to
the task completion.

• The curse of dimensionality relates to the exponential growth in complexity seen in
POMDP and in MAS.

• Adequate learning goals and non-stationary environments are related to the adaptation
and stability properties of MARL algorithms.

• Communication and coordination arise as the main challenges to solve in the field.

This chapter now describes the most relevant challenges found and some of their current
solutions.

Curse of Dimensionality

Some model-based approaches assume that optimal coordination solutions can be found by
applying a convergent single-agent method to the complete state-action space. Coordination
would arise from each agent’s individual action towards that solution. The curse of dimen-
sionality is defined as the exponential growth of the joint state-action space, when dealing

25

with high-dimensional state and action spaces, worsened by the fact that each agent adds its
own variables to the joint state-action space.

Another common cause for the curse of dimensionality is partial observability. It has been
shown that optimal planning under partial observability is provably intractable [114], which
limits the scalability of optimal solutions to low dimensional state and action spaces (e.g.,
low number of agents, simple environments or simple action models) and to a short-sighted
planning model (e.g., only a few time steps). Intractable problems require approximation
methods to reduce the search space before calculating a solution.

Fuzzy Learning [101] has been proposed as a solution to the curse of dimensionality, in
order to reduce the dimension of the search space, while still maintaining enough information
for a high performance algorithm. Coordination graphs [122] have been used in order to reduce
the complexity of the global Q-function into local Q-functions that only depend on the actions
of a subset of agents [123]. In other words, it is simpler to calculate the best local policy with
only agents that can influence it, as opposed to calculating the global effects of all agents in
the system. Busoniu et al. [124] propose adaptive state focus Q-learning, where agents expand
their state space to incorporate states of other agents as needed by the learning task.

Other approaches include the generalization between similar situations and actions through
input generalization and state clustering [125], or the use of parameterized function approxi-
mators (such as neural networks) [126, 127].

Shaping [128] or layered learning [129] can also be used to reduce the complexity of the task
and iteratively find more complex behaviors. Shaping presents simple tasks for the agents and
progressively increases the goal difficulty. Layered learning learns low-level behaviors and uses
them to learn higher complexity behaviors, in an iterative process, until high-level strategies
emerge.

Credit Assignment

The credit assignment problem in single-agent systems, known as temporal credit assign-
ment, is related with how to handle delayed rewards. For example, games that involve dozens
of moves like backgammon only reward the agent at the end of the game, in the form of
victory. As a result, the reward only affects weakly the distant states that led to it. Another
issue is that the reward is equally attributed to all of the moves, regardless of their actual
utility (whether they were good or bad moves).

Q-learning, for example, calculates all the future rewards to take into account how good
are moves (whether they will lead to a strong position or not), and uses a discount factor
γ ∈ [0, 1[, which represents how far should future rewards be taken into account.

The credit assignment problem from a MAS perspective, known as structural credit as-
signment, is related to how players that have not contributed equally to the task completion
should be rewarded. While a part of the team was accomplishing the goal, some agent may
have been standing idly, instead of helping its team members or disturbing the enemy team.
Mataric et al. [125] use two solutions to measure the contribution of each agent to the overall
goal, namely heterogeneous reward functions, in which small sub-goals are recognized and
used to frequently reward learners, and progress estimators, evaluation metrics relative to a
current goal that the agent can estimate. Chang et al. [130] use a causal Kalman filter to rep-
resent the reward due to other agents or external factors, and can separate it from the agent’s
personal reward, in cases where the reward function is deterministic or Gaussian. Other ap-
proaches [131] model a value function and compare, for each agent, the difference between the

26

received reward and the expected reward when doing any other action. This allows an agent
to calculate the contribution of their specific action to the overall reward.

Coordination

To find a coordinated joint action, three methods have been commonly used: communica-
tion, social conventions and learning [37].

Communication methods are dependent on the inherent communication constraints of
the MAS, but are general and flexible methods, and allow agents to share low- and high-
level information [38, 39, 40, 41]. They are based on agents informing other agents of state
information (and then assuming their policies), or informing other agents of their intentions,
both of which are a very human-like approach.

Social convention methods are based on hierarchical orderings of the agents and their
actions. Agents calculate, observe, or are informed about the intentions of all higher priority
agents before calculating their own. These methods are general and domain-independent, but
imply common knowledge among the agents. Coordination is only ensured when the intentions
or goals of higher ranked agents are known [34].

Learning-based methods, on the other hand, are model-free and robust approaches, but
may not converge or may take an impractical amount of time to converge to a global optimal
strategy [102]. They use repeated interactions to learn other agent’s behavior and act accord-
ingly. Several problems arise due to the non-stationarity of the environment (since other agents
may be adapting their behavior to the learner’s actions), which causes theoretical guarantees
to be lost [80].

Communication

Communication is one of three methods commonly used to achieve a coordinated joint
plan [37]. It has been shown that it is possible for a MAS to learn communication and a
policy simultaneously [44].

The content of the transmitted information falls under two main categories: informational
(also known as low-level), where world state knowledge, beliefs, useful events and opportunities
are shared [38, 39]; and propositional (also known as high-level), where intentions and goals
are shared [40, 41].

Lau et al. [38] use informational communication with the principles Communicate only
when you have something important to say and Communicate only what is important. The
authors use utility metrics to define the importance of each piece of information, and com-
municate accordingly. Protocols have been hand-developed for knowledge transmission in
message-based communication (such as KIF [132], KQML [42], or COOL [43]), but commu-
nication has also been learned from scratch, where the MAS learns its own protocol [44, 45].

In propositional information exchange, research has focused on goal commitment. Agents
commit to dynamic roles and goals, this way coordinating to solve the task. The GPGP
algorithm [133] allows agents to make commitments to goals, goal characteristics and even to
explicitly negotiate, in order to build domain-independent distributed coordination strategies.
Castelfranchi et al. [134] define three types of commitments in multi-agent environments:
internal (an agent commits to some task), social (an agent commits to helping some other agent
fulfill its goal), and collective (an agent commits to filling some role). Stone et al. [40] compare
collective commitments to locker-room agreements (a type of periodic team synchronization

27

model). Authors agree that there must be some sort of negotiation and tie-breaking in goal
commitment, in order to achieve agreement.

2.5 Learning in Multi-Agent Systems

There are many approaches to multi-agent coordination, both with hand-made policies and
with multi-agent learning techniques. Hand-made policies usually rely on domain-knowledge,
and use both situation- and role-based mechanisms [135, 136, 38] to achieve flexibility among
cooperative agents. While they can in fact be very successful, they may be prohibitively
expensive to craft with more complex environments, where the underlying model may not be
fully known or understood.

That being said, even classical machine learning approaches may not achieve successful
policies in MAS. Q-learning, which provably converges to an optimal policy with sufficient
exploration on single-agent systems, does not handle the non-stationarity of the environment
and the conflict of interests between agents, thus losing its theoretical guarantees. However,
it has still been widely used in two main variations to learn successful policies in MAS. The
Independent Q-Learners (IL) algorithm [36] is possibly the simplest multi-agent reinforcement
learning algorithm, in that it consists on having agents learning with single-agent algorithms
and having them learn implicit coordination. Because the environment is not stationary, there
are no theoretical guarantees of convergence, despite having been shown to achieve successful
policies in many different environments [131]. The Joint-Action Learners (JAL) algorithm [36]
instead treats the entire team of agents as a single agent whose action space is the joint-action
of the team. While theoretical guarantees are kept with this model, it has scalability issues
and also may not support decentralized execution (independent agents with local observations
may not compute the same joint-action).

Another issue of Q-learning is its deterministic policies, which may be unable to achieve
equilibrium strategies. Many multi-agent game-theoretic algorithms learn mixed-policies and
have been shown to converge to equilibrium strategies. However, since many of these algo-
rithms are tabular and store state-action representations in tables, without any generalization
to unseen states, they suffer from the curse of dimensionality, and require specific techniques
to decrease the state- and action-spaces. Some techniques [137, 138] exhibit stronger conver-
gence properties by relying on state-based or agent-based lists and counters, which worsens
the problem even further. Many game-theoretic algorithms have also only been evaluated in
the context of single-stage games.

Multi-agent deep learning techniques have been proposed to address many of these issues.
By using a neural network as a non-linear approximator, algorithms are shown to handle
high-dimensional state-spaces [26, 139] and achieve successful policies in complex single- and
multi-agent environments. However, they no longer have theoretical proofs of convergence
[140], and only a few algorithms [131, 23, 44, 141, 142] take advantage of the properties of a
MAS to learn agent policies.

This chapter now provides an overview of relevant or state-of-the-art contributions in
the field, including game theoretic algorithms that achieve equilibrium strategies, single- and
multi-agent deep reward-based learning algorithms based on implicit coordination, and multi-
agent deep learning algorithms that rely on communication. It formally describes the algo-
rithms that we have extended or have based our work on.

28

2.5.1 Mixed-Policy Learning

Greedy algorithms like Q-learning cannot converge to a strategy able to play a competitive
game as simple as rock-paper-scissors. Such games require stochastic strategies, where each
action is played with some probability. These can be achieved by stochastic, or mixed-policy,
algorithms with the rationality and convergence properties described in the previous sections.
This section focuses on algorithms in the Forget category, as described in Section 2.4.1.
They consider the non-stationarity of the environment without having unrealistic assumptions
or expectations about other agents. They are also the most well-studied algorithms in the
literature, the most common and general, and they are often computationally inexpensive.

This section further focuses on algorithms that do not require additional information be-
sides their own actions and rewards. While several algorithms have been proven to converge to
Nash equilibria [51, 52], many have assumed knowledge about the underlying game structure
or the optimal Nash Equilibrium [46, 47], or the actions performed by other agents and their
received rewards [48, 49]. In most cases, the environment model is unknown or too complex,
or access to rewards of other non-cooperative agents is not available.

The majority of algorithms are derived from Q-learning [31], and keep track of both Q-
values and of a probability distribution in each state. This probability may tend to a pure
strategy, where the algorithms become the original greedy Q-learning. They often update
their Q-values in the same manner as Q-learning, and introduce different ways of calculating
the policy π. WoLF-PHC [51] introduced the Win or Learn Fast (WoLF) principle, where
different learning rates are used when the agent is winning or losing, a principle also used by
GIGA-WoLF [52]. However, both algorithms have shown problems in more complex games,
such as Shapley’s Game [143]. WPL [54] instead uses a variable learning rate, but has no
formal analysis and proof of convergence. EMA-QL [53] uses two learning rates, and has been
shown to outperform WPL, despite having some difficulties learning simpler games with many
actions and asymmetric probabilities.

When formally defining algorithms, this section maintains the same notations as used
above in the Q-learning algorithm. It additionally uses πt(st) as the policy at time-step t for
state st, representing a vector of probabilities of picking each action, and π̂t(st) as the average
policy at time-step t for state st, representing a policy that changes slower than π. The policy
learning rate at time-step t is denoted by δt, and is sometimes dependent on the current state
st and action at.

A projection function P (π, α), with 0 ≤ α ≤ 1
|A| and |A| representing the total amount of

actions in the policy, is used to project policies into the valid probability space, where each
probability p in the distribution π obeys p ∈ [α, 1]. When used as P (π), then α = 0.

Policy Hill-Climbing

Policy Hill-Climbing with the WoLF principle (WoLF-PHC) [51] introduces a variable
learning rate to achieve convergence in games. The WolF principle consists on having a
higher learning speed when the current policy is worse than the average policy (representing
the equilibrium policy). WoLF-PHC achieves optimal strategies against static players and has
been proven to converge in self-play.

At each time-step, the algorithm increments a state counter Ct(st), which counts how

29

many times the state st has been visited, and computes the average policy π̂t+1(st).

π̂t+1(st) = π̂t(st) +
πt(st)− π̂t(st)
Ct+1(st)

(2.1)

It then chooses a learning rate δt(s) based on whether the current policy πt(st) is better
or worse than the average policy, and projects its new policy through an added increment
∆t(st, at).

δt(st) =

{
δw if

∑
a′∈A πt(st, a

′)Qt(st, a
′) >

∑
a′∈A π̂t(st, a

′)Qt(st, a
′)

δl otherwise
(2.2)

∀a ∈ A ∆t(st, at) =

{
− δt(st)
|A|−1 if a 6= argmaxa′∈AQt(st, a′)

δt(st) otherwise
(2.3)

πt+1(st) = P

(
πt(st) + ∆t(st)

)
(2.4)

Generalized Infinitesimal Gradient Ascent

Generalized Infinitesimal Gradient Ascent using the WoLF principle (GIGA-WoLF) [52]
keeps track of two gradient updated strategies, one of which is updated faster than the other.
Regret measures how much worse a policy performs compared to the best static strategy, and
GIGA-WoLF exhibits both no-regret and convergence properties.

At each time-step, the algorithm estimates a new policy π−t+1(st) and the average policy
π̂t+1(st).

π−t+1(st) = P

(
πt(st) + δtQt(st)

)
, π̂t+1(st) = P

(
π̂t(st) +

δtQt(st)

3

)
(2.5)

It then computes the learning rate δt+1, whose magnitude is larger when the slower strategy
π̂t received higher reward than πt, and changes policy πt+1(st) in the direction of the positive
gradient.

δt+1 = min

(
1,
||π̂t+1(st)− π̂t(st)||
||π̂t+1(st)− π−t+1(st)||

)
(2.6)

πt+1(st) = (1− δt+1)π
−
t+1(st) + δt+1π̂t+1(st) (2.7)

Weighted Policy Learner

Weighted Policy Learner (WPL) [54] has a variable learning rate, and allows the agent to
move towards the equilibrium strategy faster than moving away from it. Despite not having
a formal proof of convergence due to the non-linear nature of WPL’s dynamics, the authors
numerically solve WPL’s dynamics differential equations and show that it features continuous
non-linear dynamics, while experimentally demonstrating it converges in several more complex
games.

30

At each time-step, the algorithm calculates an increment vector ∆(st) from the gradients
of the value function Vt(st) and uses it to compute a new policy πt+1(st), where each action
must have a non-zero probability α.

Vt(st) =
∑
a∈A

πt(st, a)Qt(st, a) (2.8)

∀a ∈ A ∆t(st, a) = δ
∂Vt

∂πt(st, a)

{
πt(st, a) if ∂Vt

∂πt(st,a)
< 0

1− πt(st, a) otherwise
(2.9)

πt+1(st) = P

(
πt(st) + ∆t(st), α

)
(2.10)

Despite having been shown to converge to mixed strategies in multiple scenarios, WPL is
biased against deterministic strategies. In such scenarios, its policy update rate tends to zero,
and theoretically only converges in the limit.

Exponential Moving Average Q-Learning

Exponential Moving Average Q-Learning (EMA-QL) [53] features two learning speeds. The
algorithm is experimentally demonstrated to converge faster than WPL in several scenarios
with a smaller number of episodes, but it also has no formal proof of convergence.

At each time-step, the algorithm simply calculates an increment vector ~∆(s) and uses it
to compute a new policy πt+1(s).

δt(st, at) =

{
δw if at = argmaxa′Qt(st, a′)
δl otherwise

(2.11)

~∆1(st) = (u0, u1, . . . , u|A|) where ua =

{
1 if a = argmaxa′Qt(st, a′)
0 otherwise

(2.12)

~∆2(st) = (u0, u1, . . . , u|A|) where ua =

{
0 if a = argmaxa′Qt(st, a′)

1
|A|−1 otherwise

(2.13)

~∆(st) =

{
~∆1(st) if at = argmaxa′Qt(st, a′)
~∆2(st) otherwise

(2.14)

πt+1(st) = (1− δt)πt(st) + δt~∆(st) (2.15)

Minimax-Q

The Minimax-Q algorithm [144], targeted at competitive games, minimizes the loss in
worst case scenarios. It is also used to measure the largest reward that the agent can be sure
to achieve without knowing the actions of the other players. It incorporates enemy actions in
its Q-function.

At each time-step, the algorithm checks all possible enemy actions and determines the
worst (for the friendly team) possible combination of actions o that the enemy team can

31

choose. It then uses linear programming to determine the best strategy π the friendly team
can use to maximize the game, such that

π(st) = argmaxπ min
o

∑
a

Qt(st, a, o)π(st, a). (2.16)

By assuming perfect rationality from the opponents or allies, Minimax-Q falls under the
Respond to Target category, according to Hernandez et al. [31].

2.5.2 Single-Agent Deep Reward-based Learning

The previously described algorithms are tabular, and thus unable to handle high-complexity
environments, or generalize to new unseen states. Even in single-agent reward-based learn-
ing, the curse of dimensionality can be found in complex environments. For example, tabular
Q-learning is an impractical approach in high dimensional tasks, because the action-value
function is estimated separately for each state, without any generalization.

A recent popular solution for single-agent environments has been the use of artificial neural
networks as non-linear function approximators, despite the fact that introducing non-linear
function approximators invalidates theoretical convergence properties. DQN [26], DDQN
[145], and AnQ [139] handle large state-spaces by approximating the Q-function with a neural
network. DDPG [140] and A3C [139] approximate both value and policy functions with neural
networks, following Actor-Critic approaches.

DQN introduced the concepts of using an experience replay along with on-line and target
networks, while AnQ and A3C introduced the framework for distributed asynchronous updates
on global networks, which allows for horizontal scaling. Both techniques try to stabilize the
learning process and break the correlations between samples used to optimize the networks.

This section now reviews relevant state-of-the-art contributions in the field of single-agent
reward-based learning. When formally describing algorithms, it maintains the same notations
as before, and additionally use θ and ϑ to represent network weights, dθ for gradients with re-
spect to weights θ, y for optimization targets, T and Tmax for current and maximum iterations,
and η for the network’s learning rate.

Episodic REINFORCE

Episodic REINFORCE [146] is a reward-based single-agent policy gradient algorithm,
which uses a function approximator with weights θ to estimate π(s, a). This algorithm, along
with other REINFORCE algorithms, makes weight adjustments in a direction that lies along
the gradient of the expected reward.

At the end of an episode with T time-steps, the weights are optimized for each time-step
t by

θ ← θ + η
∂ log πt(st, at)vt

∂θ
, (2.17)

where vt =
∑T

i=t γ
i−tri represents the discounted reward obtained from step t onward.

Deep Q-Networks

The Deep Q-Networks (DQN) algorithm [26] uses a deep neural network with weights θ,
known as the on-line network, as a function approximator, where Q(s, a, θ) ≈ Q∗(s, a). The

32

Input: Learning rate η, mini-batch size k, time-step limit tmax, maximum iterations Tmax, future reward discount
factor γ, target network update period τ , replay memory D with capacity N , on-line network with random weights
θ, and target network with weights θ− copied from the on-line network.

1: for iteration T ← 1, Tmax do
2: Sample state s1
3: for time-step t← 1, tmax do
4: Reset gradients dθ ← 0
5: Select random action at with probability ε, otherwise best action at ← argmaxaQ(st, a, θ)
6: Execute at
7: Sample state st+1 and reward rt
8: Store transition (st, at, rt, st+1) in D
9: Sample random mini-batch of k transitions from D

10: for transition i← 1, k do
11: Compute target yi ← ri + γmaxaQ(si+1, a, θ

−) with target network
12: Compute loss Li ← (yi −Q(si, ai, θ))

2 of on-line network
13: Accumulate gradients dθ ← dθ + η ∂Li

∂θ
14: end for
15: Update on-line network weights θ ← θ + dθ
16: Update target network weights θ− ← θ every τ time-steps
17: end for
18: end for
Output: A converged network with weights θ to approximate the value function as Q(s, a, θ).

Algorithm 5: The Deep Q-Networks algorithm using ε-greedy exploration.

agent’s experience at each time-step (st, at, rt, st+1) is stored in a data-set D, known as an
experience replay. Random batches of uncorrelated samples are uniformly drawn from the
replay memory, and used to optimize weights θ, where the loss L(θ) is given by the mean
squared error between the network and a target yt, according to

yt = rt + γmaxaQ(st+1, a, θ
−). (2.18)

The target yt is calculated from a separate target network, whose parameters θ− are
updated much more slowly than the on-line network (i.e., copied from the on-line network
every τ time-steps). The algorithm is formally described in Algorithm 5.

Mnih et al. [26] use the Deep Q-learning algorithm to learn how to play Atari 2600
video-games, where a deep convolutional neural network converts raw pixels into a state rep-
resentation. The authors compute a processed state with the most recent sequence of actions
and observations, in order to compensate for the partial-observability of the environments.
DQN has since been extended with additional techniques, like prioritized sampling [147].

Double Deep Q-Networks

Double Deep Q-Networks (DDQN) [145] is an extension to DQN, whose intuition is to
reduce overestimation of Q-values by decoupling action selection and evaluation in the network
update. In the original DQN, the calculation of the optimization target yi can be written as

yt = rt + γQ(st+1, argmaxaQ(st+1, a, θ
−), θ−). (2.19)

The authors replace the calculation of yt by

yt = rt + γQ(st+1, argmaxaQ(st+1, a, θ), θ
−), (2.20)

so that action selection and evaluation are decoupled and chosen by two separate networks.
This trivial modification successfully reduces overoptimism, and results in a more stable and
reliable learning process.

33

Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) [140] is an actor-critic algorithm for contin-
uous action spaces, which borrows the experience replay and target network techniques from
DQN. It explicitly requires noise to be added to its state- or action-space in order to encourage
exploration, usually based on a Ornstein-Uhlenbeck process [148].

DDPG keeps target copies of both the actor and critic networks, and updates them every
cycle with a much lower learning rate η− (unlike DQN, which periodically makes a full copy
from the on-line network). Samples are stored in the experience replay, from which batches
are uniformly drawn to optimize the networks.

Asynchronous n-step Q-Learning

Mnih et al. [139] have shown that asynchronous methods running on multi-core CPUs
not only require less specialized hardware than their GPU counterparts, but they also achieve
greater results in a shorter amount of time. Asynchronous methods essentially keep a global
network which all worker threads asynchronously update and whose weights are periodically
copied by each worker into its own network. There is no replay memory from which to
draw samples, and each thread provides its own samples, in order to break the correlations
between mini-batches. These algorithms can be horizontally scaled by increasing the amount
of workers, which increases the amount of samples and updates per unit of time, and speeds
up the learning process.

Asynchronous n-step Q-learning (AnQ) [139] is an asynchronous algorithm that relies on
on-line and target networks for stability and asynchronous updates to break sample correla-
tion, as shown in Figure 2.4.

Global Networks

Target

On-line

Worker 1 ...

Environment 1 Environment N

On-line
Worker N

On-line

Figure 2.4: The framework for Asynchronous n-step Q-Learning [139], with N
workers. Each worker keep a local copy of the on-line network, and interacts with
its own environment. Updates are asynchronously performed on the global on-line
and target networks.

The algorithm is formally described in Algorithm 6. Each thread computes a gradient
of the Q-learning loss. A slowly changing target network is used to stabilize learning, and

34

gradients are accumulated over up to n time-steps before they are asynchronously applied to
the global network.

Input: Globally, shared learning rate η, discount factor γ, target network update period τ , on-line network weights θ,
target network weights θ−, exploration rate ε, batch size tmax, and maximum iterations Tmax. Locally, on-line
network weights ϑ, and time-step counter t.

1: t← 0
2: for iteration T ← 0, Tmax do
3: Reset gradients dθ ← 0
4: Synchronize ϑ← θ
5: tstart ← t
6: Sample state st
7: repeat
8: Select random action at with probability ε, otherwise best action at ← argmaxaQ(st, a, ϑ)
9: Execute at

10: Sample state st+1 and reward rt
11: t← t+ 1
12: until terminal st+1 or t− tstart = tmax

13: Compute target y ←
{
0 for terminal state
maxaQ(st, a, θ−) otherwise

with target network

14: for step i← t− 1, tstart do
15: Compute target y ← ri + γy
16: Compute loss L← (y −Q(si, ai, ϑ))

2 of local on-line network
17: Accumulate gradients dθ ← dθ + η ∂L

∂ϑ
18: end for
19: Update global on-line network weights θ ← θ + dθ
20: Update target network weights θ− ← θ every τ time-steps
21: end for
Output: A converged network with weights θ to approximate the value function as Q(s, a, θ).

Algorithm 6: Pseudo-code for a worker thread running Asynchronous n-step Q-learning
(AnQ) using ε-greedy exploration.

Mnih et al. also demonstrate Asynchronous 1-step Q-learning (A1Q), a specific case of
AnQ where n = 1, shown in Algorithm 7. The algorithm is simpler and closer to the orig-
inal Q-learning, but it takes longer to converge to successful policies in the demonstrated
environments.

Asynchronous Advantage Actor-Critic

Asynchronous Advantage Actor-Critic (A3C) [139] is another asynchronous algorithm,
but it is based in actor-critic methods. Workers keep local copies of both these networks, but
asynchronously update their global versions, as shown in Figure 2.5.

A3C is formally described in Algorithm 8, operates in the forward view, and uses n-
step returns to update both the policy and the value-function every tmax steps or until a
terminal state is reached. Actor-Critic methods decouple the value and policy functions into
two separate networks. The Critic network with weights θv approximates a value function
V (st, θv) and estimates the expected return at a given state st. The Actor network with
weights θa maintains a policy π(at|st, θa) from which action at is sampled for state st.

A3C has some advantages over AnQ. It has been shown to achieve better policies with a
lesser amount of samples, it supports stochastic policies (as AnQ is greedy), and it requires
less hyper-parameters (no target network update period or exploration rate). However, it is
also more complex and has a higher computational load with two separate networks to be
optimized. This problem can be somewhat mitigated through parameter sharing.

35

Input: Globally, shared learning rate η, discount factor γ, target network update period τ , on-line network weights θ,
target network weights θ−, exploration rate ε, and maximum iterations Tmax. Locally, on-line value network
weights ϑ, and time-step counter t.

1: t← 0
2: for iteration T ← 0, Tmax do
3: Reset gradients dθ ← 0
4: Synchronize ϑ← θ
5: tstart ← t
6: Sample state st
7: repeat
8: Select random action at with probability ε, otherwise best action at ← argmaxaQ(st, a, ϑ)
9: Execute at

10: Sample state st+1 and reward rt

11: Compute target y ←
{
r for terminal state
r + γmaxaQ(st+1, a, θ−) otherwise

with target Q-network

12: Compute loss L← (y −Q(st, at, ϑ))2 of local on-line Q-network
13: Accumulate gradients dθ ← dθ + η ∂L

∂ϑ
14: t← t+ 1
15: until terminal st+1

16: Update global on-line network weights θ ← θ + dθ
17: Update target network weights θ− ← θ every τ time-steps
18: end for
Output: A converged network with weights θ to approximate the value function as Q(s, a, θ).

Algorithm 7: Pseudo-code for a worker thread running Asynchronous 1-step Q-learning
(AnQ) using ε-greedy exploration.

Global Networks

Actor

Critic

Worker 1 ...

Environment 1 Environment n

Worker n

Figure 2.5: The framework for Asynchronous Advantage Actor-Critic [139], with
n workers. Each worker keep a local copy of the on-line network, and interacts
with its own environment. Updates are asynchronously performed on the global
on-line and target networks.

Proximal Policy Optimization

Proximal Policy Optimization (PPO) [149] is a policy search-based method largely inspired
on A3C. The policy network uses a new update function which clips policy updates to prevent
very large update steps. It has been shown to achieve state-of-the-art results in multiple
single-agent environments, with less hyper-parameters and a simpler implementation.

36

Input: Globally, shared learning rate η, discount factor γ, actor network weights θa, critic network weights θv , batch
size tmax, and maximum iterations Tmax. Locally, network weights ϑa, network weights ϑv , and step counter t.

1: t← 0
2: for iteration T ← 0, Tmax do
3: Reset gradients dθa ← 0, and dθv ← 0
4: Synchronize ϑa ← θa, and ϑv ← θv
5: tstart ← t
6: Sample state st
7: repeat
8: Take action at according to policy π(at|st, ϑa)
9: Sample reward rt and new state st+1

10: t← t+ 1
11: until terminal st+1 or t− tstart = tmax

12: Compute target y ←
{
0 for terminal state
V (st, ϑv) otherwise

13: for step i← t− 1, tstart do
14: Compute target y ← ri + γy
15: Compute cross-entropy loss La ← log π(ai|si, ϑa)(y − V (si, ϑv)) of local actor network
16: Compute loss Lv ← (y − V (si, ϑv))

2 of local critic network
17: Accumulate gradients dθa ← dθa + ∂La

∂ϑa

18: Accumulate gradients dθv ← dθv + ∂Lv
∂ϑv

19: end for
20: Update network weights θa ← θa + ηdθa and θv ← θv + ηdθv
21: end for
Output: Converged critic and actor networks.

Algorithm 8: Pseudo-code for a worker thread running Asynchronous Advantage Actor-
Critic (A3C).

2.5.3 Multi-Agent Deep Reward-based Learning

Some of the previously mentioned algorithms have been adapted to the multi-agent paradigm,
often based on the IL or JAL approach, or through the means of the centralized learning,
distributed execution technique. Its point is to augment the training phase with additional
information that is not commonly available, without disturbing the execution phase, where
agents are run in a distributed and independent manner.

Foerster et al. [150] introduce a set of techniques for multi-agent DQN, such as inter-
agent weight sharing, where the same network is used by all agents, instead of several separate
ones. This speeds-up learning, and agents behave differently through different local observa-
tions. The authors also suggest feeding each agent’s last action to its input, which helps with
partially-observable environments, and disabling the experience replay feature of DQN, to
avoid outdated samples. This approach does not use communication, but instead is based on
implicit coordination. Due to the lack of communication, agents may not be able to account
for a partially observable environment.

This chapter now describes the most relevant multi-agent deep-learning algorithms in the
literature.

Independent Deep Q-Networks

Tampuu et al. [151] use the Pong video-game and adjust the rewarding schemes of the
game to range from cooperative to competitive behaviors. The authors use DQN with the IL
approach, and report great results, such as cooperative agents learning to hit the ball parallel
to the x-axis.

Egorov [152] has also adopted the original DQN algorithm to a multi-agent scenario using

37

the Pursuit environment and the IL technique. The author demonstrates how the algorithm
can generalize to similar tasks, with a different number of agents, or different obstacles. Finally,
the author uses a Transfer Learning technique, by transferring the network weights between
similar scenarios, to speed-up learning.

Gupta et al. [153] compare Concurrent DQN with centralized DQN, with and without
inter-agent parameter sharing. The authors also apply the same approaches to TRPO and
DDPG, and conclude that the experience replay found in DQN and DDPG negatively impacts
training. The authors suggest asynchronous training as a solution to this problem.

Counterfactual Multi-Agent Policy Gradients

The Counterfactual Multi-Agent Policy Gradients (COMA) [131] algorithm is an actor-
critic extension that supports distributed execution, but requires centralized training. This
centralized-learning, distributed-execution framework follows the intuition that algorithms (the
value network, in this case) can be augmented with extra information regarding the other
agents during the learning phase, while during execution only local information is required,
thus allowing agents to run in a decentralized manner. Agents use network sharing for the
critic network, so COMA does not support heterogeneous reward functions.

COMA uses the same centralized value network for all agents, with the shared agent ob-
servations and their actions as input. The use of agent actions as inputs for the value networks
means the environment is now stationary for the critic, even as policies change. COMA ad-
dresses the credit-assignment problem by comparing how each agent’s action effectively affects
the expected value (using the critic network to estimate this).

Since the critic’s architecture depends on the amount of agents being trained (as it in-
corporates their actions and observations), then COMA does not support dynamic amounts
of agents. Using the same centralized critic for all agents also means the algorithm does not
support different reward functions for different agents (like in non fully cooperative games).
Finally, it is unclear how the network scales to large numbers of agents.

Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

The Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments (MAD-
DPG) [23] is a DDPG extension that also follows the centralized-learning, distributed-execution
approach. Similarly to COMA, the algorithm has a critic network with the shared agent ob-
servations and their actions as input. However, MADDPG uses a value network for each
agent, which allows for agents with different reward functions to learn together (any non fully
cooperative environment, for example).

MADDPG can also suffer from scalability issues, and does not support dynamic amounts
of agents. The approach is based on implicit coordination. The authors propose a suite of
multi-agent environments, the Multi-agent Particle Environment (MPE), and compare their
work with an IL version of DDPG.

Value-Decomposition Networks

Sunehag et al. present Value-Decomposition Networks (VDN) [154], where agents learn a
factorized joint-action value function based on their independent observations, and the sum of
each agent’s estimation approximates the centralized joint-action function. Agents can com-
municate by concatenating the output of their layers at some points, thus assuming noiseless

38

communication without constraints once more. VDN disregards any additional information
available from the environment, and limits the complexity of the centralized joint-action func-
tion to a simple sum.

Rashid et al. present QMIX [99], a VDN-extension, where each agent’s value function
is no longer summed to approximate the centralized joint-action function. Instead, an addi-
tional mixing network is used to combine each individual value function in a more complex
manner, which is also able to incorporate additional environment information. QMIX does
not use communication between agents, and thus relevant information in partially-observable
environments is not shared.

2.5.4 Communication Learning

The previous algorithms have shown good results though implicit coordination. In other
words, agents assume the policies of others and act accordingly. The lack of an information-
sharing mechanism makes it so that partially-observable environments which require (or where
it is beneficial for) agents to share local information are hard or even impossible for such
algorithms.

Some authors have recently tackled this problem, by learning communication protocols
alongside policies through deep learning. Information exchange allows algorithms to better
handle partially-observable environments and improve agent coordination. We do not consider
proposals that simply replace the action space by the communication alphabet [155, 150].

CommNet

The CommNet algorithm [44] proposes a single network in the multi-agent setting, passing
the averaged message over the agent modules between layers. It uses a fully differentiable
communication channel to learn explicit continuous communication between agents, learned
concurrently with the agent’s policy. The communication channel at time-step t is the summed
transmission of messages sent by other agents at time-step t− 1, and each environment state
undergoes multiple communication steps (a value defined a priori).

The authors demonstrate good results in multiple cooperative environments (a traffic sim-
ulator, a combat environment, and a Q&A game). The sum of transmissions allows for varying
numbers of agents, but multiple cycles of communications among agents is an uncommon as-
sumption. In many environments, actions usually have an equal or higher rate as message
transmissions. Not only that, but the amount of cycles with which to communicate with is a
hyper-parameter of the algorithm with no intuitive value. The model outputs actions for all
agents simultaneously, similarly to the JAL, which does not support distributed execution of
the policies. It also makes it unclear how the network handles varying numbers of agents with
this shared observation, and how it scales to large numbers of agents. The authors assume
perfect communication between agents.

Multi-Agent Bidirectionally Coordinated Network

The Multi-Agent Bidirectionally Coordinated Network (BiCNet) [141] is an actor-critic
extension based on Minimax-Q [144]. Using as an input the local view of an agent, and
a shared view of all agents, a policy network outputs the action for an agent, and a value
network the expected Q-value for that state. Agents are organized in a hierarchical order, and
communicate with their neighbors, which allows a variable number of agents to use the same

39

policy. Through the use of the RNN structure [156], agents have a local memory, and they
share information between them while calculating their actions, by sharing the RNN state
with their neighbors.

The authors show good results in the StarCraft II [100] environment. However, it is unclear
what are the constraints of this sharing methodology and its robustness when communication
channels can fail. The use of a shared observation for the policy network is also reminiscent
of JAL, which does not support distributed execution of the policies. It also makes it unclear
how the network handles varying numbers of agents with this shared observation, and how
it scales to large numbers of agents. Finally, requiring the RNN structures in the policy and
value networks is a strong requirement, since not all problems require complex structures like
RNN, which are notoriously hard to train [157].

Differentiable Inter-Agent Learning

The Differentiable Inter-Agent Learning (DIAL) algorithm [142] uses a Q-network and a
neural network that outputs messages through an end-to-end differentiable channel. Agents
send messages at each cycle, and these messages are used as inputs for other agents’ next cycles,
along with their state observations. This approach requires centralized learning, although
authors have also proposed an experience-replay based approach that supports decentralized
learning [158]. Gradients are then pushed through the communication channels in order to
optimize the messages to send.

The authors discretize the sent messages during execution, assume perfect communication
between agents, and test their proposal in a limited set of short-horizon environments.

Others

Another end-to-end differentiable learning communication algorithm is found in the meth-
ods of Mordatch et al. [110]. Agents learn to communicate by learning a Gumbel distribution,
later used on a set of discrete symbols, while simultaneously learning to act in an fully co-
operative environment, using a joint reward function. Policies are based in neural networks
with recurrent modules and support different numbers of agents. The algorithm requires fully
cooperative environments, and the authors also assume perfect communication.

Das et al. [109] propose an algorithm for a one-on-one cooperative game. Using Hierar-
chical Recurrent Encoder-Decoder neural networks to model policies, and the REINFORCE
algorithm [146] for learning a communication policy, agents learn to communicate using a pre-
determined vocabulary consisting of natural-language symbols. Eventually, one of the agents
guesses what image the remaining agent was shown.

D’Ambrosio et al. [45] use neural networks to learn communication in a hive-mind style.
Certain neurons are shared among all agents, and the network learns how to set the weights
in order to achieve coordination. However, this approach does not allow agents to run in a
distributed manner.

Some authors also show how communication can arise in a mix of multi-agent reward-based
learning frameworks and supervised learning techniques. By training agents to maximize a
goal, and interspersing the training with supervised learning, Lewis et al. [159] demonstrate
agents that learn natural language protocols. Using dialogue rollouts, the models plan ahead
in bargaining tasks, and fake interest to take advantage of high-value goals.

40

The Multi-Step, Multi-Agent Neural Network (MSMANN) algorithm [160] uses supervised
learning for decentralized agents to learn to imitate a centralized strategy. Agents learn action
and communication policies simultaneously during centralized training, despite requiring a
JAL strategy to be learned a priori. Authors leave a reward-based approach for future work.

2.6 Conclusion

This chapter presented an overview of relevant or state-of-the-art contributions in the field
of MARL.

It started by describing game-theoretic multi-agent algorithms that consider the non-
stationarity of the environment without having unrealistic assumptions or expectations about
other agents, and that do not require additional information besides their own actions and
rewards. These algorithms can converge to Nash equilibria in self-play and many are based
on Q-learning. However, these algorithms are mostly used in single-state environments, and
in fact, due to their tabular nature, cannot handle high-dimensional state-spaces.

Deep learning algorithms have thus been presented as a solution, since they can approx-
imate the value functions and generalize to new unseen states. This chapter described some
single-agent algorithms that achieved super-human results in complex environments. How-
ever, critical components of these algorithms may not be adequate for MAS. For example,
DQN’s experience replay can lead to outdated samples being considered to optimize a policy.
In single-agent environments, the environment is considered stationary, but in MAS, it may
lead to policy divergence.

Multi-agent deep learning algorithms thus present a new set of techniques that take ad-
vantage of the multi-agent nature of the environment. Some techniques are not general, like
interspersing supervised learning techniques during the learning phase, while others are un-
realistic, like outputting joint-actions for the team of agents through a central entity. Other
techniques, on the other hand, are adequate and flexible for a wide variety of environments,
and range from augmenting the learning phase with additional information, to learning dif-
ferentiable communication protocols.

We can identify multiple shortcomings with the described proposals. For example, few
game-theoretic algorithms have been adapted to the deep learning paradigm, which could pos-
sibly enable them to handle high-dimensional or continuous state-space environments. Some
multi-agent deep learning algorithms are not thoroughly tested in complex environments, or
do not scale well to high amounts of agents. Others compensate for partially-observable en-
vironments through message passing, but authors assume perfect communication conditions.
Many of these shortcomings can be resolved, as it will be shown in the following chapters.

41

42

Chapter 3

Applications and Test Beds

Through the course of this thesis, our proposals were tested in multiple environments
to evaluate their performance, scalability, robustness, and flexibility. These included single-
and multi-agent environments, fully- or partially-observable, with global or local observations,
continuous or discrete state and action spaces, pixel- or value-based representations, and
single- or multi-state games.

This chapter lists and describes all the environments used to test our proposals. Many of
these were specifically developed for the work conducted during this thesis. All environments
were developed or adapted to work with our frameworks, using the Gym API [161] in Python
3, with an emphasis on performance. The Gym API is a de facto standard in the reward-based
learning community, and features an HTTP interface that allows any learning framework to
easily use its environments.

3.1 Applications

MAS have a large number of applications in several domains [72], involving, among other,
logistics, planning, and constraint-satisfaction with real-time distributed decision making. Due
to their complexity and highly distributed features, many of these applications are challenging
problems in multi-agent learning.

3.1.1 Cooperative Navigation and Tracking

Cooperative Navigation [1, 2] consists on having a team of agents moving to a certain
goal, possibly specific to each agent, usually as fast as possible, and without colliding with
obstacles or other agents. A more specific version of this task, known as the Opera Problem
[162, 163, 164], consists on having the agents in a small enclosed area and having them leave
that area as fast as possible through a small exit. Cooperative Navigation also includes swarm
environments [3] with large amounts of agents, where the team must complete a specific goal
by combining the efforts of each individual agent.

Cooperative Tracking [4, 5, 6, 7], also known as target observation, consists on having
a team of agents keeping several moving targets under observation, being measured by the
amount and duration of targets being tracked. Another version of this task, known as Coop-
erative Surveillance [165, 166], consists on having a team of agents exploring a region without
colliding, with the goal of exploring high interest areas or as much as possible of the available

43

map. Another version, known as multi-agent patrolling [167, 168], involves the continuous
exploration of a non-static environment.

3.1.2 Traffic, Vehicle Monitoring, and Transportation

Traffic simulators [169, 170] have recently become popular environments, mainly due to the
popularity of autonomous driving fields. Multiple vehicles need to navigate lanes, roads, and
intersections, with possibly conflicting goals, and usually with adherence to road rules. On the
opposite side of the spectrum, the Vehicle Monitoring task consists on a set of intersections
with traffic lights (the agents of the system) maximizing the throughput of vehicles, where the
traffic volume fluctuates [8, 9]. A more complex version of this task is where both vehicles and
intersections vehicles are agents of the system [171, 172], and can negotiate with each other.

The transportation problem consists on several delivery companies transporting goods
between locations. Agents can represent companies or trucks (or both), and customers have
different constraints (delivery cost, speed) [173]. A more specific version of this task is the
Loading Dock problem, where forklifts load and unload trucks [174]. Another version is the
Air Traffic Control task [175, 176], which consists on guiding planes across three-dimensional
sectors as fast as possible, without exceeding each sector’s maximum capacity. These systems
are usually under real-time constraints, regardless of system load, due to their mission critical
properties.

3.1.3 Electricity Grid

This task is an electricity distribution management problem where all customers must be
supplied with minimal energy losses, while still handling network damage, variable customer
demand, scheduled maintenance, or equipment failure [177, 178].

3.1.4 Supply Chains

The Supply Chains [179, 180, 181] task is a classic planning and scheduling algorithm [72],
which involves a set of customers requesting different items. The items must be created in
a series of steps (with different constraints and costs) and delivered to the customers while
minimizing the production costs.

3.1.5 Games

Competitive games are a natural setting for MAS. These include classical board-games,
like Chess, Shogi, and Go [21], where two players compete with a structured set of rules, as
well as on modern videogames, like Atari 2600 games [26], Dota2 [20], Geometry Friends [22],
StarCraft II [100], and competitive Pokémon battling [182]. They are complex environments
that require reasoning and, in the case of video-games, possible visual processing to extract
information from raw pixels.

Other games that have been commonly used in MAS for demonstrating the working of
algorithms include the Foraging, Herding, and Pursuit tasks. The Foraging task is a task
where agents are tasked with foraging items and bringing them back to specific places. The
problem can be solved by a single robot, and multiple agents parallelize the effort [183]. It
becomes more complex if good or bad regions to forage changer over time, or if agents are
selfish. The Herding task [184, 185] consists on a group of agents (the shepherds) herding

44

another group of agents (the sheep) into a designated area. The sheep avoid obstacles and
the shepherds, but otherwise avoid the herding area or move randomly. The Pursuit task
[186], also known as the Predator/Prey game, consists on a team of predators capturing the
elements of the team of prey. Prey can either move randomly or actively try to escape the
predators, and the environment can be fully cooperative for a team if the opposing team has
stationary policies, or mixed if both teams are learning.

3.1.6 Autonomous Robotics

Robotic soccer is one of the most popular MAS domains [16, 71, 72]. Two teams of 5 to
11 agents coordinate in the field and try to score and defend goals. A team’s performance
is usually measured in goal difference, but metrics such as ball possession time or successful
interceptions have also been used. The strong interest in this domain led to the annual
RoboCup competition [16], with several different leagues, both simulated 2D and 3D [187],
and with real robots [188].

In Keep-Away Soccer, a simpler version of the soccer domain [189], there are three defensive
players trying to keep the ball out of reach of a single offensive player. The allowed area for
the ball shrinks along time, thus guaranteeing a finite game. A fully cooperative version of
this task is the Passing challenge, where agents just pass the ball among themselves as many
times as possible over a per-determined interval.

The Ciber Mouse competition [18, 190] is a simulated environment where several agents
need to coordinate to solve a maze as fast as possible. Agents need to reach a target area and
return to the initial area, and can communicate with restrictions among themselves.

3.1.7 Others

Other applications have been found for MAS, including in the fields of telecommunications
(whose agents are nodes in the network and manage it, handle failures and balance link loads)
[191, 192], spacecraft and satellite formation [10, 11], economics and competitive negotiation
environments [12, 13], or distributed sensor networks [14, 15].

3.2 GeoFriends 2

The Geometry Friends [22] game is a popular simulator developed at GAIPS INESC-ID,
with two distinct agents, a circle and a rectangle. The agents have distinct movement patterns,
as the circle can rotate and jump, while the rectangle can grow or shrink, and slide. By moving
across several 2D scenarios, the agents need to collect all the rewards in the shortest amount
of time.

Figure 3.1 shows an example of the scenarios available for the agents. Agents may have
specific rewards to collect, or may need to coordinate in order to capture all the rewards. There
are scenarios where only one of the agents plays. The environment’s multi-agent nature makes
it suitable for cooperative algorithms, and it integrates communication between the agents.
Its puzzle-like structure makes it complex enough that agents need to reason and need to learn
complex policies in order to complete the game. However, despite its advantages, the published
environment has a number of properties that make it inadequate to our requirements.

First of all, it is built specifically for the Windows platform, using C# and the .NET
framework. It requires the use of Mono, or other .NET implementation, to be run in other

45

Figure 3.1: Two exemplary scenarios in Geometry Friends, with both the circle
(yellow) and rectangle (green) agents. The rewards are represented by the dark
gray diamonds.

operating systems, as well as some specific packages for graphical operations. The source code
has not been published, so the simulator cannot be optimized or improved by the community.
It is also hard to use it with other languages (most high-level languages allow some form of
integration of different-language source-code into their own code). Agents are expected to be
coded in the original C# language and compiled as DLLs which are later imported by the
simulator. A workaround to allow researchers to use different languages and tools for the
learning process is to create agents that open communication channels (like sockets), thus
being able to communicate with a learning framework developed in another language.

Even with this workaround, the fact that agents cannot be run with specific arguments (as
the simulator is the one that runs the agents, they are not called by a learning framework),
also implies a set of additional measures to customize agents. This happens in a variety of
situations, like when trying to create several parallel workers and have each worker connect
to specific channels of the learning framework. Many solutions exist for this problem, ranging
from using a global mediator to inform agents where they should connect (additional over-
head), to trying several ranges of values (trial-and-error), to running agents from different
folders with different configuration files or different source codes (memory inefficient).

While the simulator supports a graphical interface, this interface can be disabled with a
command-line argument. In machines where a graphical interface is not deployed to avoid
unnecessary resource consumption, applications can only be run in text mode. However, the
simulator’s graphical interface is not completely disabled with the command-line argument (a
button with the word EXIT is shown), and it cannot be run unless the application’s graphics
are piped somewhere (through a remote X Server, if working in Linux).

Regarding the simulator speed, the simulator runs at a fixed 100 asynchronous cycles per
second. The agents cannot waste more than 10 milliseconds in each cycle or they will lose
sensor information. This is a real-time requirement that makes the environment much more
complex, but one that should be optional, as during the training phase, losing cycles due to
processing time is highly undesirable, and the learning phase typically has very high processing
times (orders of magnitude higher than the deployment phase). A workaround for this issue
is to use specific method calls in the agents, which force the simulator to wait, and move
all processing to those methods. This is a non-intuitive solution that makes debugging and
testing somewhat harder.

The Geometry Friends simulator has a speed command-line argument that controls the

46

speed at which the simulation is run and the time length of each game cycle. In other words,
if the learning framework’s processing time were half the environment’s cycle time, running
at twice the speed would remove excess wasted waiting time. However, the speed argument
is closer to a skip-frame argument (where an action is repeated multiple times), than it is to
a speed one. The amount of simulator interactions per second is constant, regardless of the
speed value. That is, if the simulator speed is doubled, it will still process the same amount of
interactions per second in the learning framework, but each interaction behaves as repeating
the given action twice. Therefore, if the processing time of our learning framework is faster
than the environment’s cycle time, the framework is still hindered by the environment’s speed,
and it is now losing simulation cycles.

We implemented a new version of the Geometry Friends simulator, called GeoFriends2,
where the above issues were addressed. It focused on performance and on flexibility, and
its code was published as a Gym environment at https://github.com/david-simoes-93/
GeoFriends2-v2. The environment was also partially published in the IJCNN18 [59]. Fig-
ure 3.2 shows exemplary single-agent scenarios.

Figure 3.2: Two exemplary scenarios in GeoFriends2, with the circle (yellow) and
rectangle (green) agents. The rewards are represented by the pink circles.

GeoFriends2 has no dependencies, aside from Python3, the Gym framework, and the
optional PyGame library for display, and agents can either run directly in Python3 or com-
municate through an HTTP interface. As the code is open-sourced, it is flexible enough to be
imported and optimized for any learning framework.

It supports an optional graphical interface, peaks at 1500 cycles per second on an In-
tel i5-4210U CPU @ 1.70GHz when the GUI is disabled, and the simulator interaction is
synchronous, so no cycles are lost.

Agent observations are different for each agent. The circle observes its position and velocity,
while the rectangle observes its position, width, and whether it is growing sideways. Both
agents also continuously receive the absolute reward positions, and in the first cycle of the
simulation, they receive a list of all obstacles’ absolute positions and sizes. Another possible
state representation is the graphical one, where the learning algorithms process the actual
pixels of the simulation’s current frame. This representation can be scaled down to decrease
the complexity of the environment.

The actions available to each agent differ. Both can stand still and move sideways, but
the circle can jump, while the rectangle can decide to grow sideways or not. If the rectangle
is not the maximum size, it gradually changes shape. These actions are the same as in the

47

https://github.com/david-simoes-93/GeoFriends2-v2
https://github.com/david-simoes-93/GeoFriends2-v2

original environment.
There are some differences from the original environment, however. The Geometry Friends’

rectangle can tumble to its sides, which GeoFriends2 forbids, for performance reasons. Keeping
the rectangle from tumbling allows the simulator to compute all obstacle detection calculations
with simple geometric formulas, and also means it can ignore physics regarding acceleration
and angular momentums of the tumble. GeoFriends2 also allows the circle’s horizontal speed
to change while on air, while Geometry Friends keeps it constant.

GeoFriends2 has also purposefully changed some behaviors which were unexpectedly found
in the original environment, such as gravity and bouncing effects when very close to the ground.
In Geometry Friends, the circle was never actually on the ground, just infinitely bouncing very
close to it, meaning it would have non-linear speed increments without actually jumping. In
our environment, a threshold was set that causes the circle to behave as if on the ground, such
that bouncing eventually stops when the acceleration is low enough.

Both environments also supports multi-agent interaction and learning. The circle and
rectangle act as obstacles to each other and collide, such that one can act like ground to the
other. GeoFriends2 also supports new teams of agents (like two circles, or two rectangle and
a circle), or the implementation of new types of agents. Examples are shown in Figure 3.3,
where agents need to coordinate in order to catch all the existing rewards.

Figure 3.3: Two exemplary scenarios in GeoFriends2, with multiple agents (yel-
low and green). The rewards are represented by the pink circles. Agents must
cooperate in order to finish the map.

GeoFriends2 provides a ready-tu-use set of maps emulating the ones found in Geometry
Friends, and also provides an interface for new maps to be implemented by users. These
simply require obstacles, rewards, spawn points for agents, and a set of conditions to determine
whether the environment was completed (usually, when no more rewards are available).

GeoFriends2 does not address communication between agents in our environment, as we
feel communication works best when used directly in agent implementations. In other words,
the simulator leaves it to researchers to decide whether and how to communicate between
agents, forcing no architecture, timing, reliability, or size constraints.

The environment, even in single-agent mode, is complex enough that reward-based learn-
ing techniques like AnQ and A3C are incapable of learning adequate policies within reasonable
time [59]. Additional techniques were necessary for agents to achieve complex policies, includ-
ing intra-agent weight sharing (using a single network with multiple output layers instead
of separate networks), breadcrumbs (small heuristic rewards when agents perform adequate

48

actions), and input shaping (simplifying the agent’s state-space and filtering out irrelevant
observations).

3.3 Game-Theoretic Environments

This chapter now lists the pay-off matrices of multiple Game-Theoretic environments.
Despite being single-state games, these are known and common benchmarks, with uniques
properties, which represent a well-rounded test suite for any MARL algorithm.

The competitive version of Matching Pennies is a standard 2-action competitive game with
balanced strategies (actions should be played with the same probabilities). Its cooperative
counterpart has two deterministic equilibria, one where both players pick the first action, and
another where both players pick the second action. The Tricky Game has balanced strategies,
like Matching Pennies, but is much harder for algorithms to achieve them [51]. The Biased
Game is a competitive game with unbalanced actions, whose Nash equilibrium is (.75, .25)
and (.25, .75). All are shown in Figure 3.4.

1,−1 −1, 1

−1, 1 1,−1

(a) Matching
Pennies.

1, 1 −1,−1

−1,−1 1, 1

(b) Coop Matching
Pennies.

0, 3 3, 2

1, 0 2, 1

(c) Tricky
Game.

1, 1.75 1.75, 1

1.25, 1 1, 1.25

(d) Biased Game.

Figure 3.4: The pay-off matrices of multiple 2-action 2-player games.

Rock-Paper-Scissors (RPS) is a 3-action game with balanced strategies, while its variant
Null Rock-Paper-Scissors (NRPS) is a 4-action derivation with a dominated action (an ac-
tion that should never be played) and a positive average reward, whose Nash equilibrium
is (0, 13 ,

1
3 ,

1
3) for both players. The 4-Action Cooperative Game is a 4-action game with a

dominant action, whose Nash equilibrium is (1, 0, 0, 0) for both players. The 1v1 Kick game
models players as an attacker that can hesitate, or kick the ball in a direction, and a defender
that can hesitate or defend some direction. Hesitating is a dominated action, and the game’s
Nash equilibrium is (0, 12 , 0,

1
2) for both players. These games’ pay-off matrices are described

in Figure 3.5.

0, 0 1,−1 −1, 1

−1, 1 0, 0 1,−1

1,−1 −1, 1 0, 0

(a) Rock-Paper-Scissors.

−1,−1 −1,−1 −1,−1 −1,−1

−1,−1 2, 2 3, 1 1, 3

−1,−1 1, 3 2, 2 3, 1

−1,−1 3, 1 1, 3 2, 2

(b) Null Rock-Paper-Scissors.
1, 1 0, 0 0, 0 −1,−1

0, 0 1,−1 −1, 1 −1,−1

0, 0 −1, 1 1,−1 −1,−1

−1,−1 −1,−1 −1,−1 −1,−1

(c) 4-Action Cooperative Game.

−1,−1 −1, 1 −1, 1 −1, 1

1,−1 1,−1 1,−1 −1, 1

1,−1 −1, 1 1,−1 −1, 1

1,−1 −1, 1 1,−1 1,−1

(d) 1v1 Kick Game.

Figure 3.5: The pay-off matrices of multiple 2-player games with more than two
actions.

49

Prisoner’s Dilemma models players as prisoners that can either cooperate or betray each
other. If both cooperate, their rewards are better than if they both betray each other. However,
if one betrays and the other does not, the betrayer gets the best reward possible. The Nash
equilibrium is for both to betray (since their strategy cannot be taken advantage of), but a
Pareto-optimal solution would be for both to cooperate with each other. In fact, the Nash
equilibrium is the only joint-strategy which is not Pareto-optimal. Stag Hunt models two
hunters that can either hunt rabbits (where they always catch something) or stags (where
they can get better rewards, but only if both decided to do it). Despite having three Nash
equilibria, the one with the highest rewards is for both agents to always catch stags. Battle
of the Sexes has a worse stochastic equilibrium and two better deterministic equilibria, but
one of the agents will obtain a smaller reward than the other. All these have deterministic
equilibria, and are shown in Figure 3.6.

−1,−1 −3, 0

−3, 1 −2,−2

(a) Prisoner’s Dilemma.

2, 2 0, 1

1, 0 1, 1

(b) Stag Hunt.

3, 2 0, 0

0, 0 2, 3

(c) Battle of the Sexes.

Figure 3.6: The pay-off matrices of multiple 2-action 2-player games with deter-
ministic equilibria.

Robust algorithms are expected to converge in a wide array of scenarios like this.

3.4 Fully-Observable Environments

This section lists environments with non-singular state-spaces, represented as MMDP,
whose state can be directly sampled by agents.

3.4.1 Competitive Grid Games

Maze-related games focus on having agents explore and determine an optimal path to
traverse a maze and reach a goal position. In the multi-agent setting, agents either find each
other or independently try to find the exit. MazeRPS [58] is a multi-state scenario, derived
from Game Theory, where two agents cross a labyrinth to find each other and play a single
round of NRPS. Since the average reward of NRPS is positive, agents are incentivized to
complete the scenario as fast as possible. Variations of this game are partially-observable with
continuous-valued states [57], which make tabular algorithms like Q-learning unable to learn
policies without some sort of state approximation function.

The grid Soccer Kick environment [58] is another scenario with multiple states. It has two
agents, an attacker and a defender, who compete for a match point in a zero-sum game. If the
attacker reaches the goal, it wins, so the defender’s goal is to reach him first. If both agents
reach each other, they play a 1v1 Kick game to determine the winner.

Keep-away Soccer games essentially focus on two teams of agents where an attacker team
tries to take the ball from the defender team. There is usually a limited area (which may
shrink over time) where the defenders can keep the ball. The grid 3v2 Keep-Away Soccer
Environment [58] has three defenders who protect the ball from two attackers, and two variants
where defenders can or cannot move. While one of the attackers tags a defender, the other

50

chases the ball. A good strategy for defenders is often to keep passing the ball between
un-tagged members, keeping it away from attackers.

3.4.2 Cooperative Grid Games

Foraging environments can often be solved by a single-agent, but the task’s completion
can be parallelized in a MAS. Agents can communicate good foraging regions in partially-
observable environments, or they can compete for resources. An environment [56] with com-
plete global vision was implemented, shown in Figure 3.7(a), where spawn locations are ran-
domized in different halves of the map and agents cooperate to collect berries. The action-space
consists on movement in any of four directions, catching or releasing berries, and standing still.
Actions occur simultaneously, and agents can carry one single berry at a time, and release it
at their base.

Pursuit games consist on a team of predators capturing a team of prey. If prey are
rational and move at the same speed or faster than predators, the task cannot be completed
by a single predator. An environment [56] with complete local vision over a toroidal map
was implemented, shown in Figure 3.7(b), with random spawn locations. The action-space
consists on movement in any of four directions, and standing still. A prey is considered
caught when a predator occupies its space. Actions occur sequentially for predators and prey,
but are simultaneous for members of the same team. The prey move at the same speed
as the predators and escape from their closest enemy, thus requiring a coordinated effort to
successfully complete the task.

(a) Foraging Task. Agents (blue) need to
collect berries (green) and bring them to
their base (red).

(b) Pursuit Task. Predators (blue) need
to surround and catch prey (green) in a
toroidal map.

Figure 3.7: The Foraging and Pursuit tasks, two fully-observable multi-agent en-
vironments [56].

51

3.4.3 KiloBots Environment

The KiloBots environment [3] is a set of local continuous observation- and action-space
scenarios with simulated physics, emulating the KiloBot robot [193]. Each robot has a diame-
ter of 3 centimeters and moves using two vibration motors. The environment is a great testbed
for swarm learning algorithms, which can later be demonstrated with physical KiloBots. The
scenarios include:

• Push Objects - Agents push an object to a target location.

• Assemble Objects - Agents push and assemble multiple objects together.

• Segregate Objects - Agents push and separate multiple objects apart.

(a) Assemble Objects. Agents must push
and join the objects together at any point
in the map.

(b) Segregate Objects. Agents must push
and separate the objects as far away from
each other as possible.

Figure 3.8: Two scenarios of the KiloBots environment. Agents (grey) know their
own poses and the relative polar coordinates of other agents and objects (colored).

Agents observe their own pose and the coordinates of the obstacles in the environment,
relative to their own position. They receive no additional information regarding the shape or
size of obstacles. Each environment rewards the team at every cycle based on the distance
obstacles were pushed.

3.5 Partially-Observable Environments

This section lists environments with partially-observable state-spaces, represented as Dec-
POMDP, where agents can only sample incomplete, noisy, or incorrect observations of the
underlying state.

3.5.1 POC Suite

A suite of partially-observable multi-agent environments was proposed, which we call the
POC suite, where communication is crucial to overcome the partial observability of the en-
vironments. It has been partially published in the WorldCIST19 and IJCNN19 conferences

52

[61, 62]. The following sections describe a Hidden Reward challenge, a Traffic Intersection
simulator, a Pursuit game, and a Navigation task, as shown in Figure 3.9. The Hidden Re-
ward game focuses on classic exploration, and agents need to learn how to efficiently explore
the environment and alert team members when the target is found. The Traffic Intersection
is a close-horizon game, with large amounts of agents, where agents need to learn to adhere
to rules and overcome multiple indistinguishable intersections. The Pursuit game is a clas-
sical benchmark where agents need to explore and coordinate in order to capture the prey,
and the Navigation task focuses on goal assignment, and agents learn how best to distribute
themselves in order to complete the task.

These environments are performance-oriented and provide a controlled environment with
which to test multiple aspects of a multi-agent algorithm. While agents receive observations
about the environment, it is possible to access the environment’s underlying state directly,
without any additional computations (aside from those already performed by the actual envi-
ronment). This allows algorithms with the centralized learning, distributed execution method
to augment their learning phase with additional information in an efficient manner. The en-
vironments are also targeted at cooperative teams, and built in such a way that a team of
agents must use an information-sharing method to achieve successful coordinated strategies.
For example, agents in the Traffic environment must share their intent to turn in order to
avoid collisions.

Hidden Reward

The Hidden Reward challenge consists on several agents having to move across a toroidal
map until they find a reward zone. Each agent has a local partial observation of the envi-
ronment, with their own coordinates and whether they’re in that zone or not. The complete
state-space consists on a concatenation of all the agents’ partial observations. There’s both a
global time limit since the challenge starts, and a smaller one since any agent finds the reward
zone. In other words, agents have some time to explore the map and find the hidden reward,
and a short time to gather there once it has been found. Because the time is not enough for
a single agent to fully explore it, this not only forces spread coordinated exploration, but also
an alert protocol when the reward is found.

Agents receive individual rewards each cycle, 0 points if not on the reward zone, and n
points if on the reward zone, where n is the total amount of agents there, so cooperation is
encouraged. At each time-cycle, agents can move in four directions or remain in the same
position. Agents can broadcast messages to all other agents. An adequate strategy is to
explore the map until the reward zone is found, and then broadcast its position to other
agents.

Traffic Intersection

The Traffic Intersection simulator consists on several road intersections, which must be
crossed by multiple vehicles. Each agent has a local partial observation of the environment,
knowing their desired direction and sensing close vehicles. The complete state-space consists
on the positions and intended directions of all vehicles.

Agents get small penalties for stalling traffic, big penalties if they crash, and even larger
penalties if they crashed without having priority. At each time-cycle, agents can move or
remain in the same position. The communication range of agents is geographically limited to

53

(a) Hidden Reward. Agents (black)
only know their own position and ex-
plore the map until the reward zone
(red) is found.

(b) Traffic Intersection. Agents (col-
ored) must cross intersections without
colliding. They know their desired
direction, sense other vehicles around
them, and are penalized if they collide
(red marker).

(c) Pursuit. Predators (squared) see
only a small local area, and must chase,
surround and capture the prey (green
circles), which are hard-coded to run
from the closest predator.

(d) Navigation. Agents (black) know
the beacons’ coordinates, but not each
others’ positions. They must cover all
the beacons (red), and are rewarded by
how close any agent is to each beacon.

Figure 3.9: The POC suite, consisting of four environments: Hidden Reward, Traf-
fic Intersection, Pursuit, and Navigation. All are partially-observable multi-agent
environments, where agents benefit from sharing information and coordinating as
a team.

54

close vehicles (agents do not broadcast messages to all others, just to other agents in the same
intersection). An adequate strategy is for a vehicle to inform others at intersections whether
it needs to turn or not, and allow the vehicle with priority to cross the intersection.

Pursuit

The Pursuit game is based on the one shown in Section 3.4.2, and consists on two teams
of agents, where one team must capture the other. The prey team is hard-coded, has global
vision, and each prey runs from the closest predator. Predators have local partial observations
of the environment, sensing a small local area equivalent to less than 10% of the total map
and their own global coordinates. The complete state-space consists on the positions of all
predators and prey.

Agents get small penalties as time passes, and get penalized and randomly placed if they
collide. At each time-cycle, agents can move in four directions or remain in the same position.
Agents can broadcast messages to all other agents. A high-level strategy is for predators to
explore the map until a prey is found, and then broadcast the prey’s position so that all
predators can converge and capture it.

Navigation

The Navigation task consists on several agents having to cover all the beacons spread
throughout the map. Each agent knows only its own position and the beacon positions. The
complete state-space consists on the positions of all agents and beacons. There is a time-limit,
but the episode ends early if all beacons are covered.

The team gets points at the end of each time-limited episode, based on how close an agent
was to each beacon. At each time-cycle, agents can move in four directions or remain in the
same position. Agents can broadcast messages to all other agents. An adequate strategy is
for each agent to broadcast its own position and for the team to decide which agent should
cover which beacon.

3.5.2 Multi-Agent Particle Environment

The Multi-Agent Particle Environment [23] suite is a set of local continuous observation-
and discrete action-space scenarios with simulated physics, which may incorporate communi-
cation. The action-space for an agent consists on increasing or decreasing its velocity in one
of two axes, both of which decay over time. An agent’s observation space usually consists on
the relative positions of all entities on the map, as well as the velocities of all allied agents. In
environments with agent-specific targets, observations also comprise the relevant information
(possibly of a different agent’s target, thus requiring communication to complete the task).

The scenarios, some of which are shown in Figure 3.10, include:

• Physical Deception - One adversary, N allies and landmarks. One landmark is a target,
known by the allies, but unknown to the adversary. Allies receive points by how close
one is to the target, and lose points by how close the adversary is to the target.

• Covert Communication - One adversary, two allies. Allies share a private key and use
it to encrypt and decrypt a value, while the adversary tries to decipher it.

55

• Keep-Away - One adversary, one ally, one landmark. Agents are rewarded for being
close to the landmark, but the adversary receives more points if the ally is farther away.

• Cooperative Reference - Two allies, three landmarks. Allies know the target landmark
of the other agent, and not their own, which they are rewarded for being close to.

• Cooperative Communication - The same as Cooperative Coverage, but only one ally can
move, while the other knows its target.

• Cooperative Navigation - N allies and landmarks. Agents are rewarded by being close
to each landmark.

• Tag Challenge - One adversary, N allies and landmarks. Allies try to touch as many
times as possible the faster adversary.

In order to successfully complete these tasks, mechanisms to handle partial-observability
are required. These may range from memory of previous states to communication proto-
cols. In addition, tasks also require strong coordination skills, and Cooperative Reference
and Cooperative Communication both require relevant information sharing to successfully be
completed. We refer the reader to the original publication [23] for further information.

3.5.3 3D Soccer Simulation League

The RoboCup initiative [194, 16] is an annual international robotics competition, whose
goal is to have a team of fully-autonomous physical robots winning a soccer match against the
world-champion human team, using FIFA standard rules, by the year 2050. The 3D Soccer
Simulation League, a part of the RoboCup initiative, is a complex multi-agent environment
where two teams of humanoid simulated robots play a ten-minute soccer match using realistic
rules. Each team is comprised of eleven NAO robots [195] with multiple different models, each
with different physical characteristics.

Each agent perceives the environment through local partial observations consisting on
spherical coordinates of other elements in the environment. These include landmarks like
the goal posts, field lines, other agents, and the ball. Agents then act upon their own local
joints, by sending commands to the environment simulator. The observation rate is different
from the action rate, as agents only sample new observations every three cycles. Agents can
communicate limited-size messages to each other during the match, but only a single message
can be heard by each agent per cycle.

Using low-level controllers that abstract simple tasks, like kicking or walking, has been the
de facto standard in the league, controllers which are then used by high-level decision-making
modules. In other words, agents have a set of behaviors which are chosen according to their
strategy. The behavior acts upon the agent’s joints, and the strategy defines which behavior
to execute and with which parameters.

The 3D Soccer Simulation League features multiple game types. The most common is the
actual soccer match, as described above, and an example is shown in Figure 3.11. Another is
the Penalties match, where a single kicker is pitted against the goal-keeper and has a limited
time to score a goal. This match is used as a tie-breaker in competitions. Another game type
is the Keep-Away Soccer, where three players keep the ball away from a single opponent for
as long as possible. It was used as an additional challenge for the teams in the 2017 RoboCup
competition.

56

(a) Cooperative Reference. Agents
(light colored) know their positions and
their ally’s target landmark (heavy col-
ored). They must share that informa-
tion and converge on their correspond-
ing targets.

(b) Cooperative Communication. The
gray agent cannot move and knows its
ally’s (light blue) target (dark blue).
The grey agent must share that infor-
mation for the light blue agent to con-
verge on it.

(c) Cooperative Navigation. Agents
(blue) must cover all landmarks (black),
by deciding which agent should cover
which landmark.

(d) Tag Challenge. Agents (red) try
and touch the prey (green) as many
times as possible, while dodging the
black obstacles and remaining within
map boundaries.

Figure 3.10: Some environments from the MPE suite, consisting on Cooperative
Reference, Cooperative Communication, Cooperative Navigation, and Tag Chal-
lenge.

57

Figure 3.11: A soccer match in the 3D Soccer Simulation League.

While the 3D Soccer Simulation League is an open-source project that has been developed
by the community for a number of years, we have designed and implemented a framework to
allow for learning algorithms to use it. The 3d Soccer Simulation Learning (3dSSL) framework,
as shown in Figure 3.12, defines the environment with a Gym interface, and allows multiple
environments to run simultaneously with fault-tolerance mechanisms enabled. It supports
parallel learning with asynchronous deep learning or genetic algorithms, through socket com-
munication implemented within the FCPortugal3D team. The framework has been published
on the ROBOT2019 conference [63].

3dSSL supports both single- and multi-agent scenarios. In the single-agent paradigm, it
can be used to optimize get-up, kick, and walking behaviors, while in the multi-agent paradigm,
3dSSL allows a team to develop policies for Passing and Keep-Away games. The 3dSSL Pass-
ing scenario consists on three agents passing the ball between them as many times as possible
within a time interval, while the 3dSSL Keep-Away scenario has an additional opponent that
tries to steal the ball, ending the game.

For the 3dSSL single-agent scenarios, an agent observes its current joints and estimated
position, orientation, and gyroscope information. Its actions-space consists on low-level con-
tinuous commands to all its joints. The estimated information is directly sampled by the
mechanisms currently employed by the FCPortugal3D team. If the agent crashes, the simula-
tor is killed and the framework reports a terminal state.

For the 3dSSL multi-agent scenarios, agents observe the estimated positions of all players
and the ball, as well as the estimated location the ball will stop at, their orientation, and
the distances of all players to the ball. All estimated information is again sampled by the
mechanisms used in FCPortugal3D. The action-space is no longer a low-level continuous joint-
control, but instead a discrete selection of high-level behaviors used in the team. The behaviors
used were standing, where an agent simply stands in the same place, getting up, used when
the agent falls on the ground, kicking to an ally, with the choice of which teammate to kick
the ball towards, and using a kick for the adequate distance to the target, moving to position,
where each agent has a specific default location based on the team’s formation. Agents may
fall when changing behaviors abruptly, and all behaviors take multiple time-steps to complete.

58

Gym Environment

RCSS Simulator

Agent 1

...

Agent J

Figure 3.12: The framework for the 3dSSL framework. The framework deploys
an RCSS Simulator and J agents, all of which connect to the deployed simulator.
Both the simulator and agents remain connected to the framework, which informs
agents of what actions they will execute upon the environment. Agents then report
their new observations.

In the event of a crash by any agent, all agents and the simulator are killed, and the framework
reports a terminal state.

3dSSL also provides additional information to be used by learning algorithms or on tests,
but which is not normally accessible by agents in regular play. This includes the agent’s real
position, orientation, acceleration, as well as the ball’s real current position. This information
can be used during the learning phase of algorithms that benefit from data that are usually
unaccessible to agents.

3.5.4 Simple Pokémon Environment

Pokémon [196] is the largest entertainment franchise in the world, having at its core a
role-playing video game series. In a Pokémon battle, a player competes with a roster of up
to six Pokémons, and each Pokémon possesses a set of statistics such as hit points (HP),
attack, defense, and speed, along with four moves. In 1v1 battles each player controls one
active Pokémon fighting against the opponents’ active Pokémon and holds the remaining on
the bench. Each turn the player may select one of four moves of the Pokémon to attack the
opponent’s active Pokémon, or the player may switch the active with one benched Pokémon.
When a Pokémon’s HP are depleted, the Pokémon faints, is forcibly switched out, and is
unusable for the remainder of the battle. A core component of Pokémon is typing, each
Pokémon and move possesses a type, and types have different effectiveness against different
types. A Fire type move is effective against Grass type Pokémon, and Water type Pokémon
resists to Fire type moves. The effectiveness of move typing is translated to a modifier chart,
an asymmetrical matrix shown in Table 3.1, where effectiveness doubles an attack’s damage,

59

resistance halves it, and immunity negates it.

Attacking Pokémon
No Fi Fl Po Gr Ro Bu Gh St Fr Wa Gr El Ps Ic Dr Da Fa

Normal 1.0 2.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Fighting 1.0 1.0 2.0 1.0 1.0 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 0.5 2.0
Flying 1.0 0.5 1.0 1.0 0.0 2.0 0.5 1.0 1.0 1.0 1.0 0.5 2.0 1.0 2.0 1.0 1.0 1.0
Poison 1.0 0.5 1.0 0.5 2.0 1.0 0.5 1.0 1.0 1.0 1.0 0.5 1.0 2.0 1.0 1.0 1.0 0.5
Ground 1.0 1.0 1.0 0.5 1.0 0.5 1.0 1.0 1.0 1.0 2.0 2.0 0.0 1.0 2.0 1.0 1.0 1.0
Rock 0.5 2.0 0.5 0.5 2.0 1.0 1.0 1.0 2.0 0.5 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0
Bug 1.0 0.5 2.0 1.0 0.5 2.0 1.0 1.0 1.0 2.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0
Ghost 0.0 0.0 1.0 0.5 1.0 1.0 0.5 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0
Steel 0.5 2.0 0.5 0.0 2.0 0.5 0.5 1.0 0.5 2.0 1.0 0.5 1.0 0.5 0.5 0.5 1.0 0.5
Fire 1.0 1.0 1.0 1.0 2.0 2.0 0.5 1.0 0.5 0.5 2.0 0.5 1.0 1.0 0.5 1.0 1.0 0.5
Water 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 2.0 2.0 1.0 0.5 1.0 1.0 1.0
Grass 1.0 1.0 2.0 2.0 0.5 1.0 2.0 1.0 1.0 2.0 0.5 0.5 0.5 1.0 2.0 1.0 1.0 1.0
Electric 1.0 1.0 0.5 1.0 2.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0
Psychic 1.0 0.5 1.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 2.0 1.0
Ice 1.0 2.0 1.0 1.0 1.0 2.0 1.0 1.0 2.0 2.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0
Dragon 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 1.0 2.0 2.0 1.0 2.0
Dark 1.0 2.0 1.0 1.0 1.0 1.0 2.0 0.5 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 0.5 2.0
Fairy 1.0 0.5 1.0 2.0 1.0 1.0 0.5 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.5 1.0

Table 3.1: The Pokémon type effectiveness chart.

The game features a number of properties that make it a challenging environment for
machine learning algorithms. It is partially-observable, since each trainer only knows infor-
mation about its own team, and some visible stats regarding the opponent’s active Pokémon.
Unlike chess or Go, the environment is stochastic, and attacks have a chance to hit and do
damage based on an interval formula. It is a competitive multi-agent system with a zero-sum
reward scheme. The state-space is continuous and high-dimensional, with six Pokémon for
each trainer, each with one or two of seventeen different Pokémon types, four attacks per
Pokémon, each with its own typing as well, HP and statistics for each Pokémon, and power
and accuracy values for each attack.

Multiple Pokémon environments have been developed over the years, both officially released
[196], or fan-made [197, 198]. The fan-made battle simulators don’t provide adequate API
for machine learning algorithms, and are instead focused on human user-experience. To the
best of our knowledge, proper API are only available for information mining about the games
[199, 200], such as Pokémon lists or maps. Due to this, an AI competition has recently been
proposed for the IEEE Conference on Games, known as Showdown AI Competition [201]. The
authors state that most current competitions are based on real-time video games with perfect
information, and that there is a need to explore other types of games with competitive nature.
They identify some properties that contrast Pokémon battling with other games:

• Branching Factor - with (on average) nine possible actions per turn (there are four possi-
ble moves and five possible switches), planning multiple steps ahead is computationally
heavy;

• Turn Atomicity - although Pokémon is a turn based game, choices are made simultane-
ously, and agents only observe both moves after selection;

• Categorical Dimensions - although in a clean state, HP and statistics are sufficient to
evaluate the actions’ reward, over-time conditions like burned or paralyzed, or other field
effects like sandstorm or stealth rock are hard to quantify (delayed rewards);

• Stochasticity - moves’ damage calculation have random parameters, and may miss and
do zero damage;

60

• Hidden Information - this environment is partially-observable at two levels. The oppo-
nent’s active Pokémon’s move set, statistics and abilities (although this can be minimized
with domain knowledge), and at the team level, the unawareness of the opponent’s roster
makes it harder to plan ahead and predict best long-term strategy;

The authors argue that these properties motivate the existence of a Pokémon battle simulator
that is compliant with standard machine learning interfaces.

We implemented the Simplified Pokémon Environment (SPE), shown in Figure 3.13, where
two agents conduct a Pokémon battle and each team is composed of an active and a bench
Pokémon. Pokémon have 300 initial HP, a single typing, and moves of semi-random types,
but are otherwise not identified. Each move has a power uniformly distributed between 50
and 100 (multiplied by 1.5 if the move’s type is the same as the Pokémon’s, a feature known
as STAB). Each Pokémon has at least one move of its type, and three moves of random types
that are not effective against the Pokémon and that the Pokémon is not effective against.
For example, a Fire Pokémon will not have a Water move (effective against Fire) or a Grass
move (which Fire is effective against). While some specific Pokémon have attacks with these
unconventional typings, Pokémon are not identified in SPE, and removing unintuitive type
combinations from SPE leads to more strategical policies learned by agents.

Agents have a reward function R = Rd+Rf −Rt, where Rd ∈ [0, 1] represents the damage
dealt as a fraction of the opponent’s maximum HP, Rf ∈ 0, 1 is a bonus if the opponent
fainted, and Rt ∈ [0, 1] represents the damage taken as a fraction of the Pokémon’s maximum
HP. With the feedback provided each turn, this results in non-sparse rewards. If a Pokémon
faints, it automatically switches to the bench Pokémon, and a battle ends when a trainer’s
Pokémon have all fainted. In complete Pokémon battles, the move order is deterministically
determined by move priorities and Pokémon speed. Because SPE has no speed statistics,
the order of attacks is random each turn, leading to stochastic state transitions. The switch
action, similarly to real Pokémon games, always occurs before attacks.

HP WATER

DARK
90

HPFIRE

PSYCHIC
60

ROCK
70

FIRE
125

GHOST
300

SWITCH

Figure 3.13: The SPE environment. The opponent has an active Water Pokémon,
and the local agent has an active Fire Pokémon, with Dark, Psychic, Rock and
Fire moves. The trainer can also switch to the benched Ghost Pokémon with
300HP.

The five-dimensional action space of each agent corresponds to the four moves from the
active Pokémon, and the switch option. If the bench Pokémon has fainted, the switch action
does nothing. Agents sample actions simultaneously, and sample an observation composed of
the status (HP and type) of both his Pokémon, the status of the opponent’s active Pokémon,
and the HP of the opponent’s bench Pokémon. Additionally, the state space contains the power

61

and type of all four moves of the active Pokémon. With 18 different types, and identifying
them through a one-hot vector, this is equivalent to a 134-dimensional state space for each
agent.

The goal for each agent is to learn typing combinations and optimizing a long-term strategy
that maximizes the chances of winning the battle. For example, the Switch action will give
the agent an immediate reward R ≤ 0, but switching to a Pokémon with better typing
and move pool often increases the overall reward obtained. Comparing SPE with an official
Pokémon game, the branching factor was decreased from nine to five and there are no long-
term conditions or mechanics, which creates a simpler environment. However, stochasticity
is exacerbated with a random set of generated Pokémon and moves, instead of a fixed set of
viable combinations and teams. SPE is compliant with the Gym [161] API and its source code
can be found at https://gitlab.com/DracoStriker/simple-pkm-env.

3.6 Conclusion

This chapter described a diverse set of multi-agent environments, ranging from cooperative
to competitive environments, fully-observable single-state games to partially-observable long
horizon tasks, and continuous to discrete action- and state-spaces. Table 3.2 summarizes
general properties of all the multi-state environments shown above.

General multi-agent algorithms are expected to allow agents to achieve successful policies
across these, and as such, they will be used across the remainder of this thesis as test beds on
which proposals will be evaluated.

62

https://gitlab.com/DracoStriker/simple-pkm-env

Environment Design Action Sp. State Sp. Team Vision Persp.
GeoFriends2 Coop Discrete Continuous Static Full Global
MazeRPS Comp Discrete Discrete Static Full Global
Grid Soccer Kick Comp Discrete Discrete Static Full Global
Grid K.A. Soccer Comp Discrete Discrete Static Full Global
Grid Pursuit Coop Discrete Discrete Static Full Local
Grid Forager Coop Discrete Discrete Static Full Global
POC Hid. Rew. Coop Discrete Continuous Static Partial Global
POC Traffic Sim. Mixed Discrete Discrete Varying Partial Local
POC Pursuit Coop Discrete Discrete Static Partial Local
POC Navigation Coop Discrete Continuous Static Partial Global
MPE Navigation Coop Discrete Continuous Static Full Local
MPE Comm. Coop Discrete Continuous Static Full Local
MPE Reference Coop Discrete Continuous Static Full Local
MPE Phys. Dec. Mixed Discrete Continuous Static Full Local
MPE Tag Mixed Discrete Continuous Varying Full Local
KiloBots Light Coop Continuous Continuous Static Full Local
KiloBots Join Coop Continuous Continuous Static Full Local
KiloBots Split Coop Continuous Continuous Static Full Local
3dSSL Passing Coop Continuous Continuous Static Partial Local
3dSSL Keep-Away Coop Continuous Continuous Static Partial Local
SPE Competitive Discrete Continuous Static Partial Local

Table 3.2: Comparison of multiple multi-agent multi-state environments, regard-
ing their design (whether agents behave cooperatively, competitively, or in a mixed
manner), their action- and state-spaces (discrete or continuous), how the team size
behaves during each episode (if the amount changes or remains static), and how
agents observe the environment (full or partial observations, from a global or a
local perspective).

63

64

Chapter 4

Multi-Agent Double Deep-Q-Networks

The use of DQN’s deep representations has shown great promise in both single- and multi-
agent settings. In the former, despite losing theoretical guarantees, an agent was shown
to achieve superhuman-level performance across the Atari 2600 environments [26], and the
algorithm has since been extended and improved with different network architectures, sampling
strategies [147], and even overestimation techniques [145].

In the multi-agent setting, IL adaptations of DQN [151, 152] that exhibit implicit coordina-
tion strategies have been presented, and new techniques, like inter-agent weight sharing [150],
have also been proposed. None of these works take advantage of the single-agent extensions
of DQN.

This chapter describes the extension of a DQN single-agent variation to the multi-agent
paradigm. The extension is tested in two environments against tabular Q-learning, with two
different approaches. Its adaptability to new unseen tasks and scenarios is also evaluated,
and conclusions are drawn regarding its properties. These findings were published in the
ROBOT2017 conference [57]. The algorithm’s source-code and tests were published at https:
//github.com/david-simoes-93/Multi-agent-Double-Deep-Q-Networks.

4.1 Problem Statement

DDQN is an extension of DQN which decouples action selection and evaluation, and re-
duces the overestimation of DQN’s value function. In single-agent environments, this leads to
a more stable and reliable learning process, but the extension has not yet been evaluated in
the multi-agent context. Overestimating a value function in a MAS with implicit coordina-
tion can lead to unstable learning, and reducing this overestimation can significantly improve
policies [202].

It is also unclear how advantageous the IL approach is against the JAL version of multi-
agent DQN, where the agents are controlled by a centralized entity, effectively creating a single-
agent environment. The JAL approach inherently has the disadvantage of scalability and
flexibility, since outputting a joint-action implies a network has to be trained for a fixed amount
J of agents, and its output layer will have |A| possible joint-actions, where |A| = |A1|×. . .×|Aj |
is the amount of joint-actions, scaling exponentially with the amount of agents.

65

https://github.com/david-simoes-93/Multi-agent-Double-Deep-Q-Networks
https://github.com/david-simoes-93/Multi-agent-Double-Deep-Q-Networks

Input: Learning rate η, mini-batch size k, time-step limit tmax, maximum iterations Tmax, future reward discount
factor γ, target network update period τ , replay memory D with capacity N , on-line network with random weights
θ, and target network with weights θ− copied from the on-line network.

1: for iteration T ← 1, Tmax do
2: Sample state s1
3: for time-step t← 1, tmax do
4: Reset gradients dθ ← 0
5: Select random joint-action at with probability ε, otherwise best joint-action at ← argmaxaQ(st, a, θ)
6: Execute joint-action at
7: Sample state st+1 and reward rt
8: Store transition (st, at, rt, st+1) in D
9: Sample random mini-batch of k transitions from D

10: for transition i← 1, k do
11: Compute target yi ← ri + γQ(si+1, argmaxaQ(si+t, a, θ), θ

−) with target and on-line networks
12: Compute loss Li ← (yi −Q(si, ai, θ))

2 of on-line network
13: Accumulate gradients dθ ← dθ + η ∂Li

∂θ
14: end for
15: Update on-line network weights θ ← θ + dθ
16: Update target network weights θ− ← θ every τ time-steps
17: end for
18: end for
Output: A converged network with weights θ to approximate the value function as Q(s, a, θ).

Algorithm 9: The Joint-Action Learners variant of the Multi-agent Double Deep Q-
Networks algorithm, using ε-greedy exploration.

4.2 Proposal

This chapter describes an extension of DDQN to the multi-agent paradigm, Multi-agent
Double Deep Q-Networks (MaDDQN) [56]. It describes both JAL and IL versions, and reports
their results in two cooperative MMDP, with fully-observable states. It also compares the
performance of both versions of MaDDQN with inter-agent parameter sharing, and evaluates
how well the networks can generalize to new unseen states and tasks. MaDDQN is a more
general version of DDQN, which can be obtained by setting the amount of agents J = 1.

An ε-greedy exploration strategy in a multi-agent environment must be tuned to compen-
sate for the fact that agents can explore independently, which leads to a higher than desired
exploration rate. This can either be tuned by adjusting the exploration rate εj for each agent
j such that (1 − εj)J = 1 − ε, or by using the same random number generator and seed for
each agent, such that they explore or exploit simultaneously.

The JAL variant of MaDDQN is described in Algorithm 9. Agents can be run in a
distributed manner since they have full observations of the environment. These allow, even
with local perspectives, a global complete state to be computed. Each agent then calculates
the joint-action for the team, and executes its corresponding action. A single replay memory
is used to store state- and joint-action transitions. This variant does not support varying
numbers of agents without re-optimizing a new network, and scales poorly to large amounts
of agents.

The IL variant of MaDDQN is described in Algorithm 10. Agents can run in a distributed
manner even with partially-observable environments. A single replay memory can store the
state and action transitions of all agents if all agents evenly populate it with the same amount
of samples. Otherwise, it is best to use a replay memory Dj for each agent j and draw the
same amount of samples from each, such that networks are optimized with the same amount
of samples from each agent. Unlike Egorov [152], who fixes the network weights of all-but-
one agents during training and periodically distributes the learned weights to the remaining

66

Input: Learning rate η, mini-batch size k, time-step limit tmax, maximum iterations Tmax, future reward discount
factor γ, target network update period τ , replay memory D with capacity N , number of agents J , on-line network
with random weights θ, and target network with weights θ− copied from the on-line network.

1: for iteration T ← 1, Tmax do
2: Sample state sj1 for all agents j
3: for time-step t← 1, tmax do
4: Reset gradients dθ ← 0
5: for agent j ← 1, J do
6: Select random action at with probability ε, otherwise best action at ← argmaxaQ(st, a, θ)
7: end for
8: Execute action ajt for all agents j
9: Sample state sjt+1 and reward rt for all agents j

10: Store transition (sjt , a
j
t , rt, s

j
t+1) in D for all agents j

11: Sample random mini-batch of k transitions from D
12: for transition i← 1, k do
13: Compute target yi ← ri + γQ(si+1, argmaxaQ(si+t, a, θ), θ

−) with target and on-line networks
14: Compute loss Li ← (yi −Q(si, ai, θ))

2 of on-line network
15: Accumulate gradients dθ ← dθ + η ∂Li

∂θ
16: end for
17: Update on-line network weights θ ← θ + dθ
18: Update target network weights θ− ← θ every τ time-steps
19: end for
20: end for
Output: A converged network with weights θ to approximate the value function as Q(s, a, θ).

Algorithm 10: The Independent Learners variant of the Multi-agent Double Deep Q-
Networks algorithm, using ε-greedy exploration.

agents, we train all our agents simultaneously. Together with inter-agent parameter sharing,
this speeds up the training phase by a factor proportional to the amount of agents.

4.3 Evaluation

Our proposal was tested in two multi-agent environments, a Foraging task and a Pursuit
game, both described in Section 3.4.2.

The Foraging task is an environment where agents are tasked with foraging items and
bringing them back to specific places. The problem can be solved by a single robot, but
multiple agents parallelize the effort. The environment provides homogeneous agents with
full global observations. The starting positions of agents and berries are randomized across
the lower and upper parts of the map, respectively. Each agent can only carry one item at a
time, and can only release it in the base. Agents move simultaneously and collisions prevent
movement.

The Pursuit game features a team of homogeneous predators that must capture the ele-
ments of the team of semi-randomly moving prey in a toroidal grid. The prey escape from the
nearest predator, which must move to its position in order to capture it. Starting positions are
randomized across the map, and movements occur alternatively for predators and prey, but
simultaneously for members of the same team. Collisions incur penalties and randomly place
predators. The environment provides homogeneous predators with full local observations. A
single agent cannot complete the task, since predators and prey move at the same speed.
Instead, a coordinated behavior by at least two predators is necessary for each capture.

Tests were conducted on 7-unit wide maps, with J = 2 agents and two items or prey, as
shown in Figure 3.7, where tabular Q-learning can still converge to a successful policy within
reasonable time. The tests used a fully-connected neural network with two ReLU-activated

67

hidden layers of 50 nodes, a replay memory D with a capacity of N = 5000 transitions,
a discount factor γ = 0.9, a network update period τ = 500, a mini-batch size k = 32, and
learning rate η = 0.001. The exploration rate ε was annealed from 1 to 0.1 during the first 75%
steps. The Adam Optimizer [96] was used for optimization, and Glorot initialization [92] for
the weights’ initial values. The networks were trained for 200 thousand steps in the Foraging
task and 100 thousand steps in the Pursuit game. The parameters for tabular Q-learning were
a discount factor γ = 0.9 and a learning rate η = 0.01.

Tests were also conducted on 15-unit wide maps, too large for tabular Q-learning, with
J = 4 agents, and up to ten items or six prey, as shown in Figure 4.1. For these tests,
two ReLU-activated hidden layers of 250 neurons and a learning rate η = 0.0001 were used.
Training took ten times longer, and a trainer was used to guide the initial exploration phase,
by guiding the agents or handicapping the prey with some probability. We could not find
parameters for tabular Q-learning that led to successful policies.

(a) Foraging Task. (b) Pursuit Task.

Figure 4.1: An example of the 15-wide maps for the Foraging and Pursuit envi-
ronments.

4.3.1 Joint-Action Learners and Independent Learners

This section starts by comparing the performance of policies learned with the JAL and
IL approaches in both environments. Agent observations are handled as 1-hot global grids
representing the map, with dimension w × h × m, where w is the map width, h the map
height, and m the amount of entity types (obstacle, base, item/prey, agent). Agents have
|A| = 7 possible actions in the Foraging task and |A| = 5 in the Pursuit game, as described in
Section 3.4.2, and all agents receive 100 points when an item is caught or delivered, or when
a prey is caught.

Based on the DQN analysis [26], a value V = 1
T

∑T
t=1 maxaQ(st, a; θ) metric was used to

determine the learning performance for our tests, which corresponds to the average Q-value
of the best action in all T steps of a test simulation. The initial state of the test simulation

68

was chosen from a set of randomly-generated initial states, and represents a commonly found
scenario. Maintaining a fixed test simulation allows for a controlled analysis of the evolution
of the expectations of the network’s value function over-time.

In the 7-wide maps, both tabular Q-learning and MaDDQN converged to policies with
more than 99% success rate over 1000 games, and each algorithm’s value estimation V is
shown in Figure 4.2. Both IL and JAL have similar learning curves in the Foraging task,
which does not require strong coordination among agents (a single agent can complete the
task). In other words, there are no major benefits over using the more complex and restrictive
JAL approach. On the Pursuit game, however, JAL has a steeper curve, due to the strong
coordination requirements of the environment. Despite this, both algorithms converge to
policies where agents surround each prey until it is eliminated, before moving on to the next.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·105

0

50

100

150

200

250

300

350

Training Episodes

N
et
w
o
rk

v
a
lu
e
V

(a) Foraging task.

0 1 2 3 4 5 6 7 8 9

·104

0

50

100

150

200

250

Training Episodes

N
et
w
o
rk

v
a
lu
e
V

(b) Pursuit game.

Figure 4.2: Evolution of MaDDQN policies with 7-wide maps and J = 2 agents.
The plots represent the average (over three episodes) V and standard deviation
estimated by the team during the training phase, given by IL (red) and JAL (blue)
strategies with MaDDQN (solid) and tabular Q-learning (dashed).

In the 15-wide maps, the state-space was intractable for tabular Q-learning algorithms,
which did not converge to successful policies. IL MaDDQN, on the other hand, achieved
a success rate of more than 80% within the environments’ time-limits, over 1000 games.
This demonstrates that the IL variant of MaDDQN is adequate for environments with high-
dimensional state-spaces, and can correctly approximate the Q-function in such cases. How-
ever, with J = 4 agents, JAL MaDDQN was unable to learn successful policies, as the joint-
action becomes too complex at this point, due to growing exponentially with the larger amount
of agents. To achieve successful policies with the JAL variant, the amount of agents was de-
creased to J = 2, as in the 7-wide maps.

4.3.2 Generalization - Harder Tasks

While it is a reasonable assumption that MaDDQN did not explore all the possible states
while learning the policies, and can still generalize to new similar states during execution, how

69

well the policies adapt to similar, and previously unseen, tasks is also evaluated. To do so,
the team’s performance is directly measured when the task conditions are more complex.

Transfer learning approaches allow learning in one task to improve the learning perfor-
mance in a related, but different, task [203]. They have been shown to be effective at
speeding-up learning of new tasks, and a possible metric to measure their benefits is known
as jumpstarting, where the initial performance of an agent in a target task is improved by
transferring knowledge from a source task. In our case, we adapt agents on a harder task by
copying the network weights of agents trained on a simpler task, providing a more accurate
initial value estimation of each state-action pair.

The Foraging agents are evaluated on 7-wide maps, with the same amount of agents J = 2,
and more items to catch. Pursuit agents are evaluated on 15-wide maps, with J = 4 or J = 2
predators for IL and JAL, respectively, and more prey to capture. This forces Foraging agents
to coordinate better in order to efficiently navigate without colliding in a narrow map, and
forces Pursuit agents to collectively decide which prey to chase based on the positions of their
team. A Foraging episode is considered to be successful when all items are collected within
the time-limit, and a Pursuit game to be successful when all prey are captured within the
time-limit and no collisions between predators are found.

The previously learned policies’ performance were evaluated after re-training them with
a small fraction of the original training steps, 0% to 10% for each new task. For example,
the original Foraging agents were trained with 200 thousand steps on environments with two
items to forage, and re-trained with less than 20 thousand steps for environments with three
to ten items to forage. Tabular Q-learning cannot generalize to new unseen tasks, since
each new state generates a new row in the table that represents the Q-function. While deep
learning methods can estimate the Q-value for any state (although inaccurately if the network
generalizes poorly), Tabular Q-learning requires complete re-learning to explore most or all of
the new states and achieve a similar success rate.

We found that, without any re-training, policies were overfit and could not successfully
complete the new tasks, in either Foraging or Pursuit environments. However, Figure 4.3
shows that even a 10% re-training fraction allows Foraging agents to achieve an acceptable
success rate, maintaining a success rate above 80% catching ten items in the same time-limit,
in both IL and JAL variants.

Policies actually improved in some of our tests, despite the increased complexity of the
tasks. The optimal policy had not yet been learned in the original learning scenario, and only
one of the agents was picking up berries, while the other simply stood on the corner to avoid
collisions. With only a 2.5% re-training fraction, this sub-optimal strategy was kept. With
5% and 10% fractions, however, as the amount of items increased, the agents learned a better
policy where both carry items. One of the agents goes foraging while the other depositing its
item at the base, and they alternate these roles. This is shown in Figure 4.4. In other words,
despite not having an optimal policy at the start of training, the team’s policy improved when
adapting to new harder tasks.

A similar analysis was conducted in the Pursuit game, as shown in Figure 4.5. Despite
the increased map size and the larger amount of prey to capture, the IL policy with J = 4
predators maintains a 60% success rate with ten prey. On the other hand, the JAL policy
with J = 2 predators was unable to generalize, even after the prey were handicapped to move
at half the predator’s speed. With only an additional two prey, the team’s performance was
worse than IL policies with ten prey.

Out results are an indication that, while JAL policies can generalize well in simpler envi-

70

10% re-training fraction. 5% re-training fraction. 2.5% re-training fraction.

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Items

S
u
cc
es
s
R
a
ti
o

3 4 5 6 7 8 9 10
0

50

100

150

200

Items

S
te
p
s
T
a
k
en

(a) MaDDQN with the JAL variant.

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Items

S
u
cc
es
s
R
a
ti
o

3 4 5 6 7 8 9 10
0

50

100

150

Items

S
te
p
s
T
a
k
en

(b) MaDDQN with the IL variant.

Figure 4.3: Evolution of MaDDQN policies in the Foraging task with 7-wide maps
and J = 2 agents. The ratio of successful attempts over 1000 test simulations,
and the average and standard deviation of the steps taken in them, when adapting
to new Foraging scenarios with progressively more items. Policies were re-trained
with a 10% (green), 5% (yellow), and 2.5% (red) fraction of the original training
steps.

ronments, JAL is not an adequate solution in more complex environments, or environments
with more agents. The IL approach can match the performance of JAL policies in simpler
environments, and is able to achieve successful results in complex environments with larger
teams, as well as when generalizing to unseen harder environments under the same conditions.

4.3.3 Generalization - Larger Teams

Unlike the JAL counterpart, the IL approach also allows a varying number of agents in
the environment. This section thus evaluates the generalization of IL policies as the amount
of agents performing a task is increased. The 7-wide Foraging scenario was originally trained
with J = 2 agents and six items, while the 15-wide Pursuit task was trained with J = 4
predators and ten prey. As before, policies were re-trained with a fraction of the original
training steps, and our results are shown in Figure 4.6.

Because the Foraging map has a narrow gap that only allows a single agent to move through
it at a time, increasing the amount of agents just disturbs the overall team-performance. In
other words, this environment represents a task that is not easily parallelized, and the team
cannot take advantage of its distributed nature. In the Pursuit game, however, increasing
the team’s size speeds up the task completion, since more predators can capture the prey
faster, but also decrease the task’s success rate, since more collisions are now found between
agents. Contrary to the Foraging environment, a larger team is able to parallelize its efforts

71

(a) A sub-optimal where one of the agents collects all items and his teammate simply avoids
perturbing it.

(b) A better policy where agents switch roles and both alternate in collecting items.

Figure 4.4: An example of two policies in the Foraging task. After achieving a
sub-optimal policy, agents trained on harder tasks improved and converged to a
better policy than the original one.

and increase its speed when completing a distributed task.
Our results indicate that the IL variant of MaDDQN can adapt to and incorporate larger

teams and, when possible, parallelize the completion of a task. The JAL variant does not
support varying amounts of agents, since a new network architecture would be required to in-
corporate a larger joint-action. However, independent agents allows a team to achieve implicit
coordination even as the team’s size changes.

4.4 Conclusion

The Double Deep Q-Networks algorithm was formally extended to the multi-agent paradigm
with Multi-agent Double Deep Q-Networks, and this chapter described two variants based on
the Independent Learners and Joint-Action Learners techniques. Their viability for learn-
ing complex policies in multi-agent scenarios was analyzed, when compared with tabular
Q-learning, and MaDDQN is shown to be able to handle high-dimensional state-spaces that
tabular algorithms cannot. The IL variant can also scale to larger teams, unlike JAL, whose
joint-action becomes exceedingly complex.

MaDDQN is also demonstrated to generalize to new unseen tasks, with a small fraction of
the original training’s steps. The IL variant again outperforms JAL, being able to generalize
on more complex tasks, with a higher success rate. JAL policies were only able to generalize
to new tasks in the simpler maps. IL policies can also handle a varying amount of agents and
parallelize the efforts of the team on distributed tasks.

We conclude that the independent approach with implicit coordination is not only more
generalizable, but also a more realistic solution than a centralized approach. Transfer learning
techniques allow for gradually harder tasks to be learned, and IL MaDDQN policies can be
trained in simple tasks with few agents, and then easily re-trained in harder environments

72

10% re-training fraction. 5% re-training fraction. 2.5% re-training fraction.

5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Prey

S
u
cc
es
s
R
a
ti
o

5 6 7 8 9
0

50

100

150

200

Prey

S
te
p
s

(a) MaDDQN with the JAL variant, J = 2 predators.

5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Prey

S
u
cc
es
s
R
a
ti
o

5 6 7 8 9 10 11 12
0

20

40

60

80

Prey

S
te
p
s

(b) MaDDQN with the IL variant, J = 4 predators.

Figure 4.5: Evolution of MaDDQN policies in the Pursuit game with 15-wide
maps. The ratio of successful attempts over 1000 test simulations, and the average
and standard deviation of the steps taken in them, when adapting to new Pursuit
scenarios with progressively more items. Policies were re-trained with a 10%
(green), 5% (yellow), and 2.5% (red) fraction of the original training steps.

while taking advantage of larger team sizes. We do not explore whether learning a simple
task and adapting to harder ones is more efficient than simply training tabula rasa on harder
tasks. However, when hard tasks are prohibitively complex or when policies for simpler tasks
are already available, transfer learning remain a viable solution.

MaDDQN ignores the non-stationary behavior of the environment, and falls under the
Ignore category [31] of RL algorithms. It is also based on ε-greedy Q-learning, which does
not support stochastic policies. In competitive environments, equilibrium policies are often
stochastic, where each action is sampled with some probability, and MaDDQN could not
achieve an equilibrium strategy in a simple game like rock-paper-scissors. Finally, the use of
a replay memory has the undesirable effect of agents optimizing their policies with outdated
samples. In a single-agent environment, the stationary environment of an agent has no concept
of outdated samples, but in the multi-agent setting, an agent may adapt to older policies of
other agents, and this may cause divergence between learned policies. Algorithms like A3C
use multiple workers instead of a replay memory to break sample correlation, and do not suffer
from this problem.

73

10% re-training fraction. 5% re-training fraction. 2.5% re-training fraction.

3 4 5 6
0

0.2

0.4

0.6

0.8

1

Agents

S
u
cc
es
s
R
a
ti
o

3 4 5 6

100

150

200

Agents

S
te
p
s

(a) MaDDQN with the IL variant in the Foraging task with 7-wide maps and J = 2 agents.

5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Agents

S
u
cc
es
s
R
a
ti
o

5 6 7 8 9

20

40

60

Agents

S
te
p
s

(b) MaDDQN with the IL variant in the Pursuit game with 15-wide maps and J = 4 agents.

Figure 4.6: Evolution of MaDDQN policies. The ratio of successful attempts over
1000 test simulations, and the average and standard deviation of the steps taken
in them, when adapting to new scenarios with progressively larger teams. Policies
were re-trained with a 10% (green), 5% (yellow), and 2.5% (red) fraction of the
original training steps. The dashed line represents the original training’s baseline.

74

Chapter 5

Mixed-Policy Asynchronous
Q-Learning

Algorithms belonging to the Forget category adapt to non-stationary behavior of other
agents. Throughout their execution, agents learn and adjust their policies to coordinate with
other agents. Agents also continuously forget previous information regarding the evolution of
other agents’ policies. In other words, Forget algorithms do not model allies or opponents.
Algorithms often strive to achieve NE strategies, where no agent can do better by changing
its own strategy. When Forget algorithms can do so in self-play, they have the rational and
convergent properties.

Forget-category algorithms include WoLF-PHC [51], GIGA-WoLF [52], WPL [54], and
EMA-QL [53], all of which exhibit such properties, while each agent only has information
about its own actions and rewards. They keep track of Q-values and maintain a probability
distribution over possible actions. WoLF-PHC keeps track of two different policies, and has
two different policy update rates to be set a priori. GIGA-WoLF also maintains two different
policies, but only requires a single policy update rate to be defined. To respect the WoLF
principle, GIGA-WoLF updates both policies at different rates, with a constant ratio. WPL
has a variable learning rate, and allows agents to move towards the equilibrium strategy faster
than moving away from it. EMA-QL again requires two different policy update rates to be
defined, but it is shown to outperform WPL.

These mixed-policy algorithms store their values in table representations, and thus cannot
be used in high-dimensional, noisy, or continuous environments. This chapter extends these
algorithms, all of which require no knowledge about other players’ actions or rewards and have
been shown to reach equilibrium strategies in self-play, to the deep learning paradigm. Deep-
learning implementations based on Asynchronous Deep Q-Learning not only match the perfor-
mance of the original algorithms in single-state games, but can also find equilibrium strategies
in complex environments with continuous or noisy state-spaces. These findings were published
in the EPIA17 conference [56]. The source-code for all algorithms and tests was published at
https://github.com/david-simoes-93/Mixed-Policy-Asynchronous-Deep-Q-Learning.

5.1 Problem Statement

While several algorithms have been proven to converge to Nash equilibria [51, 52], many
have unrealistic assumptions, such as knowing the underlying game structure or the optimal

75

https://github.com/david-simoes-93/Mixed-Policy-Asynchronous-Deep-Q-Learning

Nash Equilibrium [204, 47], or the actions performed by other agents and their received rewards
[48, 49]. These assumptions are unrealistic in most scenarios, either due to their complexity
(where the game model is unknown or too complex) or due to conflicting goals (non-cooperative
agents will not provide reward information to others, for example). This makes it so that even
simple 2-player games are challenging.

However, algorithms have been proposed that achieve Nash equilibriums with only informa-
tion about the agents’ own actions and rewards. These include WoLF-PHC [51], GIGA-WoLF
[52], WPL [54], and EMA-QL [53]. WoLF-PHC introduced the Win or Learn Fast principle,
where different learning rates are used when the agent is winning or losing, a principle also
used by GIGA-WoLF. However, both algorithms have shown problems in more complex games,
such as Shapley’s Game [143]. WPL and EMA-QL have been shown to achieve convergence
in such games, but with some setbacks. WPL has no formal analysis and proof of conver-
gence, and EMA-QL features some difficulties learning simpler games with many actions and
asymmetric probabilities. Not only that, but since all of these algorithms derive from table-
based Q-learning, they also cannot handle high-complexity environments. These algorithms
are formally described in Section 2.5.1.

Because of their tabular nature, these algorithms do not handle high-dimensional state-
spaces, which become intractable without approximating the Q-value function. They also
do not support continuous state-space environments without specific techniques, and they do
not generalize to new unseen states. For example, in competitive Pokémon battling, there
are hundreds of possible Pokémon and thousands of attack and typing combinations in a
partially-observable environment. Despite the tabular algorithm’s rationality and convergence
properties in single-state games, none of them are adequate for complex competitive multi-
agent environments.

5.2 Proposal

The mixed policy algorithms described in the previous section are now extended to the
deep learning paradigm through the Asynchronous 1-step Q-learning (A1Q) framework, as
described in Algorithm 7. This adaptation will allow algorithms to approximate the Q-function
and their policy function in complex, continuous, or noisy state-space environments. We refer
to the deep learning extension of WoLF-PHC as PHCθ, GIGA-WoLF’s as GIGAθ, WPL’s as
WPLθ, and EMA-QL’s as EMAθ.

Both A1Q and DQN were adequate candidates for a deep Q-learning basis for the mixed
policy algorithms, which are based on tabular Q-learning. However, DQN contains an experi-
ence replay D to break its sample dependencies, while A1Q uses asynchronous updates. This
implies that DQN incurs a delay, directly proportional to the size of its experience replay, for
agents to adapt to other agents’ strategies, which can lead to diverging policies [153]. A1Q
is more complex, but due to its frequent network synchronizations, does not suffer from this
problem.

PHCθ, GIGAθ, WPLθ, and EMAθ have identical Q-value updates, and their new pol-
icy update equations can simply use the Q-values Q(st, at; θ) output by the Q-network with
weights θ for state st and action at at time-step t, instead of their tabular counterparts
Q(st, at). Each algorithm computes its new policy πt+1(st) accordingly, which is used as the
optimization target yπ for a policy network with weights θπ. While Q-networks are updated
with the mean squared error function, policy networks are optimized with the cross entropy

76

H(yπ, π(st, θπ)) between the current output policy π and the optimization target yπ. Both
PHCθ and GIGAθ additionally compute another policy π̂t+1(st), which is updated slower, and
is represented by an average policy network with weights θπ̂.

For computational efficiency, agents can use intra-agent parameter sharing and optimize a
single network with multiple output layers (the Q-value estimation and the policy), as shown
in Figure 5.1. This allows policies and Q-values to be computed in a single feed-forward
pass, and the networks to be optimized in a single backward pass. Since network updates
are often multiplied by a learning rate η, in order to use intra-agent parameter sharing, the
policy update rates δ of each algorithm are defined with respect to η. As an example, consider
a tabular mixed policy algorithm where Q-values would be updated with a learning rate x,
and the policy with an update rate y. The deep learning implementation could then have a
learning rate η = x, and a policy update rate δ = y

η , where target policies are calculated using
δ, and network optimizations multiplicatively use η to optimize their weights.

...

Hidden
layer 1

Hidden
layer NInput

layer

Value
Output
layer

Policy
Output
layer

Figure 5.1: An example of a deep neural network using intra-agent parameter
sharing, with a fully-connected architecture, N hidden layers, and two output
layers. Each node is connected to all the nodes in the next layer and both outputs
are computed with a single forwards-pass. To optimize the network, the error of
both output layers is summed and propagated in a single backwards-pass.

5.2.1 Update Rules

This section formally describes the deep asynchronous algorithms PHCθ, GIGAθ, WPLθ,
and EMAθ, as well as their new update rules.

PHCθ

For PHCθ, a game counter Ct is used instead of a state counter Ct(st), incremented at each
episode. Because table-based representations are no longer part of the algorithm, state-wide
counters are infeasible. Like WoLF-PHC, PHCθ starts by computing the target yπ̂ for the

77

average policy.

yπ̂ = π̂t(st; θ
−) +

πt(st; θ
−)− π̂t(st; θ−)

Ct+1
(5.1)

The winning or losing learning rates are chosen based on the current value estimation, and
whether the current policy πt(st; θ−) outperforms the average policy π̂t(st; θ−). The target yπ
for the current policy is then given by an added increment ∆t(st, at).

δt(st) =

{
δw if

∑
a′∈A πt(st, a

′; θ−)Qt(st, a
′; θ−) >

∑
a′∈A π̂t(st, a

′; θ−)Qt(st, a
′; θ−)

δl otherwise
(5.2)

∀a ∈ A ∆t(st, at) =

{
− δt(st)
|A|−1 if a 6= argmaxa′∈AQt(st, a′; θ−)

δt(st) otherwise
(5.3)

yπ = P

(
πt(st; θ

−) + ∆t(st)

)
(5.4)

Using these equations, PHCθ is described in Algorithm 11. Two policy networks with
weights θπ and θπ̂ are used, and two policy update rates δw and δl to adhere to the WoLF
principle. Both the policy networks and the standard Q-network have on-line and target
versions, where the target networks are updated at a slower pace. This prevents network
targets from diverging and increases the stability of converging policies.

GIGAθ

At each time-step, GIGAθ estimates a policy π−t+1(st) and the target yπ̂ for the average
policy.

π−t+1(st) = P

(
πt(st; θ

−) + δQt(st; θ
−)

)
(5.5)

yπ̂ = P

(
π̂t(st; θ

−) +
δQt(st; θ

−)

3

)
(5.6)

The algorithm then computes a learning rate δt based on whether the average policy π̂t
outperformed πt, and computes the policy target yπ.

δt = min

(
1,

||yπ̂ − π̂t(st)||
||yπ̂ − π−t+1(st; θ

−)||

)
(5.7)

yπ = (1− δt)π−t+1(st; θ
−) + (δt)yπ̂ (5.8)

Using these equations, GIGAθ is described in Algorithm 12. Like PHCθ, two policy
networks with weights θπ and θπ̂ are used, but only a single policy update rate δ is required.
The main difference between PHCθ and GIGAθ is their policy update rules.

78

Input: Global shared learning rate η, discount factor γ, target network update period τ , on-line Q-network weights θ,
target Q-network weights θ−, on-line policy network weights θπ , target policy network weights θ−π , on-line average
policy network weights θπ̂ , target average policy network weights θ−π̂ , exploration rate ε, policy update rates δw
and δl, and maximum iterations Tmax. Locally, on-line value network weights ϑ, on-line policy network weights ϑπ ,
on-line average policy network weights ϑπ̂ , and time-step counter t.

1: t← 0
2: for iteration T ← 0, Tmax do
3: Reset gradients dθ ← 0, dθπ ← 0, and dθπ̂ ← 0
4: Synchronize ϑ← θ, ϑπ ← θπ , and ϑπ̂ ← θπ̂
5: tstart ← t
6: Sample state st
7: repeat
8: Select random action at with probability ε, otherwise sample action at according to policy π(at|st, ϑπ)
9: Execute at

10: Sample state st+1 and reward rt

11: Compute target y ←
{
r for terminal state
r + γmaxaQ(st+1, a, θ−) otherwise

with target Q-network

12: Compute targets yπ and yπ̂ with WoLF-PHC’s update equations
13: Compute loss L← (y −Q(st, at, ϑ))2 of local on-line Q-network
14: Compute loss Lπ ← H(yπ , π(st, ϑπ)) of local on-line policy network
15: Compute loss Lπ̂ ← H(yπ̂ , π(st, ϑπ̂)) of local on-line average policy network
16: Accumulate gradients dθ ← dθ + η ∂L

∂ϑ

17: Accumulate gradients dθπ ← dθπ + η ∂Lπ
∂ϑπ

18: Accumulate gradients dθπ̂ ← dθπ̂ + η ∂Lπ̂
∂ϑπ̂

19: t← t+ 1
20: until terminal st+1

21: Update global on-line networks weights θ ← θ + dθ, θπ ← θπ + dθπ , and θπ̂ ← θπ̂ + dθπ̂
22: Update target networks weights θ− ← θ, θ−π ← θπ , and θ−π̂ ← θπ̂ , every τ time-steps
23: end for
Output: A converged Q-network with weights θ to approximate the value function as Q(s, a, θ), and a converged

policy network with weights θπ to approximate the value function as π(s, a, θπ).

Algorithm 11: Pseudo-code for a worker thread running PHCθ using ε-greedy exploration.

WPLθ

At each time-step, WPLθ calculates an increment vector ∆(st) based on the value function
Vt(st) and the policy learning rate δ.

Vt(st) =
∑
a∈A

πt(st, a; θ−)Qt(st, a; θ−) (5.9)

∀a ∈ A ∆t(st, a) = δ
∂Vt

∂πt(st, a; θ−)

{
πt(st, a; θ−) if ∂Vt

∂πt(st,a;θ−)
< 0

1− πt(st, a; θ−) otherwise
(5.10)

This vector is then used to compute the target yπ for the agent’s policy, where each action
must have a non-zero probability α.

yπ = P

(
πt(st; θ

−
π) + ∆t(st), α

)
(5.11)

Using these equations, WPLθ is described in Algorithm 13. Unlike the previous algorithms,
a single policy network θπ is used in conjunction with a Q-network. Of all four described
algorithms in this chapter, WPLθ is the one that requires the least hyper-parameters.

79

Input: Globally, shared learning rate η, discount factor γ, target network update period τ , on-line Q-network weights
θ, target Q-network weights θ−, on-line policy network weights θπ , target policy network weights θ−π , on-line
average policy network weights θπ̂ , target average policy network weights θ−π̂ , exploration rate ε, a policy update
rate δ, and maximum iterations Tmax. Locally, on-line value network weights ϑ, on-line policy network weights ϑπ ,
on-line average policy network weights ϑπ̂ , and time-step counter t.

1: t← 0
2: for iteration T ← 0, Tmax do
3: Reset gradients dθ ← 0, dθπ ← 0, and dθπ̂ ← 0
4: Synchronize ϑ← θ, ϑπ ← θπ , and ϑπ̂ ← θπ̂
5: tstart ← t
6: Sample state st
7: repeat
8: Select random action at with probability ε, otherwise sample action at according to policy π(at|st, ϑπ)
9: Execute at

10: Sample state st+1 and reward rt

11: Compute target y ←
{
r for terminal state
r + γmaxaQ(st+1, a, θ−) otherwise

with target Q-network

12: Compute targets yπ and yπ̂ with GIGA-WoLF’s update equations
13: Compute loss L← (y −Q(st, at, ϑ))2 of local on-line Q-network
14: Compute loss Lπ ← H(yπ , π(st, ϑπ)) of local on-line policy network
15: Compute loss Lπ̂ ← H(yπ̂ , π(st, ϑπ̂)) of local on-line average policy network
16: Accumulate gradients dθ ← dθ + η ∂L

∂ϑ

17: Accumulate gradients dθπ ← dθπ + η ∂Lπ
∂ϑπ

18: Accumulate gradients dθπ̂ ← dθπ̂ + η ∂Lπ̂
∂ϑπ̂

19: t← t+ 1
20: until terminal st+1

21: Update global on-line networks weights θ ← θ + dθ, θπ ← θπ + dθπ , and θπ̂ ← θπ̂ + dθπ̂
22: Update target networks weights θ− ← θ, θ−π ← θπ , and θ−π̂ ← θπ̂ , every τ time-steps
23: end for
Output: A converged Q-network with weights θ to approximate the value function as Q(s, a, θ), and a converged

policy network with weights θπ to approximate the value function as π(s, a, θπ).

Algorithm 12: Pseudo-code for a worker thread running GIGAθ using ε-greedy explo-
ration.

EMAθ

At each time-step, EMAθ calculates an increment vector ~∆(s). Unlike the previous algo-
rithms, a single policy network θπ is used in conjunction with a Q-network.

δt(st, at) =

{
δw if at = argmaxa′Qt(st, a′; θ−)

δl otherwise
(5.12)

~∆1(st) = (u0, u1, . . . , u|A|) where ua =

{
1 if a = argmaxa′Qt(st, a′; θ−)

0 otherwise
(5.13)

~∆2(st) = (u0, u1, . . . , u|A|) where ua =

{
0 if a = argmaxa′Qt(st, a′; θ−)

1
|A|−1 otherwise

(5.14)

~∆(st) =

{
~∆1(st) if at = argmaxa′Qt(s, a′; θ−)
~∆2(st) otherwise

(5.15)

Similarly to WPLθ, this vector is then used to compute the target yπ for the agent’s policy.

yπ = (1− δt)πt(st; θ−) + δt~∆(st) (5.16)

80

Input: Globally, shared learning rate η, discount factor γ, target network update period τ , on-line Q-network weights
θ, target Q-network weights θ−, on-line policy network weights θπ , target policy network weights θ−π , exploration
rate ε, policy update rate δ, and maximum iterations Tmax. Locally, on-line value network weights ϑ, on-line policy
network weights ϑπ , and time-step counter t.

1: t← 0
2: for iteration T ← 0, Tmax do
3: Reset gradients dθ ← 0, and dθπ ← 0
4: Synchronize ϑ← θ, and ϑπ ← θπ
5: tstart ← t
6: Sample state st
7: repeat
8: Select random action at with probability ε, otherwise sample action at according to policy π(at|st, ϑπ)
9: Execute at

10: Sample state st+1 and reward rt

11: Compute target y ←
{
r for terminal state
r + γmaxaQ(st+1, a, θ−) otherwise

with target Q-network

12: Compute targets yπ with WPL’s update equations
13: Compute loss L← (y −Q(st, at, ϑ))2 of local on-line Q-network
14: Compute loss Lπ ← H(yπ , π(st, ϑπ)) of local on-line policy network
15: Accumulate gradients dθ ← dθ + η ∂L

∂ϑ

16: Accumulate gradients dθπ ← dθπ + η ∂Lπ
∂ϑπ

17: t← t+ 1
18: until terminal st+1

19: Update global on-line networks weights θ ← θ + dθ and θπ ← θπ + dθπ
20: Update target networks weights θ− ← θ and θ−π ← θπ every τ time-steps
21: end for
Output: A converged Q-network with weights θ to approximate the value function as Q(s, a, θ), and a converged

policy network with weights θπ to approximate the value function as π(s, a, θπ).

Algorithm 13: Pseudo-code for a worker thread running WPLθ using ε-greedy explo-
ration.

Using these equations, EMAθ is described in Algorithm 14. A single policy network with
weights θπ is updated with two distinct policy update rates δw and δl.

5.3 Evaluation

Several games are chosen to demonstrate whether the deep learning implementations of
these algorithms can still converge to NE strategies. The chosen games include Matching Pen-
nies, Tricky Game, Biased Game, Rock-Paper-Scissors (RPS), and Null-Rock-Paper-Scissors
(NRPS), described in Section 3.3. These games represent a set of diverse two-player single-
state games, with different amounts of actions, both symmetric and asymmetric NE, and
different average returns.

The equilibrium strategies for Matching Pennies and Tricky Game is to play each action
with a probability of 1

2 . For the Biased Game, it is to play one action with probability 3
4 and

the other with probability 1
4 . For Rock-Paper-Scissors, the Nash equilibrium is to play each

action with a probability of 1
3 and for Null-Rock-Paper-Scissors, the equilibrium is to not play

the first action and the remaining actions with probability 1
3 .

5.3.1 Tabular Rationality and Convergence

An initial comparison is performed between the original tabular versions of WoLF-PHC,
GIGA-WoLF, WPL, and EMA-QL. The same hyper-parameters are kept for all algorithms,
with a learning rate η = 0.01, a policy update rate δ = η

100+i/2000 , the winning policy learning
rate δw = δ, and the losing policy learning rate δl = 2δw. This comparison is a fair evaluation of

81

Input: Globally, shared learning rate η, discount factor γ, target network update period τ , on-line Q-network weights
θ, target Q-network weights θ−, on-line policy network weights θπ , target policy network weights θ−π , exploration
rate ε, policy update rates δw and δl, and maximum iterations Tmax. Locally, on-line value network weights ϑ,
on-line policy network weights ϑπ , and time-step counter t.

1: t← 0
2: for iteration T ← 0, Tmax do
3: Reset gradients dθ ← 0, and dθπ ← 0
4: Synchronize ϑ← θ, and ϑπ ← θπ
5: tstart ← t
6: Sample state st
7: repeat
8: Select random action at with probability ε, otherwise sample action at according to policy π(at|st, ϑπ)
9: Execute at

10: Sample state st+1 and reward rt

11: Compute target y ←
{
r for terminal state
r + γmaxaQ(st+1, a, θ−) otherwise

with target Q-network

12: Compute target yπ with EMA-QL’s update equations
13: Compute loss L← (y −Q(st, at, ϑ))2 of local on-line Q-network
14: Compute loss Lπ ← H(yπ , π(st, ϑπ)) of local on-line policy network
15: Accumulate gradients dθ ← dθ + η ∂L

∂ϑ

16: Accumulate gradients dθπ ← dθπ + η ∂Lπ
∂ϑπ

17: t← t+ 1
18: until terminal st+1

19: Update global on-line networks weights θ ← θ + dθ and θπ ← θπ + dθπ
20: Update target network weights θ− ← θ and θ−π ← θπ every τ time-steps
21: end for
Output: A converged Q-network with weights θ to approximate the value function as Q(s, a, θ), and a converged

policy network with weights θπ to approximate the value function as π(s, a, θπ).

Algorithm 14: Pseudo-code for a worker thread running EMAθ using ε-greedy explo-
ration.

the performance of all algorithms in a varied set of single state games, since hyper-parameters
are not tuned to any specific algorithm.

Figures 5.2, 5.3, 5.4, 5.5, and 5.6 show the policy evolutions for multiple games. WoLF-
PHC shows a large variance in games with more than two actions, like RPS and NRPS. GIGA-
WoLF converges in all scenarios and appears to be the algorithm with less overall variance.
WPL also converges in all scenarios, but oscillates more than GIGA-WoLF in symmetric action
games like Matching Pennies or NRPS. EMA-QL is unable to converge to the proper NE in a
game with multiple asymmetric actions like NRPS.

Our analysis shows that both GIGA-WoLF and WPL are robust to different kinds of game
theoretic environments and achieve convergence to NE policies in self-play. The same analysis
is now conducted on the deep asynchronous versions of all the previous algorithms.

5.3.2 Deep Asynchronous Rationality and Convergence

The asynchronous mixed policy tests used 3 concurrent workers, a neural network with
two hidden layers of 150 nodes with ELU activations [91], a learning rate η = 10−4, a policy
learning rate δπ = η

200 , a winning policy learning rate δw = δπ, and a losing policy learning
rate δl = 2δw. Weights were initialized with the Glorot initializer [92] and optimized with the
Adam optimizer [96].

Figures 5.7, 5.8, 5.9, 5.10, and 5.11 show the policy evolutions for multiple games. PHCθ
now shows a large variance in most games, and its policies seem to diverge over time in
RPS and NRPS, and never actually converge in the Tricky game. GIGAθ and WPLθ exhibit
similar rational and convergent behavior. EMAθ is more unstable, remains unable to converge

82

Player 1, Action 0. Player 2, Action 0.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) WoLF-PHC.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGA-WoLF.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPL.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMA-QL.

Figure 5.2: The evolution of the policies of 2 agents in self-play on the Matching
Pennies game. Players use the tabular Wolf-PHC, GIGA-WoLF, WPL, and EMA-
QL algorithms, and plots show the probability of choosing the first action over
epochs of 25 time-steps.

83

Player 1, Action 0. Player 2, Action 0.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) WoLF-PHC.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGA-WoLF.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPL.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMA-QL.

Figure 5.3: The evolution of the policies of 2 agents in self-play on the Tricky
game. Players use the tabular Wolf-PHC, GIGA-WoLF, WPL, and EMA-QL
algorithms, and plots show the probability of choosing the first action over epochs
of 25 time-steps.

84

Player 1, Action 0. Player 2, Action 0.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) WoLF-PHC.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGA-WoLF.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPL.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMA-QL.

Figure 5.4: The evolution of the policies of 2 agents in self-play on the Biased
game. Players use the tabular Wolf-PHC, GIGA-WoLF, WPL, and EMA-QL
algorithms, and plots show the probability of choosing the first action over epochs
of 25 time-steps.

85

Player 1, Action 0. Player 1, Action 1. Player 1, Action 2.
Player 2, Action 0. Player 2, Action 1. Player 2, Action 2.

0 5000 10000 15000 20000 25000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) WoLF-PHC.

0 5000 10000 15000 20000 25000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGA-WoLF.

0 5000 10000 15000 20000 25000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPL.

0 5000 10000 15000 20000 25000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMA-QL.

Figure 5.5: The evolution of the policies of 2 agents in self-play on the RPS game.
Players use the tabular Wolf-PHC, GIGA-WoLF, WPL, and EMA-QL algorithms,
and plots show the probability of choosing actions over epochs of 25 time-steps.

86

Player 1, Action 0. Player 1, Action 1. Player 1, Action 2. Player 1, Action 3.
Player 2, Action 0. Player 2, Action 1. Player 2, Action 2. Player 2, Action 3.

0 5000 10000 15000 20000 25000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) WoLF-PHC.

0 5000 10000 15000 20000 25000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGA-WoLF.

0 5000 10000 15000 20000 25000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPL.

0 5000 10000 15000 20000 25000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMA-QL.

Figure 5.6: The evolution of the policies of 2 agents in self-play on the NRPS
game. Players use the tabular Wolf-PHC, GIGA-WoLF, WPL, and EMA-QL
algorithms, and plots show the probability of choosing actions over epochs of 25
time-steps.

87

Player 1, Action 0. Player 2, Action 0.

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

Player 0, Action 0
Player 1, Action 0

(a) PHCθ.

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

Player 0, Action 0
Player 1, Action 0

(b) GIGAθ.

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

Player 0, Action 0
Player 1, Action 0

(c) WPLθ.

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

Player 0, Action 0
Player 1, Action 0

(d) EMAθ.

Figure 5.7: The evolution of the policies of 2 agents in self-play on the Matching
Pennies game. Players use the PHCθ, GIGAθ, WPLθ, and EMAθ algorithms, and
plots show the probability of choosing the first action over epochs of 25 time-steps.

88

Player 1, Action 0. Player 2, Action 0.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) PHCθ.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGAθ.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPLθ.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMAθ.

Figure 5.8: The evolution of the policies of 2 agents in self-play on the Tricky
game. Players use the PHCθ, GIGAθ, WPLθ, and EMAθ algorithms, and plots
show the probability of choosing the first action over epochs of 25 time-steps.

89

Player 1, Action 0. Player 2, Action 0.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) PHCθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGAθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPLθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMAθ.

Figure 5.9: The evolution of the policies of 2 agents in self-play on the Biased
game. Players use the PHCθ, GIGAθ, WPLθ, and EMAθ algorithms, and plots
show the probability of choosing the first action over epochs of 25 time-steps.

90

Player 1, Action 0. Player 1, Action 1. Player 1, Action 2.
Player 2, Action 0. Player 2, Action 1. Player 2, Action 2.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) PHCθ.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGAθ.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPLθ.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMAθ.

Figure 5.10: The evolution of the policies of 2 agents in self-play on the RPS
game. Players use the PHCθ, GIGAθ, WPLθ, and EMAθ algorithms, and plots
show the probability of choosing each action over epochs of 25 time-steps.

91

Player 1, Action 0. Player 1, Action 1. Player 1, Action 2. Player 1, Action 3.
Player 2, Action 0. Player 2, Action 1. Player 2, Action 2. Player 2, Action 3.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) PHCθ.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGAθ.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPLθ.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMAθ.

Figure 5.11: The evolution of the policies of 2 agents in self-play on the NRPS
game. Players use the PHCθ, GIGAθ, WPLθ, and EMAθ algorithms, and plots
show the probability of choosing each action over epochs of 25 time-steps.

92

in NRPS and is now also heavily oscillating in the Tricky game.
Tests were repeated with a less complex neural network architecture, using only a single

hidden layer of nine nodes, and all other hyper-parameters unchanged. While most algorithms
maintained their behaviors with this simpler architecture, the GIGAθ algorithm diverged in
the NRPS game, as shown in Figure 5.12. A single state game does not require a complex
non-linear function approximator for the value or policy functions, but GIGAθ does require a
more complex network architecture than WPLθ in order to converge in this scenario.

Our analysis shows that WPLθ remains robust to different kinds of game theoretic en-
vironments and network architectures, and achieves convergence to NE policies in self-play.
GIGAθ also shows rationality and convergence properties with a sufficiently complex network
architecture. The use of learning batches can contribute to the increased instability of algo-
rithms, since updates are no longer conducted every time-step, but instead at every mini-batch
of time-steps, leading to a delayed response to opponent strategies. The non-linear approx-
imation that the neural network itself performs on the value and policy functions can also
contribute to this problem, by providing an inaccurate estimation of these functions.

5.3.3 Multi-State Environments

Deep asynchronous algorithms have been shown to handle noisy, partially-observable or
continuous state-space environments [131, 141]. Tests are now conducted on a partially-
observable variant of MazeRPS, described in Section 3.4.1, where agent observations are noisy.
Two agents are spawned and observe noisy continuous values for all cells except their oppo-
nent’s. Agents must converge and play NRPS to end the game. This variant of MazeRPS
features multiple properties that make it an adequate test bed. It features an infinite set of
observations, which is unsupported by the tabular versions of the described algorithms. All
game states have the same amount of actions, four for moving, and four for NRPS, which
simplifies network architectures. NRPS has a positive average reward, this making the game’s
final state a desirable one. Finally, MazeRPS features two distinct phases, one with an optimal
deterministic strategy where agents reach each other, and one where agents play the NRPS
game with stochastic policies. Deep asynchronous mixed-policy algorithms should be able to
achieve optimal policies in both phases of the game.

Similar hyper-parameters were used, but with two hidden layers of 150 nodes, a future
reward discount factor γ = 0.9, and the ε-annealing exploration technique, following the
scheme used originally in Mnih et al. [139], with each worker annealing the exploration rate
from 1 to one of 0.5, 0.1, 0.01 over 80% of episodes. Additional tests were also conducted with
a higher learning rate η = 10−4. The Asynchronous Advantage Actor-Critic (A3C) algorithm
[139] was also tested, using a batch size tmax = 1. It is an actor-critic algorithm that has
been shown to outperform A1Q in single-agent environments. However, despite maintaining
a probability distribution over possible actions for each state, and thus being able to converge
to a mixed policy, it was not designed for NE convergence in multi-agent learning.

The mixed policies for the final game state in both tests are shown in Figures 5.13 and
5.14. PHCθ, EMAθ, and A3C fail to converge to the NE strategies in both tests. The higher
learning rate also causes GIGAθ to catastrophically diverge. WPLθ successfully completes
the task in both cases, and converges to the NE strategy.

Once more, WPLθ is shown to be robust to hyper-parameters changes, and is able to
converge to the NE strategy with different learning rate magnitudes. GIGAθ is only able to
converge with a smaller learning rate, but WPLθ still shows a smaller variance. An analysis of

93

Player 1, Action 0. Player 1, Action 1. Player 1, Action 2. Player 1, Action 3.
Player 2, Action 0. Player 2, Action 1. Player 2, Action 2. Player 2, Action 3.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) PHCθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGAθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPLθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMAθ.

Figure 5.12: The evolution of the policies of 2 agents in self-play on the NRPS
game. Players use the PHCθ, GIGAθ, WPLθ, and EMAθ algorithms, with a single
hidden-layer of 9 nodes, and plots show the probability of choosing each action
over epochs of 25 time-steps.

94

Player 1, Action 0. Player 1, Action 1. Player 1, Action 2. Player 1, Action 3.
Player 2, Action 0. Player 2, Action 1. Player 2, Action 2. Player 2, Action 3.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) PHCθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGAθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPLθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMAθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(e) A3C.

Figure 5.13: The evolution of the policies of 2 agents in self-play on the noisy
MazeRPS game, using a learning rate η = 10−4. Players use the PHCθ, GIGAθ,
WPLθ, EMAθ, and A3C algorithms, and plots show the probability of choosing
each action over elapsed episodes.

95

Player 1, Action 0. Player 1, Action 1. Player 1, Action 2. Player 1, Action 3.
Player 2, Action 0. Player 2, Action 1. Player 2, Action 2. Player 2, Action 3.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(a) PHCθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(b) GIGAθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(c) WPLθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(d) EMAθ.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

ie
s

(e) A3C.

Figure 5.14: The evolution of the policies of 2 agents in self-play on the noisy
MazeRPS game, using a learning rate η = 10−5. Players use the PHCθ, GIGAθ,
WPLθ, EMAθ, and A3C algorithms, and plots show the probability of choosing
each action over elapsed episodes.

96

the average game length for each algorithm is shown in Figure 5.15. The average game length
is determined by deterministic policies in the first phase of the environment, where agents
must reach each other. No algorithm was able to converge to the performance of hard-coded
policies, with EMAθ showing the worst results. A3C with a learning rate η = 10−4 matched
that performance within the same amount of episodes.

0 10000 20000 30000 40000 50000 60000 70000 80000
Training Steps

1

2

3

4

5

6

7

8

Ga
m

e
Le

ng
th

PHC
GIGA
EMA
WPL
A3C
Hard-Coded

Figure 5.15: The evolution of the policies of 2 agents in self-play on the noisy
MazeRPS game, using a learning rate η = 10−5. Players use the PHCθ, GIGAθ,
WPLθ, EMAθ, and A3C algorithms, and plots show the average game length over
elapsed episodes.

Despite being biased against deterministic strategies and its lack of formal proof of conver-
gence, the GIGAθ and WPLθ extensions can converge to both pure and mixed NE strategies
in MazeRPS. WPLθ is shown to be more robust, requires less hyper-parameters (only a single
policy update rate δ), and is computationally cheaper (a single policy network is required)
than GIGAθ. However, its bias against deterministic strategies may cause it to converge
asymptotically in environments where the NE for the majority of states are pure. This is the
case of SPE, described in Section 3.5.4, where agents try to win a Pokémon battle. While
some states can exhibit stochastic NE, the majority have deterministic equilibrium decisions
(such as using the highest damaging move when a switch is no longer possible).

The GIGAθ and WPLθ algorithms are now evaluated in the SPE environment. Tests were
conducted in a complete version of SPE and in a simpler version (with only seven different

97

Pokémon types), and used 12 concurrent workers, a neural network with three hidden layers of
150 nodes with ELU activations [91], and an ε-annealing technique over 65% of episodes [139],
with other hyper-parameters unchanged. Both algorithms trained in self-play for two million
episodes, and were tested in a fixed scenario, where a trained agent in a disadvantageous
position played against a random enemy. The learning results are shown in Figure 5.16, and
compared against the best hard-coded baseline we could manually create. Both GIGAθ and
WPLθ achieve good results in the 7-type SPE, but GIGAθ converges faster and is able to
match the performance of the hard-coded baseline. In the complete version, WPLθ is no
longer able to learn adequate policies. On the other hand, GIGAθ has a slower evolution with
higher variance, likely due to the increased complexity of the environment, but still matches
the performance of the hard-coded solution.

0 500000 1000000 1500000 2000000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Hard-coded
GIGA
WPL

(a) Only 7 Pokémon types.

0 500000 1000000 1500000 2000000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Hard-coded
GIGA
WPL

(b) All 18 Pokémon types.

Figure 5.16: Results of GIGAθ and WPLθ for the SPE, in the unfair test scenario.
The plots represent the normalized score of each algorithm, trained in self-play
but tested against a random agent, over training episodes.

The fixed test scenario puts the trainer at an initial disadvantage, initially favoring the
opponent with a Fire/Normal roster, while the trainer has a Grass/Water roster. Because Fire
is effective against Grass, and Water against Fire, the trainer’s first move should be to switch
Pokémon, favoring long-term rewards. After the switch, the Water Pokémon has both Water
and Fighting attacks (effective against Fire and Normal Pokémon, respectively), and should
pick those moves with high priority. This was the strategy used by the hard-coded policy,
and the best we found during experiments with the environment. An example is shown in
Figure 5.17, demonstrating how a GIGAθ trainer behaves in the unfair scenario. The trainer
prioritizes strategic choices and exploits type advantages, by following the policy described
previously. Without any previous domain knowledge, it learned how Fire is vulnerable to
Water, Water to Grass, and Normal to Fighting, and makes strategic decisions while using
effective moves when possible.

5.4 Conclusion

This chapter described the extension of WoLF-PHC, GIGA-WoLF, WPL, and EMA-QL
to the deep learning paradigm. These mixed-policy tabular algorithms require only local agent

98

HP FIRE

GRASS
90

HPGRASS

FIRE
90

GRASS
90

FIRE
90

WATER
100

SWITCH

00.2% 00.1% 00.2% 00.1% 99.3%

HP FIRE

FIGHT
90

HPWATER

NORMAL
90

NORMAL
90

WATER
90

GRASS
100

SWITCH

00.1% 00.0% 00.0% 99.8% 00.0%

HP FIRE

FIGHT
90

HPWATER

NORMAL
90

NORMAL
90

WATER
90

GRASS
100

SWITCH

04.1% 00.1% 00.2% 95.5% 00.0%

HP NORMAL

FIGHT
90

HPWATER

NORMAL
90

NORMAL
90

WATER
90

GRASS
100

SWITCH

99.9% 00.0% 00.0% 00.0% 00.0%

HP NORMAL

FIGHT
90

HPWATER

NORMAL
90

NORMAL
90

WATER
90

GRASS
100

SWITCH

99.9% 00.0% 00.0% 00.0% 00.0%

FIGHT
90

HPWATER

NORMAL
90

NORMAL
90

WATER
90

GRASS
100

SWITCH

Figure 5.17: A GIGAθ agent’s policy in the fixed test scenario. The policy of
the agent for each state is shown below, with the chosen action highlighted. The
opponent’s Pokémon use attacks of their own type every turn, but the initial switch
gives the local agent an advantage, and it wins the battle with no casualties.

information to converge to NE policies, and a fair analysis of their original implementations is
conducted. Results show the GIGA-WoLF and WPL outperform others in a set of single-state
games, with GIGA-WoLF achieving the smallest variance.

Their asynchronous deep learning extensions no longer maintain the same behaviors. PHCθ
and EMAθ both diverge in multiple games. GIGAθ requires a higher fine-tuning of hyper-
parameters, while WPLθ is shown to be more robust. When tested on multi-state partially-
observable games, GIGAθ required smaller learning rates and its variance was larger than
WPLθ’s in MazeRPS, but it was able to outperform WPLθ in SPE. A3C, a single-agent
algorithm capable of mixed policies, oscillated around the NE strategy without converging.
GIGAθ and WPLθ outperformed other candidates overall, with WPLθ seemingly more robust
to hyper-parameters, and GIGAθ achieving better results in environments where the majority
of NE are deterministic.

WPLθ under-performs in such environments because WPL’s policy update equations are
biased against deterministic strategies. The policy update rate approaches zero in such sce-
narios, and therefore both WPL and WPLθ’s convergence speed is greatly hindered in games
where the majority of states’ optimal strategy is deterministic, which is highly undesirable.

99

100

Chapter 6

Adjusted Bounded Weighted Policy
Learner

Weighted Policy Learner (WPL) [54] is an algorithm that keeps track of Q-values and
maintains a probability distribution over possible actions. It has a variable learning rate,
and allows agents to move towards the equilibrium strategy faster than moving away from
it. However, its policy update rate is based on the agents’ policies, which approximate zero
when converging to a deterministic strategy. While the algorithm still converges to pure NE
policies in practical cases, it converges asymptotically. This causes its learning speed in games
with multiple states whose optimal strategies are pure to decrease substantially, a highly
undesirable effect.

This chapter describes an extension to the WPL algorithm, with a new update rule that will
allow the algorithm to converge faster to pure policies, where some actions are dominated by
others, while still maintaining its original behavior when converging to stochastic policies. Two
different hand-tuned approaches are analyzed and compared, and an automatically adjusted
approach is then derived from those. The proposal is compared with the original algorithm in a
wide set of game-theoretic environments, and against other state-of-the-art algorithms. These
findings were published in the RoboCup18 symposium [58]. The algorithm’s source-code and
tests were published at https://github.com/david-simoes-93/ABWPL.

6.1 Problem Statement

Despite not having a formal proof of convergence due to the non-linear nature of WPL’s
dynamics, Abdallah et al. [54] perform a numerical analysis of WPL in a 2-player 2-action
single-state game, where its equations can be simplified by defining a player’s policy π(s, a)
by a single probability. Player 1 uses the strategy πp = (p, 1 − p), while Player 2 uses the
strategy πq = (q, 1− q), and the equilibrium strategy of the game is defined by π∗ = (p∗, q∗).
The value functions Vr(p, q) and Vc(p, q), which WPL approximates with Q-values, are then

101

https://github.com/david-simoes-93/ABWPL

defined by the rewards of the game as

Vr(p, q) = r11pq + r12p(1− q) + r21(1− p)q + r22(1− p)(1− q) =

= ((r11 − r12 − r21 + r22)q + r12 − r22)p,

Vc(p, q) = c11pq + c12p(1− q) + c21(1− p)q + c22(1− p)(1− q) =

= ((c11 − c12 − c21 + c22)p+ c12 − c22).

(6.1)

The definitions of Vr(p, q) and Vc(p, q) can be simplified by using the equalities

ur1 = r11 − r12 − r21 + r22,

ur2 = r12 − r22,
uc1 = c11 − c12 − c21 + c22,

uc2 = c21 − c22,

(6.2)

thus obtaining

Vr(p, q) = (ur1q + ur2)p,

Vc(p, q) = (uc1p+ uc2)q.
(6.3)

For clarity, we refer readers to Section 2.5.1, which describes the policy update steps of
WPL. We can now calculate ∂Vt(s)

∂πt(s,a)
, seen in equation 2.9, as ∂Vr(p,q)

∂p and ∂Vc(p,q)
∂q , by

∂Vr(p, q)

∂p
= ur1q + ur2,

∂Vc(p, q)

∂q
= uc1p+ uc2.

(6.4)

The probabilities p and q of agents (and thus, their strategies) are, from equations 2.9,
6.3, and 6.4, now given by

pt+1 = pt + η(ur1qt + ur2)

{
pt if ur1qt + ur2 < 0

1− pt otherwise
,

qt+1 = qt + η(uc1pt + uc2)

{
qt if uc1pt + uc2 < 0

1− qt otherwise
.

(6.5)

The rate dp
dt and

dq
dt at which policies p and q evolve, respectively, can be found by rewriting

their equations with respect to t. While pt = p(t) and qt = q(t), their value on the next time-
step is given by pt+1 = p(t+ η) and qt+1 = q(t+ η). With this, equation 6.5 can be rewritten

102

to represent a derivative in which η → 0, thus allowing the calculation of the derivatives of p
and q with respect to t.

p(t+ η) = p(t) + η(ur1qt + ur2)

{
pt if ur1qt + ur2 < 0

1− pt otherwise
⇔

p(t+ η)− p(t)
η

= (ur1qt + ur2)

{
pt if ur1qt + ur2 < 0

1− pt otherwise
⇔

⇔ dp

dt
= (ur1qt + ur2)

{
pt if ur1qt + ur2 < 0

1− pt otherwise
,

q(t+ η) = q(t) + η(uc1pt + uc2)

{
qt if uc1pt + uc2 < 0

1− qt otherwise
⇔

q(t+ η)− q(t)
η

= (uc1pt + uc2)

{
qt if uc1pt + uc2 < 0

1− qt otherwise
⇔

⇔ dq

dt
= (uc1pt + uc2)

{
qt if uc1pt + uc2 < 0

1− qt otherwise
.

(6.6)

Given that
dp
dt
dq
dt

= dp
dq is a differentiable separable equation, it can be solved by separation

and integration of both sides of the equation.

(ur1qt + ur2)

{
pt if ur1qt + ur2 < 0

1− pt otherwise

(uc1pt + uc2)

{
qt if uc1pt + uc2 < 0

1− qt otherwise

=
dp

dq

∫
(uc1pt + uc2){

pt if ur1qt + ur2 < 0

1− pt otherwise

dp =

∫
(ur1qt + ur2){

qt if uc1pt + uc2 < 0

1− qt otherwise

dq + k.

(6.7)

Abdallah et al. [54] attempt to solve these equations in the case shown in Figure 6.1(a)
for a Matching Pennies game. Here, Player 2 starts on the equilibrium strategy and, from
T0 to T4, the strategy of Player 1 gets closer to his equilibrium strategy while Player 2 ends
on his own equilibrium strategy. If pmin1 < pmin2, or in other words, if the row player gets
closer to his equilibrium strategy from T0→ T4, then by induction, the players converge to an
equilibrium strategy in the following iterations. However, this cannot be solved in closed form,
since there are five unknowns (pmin1, pmin2, pmax, qmin, and qmax), and only four equations.

Instead, the authors numerically show that policies converge in the example in Figure
6.1(b), where pmin1 = 0.1. The primitives for the intervals T0 → T1, T1 → T2, T2 → T3, and
T3 → T4, can be calculated, since ur1q + ur2 < 0 ⇔ q < q∗ and uc1p + uc2 < 0 ⇔ p > p∗ for
this game. The plots use the actual algorithm and the marks are predicted by the theoretical
model, with an adjusted scale to match the practical values. In practice, WPL uses the
Q-function Qt(s, a) to approximate the value function Vt(s).

103

T0 T1 T2 T3 T4

qmax

qmin

q*, p*

pmax

pmin1
pmin2

(a) The general scenario used in WPL’s
analysis, divided into four time intervals.
The probability p starts at some minimum
value pmin1 and oscillates from pmax to
pmin2. The probability q starts at the equi-
librium q∗ and oscillates from qmax to qmin,
before returning to q∗.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

0.2

0.4

0.6

0.8

1

Training Steps

P
ol
ic
ie
s

(b) The evolution of the policies of the
row player (solid) and the column player
(dashed) in a Matching Pennies game, using
the original WPL algorithm.

Figure 6.1: The general scenario used in WPL’s analysis, and a theoretical and
practical example in a Matching Pennies game. The squared marks represent
the pmax and qmax values, while triangular marks represent pmin and qmin val-
ues. Simultaneously, solid marks represent pmax and pmin values and clear marks
represent qmax and qmin values.

Because agents move towards the equilibrium strategy faster than moving away from it
(which ensures WPL’s convergence property), problems are found with pure equilibrium strate-
gies, where the algorithm only converges in the limit. If the equilibrium strategy is pure, WPL
will converge to this strategy asymptotically. If an environment contains hundreds of states
with deterministic optimal strategies, all of which WPL will be converging to asymptoti-
cally, WPL’s performance is severely hindered. This happens since the policy update rate
approaches zero in these cases, due to the use of πt(s, a) to adjust the rate. In practice, the
algorithm does converge in simple games due to randomness, numerical limits, and a non-zero
exploration chance used, but the process fails to converge in complex environments.

This has a highly undesirable effect for either pure-strategy single state games, or for any
complex environment where sufficient states contain pure strategies which are, in fact, optimal.

6.2 Proposal

This chapter describes a modification to WPL’s update rule, such that the update factor
no longer approaches 0 when converging to pure strategies, thus removing its asymptotic
convergence properties. By binding the πt(a) factor used to calculate the ∆(st) increment
vector (as shown in equation 2.9), such that the original interval [0, 1] no longer approaches
0, WPL will no longer converge asymptotically.

Intuitively, we can do so by adjusting the πt(a) factor away from 0, and we consider two
options. The first, which we call Bounded WPL, keeps the interval’s mean at 0.5, and both
lower and higher bounds are changed. The second, High WPL, is based on changing the
interval’s lower bound and mean, and maintaining its upper bound at 1. The intervals are
adjusted in such a way that the original convergence properties of WPL are maintained.

104

Both variants can be numerically compared with a similar analysis to WPL’s. We consider
the example where the adjusted interval has half its original size. For Bounded WPL, πt(s, a) ∈
[0.25, 0.75], while for High WPL, πt(s, a) ∈ [0.5, 1.0].

6.2.1 Bounded WPL

From equation 2.9, the new policy update rules for Bounded WPL is

∀a ∈ A ∆t(s, a) = ηπt
∂Vt(s)

∂πt(s, a)
×

{
πt(s,a)

2 + 0.25 if ∂Vt(s)
∂πt(s,a)

< 0

0.75− πt(s,a)
2 otherwise

. (6.8)

These adjustments do not invalidate the convergence properties of the algorithm, since
we have kept the fundamental property of WPL where the probability of choosing an action
increases or decreases by a rate that decreases as the probability approaches the boundary of
the probability simplex. In other words, agents move towards their Nash Equilibrium strategy
(away from the simplex boundary) faster than they move away from it.

The differential equation of Bounded WPL can then be written as

∫
(uc1pt + uc2){

pt
2 + 0.25 if ur1qt + ur2 < 0

0.75− pt
2 otherwise

dp =

∫
(ur1qt + ur2){

qt
2 + 0.25 if uc1pt + uc2 < 0

0.75− qt
2 otherwise

dq + k.
(6.9)

This equation can be solved for the same case shown in Figure 6.1, by calculating the
definite integral for each interval, from T0 to T4.

∫ p∗

pmin1

(uc1pt + uc2)

0.75− pt
2

dp =

∫ qmax

q∗

(ur1qt + ur2)

0.75− qt
2

dq

−(2uc2 + 3uc1) ln
|2p∗ − 3|
|2pmin1 − 3|

+ 2uc1(pmin1 − p∗) =

= −(2ur2 + 3ur1) ln
|2qmax − 3|
|2q∗ − 3|

+ 2ur1(q
∗ − qmax)

(6.10)

∫ pmax

p∗

(uc1pt + uc2)

0.75− pt
2

dp =

∫ q∗

qmax

(ur1qt + ur2)
qt
2 + 0.25

dq

−(2uc2 + 3uc1) ln
|2pmax − 3|
|2p∗ − 3|

+ 2uc1(p
∗ − pmax)

= (2ur2 − ur1) ln
2q∗ + 1

2qmax + 1
+ 2ur1(q

∗ − qmax)

(6.11)

∫ p∗

pmax

(uc1pt + uc2)
pt
2 + 0.25

dp =

∫ qmin

q∗

(ur1qt + ur2)
qt
2 + 0.25

dq

(2uc2 − uc1) ln
2p∗ + 1

2pmax + 1
+ 2uc1(p

∗ − pmax)

= (2ur2 − ur1) ln
2qmin + 1

2q∗ + 1
+ 2ur1(qmin − q∗)

(6.12)

105

∫ pmin2

p∗

(uc1pt + uc2)
pt
2 + 0.25

dp =

∫ q∗

qmin

(ur1qt + ur2)

0.75− qt
2

dq

(2uc2 − uc1) ln
2pmin2 + 1

2p∗ + 1
+ 2uc1(pmin2 − p∗)

= −(2ur2 + 3ur1) ln
|2q∗ − 3|
|2qmin − 3|

+ 2ur1(qmin − q∗)

(6.13)

6.2.2 High WPL

Analogously, for High WPL, the new policy update rule becomes

∀a ∈ A ∆t(s, a) = ηπt
∂Vt(s)

∂πt(s, a)
×

{
πt(s,a)

2 + 0.5 if ∂Vt(s)
∂πt(s,a)

< 0

1− πt(s,a)
2 otherwise

. (6.14)

The differential equation of High WPL can then be written as

∫
(uc1pt + uc2){

pt
2 + 0.5 if ur1qt + ur2 < 0

1− pt
2 otherwise

dp =

∫
(ur1qt + ur2){

qt
2 + 0.5 if uc1pt + uc2 < 0

1− qt
2 otherwise

dq + k.
(6.15)

And lastly this equation can be solved for the same case, from T0 to T4.

∫ p∗

pmin1

(uc1pt + uc2)

1− pt
2

dp =

∫ qmax

q∗

(ur1qt + ur2)

1− qt
2

dq

2(uc1(pmin1 − p∗) + (uc2 + 2uc1) ln
|pmin1 − 2|
|p∗ − 2|

) =

= 2(ur1(q
∗ − qmax) + (ur2 + 2ur1) ln

|q∗ − 2|
|qmax − 2|

)

(6.16)

∫ pmax

p∗

(uc1pt + uc2)

1− pt
2

dp =

∫ q∗

qmax

(ur1qt + ur2)
qt
2 + 0.5

dq

2(uc1(p
∗ − pmax) + (uc2 + 2uc1) ln

|p∗ − 2|
|pmax − 2|

)

= 2((ur2 − ur1) ln
q∗ + 1

qmax + 1
+ ur1(q

∗ − qmax))

(6.17)

∫ p∗

pmax

(uc1pt + uc2)
pt
2 + 0.5

dp =

∫ qmin

q∗

(ur1qt + ur2)
qt
2 + 0.5

dq

2((uc2 − uc1) ln
p∗ + 1

pmax + 1
+ uc1(p

∗ − pmax))

= 2((ur2 − ur1) ln
qmin + 1

q∗ + 1
+ ur1(qmin − q∗))

(6.18)

106

∫ pmin2

p∗

(uc1pt + uc2)
pt
2 + 0.5

dp =

∫ q∗

qmin

(ur1qt + ur2)

1− qt
2

dq

2((uc2 − uc1) ln
pmin2 + 1

p∗ + 1
+ uc1(pmin2 − p∗))

= 2(ur1(qmin − q∗) + (ur2 + 2ur1) ln
|qmin − 2|
|q∗ − 2|

)

(6.19)

The results of the theoretical model and an empirical demonstration can be seen in Fig-
ure 6.2. Both variants maintain the convergence property. Bounded WPL has a slightly slower
convergence speed than the original algorithm (which is to be expected, as the convergence
speed has now been bounded to a smaller interval), but it maintains a very similar pattern
to the original algorithm. However, the High WPL variant overcompensates and thus causes
the policies to oscillate a lot more than the original algorithm, since we increased and off-set
the average policy update rate. This is a highly undesirable effect, as it may lead to policy
divergence in the learning stage.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

0.2

0.4

0.6

0.8

1

Training Steps

P
ol
ic
ie
s

(a) Bounded WPL.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

0.2

0.4

0.6

0.8

1

Training Steps

P
ol
ic
ie
s

(b) High WPL.

Figure 6.2: The evolution of the policies of the row player (solid) and the column
player (dashed) in a Matching Pennies game, using each proposed variant. The
squared marks represent the pmax and qmax values, while triangular marks repre-
sent pmin and qmin values. Simultaneously, solid marks represent pmax and pmin
values and clear marks represent qmax and qmin values.

While both update rules eliminate the asymptotic convergence property of WPL to pure
equilibria, this analysis shows that the Bounded variant outperforms the High variant when
converging to stochastic equilibria. However, the smaller interval also affects the convergence
to stochastic equilibria by making slower updates. Ideally, a mechanism to automatically
adjust this interval could provide the best of both worlds. The interval would maintain its
original size in stochastic NE games, and decrease in pure NE games.

6.2.3 Adjusted Bounded WPL

In order to automatically adjust the interval, such that scenarios with pure equilibria
converge faster, and stochastic policy scenarios are not disturbed, an update rule based on the
actions’ Q-values is proposed. Because a pure equilibrium means that one action out-values
all others, then Q-values converge such that the dominant action always has a higher Q-value
than the remaining actions. In games with mixed policies, the Q-values of actions that belong

107

to the equilibrium oscillate around the same value, based on small variations of the agents’
policies. This behavior can be observed in Figure 6.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

2

4

6

8

Training Steps

Q
-V

a
lu
es

(a) Matching Pennies.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

2

4

6

8

10

Training Steps

Q
-V

a
lu
es

(b) Coop Matching Pennies.

Figure 6.3: The evolution of Q-values for two actions of a single player in two differ-
ent games, using the original WPL algorithm. Matching Pennies has a stochastic
NE, while Coop Matching Pennies has a deterministic NE.

The Adjusted Bounded WPL (ABWPL) proposal measures the frequency at which Q-
values oscillate, and adjusts the policy update based on that. It averages the amount of steps
taken for the maximum Q-value’s action to change, and starts binding the πt(s, a) factor when
an action has remained dominant for more than that average amount. The intuition behind
this is that the Q-values usually oscillate with a decreasing period ps as policies adjust (due
to learning rates and action randomicity), and while they are oscillating, the algorithm is
converging to a stochastic policy. ABWPL does not interfere with the update rule as long as
Q-values are oscillating within the period ps, since the dominant action is expected to change
at its end.

If an action remains dominant for longer than ps, the πt(s, a) factor is narrowed until it
is a [0.5 − n, 0.5 + n] factor for all actions, where n is an arbitrarily small non-zero positive
value. At that point, ABWPL adjusts probabilities at nearly the same speed for both pure
and stochastic policies, no longer asymptotically converging to pure equilibrium solutions, and
keeping its convergence properties. Whenever an action is no longer dominant, the πt(s, a)
factor is reset to its original [0, 1], as the solution is once more expected to be a stochastic
policy.

Formally, for a state s, given the dominant action with highest Q-value ads,t, at time-
step t, with tds time-steps elapsed since the last reset (where that state’s dominant action ads,t
changed), and an expected total ps time-steps for the dominant action to be replaced, ABWPL
calculates a new bounded πbt (s, a) factor to be within a [fs,t, 1− fs,t] interval by

fs,t =

{
fs,t−1 + 0.5

ps
if ads,t = ads,t−1 and tds > ps

0 otherwise
, (6.20)

πbt (s, a) = πt(s, a)(1− 2fs,t) + fs,t, (6.21)

where the constraint ft = [0, 0.5[is enforced outside the equation. The intuition here is
to calculate the factor fs,t to decrease the policy update interval based on how long the
oscillation period ps is for state s. The factor fs,t reaches its maximum after the same action

108

has remained dominant for ps time-steps after the oscillation period has elapsed. We then
replace equation 2.9 in WPL with

∀a ∈ A ∆t(s, a) = ηπt
∂Vt(s)

∂πt(s, a)

{
πbt (s, a) if ∂Vt(s)

∂πt(s,a)
< 0

1− πbt (s, a) otherwise
. (6.22)

To calculate ps, in order to avoid noise and keep a stable and gradual evolution, we found
that a moving average filter with 2 windows and ignoring intervals where tds <

ps
2 represented a

robust approximation. Noise happens when actions have very similar Q-values, and so oscillate
very quickly. This would cause ps to decrease to a very small value, when in fact the actions
were only oscillating due to randomness in the policies. When the time taken for a dominant
action to change is too small (in our case, smaller than half of the current p), we assume
it as noise. To make ps change gradually, we average the previous and the new value, an
approach followed in other algorithms (like CMA-ES) to bind the update step. However, we
don’t assume this approximation to be the only solution, and many other methods (possibly
problem dependent) are expected to work. The algorithm is robust to different initial values
for ps. We used the minimum (and most aggressive) value ps = 1 in our tests, and larger
values simply cause the constraint fs,t to change slower, leading to a more conservative initial
adjustment of the update rate.

If fs,t = 0, the algorithm is the original WPL, and this situation occurs when there is no
single dominant action. In other words, when the policy should converge to a stochastic NE,
ABWPL maintains WPL’s behavior. On the other hand, with a pure NE, the πbt (s, a) factor
ensures that the policy updates do not decrease as the policy approximates the limit.

This proposal has increased the state-wise memory consumption of the original algorithm,
due to keeping track of several new values per state. However, we believe that the benefits of
Adjusted Bounded WPL compensate for its drawbacks, as can be seen in the following section.

6.3 Evaluation

ABWPL is now compared against WPL in a set of game-theoretic scenarios and multi-
state games, to demonstrate how the new update rule behaves in both pure and stochastic NE
environments. These include the games described in Section 3.3, as well as the grid Soccer
Kick and Soccer Keep-Away environments in Section 3.4.1. ABWPL is then compared against
other mixed-policy algorithms, to assess its relative performance and robustness, in some of
the game theoretic environments described previously.

Unless stated otherwise, plots are shown across epochs of 1000 iterations (x-axis), with an
exploration rate ε = 0.05, a learning rate η = 0.01, a policy learning rate ηπ = η/100 and a
discount factor γ = 0.9.

6.3.1 Comparing ABWPL and WPL

This section shows how Adjusted Bounded WPL behaves in comparison with the original
WPL in both stochastic and pure NE games. The results for single-state game theoretic
environments are shown in Figure 6.4. ABWPL matches the performance of the original
WPL in all stochastic NE games, and outperforms it in all pure NE games. This is the
expected behavior of the proposed policy update rule, where we speed up the convergence

109

when an action dominates others, but do not disrupt the learning process when a stochastic
equilibrium causes actions to continuously oscillate.

WPL. AB-WPL.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

P
ol
ic
ie
s

(a) Matching Pennies.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

P
ol
ic
ie
s

(b) Tricky Game.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

P
ol
ic
ie
s

(c) Biased Game.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

P
o
li
ci
es

(d) Rock Paper Scissors.

0 50 100 150 200 250 300 350 400 450 500 550
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

P
ol
ic
ie
s

(e) Null Rock Paper Scis-
sors.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

P
o
li
ci
es

(f) Coop Matching Pen-
nies.

0 5 10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

P
ol
ic
ie
s

(g) Prisoner’s Dilemma.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

P
ol
ic
ie
s

(h) Stag Hunt.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

P
o
li
ci
es

(i) Battle of the Sexes.

Figure 6.4: The evolution of the probability of playing the first action by 2 players
in several 2-player games. For games with more than 2 actions, the probabilities
of all actions are shown. The row player (solid) starts with an initial probability
p0 = 0.1 or p0 = 0.5, and the column player (dashed) with an initial probability
q0 = 0.8 or q0 = 0.5, depending on the game. The graphs represent the original
WPL algorithm (red) and Adjusted Bounded Bounded WPL (blue).

ABWPL is now compared against WPL in MazeRPS, a grid 1v1 Soccer Kick, and grid 3v2
Keep-Away Soccer. A complete match of MazeRPS consists on two players having to cross
a labyrinth, and playing a single round of Null Rock Paper Scissors. In 1v1 Soccer Kick, an
attacker carries the ball and must feint the defender in order to score. The defender’s goal is

110

to reach the attacker and predict the feint. In 3v2 keep-away soccer environment, 3 defenders
with the ball need to cooperate to keep 2 attackers from reaching it. The defenders cannot
move in one variant of the game.

The goal for agents in the MazeRPS and Soccer Kick environments is to end the game
as quickly as possible, to maximize their expected rewards. In MazeRPS, this happens due
to NRPS having a positive average reward, and in Soccer Kick, players get small penalties
at each time-step. At the end of the learning phase, both WPL and ABWPL achieved the
NE strategy and successfully complete the game. However, as we can see in Figure 6.5(a)(b),
ABWPL outperforms the original WPL algorithm in terms of game-length, since the majority
of states have deterministic optimal strategies. WPL prematurely converges in such states,
and takes much longer to complete its matches.

Defenders in the Keep-Away Soccer environments have the opposite goal, to prevent the
game from ending for as long as possible. Once an attacker reaches them, the ball is captured,
the game ends, and defenders get a heavy penalty. Once again, it can be easily seen in
Figure 6.5(c)(d) how ABWPL outperforms WPL, achieving a winning strategy in a fraction
of the training steps. ABWPL defenders quickly reach a strategy where the attackers cannot
capture the ball and the game ends only by time-step limit (5000 steps).

WPL. AB-WPL.

0.2 0.4 0.6 0.8 1 1.2 1.4

·104

50

100

150

200

Epochs

G
am

e
L
en
gt
h

(a) MazeRPS.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

·105

20

40

60

80

100

Epochs

G
am

e
L
en

gt
h

(b) Grid 1v1 Soccer Kick.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

2,000

4,000

Training Steps

G
am

e
L
en

g
th

(c) 3v2 Keep-Away (no defender move-
ment).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·106

100

101

102

103

Epochs

G
a
m
e
L
en

gt
h

(d) 3v2 Keep-Away.

Figure 6.5: The time-steps (y-axis) taken by two agents to play a complete game
across training steps and epochs (x-axis). The plots represent the original WPL
(red), and Adjusted Bounded WPL (blue).

6.3.2 Comparing Mixed-Policy Algorithms

The performance of ABWPL is also compared with WoLF-PHC, EMA-QL, and GIGA-
WoLF, other state-of-the-art stochastic search algorithms. Because all algorithms are based
on Q-learning and share similar architectures, all four are compared using the same set of

111

hyper-parameters. The parameters were chosen such that all algorithms could converge to the
NE solutions in the evaluated games.

Since the algorithms keep their own action distribution, the minimum probability of each
action is set to be equal to the exploration rate ε divided by the number of available actions.
The learning rate η affects all algorithms’ Q-values in the same way, and the discount factor γ
represents how important future rewards are. For algorithms that require two policy learning
rates (for both winning and losing situations), the losing rate is ηπl = ηπ, and the winning
rate becomes ηπw = ηπl /2. As such, the only hyper-parameter that affects each algorithm
differently is the policy learning rate ηπ. Therefore, all four algorithms are evaluated on
several magnitudes of the policy learning rate ηπ. Algorithms are given a sufficient number of
epochs in the training phase to achieve convergence, and evaluated on their final quarter of
epochs. The average error of each player’s policy is measured against their NE strategies.

ABWPL matches the performance of other state-of-the-art algorithms for a set of mixed
policy games, as can be seen in Figure 6.6. On all games except Matching Pennies, there is a
learning rate for which ABWPL outperforms all other algorithms.

WoLF-PHC. AB-WPL. EMA-QL. GIGA-WoLF.

ηπ = 10−4 ηπ = 10−5 ηπ = 10−6

−2

0

2

·10−3

R
e
w
a
r
d
E
r
r
o
r

(a) Matching Pennies, after 50 million
epochs of training.

ηπ = 10−4 ηπ = 10−5 ηπ = 10−6

−2

−1

0

1

2
·10−1

R
e
w
a
r
d
E
r
r
o
r

(b) Tricky Game, after 50 million epochs of
training.

ηπ = 10−4 ηπ = 10−5 ηπ = 10−6

−2

−1

0

1

2
·10−2

R
e
w
a
r
d
E
r
r
o
r

(c) Biased Game, after 200 million epochs
of training.

ηπ = 10−4 ηπ = 10−5 ηπ = 10−6

−5

0

5

·10−3

R
e
w
a
r
d
E
r
r
o
r

(d) RPS, after 50 million epochs of training.

Figure 6.6: Average reward error (y-axis) of WoLF-PHC (red), ABWPL (blue),
EMA-QL (green), and GIGA-WoLF (yellow) against the expected returns of the
NE strategy. The error of player 1 is shown above the 0-line, and of player 2
below, and plots are shown over different policy learning rates (x-axis).

Figure 6.7 shows the time taken for the same algorithms to converge in pure policy games.

112

ABWPL is outperformed by WoLF-PHC in most scenarios, but with very small learning rates,
WoLF-PHC did not converge to a policy in a Cooperative Matching Pennies game, since agents
could not decide which equilibrium strategy to converge to. However, ABWPL can match the
remaining algorithms’ performance, and is the only out of all four that converged to a correct
strategy in all tested magnitudes of the policy learning rate ηπ.

WoLF-PHC. AB-WPL. EMA-QL. GIGA-WoLF.

ηπ = 10−4 ηπ = 10−5 ηπ = 10−6
100

101

102

103

T
im

e-
st
ep
s
T
a
k
en

(a) Cooperative 4-action game.

ηπ = 10−4 ηπ = 10−5 ηπ = 10−6
100

101

102

103

T
im

e-
st
ep
s
T
a
k
en

(b) Coop Matching Pennies.

ηπ = 10−4 ηπ = 10−5 ηπ = 10−6
100

101

102

103

T
im

e-
st
ep
s
T
a
k
en

(c) Prisoner’s Dilemma.

ηπ = 10−4 ηπ = 10−5 ηπ = 10−6
100

101

102

103

T
im

e-
st
ep
s
T
a
k
en

(d) Stag Hunt.

Figure 6.7: Average time-steps taken (y-axis, logarithmic scale) to converge to a
pure strategy, for the policies of WoLF-PHC (red), AB-WPL (blue), EMA-QL
(green), GIGA-WoLF (yellow), over different policy learning rates (x-axis).

6.4 Conclusion

WPL has been shown to achieve convergence in complex 2-player games and in games with
up to 100 players, despite having no formal analysis and proof of convergence. However, it is
biased against deterministic strategies, and the policy update rate tends to zero in pure NE
games.

ABWPL is a WPL extension with a new update rule that allows the algorithm to converge
to both deterministic policies (where some actions dominate others) and stochastic policies,
by regulating the policy update rate based on the expected rewards for each action. Despite
the increased memory consumption, great improvements in the convergence speed are shown.
ABWPL is robust to hyper-parameter changes, maintains all the convergence properties and
speed of WPL in mixed policy games, is faster in pure policy games, and can match the
performance of other state-of-the-art mixed-policy algorithms.

113

Techniques like A3C rely on approximating the value function through an artificial neural
network. This non-linear approximator allows agents to handle both discrete and continuous
high-dimensional state-spaces, as well as to adapt to new unseen scenarios. In comparison,
some of ABWPL’s shortcomings, being a table-based algorithm, are its inability to adapt to
previously unseen states, to handle high-dimensional or continuous state-spaces.

114

Chapter 7

Asynchronous Advantage Actor
Centralized-Critic with
Communication

Partially-observable multi-agent environments feature a number of challenges for reward-
based learning algorithms. Each agent must handle all the complexities and issues that ex-
ist in a single-agent environment, including the underlying model’s complexity, the partial-
observability of the environment, or high-dimensional action-spaces. Agents must then also
handle non-stationary environments, possible information exchange between them, the credit
assignment problem, and the convergence to rational cooperative policies.

Both Independent Q-Learners and Joint-Action Learners are applicable to actor-critic
deep-learning methods, where each agent has its own actor and critic, from its own state-
action history. Independent actor-critic is straightforward, but the lack of information sharing
makes it difficult for agents to learn coordinated strategies that depend on information known
by others, as well as for an individual agent to estimate the contribution of its actions to the
team’s reward. It is also insufficient in partially-observable environments where agents must
share local information to successfully complete a task. Joint-Action actor-critic suffers from
the original problems of lack of scalability, and centralized execution.

With partially-observable environments, agents obtain observations o about the environ-
ment’s underlying state s. These observations are often incomplete or noisy, and may not allow
agents to achieve globally optimal policies. To compensate for partial observations, agents may
have to rely on other agents’ knowledge. This raises issues related with sensor fusion (how to
optimally combine the agent’s perceptions) and decision making under partial observability
(which can be an intractable problem [205]). Regardless of whether agents observe the envi-
ronment’s state or a partial observation, they can also perceive a global observation, or local
perspectives of their observations, with spatial (at different locations), temporal (arriving at
different times) and semantic (with different interpretations) differences.

Recent research has both focused on implicitly shared information while agents converge
to policies, or on explicit communication while policies are executed. Such communication
protocols can be learned tabula rasa [44, 45], hard-coded by researchers [42, 43], or derived
from symbol alphabets [109, 110]. Communication is a general and flexible approach, that
allow agents to share both low- and high-level information [37], despite being constrained
by communication restraints of the environment (e.g., distance). The transmission of local

115

information compensates for the partial observability of the environment, and helps reduce
the complexity of a challenge.

This chapter proposes Asynchronous Advantage Actor-Centralized-Critic with Communi-
cation (A3C3), a multi-agent deep actor-critic algorithm. Agents are executed independently,
but a centralized critic is used in the learning phase for agents to learn implicit coordination,
while also speeding up the learning process and increasing its robustness. The critic’s com-
plexity increases with the amount of agents in the environment, so an additional permutation
invariance technique is described to increase the critic’s scalability. Agents also learn their own
communication protocols, through which they share relevant information for other team mem-
bers, even with noisy communication channels. A3C3 is compared with other state-of-the-art
algorithms, as well as single-agent algorithms implemented with the Independent Q-Learners
approach. Tests are conducted to demonstrate the effects of learning communication, and
an analysis of the learned protocols is presented, where direct correlations between local ob-
servations (e.g., each agent’s location) and the sent messages can be seen. These protocols
allow agents to handle partially-observable environments. The effects of noise in transmitted
messages are also analyzed. A permutation invariant technique for scalability is described in
a swarm environment, and the architecture invariance of A3C3 is also shown. These findings
were partially published in the WorldCIST19 [61], IJCNN19 [62], and ROBOT19 [63] confer-
ences. They have also been submitted in the Neurocomputation journal and as an extended
publication in the ICAE and JAISCR journals. The algorithm’s source-code and tests were
published at https://github.com/david-simoes-93/A3C3.

7.1 Problem Statement

This chapter focuses on multi-agent cooperative environments with J agents modeled as
Dec-POMDP, with both homogeneous joint-rewards (where agents receive points as a team),
and cooperative heterogeneous rewards (where agents receive individual rewards but benefit
from cooperating with one another). Each agent j has local partial observations ojt of the
environment at each discrete time-step t. An observation ojt is a (usually incomplete) repre-
sentation of the environment’s state st, and can be noisy, as well as discrete or continuous.
Orthogonally, observations may also be local or global. Agent j acts independently upon the
environment, through a discrete set of actions Aj , and obtains reward rjt based on a reward
function Rj determined by the environment.

Agents must be executed in a distributed and independent manner, based solely on their
own local observations. However, during the learning phase, algorithms can take advantage
of centralized architectures, and incorporate additional information from the environment
or from the agents into their policies. This includes concatenating agent observations, or
accessing the underlying state s, for a better estimation of the value function. This additional
information is no longer available during the execution phase. The amount of agents J can
vary throughout each episode, depending on the environment (e.g., a race can initially have
three vehicle agents, but only two remain active after one finishes the track).

Agents can also share information between them through message passing. Messages
may have limited range, where agents can only communicate with geographically close team
members. Messages can also be size-limited, and agents may not be able to transmit large
sets of continuous values, but instead only single bits of information. Finally, messages may
also have target constraints, and cannot be broadcast to the entire team, but instead directly

116

https://github.com/david-simoes-93/A3C3

sent to a specific target. Not only that, but communication channels are imperfect, and
suffer from noise. Messages can be delayed or, in the worst case, lost. They can also suffer
external interference (e.g., random noise over the message’s values) or suffer from internal
jumbling (e.g., an agent receives the average of two messages, instead of receiving each message
separately and distinctly).

Deep-learning contributions in the last few years for multi-agent environments have ranged
from approaches with implicit coordination to learning communication protocols, but often
do not adhere to all these assumptions.

COMA [131] allows agents to run in a distributed manner, but its critic’s complexity is
proportional to the amount of agents in the environment, it does not support heterogeneous
reward functions, and does not use communication between agents. MADDPG [23] is similar
to COMA, and introduces a communication mechanism to handle partially-observable envi-
ronments, by formulating message passing as an additional discrete action-space. This not
only assumes a discrete communication alphabet defined a priori, but also assumes noise-
less communication. VDN [154] also uses a centralized critic, and communicates by sharing
network nodes at run-time, thus requiring centralized execution. QMIX [99] combines each
individual value function in a more complex manner, but disregards communication between
agents.

BiCNet [141] does not support distributed execution and its agents communicate by sharing
the RNN’s internal states with their hierarchical neighbors, which is not a fully decentralized
approach. CommNet [44] agents communicate by sending multiple messages at each time-
step, but CommNet outputs a joint-action, which prevents distributed execution. The authors
also assume noiseless communication between agents. DIAL [142] agents exchange discrete
messages, but authors assume perfect communication, and test their proposal in a limited
set of short-horizon environments. The applicability of DIAL to complex environments is not
described, but DIAL disables the experience replay feature, which was shown to be an essential
component of DQN [26] to achieve successful policies in complex environments like the Atari
2600 test-bed [206].

Some proposals [110, 109, 155] use a pre-determined vocabulary to communicate between
agents, which must be defined a priori, using heuristics or random processes. The algorithms
also do not allow the vocabulary to grow or otherwise change without repeating the learning
phase. Other proposals [159, 160] deviate from pure deep reward-based learning approaches,
and instead mix reward-based with supervised learning techniques. This require researchers
to provide a pre-determined solution for agents to imitate, which may introduce human bias
in the provided solutions, or may simply be impossible in complex environments.

7.2 Proposal

This chapter describes an adaptation of the A3C algorithm to the non-competitive multi-
agent paradigm. The proposal, Asynchronous Advantage Actor Centralized-Critic with Com-
munication (A3C3), requires a centralized learning phase, but supports distributed execution.
A centralized critic implicitly shares information during the learning phase (by having access
to the observations of all agents), allowing policies to robustly converge and for implicit coor-
dination to be learned. Agents communicate with continuous-valued messages through noisy
channels at each time-step, to compensate for partially-observable environments. The com-
munication protocols are learned independently for any population, tabula rasa, and improve

117

team-mates’ policies. They do not require any domain knowledge for their definition, thus
preventing researchers from having to a priori determine what or how to communicate.

Each agent is represented by an actor, a centralized critic, and an additional communica-
tion network, as shown in Figure 7.1. The actor network remains decentralized, and outputs
agent j’s action probability distribution based on its current observation ojt . The centralized
critic now outputs a value estimation based on a centralized observation Ojt , which can be an
aggregate of all agents’ local observations, or the environment’s underlying state when possi-
ble. The central critic acts as an implicit information sharing mechanism, by having access
to additional information, which makes gradient updates much more robust. The commu-
nication network outputs a message scjt sent by each agent j, which is then received by its
team members at time-step t + 1. The communication networks are optimized in order to
help agents improve their policies, by handling partially-observable domains in a cooperative
setting. Both the central critic and the communication network techniques thus improve the
coordination level of the team.

Agent j

Actor Network

Critic Network

Comm Network

Value V(Oi
j)

Policy π(oi
j,rci

j)

Message M(oi
j)

Observation oi
j

Message rci
j

Central Obs. Oi
j

Figure 7.1: The architecture of an agent j at time-step i, using three separate net-
works: a policy (or actor) network, which outputs an action probability π(oji ; rc

j
i)

(from which aji is sampled) based on a given local observation oji and received mes-
sages rcji from other agents; a communication network, which outputs an outgoing
message scji based on a given local observation oji ; and a value (or critic) network,
which outputs a value estimation based on a given centralized observation Oji .

Multiple workers asynchronously update all networks for each agent, by periodically mak-
ing local copies of the networks, using them to calculate gradients, and applying the gradients
on the global networks, as shown in Figure 7.2. A3C3 is a more general version of A3C, since
if the number of agents J = 1, there is no communication, and the centralized critic uses the
agent’s local observation, the algorithm becomes A3C. We describe the behavior of a worker
thread in Algorithm 15.

A3C3 can be horizontally scaled by increasing the amount of workers, which increases
the amount of samples and updates per unit of time, and speeds up the learning process.
Computations may also be sped up if networks with the same input use intra-agent parameter
sharing for all layers but the last one [207, 57, 59]. This technique consists on having a single
network with two output layers, instead of two separate networks. The error of both outputs
is summed to optimize the shared network. For example, if all networks take as input the
agent’s local observation and received messages (effectively making the critic decentralized),
each agent may be represented by a single network with three output layers.

If agents are homogeneous, A3C3 can also use inter-agent parameter sharing, to further
speed up the learning process. This allows the same actor, critic, or communication network to
be learned by all agents simultaneously. Since agents have different perspectives and batches of
experience, when using inter-agent parameter sharing, each agent’s mini-batch of samples will

118

Input: Globally, shared learning rate η, discount factor γ, entropy weight β, number of agents J , actor network
weights θja, critic network weights θjv , communication network weights θjc , batch size tmax, maximum iterations
Tmax, and default message value rcinitial. Locally, actor network weights ϑja, critic network weights ϑjv ,
communication network weights ϑjc, and step counter t.

1: t← 0
2: rcj0 ← rcinitial for all agents j
3: for iteration T = 0, Tmax do
4: Reset gradients dθja ← 0, dθjv ← 0, and dθjc ← 0 for all agents j
5: Synchronize ϑja ← θja, ϑ

j
v ← θjv , ϑ

j
c ← θjc for all agents j

6: tstart ← t
7: Sample observation ojt for all agents j
8: Sample or derive centralized observation Ojt for all agents j
9: repeat

10: for agent j = 1, J do
11: Calculate message scjt to send with scjt ←M(ojt , ϑ

j
c)

12: Sample action ajt according to policy π(ajt |o
j
t , rc

j
t , ϑ

j
a)

13: Map sent communication scjt into received communication rct+1, and build communication map mt
14: end for
15: Take action ajt for all agents j
16: Sample reward rjt and new observation ojt+1 for all agents j
17: Sample or derive centralized observation Ojt+1 for all agents j
18: t← t+ 1
19: until terminal ojt for all agents j or t− tstart = tmax
20: for agent j = 1, J do

21: Rj =

{
0 for terminal observationojt
V (Ojt , ϑ

j
v) otherwise

22: Lc ← 0
23: for step i = t− 1, tstart do
24: Rj ← rji + γRj

25: Value loss Ljvi ← (Rj − V (Oji , θ
j
v))

2

26: Actor loss
Ljai ← log π(aji |o

j
i , rc

j
i , ϑ

j
a)GAE(γ, 0) = (rji + γV (Oi+1, θ

j
v)− V (Oi, θ

j
v))− β ×H(π(aji |o

j
i , rc

j
i , ϑ

j
a))

27: end for
28: for step i = t, tstart + 1 do

29: Received communication loss Ljrci ←
∂Ljai
∂rc

j
i

30: end for
31: end for
32: for step i = t, tstart + 1 do
33: Map received communication loss Lrci+1 into sent communication loss Lsci using communication map mi

for all agents
34: end for
35: for agent j = 1, J do
36: for step i = t− 1, tstart do

37: Accumulate gradients dθjc ← dθjc +
∂Ljsci
∂ϑ
j
c

38: Accumulate gradients dθja ← dθja +
∂Ljai
∂ϑ
j
a

39: Accumulate gradients dθjv ← dθjv +
∂Ljvi
∂ϑ
j
v

40: end for
41: end for
42: Update network weights θja ← θja + ηdθja, θ

j
v ← θjv + ηdθjv , and θjc ← θjc + ηdθjc for all agents j

43: end for
Output: Converged centralized-critic, actor, and communication networks for each agent.

Algorithm 15: Pseudo-code for a worker thread running A3C3. Workers copy global
parameters into the local networks. They repeatedly sample the observations and rewards
for all agents and output corresponding actions and messages. Actions are taken on the
environment until a mini-batch has been gathered, or until a terminal state is reached.
Workers then compute the loss of the local networks, apply those gradients on the global
parameters, and repeat this process until convergence has been achieved.

119

Global Networks

...
Agent 0

Actor

Comm

Critic
Agent j

Actor

Comm

Critic

Worker 1

...Agent 0 Agent j
Worker n

...Agent 0 Agent j...

Environment 1 Environment n

Figure 7.2: A3C3 architecture, using n separate workers. Each worker interacts
with its own environment and its separate set of j agents. As samples are collected
in mini-batches, workers asynchronously update the global networks, and copy
those weights into their local networks.

break correlations in the network updates, in the same way multiple workers do so in A3C’s
single-agent learning. In other words, with homogeneous agents and inter-agent parameter
sharing, A3C3 can optimize agent policies with a single worker. Multiple workers speed-up the
learning process, but a single worker may be required in contexts with hardware limitations,
such as when a GPU is required by the environment but only one is available, or when using
older commodity hardware.

In the limit, if agents are homogeneous and the critic is decentralized, A3C3 can optimize a
single network (with three output layers) for all agents. However, this computational increase
comes at the cost of a more complex network being necessary to approximate multiple functions
simultaneously. It also causes agents to have homogeneous policies, since their experience is
now optimizing the same network.

7.2.1 Actor Network

The actor networks with weights θja for each agent j aggregate observations ojt and received
messages rcjt as input, and output policy π(ajt |o

j
t , rc

j
t , θ

j
a) through a softmax function. For

scalability, agents can pre-process the received messages in a number of ways, instead of
aggregating them, reducing the complexity of the network at the cost of losing information
from messages. Options include averaging the received messages, choosing (possible randomly)
a single message to receive, having a protocol where a single message is sent and received by
the team per cycle, among others. An exemplary actor network is shown in Figure 7.3, where
an agent aggregates received messages and moves north with 70% chance, or south otherwise.

Workers optimize the actor loss Ljai based on Generalized Advantage Estimation (GAE)

120

Actor Network θa
j

Observation ot
j

H
id

de
n

La
ye

r

Po
lic

y
π t

j

H
id

de
n

La
ye

r

... π (0.7 , 0.3 , 0 , 0)
Message rct

0

Message rct
J

...
for all agents except j

Figure 7.3: An exemplary architecture of agent j’s actor network. In this case, the
actor aggregates the observation and the broadcast message of all other agents as
its input. The network’s output layer then outputs a probability distribution for
agent j’s movement in four possible directions. The output layer is directly based
on the environment’s action space.

[208], the logarithm of the policy, and an entropy factor H(π(aji |o
j
i , rc

j
i , ϑ

j
a)). The advantage

estimator uses GAE(γ, 0) = (rji + γV (Oi+1, θ
j
v)− V (Oi, θ

j
v)), which leads to low variance up-

dates. The advantages are then multiplied by the logarithm of the policy log π(aji |o
j
i , rc

j
t , ϑ

j
a).

An entropy factor β determines the weight of the policy’s entropy loss H(π(aji |o
j
i , rc

j
i , ϑ

j
a))

and discourages premature convergence [209].
Agents with homogeneous action-spaces and reward functions can use inter-agent param-

eter sharing in the actor networks.

7.2.2 Centralized Critic Network

The centralized critic networks with weights θjv for each agent j use centralized observations
Ojt as input, and output expected value estimations V (Ojt , θ

j
v), as shown in Figure 7.4. This

centralized observation is environment dependent, and can be:

• Sampled as a fully-observable environment state, common to all agents. This may not
be possible in some environments;

• Derived as a fully-observable environment observation, from the computation of each
agent’s partial local observation. This requires that the concatenation of all agents’
partial observations oj can create a fully-observable observation;

• Derived as a partial observation of the environment, from the computation of each agent’s
partial local observation. This is the least restrictive option, as it makes no assumptions
on the observability of the environment.

This centralized observation Ojt can also incorporate the actions of all other agents k,∀k 6=
j, the messages received by the current agent j, or both. If actions are incorporated, then the
value function is now stationary, regardless of the policies of other agents. This technique is
used by COMA to estimate the contribution of each agent for the overall expected reward.
If the messages are incorporated, then some redundancy is added into the network, as the
messages were calculated based on local observations, which are also included in the centralized

121

observation. This redundancy causes a simpler value function to be approximated, as the critic
now has access to all agents’ complete input. However, at the same time, this increases the
input size and complexity of the network, which may offset its benefits.

Workers optimize the critic loss Ljvi based on the squared difference between the actual
returns R and the value estimation V (Sji , θ

j
v). The critic estimation bootstraps the next state’s

expected value at the end of a mini-batch, if a terminal state has not been reached.
Agents with homogeneous reward functions can use inter-agent parameter sharing in the

critic networks. A3C3 supports using the same centralized critic for all agents (following the
approach of COMA), or the more general case of a centralized critic for each agent (following
the approach of MADDPG).

Central Critic θv
j

Central Observation Ot
j

Observation ot
0

Observation ot
J

...
H

id
de

n
La

ye
r

O
ut

pu
t L

ay
er

Other Input

H
id

de
n

La
ye

r

...

Figure 7.4: An exemplary architecture of agent j’s centralized critic. In this
case, the centralized observation Ojt concatenates all agent observations as well
as some additional information from the environment. Other input architectures
are supported, each with its own advantages and requirements. If a centralized
learning phase is not supported and the environment does not provide access to
any additional information, the centralized observation Ojt takes as input solely
the agent’s local observation. This in effect creates a decentralized critic, which
has to approximate a non-stationary value function. On the opposite end of
the spectrum, if the environment does provide access to its underlying state, the
centralized observation Ojt does not require possibly redundant or noisy agent
observations, it simply becomes the complete environment state st.

7.2.3 Communication Network

The communication networks with weights θjc for each agent j use observations ojt as input,
and output messages M(ojt , ϑ

j
c). The output layer of this network defines the size and type

of the generated messages. In other words, n-channel messages are generated by a network
with an output layer of n nodes, and its activation function defines the value range of each
channel. For example, an 8-node output layer using binary activations computes single-byte
messages, as shown in Figure 7.5.

Communication constraints are environment-dependent, and can be classified based on
reliability, connectivity, parallelism, or others. Messages can be broadcast to all other agents

122

Communication Network θc
j

O
bs

er
va

tio
n

o t
j

H
id

de
n

La
ye

r

8-
no

de
, b

in
ar

y
ac

tiv
at

io
n,

M

es
sa

ge
 s

c t
j

H
id

de
n

La
ye

r

... 0110 1000

Figure 7.5: An exemplary architecture of agent j’s communication network. In
this case, the network’s output layer uses a binary activation function and has 8
nodes, generating single-byte messages. Other output architectures are supported,
including continuous valued messages. For example, a 10-node layer with tanh
activations outputs a vector with elements xi, i = 1, . . . , 10, where each element
xi → [−1, 1].

or sent to specific recipients, depending on the environment. Received messages can be av-
eraged to maintain a simpler network architecture, at the cost of losing some information.
Broadcasting messages to all other agents may lead to scalability issues with large teams. If
agents expect to send or receive a specific amount of messages based on the team size, then
the networks may not handle varying numbers of agents during execution. These communica-
tion properties are captured within a communication map, built by each worker thread, that
describes which agents sent which messages to which agents in the current batch of samples.
An undelivered messaged takes a value rcinitial for the network input layer. If agents send mes-
sages to themselves, they create a memory channel through which information from previous
states can still be accessed.

A sent message scjt is received by other agents in the next time-step as rcjt+1. Gradients
are first computed on the actor network with respect to the received messages, and is modeled
as the error of received messages Lrci+1 . Those are then applied to the sent messages (through
the communication map) as message loss Lsci , which is then minimized by optimizing the
communication network. The loss can be summed or averaged, if a sent message is received
by multiple agents, which can lead to large network updates, or steady slow ones, respectively.
Figure 7.6 shows an example where three agents broadcast messages to others. The actor error
for agents 1 and 2 is propagated into the message sent by agent 0 on the previous time-step,
and used to optimize the communication network. This makes agents optimize the messages
they send such that other agents improve their policies, thus causing agents to send relevant
information and enforcing coordination.

Because gradients of a received message rcjt+1 are propagated across the last time-step’s
communication network of agent j to optimize message scjt , the agent learns to transmit as
much relevant information as possible from its observations ojt . Information is considered rel-
evant when it improves the policies of team members, since the environments are cooperative.

123

Time-step i+1

Agent 2
 Action ai+1

2

Message smi+1
2

Observation si+1
2

Message rci+1
2

Agent 1
 Action ai+1

1

Message smi+1
1

Observation si+1
1

Message rci+1
1

Agent 0
 Action ai+1

0

Message smi+1
0

Observation si+1
0

Message rci+1
0

Time-step i

Agent 2
 Action ai

2

Message smi
2

Observation si
2

Message rci
2

Agent 1
 Action ai

1

Message smi
1

Observation si
1

Message rci
1

Agent 0
 Action ai

0

Message smi
0

Observation si
0

Message rci
0

Figure 7.6: Diagram of how broadcast communication with three agents is per-
formed across two time-steps (arrow direction), and of how gradients for the com-
munication network are propagated backwards (emphasized lines). This archi-
tecture can be extended to an arbitrary amount of agents. If messages are not
broadcast, gradients are pushed only to the corresponding message senders, based
on the built communication map.

7.2.4 Permutation Invariant Networks

As the amount of agents in the environment increases, the scalability of A3C3 is hindered
by the centralized critic. Since this network commonly aggregates observations from all agents
(although it is not necessary to), its complexity is directly proportional to the amount of agents
on the team. An additional issue, found with homogeneous teams, is that switching agents’
identifiers (and therefore the order with each each agent’s observation is fed to the critic)
should also not affect the value estimation. However, a neural network approximator is not
permutation invariant with respect to each agent’s observation. In an environment with at
least two homogeneous agents, the order with each each agent’s observation is aggregated to
the input of the network affects its value estimation. The problem is further accentuated when
the amount of agents grows to large values.

In swarm scenarios, where there are usually tens of homogeneous agents, a critic must
derive a value function V using a very large input layer, and it must also learn that agents’
inputs are permutation invariant. Receiving the positions of agents ranging from index 0, J ,
from J, 0, or from any other permutation, should output the exact same value expectation. It
is possible for algorithms to learn permutation invariant policies in MAS with a small amount
of agents simply based on randomness and on the algorithm’s ability to learn similar policies
for states where agents are in opposite locations [56, 62, 61]. With only two to four agents,
A3C3 can learn to output similar value estimations for agents in the same positions but listed
in different orders. However, once the amount of agents grows large, this becomes factorially
more difficult to learn for a network, since the amount of possible permutations P = J !.

The question then becomes how to allow a network whose input contains a set of agent-
dependent information to become permutation invariant to the order of this set. More specif-
ically, how to allow the centralized critic to ignore permutations in homogeneous agents’

124

observations. While it is possible to learn some kind of permutation invariance by feeding the
network enough data that it learns to be robust to agent permutations, it is a slow method,
and does not scale well.

A possible solution is to maintain the same network structure, but pre-process its input.
By ordering the set of agents based on their observations, the network will output the same
value estimation regardless of the original set’s order. When each agent’s observation is
1-dimensional, this is a trivial task. However, even in the simple case of a 2-dimensional
observation of (x, y) coordinates, defining a proper ordering metric can be complex. With
(x, y), agents can be ordered by the average or sum of their coordinates, their L2 norm, or by
prioritizing a coordinate and using the other to resolve ties. Different methods will likely yield
different results. If the agents’ 2-dimensional observation is not coordinates, but unrelated
values, this task becomes even more complex and entirely problem-dependent. While in some
cases is will probably be an adequate technique, it is not general enough.

This section describes a technique where the network architecture is itself permutation
invariant, which has been independently researched as Deep M-Embeddings (DME) [210].
DMEs consist on an initial network θp that extracts F features from each agent’s observation,
and then applies a permutation invariant filter on these features. From there, the remainder
of the network is permutation invariant to the order of agents and estimates the value function
as before. The feature extraction network must use the same weights θp for all agents j, in
order to maintain its permutation invariance properties, and outputs a set of features λ with
dimensions [J, F]. The permutation invariant filter is essentially an operation that reduces
the dimensionality of the feature extraction network’s output into a single vector Λ of length
F , like a mean function

Λf =

∑J
j=1 λj,f

J
, for all features f

across agent observations. Other possible functions include the maximum function

Λf = max
j
λj,f , for all features f

or the weighted softmax function

Λf =

J∑
j=1

wj,fλj,f ,with wj,f =
eβfλj,f∑J
j=1 βfλj,f

, for all features f,

where β is a set of weights, each for its corresponding feature, which is also optimized. The re-
duced vector Λ can then be used as a regular network layer for the remainder of the centralized
value network θjv. Figure 7.7 shows an example of the proposed architecture.

Popular deep learning frameworks [211, 212] do not feature DME layers, and implementing
them by hand can lead to unoptimized or incorrect code. Therefore, a simpler solution is to
take advantage of pre-existing architectures, specifically convolutional layers, to emulate the
behavior of DME. Convolutional layers use a kernel, usually with [Px, Py, C] dimensions, with
Px and Py corresponding to pixels, and C being the amount of color channels in the image.
This kernel is repeatedly slided across the input image, with a given stride, representing the
amount of pixels the kernel is slided. A stride of 1 means the kernel is moved one pixel
at a time. As the kernel is slided, it analyses small parts of the original input image, with
dimensions [Px, Py], and generates an output of depth f for each one, which corresponds to
detected features (like edges, or geometric shapes).

125

Central Critic θc
j

DMEjCentral Observation Oi
j

Features λi
0Observation oi

0

Observation oi
J Features λi

J

Permutation
Invariant

Features Λi
... ...

H
id

de
n

La
ye

r

O
ut

pu
t L

ay
er

Other Input

H
id

de
n

La
ye

r

...

Figure 7.7: The architecture of a permutation invariant Central Critic for agent
j. The critic takes as input the set of observations from all agents as well as any
other relevant information that is available from the environment. Every agent’s
observation is processed by a DME layer, which extracts a set of permutation
invariant features. These are then concatenated with the information from the
environment which did not belong to agent observations (if any) and connected
with the remainder of the layers in the critic network.

Convolutional layer implementations can be shaped to act like DME layers. If each agent
observation has a length of O, and the set of agent observations being fed to the centralized
critic has a shape of [J,O], a convolutional layer with a kernel of [1, O, 1] dimensions, with
stride 1 and depth f , will extract features from each agent observation into a vector of size
f . The set of these J vectors can then be reduced with permutation invariant functions to
create a single f -sized vector, which acts as a standard hidden layer in the network (with the
exception of being permutation invariant to the set of agent observations). This behaves like
the architecture shown in Figure 7.7, and it remains an end-to-end differentiable architecture,
which can still be fully optimized through backpropagation. This technique is adaptable
to higher dimensions, like two-dimensional pixel-based observations. Multiple convolutional
layers with non-linear activation functions can be chained as desired, to extract non-linear
features from each agent observation.

Agents’ actor networks, when their inputs are correlated with their teammates and affected
by their permutations, can also benefit from this architecture. For example, this can happen if
agents receive broadcast messages from all their teammates, or if they observe all teammates’
locations.

7.3 Evaluation

The A3C3 algorithm is evaluated in multiple environments and scenarios. Initially, a
state of the art comparison is performed, and A3C3 is tested against independent A3C and
DDPG agents without communication, an A3C3 ablation without a centralized critic, and
communication-less multi-agent algorithms (MADDPG and A3C3 without communication).
The benefits of communication are then analyzed, and how the amount of shared information
impacts the performance of a team. The learned protocols are analyzed and their meaning
is partly-inferred in the following section. Finally, the effects of noise in the communication

126

medium are tested against baselines with no noise or no communication. The advantages of
permutation invariant network architectures are then evaluated, using swarm environments
with large amounts of agents. Augmented critic-inputs are also tested with respect to how they
affect the final policies. Finally, an analysis of different network architectures is conducted to
demonstrate the robustness of A3C3 with different network shapes and sizes.

Some of the tests with three workers were conducted in a medium-range laptop without
a GPU, demonstrating how the proposed algorithm can be deployed in commodity hardware
and still achieve complex reward-based learning policies within a reasonable amount of time.
The performance of algorithms is based on the average episodic reward obtained by the team,
where better policies imply higher rewards. Accordingly, the plots shown represent the average
reward obtained by the team. Learned policies have been published at https://youtu.be/
fB71yKcP3iU.

The network architectures were determined with a grid parameter search, where config-
urations of one to three hidden layers with 10 to 120 nodes were tested, as well as ReLU,
ELU and Sigmoid activation functions, which perform the best across environments and algo-
rithms [213]. We chose one of the simplest architectures that consistently converged to proper
policies.

Networks used the Glorot initializer [92] with default parameters to compute their initial
weights, the Adam optimizer [96] with default parameters to optimize them, and an entropy
weight β = 0.01 to discourage premature convergence. For each environment, we chose the
highest learning rate η that still allowed convergence, and a future reward discount factor γ
dependent on the horizon of each scenario and its importance of future rewards. Following
reproducibility guidelines [213], our tests have been published along with our source-code at
https://github.com/david-simoes-93/A3C3, and our parameters are described in Table 7.1.

7.3.1 State of the Art Comparison

This section focuses on evaluation the performance of learned policies in multiple envi-
ronments. Teams are evaluated based on their average episodic reward, and algorithms are
given similar training parameters for a fair evaluation. A3C3 is now compared against its
possible ablations, as well A3C, DDPG, MADDPG, COMA, VDN and QMIX, all of which
are described in Section 2.5. Tests are run in the POC and MPE suites, both described in
Section 3.5.

A3C3 can be directly compared with its ablations and with A3C, due to their similarities.
The ablations consist on a variant of A3C3 without communication, where implicit coordi-
nation is learned but no information is shared, as well as a variant with communication but
without a centralized critic, henceforth called A3C2 [62]. In this ablation, each agent’s critic
takes as input its own local partial observation to approximate its value function. The same
hyper-parameters can be used across these tests, and learning curves are directly comparable.
In contrast, DDPG and MADDPG cannot use the exact same hyper-parameters, as they are
derived from different bases. Instead, the hyper-parameters proposed by Lowe et al. [23]
are used, in their described set of environments, and the average performance of the best
obtained policies (after these have converged) is used as a baseline against A3C3. Similarly,
COMA, VDN, and QMIX also use the hyper-parameters described in the PyMARL suite [214],
which is targeted at multi-agent StarCraft II. Environments were adapted to the requirements
of each implementation, by providing team-wide rewards in all environments and providing
empty-states for vehicles in the Traffic Simulator that are not active.

127

https://youtu.be/fB71yKcP3iU
https://youtu.be/fB71yKcP3iU
https://github.com/david-simoes-93/A3C3

Environment J N γ η CC x Episodes
POC Hidden Reward 4 3 0.95 10−4 20 2 2× 105

POC Traffic Simulator 40 3 0.1 10−4 1 2 1× 103

POC Pursuit 3 12 0.95 5× 10−5 10 6 1.5× 105

POC Navigation 2 3 0.95 10−4 20 4 1.5× 105

MPE Coop Navigation 3 3 0.001 10−4 10 8 2.5× 104

MPE Coop Communication 2 3 0.001 10−4 10 8 2.5× 104

MPE Coop Reference 2 3 0.001 10−4 10 8 2.5× 104

MPE Tag 3 12 0.95 10−4 10 8 5× 105

KiloBots Light 17 12 0.95 10−4 2 4 3× 105

KiloBots Join 17 12 0.95 10−4 2 4 4.5× 105

KiloBots Split 17 12 0.95 10−4 2 4 4× 105

3dSSL Passing 3 6 0.9 10−3 0 4 1.6× 103

3dSSL Keep-Away 3 6 0.9 10−3 0 4 6× 103

Table 7.1: The hyper-parameters used for the tests conducted in this section, for all
environments. This table lists the amount of agents J , the amount of workers N ,
the future reward discount γ, the learning rate η, the amount of communication
channels (CC), and the layer size modifier x. Critic and actor networks used
two fully connected hidden layers of 20x and 10x nodes activated with a ReLU
function. The communication network used a single hidden layer with 10x nodes
activated with a ReLU function, and an output layer of CC nodes, activated with
a hyperbolic tangent function. The non-received message rcinitial default value is
all zeros.

The results of A3C3 and its ablations in the POC suite, shown in Figures 7.8, demonstrate
that A3C3 outperforms all other options. The algorithm achieves stronger policies within less
time-steps and with less variance. Without communication, both A3C3 and A3C fail to
complete tasks successfully. Without the centralized critic, the learning process takes longer
and policies have much higher variance.

A3C3 is also compared with COMA, VDN, QMIX and CommNet in the POC suite, as
shown in Table 7.2. COMA, VDN, and QMIX rely on centralized critics for coordination,
and feature no communication. To compensate for that lack of information sharing, the
networks use a recurrent layer such that agents can remember information from their multiple
partial observations of the environment, and their centralized critic, like A3C3, has access
to the underlying environment state. However, COMA, VDN and QMIX cannot achieve
successful results in any of the environments. They match the performance of independent
A3C in the cooperative tasks that can be partially completed without communication. In the
Traffic Intersection simulator, the amount of agents impacts the performance of algorithms
and they are unable to learn an adequate policy. In the Pursuit game, QMIX and COMA
agents cannot overcome the partial-observability of the environment and the prey constantly
elude them. Predators are only able to learn not to collide with each other. A3C3 clearly
outperforms other state-of-the-art non-communication algorithms in all these environments.
CommNet, on the other hand, does feature communication between agents but outputs a joint-
action for the entire team. It was tested in the Hidden Reward and Navigation environments,
using both feed-forward architectures and LSTM architectures. Despite outperforming other

128

A3C. A3C2. A3C3 (No Comm). A3C3.

0 25000 50000 75000 100000 125000 150000 175000 200000
Training Episodes

0

20

40

60

80

100

Sc
or

e

(a) Hidden Reward challenge.

0 200 400 600 800 1000
Training Episodes

0

20

40

60

80

100

120

Sc
or

e

(b) Traffic Intersection simulator.

0 20000 40000 60000 80000 100000 120000 140000
Training Episodes

50

45

40

35

30

25

20

15

Sc
or

e

(c) Pursuit game.

0 20000 40000 60000 80000 100000 120000 140000
Training Episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Sc

or
e

(d) Navigation task.

Figure 7.8: Results of A3C3 for the POC suite. The plots represent the average
reward and standard deviation (over N workers) obtained by A3C, A3C2, and
A3C3 (with and without communication), over training episodes.

options, aside from A3C2 and A3C3, in the Navigation environment, it was unable to achieve
successful policies in either.

A3C3 either outperformed or matched our heuristic baselines. These baselines were achieved
with a hard-coded centralized controller that output a joint-action for the entire team, with
access to all agent observations. In the Traffic Simulator and Navigation environments, which
require little map exploration, A3C3’s behavior closely follows the baseline. In the Hidden
Reward and Pursuit environments, A3C3 optimized a better map exploration policy than the
baseline, and completed the challenges faster, thus achieving a higher score.

Tests are now conducted on A3C, A3C3, DDPG, and MADDPG, on the MPE suite. While
this section summarizes each environment, the reader is referred to Lowe et al. [23] for further
information. All environments except the Tag challenge provide instant progressive rewards,
so a future reward discount factor γ = 0.001 is used in these for simplicity. MADDPG agents
integrate communication as an additional action-space with a predetermined vocabulary in
these environments.

129

A3C A3C2 A3C3 Heur. COMA PPO QMIX VDN CommNet
POC H.R. 24 67 84 71 14 27 19 19 21
POC T.S. -93 -16 -14 -13 -257 -122 -255 -259 -

POC Pursuit -42 -19 -19 -27 -50 -50 -50 -44 -
POC Nav. 0.94 1.97 1.99 2 0.68 0.93 0.38 0.92 1.22

Table 7.2: Comparison of multiple algorithms and a heuristic baseline for the
tested environments. The average reward (over 100 test runs) obtained by the
team after each algorithm trained for the amount of episodes shown in Table 7.1.
Each algorithm tries to maximize the obtained reward, and the best results are
shown in bold. A3C3 is able to match or surpass all other algorithms in all
environments.

Cooperative Navigation Cooperative Communication
Average Distance # Collisions Average Distance Target Reached

A3C2 0.219 1.223 0.007 99.6%
A3C3 0.162 1.245 0.006 99.9%

MADDPG 1.767 0.209 0.133 84.0%
DDPG 1.858 0.375 0.456 32.0%

Table 7.3: Results of algorithms for Cooperative Navigation and Cooperative
Communication environments.

Initially, the performance of policies in two cooperative environments with communication
is evaluated: the Cooperative Communication environment, where one agent behaves as a
speaker, and informs a listener agent of which of three targets is his; and a Cooperative
Navigation environment, with three agents, where these need to cover all the targets available.
The performance of teams on the latter environment is given by r =

∑L
l −dl − C, where L

is the total amount of landmarks, dl is the minimum distance of each landmark l to any
agent, and C is the amount of collisions on the environment. The results are shown in
Table 7.3. In the Cooperative Navigation environment, A3C3 achieves smaller distances, but
more collisions, maximizing the rewards obtained by agents. In Cooperative Communication,
A3C3 can learn policies that are more frequently successful and also achieve shorter distances
to the target positions than DDPG and MADDPG. Therefore, for both these environments,
A3C3 outperforms MADDPG and DDPG in terms of average episode reward.

Algorithms are now tested in the Cooperative Reference and Tag tasks from MPE, and
evaluated based on their average obtained reward. Since Tag has competing teams, the oppo-
nents used the same static policy previously learned with MADDPG in self-play.

In Cooperative Reference, agents know each other’s target landmarks and must commu-
nicate this information to each other in order to find their own targets. The Tag challenge is
similar to the Pursuit environment, but the observation space is continuous and map vision is
global. Predators learned to catch a prey, pre-trained with MADDPG, and able to move at
twice the predators’ speed.

The results, shown in Figure 7.9, demonstrate the evolution of policies learned by A3C
and A3C3 against MADDPG baselines, trained under the same conditions until convergence
was achieved. A3C3 agents completed both the proposed tasks and greatly outperformed
MADDPG, while A3C was unable to do so in Cooperative Reference, which required commu-

130

nication.

0 5000 10000 15000 20000
Training Episodes

200

150

100

50

Sc
or

e

A3C
A3C2
A3C3
MADDPG

(a) Cooperative Reference.

0 100000 200000 300000 400000 500000
Training Episodes

0

10

20

30

40

50

Sc
or

e

A3C
A3C2
A3C3
MADDPG

(b) Tag Challenge.

Figure 7.9: Results of A3C, A3C3, and MADDPG for the tested environments.
The colored plots represent the average reward and standard deviation (over N
workers) obtained by A3C and A3C3 agents, and the dashed plot represent MAD-
DPG agents’ average reward, over training episodes.

Finally, A3C3, A3C and MADDPG teams are also evaluated after learning policies through
self-play. In this case, the Tag task is used as a competitive environment, and each algorithm
trains both teams until policies stabilize. The actual average reward obtained by the predato-
rial team for each algorithm has no meaning, since its performance depends on its opponent’s
strategy. Weak predators may obtain higher rewards against weak prey than optimal preda-
tors against strong prey. Table 7.4 shows an analysis of policies learned by A3C3 and A3C
against those learned by MADDPG. Surprisingly, A3C has the best predators against MAD-
DPG, while A3C3 has the best prey. A deeper analysis revealed this is due to overfit policies
learned by A3C3, which made A3C3 predators less flexible to different opponents.

A more intuitive way of analyzing each algorithm’s performance is to compare the scores
of each algorithm when the teams are reversed. Predators try to maximize their own score,
catching the prey as often as possible yields points. Prey try to minimize the predators’
score, by not getting caught, awarding no points to predators. An algorithm that achieved
perfect policies would earn maximum points when playing as Predators, and zero points when
playing as Prey. Calculating the difference of points by the Predator team, for A3C and A3C3
against MADDPG, shows that A3C3 achieves the highest difference, 15 points, and therefore
outperforms A3C.

7.3.2 Effects of Communication

Figure 7.10 shows the policy evolution of A3C3 across training episodes of the team,
applied to the proposed suite of environments. Different amounts of communication channels
(CC) are tested, demonstrating how explicitly sharing information with learned protocols can
also improve the agent policies. The CC represent the width of the communication network’s
output layer and the length of sent messages. The communication network’s output layer is
activated with a hyperbolic tangent function, such that each CC outputs a continuous value
[−1, 1].

131

A3C A3C3
Predator Prey Predator Prey

MADDPG 144.66 141.37 123.27 108.06
Score Difference 3 15

Table 7.4: The average score of predators in the Tag environment when pitting
teams trained with different algorithms against a team trained with MADDPG.
Algorithms try to maximize their score when acting as the Predator team, and
minimize their score when acting as Prey.

For the Hidden Reward challenge, shown in Figure 7.10(a), without communication, the
average reward stagnates around 30, since agents cannot share the reward zone’s position,
and thus resort to random exploration to find it. However, with a single CC, a better policy
can immediately be found. This continuous channel helps reduce the area of exploration, and
allows the policy to greatly improve. With multiple channels, agents obtain an average reward
of 85, and as we increase the amount of channels up to twenty, the speed at which the policy
is found also increases. Agents learn to coordinately explore, and to alert team-mates when
the reward has been found, which lets the team converge on it.

In Figure 7.10(b), communication is crucial to achieve a decent policy in the Traffic Simu-
lator, where traffic flows easily and without collisions. We estimate the quality of traffic flow
by the amount of intersection collisions, where two vehicles intend to follow the same path
try to cross the intersection simultaneously, and the amount of intersections stops, where a
vehicle at the intersection does not move (possibly to avoid a collision). With no communica-
tion, the total average reward for all agents is 60, since agents cannot communicate whether
they have to turn or not, which leads to large traffic jams, and agents randomly colliding,
with an average of 4 collisions and 95 stops per episode. A single CC is sufficient to achieve a
policy where vehicles adhere to traffic rules and agree on who should advance at intersections,
achieving a total average reward of 100, an average of 0.5 collisions, and 15 stops per episode.
Interestingly, agent populations learn different communication protocols, signaling either their
intent to turn or to move forward, depending on the randomly initialized weights.

Regarding the Pursuit game, Figure 7.10(c) shows how the lack of communication leads to
underperforming and unstable policies, which obtain an average reward of −35. Analysis of
the policy’s behavior and of the average time taken to complete an episode shows the majority
of time-steps are wasted while a single predator chases a prey, until another predator randomly
crosses its path. With at least one CC, predators can now signal that a prey has been spotted,
and they can converge on it. Through communication, A3C3 predators coordinate to obtain
an average reward of −20, and converge to more stable policies.

In the Navigation task, Figure 7.10(d) shows that, without communication, no suitable
policy is found, since agents cannot share their position, resort to pure chance to cover all
the beacons, and obtain an average reward of 1.25. Agents try to cover both beacons simul-
taneously and end up failing the task. However, communication allows agents to coordinate
with one another, and while a single CC does not allow enough information to be conveyed,
multiple channels lead to optimal policies with an average reward of 2 (the maximum possible
reward obtainable). Agents learn to assign tasks to one another, and distribute themselves
accordingly.

For all the proposed environments, A3C3’s communication techniques allow a team of

132

No Comms. 1 CC. 2 CC. 5 CC. 10 CC. 20 CC.

0 25000 50000 75000 100000 125000 150000 175000 200000
Training Episodes

0

20

40

60

80

100

Sc
or

e

(a) Hidden Reward challenge.

0 200 400 600 800 1000
Training Episodes

0

20

40

60

80

100

120

Sc
or

e

(b) Traffic Intersection simulator.

0 20000 40000 60000 80000 100000 120000 140000
Training Episodes

50

45

40

35

30

25

20

15

Sc
or

e

(c) Pursuit Game.

0 20000 40000 60000 80000 100000 120000 140000
Training Episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Sc

or
e

(d) Navigation Environment.

Figure 7.10: Results of A3C3 with different CC for the tested environments. The
plots represent the average reward and standard deviation (over N workers) ob-
tained by A3C3 with 0 to 20 CC, over training episodes.

agents to complete them. Policies and communication protocols are learned simultaneously,
tabula rasa, and demonstrate that information sharing is a tool that can help compensate
for local partial-observability of the environment. As more information is transmitted (by
increasing the amount of CC), the team’s performance increases until the transmitted infor-
mation is sufficient to achieve successful policies. The learned communication protocols are
not easily translated into human-readable protocols. The simpler ones can be easily deduced
(like transmitting whether a vehicle intends to turn or not), but with over five channels, most
protocols require a non-trivial analysis.

7.3.3 Communication Protocols

This section analyses the learned communication protocols in the partially-observable suite.
While the protocol may not be fully understood by humans, it is possible to extract some
interesting conclusions on what agents are actually communicating and how those messages

133

can be interpreted by teammates.
For easier analysis, we convert the protocol channels into colors (each channel representing

one of three RGB values composing a pixel). For example, a 20-channel protocol can be
represented in seven pixels, the last of which has no blue component.

(a) Reward zone not found. (b) Reward zone found.

Figure 7.11: Color-coded 20-channel communication protocol learned in the Hid-
den Reward environment. Messages are arranged geographically, representing an
agent’s output message in the edges and center of the map. Figures exemplify
messages sent when (a) the Reward zone has not yet been found and (b) the
agent has found it and is signaling its position.

Figure 7.11 shows a protocol learned in the Hidden Reward environment. Nine messages
are shown and arranged geographically, representing the message an agent outputs in a cor-
responding location on the map. For instance, the center message is the message sent by an
agent to its teammates when at the center of the map. The policy learned by the team con-
sisted on agents forming a vertical line and moving across the X axis to explore the map. The
learned communication policy facilitates this by having distinct patterns across the Y axis, so
that agents can clearly understand which rows are being explored. The differences on the X
axis are more subtle, but are noticeable enough that agents can align in the proper formation
during exploration. Figure 7.11 also shows a clear difference between the exploration protocol
(a) and the exploitation protocol (b). This difference represents the alert signal agents emit
when the reward zone has been found. When receiving an alert message, agents know to
converge to the sent coded-coordinates, instead of maintaining their exploration protocol.

Figure 7.12 shows the evolution of two protocols learned in the Traffic environment. Both
populations learn to clearly distinguish the intention of turning or going forward. Interestingly,
different populations learn opposite protocols, where (a) agents signal their intention of going
forward, and (b) agents signal their intention of turning.

Figure 7.13 shows a protocol learned in the Predator/Prey environment. Messages are
shown and arranged geographically, representing the message an agent outputs when a prey
is found at a corresponding location in its local observation, while the agent is at the center
of the map. The center position is where the predator, and no prey can be there (it would be
captured instead). The policy learned by the team shows distinct patterns for each location,
which alerts other predators to the prey’s location. At this point, predators then converge and
surround the prey until it is captured. This effectively allows agents to handle the partial-
observability of the environment.

Figure 7.14 showcases, for the Navigation environment, the difference between the initial
random protocol that agents use, and the final protocol that is used after policies converge.

134

0 50 100 150 200 250 300
Training episodes

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ch
an

ne
l V

al
ue

Turn
Forward

0 50 100 150 200 250 300
Training episodes

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ch
an

ne
l V

al
ue

Turn
Forward

Figure 7.12: The evolution of two separate 1-channel communication protocols
learned in the Traffic Simulator environment, using two separate agent popula-
tions. The plots represent the output message’s single channel value across train-
ing episodes, when two agents stand at an intersection. The values are averaged
over possible intersection situations (vehicles behind or in front of the agent), and
split based on whether the agent intends to turn or move forward.

Figure 7.13: Color-coded 10-channel communication protocol learned in the
Predator/Prey environment. Messages are arranged geographically, representing
an agent’s output message when a prey is found in the corresponding location of
its local observation.

Initially, each channel behaves without much correlation regarding the agent’s location. In
other words, agents cannot properly decide which agent covers which beacon, as they cannot
interpret the other agents’ locations from their messages. However, the protocol evolves in a
way that agent coordinates can be extracted from their sent messages. When convergence is

135

0 2 4 6 8 10 12 14
Agent's X Coordinate

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ch
an

ne
l V

al
ue

(a) Random initial protocol.

0 2 4 6 8 10 12 14
Agent's X Coordinate

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ch
an

ne
l V

al
ue

(b) Learned protocol.

Figure 7.14: The 20-channel communication protocol in the Navigation environ-
ment, (a) before and (b) after convergence has been achieved. The plots represent
the average value of each channel in a message as the agent’sX coordinate changes.

achieved, some channels have very obvious correlations with the X coordinate of the agents’
locations (and a similar behavior is seen for the Y coordinate). This in turn allows agents to
cooperate and coordinate their coverage of the beacons.

7.3.4 Communication Noise

This section analyses the effects of induced noise in the messages exchanged by agents,
against a noiseless communication baseline, and a policy with no communication at all. Three
major types of noise are considered:

• Loss - Covering messages that are lost, sent messages have a chance Ploss of not being
delivered. This also covers delays in messages, where a delayed message is considered to
be lost.

• Noise - Covering external interference in received messages, as these are continuous-
valued vectors. Gaussian noise N (0, Vnoise) is added to these values.

• Jumble - Covering internal interference in messages, received messages have a chance
Pjumble of having been mixed with others. Instead of receiving the original message, that
message is instead a sum of all received messages, and there is no indication to the agent
whether the message has been jumbled or not.

Each effect is tested individually, as well as all three simultaneously (shown as "All").
Figure 7.15 shows the effects of disturbing the communication channels of the teams. For all

environments, communication can be robust to both noisy interference and jumbled messages,
as they allow some non-negligible form of coordination. Message loss has the greatest impact
on the performance of the team, as it necessarily approximates the team’s performance to one
without communication. In the Traffic Simulator, for example, losing messages at intersections
forces agents to wait for that turn even if they have priority.

136

Hidden Reward Navigation Traffic Pursuit

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Loss
Noise
Jumble
All

Figure 7.15: Results of the effects of noise for multiple environments. The plots
represent the average reward and standard deviation (over N workers) obtained
by agents at the end of the training phase, normalized between the average reward
with no noise and the average reward with no communication.

In general, noise makes policies slower to learn, and decreases their overall performance.
However, even with all noise types enabled, cooperation is still achieved in all environments,
and results are better than policies with no communication at all.

7.3.5 Swarms and Permutation Invariance

This section describes the tests conducted to evaluate the scalability of A3C3 with large
teams in the KiloBots environment, described in Section 3.4.3. The continuous action-space
of the KiloBots is discretized into a simple set of actions, including rotation, stopping and
moving forward. Regarding communication, only two CC are used, and messages are not
broadcast to the entire team, but instead sent to the two closest agents.

The performance of teams is evaluated by comparing different methods to handle the large
amount of agents. Tests include an unordered method, with the standard fully connected A3C3
architecture used on other environments; an ordered method, where agent observations are
ordered by an average of their X and Y coordinates; the mean, max, and softmax DME
methods for permutation invariance through convolutional architectures.

Figure 7.16 shows the evaluation conducted on all five architectures and on all three
scenarios. The analysis of the performance of the teams shows that all architectures can
converge to successful solutions. In other words, even with a large amount of states, the
centralized critic can learn an accurate value estimation for the team. Pre-processing and
ordering the input helped in two of the three scenarios, which further demonstrates that it
is not a generally applicable solution. However, the MDE methods accelerated the learning
phase by a large amount in all scenarios, and shortened the time taken for the teams to achieve
optimal policies. The mean MDE shows the best overall results, being the fastest in most cases
and simpler than the softmax MDE.

137

Unordered. Ordered. Max. Mean. Softmax.

0.5 1.0 1.5 2.0 2.5 3.0
Training Steps 1e5

0

20

40

60

80

100

120

140

Sc
or

e

(a) Light Task.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Training Steps 1e5

0

10

20

30

40

50

60

70

Sc
or

e

(b) Join Task.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Training Steps 1e5

10

15

20

25

30

35

Sc
or

e

(c) Split Task.

Figure 7.16: The evolution of policies in the three tasks of the KiloBots environ-
ment. The plots represent the average reward and standard deviation (over N
workers) obtained by the team across training steps, using different architectures
to handle permutations in the Centralized Critic.

7.3.6 High-Level Strategy Learning

This section describes the tests conducted in the 3dSSL framework, described in Sec-
tion 3.5.3, using the 3D Soccer Simulator with the FCPortugal3D team. A sub-set of FCPor-
tugal3D’s behaviors was used, such that A3C3 learns a high-level policy that takes advantage
of the low-level behaviors already existing in the team. A learning layer was implemented on
top of the FCPortugal3D agent such that behaviors executed were allowed to complete, and
continuous behaviors (like standing) would be executed for multiple time-steps before a new
behavior could be chosen. This follows the frame-skipping method [59], where the same action
is repeated multiple times, to speed up the learning phase. Because communication is heavily
restricted in the 3D Soccer Simulator, and FCPortugal3D agents already have hard-coded
communication protocols [108], no CC were used.

The team’s performance is shown in Figure 7.17, where agents learn effective strategies

138

to complete each scenario. In the Passing challenge, agents group together such that passes
are quicker and more accurate. On the Keep-Away scenario, agents do the opposite, and
remain in corners of the field, such that the opponent takes a long time to reach the ball.
They successfully keep the ball away from the opposite team until the episode reaches a given
time-limit. When compared with the hard-coded policies used by the team in competition,
the learned policies matched the performance of the Passing scenario, but did not outperform
FCPortugal3D’s Keep-Away behavior.

0 200 400 600 800 1000 1200 1400 1600
Training Episodes

0

2

4

6

8

10

Sc
or

e

(a) Passing scenario.

0 1000 2000 3000 4000 5000 6000
Training Episodes

10

9

8

7

6

5

4

3

2

1

Sc
or

e

(b) Keep-Away scenario.

Figure 7.17: The evolution of A3C3 policies in two tasks of the 3D Soccer Simula-
tion environment. The plots represent the average reward and standard deviation
(over N workers) obtained by the team across episodes.

Interestingly, agents learn to take advantage of the implementation details of the scenar-
ios, and abused them. In the Passing challenge, agents converged in the center of the map
and learned to alternately move towards and away from the ball, which would make the en-
vironment score a successful pass (as a different agent was now closer to the ball). In the
Keep-Away challenge, agents discovered that the opponent would not move beyond the field
lines, so they converged to a policy where they just kicked the ball outside the field and would
no longer need to move. Both scenarios were fixed with regards to these exploitations.

7.3.7 Augmenting Centralized-Critic Inputs

The effects of different inputs in the centralized critic are also evaluated. Along with
the aggregate of agents’ local observations, the actions of other agents and/or the messages
received by the current agent in this cycle are also concatenated. However, the analysis of the
policy evolutions shows that the different critic inputs don’t have much impact on the learned
policies. The most noticeable negative impact appears in the Traffic Intersection environment,
where actions of all agents are now included in the critic network, despite having no impact
on agents not on the same intersection.

In general, introducing agent actions or messages brings no major advantage to the A3C3
algorithm. The added complexity of the network offsets the stability or simplicity of the value
function estimation, and causes the learning process to take longer.

139

7.3.8 Architecture Variance

To test the robustness of A3C3 with respect to its network architecture, grid parameter
search was conducted, and the performance and learning time for multiple configurations was
evaluated. Configurations included one to three fully connected hidden layers, whose sizes
ranged from 10 to 20 nodes. These included a single hidden layer with 10 nodes, two hidden
layers with 20 and 10 nodes, and three hidden layers with 20, 10, and 10 nodes. These layer
sizes were then multiplied by multiple network layer size multipliers x, ranging from one to
six. At the ends of the spectrum, the simplest network had a single hidden layer of 10 nodes,
and the most complex had three layers of 120, 60 and 60 nodes, respectively. Orthogonally,
the ReLU, ELU and Sigmoid activation functions were also evaluated.

These configurations were used in the actor and centralized critic networks, while the
communication network had a single hidden layer with the same size as the smallest layer in
each configuration. All hyper-parameters apart from the network architecture remained the
same in these tests, and the results for the Navigation environment are shown in Figure 7.18.

ReLU ELU Sigmoid
1 2 4 6 1 2 4 6 1 2 4 6

10 0.32 0.49 1 1 0.55 0.72 0.95 1 0.49 0.71 0.85 1
20,10 0.81 1 1 1 1 1 1 1 0.95 1 1 1

20,10,10 0.61 1 1 1 1 1 1 1 1 1 1 1

(a) The average normalized reward r ∈ [0, 1] obtained by agents at the end of 150 thousand
training episodes.

ReLU ELU Sigmoid
1 2 4 6 1 2 4 6 1 2 4 6

10 116 111 140 114
20,10 71 72 47 79 52 49 69 47 38

20,10,10 60 59 32 124 53 34 31 131 80 46 34

(b) The thousands of training episodes t ∈ [0, 150] required to find the optimal strategy (if ever).

Figure 7.18: The grid parameter search for adequate network architectures. Rows
represent hidden layer configurations (e.g., bottom row represents a network with
three hidden layers), whose sizes are multiplied by a network layer size multiplier
x in each column (e.g., far right column represents multiplying hidden layer sizes
by a factor of six).

Results show that A3C3 is fairly robust to various network architectures, from the point
where they are complex enough to successfully approximate the target functions. The simpler
networks with a single hidden layer were unable to converge and successfully complete the task.
Analogously, the most complex networks are successful and feature the fastest convergence to
optimal policies.

7.4 Conclusion

This chapter described A3C3, a multi-agent deep reward-based learning algorithm, where
distributed worker threads use Actor-Critic methods to optimize value, policy and communi-
cation networks for agents. The algorithm features a centralized learning phase, distributed

140

execution, and inter-agent communication. A3C3 supports partially observable domains, noisy
communications, heterogeneous reward functions, distributed independent execution, and a
variable amount of agents. It can be horizontally scaled, and supports inter- and intra-agent
parameter sharing, techniques which increase the convergence speed of policies.

A3C3 works by implicitly sharing information during a centralized learning stage, through
the Centralized Critic network, which improves the convergence of other networks and in-
creases the performance of learned strategies. It also explicitly shares relevant information,
through the Communication network, which is optimized based on the performance of other
agents. In other words, the network is optimized such that other agents perform better, thus
enforcing coordination between agents. Even with noise and partial observability, agents can
learn successful policies and communication protocols tabula rasa. The shared information
may not be human-readable, as it is represented by vectors of continuous-valued messages.
However, agents use them to share local information, alert other, assign targets, and coordi-
nate exploration. Logically, agents from different populations cannot communicate with each
other, as different communication protocols will likely have been learned.

A3C3 is formally described and its behavior is shown in multiple multi-agent domains.
It is compared against other multi-agent algorithms, exceeding their performance, as well
as against independent single-agent implementations. The effects of communication noise,
critic-augmentation, and permutation invariant architectures, are also analyzed. A3C3 can be
framed as a more general version of previous works, and its source-code is publicly available.

Despite its generality, A3C3 carries multiple assumptions. Environments are expected to
be cooperative, with a discrete action space, and agents communicate in order to improve
each other’s policies. Each worker thread must also act as a centralized learning environment,
with access to all agents and communications. Ideally, if the environment’s state can be sam-
pled, A3C3 can benefit by approximate a more accurate value function. The communication
protocols learned by agents are also difficult to interpret and translate to human-readable in-
formation. While agents can be robust to random noise, messages can be externally interfered
with to disrupt the team’s behavior. A major drawback of A3C3 is that actor-critic algorithms
are on-policy and sample inefficient. While the algorithm scales horizontally in simulated en-
vironments to alleviate this problem, learning in real-world robotic tasks will likely require
an initial simulated phase to achieve an adequate initial solution before deploying policies on
robotic agents.

A3C3 can be improved with two main concepts. The first is to describe a new loss function
for the communication networks for non-cooperative environments. In a fully competitive envi-
ronment, agents would attempt to communicate in such a way as to minimize the opponent’s
rewards, while maximizing their own. The second is to integrate the Value-Decomposition
Network used by QMIX, as well as COMA’s credit assignment strategy, to further improve
the centralized critic’s value function approximation for the team.

Future work also includes testing A3C3 with recursive neural networks, like RNN or LSTM,
such that partially-observable environments can be further exploited. With feedforward net-
works, agents can only share current information, but recursive architectures would allow past
observations to be exploited as well.

141

142

Chapter 8

Conclusion

The field of MARL has witnessed a large growth in recent years, with many novel al-
gorithms and techniques surfacing to tackle its challenges. This has been partly due to the
re-emergence of deep learning as a solution to handling complex environments, which in turn
increases the applications and motivations of developing general MARL algorithms. During
the writing of this thesis, many algorithms were proposed as state-of-the-art novel contribu-
tions to the field, and we expect this tendency to remain. Such algorithms rely on techniques
used in the A3C3 algorithm, like actor-critic, asynchronous deep learning, centralized critics,
differentiable communication, among others.

However, rapid development of a field also has a few drawbacks. Firstly, it is harder for
researchers to keep up-to-date with all the new contributions, and integrate them on their work.
Practices like sharing source-code and formal algorithm descriptions alleviate the situation,
but are often insufficient. Secondly, it is harder to distinguish which proposals have benefits
over others and in which cases, as techniques are often unfairly evaluated and compared with
others, and other researchers have limited time to corroborate the results being demonstrated.
The problem worsens with deep learning algorithms that often require hours of computation
time to achieve their results. The results showed in this thesis took over a year of computation
time, not including time spent with tests, bugs, or other problems. That being said, we have
described valuable contributions to the body of knowledge of multi-agent systems and machine
learning.

In this thesis, two chapters focused on competitive environments. The WPL algorithm
was extended with a new update rule for environments with deterministic NE strategies. Its
behavior was kept in other situations, and its performance drastically increased in these. How-
ever, tabular algorithms are not adequate for complex competitive environments, like Starcraft
2 or Pokémon, given their complex state-space. As a solution, WPL and three other algo-
rithms were extended to the deep learning paradigm and evaluated both in the traditional
game-theoretic environments and in multi-state games with noisy or partial observations. Of
all the tested algorithms, GIGAθ and WPLθ showed the best results, with GIGAθ achiev-
ing stronger deterministic strategies and WPLθ seeming more robust to hyper-parameters.
However, both algorithms fall under the Forget category, continuously adapting to the non-
stationary behavior of the opponent, and converge to the NE solution, which is not always
Pareto optimal. For example, in Prisoner’s Dilemma, the Pareto optimal solution is not a
NE, but both agents achieve overall higher rewards. Solutions like recursive neural networks
and opponent modeling techniques [215, 55] may increase GIGAθ and WPLθ’s performance,

143

allowing agents to remember opponent strategies and adapt accordingly.
Two other chapters in this thesis focused on cooperative environments. The Double DQN

algorithm was applied on the multi-agent paradigm, using the IL and JAL approach. Not only
is JAL a more restrictive approach, but results also show that it does not scale or generalize as
well as the IL approach. We showed how Independent MADDQN can achieve coordination in
cooperative environments, and generalize to harder tasks with larger teams. However, MAD-
DQN is a greedy deterministic algorithm in the Ignore category, which uses a replay memory
with possibly outdated samples, and where agents do not exchange information. Recent solu-
tions [158] to improve the replay memory may increase its performance. The A3C3 algorithm
instead uses asynchronous updates to avoid the replay memory requirement. A centralized
critic allows policies to robustly converge with implicit coordination, and agents communicate
relevant information between them. This helps with partial-observability, as local information
can now be shared between the team. The algorithm only requires a centralized learning stage,
and otherwise assumes independent agents with local partial observations and possibly noisy
communications. The algorithm is shown to scale to large team sizes through a permutation
invariant network architecture. It can benefit from critic augmentation techniques [99] as well
as structural credit assignment solutions [131].

The combination of cooperative with competitive solutions is not trivial, but is necessary
for mixed environments, where agents have to coordinate with both team members, adver-
saries, and other neutral entities. In A3C3’s setting, optimizing communication to hinder
opponents and help team mates is an intuitive solution. However, how to determine which
agents are considered opponents or team mates is also not trivial. That being said, considering
solely cooperative environments, A3C3’s biggest drawback is its sample inefficiency, requiring
millions of environment interactions, which makes its deployment in real-world scenarios much
harder. Its mechanisms, however, are end-to-end differentiable, and can likely be adapted to
other more efficient deep reinforcement learning algorithms.

Looking at the field of MARL as a whole, or even regarding single-agent reward-based
learning, the next great step should move in the direction of concept formation. The vast
majority of algorithms assumes a stationary action-space, and researchers commonly group
policies by hand to use them as higher-level strategies. For example, the FCPortugal3D team
optimizes low-level behaviors where the action-space are the agent’s joints. After a behavior is
successfully optimized, it is defined as a kick or some other movement, and that middle-level
behavior is then executed by the higher-level strategy. In nature this happens intuitively.
Humans do not think about moving their legs to take a step, taking steps to walk, or walking
to reach a point, but the hierarchy of behaviors is obvious. We believe that the next big
step for machine learning research, and particularly for deep reinforcement learning, is to
find these behaviors that create a perceivable change in the agent’s state, and define them as
additional actions that can be performed. Continuing with the example of FCPortugal3D, an
algorithm would start with only the possibility of moving its joints, and eventually add new
more complex behaviors to its action-space, such as standing up, or kicking the ball. These
next steps will form the basis for life-long learning [216] and artificial general intelligence, in
our opinion.

144

Bibliography

[1] Frederick Ducatelle, Gianni A Di Caro, Alexander Förster, Michael Bonani, Marco
Dorigo, Stéphane Magnenat, Francesco Mondada, Rehan O’Grady, Carlo Pinciroli,
Philippe Rétornaz, et al. Cooperative navigation in robotic swarms. Swarm Intelli-
gence, 8(1):1–33, 2014.

[2] Michael Hoy, Alexey S Matveev, and Andrey V Savkin. Collision free cooperative nav-
igation of multiple wheeled robots in unknown cluttered environments. Robotics and
Autonomous Systems, 60(10):1253–1266, 2012.

[3] Gregor HW Gebhardt, Kevin Daun, Marius Schnaubelt, and Gerhard Neumann. Learn-
ing robust policies for object manipulation with robot swarms. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 7688–7695. IEEE, 2018.

[4] Lynne E Parker and Claude Touzet. Multi-robot learning in a cooperative observation
task. In Distributed Autonomous Robotic Systems 4, pages 391–401. Springer, 2000.

[5] Lili Ma and Naira Hovakimyan. Vision-based cyclic pursuit for cooperative target track-
ing. Journal of Guidance, Control, and Dynamics, 36(2):617–622, 2013.

[6] Cyril Robin and Simon Lacroix. Multi-robot target detection and tracking: taxonomy
and survey. Autonomous Robots, 40(4):729–760, 2016.

[7] Hyondong Oh, Seungkeun Kim, Hyo-Sang Shin, Antonios Tsourdos, and Brian White.
Coordinated standoff tracking of groups of moving targets using multiple uavs. In Con-
trol & Automation (MED), 2013 21st Mediterranean Conference on, pages 969–977.
IEEE, 2013.

[8] Tim Brys, Tong T Pham, and Matthew E Taylor. Distributed learning and multi-
objectivity in traffic light control. Connection Science, 26(1):65–83, 2014.

[9] Patrick Mannion, Jim Duggan, and Enda Howley. An experimental review of rein-
forcement learning algorithms for adaptive traffic signal control. In Autonomic Road
Transport Support Systems, pages 47–66. Springer, 2016.

[10] P Skobelev, E Simonova, and A Zhilyaev. Using multi-agent technology for the dis-
tributed management of a cluster of remote sensing satellites. Complex Systems: Fun-
damentals & Applications, 90:287, 2016.

[11] Haibo Min, Shicheng Wang, Fuchun Sun, Zhijie Gao, and Jinsheng Zhang. Decentralized
adaptive attitude synchronization of spacecraft formation. Systems & Control Letters,
61(1):238–246, 2012.

145

[12] Jerzy Korczak, Marcin Hernes, and Maciej Bac. Risk avoiding strategy in multi-agent
trading system. In Computer Science and Information Systems (FedCSIS), 2013 Feder-
ated Conference on, pages 1131–1138. IEEE, 2013.

[13] Tim Baarslag, Katsuhide Fujita, Enrico H Gerding, Koen Hindriks, Takayuki Ito,
Nicholas R Jennings, Catholijn Jonker, Sarit Kraus, Raz Lin, Valentin Robu, et al.
Evaluating practical negotiating agents: Results and analysis of the 2011 international
competition. Artificial Intelligence, 198:73–103, 2013.

[14] Prabal Dutta, Mike Grimmer, Anish Arora, Steven Bibyk, and David Culler. Design of
a wireless sensor network platform for detecting rare, random, and ephemeral events.
In Proceedings of the 4th international symposium on Information processing in sensor
networks, page 70. IEEE Press, 2005.

[15] Victor Lesser, Milind Tambe, and Charles L. Ortiz, editors. Distributed Sensor Networks:
A Multiagent Perspective. Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[16] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.
Robocup: The robot world cup initiative. In Proceedings of the first international con-
ference on Autonomous agents, pages 340–347. ACM, 1997.

[17] Mark Yim, Ying Zhang, John Lamping, and Eric Mao. Distributed control for 3d
metamorphosis. Autonomous Robots, 10(1):41–56, 2001.

[18] Nuno Lau, Artur Pereira, Andreia Melo, António Neves, and João Figueiredo. Ciber-
rato: A simulation environment for mobile and autonomous robots. Electrónica e Tele-
comunicações, 3(7):647–650, 2002.

[19] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg,
Wojciech M. Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell,
Timo Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh,
Valentin Dalibard, David Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James
Molloy, Trevor Cai, David Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias
Pfaff, Toby Pohlen, Yuhuai Wu, Dani Yogatama, Julia Cohen, Katrina McKinney, Oliver
Smith, Tom Schaul, Timothy Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis Hass-
abis, and David Silver. AlphaStar: Mastering the Real-Time Strategy Game StarCraft
II. https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-
starcraft-ii/, 2019.

[20] OpenAI. OpenAI Five. https://blog.openai.com/openai-five/, 2018.

[21] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.
A general reinforcement learning algorithm that masters chess, shogi, and go through
self-play. Science, 362(6419):1140–1144, 2018.

[22] Rui Prada, Phil Lopes, Joao Catarino, Joao Quiterio, and Francisco S Melo. The
geometry friends game AI competition. In Computational Intelligence and Games (CIG),
2015 IEEE Conference on, pages 431–438. IEEE, 2015.

146

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://blog.openai.com/openai-five/

[23] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In Advances in Neu-
ral Information Processing Systems, pages 6379–6390, 2017.

[24] José M. Vidal. Fundamentals of Multiagent Systems: Using NetLogo Models. Unpub-
lished, 2010. http://www.multiagent.com.

[25] Sascha Ossowski. Coordination in multi-agent systems: Towards a technology of agree-
ment. In German Conference on Multiagent System Technologies, pages 2–12. Springer,
2008.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-
trovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[27] Vlad Firoiu, William F. Whitney, and Joshua B. Tenenbaum. Beating the world’s best
at super smash bros. with deep reinforcement learning. CoRR, abs/1702.06230, 2017.

[28] Shani Gamrian and Yoav Goldberg. Transfer learning for related reinforcement learning
tasks via image-to-image translation. arXiv preprint arXiv:1806.07377, 2018.

[29] Devendra Singh Chaplot, Guillaume Lample, Kanthashree Mysore Sathyendra, and Rus-
lan Salakhutdinov. Transfer deep reinforcement learning in 3d environments: An em-
pirical study. In NIPS Deep Reinforcemente Leaning Workshop, 2016.

[30] André Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel,
Daniel Mankowitz, Augustin Žídek, and Remi Munos. Transfer in deep reinforcement
learning using successor features and generalised policy improvement. arXiv preprint
arXiv:1901.10964, 2019.

[31] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de Cote.
A survey of learning in multiagent environments: Dealing with non-stationarity. arXiv
preprint arXiv:1707.09183, 2017.

[32] Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A
comprehensive survey and open problems. Artificial Intelligence, 258:66–95, 2018.

[33] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. Is multiagent deep re-
inforcement learning the answer or the question? a brief survey. arXiv preprint
arXiv:1810.05587, 2018.

[34] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of multiagent
reinforcement learning. Trans. Sys. Man Cyber Part C, 38(2):156–172, March 2008.

[35] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A
survey. The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[36] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooper-
ative multiagent systems. In Proceedings of the Fifteenth National/Tenth Conference on
Artificial Intelligence/Innovative Applications of Artificial Intelligence, AAAI ’98/IAAI

147

http://www.multiagent.com

’98, pages 746–752, Menlo Park, CA, USA, 1998. American Association for Artificial
Intelligence.

[37] Craig Boutilier. Planning, learning and coordination in multiagent decision processes.
In Proceedings of the 6th conference on Theoretical aspects of rationality and knowledge,
pages 195–210. Morgan Kaufmann Publishers Inc., 1996.

[38] Nuno Lau and Luis Paulo Reis. FC Portugal - High-level coordination methodologies in
soccer robotics. InTech Education and Publishing, Vienna, Austria, December 2007.

[39] Prasanna Velagapudi, Oleg Prokopyev, Paul Scerri, and Katia Sycara. A token-based
approach to sharing beliefs in a large multiagent team. In Optimization and Cooperative
Control Strategies, pages 417–429. Springer, 2009.

[40] Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment, and
low-bandwidth communication for real-time strategic teamwork. Artificial Intelligence,
110(2):241–273, 1999.

[41] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge University Press, 2008.

[42] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. Kqml as an agent com-
munication language. In Proceedings of the third international conference on Information
and knowledge management, pages 456–463. ACM, 1994.

[43] Mihai Barbuceanu and Mark Fox. Cool: A language for describing coordination in
multi agent systems. Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS-95), pages 17–24, 01 1995.

[44] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with
backpropagation. In Advances in Neural Information Processing Systems, pages 2244–
2252, 2016.

[45] David B D’Ambrosio, Skyler Goodell, Joel Lehman, Sebastian Risi, and Kenneth O
Stanley. Multirobot behavior synchronization through direct neural network commu-
nication. In International Conference on Intelligent Robotics and Applications, pages
603–614. Springer, 2012.

[46] Bikramjit Banerjee and Jing Peng. Performance bounded reinforcement learning in
strategic interactions. In Proceedings of the 19th National Conference on Artifical Intel-
ligence, AAAI’04, pages 2–7. AAAI Press, 2004.

[47] Chongjie Zhang and Victor Lesser. Multi-agent learning with policy prediction. In
Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI’10,
pages 927–934. AAAI Press, 2010.

[48] Junling Hu and Michael P Wellman. Nash q-learning for general-sum stochastic games.
Journal of machine learning research, 4(Nov):1039–1069, 2003.

[49] Vincent Conitzer and Tuomas Sandholm. Awesome: A general multiagent learning algo-
rithm that converges in self-play and learns a best response against stationary opponents.
Machine Learning, 67(1-2):23–43, 2007.

148

[50] Reinaldo AC Bianchi, Murilo F Martins, Carlos HC Ribeiro, and Anna HR Costa.
Heuristically-accelerated multiagent reinforcement learning. IEEE transactions on cy-
bernetics, 44(2):252–265, 2014.

[51] Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning
rate. Artificial Intelligence, 136(2):215 – 250, 2002.

[52] Michael Bowling. Convergence and no-regret in multiagent learning. In Proceedings of
the 17th International Conference on Neural Information Processing Systems, NIPS’04,
pages 209–216, Cambridge, MA, USA, 2004. MIT Press.

[53] M. D. Awheda and H. M. Schwartz. Exponential moving average q-learning algorithm. In
2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL), pages 31–38, April 2013.

[54] Sherief Abdallah and Victor Lesser. A multiagent reinforcement learning algorithm with
non-linear dynamics. Journal of Artificial Intelligence Research, 33:521–549, 2008.

[55] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel,
and Igor Mordatch. Learning with opponent-learning awareness. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems, pages
122–130. International Foundation for Autonomous Agents and Multiagent Systems,
2018.

[56] David Simões, Nuno Lau, and Luís Paulo Reis. Multi-agent Double Deep Q-Networks. In
Eugénio Oliveira, João Gama, Zita Vale, and Henrique Lopes Cardoso, editors, Progress
in Artificial Intelligence, Lecture Notes in Computer Science, vol. 10423, pages 123–134.
Springer International Publishing, 2017.

[57] David Simões, Nuno Lau, and Luís Paulo Reis. Mixed-policy asynchronous deep q-
learning. In Anibal Ollero, Alberto Sanfeliu, Luis Montano, Nuno Lau, and Carlos
Cardeira, editors, ROBOT 2017: Third Iberian Robotics Conference, Advances in Intel-
ligent Systems and Computing, vol. 694, pages 129–140. Springer International Publish-
ing, 2018.

[58] David Simões, Nuno Lau, and Luís Paulo Reis. Adjusted bounded weighted policy
learner. In Robocup 2018: Robot World Cup XXII, Lecture Notes in Computer Science,
vol. 11374, pages 324–336. Springer, 2018.

[59] David Simões, Nuno Lau, and Luís Paulo Reis. Guided deep reinforcement learning in
the geofriends2 environment. In IJCNN 18: International Joint-Conference on Neural
Networks, pages 375–381. IEEE, 2018.

[60] David Simoes, Simão Reis, Nuno Lau, and Luis Paulo Reis. Competitive deep reinforce-
ment learning over a pokémon battling simulator. In Autonomous Robot Systems and
Competitions (ICARSC), 2020 IEEE International Conference on. IEEE, April 2020.

[61] David Simões, Nuno Lau, and Luís Paulo Reis. Multi-agent neural reinforcement-
learning system with communication. In Álvaro Rocha, Hojjat Adeli, Luís Paulo Reis,
and Sandra Costanzo, editors, New Knowledge in Information Systems and Technolo-
gies, Advances in Intelligent Systems and Computing, vol. 931, pages 3–12. Springer
International Publishing, 2019.

149

[62] David Simões, Nuno Lau, and Luís Paulo Reis. Multi-agent deep reinforcement learn-
ing with emergent communication. In 2019 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2019.

[63] David Simões, Pedro Amaro, Tiago Silva, Nuno Lau, and Luís Paulo Reis. Learning low-
level behaviors and high-level strategies in humanoid soccer. In ROBOT 2019: Fourth
Iberian Robotics Conference, Advances in Intelligent Systems and Computing. Springer
International Publishing, 2019.

[64] David Simões, Nuno Lau, and Luís [Paulo Reis]. Multi-agent actor centralized-critic
with communication. Neurocomputing, 390:40 – 56, 2020.

[65] David Simoes, Nuno Lau, and Luis Paulo Reis. Multi agent deep learning with coop-
erative communication. Journal of Artificial Intelligence and Soft Computing Research,
2020.

[66] David Simoes, Nuno Lau, and Luis Paulo Reis. Exploring communication protocols and
centralized critics in multi-agent deep learning. Integrated Computer-Aided Engineering,
2020.

[67] Abbas Abdolmaleki, David Simões, Nuno Lau, Luis Paulo Reis, and Gerhard Neu-
mann. Contextual relative entropy policy search with covariance matrix adaptation.
In Autonomous Robot Systems and Competitions (ICARSC), 2016 IEEE International
Conference on, pages 94–99. IEEE, May 2016.

[68] Abbas Abdolmaleki, David Simões, Nuno Lau, Luis Paulo Reis, and Gerhard Neumann.
Learning a humanoid kick with controlled distance. In Sven Behnke, Raymond Sheh,
Sanem Sarıel, and Daniel D. Lee, editors, RoboCup 2016: Robot World Cup XX, pages
45–57, Cham, 2017. Springer International Publishing.

[69] S. Mohammadreza Kasaei, David Simões, Nuno Lau, and Artur Pereira. A hybrid
zmp-cpg based walk engine for biped robots. In Anibal Ollero, Alberto Sanfeliu, Luis
Montano, Nuno Lau, and Carlos Cardeira, editors, ROBOT 2017: Third Iberian Robotics
Conference, pages 743–755. Springer International Publishing, 2018.

[70] Abbas Abdolmaleki, David Simões, Nuno Lau, Luís Paulo Reis, and Gerhard Neumann.
Contextual direct policy search. Journal of Intelligent & Robotic Systems, 96(2):141–157,
Nov 2019.

[71] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8(3):345–383, 2000.

[72] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art.
Autonomous agents and multi-agent systems, 11(3):387–434, 2005.

[73] Nikos Vlassis. A concise introduction to multiagent systems and distributed artificial
intelligence. Synthesis Lectures on Artificial Intelligence and Machine Learning, 1(1):1–
71, 2007.

[74] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and Douglas D
Edwards. Artificial intelligence: a modern approach, volume 2. Prentice Hall, Upper
Saddle River, 2003.

150

[75] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In
Proceedings of the tenth international conference on machine learning, pages 330–337,
1993.

[76] Jeffery A. Clouse. Learning from an automated training agent. In Adaptation and
Learning in Multiagent Systems. Springer Verlag, 1996.

[77] Lisa Torrey and Matthew E Taylor. Help an agent out: Student/teacher learning in
sequential decision tasks. In Proceedings of the Adaptive and Learning Agents workshop
(at AAMAS-12), 2012.

[78] Bob Price and Craig Boutilier. Accelerating reinforcement learning through implicit
imitation. Journal of Artificial Intelligence Research, 19:569–629, 2003.

[79] Saleha Raza and Sajjad Haider. Using imitation to build collaborative agents. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 11(1):3, 2016.

[80] Erfu Yang and Dongbing Gu. A survey on multiagent reinforcement learning towards
multi-robot systems. In IEEE 2005 Symposium on Computational Intelligence and
Games, CIG’05, pages 292–299. IEEE, 2005.

[81] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Independent re-
inforcement learners in cooperative markov games: a survey regarding coordination
problems. The Knowledge Engineering Review, 27(01):1–31, 2012.

[82] Michael Bowling and Manuela Veloso. Rational and convergent learning in stochastic
games. In Proceedings of the 17th International Joint Conference on Artificial Intelli-
gence - Volume 2, IJCAI’01, pages 1021–1026, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[83] Sanyam Kapoor. Multi-agent reinforcement learning: A report on challenges and ap-
proaches. CoRR, abs/1807.09427, 2018.

[84] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume
135. MIT press Cambridge, 1998.

[85] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[86] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

[87] Balázs Csanád Csáji. Approximation with artificial neural networks. Faculty of Sciences,
Etvs Lornd University, Hungary, 24:48, 2001.

[88] Sun-Chong Wang. Artificial neural network. In Interdisciplinary Computing in Java
Programming, pages 81–100. Springer, 2003.

[89] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

151

[90] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010.

[91] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). International Conference for Learn-
ing Representations, 2016.

[92] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics, vol-
ume 9 of Proceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort,
Sardinia, Italy, 13–15 May 2010. PMLR.

[93] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-
ceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[94] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-
line learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[95] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012.

[96] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 3rd
International Conference for Learning Representations, San Diego, 2015.

[97] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[98] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm
robotics: a review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–
41, 2013.

[99] Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar,
Jakob N. Foerster, and Shimon Whiteson. QMIX: monotonic value function factorisation
for deep multi-agent reinforcement learning. CoRR, abs/1803.11485, 2018.

[100] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezh-
nevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrit-
twieser, et al. Starcraft ii: A new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782, 2017.

[101] Andrea Bonarini and Vito Trianni. Learning fuzzy classifier systems for multi-agent
coordination. Information Sciences, 136(1):215–239, 2001.

[102] Sandip Sen, Mahendra Sekaran, John Hale, et al. Learning to coordinate without sharing
information. In AAAI, pages 426–431, 1994.

152

[103] B Gerkey and Maja J Mataric. Are (explicit) multi-robot coordination and multi-
agent coordination really so different. In Proceedings of the AAAI spring symposium on
bridging the multi-agent and multi-robotic research gap, pages 1–3, 2004.

[104] Michael R Genesereth, Matthew L Ginsberg, and Jeffrey S Rosenschein. Cooperation
without communication. Heuristic Programming Project, Computer Science Depart-
ment, Stanford University, 1984.

[105] Michael Isik, Freek Stulp, Gerd Mayer, and Hans Utz. Coordination without negotiation
in teams of heterogeneous robots. In Robot Soccer World Cup, pages 355–362. Springer,
2006.

[106] George W Brown. Iterative solution of games by fictitious play. Activity analysis of
production and allocation, 13(1):374–376, 1951.

[107] YC Jiang, P Yi, SY Zhang, and YP Zhong. Constructing agents blackboard communi-
cation architecture based on graph theory. Computer Standards & Interfaces, 27(3):285–
301, 2005.

[108] Luis Paulo Reis and Nuno Lau. FC Portugal team description: RoboCup 2000 simulation
league champion. In Robot Soccer World Cup, pages 29–40. Springer, 2000.

[109] Abhishek Das, Satwik Kottur, José MF Moura, Stefan Lee, and Dhruv Batra. Learning
cooperative visual dialog agents with deep reinforcement learning. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2951–2960, 2017.

[110] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in
multi-agent populations. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[111] Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning
rate. Artificial Intelligence, 136(2):215–250, 2002.

[112] Michael Bowling. Convergence and no-regret in multiagent learning. Advances in neural
information processing systems, 17:209–216, 2005.

[113] Rob Powers and Yoav Shoham. New criteria and a new algorithm for learning in multi-
agent systems. In Advances in neural information processing systems, pages 1089–1096,
2004.

[114] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The com-
plexity of decentralized control of markov decision processes. Mathematics of operations
research, 27(4):819–840, 2002.

[115] Milos Hauskrecht. Value-function approximations for partially observable markov deci-
sion processes. Journal of Artificial Intelligence Research, 13:33–94, 2000.

[116] John F Nash et al. Equilibrium points in n-person games. Proc. Nat. Acad. Sci. USA,
36(1):48–49, 1950.

[117] Jelle Rogier Kok. Coordination and learning in cooperative multiagent systems. PhD
thesis, Universiteit van Amsterdam, 2006.

153

[118] Aleksander Byrski, Rafał Dreżewski, Leszek Siwik, and Marek Kisiel-Dorohinicki. Evo-
lutionary multi-agent systems. The Knowledge Engineering Review, 30(02):171–186,
2015.

[119] Amy Greenwald, Keith Hall, and Roberto Serrano. Correlated q-learning. In ICML,
volume 3, pages 242–249, 2003.

[120] David Carmel and Shaul Markovitch. Opponent modeling in multi-agent systems. In
International Joint Conference on Artificial Intelligence, pages 40–52. Springer, 1995.

[121] William Uther and Manuela Veloso. Adversarial reinforcement learning. Technical re-
port, Technical report, Carnegie Mellon University, 1997. Unpublished, 1997.

[122] Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with factored
mdps. In NIPS, volume 1, pages 1523–1530, 2001.

[123] Jelle R Kok and Nikos Vlassis. Sparse cooperative q-learning. In Proceedings of the
twenty-first international conference on Machine learning, page 61. ACM, 2004.

[124] Lucian Busoniu, Bart De Schutter, and Robert Babuska. Multiagent reinforcement
learning with adaptive state focus. In BNAIC, pages 35–42, 2005.

[125] Maja J Matarić. Reinforcement learning in the multi-robot domain. In Robot colonies,
pages 73–83. Springer, 1997.

[126] Richard S Sutton. Generalization in reinforcement learning: Successful examples using
sparse coarse coding. Advances in neural information processing systems, pages 1038–
1044, 1996.

[127] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587):484–503, 2016.

[128] Olivier Buffet, Alain Dutech, and François Charpillet. Shaping multi-agent systems
with gradient reinforcement learning. Autonomous Agents and Multi-Agent Systems,
15(2):197–220, 2007.

[129] Peter Stone. Layered learning in multiagent systems: A winning approach to robotic
soccer. MIT Press, 1998.

[130] Yu han Chang, Tracey Ho, and Leslie P. Kaelbling. All learning is local: Multi-agent
learning in global reward games. In S. Thrun, L. K. Saul, and B. Schölkopf, editors,
Advances in Neural Information Processing Systems 16, pages 807–814. MIT Press, 2004.

[131] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-
mon Whiteson. Counterfactual multi-agent policy gradients. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

154

[132] Michael R Genesereth, Richard E Fikes, et al. Knowledge interchange format-version 3.0:
reference manual. Computer Science Department, Stanford University San Francisco,
CA, 1992.

[133] Keith S Decker and Victor R Lesser. Generalizing the partial global planning algorithm.
International Journal of Intelligent and Cooperative Information Systems, 1(02):319–
346, 1992.

[134] Cristiano Castelfranchi. Commitments: From individual intentions to groups and orga-
nizations. In ICMAS, volume 95, pages 41–48, 1995.

[135] Peter Stone. Layered Learning in Multiagent Systems: A Winning Approach to Robotic
Soccer. MIT Press, Cambridge, MA, USA, 2000.

[136] Luís Paulo Reis, Nuno Lau, and Eugénio Oliveira. Situation based strategic positioning
for coordinating a team of homogeneous agents. In Balancing Reactivity and Social
Deliberation in Multi-Agent Systems, volume 2103 of LNCS, pages 175–197. Springer,
2001.

[137] Spiros Kapetanakis and Daniel Kudenko. Reinforcement learning of coordination in
cooperative multi-agent systems. In Eighteenth National Conference on Artificial Intel-
ligence, pages 326–331, Menlo Park, CA, USA, 2002. American Association for Artificial
Intelligence.

[138] Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement learn-
ing in cooperative multi-agent systems. In In Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning, pages 535–542. Morgan Kaufmann, 2000.

[139] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International Conference on Machine Learning, pages
1928–1937, 2016.

[140] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. International Conference for Learning Representations, 2016.

[141] Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long, and
Jun Wang. Multiagent bidirectionally-coordinated nets for learning to play starcraft
combat games. CoRR, abs/1703.10069, 2017.

[142] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson.
Learning to communicate with deep multi-agent reinforcement learning. In Advances in
Neural Information Processing Systems, pages 2137–2145, 2016.

[143] Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games,
2(28):307–317, 1953.

[144] Michael L Littman. Markov games as a framework for multi-agent reinforcement learn-
ing. In Proceedings of the eleventh international conference on machine learning, volume
157, pages 157–163, 1994.

155

[145] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intel-
ligence, AAAI’16, pages 2094–2100. AAAI Press, 2016.

[146] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3):229–256, May 1992.

[147] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. Proceedings of the International Conference on Learning Representations, 2017.

[148] George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion.
Physical review, 36(5):823, 1930.

[149] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[150] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. Learning
to communicate to solve riddles with deep distributed recurrent q-networks. CoRR,
abs/1602.02672, 2016.

[151] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan
Aru, Jaan Aru, and Raul Vicente. Multiagent cooperation and competition with deep
reinforcement learning. PLOS ONE, 12(4):1–15, 04 2017.

[152] Maxim Egorov. Multi-Agent Deep Reinforcement Learning. Technical report, University
of Stanford, Department of Computer Science, 2016.

[153] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent
control using deep reinforcement learning. In International Conference on Autonomous
Agents and Multiagent Systems, pages 66–83. Springer, 2017.

[154] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius
Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls,
and Thore Graepel. Value-decomposition networks for cooperative multi-agent learning
based on team reward. In Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS ’18, pages 2085–2087, Richland,
SC, 2018. International Foundation for Autonomous Agents and Multiagent Systems.

[155] Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent coop-
eration and the emergence of (natural) language. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings, 2017.

[156] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533, 1986.

[157] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International conference on machine learning, pages 1310–
1318, 2013.

156

[158] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip HS
Torr, Pushmeet Kohli, and Shimon Whiteson. Stabilising experience replay for deep
multi-agent reinforcement learning. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1146–1155. JMLR. org, 2017.

[159] Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh, and Dhruv Batra. Deal or no
deal? end-to-end learning of negotiation dialogues. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pages 2443–2453. Association for
Computational Linguistics, 2017.

[160] Qiyang Li, Xintong Du, Yizhou Huang, Quinlan Sykora, and Angela P. Schoellig. Learn-
ing of coordination policies for robotic swarms. CoRR, abs/1709.06620, 2017.

[161] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[162] George Cybenko and Daniella Rus. Agent-based systems engineering. Technical report,
DTIC Document, 2005.

[163] Alan J Robinson and Lee Spector. Using genetic programming with multiple data types
and automatic modularization to evolve decentralized and coordinated navigation in
multi-agent systems. In GECCO Late Breaking Papers, pages 391–396, 2002.

[164] Valentino Crespi, George Cybenko, Daniela Rus, and Massimo Santini. Decentralized
control for coordinated flow of multi-agent systems. In Neural Networks, 2002. IJCNN
’02. Proceedings of the 2002 International Joint Conference on, volume 3, pages 2604–
2609, 2002.

[165] Martin Saska, Jan Chudoba, Libor Přeučil, Justin Thomas, Giuseppe Loianno, Adam
Třešňák, Vojtěch Vonásek, and Vijay Kumar. Autonomous deployment of swarms
of micro-aerial vehicles in cooperative surveillance. In Unmanned Aircraft Systems
(ICUAS), 2014 International Conference on, pages 584–595. IEEE, 2014.

[166] K Ovchinnikov, A Semakova, and A Matveev. Cooperative surveillance of unknown
environmental boundaries by multiple nonholonomic robots. Robotics and Autonomous
Systems, 72:164–180, 2015.

[167] Shaofei Chen, Feng Wu, Lincheng Shen, Jing Chen, and Sarvapali D. Ramchurn. Multi-
agent patrolling under uncertainty and threats. PLoS ONE, 10(6):1–19, 06 2015.

[168] Fabrice Lauri and Abderrafiaa Koukam. Robust multi-agent patrolling strategies us-
ing reinforcement learning. In International Conference on Swarm Intelligence Based
Optimization, pages 157–165. Springer, 2014.

[169] Julia Nilsson and Jonas Sjöberg. Strategic decision making for automated driving on two-
lane, one way roads using model predictive control. In 2013 IEEE Intelligent Vehicles
Symposium (IV), pages 1253–1258. IEEE, 2013.

[170] Yeping Hu, Alireza Nakhaei, Masayoshi Tomizuka, and Kikuo Fujimura. Interaction-
aware decision making with adaptive strategies under merging scenarios. arXiv preprint
arXiv:1904.06025, 2019.

157

[171] Ana LC Bazzan and Franziska Klügl. A review on agent-based technology for traffic
and transportation. The Knowledge Engineering Review, 29(03):375–403, 2014.

[172] Nitin Maslekar, Joseph Mouzna, Mounir Boussedjra, and Houda Labiod. Cats: An
adaptive traffic signal system based on car-to-car communication. Journal of network
and computer applications, 36(5):1308–1315, 2013.

[173] Oleg N Granichin, Petr Skobelev, Alexander Lada, Igor Mayorov, and Alexander Tsarev.
Comparing adaptive and non-adaptive models of cargo transportation in multi-agent
system for real time truck scheduling. In IJCCI, pages 282–285, 2012.

[174] Jörg P Müller and Markus Pischel. An architecture for dynamically interacting agents.
International Journal of Intelligent and Cooperative Information Systems, 3(01):25–45,
1994.

[175] Adrian K Agogino and Kagan Tumer. A multiagent approach to managing air traffic
flow. Autonomous Agents and Multi-Agent Systems, 24(1):1–25, 2012.

[176] Frederic Marc, Amal El Fallah-Seghrouchni, and Irene Degirmenciyan-Cartault. Coor-
dination of complex systems based on multi-agent planning: Application to the aircraft
simulation domain. In International Workshop on Programming Multi-Agent Systems,
pages 224–248. Springer, 2004.

[177] Javad Ansari, Amin Gholami, and Ahad Kazemi. Multi-agent systems for reactive power
control in smart grids. International Journal of Electrical Power & Energy Systems,
83:411–425, 2016.

[178] Luis Hernandez, Carlos Baladron, Javier M Aguiar, Belen Carro, Antonio Sanchez-
Esguevillas, Jaime Lloret, David Chinarro, Jorge J Gomez-Sanz, and Diane Cook. A
multi-agent system architecture for smart grid management and forecasting of energy
demand in virtual power plants. IEEE Communications Magazine, 51(1):106–113, 2013.

[179] Arne Schuldt. Multiagent coordination enabling autonomous logistics. KI-Künstliche
Intelligenz, 26(1):91–94, 2012.

[180] Zhou He, Shouyang Wang, and TCE Cheng. Competition and evolution in multi-product
supply chains: An agent-based retailer model. International Journal of Production
Economics, 146(1):325–336, 2013.

[181] Zhou He, TCE Cheng, Jichang Dong, and Shouyang Wang. Evolutionary location and
pricing strategies in competitive hierarchical distribution systems: A spatial agent-based
model. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(7):822–833,
2014.

[182] Smogon University. Competitive pokémon battling. https://www.smogon.com/, 2019.

[183] Markus Waibel, Laurent Keller, and Dario Floreano. Genetic team composition and
level of selection in the evolution of cooperation. IEEE Transactions on Evolutionary
Computation, 13(3):648–660, 2009.

158

https://www.smogon.com/

[184] Alan Schultz, John J. Grefenstette, and William Adams. Robo-shepherd: Learning com-
plex robotic behaviors. In In Robotics and Manufacturing: Recent Trends in Research
and Applications, Volume 6, pages 763–768. ASME Press, 1996.

[185] Mitchell A Potter, Lisa A Meeden, and Alan C Schultz. Heterogeneity in the coevolved
behaviors of mobile robots: The emergence of specialists. In International joint confer-
ence on artificial intelligence, volume 17, pages 1337–1343. Citeseer, 2001.

[186] Miroslav Benda. On optimal cooperation of knowledge sources. Technical Report BCS-
G2010-28, 1985.

[187] Nuno Lau, Luís Paulo Reis, Nima Shafii, Rui Ferreira, and Abbas Abdolmaleki. FC
Portugal 3D simulation team: Team description paper, 2013.

[188] R Dias, AJR Neves, JL Azevedo, B Cunha, J Cunha, P Dias, A Domingos, L Ferreira,
P Fonseca, N Lau, E Pedrosa, A Pereira, R Serra, J Silva, and A Trifan. CAMBADA
2013 Team Description Paper, 2013.

[189] Peter Stone, Gregory Kuhlmann, Matthew E. Taylor, and Yaxin Liu. Keepaway soccer:
From machine learning testbed to benchmark. In Ansgar Bredenfeld, Adam Jacoff,
Itsuki Noda, and Yasutake Takahashi, editors, RoboCup 2005: Robot Soccer World Cup
IX, pages 93–105, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[190] David Simões, Rui Brás, Nuno Lau, and Artur Pereira. A coordinated team of agents
to solve mazes. In Robot 2015: Second Iberian Robotics Conference, pages 381–392.
Springer, 2016.

[191] Robert Weihmayer and Hugo Velthuijsen. Application of distributed ai and coopera-
tive problem solving to telecommunications. AI Approaches to Telecommunications and
Network Management, 1994.

[192] Justin A Boyan and Michael L Littman. Packet routing in dynamically changing net-
works: A reinforcement learning approach. Advances in neural information processing
systems, pages 671–671, 1994.

[193] Michael Rubenstein, Christian Ahler, Nick Hoff, Adrian Cabrera, and Radhika Nagpal.
Kilobot: A low cost robot with scalable operations designed for collective behaviors.
Robotics and Autonomous Systems, 62(7):966–975, 2014.

[194] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawai, and Hi-
toshi Matsubara. Robocup: A challenge problem for ai and robotics. In Hiroaki Kitano,
editor, RoboCup-97: Robot Soccer World Cup I, pages 1–19, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg.

[195] Syamimi Shamsuddin, Luthffi Idzhar Ismail, Hanafiah Yussof, Nur Ismarrubie Zahari,
Saiful Bahari, Hafizan Hashim, and Ahmed Jaffar. Humanoid robot nao: Review of
control and motion exploration. In 2011 IEEE International Conference on Control
System, Computing and Engineering, pages 511–516. IEEE, 2011.

[196] Nintendo Game Freak, Creatures Inc. Pokemon series. Web: https://www.pokemon.
com, 1996.

159

https://www.pokemon.com
https://www.pokemon.com

[197] Zarel. Pokémon showdown. Web: https://pokemonshowdown.com/, 2019.

[198] coyotte508. Pokémon online. Web: http://pokemon-online.eu/, 2019.

[199] Arnaud Durand. Pokémon battle api. Web: https://github.com/DurandA/pokemon-
battle-api, 2019.

[200] Paul Hallet. Pokéapi. Web: https://pokeapi.co/, 2019.

[201] S. Lee and J. Togelius. Showdown ai competition. In 2017 IEEE Conference on Com-
putational Intelligence and Games (CIG), pages 191–198, Aug 2017.

[202] Johannes Ackermann, Volker Gabler, Takayuki Osa, and Masashi Sugiyama. Reduc-
ing overestimation bias in multi-agent domains using double centralized critics. arXiv
preprint arXiv:1910.01465, 2019.

[203] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning do-
mains: A survey. Journal of Machine Learning Research, 10(1):1633–1685, 2009.

[204] Bikramjit Banerjee and Jing Peng. Generalized multiagent learning with performance
bound. Autonomous Agents and Multi-Agent Systems, 15(3):281–312, 2007.

[205] Rajesh Rao. Decision making under uncertainty: A neural model based on partially
observable markov decision processes. Frontiers in Computational Neuroscience, 4:146,
2010.

[206] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learn-
ing environment: An evaluation platform for general agents. Journal of Artificial Intel-
ligence Research, 47:253–279, 2013.

[207] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International conference on machine learning, pages
1928–1937, 2016.

[208] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. Interna-
tional Conference for Learning Representations, 2016.

[209] Ronald J. Williams and Jing Peng. Function optimization using connectionist reinforce-
ment learning algorithms. Connection Science, 3(3):241–268, 1991.

[210] G.H.W. Gebhardt, M. Hüttenrauch, and G. Neumann. Using m-embeddings to learn
control strategies for robot swarms. Submitted to Swarm Intelligence, submitted.

[211] Theano Development Team. Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[212] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Joze-
fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,

160

https://pokemonshowdown.com/
http://pokemon-online.eu/
https://github.com/DurandA/pokemon-battle-api
https://github.com/DurandA/pokemon-battle-api
https://pokeapi.co/

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on hetero-
geneous systems, 2015. Software available from tensorflow.org.

[213] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep reinforcement learning that matters. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

[214] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar,
Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster,
and Shimon Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043,
2019.

[215] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in
deep reinforcement learning. In Proceedings of The 33rd International Conference on
Machine Learning, pages 1804–1813, 2016.

[216] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Networks, 2019.

161

	Contents
	Introduction
	Motivation
	Objectives
	Contributions
	Thesis Structure

	Multi-Agent Reward-Based Learning
	Reward-Based Learning
	Single-Agent Systems
	Markov Decision Process
	Partially-Observable Markov Decision Process
	Q-Learning and SARSA

	Deep Learning
	Multi-Agent Systems
	Taxonomy
	Multi-agent Markov Decision Process
	Decentralized Partially-Observable Markov Decision Process
	Concepts and Definitions
	Challenges

	Learning in Multi-Agent Systems
	Mixed-Policy Learning
	Single-Agent Deep Reward-based Learning
	Multi-Agent Deep Reward-based Learning
	Communication Learning

	Conclusion

	Applications and Test Beds
	Applications
	Cooperative Navigation and Tracking
	Traffic, Vehicle Monitoring, and Transportation
	Electricity Grid
	Supply Chains
	Games
	Autonomous Robotics
	Others

	GeoFriends 2
	Game-Theoretic Environments
	Fully-Observable Environments
	Competitive Grid Games
	Cooperative Grid Games
	KiloBots Environment

	Partially-Observable Environments
	POC Suite
	Multi-Agent Particle Environment
	3D Soccer Simulation League
	Simple Pokémon Environment

	Conclusion

	Multi-Agent Double Deep-Q-Networks
	Problem Statement
	Proposal
	Evaluation
	Joint-Action Learners and Independent Learners
	Generalization - Harder Tasks
	Generalization - Larger Teams

	Conclusion

	Mixed-Policy Asynchronous Q-Learning
	Problem Statement
	Proposal
	Update Rules

	Evaluation
	Tabular Rationality and Convergence
	Deep Asynchronous Rationality and Convergence
	Multi-State Environments

	Conclusion

	Adjusted Bounded Weighted Policy Learner
	Problem Statement
	Proposal
	Bounded WPL
	High WPL
	Adjusted Bounded WPL

	Evaluation
	Comparing ABWPL and WPL
	Comparing Mixed-Policy Algorithms

	Conclusion

	Asynchronous Advantage Actor Centralized-Critic with Communication
	Problem Statement
	Proposal
	Actor Network
	Centralized Critic Network
	Communication Network
	Permutation Invariant Networks

	Evaluation
	State of the Art Comparison
	Effects of Communication
	Communication Protocols
	Communication Noise
	Swarms and Permutation Invariance
	High-Level Strategy Learning
	Augmenting Centralized-Critic Inputs
	Architecture Variance

	Conclusion

	Conclusion
	Bibliography

